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Abstract of the Dissertation

Local Connectivity and Lebesgue

Measure of Polynomial Julia Sets
by
Brian William Yarrington
Doctor Of Philosophy
in
Mathematics

State University of New York

at Stony Brook

1995

For every complex polynomial P of degree d > 2, there is a closed, perfect
set in the plane, called the Julia set, on which the dynamics of P are chaotic.
In 1984, Douady and Hubbard presented a combinatorjal description of the
dynamics for a polynomial Julia set provided the Julia set is locally connected.
Tn 1990, Yoccoz showed that a large class of quadratic polynomials, the finitely
renormalizable ones, have locally connected Julia sets. In the first part of this
dissertation, we extend some of Yoccoz’ methods to certain classes of higher

degree polynomials to study the local connectivity of Julia sefs.

It was a long-standing question whether there were any polynomials with
positive Lebesgue measure Julia sets. In 1994, Nowicki and VanSirien an-

swered the question in the positive by showing that certain polynomials of

il




very high degree have positive measure Julia sets. However the question re-
mains open for quadratic polynomials. Lyubich and Shishikura independently
showed that finitely renormalizable quadratic polynomials have zero measure
Julia sets. Still, little is known about the measure of quadratic Julia sets in
the infinitely renormalizable case. In the second part of this dissertation, we
shall construct a class of infinitely renormalizable quadratic polynomials whose

Julia sets have zero Lebesgue measure.
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1. Introduction

Dynamical systems is the study of how systems, physical or theoretical, evolve
through time. As our dynamical system we shall consider the Riemann sphere
€ with a polynomial P : € —-C representing the change in the system through

one unit of time.

The Riemann sphere C can be divided into two totally invariant sets with
respect to P: a stable set, on which the dynamics of P is predictable; and
an unstable set, on which the dynamics of P is chaotic. In the language of
complex analysis, the stable set for P is the set of points z € C for which the
family of iterates of P is normal in some open neighborhood of z. The stable

set of P is called the Fatou set. |

The chaotic set, or the Julia set, of P is the complement in C of the Fatou
set. It has several characterizations, including the absence of normality, as well
as being the closure of the set of repelling periodic orbits, or the topological

boundary of the unbounded Fatou component.

In this dissertation, we shall study some topological and measure theoret-
ical questions of the Julia set of a polynomial. In particular, we shall study

whether the Julia set of a polynomial is locally connected and whether it has

zero Lebesgue measure.




1.1 A Bit of History

In 1965, Hans Brolin published a paper ([Bro]) in which he introduced the
Green’s function associated to a complex polynomial. The Green’s function
can be dynamically defined to produce an invariant foliation of the unbounded

component of the Fatou set.

Branner and Hubbard ([BH]) in 1988 used the Green’s function to par-
tition the Julia set of certain cubic poiynomials into “ﬁuzzle pieces”. The
puzzle pieces were defined to be the bounded components of the complement
of an equipotential. The invariance of equipotentials gave the puzzle pieces
certain Markov properties so that they could be used to define a symbolic

representation of the dynamics of the Julia set.

A year later, J.C. Yoccoz extended the definition of puzzle pieces by com-
bining equipotentials with a second invariant foliation, the external rays. Us-
ing these puzzle pieces, Yoccoz showed that any quadratic polynomial with no
irrationally indifferent periodic orbits, which has a connected Julia set, and
which is not infinitely renormalizable will necessarily have a locally connected
Julia set. Because each puzzle piece intersects the Julia set in a connected set,
his method of proof was to show that for each point in the Julia set, there is

a nested sequence of puzzle pieces which shrink to the point.

In 1991, Lyubich ([Lyu3]) and Shishikura worked independently to show
that all quadratic polynomials satisfying the three conditions of the previous
paragraph had Julia sets with zero measure. Lyubich used puzzle pieces and
Yoccoz’ results with local connectivity to show that there exists a recursively

defined covering of almost all of the Julia set which is shrinking in measure.
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In his 1994 paper [Lyu2], Lyubich studied the rates at which puzzle pieces
shrink for quadratic polynomials. In this paper, he shows that not only are
the puzzle pieces shrinking to points, but they are doing so at an increasing
rate. He then uses this strengthened version to show that there exists a class
of infinitely renormalizable quadratic polynomials with locally connected Julia

sets.

Through the tool of puzzle pieces, it becomes natural to study the ques-
tions of local connec_tivity and Lebesgue measure of a polynomial Julia set
simultaneously. Because each puzzle piece intersects the Julia set in a con-
nected set, they are a powerful tool for studying local connectivity. But by
studying how the puzzle pieces shrink to points, we can also develop estimates

on the geometry and, therefore, the Lebesgue measure, of the Julia set.

At this point we should note that there are examples of polynomials which
have Julia sets which are connected but not locally connected. If the polyno-
mial has a Crémer periodic orbit, then its Julia set can not be locally connected
([Mill]), and there are examples of certain infinitely renormalizable quadratic

polynomials with non-locally connected Julia sets ([Mil2}).

A problem dating back to the time of Fatou in the early part of this cen-
tury was whether a rational map with a nowhere dense Julia set could have
positive measure. Based on a computer experiment of Lyubich, Sutherland,
and Tangerman from 1992, Lyubich and Sutherland conjectured in 1994 that
certain polynomials, called Fibonacci polynomials, of degree > 32 should have
Julia sets which were nowhere dense but with positive measure. Also in 1994,
Nowicki and van Strien ([NvS]) proved that Fibonacci polynomials of suffi-

ciently high degree did have positive measure Julia sets, where sufficiently

3




high was very large (> 1000).

1.2 Overview

We shall extend some of the results of Yoccoz, Lyubich, and Shishikura con-
cerning local connectivity and Lebesgue measure for quadratic Julia sets.
Throughout this dissertation, we will only be concerned with polynomials
which have only repelling periodic orbits. Under this restriction, the Fatou
set of the éorresponding polynomials has no bounded components, and thus
the Julia set is a “dendrite”. We will extend these results in two directions.
First, we will show that these results can be extended to certain classes of
higher degree polynomials. The second direction will be to show that there
exists a class of infinitely renormalizable quadratic polynomials with zero mea-

sure Julia sets.

To extend the results to higher degree non-renormalizable polynomials,
we will use a classification of critical point orbits. The classification specifiés
that all critical point orbits are either non-recurrent, reluctantly recurrent, or
persistently recurrent, depending on how frequently their orbif returns to a
neighborhood of the original critical point. In chapter 3, we will deal with the
case when all the critical points have orbits which are either non-recurrent or
reluctantly recurrent. In this case, the Julia set of the corresponding polyno-

mial is locally connected.

After that, we will only be concerned with polynomials which have only one
critical point. In chapter 4, we will look at the family of non-renormalizable
polynomials of the form z —+ z° + ¢. As was stated in the previous paragraph,

we already know about the local connectivity of the Julia set if the critical
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orbit is either non-recurrent or reluctantly recurrent. In the persistently re-
current case, we can associate to the polynomial a different mapping called
a “generalized polynomial-like mapping” which reflects the combinatorics of
the original polynomial. This new mapping will be infinitely renormalizable.
We specify the conditions on the combinatorics of the renormalizations of the
generalized polynomial-like mapping that will be sufficient to imply the local

connectivity and zero measure of the Julia sets for the original polynomial.

Finally, we will return to a class of infinitely renormalizable quadratic poly-
nomials in chapter 5. This class, introduced by Lyubich in his paper [Lyu2],
has locally connected Julia sets. This family is characterized by controlling
where the renormalizations can occur within the Mandelbrot set and by es-
tablishing a lower bound on the combinatorial depth between renormalization

levels (these terms will be made precise in chapter 5). We will show that

polynomials in Lyubich’s class have Julia sets with zero Lebesgue measure.




2. Background

2.1 Holomorphic Dynamics

Let f : C -+ € be a holomorphic mapping from the Riemann sphere to itself.
If z € C, lét z1 = f{z0) be the image of z; under the mapping f, and let
Zn = f(zp-1). Then the sequence {zg, 21, 22,...} will be called the forward
orbit (or just orbit) of z under the mapping f. We will also use the notation

f™(#) to denote the n-fold iterate of f:

frz)=(fo---of)(z) . (1)

n times

If for z € € there exists a positive integer n such that f*(z) = z, then
z is called a periodic point. If m is the minimal positive integer such that
f™(z) = z, then z = {z,21,...,2m-1} is called a periodic orbit, and m is
called the period for z. If z is periodic of period 1, then z is called a fized

point. The multiplier A for a periodic orbit z = {2, 21, ..., zm—1} is defined as
m d m i F—
A@) = (™ (2) = (&) =TT F(F=) (2)
=1 .

Thus we can talk about the multiplier of the periodic orbit A(z).

The multiplier provides us with a tool used in the classification of periodic
orbits. A periodic orbit z is called attracting if |A(z)| < 1. The orbit is called
neutral if |A(z)| = 1. And z is called repelling if |A(z)| > 1. One special case

to note: if |A{z)| = 0, then the orbit z is called super-attracting.

Consider the function

f(2) = a1z + apz® 4+ a32® + - (3)
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which is defined and holomorphic in some neighborhood of the origin, with a
fixed point of multiplier a; at z = 0. The following two theorems are classical

results whose proofs can be found in Milnor’s notes [Mill].

THEOREM (K@NIG). If the multiplier ay satisfies |a1| # 0,1, then there exists
a Jocal holomorphic change of coordinate w = ¢(z), with #(0) = 0, so that
$ofog¢~!is the linear map w — ayw for all w in some neighborhood of the

origin. Furthermore, ¢ is unique up to multiplication by a non-zero constant.
THEOREM (BOTTCHER). Suppose that
f(2) = 2™ 4 a1 2T 4 (4)

where n > 2, and @, # 0. Then there exists a local holomorphic change of
coordinate w = ¢(z), which conjugates f to the n-th power map w — w"
throughout some neighborhood of ¢$(0) = 0. Furthermore, ¢ is unique up to

multiplication by an (n-1)-st root of unity.

The set of all points whose orbit accumulates at the orbit z will be called

the basin of attraction for the orbit z.

A family of holomorphic functions fy, : C — C is called normal if every
sequence {f,} of functions in this family has a subsequence {f;} which con-
verges uniformly on compact subsets of 5. We can use the idea of normality
to define a partition of §. The point z € S is in the Fatou set of f if the
family of iterates of f, {f™} is a normal family on some neighborhood of =.

The complement of the Fatou set is called the Julia set.

7




THEOREM (MONTEL). Let S be any Riemann surface. If a collection F of
holomorphic maps from S to € takes values in some hyperbolic open subset

UC t, then this collection F is normal.

2.2 Some Results from Analysis

The results of this section are presented more formally in [Ah1], [Ah3], or
[CG]. '

We will call a positive measurable function p: C — RY aedmissible if

Ap) = [[#* dady <0 . (5)

Let T' be any family of (possibly disconnected) rectifiable curves {7}, with
7 ¢ [0,1] = C. Let L{v,p) = S p(y(1))dt for any v € I'. We define the

extremal length of ' to be

0_(1—\) — inf’?’EI‘(L(’Y: P))2 . (6)

sup
p admisstble A(P)

PROPOSITION 2.2.1. o(I') is a conformal invariant.

IfU,V ¢ Careopen,and U C V,let A = V\U be the topological annulus,
and let T'(A4) be the family of rectifiable curves whose images is contained in

A and has one end point in each boundary component of A. The modulus of

A is defined as
mod(A) = a(I'(A)) . (7)

Suppose U, V, W ¢ C are'open, and U C V, and V cW. Let Ay = V\U,

Ay =W\V,and A= W\U.




PROPOSITION (GROTZCH INEQUALITY).
mod(A) 2 mod(A1) + mod(Az) . (8)

PROPOSITION 2.2.2. Suppose f: V —+ V' is a holomorphic degree d covering

map which maps the topological annulus A =V \ U onto A’ =V’ \T'. Then

mod(A) > émod(A’) : (9)

Let us turn our attention to the distortion of conformal maps. Distortion
can be thought of as a measure of the non-linearity of a function. We define

the distortion dist(f,V) of a conformal mapping f: V — C as

@)
dist(f, V) = :c,yepV log ol (10)

The proofs of the results in the next paragraphs can be found in [CG]. Let

S bet the family of conformal maps on the unit disk such that f{0) = 0 and
f1(0)=1.

THEOREM (KOEBE DISTORTION). If f € 5, then

AL <reis g (1)

and

o el
Tl SV <oy

(12)
The Koebe distortion theorem gives an upper and lower bound for the
derivative of a conformal map, and therefore provides a bound on the distortion

of the conformal map. Using the properties of the modulus of an annulus, we

have the following corollary, which is an immediate consequence of the Koebe

distortion theorem.




COROLLARY 2.2.3. Suppose f : U — U’ is a conformal map between two
topological disks, and V open such that V ¢ U. Then there exists K =
K(mod(U\'V)) such that

dist(f,V)< K . | - (13)

This corollary provides us with bounds on the non-linearity of a conformal
mapping, provided the mapping can be extended conformally to an open set
which is “definitely” bigger than our domain, where “definitely” is defined in

terms of the modulus of an annulus.

2.3 Quasiconformal Maps

Quasiconformal maps have become an increasingly powerful tool in the study

of complex dynamics. Let us mention a few properties of quasiconformal maps,

and refer the reader to [Ahl] or [LV] for the details.

