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Abstract

This thesis is a study of the dynamical system associated to the ring of S—integers
in an A-field. Arithmetic examples of such systems interpolate between the well-
documented toral endomorphisms and automorphisms of the full d-dimensional solenoid
Qd. The geometric analogue is an original class of examples, subsuming certain cel-
lular automata, which it is natural to investigate simultaneously. We compute the
topological entropy of these systems and give criteria for ergodicity and expansive-
ness, appealing to results by Bowen, Eisenberg, Lind/Ward and Tate. This leads to
a strengthening of the interplay between arithmetic and geometric dynamics.

In Chapter 4 we try to understand how the cardinality of the set of points of period
n grows with n. There are non—expansive examples in this class of algebraic systems
which have logarithmic growth rate of periodic points equal to the entropy, but possess
irrational zeta functions. We enter the realm of recurrence sequences and the question
of the existence of intermediate limit points comes under scrutiny. Waddington’s idea
for proving that the periodic points of an ergodic toral automorphism are uniformly
distributed is given an arithmetic generalisation to the special class of ergodic S—
integer systems (Chapter 5). Using a deep result of Heath-Brown on the Artin
problem, we construct an example that on the one hand mimics expansive behaviour
(in that the upper growth rate of periodic points is positive) and on the other hand
is highly non—expansive (in that it locally has infinitely many isometric directions).
We then present examples inspired by conjectures of Artin and Mersenne which yield
(conjectorial) examples with other behaviour.

In the arithmetic case, it is well-known that the entropy is equal to the logarithmic
Mahler measure of an integral polynomial associated with the action. The final
Chapter uses methods of Everest to generalise the classical Mahler measure to A—
fields. We deduce that the entropy in the geometric case is also equal to its geometric

Mahler measure.



The Appendix is a paper written with Graham Everest and Thomas Ward in which
the notion of oriented local entropy is introduced, and it is shown how the global
entropy of a Z*-action on a compact connected metrisable group may be decomposed
into a sum of such local contributions. In this paper also, periodic points are used to

analyse a class of dynamical systems.
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Chapter 1

Introduction

1.1 Measure Theory

A measurable space is a set X with a collection of subsets B of X such that
1. X € B,
2. if B € B then X\ B € B,
3. if B, € B then U;Z, B, € B.

Such a collection B is called a o—algebra of subsets and the elements of B are the
measurable sets.

A finite measure on the space (X, B) is a map m : B — Ryq satisfying m(0)) = 0
and m(U2, By) = 302, m(B,) if {B,} is a pairwise disjoint collection of measurable
sets. If, in addition, m(X) = 1, then (X, B,m) is a probability space.

If X is a topological space, then the Borel c—algebra is the smallest o—algebra
defined on X that contains all the open sets, and a measure on X is a Borel measure

if it is defined on the Borel o-algebra.



1.2 Haar Measure

Haar measure is a generalisation of Lebesgue measure on the real line to locally
compact groups and was first introduced by A. Haar [14] in 1933. Indeed, on the
real line Haar measure coincides with Lebesgue measure (up to normalisation). The
measure is defined on any locally compact (Hausdorff) topological group X and is the
unique translation invariant Borel measure (up to a positive multiplicative constant).
A proof of this can be found in either Weil [60] or Cartan [8], whose elegant proof
of existence and uniqueness avoids Tychonoff’s Theorem. The translation invariance
of Haar measure g on X means that p(Bz) = u(B) for all + € X and B € B, the
collection of measurable sets.

Furthermore, if X has the structure of a compact group, then the Haar measure
i can be normalised to give a Borel probability measure on X. The existence of Haar

measure means that we can define L?(p) spaces and integration.

Examples
1. X =T the additive circle, g is normalised Lebesgue measure.

2. X is a finite group, u(B) x |B] for any B C X.

_ 1
|X]

3. X =Z, (p-adic integers), u(a + p"Z,) = pl—n for all a € Z,,n € N.

1.3 Duality Theory

Definition 1.1 A topological group GG is a topological space carrying a group struc-

ture and satisfying the following conditions:

1. the mapping (z,y) — zy of G x GG onto GG is a continuous mapping of the
Cartesian product G x GG onto G;

2. the mapping z — z~! of G onto G is continuous.

We will use the term LCA group to mean a locally compact Hausdorff abelian topo-

logical group.



Definition 1.2 A character y of a LCA group GG is a continuous homomorphism
from G into the unit circle T. The collection of all characters is called the dual group
of GG, and is denoted by (. Sometimes we write < g,x > for x(g) to emphasise that

it is a pairing between GG and G.
We can topologise (i as follows. For K C X compact and r > 0 let
Ni,={x:|x(g) = 1] <rforall g € K}.

Then these sets form a base for a topology on . This topology is called the topology

of uniform convergence on compact subsets, and is denoted by UCC'.

Theorem 1.1 If G s any LCA group then é, endowed with the UCC —topology, s
also a LCA group.

Proof. See Theorem 10 in [33].

We quote the following results which can be found in [16].

1. (Pontryagin—van Kampen Duality Theorem). Let I' denote the dual group of a
LCA group G. For fixed g € G, let x : ' = T be given by x(v) = ~v(g) for all
v € I'. Then the map defined by a(g)(v) = x(v) for all ¥ € I' is a topological
group isomorphism between GG and I. A proof can be found in [16], Theorem

24.8.
2. G is compact if and only if G is discrete.

3. If GG is compact, then G is connected if and only if (i is torsion free, and G is

zero—dimensional if and only if (G is torsion.

4. If H C G is a closed subgroup then G/H is a LCA group in the quotient
topology. The annihilator of H, defined as

A

H* ={xeG:x(h)=1forall h € H},

is a closed subgroup of (. We have



(i) G/H = H*.
(i) G/H* = H.
(iii) H* = H.
. A homomorphism 7' : G — H of LCA groups induces a dual homomorphism

T : H — G defined by (T’y)(r) = ~(7T(z)). The map T is injective (resp.

surjective) if and only if 7" is surjective (resp. injective).

. If G is compact then the elements of (i form an orthonormal basis for L*(G).

As a consequence, each f € L?(() has a Fourier series representation

f:ZGW’V

el
where a, are uniquely determined complex numbers. Putting G = T yields the

classical Fourier series.

. The Fourier transform of any f € L'(G) is the complex—valued function f on
the dual group é, defined by

f00= [ F9) < —g.x > dg

where the integration is with respect to Haar measure.

Definition 1.3 A solenoid is a finite dimensional, connected, compact abelian group.

Equivalently, it is dual to a finite rank, torsion free, discrete abelian group, that is,

to an additive subgroup of Q¢ for some d > 1. For the full solenoid Q there is a

description in terms of quotients of adele rings, see Theorem 3 Section 4.2 in [59].

Lemma 1.1 The dual of any endomorphism of a d-dimensional solenoid is an ele-

ment of GL(d, Q).

1.4 Dynamical Systems

Let X be a compact topological space and T': X — X a continuous map. The pair

(X,T) is a topological dynamical system. Continuous maps 7': X — X and S:Y —
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Y are topologically conjugate if there exists a homeomorphism map ¢ : X — Y such

that So ¢ = ¢ o7, so that the following diagram commutes:

x L X
ol ¢
Yy 5 vy

Topological conjugacy is an equivalence relation on the space of all continuous
maps. If T"is topologically conjugate to S then T™ is topologically conjugate to S
for all n € Z, so T™ and S™ have the same number of fixed points. If a continuous

map has the property that the set of points of period n,
Fiz,(T)={r e X : T"(z) = z},

is finite for all » > 1, then we may encode the periodic point data into a single
function, the dynamical zeta function of (X,T'). This is defined (formally) as in [49]
by

cr(e) = exp (3 IFina (1) % ),

n=1

for any z € C where this converges. The inspiration for this definition is the Weil zeta
function of an algebraic variety over a finite field, the rationality of which was proved
by Dwork (see Chapter V in [21]). The importance of a rational zeta function is that
there exist algebraic complex numbers ay, ..., a4, B1,..., By, such that all conjugates

of an « is an «, all conjugates of a 3 is a , and we have

|Fix,(0)] = Eai” — Z:ﬂi” (1)

forall n > 1. Thus |Fiz,(0)| is completely determined for all n > 1 by a finite amount
of data (the poles and zeros, with multiplicities, of (7). Clearly (7 is an invariant of

topological conjugacy.

1.5 Topological Entropy

The topological entropy of a dynamical system (X,7") was first introduced by Adler,
Konheim and McAndrew in [2] as an invariant of topological conjugacy. It is a non-

negative real number or co denoted by h(7'). The original definition used open covers
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of a compact topological space X. Let a be an open cover of X and let N(«) denote
the least cardinality of a finite subcover of a. The join of two open covers, a V 3 ,
is defined to be the open cover by sets of the form AN B where A € a, B € 5. The
topological entropy with respect to « is defined by
1 o
(T, a) = lim —log N (\/ T_Zoz)

and the topological entropy of T is given by
h(T) = sup h(T, «)

where « ranges over all open covers of X.

Bowen [5] gave a new definition of topological entropy using (n, €)—generators (or
spanning sets) for X a metric space. His definition coincides with that of Adler, Kon-
heim and McAndrew on compact metric spaces, and has the advantage of extending
the concept of topological entropy to the class UC(X,d) of uniformly continuous
maps of spaces which are not necessarily compact. His definition will prove to be

useful later on and we now present the details.

1.6 Bowen Entropy

Let (X, d) be a metric space and 7' : X — X be a uniformly continuous map. Let
n be a natural number, ¢ > 0 and K C X compact. A set F' C X is called an
(n, €)—generator for K if for every x € K there exists y € F such that

d(T?(z), T (y)) < e for all 0 < j < n.

This means that every point of K stays e-close to some point of F' for at least n
iterations of 7. Let r,(€, K') denote the least cardinality of any (n,€)—generator for
K with respect to T'. We claim that r,(e, K) < co. Since K is compact there exists a
finite covering {Uy,...,U,} of K by sets with diameter less than or equal to . Now
choose a point y in every non—empty set of the form

r(U), (2)

0

n
J=



where 1 <z; <m, 0 <7 <n. We have selected at most m”™ points and these form
an (n, e)-generator for K with respect to 7'. To see this, take € K, and for each
0 < j < n take i; such that T7(z) € Ui;, so x is an element of the set in (2). If
y € K is chosen in accordance with (2) then d(T7(z),T’(y)) < e for 0 < j < n since
Ti(x), Ti(y) € Ui, which has diameter less than or equal to e. Hence r, (e, K) < m™.
Thus

lim sup % log r,. (€, K) (3)

n—oo

is finite. The topological entropy of T' is defined as

1
h(T) = sup {limlim sup — log (e, K)} ; (4)

K (70 nooo” 1
where K runs over all compact subsets of X. This is the definition due to Bowen [5].
Since r,(e, K) — oo as € — 0, the limsup in (3) increases as ¢ — 0. So the limit in
(4) exists, although it can be infinite. We need the limsup in (4) because there are
examples of maps for which {logr,(e, K)}>2, diverges for arbitrarily small €, see
section 7.2 Remark (14) in [56]. If X is compact, then it can be shown that
R(T) = limlim sup % log r, (e, X).

=0 n—oo

See Corollary 7.5.2 in [56] for a proof of this. In a nutshell, A(7") is a measure of the

growth rate in n of the number of orbits of length n up to a small error.

1.7 Calculating Topological Entropy

The topological version of the Kolmogorov—Sinai Theorem (see Theorem 7.11 in [56])
allows us to compute h(7') for some examples. An open cover a of X is a topological
generator for T if for every sequence {Ay}rcz where each Ay is an element of «,
the intersection ez 7" Ay contains no more than one point of X. The topological
version of Kolmogorov—Sinai is then: if « is a generator for 7' then, h(T) = A(T, ).

Examples

1. Let T be the shift action on X = {0,1,...,m — 1}% given by
T({zn}) = {xp41} for all n € Z.

9



We can easily construct a generator « for 7' by defining
Ajz{xz{:l:n}ioooeX:xo:j}

and setting a = {Ag, A1, ..., Au_1}. Then by the topological Kolmogorov—Sinai

Theorem,

WT) = h(T,a) = lim ~log N (n\_/lT—ia)

n—00 1 —0
1=

= lim —logm”
n—00 7

= logm.

2. If A is a toral endomorphism, then the dual endomorphism A is an element of

GL(d,Z) for some d > 1. It is well-known that the topological entropy is
d
h(A) =) _log™ |Ai,
=1

where Ay, ..., Ay are the eigenvalues of A counted with multiplicity. See Section

8.4 in [56] for the details.

3. More generally, Yuzvinskii has shown in [63], using complicated linear algebra,

that if A is an endomorphism of a solenoid then
d
h(A) = logs + 3 log™ [\, (5)
=1

where A\q,..., Ay are the eigenvalues of the rational matrix A (viewed as an ele-
ment of GL(d,Q)) and s is the lowest common multiple of the denominators of
the coefficients of the characteristic polynomial of A. See [28] for an alternative

adelic approach to proving (5).

. Let f = 3 4cz cxu® be a polynomial in Z[u*!] (with ¢; # 0 for finitely many &),
and consider the dynamical system (X, «) defined by

X = {7: cTZ . Z CkThtn = 0(mod]1) for all n € Z} ,
keZ
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and by setting a equal to the shift action on X. Then

h(ar) = log|ea| + D log™ Al (6)

i=1
where ¢,, is the leading coefficient of f and A{,..., A, are the roots of f. The
proof exploits a topological conjugacy between (X, o) and the automorphism of
an m—dimensional solenoid determined by the companion matrix of f (see [20]
Section 12 and [24]), so Yuzvinskii’s formula may be applied to this rational

matrix to compute the entropy.