DEFINITION 2.3.1. Let U,V C C open, and f : U — V a homeomorphism.
The mapping f is K -quasiconformal if for every anmulus A C U,

}lzmod(A) < mod(f(A)) g. K mod(4) . (14)

Such a mapping has locally integrable distributional derivatives d;f and

d,f which satisfy

K1

i SKT1

<1 almost everywhere . (15)
0xf

Define the Beltrami differential to be the measurable function

0((2)
1) = 52760 (16)

10




which satisfies ||g)|oo < 1.

A mapping f is 1-quasiconformal if and only if f is conformal in the usual

sense. For a conformal mapping, u(z) = 0.

The following is an important property of quasiconformal maps that we

will need on several occasions in this paper.

PROPOSITION 2.3.2. Quasiconformal maps are absolutely continuous with

respect to Lebesgue measure.

2.4 Polynomial Dynamics

Let us choose our holomorphic function to be a polynomial P : C - C of
degree > 2. If we consider the polynomial P as acting on the Riemann sphere
C, then P has a super-attracting fixed point at co. Therefore there exists a
positive real number R such that if |z| > R, then z is in the basin of attraction
of the point at co. Define the filled Julia set K(P) to be the set of points in

C whose orbit remains bounded.

LEMMA 2.4.1. For any polynomial P, K{P) is a compact set consisting of
the Julia set J(P) and all hounded Fatou components. These bounded com-
ponents are all simply connected, and the Julia set J(P) is equal to the topo-

logical boundary 0K.

THEOREM 2.4.2. For any polynomial P : C — C, there are two mutually
exclusive possibilities: the filled Julia set K(P) contains all finite critical points

of P, and K(P) and J(P) are connected; or C\K{P) contains at least one finite

11




critical point, and both J(P) and K(P) have uncountably many connected

components,

The proofs of these two results can be found in [Mill].

et us now mention the relevance of the local connectivity of the Julia
set with understanding the dynamics of the polynomial. The proof of this

theorem can be found in either [CG] or [Mill].

THEOREM (CARATHEODORY). Let D be a simply connected domain in C
whose boundary has at least two points. The 8D is locally connected if and

only if the Riemann mapping ¥ : A — D extends continuously to the closed

disk A.

It follows immediately from this theorem that if K(P) is connected, the
Béttcher coordinate ¢ for C \ K(P) extends continuously to J(P) if and only

if J{P) is locally connected.

In a paper by Douady and Hubbard ([DH2]}, an important tool for study-
ing polynomial dynamics was introduced using techniques from quasiconformal

mappings.

DEFINITION 2.4.3. A polynomial-like mapping of degree d is a triple g, U,V

which satisfies

1) U,V are open in C and isomorphic to disks, and Ucyv,

2) g : U — V is a proper holomorphic branched covering map of degree d.

12




The filled Julia set K(g) is the set of points in U whose orbit under g never
leaves U.

Two polynomial-like mappings ¢1 : Uy — V| and g2 : Uy — V3 are called
hybrid equivalent if there exists open neighborhoods Wy, Wy about K(g1) and

K (g2) respectively, and a quasiconformal map h : Wy — Wa such that
hogio h_1|W2 = go (17)

and

O:h =0 on K(g) . (18)

The equivalence class of all polynomial-like mappings hybrid equivalent to
a polynomial-like mapping ¢ is called the internal class of ¢, and is usually

denoted by ¢ g)..

The following theorem will be used repeatedly throughout this paper, and

is generally referred to as the straightening theorem ([DH2]).

THEOREM (STRAIGHTENING). Every polynomial-like mapping g: U — V of
degree d is hybrid equivalent to a polynomial P of degree d. Furthermore, if

K(g) is connected, then P is unique up to affine conjugation.

13




2.5 Non-renormalizable Quadratic Polynomials

All quadratic polynomials are conformally conjugate to a polynomial of the
form P, : z — 22 4 ¢ for some ¢ € C. By the previous section, J(F;) is

connected if and only if the orbit of 0 is bounded; that is, 0 € K{Pe)

DEFINITION 2.5.1. The Mandelbrot set M is the set of all parameters c € C
such that J{P,) is connected, or equivalently, the set of all parameters such

that the orbit of 0 remains bounded.

Assume ¢ € M. Using the Bottcher coordinate for the point at co, we can

find a conformal change of coordinates ¢ : C\ K(P,) — C\ A such that
(g0 Pood ) (z) =2 (19)
for every z € C\ A, and lim,_., ¢(2) = z. Using this mapping, we can define

the Green’s function G(z) for P as

G(2) = loglé(2)| = Jim tog )L (20)

Clearly if z € K(F.), then G(z) = 0. For any r > 0, define the equipotential
of value r as the set

I'y={zeC:G(z)=r} . (21)
Note that if z € I';, then P.(z) € Da,.

Also, define the external ray R, with angle v € {0,1), or just the y-ray,

for the polynomial P, to be the set

Ry ={z€ C\ K(F): ¢(z) = re?™ with r> 1} . (22)

14




The ray Ry is said to land at the point z € J(F,) if

limJr re™ = {z} . (23)

r—1

It follows directly from their definitions that the set of external rays and the

set of equipotentials form two invariant foliations of C\ K(F,).

Using equipotentials and external rays, Yoccoz created a partition of the
Julia set which has certain “Markov” properties. This partition is now referred

to as the Yoccoz puzzle piece partition.

Suppose both fixed points of P, are repelling. One of these fixed points,
called the f8-fixed point, is the landing point of the O-ray. The other fixed
point, called the a-fixed point, therefore can not be the landing point of a

fixed ray.

LEMMA 2.5.2. If J(P,) is connected, then every repelling or parabolic periodic
point is the landing point of at least one external ray, which is necessarily

periodic.

The proof can be found in [Mill].

It follows from this theorem that the a—ﬁxed. point is the landing point
of ¢ > 2 rays which are permuted cyclically by P,. The Yoccoz configuration
V® of depth 0 is defined as the 1-equipotential I'; along with the segments of
the q external rays which join I'; with the a-fixed point. See Figure 2.1. The
Yoccoz puzzle pieces of depth 0 are then defined as the ¢ bounded components

of the complement of Y° in C, which we shall label Y, . .. Y;OAI. The notation

15




X

0

Figure 2.1. The Depth 0 Yoccoz Configuration: I'y along with

the external rays which land at a.

Yy will be used to denote the unique depth 0 puzzle piece which contains the

critical point.

Puzzle pieces of depths greater than zero are defined by “pulling-back”
the depth 0 puzzle pieces. That is, if z € J(P,), and Py(z) € Y, then
Y!(z) is defined as the unique open connected component of P;*(¥;!) such
that z € Y!(z). By the invariance of equipotentials and external rays, it
follows that if ¥;! 1 Y;-ﬂ # 0, then Y} C an. Thus the puzzle pieces satisfly a
Markov property. Furthermore, if z is not a pre-image of the a-fixed point, and

PM(z) € Y, then let Y™(z) be the unique connected component of g~ »(YD)

containing z.

Two immediate properties of Yoccoz puzzle pieces: for any z which is not a

pre-image of a, Y*(z) C Y™ 1(z), and Y™ (2) N J(P,) is a connected set for all

16




n € N. It follows immediately from these two properties that if Y*(z) — {z}

as n — oo, then J(F;) is locally connected at z.

DEFINITION 2.5.3. If there exists an open set U about 0 and an integer n > 2
such that P*|y : U -+ V is a polynomial-like mapping, and P**(0) € U for

every k € N, then P, is called renormalizable of order n.

Applying the straightening theorem, we can find a polynomial P such
that P*|y is hybrid equivalent to Py for a renormalizable polynomial. If there
are only finitely many values of n for which P, is renormalizable, then F; is
called finitely renormalizable, and if there are inﬁﬁitely many such values of n,

then P, is called infinitely renormalizable.

The following theorem is due to Yoccoz.

THEOREM 2.5.4. Let P, be a quadratic polynomial with a connected Julia
set and no indifferent periodic orbits. If P, is at most finitely renormalizable,

then J(P,) is locally connected.

The proof of this theorem can be found in [Mil2] or [H].

M. Lyubich [Lyu3] and Shishikura independently studied the question of
the Lebesgue measure of these finitely renormalizable quadratic polynomials.

In particular, they proved the following theorem.

THEOREM 2.5.5. Let P. be a polynomial with a connected Julia set and no

indifferent periodic orbits. If P, is not infinitely renormalizable, then

AMJI(P)) =0 (24)

17




where A denotes Lebesgue measure.
For any z € C, define the w-limit set of z as the set

w(z)={¢ € C: 3 {nitien CN with n; - oo such that P"(z) — (}
(25)
The w-limit set plays an important role in the study of the Lebesgue mea-

sure Julia sets. This is demonstrated in the following two propositions by M.

Lyubich.

PRrROPOSITION 2.5.6. Let C be the set of critical points for the polynomial P.

Then w(z) C w(C) for almost every z € J(P).

The proof of this last proposition can be found in his paper [Lyu5]. The next
proposition is a bit stronger, and a bit more specialized. Its proof can be found

in [Lyu3].

LEMMA 2.5.7. Let P, : z — z* 4+ ¢ be a quadratic polynomial which is at

most finitely renormalizable. If J(P,) > 0, then for almost every z € J(F.),

w(z) = w(c) 3 ¢. So A(J(P.)) = 0 if the orbit of ¢ is non-recurrent.

We will need both of these results and the techniques used to prove them

in chapter 3.
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3. Non-recurrent and Reluctantly Recurrent Polynomials

3.1 Preliminaries

Let P : C — C be a complex polynomial of degree d, with only repelling
periodic orbits, Throughout this chapter, let C' = {e1,...,¢;} denote the set
of critical points of P. We will call a critical point ¢ € C simple if P(c) # 0,

where P" denotes the second derivative of P.

Recall that for any z € C, the w-limit set of z is defined as
w(z) = {C € C: 3 {nitien CN such that P™(z) — C} . (26)

For z € C, w(z) is the set of accumulation points of the forward orbit of z.
For this reason, if { € w(z), we will say that the orbit of z accumulates at (,
or that it is recurrent about {. Clearly if 2 ¢ K(P), then w(z) = {oo}, or

more generally, if z is in the basin of attraction of an attracting or parabolic
periodic orbit {{1,...,¢(m}, then w(z) = {{1,...,{m}.

When there is more than one critical point, or the critical point is degen-
erate, many of the methods that Yoccoz used to show the local connectivity
for quadratic polynomials break down. For example, the “Two-Kids” Lemma
(see [Mil2]) was valuable in the quadratic case, but is not true in general when

there is more than one critical point.

However, in certain cases, the tools that do still work are enough to get
local connectivity. These cases are classified by the behavior of the orbits
of the critical points. In section 2, we will define a partial ordering on the
critical points, which will allow us to define what it means for a critical orbit

to be maximal. In section 3, we will define what it means for a polynomial
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to be renormalizable at a critical point. Also, we will need the orbit of the
critical points to not return to themselves “too often” (the reluctantly recurrent

condition).

THEOREM 3.1.1. Let P be a polynomial of degree d > 3 such that J(P) is
connected, every periodic orbit is repelling, P is not renormalizable at any

critical point, and every fixed ray of P lands at a distinct fixed point. If either
1) P has no maximal critical orbits, or

2) Every maximal critical orbit of P is reluctantly recurrent.

Then the Julia set of P Is locally connected.

There is one point that should be noted about this theorem. To prove the
theorem as stated, the partial ordering oﬁ the critical points is not necessary.
If every maximal critical orbit is reluctantly recurrent, then every critical orbit
is either non-recurrent or reluctantly recurrent. However, the above theorem
could be strengthened mildly in the following manner. If P is as stated in
the theorem, but P has a simple critical point ¢ whose orbif is maximal,
persistently recurrent, and w(c) N C = {c}, then the result still holds. However
to prove this version of the theorem would require a general review of Yoccoz’
work with quadratic polynomials. For simplicity’s sake, we will only prove the

stated version of the theorem.

An immediate consequence of the above theorem is the following corollary.

COROLLARY 3.1.2. Let P be a polynomial of degree d > 3 such that J{P)
is connected, every periodic orbit is repelling, P is not renormalizable at any

critical point, and every fixed ray lands at a distinct fixed point. If every
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critical orbit is either non-recurrent or reluctantly recurrent, then J(P) is

locally connected.

3.2 A Partial Ordering on Critical Points

Let us define a partial ordering on C' using w(z) as follows: for ¢;,¢; € €, if
¢; € w(c;), then ¢; < ¢;. We then use this partial ordering to define a relation

~aswell: ¢; ~c;if ¢ <¢j < ¢

PROPOSITION 3.2.1.
1) ei<e; = wlc) Cwl(a)
2) < is associative.

3) ~ is symmetric.

Proof: The proofs of 2) and 3) follow as an immediate consequence of 1). To
prove 1}, let z € w(c;), and let U be any open neighborhood of z. Let Pl{¢j)
be the first moment in the orbit of ¢; which enters U. Then U pulls back

along the orbit of ¢; to an open neighborhood V' of ¢;. Because ¢; € w(¢;), it

follows that there exists a positive integer k such that P*{(¢;) € V. Therefore

P¥H(¢;) € U, and it follows that 2z € w(e;), and thus w(cj) C w(e). U

Let us point out a few additional facts about < and ~. The first fact which
is obvious is that ¢; and ¢; can be unrelated in terms of <, thus making < only
a partial ordering. The second not-so-obvious fact is that for ¢;,¢j,¢x € C, it
is possible that ¢; < ¢; and ¢; < ¢, yet ¢; and ¢ are unrelated. An immediate

consequence of this fact is the possibility that ¢; ~ ¢;, and ¢; < ¢j, but ¢; % ¢;.
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We should mention that ~ is not an equivalence relation because of the
possibility that ¢; % ¢;. An example of this occurrence was mentioned previ-
ously when ¢; is in the basin of attraction of an attracting or parabolic periodic

orbit. However we still shall refer to the relative class of ¢; as the set
i) = {cj € Cicj ~ ¢} (27)

and accept that the relative class of ¢; may be empty. If [¢] is not empty, then
the orbit of ¢ is called recurrent; and if [¢] is empty, then the orbit of ¢ is called

non-recurrent.