Formula (6) has a very interesting generalisation to higher dimensions. Let X be
a compact abelian group and Aut(X) the group of continuous automorphisms of X.
A Z%-action on X by automorphisms is a homomorphism «a : Z? — Aut(X). Such an
action may be defined by specifying d commuting automorphisms of X, Uy, ..., U; say,
and then setting the image an = oy, ,..n,) = Uy" -+ Ug? for m = (ny,...,nq) € yAS
Kitchens and Schmidt [20] have shown that the Z%-action determines (and is deter-
mined by) a module M over the ring of Laurent polynomials Ry = Z[ui’, ..., uF'].
This correspondence is achieved by first defining the additive group M to be the dual
group of X, then define automorphisms xuy, ..., xXuy to be the dual automorphisms
of app,..0)--+,00,.,1) respectively. Extending ‘linearly’ (by the structure of M as
an additive group or Z-module) makes M into an R4-module.

Conversely, if M is an Rg-module, then multiplication by each of the u; gives
d commuting automorphisms of M. These correspond to a Z%-action ajs on the
compact dual group Xjps of M.

Now fix d > 1 and choose a non—zero polynomial f € Ry. From the above, setting
M = Ry/ < f > induces a Z%-action ap on the compact group X = Xyps. It has
been proved in [29] that

h(a) = log M(f),

where

1 1 R R
M(f):exp{/ / 1og|f(62“91,...,62“9n)|d91...en}
0 0

is the Mahler measure of f.
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Chapter 2

S—Integer Dynamical Systems

2.1 Places of an A—Field

In [28], Yuzvinskii’s formula (5) is decomposed into a sum of archimedean and p-adic

contributions to give,
d
h(A) = 3 3 logt [N, (7)
p<oo t=1
where M ®) ... A\;® are the roots of the characteristic polynomial of A in some

finite extension of Q,. Thus the logs term is actually just the sum over the non-

PR

archimedean primes. The framework for the proof of (7) is in Chapter IV of [59]. An
analogous formula for an automorphism of k%, k a number field, is obtained in [58].
Let k denote either the rational numbers Q or the field of rational functions in one
variable over a finite field of constants, F,(7"), where p is a fixed rational prime. The
p—adic absolute value on Q has a natural geometric analogue: the monic irreducible
polynomials v(T") of F,(T') play the role of the finite primes in the arithmetic case,
and the polynomial corresponding to the usual absolute value |.|., is conventionally

chosen to be T~!. The v—adic absolute value on F,(T) is defined as

|f|y — p—ordy(f)deg(u)

where ord,(f) is the signed multiplicity with which v divides the rational function

fry. It f(r) = HZ/(T)OTd”(f) then define deg(f) := Y ord,(f) - deg(v). For the

12



distinguished polynomial 77!, | f|,-1 = p?

(). It is conventional to denote the dis-
tinguished metric on k by |.|s and if v # oo we write v < 0o. Analogously to the

Artin—Whaples product formula we have

I 1/l =1.

v<oo

This product formula extends to finite algebraic extensions of k, or A—fields in the
terminology of Weil, which we now formalise.

The details for the following description of places of A—fields can be found in
Chapter III Section 1 in [59]. Let Mp, be the set of places on an A-field L (that is,
equivalence classes of multiplicative valuations on L). A place w is called finite if w
contains only non—archimedean valuations and infinite otherwise. The extension field
L has only finitely many infinite places. The rational number field Q has only one
infinite place, containing the usual absolute value, and a finite place for each prime p.
In the infinite place we choose a representative |.|., equal to the usual absolute value.
In the place corresponding to p (which we also denote by p) we choose the valuation
|.|, such that |p|, = p~. In the function field case F,(T"), there are no infinite places.
There are finite places for each monic irreducible polynomial v(7') in F,(7') and also
for the distinguished polynomial 77!. We choose for each place corresponding to
v(T') (which we also denote by v) the valuation |.|, as described above. In each place
w € My, we choose a valuation as follows. Let v be an element of M}, such w | v (that
is, the restrictions to k of the valuations in w belong to v; in particular w is infinite
if and only if w | o). The local degree is the number defined by d, = [L,, : k,] where
L, and k, denote the completions of L at w and k at v, respectively. Choose the
valuation satisfying

lal, = |a|i‘”/d for each a € k,

where d is the degree of the extension £ C L. Then the Artin—-Whaples product

formula holds for all valuations on L,

H la], =1 for all @ € L™, (8)

WEML
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2.2 An Adelic Construction

Let & be an A-field and let k, denote the completion of k& with respect to the v—
adic metric |.|,. For every finite place v let r, = {z € k : |z|, < 1} denote the
ring of v—adic integers in k, — this is the maximal compact subring of k,, and let
ri={x € k:|x|, = 1} — this is the group of invertible elements of r,. Let S be any
set of places of k£ not containing P, the set of infinite places. For any such set S we

define the following product,

ka(S) = {;17 =(x,) € H k, :lz,|, <1 for almost every 1/} ,

vESUPx
where the phrase “almost every v” means “all but a finite number of v”. Since each
factor r, is compact and k, is locally compact, ka(S) is locally compact under the
product topology. This is an example of a restricted direct product first exhibited in
this context in Tate’s thesis [53]. We make ka(S) into a ring by defining addition

and multiplication component wise. Define the subring Rg of k£ by
Rs={zek:|z|,<1forallv¢g SUP,}.

Classically Rg is known as the ring of S—integers.

Examples
l. f k=Q and S =0, then Rs = Z.
2. fk=F,(T)and S =0, then Rs = F,[T].
3. If k=Q and S = {2,3}, then Rs = Z[¢].
4. If k =F,(T) and S = {T}, then Rs = F,[T*!].

Let £ be a non-zero element of Rg and let § = 0 be the surjective endomorphism
of the compact group ]%5, dual to multiplication by ¢ on Rg. The pair (}%5, 6) forms
a dynamical system. Note that if we consider k& to be a d-dimensional vector space
over Q or F,(T'), where d is the degree of the extension, then (}A%S, 6) is isomorphic

to a system of the form (}A%%*,é*), where

S*={v:w|vfor each w € S}

14



and £* € My(Rg»), the set of d x d matrices over the ring Rs+. Thus the number field

situation gives rise to an endomorphism of a finite-dimensional solenoid.

Examples

1.

Let k= Q,S =0 and £ = 2. Then Rs = Z,]A%S = T and 6 is the circle doubling

map.

Let k = Q,S = {2} and { = 2. Then Rs = Z[3], Rs is the solenoid Z/g] and 0

is the automorphism of Rs dual to the automorphism x — 2z of Rs.

Let £k = Q,S = {2,3,5,7,11,...} and £ = 2. Then Rs = Q and 0 is the

2
automorphism of the full solenoid Q dual to multiplication by % on Q.

. Let ¢ be an algebraic integer, k = Q(£) and S = (). Then Rg is the ring of inte-

gers in k. Taking £ = v/2—14i1/2v/2 — 2 gives a non-expansive quasihyperbolic

automorphism of the 4-torus (see Section 3 in [27]).

. Let k =F,(T),S =0 and § = T. Then Rs = F,[T], Rs = [12,{0,1,...,p—1}

and 6 is the one-sided shift on p symbols.

Let k= F,(T),S = {T} and ¢ =T. Then Rs = F,[T*!],
Rs = [1*,.{0,1,...,p — 1} and @ is the two-sided shift automorphism on p
symbols.

Let k =F,(7T),S={T} and (£ =T + 1. Then Rs is the two-sided shift space

on p symbols, and 6 is the cellular automaton defined by

(0(x))m = Tm + Tmp1(modp).

Let ¢ be the diagonal embedding of Rg into ka(S) given by (¢(z)), = z for all

r € Rg,v € SU P,. This map is well-defined since any r € Rg has |r|, < 1 for
almost every v (see Theorem III.1.3 of [59]). The main result of this Chapter is the

following theorem.
Theorem 2.1

h(8; Rs) = Y log™ [€]..
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The arithmetic version of this quantity is the logarithmic height of an algebraic num-
ber. Abromov [1] proved Theorem 2.1 in the case k = Q where the map ¢ is specified

by a rational number m/n in lowest terms, so
h(8; Q) = max{log ||, log n}.

The following preliminary results give us information about Rg by identifying it
with its natural image in ka (S). The proofs are a straightforward extension of Weil’s
in [59] where he considers the case in which S comprises all finite places and embeds

k in the adele ring ka .
Theorem 2.2 ¢(Rs) is a discrete subgroup of ka(S) and ka(S)/e(Rs) is compact.

Proof. We first prove the Theorem for the case k = Q or F,(7T") and resolve later
the generalisation to A—fields.

Definition 2.1 For each v € S define a subring of Rs by
Rg/) ={a € Rs : |a|, <1 for all places w # v} .

Clearly Rg’) is a subring of Rg for each v € S. For example, if £ = Q and S = {2,3},
then Rg) = Z[l],Rg}) = Z[3] are both subrings of Ry = Z[$]. If k = F,(T) and

2

S = {T}, then R{") = F,[T*'] = Rs.

Lemma 2.1 For each v € S we have

Z f k=
k, = Rg) +r, and Rg’) ﬂry = { 7 Q

F, ifk=F,(T).

Proof. The first assertion follows easily by examining the v—adic expansion of an

element of k, and the second is obvious.

Lemma 2.2 [n the case k = Q we have

QA(S) = ¢(Rs) + Aw and o(Rs)()| As = ¢(Z)

where Ao = R X [Les Zy, is an open subring of Qa(S).
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Proof. The second assertion is actually obvious. Let x = (z,) be any element in
QA (S5) and define S* to be the set of primes p € S such that z, ¢ Z,; so S* is finite.

By Lemma 2.1, for each p € S* we may write
z, = a, + x, with a,, € ng”'),:c; €z,

For p € S\ {S"} put , = 0 and z, = z,, . Set @ = 3, c5000 Qp, 50 that a € Rs, and
y=a—p(a). If y = (y,) then we have for every p € 5,

!
yp—;lfp—ozp— E ap/ —Jl'p— E O[pl.

p'€S\{p} p'€S\{p}

By the definition of Rg), all the terms on the right-hand side are in Z,. So y is in
Aso, hence z is in p(Rgs) + As. This proves the first assertion of the lemma.
O
Since A, is open in Q4 (.5) it suffices to show that p(Rs) N Ac, that is p(Z), is
discrete in A; this is clear since its projection onto the factor R of the product A
is Z, which is discrete in R. Hence ¢(Rs) is discrete in Qa(S). Now let I be the
closed interval [—1,1] in R, and put C' =1 X [[,es Z,. Obviously A, = ¢(Z) + C,
s0 QA(S) = p(Rs)+ C. Hence Qa(5)/¢(Rs) is compact since C' is. This completes
the proof of Theorem 2.2 for k£ = Q.

Lemma 2.3 In the case k = F,(T') we have
ka(S) = @(Rs) + Ao and o(Rs)[] Ao = (F;)
where Ag = [1,csu00 v 15 @ compact open subring of ka(S).

Proof. The second assertion is again obvious. In a fashion similar to the arithmetic
proof, take any = (z,) in ka(S5). By Lemma 2.1, for each v € S satisfying |z, |, > 1
we may write

r, = a, + 2!, with o, € Rg’), z €,

For the remaining valuations in S put a, = 0 and 2/, = z,. Set a =3 cgus @, 5O
that o € Rg, and y = @ — ¢(«a). Then, just as in Lemma 2.2, y is in Ag implies that
z is in @(Rs) + Ag. This proves the first assertion of the lemma.
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O

Now since Ag is open in ka (S) and F,, is finite, it is clear that p(Rs) N Ao = ¢(F,)

is discrete in Ag and so p(Rg) is discrete in ka (S). Finally, ka(S5)/¢(Rs) is compact
since Ag is compact. This completes the proof of Theorem 2.2 for k = F,(T').

O

From [59] Chapter I, Theorem 5 and Theorem 8, we have that the collection

of completions of A-fields coincides with the collection of all non-discrete locally

compact fields.

Proposition 2.1 Let K be a non—discrete locally compact field and let xq be a fized,
non—trivial character. Then any non—trivial character x of the additive group of K

can be uniquely written as t — xo(tz) for allt € K and some fived x € K*.

In other words K = [{’, both topologically and algebraically, via the mapping

t— xi(z) := x(tx).

For example, R and Q, are self-dual. In general, the construction of a non-trivial

character of £ may take some doing.

Proposition 2.2 Let x be any character of ka(S). Then x induces a character x,
on the quasifactor k, for each v € S U P, via the projection mapping x = (z,) — z,
of ka(S) onto k,. A character of an infinite product of compact groups must induce
the trivial character 1 on almost all the factors. Since x, is in r, for almost every
v € S then x, is trivial on r, for almost all v and for each x = (z,) in ka(95),
x@) =TI xu(z), (9)
vESUP

where almost all the factors are equal to 1.

Proof. See Theorem 23.21 in [16]. Suppose {H; : ¢ € I} is a family of compact
groups. Using the notation in [16], let [T;c; H; be the subgroup of the compact group
[Tic; Hi consisting of all x = (z;) € [I;c; H; such that z; = ¢; for all but finitely many
indices 7. For any element (x;) in [T}¢; H; define the function X : [Lier H; — T by

x(@) =TT xi(z), (10)

el
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where all but a finite number of terms in the product are equal to 1.

The set of x satisfying (10) is clearly a subgroup of the dual of [[;c; H; that
separates points of [[;c; H;. By Theorem 23.20 in [16] the set of such characters {x}
is dense in the dual group of [];c; H;, which is itself discrete. Hence all characters on

[Ticr Hi are of the form in (10).

Theorem 2.3

A

ka(S)/¢(Rs) = Rs.

Proof. Once again we treat the case k = Q or F,(7'). Consider the former. We
construct a non—trivial character y on Qa(S) as follows. For each p € S let x, be

trivial on Z, and for p = oo define
X(2e) = e~ ¥ for all z., € R.