Finally, let us call ¢; € C mazimal if the relative class of ¢; is not empty,
and for every ¢; € C with ¢; < ¢j, then ¢; ~ ¢;. In other words, if ¢; is maximal
and the orbit of ¢; accumulates at ¢;, then the orbit of ¢; must accumulate at
¢;. The orbits of the maximal critical points determine much of the geometry

of the Julia set of P.

3.3 Yoccoz Puzzle Pieces for Maps of Degree d > 3

Because C is algebraically complete, P : C — C of degree d > 3 has exactly
d fixed points counted with multiplicity. However there are only d — 1 fixed
rays (the map z +— 2% has only d — 1 fixed points on the unit circle). To make

puzzle pieces, we'll need the following proposition.

ProrosITION 3.3.1. The polynomial P : C — C of degree d > 2 has d

distinct fixed points if and only if every fixed point w satisfies P'(w) # 1.

Proof: w is a {ixed point of P if and only if

P(z) -z = (z = w)*Q(2) (28)
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for some 1 < k < d and some polynomial Q(z) with Q{w) # 0, and deg(Q(2)}-+
k = d, where deg(Q(z)) denotes the degree of the polynomial Q(z). Now
observe that P'(w) = 1 if and only if k¥ > 2. So P'(w) = 1 if and only if
deg(Q(2)) < d - 2, and deg(Q(2)) < d — 2 if and only if there are at most

d — 1 distinct-fixed points. [

So by assuming that there are no fixed points w with P'(w) = 1, we know
that there are d distinct fixed points. However we have already observed that
there are only d — 1 fixed rays for a polynomial of degree d. Thus there exists
a fixed point which is not the landing point of a fixed ray. Let us call this fixed
point the a-fixed point for the polynomial P, just as in the quadratic case.
One of our assumptions on the class of polynomials that we are dealing with
is that every fixed ray lands at a distinct fixed point. Therefore the a-fixed

point is uniquely defined.

Recall from Lemma 2.5.2 that at any repelling fixed point, there are a
finite but positive number of rays landing at the fixed point which are permuted
cyclically by the action of the polynomial P. It follows from this lemma and the
preceding paragraph that there are ¢ > 2 rays landing at o which are permuted
cyclically by P. We now have everything we need to form Yoccoz puzzle pieces.
The procedure for creating Yoccoz puzzle pieces in this situation is analogous
to the procedure for quadratic polynomials. Let I'y be the equipotential of
value 1, and Rq(a) the union of the rays landing at « and truncated at T'y.
We call this compact set the Yoccoz configuration of depth 0, and denote it by

)P, The bounded components of the complement are called the depth 0 Yoccoz
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puzzle pieces, and are denoted by Y, with the special subscript 0 reserved for

the depth 0 Yoccoz puzzle piece which contains the critical point.

For each z € J(P) which is not the a-fixed point of P, there exists a unique
depth 0 puzzle piece Y?(2) 3 2. We define the depth n puzzle piece Y"(2) to
be the unique connected open set containing z such that P*(Y™(z)) = Y;® for
some depth 0 puzzle piece Y. It is clear from the definition of puzzle pieces

that if m < n, then ¥Y*(2) C Y™(z).

LEMMA 3.3.2. Suppose P is a polynomial with J(P) connected and no fixed
points with multiplier 1. Then YN J(P) is connected for every puzzle piece
Y.

2

Proof: Suppose Y_iﬂﬂJ(P) =ViUV, with VinNnV, = 0. Assume e € V. The
rays Ri(e) landing at « intersect J(P) only at «, and I'y does not intersect
J(P) at all. So ?,-G NY® = {a}. Therefore
J(P)={{U'ﬁﬁnJ<P>}um}Uw (29)
J#i
and

{{ gi?fﬂJ(P)}Um}ﬂlé:@ : (30)

By the connectedness of J(P), either {{U#,;Y_joﬂ J(P)} UV} or Vy is empty.
But o € {{U#i?jo N J(P)}UW}, and therefore V, must be empty, which
implies that ?io N J(P) is connected for every 1.

Suppose V* N J(P) is a connected set, and let an-i-l map by P onto V}*.
Suppose VJ-""'I nJ(P) = By,..., B are the various connected components.
Because Bj,...,B; are compactly contained in VJ-"“, there exist open sets

Ui,...,Up with U C Vj“H, and B; C U; for each [.
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Suppose Uy can be extended to an open set Uy such that Uy N By = B for
[=2,...,k and P(ﬁl) = V*. Then it follows the Uy = VJM'1 and Bq,..., By

are empty. Then we are done.

So assume [J; can not be extended to such an open set. Then as Uy is
being extended, it must intersect some By, m = 2,...,k. Let = € By, be one
of the points it intersects. Then we can find &' € By such that P(z) = P(z')
and z and z' can be connected by a path « which is contained in the extension
of Uy. That is, 9 = P(y) C V;*. Furthermore, 4 is a loop, with endpoint
P(z).

Let o' denote the path 4' along with all bounded components of its com-
plement. Then +' pulls back to a compact connected set 7 which maps onto ~
as a degree d covering map for some degree d > 2. But then § must contain a
critical point, and if we choose  carefully to begin with, this critical point will
not be- able to be in the Julia set of P. See Figure 3.1. But then by Theorem
2.4.2, the Julia set of P will not be connected, contradicting one of our initial
assumptions. Therefore V;‘"’l N J(P) must have been connected to begin with,

and we are done. [
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: n+l
Vi

Figure 3.1. The path o' connecting the two connected compo-

nents of the Julia set inside the puzzle piece I/;-”"H.

3.4 Renormalization

Let ¢ € C for the polynomial P.

DEFINITION 3.4.1. The polynomial P is called renormalizable at the critical
point ¢ if there exists an open neighborhood U of ¢ and an integer n > 2 such
that P*|y : U — P*(U) is a polynomial-like mapping, and P¥*(c) € U for

every k € N.

If there is only one critical point in U, then by applying the Straightening
Theorem, we see that P is renormalizable at ¢ to a polynomial with a connected
Julia set. However, if there are other critical points in U/, and the orbit of any of
these other critical points escapes U, then P is renormalizable to a polynomial

with a disconnected Julia set.

Just as in the quadratic case, we can talk about P being finitely renor-

malizable or infinitely renormalizable.
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LEMMA 3.4.2. If ¢ is a recurrent but non-renormalizable critical point of P,

then for every N € N, there exists an integer n > N such that

mod(Y"(c)\ Y?T1(e)) > 0 . (31)

Such an annulus is called non-degenerate.

Proof: Let p > 2 be the number of external rays landing «. We claim that in
order for P to not be renormalizable at ¢, there must exist a positivé integer
t > 0 such that P®(c) € UY;! for one of the depth one Yoccoz puzzle pieces
which does not touch «. Let us prove the claim by contradiction: that it,
assume no such ¢ > 0 exists. Let ¥ be a slight “thickening” of Y(¢); that
is, let Y be the union of Yl—(c) and a small open neighborhood of Y1(¢). If
this neighborhood is chosen small enough, then PP(Y') contains the closure of
Y. Further, P*(c) € Y'(c) € YVEk € N. And P?(Y) will be a finite degree
branched covering map onto its image. Therefore P, is renormalizable, which
is a contradiction, and thus P?(0) € U; ¥;! for some ¢ € N and some depth 1

puzzle piece not touching a.

But the depth one puizle pieces which do not touch o are compactly
contained in some Y;-O, and therefore the annulus YJ-O \ Y has positive modulus.
By Proposition 2.2.2 and the fact that there exists a puzzle piece Y"(c) which
maps as a finite degree branched covering map onto Y}O, the annulus on \ Y}

pulls back to an annulus about ¢ which has positive modulus.

Finally, because the critical point ¢ is recurrent about itself, we can get

annuli with positive modulus of arbitrary depth about the critical point ¢. [J
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3.5 Reluctant vs. Persistent Recurrence

Let ¢ € C for the polynomial P, and suppose P is non-renormalizable at c.
Recall that the orbit of ¢ is non-recurrent if [¢] is empty. Equivalently, the
orbit, of ¢ is non-recurrent if there exists an open neighborhood U of ¢ such

that the forward orbit of ¢ never enters U.

Now suppose c is maximal.

DEFINITION 3.5.1. If there exists positive integers k, N € N, and an increas-
ing sequence of positive integers {ni}ien C N such that PrkE(Y™i(c)) has

degree < N, then the orbit of ¢ is called reluctantly recurrent.

LEMMA 3.5.2. I the orbit of ¢ is reluctantly recurrent, then there exists ¢ > 0
such that for every n € N, there exists a pullback z = {z0,2-1,-.. ,Z_pn} in

w(c) satisfying that the pullback of B(z,¢) along z is univalent.

This property is sometimes referred to as the “long univalent pull-backs”
property of w(e).
Proof: Because the critical point is reluctantly recurrent, there exist puzzle
pieces of some level k which have arbitrarily long pull-back of degree less than
N. Note that the bound N is uniform, but the pull-backs are arbitrarily long.
Pull-back the puzzle pieces along the critical orbit until it hits its first critical
point. If these pull-backs can be arbitrarily long, then we’re done. If not,
then we can begin again from this Yoccoz depth. We only have to repeat
this procedure at most N times to find a Yoccoz depth which has pieces with

arbitrarily long univalent pull-backs along w(e).
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If @ € w(e), then we can certainly find a ball of radius € about a which
shrinks uniformly to . However if & & w(c), then the forward orbit of ¢ stays
a definite distance away from the boundaries of the puzzle pieces on any given
depth. So find an e such that for some point z € w(c), the ball of radius ¢ is
contained in the Yoccoz puzzle piece of the depth described in the preceding

paragraph. Clearly this ¢ satisfies the conditions of the lemma, [

DEFINITION 3.5.3. Suppose the orbit of the critical point ¢ is recurrent, but
not renormalizable nor reluctantly recurrent. Then the orbit of ¢ is called

persistently recurrent.

LEMMA 3.5.4. Let {z0 — 2z — ---} be én orbit of of P. If z; is the first

point in the orbit of zy which enters Y™ (), then
V' () VY™ (2-g) = (32)
for0 <e<y <k
Proof: Suppose Y (2 _;) N Y“H(zk_j) # @) for some 0 <7 < j < k. Then
Y" () CY™H () (33)

Therefore P’:(Y”“(zk_j)) C Y™(z), and therefore P*~U=9(z) € Y™(z) for
n— (j —¢) < n. This is a contradiction with the assumption that zy is the

first moment in the orbit of z which enters Y™(z). O

LEMMA 3.5.5. Suppose ¢y < cg, with ¢ recurrent and ¢y maximal. Then if

cy Is reluctant, so is ¢;.
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Proof: Let k,N and {n;} be as in the definition of reluctantly recurrent.
Then P™~*(¥™i(c)) has degree less than N. Let P™(c;) be the first moment
when the orbit of C} enters Y™ (c). Pull Y™{c) back along the orbit of Cj to
yn«;+m(cl)_

Claim: this pullback of Y™(c) hits every other critical point of P at
most once. Suppose not. Suppose there exists a critical point ¢ such that
the pull-back of Y™(c) hits ¢; twice before hitting ¢;. Let 0 < r < s be
such that Y™17(c,) and Y"1¥(c,) are the two corresponding puzzle pieces.
Then Y™+%(¢,) C Y™*7(¢,). Therefore P"(Y"+%(c,)) C Y™(c). But then
P";""(s_r)(c;) € Y™(c) for m ~ (s —r) < m, contradicting our assumption that
P™(¢;) was the first moment that the orbit of ¢ entered Y™(c), and the claim
is proved.

To conclude the proof of the lemma, note that there are only finitely
many critical points for a polynomial. Therefore there exists N3 € N and an
increasing sequence of integers {n;}ien such that Pri=k(y™(¢;) has degree
less than N, and therefore the orbit of ¢ is reluctantly recurrent. So if one

critical point ¢ € [¢] is reluctant, they all are. [

COROLLARY 3.5.6. The orbits of all critical points in a relative class are

simultaneously reluctant or persistent.

THEOREM 3.5.7. If the orbit of ¢ is reluctantly recurrent, and ¢ € w(z), then

Y*(z) — {2z} asn — 0.

Let [c] = {¢,e1,...,¢p}, and k, N, and {n;} be as in the definition of

reluctantly recurrent. Because none of the ¢; € [c| are non-renormalizable,
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by Lemma 3.4.2, there exists a minimal {; > 0 such that mod(Y*Hi=1(¢;) \

Ykt (CJ‘)) > (0. Let L = ma:{:{lj}, and

M = min mod(Y*Hi= () \ YR+ (¢)) . (34)

By the definition of reluctant recurrence, P%~*(Y™(c)) is a map of degree
at most N, Push P™ *(c) forward until the first time its orbit enters Y+ (¢;)
for some ¢; € [¢]. Claim: A*%(¢;) pulls back along the orbit of ¢ to a critical
annulus A;(c) satisfying
~ M
mod(Ai(c)) = T (35)

where d is the degree of P.