By (9), any continuous character on QA (S) must be trivial on Z, for all but finitely
many p in S since it must restrict to a continuous character on an infinite (if S is
infinite) product of compact groups. We can calculate the character x,, induced on

the quasifactor Q,, by considering again the ring Rgp). We have,

1= X(#(2)) = Xoo(2)xp(2) for all w € RY,

since y is trivial on p(Rs). So
Xp(z) = ™ for all z € ngp)

and by Lemma 2.1 this completely determines y, on Q,.
Now let x’ be an arbitrary character of Qa(S) and denote the induced character
on the quasifactor Q, of Qa(S) by x;, for each p € S U occ. By Proposition 2.1, with

Q, non-discrete and x, non-trivial,

Xp (%) = Xp(ap)
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for some unique a, in Q,. By (9) x;, must be trivial on Z, for all but finitely many
p € S if x is to be continuous. Thus y,(a,) = 1 for all but finitely many p € S and
so a, € Z, for all but finitely many p € S. Therefore a = (a,) is in Qa(S) and by
(9) x' is the character x, of Qa(S) given by x.(z) = x(az) for all x € Qa(5).

We have shown that the mapping a — x, of Qa(S5) — QZ?S) is surjective. Since

this mapping is clearly injective and continuous then Qa (S) = Qa(95).

Now

¢ (Rs) = Qa(S)/o(Rs)" = Qa(5)/¢(s)*

So in order to prove the Lemma for the case k = Q we must show that the mapping
a +— X, induces an isomorphism of ¢(Rs) onto p(Rs)*:. The group ¢(Rs)* consists
of all characters of Qa(S) which are trivial on ¢(Rs), and x has this property by
construction, hence so does x, for all @ € ¢(Rs). Thus a — y, maps ¢(Rs) into
p(Rs)h.

To obtain the converse, let x, € ¢(Rs)* for some b € QA(S) and put C =
I x Tlpes Z, where I = [—%.2]. In the proof of Theorem 2.2 we showed that

272

QaA(S) = ¢(Rs) + C, so we may write
b=p(a)+cwith o € Rg,c € C.

Note that y. € ¢(Rs)*. Now write ¢ = (¢,), so ¢, € Z, for all p € S, then

—2TiCoo

L= xe(p(1)) = x(€) = Xoolcao) = €

where ¢o, = 0 since co, € I. Thus y. is trivial on A, (as defined in Lemma 2.2). But
as it is trivial on ¢(Rs), Lemma 2.2 shows that it is trivial on Qa(S), so ¢ = 0 and
hence b € p(Rs). Therefore a — Y, maps ¢(Rs) onto p(Rs)* and induces a bijective
morphism of @(/ES) onto QA (S)/¢(Rs). This completes the proof in the arithmetic
case.

Now let k = F,(T') with p a fixed rational prime. Recall that oo corresponds to

the valuation |.|;-1 on k, and is actually a finite place as are all the places on k. We

identify an element = € k., with its r—adic expansion,
T = Z a; T~
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where n € Z and a; € F, for all : > n. By analogy with Q, we proceed to construct
a non—trivial character xy on ka(S) as follows: for each v € S let yx, be trivial on r,

and for ¥ = oo define

—27

Xoo(Too) = € T for all Too € koo

As before y must be trivial on r, for all but finitely many v € S.
For each v € S, let B® denote the subring of Rg') defined as

BY) = ngy) ﬂ{a € ngy) ale < 1}.

So, as in Lemma 2.1, k, = B") +r, for all v € S, and if we choose a € B™ \ {0}
then
a=v(T)"g(T),

where n € N and g € F,[T] with deg(g) < ndeg(v). Let a; denote the leading
coefficient of g. As v(T') is monic, it can be written as T%9)y for some u € F,[T~]

with constant term 1. Then
a=v "g=u"TIV) g = g, T (modT_Q)
in the ring r., and, since a # 0,

aTndeg(u)—l—deg(g) = alTndeg(u)—Q—deg(g) (mOdT—Q)

Z 0 (modT_Q)
because ndeg(v) — deg(g) > 0. We have now
1 = x(p(a)) = Xeo(@)xu (@)
since y is trivial on p(Rg), and so
xo(a) = 2T # 1 since a; # 0.

The character y, is completely determined by its values on B®) since it is trivial on

.
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Continuing as in the arithmetic proof, let x’ be any character of ka(S). For
each v € S, the induced characters x! on the quasifactors k, can be written as
X, (z) = xu(a,z) with a, € k,. Since x!, must be trivial for all but finitely many
v € S, we deduce that a = (a,) € ka(S5), so that x' is the character given by

Xo(2) = x(ax) for all x € ka(5).

As before, by considering the continuous bijective morphism a — y,, we conclude
that kA/(\S) >~ ka(S) and that this mapping takes p(Rs) into ¢(Rs)*:.

Let x € p(Rs)* for some b € kp(S), then by Lemma 2.3 we may write
b= p(a)+cwith a € Rg,c € Ag; so x. is trivial on ¢(Rs). Put ¢ = (¢,) so that
¢, €r, forall v € SU. Clearly co, =7 (modT ) for some v € F,. Now substitute

a by a4+« and ¢ by ¢ — ¢(7), so that c., = 0(mod7 ™). Then we have

1= xe(p(1)) = x(¢) = Xoolcxo),

whence ¢, is in T7?r,, because in the v—adic expansion of c., the coefficients ag and
a; must be zero. It follows that y.(cst) =1 for all t € o, so x. is trivial on Ay and
hence on ka (S) by Lemma 2.3. So ¢ = 0 and b € ¢(Rs).

In conclusion, @ — y, maps p(Rs) onto p(Rs)™ and p(Rs) = ka(S)/¢(Rs).

e

This completes the proof for the geometric case.

2.3 Extension of Theorems 2.2 and 2.3 to A—Fields

These results have a natural generalisation to the case of k being an A-field. Since
S is an arbitrary set of finite places of k (as opposed to the classical case where S
comprises all the finite places), it is not sufficient to quote Weil at our leisure. He
uses the language of tensor—products and algebras to establish our Theorems for the
case in which S comprises the set of all finite places. Instead we return to one of the
sources of Weil’s adelic machinery, namely Tate’s elegant thesis [53].

In [53], Tate introduces the notion of an abstract restricted direct product, under

the hypothesis that P (= S U P.) is an arbitrary set of indices (places). Let Gp
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(= k,) be a locally compact abelian group for P € P, and for all but finitely many
P, let Hp (=r,) be an open compact subgroup of Gp. The restricted direct product

is defined as

G(P) = {g = (gp) € H Gp : gp € Hp for almost every 73} ,
PeP

a locally compact abelian topological group. We topologise G(P) by choosing a
fundamental system of neighbourhoods of 1 in G(P) of the form N = [[pcp Np,
where each Np is a neighbourhood of 1 in Gp and Np = Hp for all but finitely many
P.

The key results proved in Lemma 3.2.2 and Theorem 3.2.1 of [53] are:

1. ¢(Rs) is discrete in ka(S) and ka (S5)/¢(Rs) is compact,

2. RE = Rg, ka(S) = ka(S) and so ka(S)/¢(Rs) = Rs
where S is an arbitrary set of finite places of an A—field k. This completes the
generalisation of Theorems 2.2 and 2.3 to A—fields.

2.4 The Entropy Formula

Identifying Rs with ¢(Rs) C ka(5), the action of £ on Rg extends to ka(S) by
defining (éx), = &(x,) for @ € ka(S) and v € S U P,,. Equivalently, the extension
can be defined locally via the embedding Rs C [I,esup, (Bs @& k) = ka(S). Thus
the endomorphism 6 of Rs may be lifted to an automorphism 0 of ka(95),

(11)

(4
—

EA(S) = ka(S)
! !
Rs Rs
where 0 is the aforementioned extension. This lifting is analogous to the lifting of
maps of the circle T to the universal cover R/Z. Following the work of Bowen we

give a method for computing the entropy of a uniformly continuous map acting on a

locally compact metric space, by using Haar measure to count orbits.
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Definition 2.2 Suppose that (X, d) is a locally compact metric space and

T : X — X is uniformly continuous. Set
n—1
Dy(z,e,T) = (VT (B(T"(2))),
j=0
where B.(y) = {z € X : d(y,z) < €}. A Borel measure p on X is called

T—homogeneous if

(i) u(K) < oo for all K C X compact,
(ii) p(K) > 0 for some compact K,

(iii) for each € > 0 there exist positive constants 6, ¢ such that

w(Dn(y,6,T)) < ep(Dy(x,e,T)) for all n > 0 and z,y € X.
For such a p, put

1
k(g,T) =limlimsup ——log pu( D, (z,¢,T)).

n— o0 n
By (iii) this is independent of x. Proposition 7 of [5] states that h(T) = k(u,T)
for any T-homogeneous measure p. If 7' is a continuous endomorphism of a locally
compact group, then Haar measure p is T-homogeneous and h(7T') = k(u,T).

Lemma 2.4

Proof. Since ka(95) is a locally compact metric space and 0 is uniformly continuous,
Bowen'’s definition of topological entropy h(é, ka(S)) applies. From the second asser-
tion of Section 2.3, h(0; Rs) = h (GN, kA(S)/go(RS)). Theorem 20 in [5] shows that for

e small enough we have,

@ (Dn(y,e,é)) = Dn(y + @(RS),G,é),

for all y € ka(S5). Thus the projection map ¢ is a local isometry of ka(S) onto
ka(S)/e(Rs). Hence the result.
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Lemma 2.5

h(0; ka(S)) = h(0; ka(S1)),
where S C S is a finite set such that ||, > 1 if and only if v € 5.

Proof. We write
kA(S) = kA(Sl) X H Ty.

z/QESJ

Since the second factor is compact, by Theorem 7.10 in [56] we have

h(0; ka(S)) = h(0; ka(S1)) + (é; 11 Ty) :

llesl

The product [],¢s, 7, has a basis of open sets U, given by,

Um = H erzz X H Ty,

veF vESF\F

where m > 0 and F'is a finite subset of S7. Since ¢ € r, for each v € 57, Proposition

7 in [5] with the f~homogeneous Haar measure implies that h(8; [Lgs, mv) =0.

Lemma 2.6

h(O;ka(S1) = > h(B;k,).

UESl UPso

Proof. Unfortunately, in the absence of compactness, additivity of entropy is not a
forgone conclusion (see Theorem 7.10 in [56] and Lind/Ward [28] where this occurs
in a similar context). Let p, denote Haar measure on k, for each v € S U P, then
(1, is f~homogeneous.

In the arithmetic case, if v|oo (that is, |.|, is the usual absolute value or it’s
square) then k, = R or C, and Theorem 8.14 in [56] shows that the Bowen entropy is
h(é, k,) = log® |€],. For example, h(x2; C) = log* |22 = log 4. It remains to compute

the Bowen entropy contributions from the ultrametric v—adic absolute values.
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Suppose v corresponds to an ultrametric v—adic absolute value on k. From
Chapter I Section 2 in [59], mody,(¢) is the number well-defined by p,(éF) =
mody, (£)p, (E) for any measurable £ C k, with 0 < g, (F) < oo. This number
is called the module of ¢£. By Corollary 3 in Chapter I Section 2 of [59] and Theorem
11 in Chapter 3 Section 2 of [21], mody, (&) = |£]..

It C' is a compact ball centered at 0, then

n=1 n—1 ' —(n—l)C if , 1
ii(c)= N o= ¢ el 1
7=0 7=0 C if |€|l, S 1.

It follows that

1 n—1x_.
k(ﬂy79) = lim ——10g Hy <ﬂ]:;0_](0))

n—oo n

= log® mody, (€)

= log* |¢],
= h(b;k,)

by [5] Proposition 7. Since the limsup’s are actually limits, additivity of entropy

follows.

Proof of Theorem 2.1

From Lemmas 2.4-2.6, we conclude that

WO ks) = 3 h(B;k) = log" [¢l.,
VvES|UPy v

since an argument as in the proof of Lemma 2.5 shows that h(é, k,) =0 for v ¢ 5.
O
Thus the entropy of the geometric endomorphism 6 of Rs admits a v-adic decom-
position exactly analogous to the p—adic decomposition of its arithmetic counterpart,
shown in (7). Theorem 2.1 is a special case of [28] in the connected case. In the
geometric case, it is an easy extension. Following Weil, we strive to treat both zero

and positive characteristics on an even footing.
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Chapter 3
Ergodicity and Expansiveness

Definition 3.1 Suppose (X,B,m) is a probability space. A map 7' : X — X is
called a measure—preserving transformation if for every B € B we have T~'(B) € B

and m(B) = m(T~(B)).

Our main interest in such systems will be when 7' : X — X is a (continuous)
surjective endomorphism of a compact abelian group preserving Haar measure p.
Halmos [15] first observed that such a transformation is measure preserving as follows:

define a new measure m on X by setting m(B) = u(T~'(B)) for all B € B. Then
m(I(2) + B) = (T (T(2) + B) = pla + T (B)) = u(T~(B)) = m(B)

by the translation invariance property of p. But p is the unique probability measure

with this property so m = p since T' is surjective.

Definition 3.2 Let (X, B,m) be a measure space. A measure preserving transfor-
mation T': X — X is said to be ergodic if whenever m(T~*(B) A B) =0 for B € B
then either m(B) =0 or m(B) = 1.

Ergodic maps are in a sense indecomposable ones. Ergodicity is equivalent to the

following property:
whenever f € L*(G) and (f o T)(z) = f(x) a.e. then f is constant a.e. (12)

(See Theorem 1.6 in [56] for a proof of this.) The ergodicity condition for compact

abelian groups is:
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Theorem 3.1 If X is a compact abelian group with normalised Haar measure and
T: X — X is a surjective continuous endomorphism then T is ergodic if and only if

the trivial character v =1 s the only v € X satisfying v o T™ = ~ for some n > 0.

Proof. First suppose that whenever v o T = « for some n > 0 we have v = 1. Let
foT = f with f € L*(X). Write f in its Fourier series expansion

= Zamvm

where
> am|? < oo (13)

The T—invariance of f implies that 3 @,y (T'2) = 3 @mym (), so that the coeflicients
of Yoy Ym0 T, ymoT?, ... are all a,,. By (13) we must have v, 0 T" = v,, 0 T' for some
n > 1> 0, that is, v,, 0o 7""! = 4,,. By our assumption 7,, = 1 and so f is constant
a.e. Therefore T' is ergodic by (12).

Conversely, let T' be ergodic and yoT" = ~ for some n > 0 (n minimal). It follows
that the function

f=r+yoT+ - FryoT"!

is T—invariant and non—constant (since it is a sum of distinct elements of the or-

thornormal basis). By (12) 7' is not ergodic, a contradiction.

a

Corollary 3.1 If T : T" — T" is a surjective continuous endomorphism of the n—
torus then T' ts ergodic if and only if the dual map T, which is an element in GL(n,Z),

has no roots of unity as eigenvalues.

Proof. Suppose T' is not ergodic, then by the characterisation of ergodicity above
there exists a non—zero ¢ € Z" and m > 0 such that qu = ¢. So 7™ has 1 as an
eigenvalue and hence an m-th root of unity as an eigenvalue.

Conversely, if T has an m-th root of unity as an eigenvalue then 7™ has 1 as
an eigenvalue. So (Tm — I) is singular whence there exists a non—zero y € R” with
(Tm — I)y = 0. But the matrix (Tm — I) has integral entries so we can find such a y
in Z™. Hence Tmy =y and T is not ergodic by the Theorem. a
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The criteria for ergodicity in S—integer dynamical systems (]A{S, 6) is the following.

Theorem 3.2 In the arithmetic case 0 is ergodic if and only if the set of conjugates

of £ does not contain a root of unity. In the geometric case 6 is ergodic if and only if
£¢F;

Proof. Recall that the dynamical system (]A%S, 0¢) has a matrix representation (]A%%*, fA*)
where S* = {v : w | v for each w € S} and ¢* € My(Rs+). Suppose that 6 is not
ergodic, then by Theorem 3.1 there exists a non-zero vector ¢ € R%, and m > 0 such
that (£*)"¢ = ¢. So (£*)™ has 1 as an eigenvalue. Therefore if & is a number field
then £* has an m-th root of unity as an eigenvalue. If k is a finite algebraic extension
of F,(T') then some eigenvalue of {* must be constant, since F7 is a cyclic group,
otherwise the degree of an eigenvalue as an algebraic function in 7' increases with
m. Hence, in the arithmetic case some conjugate of £ is a root of unity, and in the
geometric case { € F7.

Conversely, assume that either some conjugate of ¢ is an m-th root of unity or
£ € F;, so that {* has either an m-th root of unity or a constant in F as an eigenvalue.
Then either (£*)™ — I or (£*)P~' — I is singular, respectively. Since the entries of these
matrices lie in Rgs, there exists a non-zero y € R%. such that either (£*)™y = y or
(&*)P~'y = y. By Theorem 3.1 fA* is not ergodic, hence 6 is not ergodic.

O

Definition 3.3 A continuous map 7' of a metric space (X, d) is forwardly expansive

if there exists an expansive constant 6 > 0 such that, for © # y there exists n € N

with d(T"(z), T™(y)) > 6.

Such maps allow the definition of topological entropy to be considerably refined

as follows: for every 0 < € < 6 we have

h(T) = sup lim ilog (e, K)

I\, n—00 n

rather than taking the double limit as in (4). This is proved in Proposition 7.3 of
[32]. Hence h(T') is always finite.
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Definition 3.4 A homeomorphism 7" of a metric space (X,d) is expansive if there

exists an expansive constant 6 > 0 such that, for * # y there exists n € Z with

d(1"(z),T"(y)) > 6.

It has been shown in [18] that if a homeomorphism 7' : X — X is forwardly

expansive, then X is finite.

Lemma 3.1 A continuous endomorphism T' of a compact metrisable group X is ex-
pansive if there is a neighbourhood U of the identity Ox of X such that

N 77U = {0x}.

neN
Proof. This is obvious from the definition of expansiveness because X is metrisable.
O

Expansiveness is a natural condition in topological dynamics. The algebraic ana-

logue that eliminates certain complex behaviour is the following.

Definition 3.5 [Section 3 in [20]] Let X be a compact group and let I' C Aut(X) be
a countable group. The pair (X,I') satisfies the descending chain condition if there

exists, for every sequence X DV} DV, D -V, - of closed '-invariant subgroups,

an integer N > 1 with V,, = Viy for all n > N.

Theorem 3.3 Let X be a compact group and I' C Aut(X) be a finitely generated,
abelian group, and assume that (X, 1) is expansive. Then (X,I') satisfies the descend-
ing chain condition. If X is zero—dimensional and (X,I') satisfies the descending

chain condition then (X,I') is expansive.

Proof. See Theorem 5.2 in [20].
O
It is well-known that if 7' is a surjective continuous endomorphism of the n—
dimensional torus then T' is expansive if and only if 7' has no eigenvalues of modulus
1 (this is Theorem 21 in [24]).
If ar,/<s> is a Z?-action on a compact abelian group XRr,/<f>, then by [44],

ag,/<s> is expansive if and only if f has no zeros on the multiplicative d-torus. The
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A

criteria for expansiveness in S—integer dynamical systems (Rsg,0) is a straightforward

application of the following result by Eisenberg [9].

Lemma 3.2 Let K be a complete non—discrete field with a valuation |.|, and let K
denote the algebraic closure of K extending uniquely the absolute value on K. Let
E be a finite dimensional vector space over K, and let u be an automorphism of F.

Then u is expansive if and only if |\| # 1 for each eigenvalue X of u in K.

Theorem 3.4 In the arithmetic case, 0 is expansive if and only if the orbit of &
under the action of the Galois group GallQ : Q] on Q* does not intersect T and
S C{rv < oo : |¢], # 1}. In the geometric case, 0 is expansive if and only if
SUP, C{r<oo: €, #1}.

Proof. Recall that by Bowen [5] there exists a local isometry between ka (S) and
}%5, hence expansiveness on Rs is equivalent to expansiveness on ka(S). Now set E
equal to each of the quasifactors of k4 (5) in turn and fix u to be multiplication by
&, then, bearing in mind that € is not necessarily invertible, the result follows from
Lemma 3.2. Note that the set S must be finite. Thus expansive actions are ones
which behave hyperbolically in all directions &, such that v € S U P,,.

O

This Theorem is a generalisation of Proposition 7.2 in [45] where Schmidt considers

k to be a number field and S = {v < oo : |¢], # 1}.
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Chapter 4
Periodic Points

Definition 4.1 Let T : X — X be a homeomorphism of a compact metric space.

For n > 1, the set of points of period n is given by
Fiz,(T)={r e X : T"(z) = «}.

Theorem 4.1 IfT : X — X is an expansive homeomorphism of a compact metric

space then |Fiz,(T)] < oo for alln > 1 and

lim sup 1 log |Fix,(T)| < h(T).
n

n—oo

Proof. Let § be an expansive constant for 7. Suppose T"(z) = z,T"(y) = y and
x#y. Ifd(T(z), T?(y)) < 6 for all 0 < j < n — 1, then by expansiveness we must
have d(T7(x),T?(y)) < é for all j € Z and hence x = y. Therefore the set Fiz,(T) is
(n,6)-separated (as defined in Section 7.2 of [56]) and so

|Fiz,(T)| < s,(6,X) < o0,

where s,,(6, X)) denotes the maximal cardinality of any (n, § )—separated set for X with

respect to T'. Hence

1 1
limsup —|Fiz,(T)| < limsup —s,(6, X) < h(T).
n

n—00 n—oo N
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Example 4.1 If 7' is an expansive endomorphism of the d-torus then
X d
| Fiea(T)] = ldet(P — 1)] = [T I\ — 1]
i=1

where Aq1,...,\; are the eigenvalues of T and

W(T) = lim - log |[Fiz,(T)|.

n—oo n

(This growth rate also holds when 7' is merely ergodic, but the proof involves deep
Diophantine estimates. See [26] for details.)

4.1 Periodic Points Counting Formula

We propose to extend the computation of |Fix,(T)| in the above example to the
S—integer dynamical systems (RS, 6) defined in Chapter 2 and shall be investigating
their periodic—point growth rates in both zero and positive characteristic. We begin
by proving a general result concerning discrete subgroups of a locally compact abelian
group.

Let I' be a discrete subgroup of a locally compact abelian group X such that X/I"
is compact. A fundamental domain F' of X modulo I' is a full (measurable) set of
coset representatives of I' in X. Denote by p the Haar measure on X normalised to
give u(F) = 1. Let A: X — X be a continuous surjective mapping with /NX(F) cr,
then this induces a continuous surjective endomorphism A : X/T' — X/I" by defining
Alz + 1) = /Nl(x) + I for all z € X. Let ¢ : X/T' — X be a Borel section of the
canonical epimorphism 7 : X — X/I', so 7 o ¢ is the identity on X/I". Such a map
¢ always exists, see for instance Appendix A in Zimmer [64]. The measure g induces

via this Borel section a probability measure p* on X/I' by defining

whenever £ C X is a measurable set and 7| = ¢|g is a bijection. Also, the following

diagram commutes:
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A

X =5 X
7| s
X/T 4 X/T

Recall the module function introduced in the proof of Lemma 2.6.

Theorem 4.2 If ker A is discrete, then

modx (A) = | ker A|.

Proof. Since I' is discrete in X, a fundamental domain F' may be chosen so that
there exists a neighbourhood U(0x) of the identity 0x € X with U(0x) C F. The
finiteness of | ker A| follows from the fact that it is discrete and X/I' is compact. So
for a sufficiently small neighbourhood V(0x,r) of the identity Ox,r € X/I,

A_IV(Ox/F) = U Vi

1=1,...,| ker A|

where each V; is a neighbourhood of a point in the set A_I(OX/F) and their union is

disjoint. Since A is measure—preserving

i (A7 (0xyr)) = e (V(0xyr)
Once again using the discreteness of I' in X we have that X is locally isomorphic to
X/T'. This means that, assuming the neighbourhoods U(0x ) and V(0x,r) are small
enough, 7|y (o) is a homeomorphism between U(0x) and V(0x,r). Thus we have
n(AU(0x)) = p(AV(0x/r))
= |ker Alu (V(Ox/r))
— ke Al (U(0x))

which proves the Theorem. Furthermore, since U(0x) C F,

1(AF) = |ker Al.
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Corollary 4.1 If (}%5, 6) is an ergodic S—integer dynamical system, then the number
of points of periodn > 1 is

|Fiz,(0) = [ €7 —1]..

vESUPxs

Proof. A fundamental domain of k4 (S) modulo k is a set

7 { [0,1) x [T,es 7 if k is a number field with d = [k : Q].

[l,esup, 7 otherwise.

The set F'is measurable. For each v € S U P, let p, denote a Haar measure on k,
normalised to have p,(r,) = 1 for all but finitely many v. Then the product measure
t = Il esup, #v is well defined and is a Haar measure on ka(5). Recall the map
0, the linear lift of 0, in (11). Set A = 6" — I, X = ka(S) and ' = p(Rs), then
ergodicity implies that ker A is discrete in Rs and by the Theorem we have,

|Fiz,(0)] = |ker(6" —1)]
= u ((én - 1)F)

= II I =1

vESUP
O

(Theorem 4.2 for the case 7% C R® amounts to a version of Pick’s Theorem for

parallelipipeds.)

4.2 Growth Rates

We shall be investigating the following growth rates in ergodic S—integer dynamical

systems,

pt(6) = limsup E log |Fiz,(0)] and p~(0) = lim inf E log | Flix,(0)]. (14)
n

n—00 n—oo n

Observe the following easy inequality,

Liog [ fe - 1h< X log*fel, < h(0)

vESUPs vESUPs
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so that
p™(0) < p™(0) < h(0). (15)
In general, for a continuous map 7' of a metric space (X, d), we need expansiveness

to deduce that p*(7T') < h(T). For these algebraic systems, we always have (15).

Lemma 4.1 (Baker’s Theorem) Let ¢ be an algebraic number on the unit circle
which is not a root of unity. Then there are effectively computable constants A = A(€)
and B = B() such that

. A
€ —1|>n—Bf07’alln21.

Proof. A discussion of bounds for linear forms in logarithms can be found in [4].
O
A weaker (earlier) result is sufficient to give convergence in the quasihyperbolic

toral case (see [26]).

Lemma 4.2 (Gelfond’s Lower Bound) Let ¢ be an algebraic number on the unit
circle which is not a root of unity. Then given ¢ > 0, there exists M such that
| — 1| > e~ for alln > M.

Proof. See [13].
O

Theorem 4.3 Let (]%57 6) be an ergodic arithmetic S—integer dynamical system with
S finite. Then the growth rate of the number of periodic points exists and is given by

pT(0) =p~(0) = h(0). (16)
Proof. Note that
lim ilog |Fiz,(0)] = lim E > loglé™ —1],
oo TN L eSUP

1
= lim — Y log|¢" =1, + > log™|¢|, + lim D,

n—00 n
vEPx vES:E¢ry
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n

where D, = * Yveseer log 6" —1],. We first handle the archimedean contribution.
Suppose || =1 for ¢ > 0, then by Lemma 4.1 we have

1 B 1 1
—logA— —logn < —log|¢" — 1] < —log?2
n n n n

So Llog|¢" — 1] — 0 as n — oo. If |¢] < 1 then clearly log (" — 1| — 0 as n — oo.
Finally, if |£] > 1 then

1 1 .
—log [¢" — 1| = — (log 1€]" 4+ log |1 — & |) — log |€] as n — oo.
n n
Therefore for any algebraic number &,
1 . +
Clog e — 1] — log* I¢

and hence,

1
- > log ¢t — 1], — Y log™[£],.

vEPxs vEPy
We now show that D, — 0 by deriving the bound

Tt et -], <1 (17)

for any finite place v and ¢ € r*,. The upper bound is obvious. Suppose that the
place v of k lies above the place p of Q for some rational prime p. Using the Euclidean
algorithm we may write n = ny(p — 1) + 71 where 0 <ry <p— 1.