To prove the claim, note that if A; is an annulus such that P(A;) =

A¥Hi(¢;), then

mod(Ar) > Smod(44+ () > (36)
because of Proposition 2.2.2. Similarly, if P*(Ar) = Aj, then
M
mod(Ar) > I o (37)

Now we have assumed that Y ¥+ (¢;) is the first time the orbit of P™~*(c)
has entered one of these puzzle pieces. Therefore if Ay, denotes the pull-back
of A¥*li(c;) along this orbit, then Ay pulls back to an annulus A; of c by a
map of degree at most N. Therefore

1 M
—A—rmod(AL) > NiE (38)

mod(ﬁ.g(c)) >

and the claim is proved.

Because there are infinitely many such annuli about ¢, each with modulus
greater than or equal to W]%f’ we can apply the Grotach inequality to get that

Y™(¢) = {c} as n — oo. [
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Proof: (of Theorem 3.1.1)

If the orbit of z accumulates at a critical point, then by Theorem 3.5.7,
Y™(z) — {z} as n — oo. But if the orbit of z does not accumulate at
some critical point, then we can apply Lemma 2.5.7 to get that Y"(z) — {z}
as n — co. Therefore the puzzle pieces shrink to every point in the Julia set.
By Lemma 3.3.2, each puzzle piece intersects the Julia set in a connected set.

Thus the Julia set is locally connected. L1
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4. Local Connectivity and Lebesgue Measure

of Julia Sets in the Family z+s 2% 4 c.

4.1 Introduction

Let P(z) be a cubic polynomial of the form P : z +s z° + ¢. Thus there is
only one critical point as in the quadratic case. However this critical point is
degenerate. In this chapter, we want to examine how far the methods of Yoccoz
and Lyubich for non-renormalizable quadratic polynomials can be pushed in
studying the local connectivity and Lebesgue measure of the Julia set of such

cubic polynomials.

In the first two sections of this chapter, we shall not introduce anything
new, but rather review what has already been done for quadratic polynomials

in this new setting. Let us assume that all periodic cycles of P are repelling.

Recall that a polynomial with one critical point ¢g is called renormaliz-
able if there exists a neighborhood U of ¢y and an integer n > 2 such that
P*|y : U — P*(U) is a polynomial-like mapping with the forward orbit of cg
under P" never escaping U. Let K(P"|y) denote the filled-in Julia set of the
corresponding polynomial-like mapping.

The class of cubic polynomials P we want to study are those with the
following properties:

1) J(P) is connected,

2) P has only one critical point,

3) P has only repelling periodic orbits,
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4) P is non-renormalizable.

A polynomial P with only one critical point ¢is called recurrent if ¢ € w(e).
P is called reluctantly recurrent if there exists an open neighborhood U of ¢
such that for every n € N, there exists a point ¢ in the forward orbit of the
critical point satisfying
1) ¢ € U, and
2) P’:(ck) g U for every 1 <1< n.
If the orbit of the critical point of P is recurrent but not reluctantly recurrent,

than P is called persistently recurrent.

From the previous chapter, if the orbit of the critical point for such a
polynomial is either non-recurrent or reluctantly recurrent, then the Julia set
of P is locally connected (provided it is connected). We want to deal here with
the case when the orbit of the critical point is persistently recurrent. Recall
from the previous chapter that persistent recurrence of the orbit of the critical
point 0 is actually a condition on w(0). that is, if w(0) satisfies the “no long

univalent pull-backs” condition, then the orbit of 0 is persistent.

A generalized cubic-like mapping is a collection of disjoint open disks V;
contained in an open disk V¢, along with a collection of analytic functions
gi : Vi = V0 such that g; is univalent for s #0and g0 : Vo — V0 is a degree
three holomorphic covering map with a single branch point, and the orbit of
this branch point never escapes the collection of V;. We will denote such a
map as g : UV; — VO, Furthermore, we’ll assume in this chapter that the orbit

of the critical point enters every V;".

In this chapter, we shall prove the following theorem.
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THEOREM 4.1.1. Let g : UV — V? be a generalized polynomial-like mapping
with one cubic critical point. If there exists some renormalization level n of g
such that gn : UV® — VO"_I has admissible families on every renormalization

level following n, then K {g) is a totally disconnected measure zero Cantor set.

Admissible families are families of puzzle pieces which have certain special
properties. We shall define admissible families more precisely a little later in

this chapter.

The next theorem is actually a corollary to the previous theorem. However
it is this result that we really want, so we shall state it as its own theorem. To
every non-renormalizable polynomial P, : z — 2% 4+ ¢ which has a persistently
recurrent critical orbit, we can associate in a canonical way a generalized cubic-

like mapping which is infinitely renormalizable.

THEOREM 4.1.2. Let P, : z ++ 23 + ¢ be a non-renormalizable polynomial
with a connected Julia set and a persistently recurrent critical orbit. If the

generalized polynomial-like mapping associated to P, satisfies the conditions of

Theorem 4.1.1, then J(P,) is locally connected and has zero Lebesgue measure.




4.2 Generalized Polynomial-like Mappings

To every non-renormalizable polynomial P with a recurrent critical point, one
can associate a mapping which reflects the local combinatorics of the origi-
nal polynomial about this recurrent critical point. Further, this new mapping
is infinitely renormalizable in a sense to be made precise shortly. This sec-
tion is dedicated to the construction of this new mapping, which we call the
generalized polynomial-like mapping associated to the polynomial P, and the
development of some of its properties. The results in this section are essentially

those of M. Lyubich from [Lyu3].

Let V® C C be an open topological disk, and let UV; be a countable col-
lection of disjoint open topological disks each of which is compactly contained
in V9. That is

UV, cVPand VinV; =0 fori#j . (39)

To each Vi, let ¢; : V; — V0 be a branched finite degree holomorphic covering
map. Then g : UV; — VY defined as

glv; = gi (40)

is called a generalized polynomial-like mapping if it has only finitely many
branch points. If ¢ has only one branch point zg € Vg, and g : Vo — Vo
is a degree three covering map, then we shall call ¢ a generalized cubic-like
mapping. We shall assume that the orbit of this lone critical point never

escapes UV;.

Let P, : z — z° 4+ ¢ be a non-renormalizable polynomial with only re-
pelling periodic orbits, a connected Julia set, and a recurrent critical orbit.

Let Y{,... ,qu_l denote the depth 1 puzzle pieces whose closures touch the
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a-fixed point of P, and let Z},...,Z%q_z denote the depth 1 puzzle pieces
which do not touch e. See diagram 1.

Claim: the orbit of the critical point must eventually enter UZ}. Suppose
not. Then PI¥(0) € Yy for every k € N. Let ¥ be an open set with Yicy
and Py(0),...; PS1(0) ¢ V. Then P¢: Y — PI(Y) is a polynomial-like map-

ping in the sense of Douady and Hubbard, and therefore P is renormalizable,

contradicting our assumption that P, is non-renormalizable. So the claim is

proven.

Suppose the critical orbit first enters ZY. The annulus YQ\ Z} is non-
degenerate; that is, mod(YY \ Z1) > 0. Pulling this annulus back along the
critical orbit, we obtain a non-degenerate critical annulus AF = Y[)k_l \ Yak .
Let VO = Y.

Consider all returns of the orbit of the critical point to V¥, and pull Vg
back along the orbits to obtain puzzle pieces V;*. Claim: each V! is compactly
contained in V0. Otherwise V! N 8V° # @ for some i. Let I > k be the

Yoccoz depth of V1, and j =1 — k. Then
vl na(PIVY) > PIOVEINaVY) £ (41)

which contradicts the fact that EY.? C Yﬂk_l. Clearly the critical orbit never
leaves NV} by their very definition. This completes the construction of the

generalized polynomial-like mapping g1 : UV — VP associated to P..

To tenormalize g1, note that the critical orbit of P is assumed {o be re-
current. Therefore the critical orbit returns to Vg infinitely many times. Let
¢; be any point in the forward orbit of the critical point ¢ such that ¢ € Ve,

and let ¢p.y be the first time the orbit of ¢; returns to Vy'. Then pull-back
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V! along the orbit of ¢ to obtain the level 2 puzzle piece V*(cx). The unique
level two puzzle piece containing the critical point is denoted V. Thus we
have defined a new generalized polynomial-like mapping gs : UV — V! which

we call the renormalization of g1.

We can repeat this construction as often as well like to get generalized

polynomial-like mappings of all levels.

4.3 Combinatorics of the Return Map and the Asymmetric Modulus

Let gn : UV — Vi1 be some renormalization level for a generalized cubic-
like mapping. V{ shall denote the unique puzzle piece of level n which contains
a branch point. Let I'™ denote the free semi-group generated by the formal

symbols V" representing the off-critical puzzle pieces of level n. That is,

M ={y={91,..., M} 17 = V] for somej #0} . (42)

Let | denote the identity element of this semi-group, and let }y] denote the

length of the word 7. Define |I| = 0.

We can associate to every word 4 € I'™ an open set in V'™ ! as follows.
If |4} = 0, then v = 1 and we define its associated open set U(l) = Vg*. If
|v| = 1, then v = {V;"} for some off-critical puzzle piece V;". Associate to
« the open set U(y) = V* where this V;* is not the formal symbol but the
open subset in V@'~!. Now suppose to every v with |y| < k — 1 we have
associated some open set U(v) in Vi, Let v = {y1,...,7x}. Then vy =V}
for some j # 0. So associate to vy the unique open set U(y) C V' such
that ¢ (U (7)) = U({v2,.--,7}). It follows from this definition that for every

v € T™, U(y) maps conformally onto Vg*™! under gLAfl.
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By the definition of the open set U(y), if v = {y1,..., 7}, then g(y) =
{72,...,7}. Thereforc g acts as a shift map on the words v € I'™ considered

in conjunction with its action the open set U{y).

Let {7'};es C I™ be any collection of words in I such that for ¢, 7 € J,
UA)NU) #b&i=] . (43)

For each § € J, define the annulus Rj(U(4?)) as follows: Ry{(U(+7)) is the
topological annulus of maximal modulus such that
) Ry(U(F) € VoAV
ii) V' is contained in the unbounded component of the complement of
Ry(U(4)) for j # 1, and
iii) V® is contained in the bounded component of the the complement of
Ry(U(+))-
See Figure 4.1. We know such an annulus exists by Montel’s Theorem. Note
that the definition of R;(U(+7)) depends on the family J, and thus we include

J as a subscript.

Let {7 }jes C ™! be a family of words in -1 withy? = {7&, cee ,')'i;(j)}.

DEFINITION 4.3.1. We will say that the family J is separated if U (fyg) £ U(+)

fori#j.

Now let {77} ;es C I'™ be any separated family of puzzle pieces in I'®, with

y = {'yg,...,fyi(j)}. If ¥/ = 1, then Up(y?) = U(¥¥) = V. If A9 £ 1, then
gﬁ(ﬂﬂ maps ' conformally onto VO”_I. Therefore there exists an open set in
U{~?) which maps conofrmally onto Vi under gﬁ(_‘qﬂ. Let Up(¥?) denote this

sef.
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Figure 4.1. E¥

Let {V?};er be a family of puzzle pieces of level n, one of which must be

the critical puzzle piece V',
DEFINITION 4.3.2. The asymmetric modulus of the family I is defined as

1
on() = mod(Ri(Vy")) + 3 > mod(Ri(V™) - (44)
i£0
We will see later that the asymmetric modulus defines a way of measuring
space between two renormalization levels.
Again, let {V."}ies be a family of puzzle pieces and {7v'}jes C T™ be any

separated family of puzzle pieces in I'" as above.

DEFINITION 4.3.3. The family J is said to be subjugate to the family I if for

every t € I, either
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1) there exists j € J and an integer 1 < m < k(j) such that U(y,) = V7,

or

2) VP = fyg for some j € J, and Uje](U(’}fg)) C User Vi

LEMMA 4.3.4. If the separated family {7’ };es has at least 3 elements and is

subjugate to the family {V;"};c;, then
1 :
3 2. mod(Rs(Us(v"))) Z on(I) . (45)
j
Proof: By the definition of the asymmetric modulus,

on(I) = mod( R (V")) Zmod . (46)
z;é(]

So first suppose that for every ¢ € I with ¢ # 0, there exists j € J and an
integer 1 < m < k(§) such that U(yd,) = V;*. Then

mod(U(v,_; \ 7)) = mod(V* "\ VF) 2 mod(Ry(V/)) . (47)

Also, if vj # 1, then mod{U(?) \ Uo(+?)) = mod(Vy" * \ V).