Now, if |¢" — 1|, = 1 then there is no v—adic contribution in the quantity D, so
we may suppose that |¢* — 1], < 1. Let €, denote the smallest field which contains
Q and is both algebraically closed and complete with respect to |.|,. The v-adic
logarithm log,, is defined as

00 (_1)i+1xi

log, (1 + ) = - =1 (18)
=1
and converges for all = € €, such that |z|, < 1. Setting x = £" — 1 we get
. . fn -1 2 fn -1 3
fog, (€)= (¢ 1) - L 2D (19

2 3
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and so |log,(¢")], = [€" — 1],. Now

" =1l = log, (gn=0+))
= |(n1(p - 1) + rl) 10gu(£)|u
= |ny+ s, C

where C' = |log,(¢)], > 0 and ry = — The p—adic expansion of ny is

ny =ay+ap+ ...+ a,p™ where ag,...,a, € F, for some m > 0. Clearly

p™ < ny < p™*tl. Thus
C .
— < —< | +rL,C=¢"-1], <1 (20)
nq pm

and (17) is established. Hence

1
lim —log [Fiz,(0)] =Y log™ |£], = Rh(0). (21)
n—0o0 n »
O
The case when S = ) and ¢ is on the unit circle but not a root of unity is

an example of a quasthyperbolic toral endomorphism. As shown in Lind’s paper on

quasihyperbolic toral automorphisms [26] Section 4, the existence of the limit

1
lim —log |Fliz,(0)| = h(8)

n—oo
is equivalent to the validity of Gelfond’s lower bound, Lemma 4.2. The growth rate
of |Fiz,(0)| is exponential.
Remark
Let o be a Z%-action on a compact group X (as defined in Chapter 1). For a
finite-index subgroup A in Z¢ put

Fizp(a) ={z € X : a™(z) = z for all n € A},
the subgroup of A-periodic points. We measure the size of the period A by setting

|A]| = dist(0,A\ {0}) with dist the usual metric on Z¢. In analogy with (14), the

growth rates considered are

.

log |Fiza(a)|, p~(a) =liminf log |Fiz(a)l.

[All—co |Z /A

(o) = lim sup

Al—oo |Z/A]
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Theorem 7.1 in [29] states that if « is expansive on X then

Theorem 4.3 is of particular interest because it provides us with non—expansive, non—
toral examples for which (16) holds, and, as we shall see later, they may have irrational
zeta functions.

O

Theorem 4.4 Let (}%5,9) be an ergodic geometric S—integer dynamical system with
S finite. Then
p*(0) = h(0). (22)

Proof. The periodic points formula in Corollary 4.1 gives
1 . 1 n
—log|Fiz,(0)]= >  log" ¢, +— > log|¢" — 1],
n VESUP:Edr} n veSsS’!

where S” C S for which £ € 7! for all v € S’. It will be convenient to split S” into
sets A and B defined as,

A={veS:|t-1|,=1} and

B={res:|¢-1|, <1}

Let v € A, then the general theory of valuations shows that ¢ admits a convergent

series expansion,
o0
f = Z CLZ'T('Z, (23)
=0

where 7 is an element of k satisfying ord, (7) = %, the index of ramification is denoted
by e and the coefficients come from the residue class field L. The field L is isomorphic
to a finite extension of F, with [L : F,] < [k, : (F,(T)),] and ag # 0,1 since
€], = |€ — 1|, = 1. Note that in the special case k = F,(T"), the field L is taken as
the set of polynomials g € F,[T] with deg(g) < deg(v), so L = F ucq). Let d denote
the order of ag in the multiplicative group L*, so d > 2. Then [é" — 1|, = 1 if and

39



only if d fn. For each vy,...,v,, € A we can associate integers dy,...,d, > 2 such
that |£* —1[,, = 1 if and only if d; jn.

Now consider the valuations v4,...,1 € B. If v € B we may write
5 =1+ Z aiﬂ-iv
=1

where a; and 7 are as above, and |£ — 1], = |#|* where t = min{7 : a; # 0} > 0. For

each v; € B label such t by ¢;, the coefficients a; by a;(7) and = by 7;. Then we have,

1 1 1
gzloglfn—llu = —Zlog|f—1|y—|——210g|f”_l—|—---—|—f—|—1|l,

veEB veEB veEB

1 1
= “Slog|r|v + =51
ngoglmlyﬁrn;og

?

n+ Y b))’
=1

vy

for computable coefficients b;(j) € r, and y = 1,...,[. Clearly this expression tends

to zero if p fn. Hence

1
— Y log|¢" — 1], = 0 asn — oo
ves’!

through the set
{n>1:p fn,d; fnforj=1,...,m}.

It follows that p*(8) = k().

4.3 Zeta Functions

Theorem 4.5 Let X be a compact, connected group (necessarily abelian) and let «

be an expansive automorphism of X, then (, is rational.
Proof. By Theorem 6.1 in [20], X is isomorphic to

Yiroay = {z = {2:}%, € (T)% : (21, 2141) € H(A) for all i € Z},

40



where H(A) C T? x T? is defined by

H(A) =7 ({(y.Ay) : y € RY})

for some d > 1, A € GL(d,Q) and 7 is the quotient map R? x R* — T¢ x T?. The
isomorphism carries a to T, the shift on Y#(4). The group Yg(4) is a generalised
solenoidal group as studied by Lawton in [24]. Let m be the least positive integer for

which mA has integer entries. Then the number of periodic points is given by
(Fiza(@)) = m ]I\ — 1]

where Aq,....\; are the eigenvalues of mA. Finally, since « is expansive, Theorem
21 in [24] shows that the eigenvalues of mA are not of modulus 1, hence expanding
the finite product shows that the zeta function is rational.
O
For example, if A = [3/2] then (Yz(4), T#) is homeomorphic to the one-dimensional
solenoidal automorphism dual to multiplication by 3/2 on Z[¢] and the number of
points of period n is 3" — 2".
Theorem 4.6 Let X be a compact, zero—dimensional topological group and o be an

expansive automorphism, then (, is rational if and only if « is ergodic.

Proof. By Kitchens Theorem 1(ii) in [19], (X, @) is homeomorphic to (F, ) x (G%, o)
where F' is a finite group, ¢ is an automorphism, G is a finite group and o is the

shift. For n > 1,
[Fizn(@)| = [Fizn( x o) = [Fiza(¥)] - |G]",

which is finite. So the zeta function is given by

) = exp (S 21— (52 1m0,

n=1 n n=1 n
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Since @ is an automorphism of a finite group there exists m > 0 such that ™ = Id

for all x € F. Therefore,

alGJ" if n € mZ + 1,
as|G|" if n € mZ + 2,
Piz, ()] = {
am-1|G|* ifnemZ+ (m—1),
am|G|" if n e mZ,
where ay,a3...,a, = |F| are positive constants. We can capture the numbers
{|Fiz,(a)| : n € N} in a recurrence sequence as follows. Set f, = |Fiz,(«)| and

define the relation

fn—l-m = fn|G|m
for n = 1,2,... together with the initial conditions
fl :a1|G|,f2 :a2|G|2,...,fm :Gm|G|m (24)

S0 >, fnz" represents the rational function

E;n:I aj(|G|Z)j
L —(|Glz)™

Now, by Theorem 1.12 in [56], (G%, o) is ergodic, so « is ergodic if and only if ' = {e}.

Clearly the ergodic systems have rational zeta functions of the form

1
1-|G|z°
Suppose that |F| > 1, then the sequence f,, has a power sum representation (as

shown in [38]),
Jn= Z Q; znv
=1
where each f; is of the form |G| x n;, where {n1,...,7,,} is a complete set of m-th unit

roots, and the «;’s are constant algebraic numbers. We claim that the «;’s cannot all

be £1. To see this, notice that the initial conditions (24) require that
fe=(aany + -+ + anny)|G" = ax|G*

for kK =1,...,m. One of the 5;’s is equal to 1; let it be n;. Summing over k, we find
that

ar+az+ -+ a, = ma;.
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Recall that a; > 1 for all 7, so if a; = £1, then a; =1 and ay = 1 for k =1,...,m,

which is impossible since a,, = |F| > 1. It follows (see, for example, Exercise 6,

Section V.1 of [21]) that (, is irrational.

Theorem 4.7 If (]%5,0) is expansive, then the zeta function (y is rational.

Proof. By the criteria for expansiveness in Theorem 3.4 we have for all n > 1,

(IMyep. 1€" — 1],) C1™  in the arithmetic case,

Cy" in the geometric case,

|Fia,(0)] = {

where Cy = [I,es €], and Cy = [1,esup., [€|s are positive constants. In the former,
the Galois conjugates of ¢ are not of modulus 1 so we may derive a rational expression
for (y. The geometric result is obvious.

a

e

Example 4.2 Let 0 be the expansive action of Z[¢] dual to x 2 on Z[Z]. The entropy
of 0 is log 3 and for each n > 1,

o = [ )

The zeta function is given by

) - e (£820)

n=1 n
B 1 -2z
o 1-=3z27

e

Example 4.3 Let 0 be the endomorphism of Z[=:] dual to x3 on Z[3]. By Theorem

3.4 6 is non—expansive (since |2|5 = 1). The number of points of period n is given by

G) —LIG) LG -1 IG) -

| Flia,(0)]

2 3 5
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and its first few values are
1,1,19,13,211,133,2059,1261,19171,2321, 175099, ...

By Theorem 4.3 the logarithmic growth rate of this sequence is equal to log 3, the
entropy of . We claim that (4 is irrational and we shall use the following results on

rational functions and recurrence sequences to prove this:

Theorem 4.8 (Hadamard Quotient Theorem) Let F be a field of characteristic
zero and (a’) a sequence of elements of a subring R of ¥ which is finitely gener-
ated over 2. Let Y b, X" and Y ¢, X" be formal series over F representing rational
functions. Denote by J the set of integers n > 0 such that b, # 0. Suppose that
al, = ¢, /by, for alln € J. Then there is a sequence (a,) with a, = al, forn € J, such

that the series 5. a, X" represents a rational function.

Proof. See [37] and the lecture notes of [41] for a proof, and [38] for a general
discussion.

O

Proposition 4.1 The number of values that a recurrence sequence can take on in-
finitely often is bounded by some integer [ that depends only on the poles of its gen-

erating rational function.

Proof. See Proposition 2 in [35].
O
Returning to Example 4.3 suppose, for a contradicton, that (y is rational. Then
by differentiating (5, 302, |Fix,(0)|z" is also rational. The sequence defined by
a, = 3" — 2" is a recurrence sequence since it satisfies the linear, homogeneous
recurrence relation

Gpy2 = 5an—l—l - 6an7

together with the initial conditions @y = 0,aq; = 1. Hence Y7, a,2" represents the

rational function
z

1 —5z+ 622
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By the Hadamard Quotient Theorem, with |Fiz,(0)| # 0,

o0 n

z
Lo

n=1

is a rational function P(2)/Q(z) and hence b, = |3" — 2"|.”" is a recurrence sequence.

The Taylor series coefficients are given by,

{ 1 if n is odd,
b, =

jltords(n)  if n is even.

By the above Proposition the number of values that b, can take on infinitely of-
ten is bounded by some integer depending on the roots of Q)(z). However, the set

{1,5,5%, ...} is infinite, giving a contradiction. Hence (j is irrational.

Example 4.4 Let £k = F,(T) and S = {T'}. Define 6 to be the endomorphism of
Rs = F[f/T\il] dual to multiplication by 7' on F,[T*!]. The entropy of 0 is

MO) = 3 log* [T, = logp
v<o0
and the number of periodic points is given by

[Fiz,(6)] = |T"— 1] |T" 1],

T

= Z) .

Alternatively, we may note that Rs & @/Zi‘p = sz and that # is the one-sided

(expansive) shift action on p symbols. Thus the entropy and the number of periodic

points is as expected. Clearly (4(z) = Toom

Example 4.5 Let £k = F,(T') and S = {T' — 1}. Define 6 to be the endomorphism of
Rs = F,[T][75] dual to multiplication by 7" on F,[T][7=]. The entropy of 8 is once

again log p and the number of periodic points is given by

|Fl.1?n(9)| = |Tn - 1|oo |Tn - 1|T—1

ordp(n)
— PP
P
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Suppose, if possible, that (p is rational, then >-°°, |Fiz,(0)|z" is also rational. We

already know that > 02, p™2" = ﬁ is rational. Proceeding in the manner previously
described we see that
p" __pordp(n)
Fin(0)]

is a sequence in Z, and by the Hadamard Quotient Theorem

or p n‘
g pf z"
n=1

ordp(n)

is a rational function. However the recurrence sequence p? has an infinite number

of values that it takes on infinitely often, namely {p, »p .. .}. This contradicts

Proposition 4.1 and means that (y is irrational, and so 6 is non-expansive.

Furthermore, writing n = ¢p”" %) where p fq, we have
. n ordp(n)
[Frxn(0)] = |17 = 1] [T7 = 1[5 _,
= p"p™" """ since p 1q
= pn(l_%)_

So for a sequence n; — oo with n]-/po’"dp(”ﬂ) = ¢ for a fixed ¢, p fq,

1 1
lim  —log|Fiz, (0)] = (1 - —) log p.
q

ordp(n;)—oo n;

Also, p™(0) = h(0) is obtained by letting n — oo through numbers coprime with p.
Hence the set of limit points of {% log |F'ixn(9)|}oo_1 is

{(1-2) o0 enop jofu oy,
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Chapter 5

The Distribution of Periodic

Points

5.1 Invariant Measures on Compact Spaces

Let X be a compact metric space and let B denote its Borel o—algebra. We define
M(X) to be the collection of all Borel probability measures on X. If T': X — X
is a continuous transformation, let My(X) denote the set of measures p in M(X)

which are T—invariant (those for which 7' is a measure—preserving transformation of

(X, B, ).
We now introduce the weak™ topology on M(X). Let C(X) be the space of all

continuous complex-valued functions f : X — C, endowed with the norm
If]] = sup [ f(z)].
zeX

Let J : C(X) — C be a continuous, positive linear functional (positive means if f > 0
then J(f) > 0) with J(1) = 1, where 1 € C(X) is the constant function 1. By the
Riesz Representation Theorem there exists a unique g € M(X) such that

/de,u = J(f) for all f € C(X).

For the proof see [36]. The map p — J,(= J(f)) is therefore surjective. Theorem 6.2
in [56] shows that if g # v then J, # J,, showing that this assignment is injective.
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Finally, since g € M(X) is a probability measure the map p — J, is a bijective
correspondence between M(X) and its image in the unit ball B = {f € C(X) :
£l < 1} in O(X).