Now suppose there exists ¢ € I such that theonly j € Jand0 <m < k(5)
with V" = U(+2,) is U(1{) for some j € J. Then by the definition of subjugate,
Ujes(U(1)) C UierVi®. Therefore

mod(R3(U(R)) 2 mod(Rr(V]")) . (48)

This completes the proof of the jemma. O

LEMMA 4.3.5. Suppose the separated family J has only two elements, which

we shall call ¥* and 4%, If J is subjugate to the family I, then

Z mod(Ry(Us(r) + gmod Ra(Uh(®))) 2 anll) (49)
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Proof: Let v' = {19d,...,7}} and v* = {43,...,9}} For ¥ with i £ 0, there

exists 0 < m < k such that V® = U(m). I m = 0, then
mod(R;(U(1m))) 2 mod(Rr(V*)} (50)
and if m # 0, then
mo?(U(vf;m_1 \ 7)) = mod(V*\ V) 2 mod(Ry(V™) - (51)

And again, for v # I, mod(U(y) \ Us(7)) = mod(VF* \ V). The result of

the proof now follows. O

4.4 Admissible Families

Let us now define what it means for a family of puzzle pieces of level n to be
admissible. The definition will be given inductively on the level n. We start
with a generalized cubic-like mapping ¢1 : uvl — V0 which has at least three

level one puzzle pieces.

Let g2 : Uij — Vg be the renormalization of g;. A family I 2 of puzzle

pieces of level two is called admissible if
1) I? has exactly three puzzle pieces, the critical puzzle piece and two
off-critical puzzle pieces, and
2) there exists an integer k& > 0 such that ¢} (I?) is contained in the s-ame
level one puzzle piece for all 0 < I < k, and gf"'l(fz) is a separated
family.
Now suppose we have admissible families on levels two through n — 1 for

n > 3. A family I" of puzzle pieces of level n is called admissible if
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1) I™ has exactly three puzzle pieces, the critical puzzle piece and two
off-critical puzzle pieces,

2) there exists an integer k > 0 such that gt (I™) is contained in the same
level one puzzle piece for all 0 < [ < k, and ¢ maps (I") to a
separated family family, and

3} if {y'}ier is the family of words such that Us(7') = gEHH(vm), then

{’y’:},-e 7 is subjugate to an admissible family of level n — 1.

This final condition is precisely why we need to define admissibility inductively
on the level. Unfortunately, if there is a level on which there are no admis-
sible families, we need to begin our definition of admissibility from this level

onwards.

We can now define the asymmetric modulus of level n. Suppose levels two
through n > 2 all contain admissible families. Then the asymmetric modulus
of level n is defined as

Op = _ Iin o(l) . (52)

" I admissible

LEMMA 4.4.1. Let g1 : UVt — V° be a generalized cubic-like mapping with
admissible families on levels 2 through n — 1 for n > 3. If there exists an

admissible family on level n, then
Op 2 Op—1 - (53)

Proof: Let I™ be any admissible family on level n. By the definition of

admissibility, there exists an integer k£ > 1 such thaf gﬁﬂ separates I™. Let

{v'}jes € T*7* denote the family of words corresponding to the image of I"
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under gf;f} The separated family J can have either two or three puzzle pieces
(the two off-critical puzzle pieces could have the same image).
If there are three words in J, then it follows from the definition of the

asymmetric modulus that

oa(I") = mod(R1a (V) + 3 3 mod(Rpn (V)

. | (54)
> = 5 mod(Ry (U())

By the definition of admissibility, the family J is subjugate to an admissible

famnily I™1 of level n — 1. Therefore we can apply Lemma 4.3.4 to get
1 :
5 2. med(Rs(Uh(7")) 2 an-1 (") 2 o0y (55)

Now suppose there are only two words in J, say A1 and 42. Then it follows
that one of these two words corresponds with the image of both off-critical
puzzle pieces in I"®. Say this word is A1, Then

1
ou(I") = mod(R+(V")) + 3 2 mod( (V"))

(56)

> Zmod(R1(Us(7"))) + %mod(RJ(UG(’Yz)))

ol o

Again, by the definition of admissibility, the family J is subjugate to an ad-
missible family I"~! of level n — 1. Therefore we can apply Lemma 4.3.5 to

get

2 o (B (Us(40) + gmod(Ra(Ur™) 2 ant(I™ ) 2 00t (5)

Because this is true for every admissible family of level n, the proof is complete.

O
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4.5 Proofs of the Main Theorems

Before proving the two main theorems of this chapter, we need to mention two
useful lemmas. The first Lemma is from Milnor’s exposition [Mil2], and its

proof can be found there.

LEMMA 4.5.1. Suppose that some orbit zg ++ z1 — - -+ in the Julia set never
reaches the puzzle pieces Y¥(0) of the critical point. Then the intersection

NY"(z) of the puzzle pieces containing z reduces to the single point zg.
The second lemma is from Lyubich’s paper [Lyu3].

LEMMA 4.5.2. Let D be a topological disk and K C D a compact subset
consisting of finitely many components. If I' is the family of non-connected
rectifiable curves separating K for 8D, and o(T) is the extremal length of this
family, then

M D) dar

L >4+ — . 58

MNE) ST o) (58)
Proof: (of Theorem 4.1.1)
Note that the boundary of every puzzle piece does not intersect K({g). There-
fore, if two points 21, 29 € K(g) are contained in different puzzle pieces of some
depth, then they cannot be in the same connected component of K (g). In par-

ticular, if we can show that the nested sequence of puzzle pieces V"(z) — {2z}

for every point z € K(g), then K(g) must be totally disconnected.

Step 1: Show the critical puzzle pieces V' shrink to the critical point as
n — oo. By assumption, there exists a renormalization level n such that gy :

UV — V! has admissible families on every renormalization level following
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it. By the Lemma 4.4.1, it follows that every renormalization level m > n
satisfies ¢,, > 0, > 0. Therefore on any renormalization level m > n, there

exists a family I of three puzzle pieces Vg™, V™, Vi such that
1 1
mod(Ri(Vg™)) + gmod(RI(Vlm)) + gmod(RI(VQm)) >on>0 . (59)

Therefore‘mo;i(RI(Vim)) > b > 0 for some i =0,1,2 and a definite & > 0. If
i = 0, then we're done. So suppose i # 0. Let gk (0) € V™ be the first moment
when the critical orbit enter V™. Then Rr(V;™) pulls back to a critical annulus

A which maps as a three-to-one covering map on Rp(V™). Therefore

mod(A) 2 Tmod(Ri(V™) 2 5 (60)

3
Thus we again have a critical annulus with a definite modulus. Because we

can find such an annulus on infinitely many levels, it follows from the Grotzch

inequality that the critical puzzle pieces are shrinking to the critical point.

Step 2: Let us show that for every z € K(g) that

S mod(V(z) \ VHi(z)) = 00 . (61)

If 0 ¢ w(z), then there is some level n such that the orbit of z enters Vi1, but
never enters V. There are only finitely many off-critical puzzle pieces of level
n, and the closures of these sets are pairwise disjoint. Therefore if {V}* tier 1s

the family of off-critical puzzle pieces, than there exists B > 0 such that
mod(R; (V")) > B (62)

for every 1 € I. But the orbit of z passes through some V" infinitely many
times. Fach time, conformally pulling back R;(V;*) along the orbit of z gets

us an anntlus about z with definite modulus. Therefore

Y mod(V*(2) \ V" H(z)) =0 . (63)
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Now suppose 0 € w(z). By Step 1, there are infinitely many levels { such

that mod(V{(0)\ VI+1(0)) is bounded away from zero.

Let g*(z) be the first moment when the orbit of z enters V H0). then

g*(z) € VI for some i. If i = 0, then A0y = VI(0) \ VI*1(0) pulls back
conformally to an annulus AFH1(2) about z. If ¢ # 0, then g*(2) € Uo(%)
for some 7 € T, It follows that U(v) \ Us(7) pulls-back conformally to an

annulus about z. But mod(U(y) \ Us(7)) = mod(V}(0) \ VH1(0)).

Because we can repeat these steps for infinitely many levels [, it follows

that
S mod(Vi(z)\ Vi*1(z)) = . (64)

Applying the Grétzch inequality, we have the V7 (z) — {2} for every z € K(g),

and thus K(g) is totally disconnected.

Step 3: Let us show using steps 1 and 2 that A(K(g)) = 0. This argument is

identical to that of Lyubich in [Lyu3].

Let us organize the set of pieces V* in a tree joining V! with Vz-“+1 in the

case when V"1 C V. Let us assign to each edge [U, W] of the tree a number
VU, W] = v(U) = min(mod(W \ T), %), (65)

and to each branch ¢ a number »(¢) which is the sum of v{U, W] over all edges
of £. Denote by Q, the family of all branches of length n, n < oo (saying

“hranch” we mean a path in the tree beginning at the root vertex Vo). It

follows from steps 1 and 2 that




for any £ € Q. Let us show that

M, = &1&11 v{¢) - oo. (67)

Given a C, cousider a subtree of vertices W such that »[V?,W] < C
where [V® W] is the branch ending at W. Now use Kcenig’s lemma (this is
not the same as Koenig’s theorem from chapter 2): if a tree with finitely many
branches at any vertex has arbitrarily long branches then it has an infinite

branch. Along this branch the divergence condition fails.

By Lemma 4.5.2, for any vertex U of level n

AVHLAT)

T S eml-v) (68)

with an appropriate constant b. Now one can easily derive from here ( induc-
tion in n ) that

A(VH) <€ eXP(""an))\(VG): (69)

and by the growth of M,, this value goes to 0. |

4.6 Examples

Let us give some examples which demonstrate the combinatorics described in
this chapter. These examples should elucidate the type of generalized renor-

malizations required for this theory to work.




Example 1: A Good Case

Figure 4.2. A Good Case.

Assume these combinatorics are repeated on all renormalization levels.
Then there are three puzzle pieces on each renormalization level. Because the
two off-critical puzzle pieces map directly onto the critical puzzle piece of the
previous level while the critical puzzle pieces maps through each off-critical
puzzle piece before returning, we can choose k = 1 and the three puzzle pieces

form an admissible family. Therefore the Julia set of a polynomial with these
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combinatorics is locally connected and has zero measure.

Example 2: “Fibonacci” Combinatorics

Figure 4.3. “Fibonacci” Combinatorics.

This example of renormalization is sometimes referred to as “Fibonacci”

combinatorics, because the combinatorics are the same as those exhibited by
the generalized polynomial-like mapping associated to a real Fibonacci poly-

nomial of even degree.
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Assume the renormalization pictured in the diagram is repeated on all
renormalization levels. Because there are only two puzzle pieces on each level,
we do not have admissible families on all levels, and therefore can not apply
Theorem 4.1.1. The local connectivity of the Julia for a cubic polynomial with

these combinatorics remains an open question.

Example 3: Reluctant Recurrence

Figure 4.4. Reluctant Recurrence.
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Because V! and V2 map into V* while Vy**! maps directly onto V7,
it follows that there can be no k£ > 1 which will separate the three puzzle

pieces, Therefore our method from this chapter does not apply.

However, if these combinatorics were repeated on every renormalization
elvel, then the critical orbit would be reluctantly recurrent. Reluctant re-
currence follows from the observation that V¥ maps into V{*, and therefore
there exists arbitrarily long univalent pull-backs of ¥/ in w(0). It is well known
that a polynomial with only one critical point which is reluctantly recurrent
has a Julia set which is locally connected and has zero Lebesgue measure. See

chapter 3 for more information.

Example 4: An Annoying Example

This example remains the foremost obstacle to proving the following con-

jecture:

CONJECTURE 4.6.1. If g is a generalized polynomial-like mapping with one
cubic critical point and at least three puzzle pieces on every renormalization

level, then K(g) is totally disconnected and has zero Lebesgue measure.

If the combinatorics showed in this diagram are repeated on every renor-
malization level (in cycles of two), then our method breaks down. Because of
the combinatorics of the mapping gay1 : UV H2 = v+ there is no admis-
sible family on that level. Because of the combinatorics of g5 : U V,-""H — Vi,
the critical orbit is not reluctantly recurrent. Therefore we can not yet con-

clude anything about the local connectivity or Lebesgue measure of the Julia

set of a polynomial with such combinatorics.




Figure 4.5. An Annoying Example.




5. A Class of Infinitely Renormalizable

Quadratic Polynomials with Zero Measure Julia Sets

5.1 Introduction

Let P;: z — 2% + ¢ be a quadratic polynomial. If the critical point 0 is
not in the Julia set J(FP,), then it is known that the Julia set J(Fc) has zero
Lebesgue measure. In 1991, Lyubich ([LyﬁB]) and Shishikura independently
showed that if P, is at most finitely renormalizable, then the Julia set J(F) has
zero Lebesgue measure as well. However, little is known about the Lebesgue

measure of J(P,) when P is infinitely renormalizable.

In [Lyu2], Lyubich introduced a class £ of infinitely renormalizable quadratic
polynomials which have particularly nice “geometry.” In particular, Lyubich

showed that the Julia sets for polynomials in this class are locally connected.

In this chapter, we shall study the question of the Lebesgue measure A of

the Julia sets for quadratic polynomials P in this class L.
THEOREM 5.1.1. For P, € £, \(J(P.)) = 0.

Tt should be noted that our class £ is not identical to Lyubich’s class:
qualitatively it is the same class, however there are some subtle quantitative

differences.

To give an accurate description of how the class £ is defined, we must
first discuss some aspects of the dynamics of quadratic polynomials in a bit
more detail. In particular, let us give some additional background on the

Mandelbrot set and on renormalization theory.
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First, let us discuss some aspects of the Mandelbrot set M (see [DH2] for
more details). A connected component H of the interior of the Mandelbrot
set for which each polynomial P, € H has an attracting or super-attracting
periodic orbit is called a Ayperbolic component. The attracting periodic orbit
in every polynomial in H has the same period, which we shall denote by npy.
The hyperbolic component which contains 0 is called the main cardioid and is
denoted by Ho. Each hyperbolic component H has a unique point cg € 1
for which P,,, has a periodic orbit of period ng which has multiplier 1. This

point is called the root point of the hyperbolic component H.

To each hyperbolic component H other than the main cardioid, the root
point separates the Mandelbrot set. That is, M \ {cg} consists of two con-
nected components. The connected componeﬁt not containing 0 is called the
limb Ly associated to H or to cg. If cg € 0Ho, then Ly is called a primary
limb. If cg € &Ho, and ¢z € 8H, then Lyt is called a secondary limb. A
secondary limb can be thought of as a limb which is “once removed” from
the main cardioid. Finally, a truncated limb L% is a limb with a small open
neighborhood of the root point cy removed from it. Examples of truncated

secondary limbs can be found in Figure 5.1.

Let us now give more information on the renormalization theory of quadratic
polynomials which will be pertinent to this chapter. There is a canonical
method of forming a generalized quadratic-like mapping associated to our poly-
nomial P, which carries much of the combinatorial information we shall need.
This construction will be the focus of section 2 of this chapter. This gener-
alized quadratic-like mapping may be quadratic-like in the sense of Douady

and Hubbard, however we shall assume this is not the case for polynomials in
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Figure 5.1. The Mandelbrot set, with four examples of truncated

secondary limbs, the regions shaded in black.

our clags £. In either case, the generalized quadratic-like mapping will have
at most finitely many puzzle pieces, only one of which can contain the critical

point. See Kigure 5.2,

If the generalized quadratic-like mapping is not quadratic-like in the sense
of Douady and Hubbard, then we can perform a generalized renormalization
to obtain a new generalized quadratic-like mapping. This method of renormal-
ization was first introduced by Lyubich in [Lyu3]. Again, the new mapping

obtained may be quadratic-like in the sense of Douady and Hubbard.

Under the new mapping, the critical point may land in any of the finitely
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_rX
critical
point

Figure 5.2. An Example of a Generalized Polynomial-like Mapping.

many puzzle pieces. If it lands in the puzzle piece conta,ining the critical
point, then this renormalization level will be called a central return level. As we
continue to renormalize, we categorize all levels as either central or non-central
return levels. Finally, because our polynomial is infinitely renormalizable,
there will eventually be an infinitely long cascade of central return levels. The
number of non-central return levels before arri\}ing at the infinite string of
central returns is used as a measure of the “combinatorial depth” between

renormalization lévels,

We can now define our class of quadratic polynomials.

DEFINITION 5.1.2. The infinitely renormalizable quadratic polynomial P :
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2+ 25 4 ¢ is in the class L if

i) the internal class of every renormalization of P contains a polynomial
P, which is located in one of a finite number of truncated secondary

limbs, and

ii) there is sufficient combinatorial depth between every renormalization

level.

The exact definition of “sufficient combinatorial depth” is dependent only
on the finite number of truncated secondary limbs. This also specifies the
“subtle quantitative difference” between Lyubich’s class and the class we will
be dealing with: for certain limbs, we shall require more combinatorial depth
then Lyubich required. We will give a more precise definition of “sufficient

depth” later in the chapter.
Let us now describe the structure of this chapter.

In section 2, we shall create the initial Markov construction for a polyno-
mial in a truncated secondary limb. This construction can be generalized to
all quadratic-like mappings whose internal class is in a truncated secondary
limb. This Markov construction will create puzzle pieces which cover Lebesgue
almost every point in the Julia set. Furthermore, the density of these puzzle
pieces (in a certain sense) will be bounded by a constant depending only on
the truncated secondary limb.

In section 3, we shall refine the Markov partition created in section 2 by
means of a first-returns mapping. This refinement will still cover almost all
of the Julia set. It is in this section that we shall further elaborate on the

importance of central returns.




In section 4, we shall show that the density of the puzzle pieces of one
refinement inside of the pieces of the previous refinement will be shrinking.
Thus if there are sufficiently many refinements, the measure of all the puzzle

pieces will be getting quite small.

Finally, in section 5, we shall deal with the case when our refinement
arrives at the infinite string of central returns which was discussed earlier.
Such an infinite cascade corresponds with a renormalization level in the sense
of Douady and Hubbard. At this point, we shall use a combination of the
initial Markov construction and the methods of section 4 to pass through to
the next renormalization level without incurring “too much” damage to our

density bounds.

The initial Markov construction along with the lemmas from sections 4
and 5 will be sufficient to complete the proof of the main Theorem (Theorem
5.1.3). The proof will rely on showing first that the critical point can not be
a Lebesgue density point of the Julia set, and then showing that in fact there
can not be any Lebesgue density points of the Julia set. Therefore the Julia

set must have measure zero.
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5.2 The Initial Markov Partition

Construction

The following is a construction of a Markov partition for the polynomial Fe us-
ing the Yoccoz puzzle pieces. We will use this Markov partition to construct a
generalized quadratic-like mapping associated to the polynomial P. The con-
struction is general enough that it can be used on any quadratic polynomial
with only repelling periodic points and which is not “immediately renormal-

izable” (we shall define what this means shortly). But under our assumptions

for the class £, we will get much more information from it.

Let us look first at the puzzle pieces of depth 1. Let’s relabel these puzzle

pieces as follows: let Yg,... .,Ypl__l denote the puzzle pieces of depth 1 which

have & € Y. Then let Z7,.. ., Z;_l be the puzzle pieces of depth 1 for which

—a € 3Y}', and o ¢ 8Y;). The only puzzle piece which has both +e in its

boundary is the critical puzzle piece Y. See Figure 5.3.

From the rotation of the external rays landing at «, we know that P?(0) €
Yo uU; 2L

DEFINITION 5.2.1. If the a-fixed point of P, has p external rays landing at

it, and P, is renormalizable or order p, then P, is said to be immediately

renormalizable.

As an exceptional case, we shall say that a polynomial which is immedi-

ately renormalizable has zero combinatorial depth before its first renormaliza-

tion. We shall say that in order for a polynomial to have sufficient combinato-

rial depth between renormalization levels to be in our class £, its combinatorial
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Figure 5.3. The depth 1 Yoccoz puzzle pieces.

depth must be at least positive. Thercfore we impose the condition that no

polynomials in £ can be immediately renormalizable.

We claim that in order for P, to not be immediately renomalizable, there
must exist a positive integer £ > 0 such that P?(0) € UZ}, assuming that
the a-fixed point ‘has p external rays landing at it. Let us prove the claim by
contradiction: assume no such ¢ > 0 exists. Let ¥ be a slight “thickening”
of YJl; that is, let ¥ be the union of 170"1“ and a small open neighborhood of
Y_Ol. If this neighborhood is chosen small enough, then PP(Y) contains the
closure of Y. Further, P¥P(0) € Y € ¥Vk € N. And PP(Y) will be a finite
degree branched covering map onto its image. Therefore P, is immediately
renormalizable, which is a contradiction, and thus P#(0) € U; Z} for some

teN.

Let z € C, and suppose P*(2) € U where U is any puazle piece. For

c

each i, 0 < 1 < k, there exists a unique component W; of Pc_i(U ) such that

P*=i(z) ¢ W;. Thus we have a string of k puzzle pieces W1,..., Wy satisfying
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Figure 5.4. The initial Markov construction.

PF=t(2} € W; for each 1, 0 <1 < k. The process of pulling back U to W; to
W, etc., is called pulling back U along the orbit of z. The puzzle piece Wy 5 z
defined from the above process is called the pull-back of U along the orbit of

zZ.

From the combinatorial dynamics of the Yoccoz puzzle pieces, it is clear
that ¥ UUZ! C PP(YY). Now suppose PP(0) € Y. Pulling back Y7, we get
Y;)Hp , and pulling back P?(Yy) along the orbit of 0 gets us leﬂ’ yeees ;;fg
which are the pre-images of le,...,Zg_l under PP. Because each Z—,l C
PP(YY), it follows that Z1™ C Y{ for cach 1 < k < 2p —2. If PP(0) €
[T for

YOHP , then we can repeat this procedure to get 0 € YI)HZP and 7,

1<t <4p—4. See Figure 5.4.

From the previous discussion, we know that the forward orbit of the critical
point must eventually enter Z} for some 7. This statement is equivalent to

saying PP(0) € Z;p * for some j and some t > 1. TFurthermore, Z;p 1 maps
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conformally under some iterate of P, onto a set which contains Y{!. Let k >
(t+1)p+1 be the first point in the forward orbit of the critical point after the
orbit enters Z} for which P¥(0) € Yyl. Then pull ¥§' back along the critical

orbit to obtain V°, The set V? is the first piece of our Markov partition.

For every point z € J(P,) whose forward orbit enters V', pull V° back
along the orbit of z to obtain V1(z). The sets | Vi of all puzzle picces obtained
in this manner shall be called the initial Markov partition for the polynomial

P..

The Density of the Markov Partition

Our goal in this subsection is to show that there is a constant dependent only
on the truncated secondary limb which bounds the density of those V;! which

are contained in V9.

First note that if there are p external rays landing at the a-fixed point of
P,, then there exists a repelling periodic point { € Y3 of period p. A property
of secondary limbs is that the external rays landing at ( vary continuously

with the parameter throughout the secondary limb.

Recall that the depth 1 Yoccoz puzzle pieces are the bounded components
of the complement of the external rays landing at +« and the %—equipotential.
Define the central domain Dy to be the set containing the critical point which
is bounded by external rays landing at £ and the %—equipotential. See Figure

5.5.
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Figure 5.5. The Central Domain Near a.

PROPOSITION 5.2.2. There exists a constant £y < 1 depending only on the

truncated secondary limb L{" such that

A{UVEU VN Do)
A(Dy)

<& . (70)

Proof: The truncated secondary limb L} is a compact set, and the equipo-
tentials along with the external rays landing at « and { move continuously
with the parameter throughout the limb. Therefore there is a definite space

in Dy which is not in any V. O

There are two pre-images of Dy in Yy for the p** iterate of the polynomial:
one near the a-fixed point and one near —a. Let £D* denote these two pre-
images. It follows that for any point z € J(P;) near £a (but not o itself),

its forward orbit will eventually pass through +D*. It also follows that for
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any such point z that there will be a conformal pull-back of Dy to an open

neighborhood of z.

TFor each point z € Yy N B(P.), push z forward until the first time its orbit

enters Dy. Then pull Dy back along the orbit of z to get D; for some index :.

PROPOSITION 5.2.3. There exists a constant m > 0 dependent only on L{"
such that for D; C Yﬁl,

“mod(Yg \ Do) >m . (71)

Proof: For any € > 0, there exists a § > 0 such that if U C Y is the set of all
points in ¥ which are at least § away from the boundary, then if D; ¢ U, then
d(D;,%0) < e. If D; C U, then the statement is proven. If D; ¢ U, then it
will map conformally onto Dy without ever leaving Yg. Because the external
rays landing at o and ¢ are varying continuously throughout the truncated
secontdary limb, it is clear that we can find an m which satisfies the statement

of the proposition. [

PROPOSITION 5.2.4. There exists a constant d < oo such that every D; maps

conformally onto Dy with distortion bounded by d.

Proof: Again, the rays landing at o and (, along with the equipotentials,
are varying continuously with ¢ throughout the truncated secondary limb.
Then we can safely “thicken” £D* independent of the parameter within the
truncated secondary limb. Because any D; returning to Dy without escaping
to some Z; must pass through 4 D*, each will map with distortion bounded by
a constant depending only on the truncated secondary limb. But if D; escapes

to some Z} before returning to Dy, then it will get Koebe space from zZ1.
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Therefore it too will map with distortion bounded by a constant depending

only on the truncated secondary limb. 1

Let us now prove the density result for the initial Markov partition that

we shall need in this paper.

LEMMA 5.2.5. Let {JV;! denote the initial Markov partition for a polynomial
P, € L{r. There exists a constant £ < 1 dependent only on the truncated

secondary limb L}" such that

AUV N VY

UL (72)

Proof: Look at the map corresponding to the iterate of P, which maps VO as
a degree two branched covering onto Yj'. The critical value of this mapping
must be located in some D;. By Proposition 5.2.3, mod(Yy \ D;) > m for an

m depending only on L¥". Therefore D; pulls back to a set D' satisfying
mod(VO\ D) > -'g- , (73)

and therefore there exists a constant 51 > 0 dependent only on L} such that

MVP\ D)

ANVO) Zm - (74)

For each le ¢ D', there exists a D; such that the image of le under
the degree two branched covering map V® — Y is in D;. But by Proposition
5.2.4, D; maps onto Dy with bounded distortion. Furthermore, by Proposition
52.2,U V;l UV?® has bounded density in Dy. Therefore there exists a constant

n2 > 0 dependent only on LI such that

MVOA{D' ULV

(75)

AV D) = 2
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Combining the above two equations completes the proof. O

The Markov Partition for Polynomial-like Mappings

The initial Markov construction, done previously for a polynomial, can be
generalized to qua,dra,tic—like mappings in a straightforward way. Let g : U —
V be a quadratic-like mapping in the sense of Douady and Hubbard. Then
by the Straightening theorem, there exists a polynomial Py which is hybrid

equivalent to g.

Suppose this polynomial P, is located in the truncated secondary limb LI
and is not immediately renormalizable. Then perform the construction of the
initial Markov partition for Py. By Lemma 5.2.5, this partition has a density

bounded by a constant dependent only on the truncated secondary limb Li’”.