Now the set of continuous, positive linear functionals £ on the Banach space C'(X)
can be endowed with several topologies, one of which is known as the weak* topology.
The bijection between B and M(X) allows us to impose this particular topology on
M(X). Tt is the coarsest topology with respect to which the mapping p — J, is
continuous. A topological base for M(X) is given by the sets

<6},

where € > 0 and f € C(X). Furthermore, since X is compact, there exists a dense
subset {f,}22, of C(X) which is dense in B. The weak* topology can be induced by
the metric D : M(X) x M(X) — R defined by

Ah@—éh@

It follows that (M(X), D) (and so too (B,].]|)) is a compact metric space — see

WMQ:%eAWWWAﬁw—Af@

<01
D(/u7l/)222_n
n=1

. (25)

Theorem 6.5 in [56] for a direct proof using sequential compactness. An immediate

consequence of (25) is that in the weak™ topology,

pn, — pin M(X) if and only if / fdup, — / fd, for any f € C(X). (26)
X X

For instance, suppose X = [0, 1), the additive circle, and p, = %2?21 6, where 6; is
the point mass at j/n. Because continuous functions are Riemann integr;ble, Ix f:l,un
is exactly a Riemann sum approximation to [y fdu. Hence p, converges weakly to
Lebesgue measure on the circle.

The set M (X) is non—empty since invariant measures can always be constructed.
For example, if v is any element in M(X) then define a sequence {u, }°2, in M(X)
by p, = %E?;& T’v. Clearly any limit point u of {u,} (which exists by compactness
of M(X)) is T—invariant. Also My (X) is a compact subset of M(X).
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5.2 Uniform Distribution of Periodic Points

Let T' be an ergodic endomorphism of a solenoid and
Fiz,(T)={r e X :T"(z) = z}

denote the set of points of period n. Since T is continuous, Fiz,(T) is a closed
subgroup of X for any n > 1 carrying normalised Haar measure p,. If Fiz,(T) is

finite, then normalised Haar measure y,, on Fiz,(T') is defined by,
()= 36 (1)
) = Fian(T)] "

z€Fizn(T)

where 6, is the point mass at . The measures g, are in My (X). The dual group of
Fiz,(T) is given by
Fiz,(T) =T /(T" — 1T, (28)

where I' = X, and the Fourier transform of [y 1s given by

i) = [ @ (o)

1
= 7(@)
|Flioa,(T)| zeF%:n(T)
_ 1, ify € (T” - Hr (v is trivial on Fiz, (1))
h 0, otherwise (v is non—trivial on Fiz,(T))

We say that the periodic points are uniformly distributed with respect to Haar mea-
sure g € Mp(X), or that Haar measure describes the distribution of the periodic
points of T, if p, — p weakly in M(X). In order to prove this weak* convergence
it suffices to establish (26) for all non—trivial characters in X. This is because finite
linear combinations of such functions are dense in C'(X) by the Stone-Weierstrass
Theorem. Thus p, — p weakly if and only if i, — i pointwise on I' = X, that is,
there exists N () > 0 such that vy ¢ (T” — DI for all n > N(~).

Lind first proved the uniform distribution of periodic points for ergodic toral
automorphisms in [26]. Waddington has given an alternative proof in [54] which, as

shall be seen, applies to ergodic arithmetic S—integer systems. We shall prove that
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if |Fiz,, (0)] — oo as j — oo along some subsequence then pu,, — p in the weak*
topology.

Ward has shown in [57] that the periodic points of an expansive Z?-action on a
compact abelian group are uniformly distributed with respect to Haar measure if the
action has completely positive entropy. The methods of [57] do not extend to the
non—expansive case because they rely on an exponential growth rate. All the steps of
Waddington’s proof extend to endomorphisms of solenoids. However, the result that
|Fia,,(T)] — oo as j — oo along some subsequence implies p,,, — g is not true for

all solenoids.

2
0
of S—integer systems and |Fiz,(T)| = 2" — 1. Clearly the periodic point measures

A A 0
Example 5.1 Let '=Z xQ, X =T and T = ( ) ) Note that X is a product

converge to Haar measure on T x {1}, a closed subgroup of X.

Finite products of S—integer dynamical systems with S = ) yield toral endomor-
phisms, but the converse does not hold as illustrated by the following example due

to Williams [62].

Example 5.2 Let T4 and 15 be the automorphisms of the 2-torus T? defined by

the unimodular matrices,

Then the matrices A and B have the same characteristic polynomial y 4(z) = xg(z) =
z? — 4z — 1. The system (T4, T?) is isomorphic to the S-integer system with k =
Q(V5), S =0 and &€ = 24 /5. So, if (T, T?) were an S-integer system then &, S
and ¢ would be the same as above. We prove that this is not the case by making use

of the following result found in Section 11, (3) of Williams [62].

Lemma 5.1 Let C' be an integer matriz with AC = C'B. Then the determinant of

C is even.
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Thus A and B cannot be conjugate elements of GL(2,Z). So (T4, T?) and (T, T?)

are not even topologically conjugate.

Theorem 5.1 generalises (in an arithmetic direction) a specialisation of Wadding-

ton’s result.

Theorem 5.1 Let (]%5,0) be an ergodic arithmetic S—integer dynamical system. If
|Fizy (0)] = 0o as j — oo

along some subsequence then the points of period n; are uniformly distributed with

respect to Haar measure.

Proof. We need to prove that for any non-trivial character v € I' \ {0}, jin,;(7) =0
for all n; sufficiently large. Suppose, for a contradiction, that this is not the case.

Then for some fixed j, there exists an infinite subsequence {n;} of {n;} and some

character v € Rs \ {0} such that
v € (€M% — 1)Rg for all k.

Let < v > denote the ideal of Rs generated by v. So < v >C (£™® — 1)Rg and

—

Rs

Rs : .
Since 6 is ergodic, by Theorem 4.2,
Rs
= H 3P
<Y >l Lesip.
is a constant and |Fm:;;)(9)| = [Fiz,,,, (0)|. However, our initial hypothesis |Fiz,, ()] —

o0 as j — oo clearly contradicts (29).

O
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Chapter 6

Examples

Example 6.1 Let £k = Q and S = (), so Rs = Z. Let 6 be the toral endomorphism
dual to multiplication by 2 on Z. The periodic points formula in Corollary 4.1 gives
|Fiz,(0)] =2" — 1 for all n > 1 and clearly

1

—log [2" — 1| — log 2,

n
which is equal to the entropy h(6;T). The zeta function is (p(z) =1 — z/1 — 2z.
Example 6.2 Let £ = Q and S consist of all the finite places of Q, then Rs = Q.

If 0 is as above, acting on the full solenoid Q, then |Fiz,(0)| = [Tp<oo |27 = 1], = 1
for all n > 1 and h(#; Q) = log 2.

Example 6.3 Let k£ be an A—field and S = ), then Rs = O, the ring of algebraic
integers in k. If k = Q(\/j) and 0 : O, — Oy is dual to multiplication by v/2 on
O, = Z[ﬂ], then the elements of P,, are the valuations induced by the embeddings
of & — R namely V2 = /2 and V2 — —V/2. By Corollary 4.1
|Fiz, ()] = ‘(\/E)n - 1‘ ‘(—\/E)n - 1‘ for all n > 1

2" —1 if n is odd,

(2n/2 - 1)2 if n 1s even.
Also,

h0;05) = Y log*|V2

v
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= Z log+‘\/§

vEPs
= tog V] +1og |3

= log2.

v

The system <Z[/\7§], ></\7§) is of course isomorphic to the endomorphism of T? deter-
. . 0 2
mined by the matrix .
10
Example 6.4 Let k = F,(T),5 = {T} and ¢ = T + 1. Then Rs is the two-sided
shift space on p symbols, and € is the non—expansive cellular automaton defined by
(0(2))m = T + Tmy1(modp) for all z,, € F,,m € Z.
The entropy of 8 is log p and
[Fizn(0)] = [(T+1)" =1 (T +1)" =1,

" + nT”‘1+...+ "r
1 n—1

{ pr it p fn,

1 if p|n.

T

We claim that the set of limit points of {% log |F'ixn(9)|}oo_1 is

{(1-2)rorsaenp fu o,

This is easily seen as follows: write n = ¢p°"%(") where p fq then,
[Fiz ()] = |(T+1)" = el (T + 1) = 1"
= p”p‘pordp(n) since p fq
= pn(l_%)_

So for a sequence n; — oo with nj/po’"dp(”ﬂ) = ¢ for a fixed ¢, p fq,

1 1
lim —log|Fiz, (0)=[1— —]logp.
ordp(n;)—oo n; & | J( )| ( Q) &P

Also, p™(#) = k() is obtained by letting n — oo through the numbers which are

coprime with p. Hence the claim is proved.
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We shall now restrict our attention to the case £ = Q and S an infinite set. We
seek examples where p~(6) and p* () can be computed. Such dynamical systems will
of course be non-expansive, so examples where pt(#) = h(f) (as in the expansive

case) will be particularly striking.

Example 6.5 Let k be an algebraic number field and S comprise all but a finite set
F of non—archimedean places of k (degenerate situation). Using the Artin—-Whaples
product formula (8) we have,

1
> logle" —1f, —— > logl¢" —1],

1
—log |Fiz,(0)] =
n vEPos veFUPs,

S| =

—

=

since |¢|, < 1 for all ¥ € F and the estimate in (17) holds. Hence p*(6) = p~(6) = 0.

6.1 The Mersenne Dynamical System

Example 6.6 Let k£ = Q and fix { = 2. Define S to be the set of places |.|,, for
which the corresponding Mersenne number M, = 2? — 1 is prime. There are different
heuristic theories giving strong evidence that M, is prime for infinitely many values
of p. Wagstaff has conjectured in [55] that the number of Mersenne primes less than

z 1s about
eV

log 2 loglog x = (2.5695. . .)log log .

We therefore conjecture that S = {3,7,31,127,...} is infinite. Denote the elements
of S by p1,p2,... where p; < p; if and only if 2 < j.

Theorem 6.1 [f there are infinitely many Mersenne primes then p~(6) = 0 and
p*(0) = h(0).

Proof. Define a sequence n,, such that M, = p,, for all m > 0, that is, the indices

giving the Mersenne primes, then we have

1 1 1
—log |Fiz,,(0)] = —log(2™ — 1)+ — Y log|2™ — 1,
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1 1
= log(2™ — 1)+ — log[2™ — 1],,,
n

nm m
1 log(2 — 1
I Claltd)
m nm

= 0.

Hence p~(6) = 0.
In order to compute the upper growth rate, define a sequence n; by (nf,n,) =1
for all I,m > 0. For example, we could set nj = 11! because 11 is coprime with the

Mersenne indices 2,3,5,7,13,... for all [ > 0. We claim that

2" =1 mod M, . for some [,m >0 = n,,

*
nl-

Write nf = a(M,

Nm

— 1)+ 3 where 0 < 3 < M,,, — 1. Then by Fermat’s Little
Theorem,

2" =1 mod M,,, = 2° =1 mod M,,,.

Note that the order of 2 mod M, is n,,, so n,,|3. Also M, —1 = 2""—2 = 0 mod n,,

by Fermat again. Therefore n,,|M,, —1,n,,|5 and so n,,|n;. Hence the claim is proved

and since it contradicts the definition of n; we deduce that,

1 1 .
— log [Fiz,: ()] = — log 2" — 1| — log 2.
i i

a

Theorem 6.2 If there are infinitely many Mersenne primes, then the set of limit
points of {% log |Fi:l;n(9)|}oo_l is

{(1 - é) hO) : q € N} U {h(6)}.

Proof. These limit points bear an elegant resemblance to Examples 4.5 and 6.4,
suggesting, perhaps, a more general result.

We once again use the sequence of Mersenne indices n,, mentioned above. Observe
that 2" =1 mod M, , implies that 2" = 1 mod M,, , so

Nm ?

1
M,,

127" —1|m,,, <
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We claim that equality holds for all n,, sufficiently large. To see this note that the
order of 2 mod M} is n,, M

Nm

since
(20 = (14 My, )" =1 mod M .

So if n,, is greater than the exponent of the largest Mersenne prime factor of ¢, say

M(q), then [2¢"m —1],, = —1—. Thus we have

My,
L |Fiz g, (0)] L |29 — 1| + ! > log |27 — 1]
—log 1T qny, = —1log ™ — 1w e og mo__
qnm ! qnm M s "

1 1
= —log(2™ — 1) +
qnm qn

1
— (1——)10g2asm—>oo.
q

1
- log (Mnm) for all n,, > M(q)

To prove that no other limit points exist, write n = ab and let ¢ — oo through the
Mersenne indices. We have two possibilities. Firstly, if (a,b) = 1 for a, b sufficiently
large then

| | L 1 1 .
- log |Fiz,(0)] = —~ log(2 1)+ = 10g(2a — 1) for all a, b sufficiently large

— log?2 as a,b— oo.

Otherwise b — oo through the set {ga’ : ¢, € N}. Hence

1 . 1 J+1 1 J+1
—log |Frx,(0)] = — log (27" —1 . log |27 —1
n og | Fiza(0)] qaitl Og< ) + qaitt M%e:S Og‘

Mp

1 _— 1 1
= log <2q - 1) + e log ((2a — 1)j+1) for all a > M(q)

1
— (1——)10g2asa—>oo.
q

O
For this example the zeta function would then have an infinite number of isolated
singularities at %, 1,25,2§,2%, .... Also, assuming the conjecture holds, there are

sequences along which the periodic point measures converge weakly to Haar measure

e

on Z[—=-—1].

3:7-31-127---
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6.2 The Artin—Inspired Dynamical Systems

Example 6.7 Let £ = Q and suppose £ is a non—zero integer. Recall that ¢ is said
to be a primitive root modulo a prime p if and only if the residue classes modulo p of
£,6%,...,&P7t =1 are all distinct. The number of primitive roots modulo p is ¢(p—1),
where ¢ is the Euler function. For example, 2 is not a primitive root modulo 7 since
2 = 1(mod 7). In 1927 [3], Artin made the following conjecture: if a is neither a
square nor —1, then there exist infinitely many primes such that a is a primitive root
modulo p. The quantative version of Artin’s conjecture is the following statement
(see [17]): if N,(x) is the number of primes less than z for which a is a primitive root,
then

Na(z) ~ A— (30)

In
where A depends only on a. So, if we choose ¢ € Z to be neither a square nor —1

and define S to be the set of places |.|, for which £ is a primitive root modulo p, then
if Artin’s conjecture holds S is an infinite set of places. Let 6 be the endomorphism

of Rs dual to multiplication by £ on Rg.
Theorem 6.3 If Artin’s conjecture holds for £ then p*(6) = h(0).

Proof. Since |¢" — 1|, = 1 if and only if p — 1 Jn for each p € S, we have

1 , 1 . 1 . _
“log |[Fiz,(0)] = ~log|¢" ~ 1+~ 3 logle” ~ 1. (31)

pES:p—1|n

So by letting n — oo through all the prime numbers, we get
1
lim sup — log |Fiz,(0)| = log |¢] = h(6). (32)
n—oo N
O

Theorem 6.4 There are infinitely many primes p with either 2 or 3 or 5 as a prim-

itive root — but we do not know which one !

Proof. See Heath-Brown’s paper [7] in which he proves the ground-breaking theorem
that, with the exception of at most two primes ¢, go the following is true: For each

prime ¢ there are infinitely many primes p with ¢ a primitive root modulo p.
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Corollary 6.1 There exist non—expansive systems (]%5,9) with S infinite and non—

degenerate such that p*(0) = h(0), although we cannot explicitly identify them.

These dynamical systems have the remarkable property that on the one hand they
mimic hyperbolic behaviour (p*(0) = h(6)), while on the other they have infinitely
many directions in which they behave as isometries. For example, suppose that
Artin’s conjecture holds for 2 then the system determined by multiplication by 2 on
Z]

given by the automorphism multiplication by 2 on Q, for infinitely many p.

ﬁ] where the primes p are such that 2 is a primitive modulo p, has isometries

Conjecture 6.1 If Artin’s conjecture holds for & then p~(0) = p*(6) = k().

Evidence. The matter of p~(#) is immersed in the harder realms of prime num-
ber theory. We would guess that if S is sufficiently sparse but still infinite, then
limy, oo +log |Fiz,(0)| exists and equals the entropy of §. Whilst the primitive root
approach gives us some control over the n’s for which p|¢™ — 1, it seems difficult to

control the size of ord,(¢" —1). Indeed, for this example we have the following bound,

, ord,(£P~1 — 1) 1 .
11;f{ <= > loglé" — 1], <0.

p pES:p—1|n

Standard conjectures in prime number theory imply that

lim mf{"rdp(f%_l - 1)} =0

pP— 00 p

and so for these examples, p~(0) = p*(0) = h(0) is expected. This is really all we
can say about p~ ().

Example 6.8 The following example, though conjectorial, raises our hopes for the

existence of dynamical systems satisfying

with S infinite. It came about following a private communication with Heath—Brown.
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Definition 6.1 For m > 1 an integer ¢ is called a primitive root modulo m if the

least positive integer t satisfying
¢' = 1(modm)
is ¢(m).

Let S be the set of places |.|, such that £ is a primitive root modulo p?, for some

integer ¢ # 0, 4+1. The following assertions are equivalent as pointed out in Chapter

2 of [40]:
1. € is a primitive root modulo p and £7~! # 1(modp2);
2. £ is a primitive root modulo p?;
3. for every m > 2, £ is a primitive root modulo p™.

Now, the research into Wieferich primes and the Fermat quotient suggests that
&P~ £ 1(mod p?) for infinitely many primes (see [39] and [40]), therefore, together

with Artin’s conjecture, it seems reasonable to conjecture that S is an infinite set.
Theorem 6.5 If £ is a primitive root modulo p? for infinitely many primes p, then
§(6) = p™(6) = h(0) > 0. (33)
Proof. First observe that, given [ > 1,
p'|¢™ — 1 if and only if é(p')|n.

This is an easy consequence of Euler’s Theorem: (&, p) = 1 implies that

£o) = I(mod p'). So,

1 1 1
—log |Fix,(0)] = —log |€" — 1]oe — — > [log p.
n n

p€S:pl—1(p—1)|n,pl(p-1)lh

For terms with [ > 2, p'~'|n whence

> (I—1)logp < logn.

p€eS:pl=lin
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So for [ > 2,
1 2 2
— > llogp<= > (I-1)logp < =logn. (34)
n ‘ n d n
peS:p!—1in peS:p!—lin
For the case [ = 1 we need an estimate for - cg,,_1),logp. This is achieved as
follows: if p — 1|n then p < n+ 1 and logp = O(logn). The number of possible p

is at most d(n) (the number of divisors of n), and following from standard results in

number theory d(n) = O(n°) for any ¢ > 0. Thus, choosing 0 < ¢ < 1,

1
— > logp=0(n""logn). (35)

n
pES:p—1|n

From (34) and (35) we deduce that

1
lim —log |Fliz,(0)| = log [¢],
n

n—oo

and so (33) is established.
O
Note that for both of these Artin systems, the conjectures imply that the periodic

points are uniformly distributed.

6.3 The Periodic Points Realisation Problem

In this section we begin to seek answers to the following problem: given periodic
point data, that is a sequence {a,}°2, of natural numbers, can we reconstruct a
suitable S—integer dynamical system (}%5,9) with that periodic point data 7 An
initial observation is that the sequence {a,} must be a divisibility sequence; if m|n
then a,,|a,. A tractable starting point to the problem is to answer the following
question: given m > 0 and a prime p, can we construct a map, multiplication by ¢,
and a set S of non—archimedean places whose corresponding dynamical system has

periodic points of the shape,

L1,...,L,p,1,1,....1,p,...
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where the 1’s occur in blocks of m each time 7 By taking products of these ‘building
block’ systems we can tackle the much harder general problem. As a prelude to
Theorem 6.6 we recall some facts about Wieferich primes.

A prime p is called a Wieferich prime if it satisfies the congruence
27! = 1(mod p?). (36)

In his 1909 paper [61], Wieferich proved the following theorem: suppose there
exist integers z,y, z, not multiples of an odd prime p, such that = + y? + 2 = 0
(we say that the first case of Fermat’s last theorem fails for p), then p satisfies (36).
The Wieferich congruence is satisfied very rarely, in fact the only known solutions
less than 6 x 10? are 1093 and 3511. See [39] for a discussion on the history of (36).
More generally, if @ > 2 and p is a prime not dividing a, then

is called the Fermat quotient of p with base a. Thus
¢p(a) = 0(mod p) if and only if ¢! = 1(mod p?).

Chapter 6 of [40] gives a heuristic reason to expect that there exist infinitely many
primes p such that ¢,(a) = 0(mod p); it would follow that the number of Wieferich

primes is infinite. Such primes should be extremely sparse.

Theorem 6.6 Suppose that a prime p and an integer m > 0 satisfies p — 1 = md.
Choose & a primitive root modulo p. If q,(£) #Z 0(mod p) then there exists a dynam-
ical system (}%5, ) whose periodic point data has the shape,

L,1,...,Lp 1,1, .. 1 po®@+ 11, pr e

where the 17s occur in blocks of m — 1 each time.

Proof. Let £k = Q and S comprise all non—archimedean places except |.|,. Define
0 as the endomorphism of Rs dual to multiplication by ¢? on Rs. The number of

periodic points is given by
|Fiza(0)] = |65 — 1], for all n > 1.
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Since ¢ is a primitive root modulo p, |Fiz,(0)] = 1 if and only if p — 1 /dn, and
this occurs if and only if m /fn. So clearly the 1’s are correctly positioned. Finally,
the congruence condition gives |Fixz,(0)| = [¢"P=1) — 1|71 = pord()+1 if and only if
n = mr.

O

Corollary 6.2 The zeta function (g is trrational.

Proof. Inspecting the periodic point data, we see that |Fiz,(#)| has an infinite
number of values that it takes on infinitely often, namely {1, p, p?,...}. By Proposition
4.1, |Fixz,(0)| cannot be a recurrence sequence and so does not represent a rational

function. Hence the result.

Example 6.9 The periodic point data
1,3,1,3,1,3%,1,3,1,3,1,3%,1,3,1,3,1,3%,1,3,1,3,1,3%.1,3,1,3, ..., 1,340+ |

where n = 2r, comes from the system (}%51,91), where 57 comprise all finite places

except |.|3 and 6 is dual to multiplication by 2. The data
1L1,1,5,1,1,1,5,1,1,1,5,1,1,1,5,1,1, 1,52, 1,1,1,5,1,1,1,5, ..., 1,1,1, 570+

where n = 4r, comes from the system (}%52,92), where S5 comprise all finite places
except |.|5 and 60 is dual to multiplication by 3.
Hence the product dynamical system (]%51,91) X (}%52,02) has periodic point data

1,3,1,15,1,9,1,15,1,3,1,45,1,3,1,15,1,27,1,75,1,3,1,45,1, 3,1, 15, ..

Example 6.10 Let a be an algebraic number of degree d and let aq, ..., a4 denote
its conjugates. Suppose we are given periodic point data determined by the recurrence
sequence [[%, (o™ — 1), that is,

d

|Flix,(6)] = H(oq” — 1)‘ for all n > 1.

=1

Then the dynamical system (T",8), where 6 is dual to the companion matrix of the
minimum polynomial of «, recovers the given periodic point data. The system (T",0)

is isomorphic to the S-integer system (Ok, xa) where k = Q(a) and S = 0.
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Problem 6.1 The archetypal example of a recurrence sequence is of course the cel-

ebrated Fibonacci sequence {f,} defined by
frzo = fog1 + foforn=0,1,2,... with fo =0, f; = I;

and generated by
z = "
— = nZ".
1 —2z— 22 7; !
This sequence satisfies the divisibility property, so a natural question is whether we
can construct an S—integer dynamical system which has Fibonacci periodic point

data. A first step to a solution might be the observation that (y is irrational and is

given by

— 1322
Co(z) = exp{%log (i — '312)},
where 3; = (1 + \/5)/2 and 4y = (1 — \/5)/2

As a motivation to resolving Problem 6.1, we give an alternative criteria for clas-
sifying expansive arithmetic S—integer systems in terms of the periodic point data,

rather than the action.

Theorem 6.7 Let (}%5, 6) be an arithmetic S—integer dynamical system. If (}%5, 6) is
expansive then lim, o |[Fix,(0)/Fiz,1(0)] exists. The converse holds if S is finite.

Proof. Suppose (]%5,9) is expansive, then by Theorem 3.4 and the estimates in
Lemma 4.1 and (17) we have,

& —1

Fiz,(0) ‘
fn—l—l _ 1

Fi.fn_}_l (0)

lim ‘ = exp{—h(0)}.

n—oo

= lim ]

vESUPxs

v

For a partial converse, we assume S to be finite and prove that non—expansiveness
implies that |Fiz,(0)/Fix,11(0)| can be made arbitrarily large as well as small, for

suitably chosen infinite sequences. Since

—

Fiz,(0) = Rs/(€" — 1)Rs,
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it is clear that in non—ergodic systems there exist sequences along which | Fix,,(0)/ Fix,1(0)]

fails to converge. So we might as well assume ergodicity. We shall treat the archimedean

and non—archimedean cases separately before determining their combined influence.
Firstly, suppose all the non—expansive behaviour is archimedean in nature. So the

ratio |Fiax,(0)/Fiz,41(0)| contains a factor of the form,

filg-t
n+1 ?
where &, ..., €, are the conjugates of ¢ which are not unit roots but are on the unit

circle. For each j, write £; = €'/ where p; € (0,27) is irrational. Then by Dirichlet’s
Theorem on simultaneous approximation (see for instance [46]), there exist infinitely

many integers [y,..., [, and infinitely many n € N with
27l ! for j
lnp; + 27| < i forj = I,...,m.
Hence, denoting the set of all such n by A, we have,

67 — 1] = |eflrmt?m) ] <

——forj=1,...,m and for all n € A.
nl/m

Also observe that for any 1 < j <m and n € A,

. 1
|§;+1—1|:|§;—1+1—§j1|>>‘m—lfj—1l‘2|1—|5j—1||217

and similarly |§f_1 — 1| > 1. Thus for all n € A we have,

& —1 1
€?+1 —1 < nl/m
and et
1/m J —
n L |l =,
&1
which implies that
o
g

is either arbitrarily small or arbitrarily large depending on whether n tends to infinity

through Aor A—1={n—1:n¢€ A}.
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Now consider the case when the non—expansive behaviour is solely non—archimedean.

So the ratio |Fixn(0)/Fiz,41(0)| contains a factor of the form,

1|5

g fn—i—l -1 5 )
where vj|p; and [{],, = 1. As in (23), the v;-adic expansion of £ has a non-zero
constant term, so there exist positive integers dy,...,dy such that [£* — 1], = 1 if

and only if d; fn. Define an infinite subset B C N by

B={ddu(p - pn) :reN}.

Then for each j =1,...,m and n € B we have,

1
|€” — |l,] < |n|p = 17 for all » € N and |fn+1 - 1|uj = |£n_1 - 1|u; = 1.
j

Hence for all r € N

7’L

fn—l—l _ 1

m
H |n|p] =
j=1

(P pm)”

and

ey <1157

So once again |Fix,(0)/Fiz,41(0)] fails to converge.

vy

Finally, suppose non—expansiveness is a hybrid of archimedean and non—archimedean

contributions. Then the ratio |Fiz,(8)/Fix,4+1(0)| contains a factor of the form,

ﬁ £ — " —
n+1 n ?
=& = m et =1,
where &q,...,&,, are those conjugates of ¢ which are not unit roots but are on the
unit circle and [¢],, = 1 for j = 1,...,m,. This time we can afford to be more

generous with the definition of B C N, let
B=A{rdy---d,, :r € N},
where the d;’s are those positive integers for which |{" —1|,, = 1 if and only if d; fn.
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Since n'p; is irrational for each j = 1,...,my and for all n’ € B, applying Dirich-
let’s Theorem again, there exist infinitely many integers [y, . .., [,,, and infinitely many
n € N with

|nnp]—|—27rl|<< 1 —forj=1,...,mi.