Because g and P, are hybrid equivalent, there exist open neighborhoods
Uy, Uy of K(g), K(Px) respectively, and a quasiconformal map h:Up — Us

satisfying

(hog) lU1= (Poo h) |U1 . (76)

Therefore we can pull-back the puzzle piece Yy and the Markov partition
for Py by the quasiconformal map k to get a puzzle piece Yd and a Markov
partition for K (g). This will be called the énitial Markov construction for the
polynomial-like mapping g.

The bound on the density obtained for Py is useless unless we also have
a bound on the maximal dilatation for the quasiconformal map h. Suppose

¢,U, V., h, Py, Uz, and Uy are as in the previous paragraphs.
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THEOREM (MCMULLEN). There exists a constant L depending only on
mod(U \ V) such that the maximal dilatation of h on Uy is bounded from

above by L.

The bound obtained from McMullen’s theorem on the dilatation of the

quasiconformal conjugacy finishes the proof of the following lemma.

LEMMA 5.2.6. Let g : U — V be a quadratic-like mapping with g hybrid
equivalent to a quadratic polynomial Py located in the truncated secondary
limb L}7, and let Y{ C U be the image of the puzzle piece Yy for Py under
the quasiconformal conjugacy. Then there exists a constant K dependent only
on L¥" and mod(V \ U) such that if {J V! is the initial Markov partition for g,

then
MUVENVY)

T <K<l . )

5.3 The First-returns Map

The Markov Partition and the Recurrent Set

The Markov partition defined in the previous section covers all points in
J(P.)NY, whose forward orbit enters V°. For each off-critical depth 1 puzzle
piece Y;! or Z1, there is an iterate of P which will map it conformally onto a
set which covers Yy, Therefore this Markov covering can be extended to all
points in the Julia set whose orbit enters Vo,

Let us define the recurrent set R(P,) of the polynomial P, to be the set of

points whose orbit accurnulates at the critical point. That is,

R(P,) = {z € J(P):0¢ w(z)} . (78)
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The Markov covering we have defined covers all of R(F,). Fortunately, that is

all we need to cover.
PROPOSITION 5.3.1. For any polynomial P,,

AJ(P)\ R(F)) =0 . (79)

The proof of this proposition follows immediately from Proposition 2.5.6.
It follows from this proposition that our Markov covering covers Lebesgue
almost every point of the Julia set. Therefore if A\(R(P,)) = 0, then A(J(F;)) =
0.

The First-returns Mapping

For each point z € R(P,), its orbit must eventually enter V4. Therefore we
can pull back V' along the orbit of z to get a new puzzle piece V2(z). Each
V2(z) is a conformal pull back of Vi except for the unique level 2 puzzle
piece containing the critical point. We denote this critical puzzle piece by
Vi, which is a degree two pull back of V;!. Note that JV;? still covers all of
R(P,). Because each V;? is contained in some {J X; U U Z;, we have defined
a refinement of our Markov covering. Further, we call the mapping go which

maps each V2 onto V| the first-returns mapping of level 2.

We can repeat the construction we just performed for level 2 as often as
we like to get increasing levels. That is, for any z € R(FP,), we can pull-back
Vi* along the orbit of z to obtain the puzzle piece V**1(z). The mapping gx
which carries each V;-’HLI onto Vg is called the level n+1 first-returns mapping.
And again, the new covering covers all of R(P,), so that we have refined the

level n Markov covering.
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It should be noted that the first-returns mappings we have defined in the
previous paragraphs are the “global” first-returns mappings. That is, the
Markov covering covers all of R(P.) and the mapping is defined for all of
R(P.). However in the next section, we shall only be concerned with the
“central” first-returns mapping. That is, we shall restrict the domain of the
first-returns mapping gn only to those puzzle pieces V;* contained in 175
The central first-returns mapping carries most of the density information we
shall need, and can be “spread” around to all of R(P,). This “spreading” shall
be done explicitly in section 5. Also note that we shall use the same notation
for both the central and global first-returns map. We shall attempt to make

it clear which is being referred to from the context in which it is used.

Cascades of Central Returns and the Principaf Nest

For each first-returns level n, there exists a minimum strictly positive integer
k such that g¥_(0) € V*~1. If | = 1, then we call the level n a central return
level. Tor such a level, gnlyon = gn-lyp. I several levels in succession are all
central return levels, then we shall call these levels a cascade of central returns.
Further, if there exists a level m such that every level n > mis a central return
level, then we shall say that the level m is the beginning of an inﬁnifc cascade

of central returns.

LEMMA 5.3.2. If gp, : UV — V;)m”l is the beginning of an infinite cascade
of central returns, then gm|ym : Vg™ — V! is a quadratic-like mapping in
the sense of Douady and Hubbard, and corresponds to a renormalization of
our original polynomial F.
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Proof: The map gm|ym maps Vg™ onto Vy*~1 as a two-to-one holomorphic
covering map, and therefore is quadratic-like. The infinite cascade condition
implies that g¥,(0) € Vg™ for every k € N. Thus the critical point never escapes
v, O

From the first-returns mapping, we have a nested sequence of puzzle pieces
containing the critical point. These critical puzzle pieces are called the prin-
cipal nest:

VioVioWEo--- . (80)

The principal modulus py, is the modulus of the associated annulus:
po = mod(VPHI\VE) (81)

The principal nest can be divided into cascades of central returns. A non-
central return level which is not immediately following a central return level
is considered to be a cascade of depth 1. We consider the level immediately
following a central return level to be part of the cascade. A non-renormalizable
polynomial will have infinitely man cascades in its principal nest, while a
renormalizable polynomial will have finitely many cascades followed by an

infinite cascade of central returns.

It will be important in the following section to be able to count the non-
cascade levels. Iflevel 1isa non—centfé,l return level, then n(1) = 1. Otherwise,
if k is the first non-central return level, the n(1) = k4 1. Recall that we define
the first mon-central return level following a sequence of successive central
return levels to be part of the cascade. In general, if n(i) = m, and level
m + 1 is a non-central return level, then n{i + 1) = m + 1; if level m + 1 is
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a central return level, and m + k is the next non-central return level, then
n(i + 1) = m + k + 1. The strictly increasing sequence of integers {n(i)} is
said to count the non-cascade levels:

Let us now distinguish the “short” and “long” principal nests. As men-
tioned earlier, fo our first-returns mapping we can associate a nested sequence

of critical puzzle pieces,

VIS VioVEio - (82)

called the principal nest. Because our polynomial is renormalizable, this se-
quence will eventually end in an infinite cascade of central returns. Suppose
level my is the first level of the infinite cascade of central returns. We shall call

the finite nest of puzzle pieces terminating at V' the short principal nest.

Because all renormalizations of P, are located in a finite number of trun-
cated secondary limbs, we can construct a new Markov partition for
K(gm, IVDrnl) as described in the previous section. This new partition enables

us to define a new short principle nest
VRSV SV s o V™ (83)

where mg is the first level of a new infinite cascade of central returns. Repeat-

ing this procedure indefinitely, we have constructed the long principal nest,

VUD%ID.__D%‘HL]_sz,e:)vg,l.”%'z,mgDV:},ODH_ . (84)
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5.4 First-Returns and Density

Let G* = V" 1\UV;®. The set G™ is called the “gap space” of level n. Let &, =

J—)—/\?Vciil)- In this section, we will show that &, increases with first returns level,
0
provided the level is “nice”. Let p, = A_?I(/?’;)r) and p(n) = mod(VE 1\ V).

For V* with i # 0, let dist(V) be the Koebe distortion of the map
gulvp 1V — =1, and let dist(n) = sup; dist(V}").

This section is going to be devoted to proving the following lemma.

LEMMA 5.4.1. Let n(k) count the non-central return levels. Then there exists
a constant A depending only on the first modulus pq = mod(Vy \ﬁ) such

that
bn(k+1) > 4 dn(k)
(1 = pa(r+1)) — Sn(r+1) Prik)

(85)

Preliminaries
Let us state two results of M. Lyubich from [Lyu2] which will be important in

the proof of Lemma 5.4.1.

THEOREM 5.4.2. (LYUBIGH) Let n(k) count the non-central levels m the

principal nest {V"}. Then
mod(VHEH\ vy > B (86)

where the constant B depends only on the first modulus 11 = mod(Vy \‘[_/(.,T)

Let us call a cascade of central returns long if it is of length greater than

N, for a fixed positive integer N,. Also, for notational purposes, assume

gu lvp= ¢ 0 hn

where ¢ is a purely quadratic map, and hy is a conformal map.

73




THEOREM 5.4.3. (LYUBICH) Given a generalized quadratic-like map g1, we
have the following bounds for the geometric parameters within its principal

nest.

1) The asymmetric moduli oy grow monotonically and hence stay away
from 0 on all levels (until the first Douady-Hubbard renormalization
level) : o, =2 & > 0.

2) The principal moduli p, stay away from 0 (that is, pt, = > 0)
everywhere except for the case when n — 1 is in the tail of a long

cascade (the bound p depends the choice of N,).

3) The non-critical puzzle pieces V;* are well inside Vi1 (that is, mod(VF 1\
V™) > ji > 0) except for the case when V[ is pre-critical and n — 2 is

the last level of a long cascade.

4) The distortion of hy, is uniformly bounded on all levels by a constant

K.

All bounds depend only on the first principal modulus py and (as j is con-

cerned) on the choice of N,.

Distortion Bounds

Let us start with a fixed first-returns level n and g, : UV" — Vel For
any fixed off-critical puzzle piece V;*, define T to be the annulus of maximal
modulus about V® in V@' with V@ in the unbounded component of the
complement of T, and similarly define ST to be the annulus of maximal
modulus about V7 in V2! with Vi in the unbounded component of the

complement of ST,
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PROPOSITION 5.4.4. Let ¢n : UVP® — VI be a first-returns map which

does not correspond to a level which is in or immediately following a cascade

of central returns. Hmod(V{ P\ V&) < B, there exists a constant K = K(B)

such that for every off-critical V}*, dist(V) < K.
Proof: Suppose there exists M dependent only on B such that
mod(T") > M

for all off-critical V;*. Then by the Koebe distortion theorem we are done. " ‘
So suppose we can not find such an M. That is, for every M > 0, there
exists V{® with mod(T*) < M. Let My < £, where & is constant from Theorem
5.4.3. |
Because mod(VyE™ \ V) < B, for every € > 0, there exists & constant &
dependent only on ¢ and B such that if dgyp(Vy', V) < 6, then mod(SP) < €. :

Let € < %

By Theorem 5.4.3, there exists a constant i such that mod(VII\V") > ik
for every V*. Because mod(Vy* 1\ V{*) > R, it follows that there exists M; >0
such that if mod(T") < My, then dp,(Vg', Vi) < 6. Let My = min{Mi, Ma}.
Then for V* with mod(T?) < My,

on < mod(ST) + %mod(T{") <<+

w2 | Qi
o Q

This contradiction of Theorem 5.4.3 completes the proof of the proposition.

O

Let By(0,r) denote the hyperbolic ball of radius r about the origin in

n—1
vert,
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PROPOSITION 5.4.5. Suppose n is not a level in or immediately following a
long cascade of central returns. Then there exist constants v > 0, K > 0

dependent only on g, &, such that if V* ¢ By(0,r), then dist(V]") < K.

Proof: For every V*, mod(Vy*™ 1\ V{*) > fi. For any s > 0, we can find r > 0
such that if Vi"A;?_‘ B™(0,r), then dpy(0, V") > s. The fact that for every s
we can find such an r follows from the solution of Grétzch’s extremal problem
(See [Ah1], page 35).

Suppose Vi ¢ By(0,8/2). Then again by the solution of Grotzch’s ex-
tremal problem, there exists a constant B > 0 such that mod(VI I\ V) £ B.
Applying Proposition 5.4.4, we have a constant K = K(B) with dist(V]") < K

for every off-critical V™.

If V# C Bn(0,8/2), then dpyp(V*, Vi) = s/2. Therefore there exists a
constant C' depending only on s and f such that mod(T}) > C. Applying the

Koebe distortion theorem finishes the proof. [

Density Bounds

Let T be the semi-group generated by the set of off-critical puzzle pieces
of level n. This is the same semi-group as we used in chapter 4. To cach
word v € T, of finite length is associated an open set in VE~1 as follows: let
v = W1Vy...V;. Then z is in the open set associated with v if for every 1 < k,
gi(z) € V;. As opposed to how we denoted this set in chapter 4, we shall let

~ denote both the word and the open set.

For each word -, the open set v maps conformally onto Von_l. Therefore

there exists a subset 7, C « which corresponds to the pre-image of G* (the
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subscript “e” stands for “escaping”). There is also a pre-image of Vg in 7,

(1Rt
T

which we shall denote by ., (the represents “returning” ).

Now define the two sets
B =G"U U Yes (87)
vEln

and

Rn:-‘/{]nu U '}’nr.
4Eln

We claim that £™ and R™ partition %”“1 up to a set of measure 0. To see this,
let z be any point in UVz-'"_1 which is not in either £* or E". It follows that
z must correspond to an infinite-length word: that is, z remains in Uz V"
throughout its entire forward orbit. Therefore 0 ¢ w(z) and so z & R(g1).
From Lemma 2.5.7, we know that the set of all such z € K(g) has measure
zero. Therefore the claim is proved, and E™ and R" partition Vit up to a

set of measure zero.