Hence, denoting the set of all such n by A and defining an infinite subset £ C N by
E={nny:ny € A,ny € B},

we have,

: 1
e — 1| = |eilmnees+2ml) _ ) « T for j=1,...,my and for all n € F.
n

As before, both |£;-H'1 —1] and |£;?_1 — 1] are bounded below by some positive constant,

for y=1,...,mq and for all n € E. Thus for all n € E,

mlogn ] |2 5@—1‘ 1

11| 11| <=

G =1 g =1 T

and fn 1_ ma 57}—1_1
J

n<<H H 57?—1"
7=1 J

Hence lim,,— o |Fi:r:n((9)/Fz,rn+1( )| does not exist.
O
Let S be degenerate, that is, comprise all but a finite set F' of non—archimedean

places of k. Then
€n+1 _ 1

Eay
where |¢],| < 1 for all v € F. If |¢], = 1 for some v € F then, by Theorem 6.7,
|Fia,(0)/Fiz,+1(0)| does not converge. The other possibility is that |£|, < 1 for all
v € F,in which case |Fiz,(0)] = 1 for all n > 1 and trivially | Fiiz,(0)/Fiz,11(0)] = 1.

?

Fix,(0) |
Fl$n+1(9)

‘ vel

v

Conjecture 6.2 Let (]%5,9) be an arithmetic S—integer dynamical system. If S is

infinite and non—degenerate, then |Fix,(0)/Fix,+1(0)| does not converge.
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Returning to Problem 6.1, suppose, if possible, that {f,} arises as periodic point
data in an arithmetic S—integer system (RS,H). Then 6 must be non—expansive

because (y is irrational. Furthermore, the existence of the limit

fn 1 V5-1

fn—l—l

means that S cannot be finite. Clearly S must be non—degenerate and, if Conjecture

6.2 holds, (37) is contradicted.

lim

n—oo

(37)
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Chapter 7

Mahler Measure and Entropy

7.1 Historical Background

Let F(z) € Z[z] denote a non—zero polynomial with rational integer coefficients.
There are several ways to measure the height of F'(z). The definition proposed by
Mabhler in [30] has proved to be important,

m(F) = /0 log | F(¢27%)|db. (38)

We shall denote the exponential version of this definition by M(F'). Suppose F(z)

has the factorisation
F(:t:):aH(x—Oq), a€l, a;€C. (39)
Then an alternative form for (38) is
m(F) = logla| + ¥ log* [ai]. (10)
The proof of this is an immediate application of Jensen’s formula
[ 108164 — ] = log* Jal. (41)

So m(F') is the non—negative logarithm of an algebraic number. Given the nature of
the logarithm, we might as well assume that F'is irreducible and that F(0) # 0.
In 1857, Kronecker [23] proved the following result.
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Theorem 7.1 If#y,....0, are the roots of the polynomial P(z) = a"+cia" '+ -+
Cn, wWhere c1,. .., ¢, are integers with P(0) # 0, and if all the roots lie inside the unit

disk, then they must all be roots of unity.

Corollary 7.1 If ar,/<s> 15 a Z—action of a compact abelian group Xy, then

h(ar,/<f>) =0 if and only if f is cyclotomic.

The proof of Theorem 7.1 is very slick: consider the polynomials P,,(z) whose
roots are 07, ..., 07" for m = 1,2,.... The condition on the size of the roots and the
fact that the ¢; are integers implies that there can only be a finite number of different
P,.. Thus two distinct powers of each root must coincide and this means that each
root is a root of unity.

This classical theorem makes it obvious that m(F) = 0 if and only if F'is a cyclo-
tomic (literally ‘circle dividing’) polynomial. Many results exist concerning the values
of this measure and there are some fascinating conjectures. For example, Lehmer’s
question [25] asks how small M(F) can be if F'is not cyclotomic. Specifically, he asks
whether, given € > 0, there exist polynomials F' with integer coefficients such that
1 < M(F) < 1+4¢e? To this day, no smaller positive measure has been found than
Lehmer’s example:

M(F) =0, =1.1762808... (42)
where F(z) = 2'%4 2% — 27— 2% —2® -2t — 23+ 2+ 1. In 1962 Mahler [31] extended
his measure, in the obvious way, to polynomials F(zy,...,2,) in n variables with

integer coefficients,

1 1 _ .
M(F) = exp {/ o 1og|F(62m€1,...,e2m€n)|d91...an} (43)
0 0
Smyth has proved in [50] that M(F') = 1 if and only if F' is a generalised cyclotomic

polynomial. (Basically, this means that F'is a cyclotomic polynomial evaluated on a
monomial.) His method was to associate to F' a convex hull (or exponent polytope
of F) C(F) in R", and to show how the faces of C(F) correspond to factors of F.
This feature is the basis for an inductive argument. He has also obtained some exotic

formulae for non—zero values of M(F') (see [51]), for example,

33
M(1 + 21 + 23) :exp{%lj@,xg)} =1.38135..., (44)
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7
M(1+ 2y + 23 + 23) =exp{2—2 (3)} — 1.53154... (45)
T

Here L(2,x3) denotes the Dirichlet L—function with quadratic character mod3, that
is,

e -5(2) 4

n=1 n
where (%) denotes the Legendre symbol mod3. Also, ( denotes the Riemann zeta
function. The proofs basically use an extended version of Jensen’s formula. Using
the same technique Boyd [6] proved that
lim M(F(z,2")) = M(F(x1,22)) (46)

n—oo

leading him on to make conjectures concerning the closure of the set

L = {M(F) : F has integer coefficients} in the several variable case. For example,
he considers a certain class of algebraic integers S C L called the set of Pisot—
Vijayaraghavan numbers, whose elements comprise the set # > 1 such that 6 is a root
of a monic irreducible polynomial with integer coefficients all of whose remaining
roots lie in the unit disk |z| < 1. Such a polynomial must be non—reciprocal (bar a
few easily handled exceptions). The reciprocal of a polynomial F(z) of degree d is
defined as F*(z) = 2?F(z!). In order to appreciate the rich structure of S, consult
Salem [42], [43] and Siegel [48]. Smyth has shown in [52] that if we define

Lo={M(F): F is non-reciprocal} C L

then
inf Lo = min Lg = #y = min S = inf S, (47)

where 6y = 1.32471 ... is the real zero of 2®> — 2 — 1, thus answering Lehmer’s question
for the class Ly. The set of Salem numbers 7' C L is another set of algebraic integers
consisting of all § > 1 such that 6 is a root of a monic irreducible polynomial P(z)
with integer coefficients all of whose other roots lie in |z| < 1 with at least one on

|z| = 1. This last condition forces P(z) to be reciprocal. Boyd conjectures that

minL = o = min 7. (48)
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The recent work of Everest [10] may also give insight into the closure of L. He proves
that it is possible to realise M (F'), where F(x1,...,2,) € Z[x1,...,x,], as an effective
limit of Riemann sums. His technique is to parametrise the n—torus via algebraic
numbers 6;,1;, 1 < i < n chosen in such a way that {1,6;,;} are multiplicatively
independent for each 1 < ¢ < n and involves an application of Baker’s theorem on
linear forms in logarithms of algebraic numbers.

Another candidate for the measure of polynomials in several variables has been
propounded by Myerson in [34]. Taking (40) as a starting point, rather than (38), his

measure for F(x1,...,x,) € Z[xq,...,2,] is

Q(F) = exp {/S log |F|da} (49)

where ¢ is normalised Haar measure on the unit sphere S in C”*. Note that Q(F) =
M (F) in the one variable case. In short, where M(F) is the geometric mean of F' on
the torus, Q(F') is the geometric mean of F' on the sphere. Once again, calculations

and conjectures abound, and there is even a Kronecker—inspired theorem.

7.2 The Mahler Measure Associated to an A—
Field

In this section we construct a geometric analogue of the classical Mahler measure. The
techniques applied were first introduced in constructing the elliptic Mahler measure
in [12] and [11].

Suppose F(x) is a non—zero irreducible polynomial with integral coefficients such
that F(0) # 0, and let F'(z) have the factorisation as in (39). We first establish a
third definition of m(F') equivalent to (38) and (40), which shows that m(F') is locally
the sum of an archimedean component and p-adic components for each rational prime
p. The key step will be to prove a p-adic analogue of Jensen’s formula (41). We shall
call these components local measures and define them as Shnirelman integrals. This
corrects an error in [12] where the Haar integral was used to define the local measure.

Let K be a splitting field for F' and let v denote any valuation of K which lies
above the valuation p of Q. The field €2, is defined as the smallest field extension of
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Q which is both complete and algebraically closed with respect to |.|,. For example,
if v|oo then €2, = C, the field of complex numbers. For each i we define the following

local measures,

1
mo) = Jim

> log|¢/ — ail,, (50)
71=1

where ( is a primitive n-th root of unity inside €2,.

This definition of the local measure is a slight specialisation of the Shnirelman
integral, introduced in 1938 [47] as a p—adic analogue of the line integral (in general,
for the case v|p, the condition p /n has to be imposed to guarantee convergence;
because we are dealing with a special class of functions this is not needed here). See
[22] for further applications.

If v|oo then it follows, after applying Baker’s result (Lemma 4.1), that

m, (o) = log™ |asl,. (51)

By the estimate in (17), the same is clearly true if v is non—archimedean. We reckon
(51) to be the v—adic analogue of Jensen’s formula. This simple fact allows the log |a|
term in (40) to be recognisable as a sum over non-archimedean contributions (see
Lemma 7.1). So the third representation of m(F') is
m(F) = Z XV: d,ym, (), (52)
where d, = [K, : Q,] are the local degrees making the product formula work. This
local-to—global treatment of m(F') is analogous to the local-to—global treatment of
the topological entropy of a solenoidal endomorphism [28], the local entropies being
precisely local Mahler measures. So the r—adic decomposition of h(@;f%s) for the
geometric dynamical system (Rsg, 0) (see Theorem 2.1) is highly suggestive of a local-
to—global geometric Mahler measure theory.
We now extend from this arithmetic setting to A—fields. Let k£ denote either Q
or F,(T) and let Oy, denote the ring of algebraic integers in k. Choose F(z) € O[z]
to be a non—zero irreducible element with F'(0) # 0. Suppose F' splits in some finite

extension £ C K of degree d and has the factorisation

F(z)=a]J(z — o), a €O, o; €K. (53)
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Let v denote any valuation of K extending the valuation w of k. In the geometric case,
it will be once again conventional to denote the distinguished place corresponding to

the polynomial 7! by oco. Define, as in (50) and (52),
1 -
my(a;) = lim’'= Zlog ¢! — a4], = log+ lavil,, (54)

where ( is a primitive n-th root of unity inside €2,, and

ma(F) = EZdl,ml,(oq), (55)
where d, = [K, : k,]. The notation lim" in (54) indicates no restriction on n in the
arithmetic case, but in the geometric case we need to use an analogue of the classical
Shnirelman integral by imposing the condition M, /n for some number M, # 1

dependent on v. The number M, can be computed from the proof of Theorem 4.4.

Lemma 7.1

ma (F) = log |a|e. + Z Z d,ym,(a;).

i v|oo

Proof. The method employed is as in Section 6 of [28]. Write
[L(z — ;) = 2%+ byz® ! + -+ + by where by,...,b; € k and the lowest common

multiple of these coefficients is a. Then for any place of k with w # oo,
|a|w = min{|bl|;17 SR |bd|;17 1}

Suppose the roots aq, ..., a4 lie in a finite extension &k, C K, of degree d,, and order
them so

|a1|u Z |a2|u 2 2 |am|u > 1 2 |am+1|u 2 2 |Oéd|1,.

We will prove that
log lal5! =3 dym,(a),

then it follows that log |a|. is just the sum over the non-archimedean contributions

in (55).
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If |oi], <1 for all 7, then |a|, = 1 and >°; d,m,(a;) = 0. Thus we may assume
that |aq|, > 1. Then we have

|bm|w = Z (67 SR O 7
21<<Zm v
= |ag - @, + smaller terms|,
— |a1 .. am|y’
and by a similar calculation |b;|, < |b,,|, for all e =1,...,d. So

lale = min{|bi |5 bl =TT leal)?

|ai|v>1

and

loglalt = > loglal, =) dymu(en),

lasl>1
completes the proof.
O
We now feel justified in proclaiming ma (F') to be the Mahler measure of F' as-
sociated to an A—field. Note the exact analogy between (51) and (54), also between
(52) and (55). Using Lemma 7.1 we can rewrite the definition of ma (F') as

ma(F) = 23 i~ > log [ F(CO).. (56)

v|oo

So if k = Q, F(x) has integer coefficients and (56) collapses to the arithmetic Mahler

measure (38).

Theorem 7.2 The generalised Mahler measure ma(F) = 0 if and only if F is a
division polynomial. That s, the arithmetic measure vanishes if and only if F is
cyclotomic, and its geometric counterpart vanishes if and only if both the leading

coefficient of F' and its roots lie in F;.

Proof. We have already seen that the arithmetic case follows from Kronecker’s result
Theorem 7.1, and, using exactly the same argument in the geometric case, we must

have a; € F; for each 7 and a € F;.
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Notice how F; plays the role of the roots of unity, as in Theorem 3.2. The term
division polynomial was first used in [12], where it was proved that the elliptic Mahler
measure vanishes if and only if the roots of F(z) (an integral polynomial) are the
z—coordinates of torsion points of the underlying elliptic curve. The results in this
section allow us to make the following connection between topological entropy and

Mahler measure.

Theorem 7.3 Let (]%5,9) be an S—integer dynamical system and let F(x) be the
polynomial with coefficients in Z or F,[T], obtained by multiplying the minimum

polynomial of £ by the lowest common multiple of the denominators of its coefficients.

Then

(i) h(6; Rs) = ma(F),

(i) h(B;k,) = m,(€) for each place v of k,

(iif) h(8; Rs) = 0 if and only if F is a division polynomial.

The problem of realising the elliptic Mahler measure as an entropy is being tackled
by Everest and Ward.
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