PROPOSITION 5.4.6. Let v € I'™™. If v maps onto Vi~ with distortion

bounded by a constant k, then

Me) - 2 MGY)
0 = F 3w (88)

S

Proof: The result follows from the Koebe distortion theorem. O

For U C V, let dens(U | V) be defined as

AUNV)

dens(U | V) = V)

(89)
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PROPOSITION 5.4.7. Suppose the for every V" off-critical that dist(V]') < k

for some k. Let gn be as above, and let VP be any off-critical puzzle. Then

dens(E” | V?) ., NGp)

dens(R™ | V*) A(VE)

]

(90)

Proof: For any 7',7* € T, 72 N2 = 0, and 4} N2 = 0. Let T, denote the

subset of I', for which the open set v C V;®. We now have

dens(E™ | V™) _ 2over A(Ye)
dens(B™ | V*)  Yrer ML)

— Al7e) " M)

B *rgl;’ ()\(7’") 2oy'er A(’Y:«)) (o1)
AG™)

ST

Shrinkage when not in a cascade of central returns

Suppose ¢,(0) € V;*. Define the subset G of G™*1 as the set
Gyl = {Z € G" 1 gu(2) € v for some y €T™ , 4 # {Vz“}} - (92)

Choose any B > & > 0. Let us break the argument into three cases.
Case 1: mod(Vy~ 1\ V) < B.
Then by Proposition 5.4.4, every off-critical V* maps onto V*! with distor-
tion bounded by a constant depending only on the initial modulus. Therefore

applying Proposition 5.4.7,

dens( E® | V)

(93)

dens(R" | V?) MV




with K dependent only on the initial principle modulus. Pulling this back to

W', we have
MEM)  NEp
AV) (V)
AGCHEh {)\ Uanr 3) Vﬂ“) )\(Vonﬂ)}

Uz;&o A(VEY)
ME™) M) = MG™H) = AVt
ZENE { ) }

PRI A i P 0
R {1 V) MWﬂ}

Switching to é, and p, notation, the previous inequality is equivalent to

Opp1 > K EVO:i {1 — b1 — Pn+1} (94)

which is the same inequality as in the statement of the theorem.
Now suppose mod(V{"™' \ V) > B. Let r,k be as in Proposition 5.4.5.

There are two possibilities: either

AG™ N By(0,7))
MG™)

1
> 5 3 (95)

MG™ N B,(0,r))
D

Case 2: mod(Vy '\ V) > B, and

(96)

MG™ 0 Ba(0, 7))
D

> (97)

1
2
Then for each v € I', there is a pre-image of B,(0, ) which maps onto B, (0,r)
with distortion bounded by a constant dependent only on the initial principle
modulus. Define the set v, as the set which maps onto G™ N B,(0,r). The

hyperbolic ball B,(0,7) has definite space in V*~!: that is

mod(V 1\ Bu(0,1)) > D
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for a D dependent only on r. Therefore applying the Koebe distortion theorem

to the mapping which sends « onto V&L, we have

M) - MG 0 Ba(0,7)) _ K A(G™)
YCS I (7D X

We define the subset G}}"{l of G**1 to be the set
Gn+1 —izc Gn+l . ( V.n d re
= tgn(2) €V, and z € 4y for somey €

Applying the same argument to G}}Tl as in the previous case, we have

MG | MGH)
ALV ALV
( 0) P ()\(OG)n) . {1 ~ ).(Gn+1) B /\(%n-l—l)}
MVS) AV AW

Case 3: mod(VP 1\ V§*) > B, and

MG™ N B (0,7))
AG™)

< (98)

o

Let T'® denote the semi-group generated by all off-critical puzzle pieces V* ¢
Byn(0,7). By Proposition 5.4.4, each v € ' maps onto V'~ with distortion
bounded by a constant K depending on ji, &, and LI, For each +, define «,»
to be the pre-image of {G™ \ B{0,7)}. Then it follows that

}‘('Ye”) > I{A(Gn \ B(O:T))

)\('Yr) ’\(%n)
— 2 AV
Now let E® be the set
E* = {G™*\ B(0,r)}U J 7er - (100)
veln
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Applying Proposition 5.4.7, we have

Applying the argument given for the previous case again results in the

inequality

AGHY) NG [ MG A
AR {1 VD) A(%ﬂ)}

for a K independent of the level.

This completes the proof of Lemma 5.4.1 when we are not in a cascade of

central returns.

Cascades of Central Returns

Suppose now that we are in the tail of a long cascade of central returns. That
is, we assume the cascade is longer than N,. Because the cascade is longer
than N,, the principle moduli gy = mod(VOk_l \ﬁ) will become very small,
and the inequalities of the previous subsection will no longer have definite
bounds. Our method for dealing with these problems is to go “around” the
cascade.

Let m be the first level of a cascade of central returns, and let m+¢—1 be
the first non-central return level following the cascade. We can assume that
g > N, is arbitrarily large (or take Ny to be larger).

Let V™ be the off-critical puzzle piece containing gm44(0). The critical

point then passes all the way up past m before returning to V0m+1. Therefore

81




there exists W' D V" such that W’ maps conformally onto VJ"!. Further,
W’ has a definite Koebe space about it, and thus maps with bounded distortion
onto V™ 1. This puzzle piece W' is in fact the pull-back of V™1 along the

orbit of the critical point.

From the construction of W', it is clear that gm44(0) € W'. Therefore
pull-back W’ by gmy1 to get the set W C V"', See Figure 5.6. Because
gm+q|vnm+g = ¢oh, with ¢ quadratic and % conformal with bounded distortion,
it follows that W maps with bounded distortion onto V{®~1. That is, the map
which sends the O-symmetric set W onto V! is a purely quadratic map
composed with a conformal map with bounded distortion. It follows from the
Koebe distortion theorem that the Lebesgue measures of sets will change by

only a bounded amount under this map.

From the argument in the preceding paragraph, we get the inequality

m+g+1
dens(G’m+ +1IVV) ZACSL” (101)
dens(Vy "I W) Prm

with a definite A. The size of A is dependent on dens(V," "1 |W), which in

turn is dependent on g, and q.

We now want to pass to the next level, m + ¢ + 2. To do this, we need
to define a new open set associated to each word 4 € I'pyqq41. The new set,
denoted by 4%, is just the pre-image of W under the conformal map which
sends v onto V0m+q. We also need to define the sets 4}, which is the pre-image
of G+ W, and 41 = 1,.

Because W has a definite Koebe space about if in V0m+1, it follows that y"

maps with bounded distortion onto W. Therefore the analogous statements

of Proposition 5.4.6 and Proposition 5.4.7 hold, with ~ replaced by v"¥. We
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Figure 5.6. Long Cascades of Central Returns.
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go further to define Em"'g“r1 = {Gm+9+1|w} U’)’.EV, and R$+Q+1 — Rkl

and (et = (Emtth). We now have

- g;f;+q+l

bmigrz o _ dens(GRHTH)
L= bmygrz 1 —dens(Gyt?)
) dens(Eg;'*'QH l%m'*"I)

dens(R m+q+1]Vm+q) (102)
dens(GM W)
= Gy * m-g+1
dens(Vy" T W)
> ap * A x §_
Pm

with a definite @1 and a9, and A as above. It now follows that we have a
definite bound on 64442 after an arbitrarily long cascade of central returns.
Further, level m + ¢ + 2 is not immediately following a cascade of central
returns. Therefore we return to the construction in the non-central returns

case.

This concludes the proof of Lemma 5.4.1.

5.5 Renormalization and Infinite Cascades of Central Returns

Because P, is infinitely renormalizable, there exists some level n after which

there will be an infinite length cascade of central returns. In other words,

{gFa O hen N {0\ V" =0 (103)

By Lemma 5.3.2, an infinite cascade of central returns corresponds with a
renormalizable map in the sense of Douady and Hubbard: that is, the restric-
tion of g1, to the central puzzle piece Vol’n is a quadratic-like mapping (not

generalized).
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At this point, we need to define a first-returns map using a different method
than the one we've been using up now. This is because if we continue renormal-
izing using the same method, we will not have definite bounds on the modulus
of the critical annulus. Our estimates for Lemma 5.4.1 strongly relied on these

definite bounds.
However, using the fact that glgn|%l'n : Vol’" — Vgl""”1 is a quadratic-
like mapping, we can define a new first returns mapping which has all the

properties we need.

LEMMA 5.5.1. Let g14: UVil’n — 01'”_1 be a central first returns mapping,
with 1,n being the first level of an infinite cascade of central returns. Further

suppose

a) the internal class ¢{g1n|y1n) of the quadratic-like mapping ginlytn
0 0
Vit - V"™ ranges over a truncated secondary imb Ll

b) the principle modulus 1.5 = mod(‘[/ol’"ml \ an’“) > L >0, and

1,n
o) 2UVT) < M < 1 for a definite M.

AUV
Then there exists constants L', M’ depending only on L, M, and L} such
that if V20 is the first puzzle piece of the initial Markov comstruction for

gl,n|V01,n VA VUI’"'_I, and g21 : UViz’1 — V20 js its associated central

first returns mapping, then

MUV |
mod(V>0\ Vf’l) > L' >0 for every Vf’l . (105)
Proof: Tor the quadratic-like mapping gialy1n : V;)l‘n — VGI’"_I, we can
G

construct the initial Markov partition as in section 5.2. Let U I/Vf’l denote the
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collection of puzzle pieces obtained from the initial Markov construction. By

Lemma 5.2.6, there exists a constant ¢ depending only on L and L such that

MUWPn v
A(V20)

<éE<l (106)

for all I/Vz-z’1 in the initial Markov partition associated to this quadratic-like
mapping. However, the PVE’I obtained from the initial Markov construction
covers all of R(F;) N K(gl,niv(},n), not all of R(P,). There will be points in
R{P,) N V%P whose orbit escapes to some off-critical Vi-l’” before returning to
%)

Let UXi2 'l denote the set of all puzzle pieces which escape to some off-
critical V;l’n before returning to V29, It follows that all puzzle pieces obtained
from pulling back V20 along orbits in R(F,) are either in the initial Markov
partition L_JI/VJ?’1 or are in UX?’l. Let G = V30\ UWJ?'I. We need to show
that there exists a constant £; depending only on 7", L, and M such that

M{UXP ) nvE)
MV2O\{UW ]

<&t <1l . (107)

The argument to show that the UXz-2 'l are not too dense is very similar to
the argument in the non-central cascade part of the proof from the previous

section. We shall split the argument into the same three cases as in that proof.

Let us define a subset of (G as follows:
Gy = {z eG:3k gf,n(z) € v, for some ¥ € I’l'”} . (108)

Choose any B > > 0.
Case 1: mod(Vy"™ 1\ V™) < B.
Then by Proposition 5.4.4, every off-critical Vil‘” maps onto Vol’n_l with distor-

tion bounded by a constant depending only on the initial modulus. Therefore
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applying Proposition 5.4.7,

n ‘1)'"‘ 1,?1
dens(E™ | V; )>K/\(G' )

109
dens(B™ | V") ™ M(V™) He

with K dependent only on the initial principle modulus. Pulling this back to
Vgl’n, we have

MG) _ MG
AV /\(Vgl’”)

{)\ Uttt o V") - )\(Vol’nﬂ)}

Ua¢0 Vl n an’n)
PG {(W” (G Mﬁ“ﬂ}
T A% MVo™)

_ NG [ MG AT
Y {IAmW) MW%}

Therefore there is a lower bound on A(G)/MV!) depending only on L, M.

Now suppose mod(Vy—'\ Vi™) > B. Let r,k be as in Proposition 5.4.5.

There are two possibilities: either

MGH® N By u(0,7)) 1

NCOEE (110)

or .
MG N B1y(0,r) _ 1

MG =3 ()

Case 2: mod(Vy 1\ Vg™") > B, and

MG (1 By ,,(0,7))
MGIm)

(112)

>1
2

Then for each v € '™, there is a pre-image of Bi(0,7) which maps onto

B1 »(0,7) with distortion bounded by a constant dependent only on the initial
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principle modulus. Define the set . as the set which maps onto G

By »(0,7). The hyperbolic ball By (0,r) has definite space in Vil that is
mod(V2~1\ Bya(0,r)) 2 D

for a D) dependent only on r. Therefore applying the Koebe distortion theorem

to the mapping which sends v onto Vi, we have

l,n)
V™)

Mye) o K)\(Gl’”ﬂBLn(O,r)) S K X\G
Myr) ™ (V™) T2

We define the subset G'gr of G to be the set
G = {z €eG: gfn(z) € Yo for some vy € F"}

Applying the same argument to G g+ as in the previous case, we have
A(G) S MGgr)
AVe'™) MVe™)

Gl {1 _Me /\(VJ’:“;)}
A(V™) AV M%)

Case 3: mod(VP ™\ V,*") > B, and

MGV 1 Bya(0,7))
A(CIm)

< (113)

1
2
Let T'* denote the semi-group generated by all off-critical puzzle pieces V,-l'n s
B +(0,7). By Proposition 5.4.4, each v € ' maps onto V! with distortion
bounded by a constant K depending on ji, &, and L{". For each v, define +,»
to be the pre-image of {GY®\ B(0,7)}. Then it follows that

M) o MG\ B0, )

AMyr) — AV
K MGY™)

(114)

2

2 MV
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Now let EV® be the set

EY = {G"\ BO,r)}uU | v - (115)
‘{Efl’"

Applying Proposition 5.4.7, we have

MG ME™)
AEB®) = NEm)
s MG\ BO,r))
MVe™)
S E)\(Gi,n)
T2

Applying the argument given for the previous case again results in the

inequality

A(G) NG [ NG AT
i~ v g V) f\(vol’")}

for a K independent of the level. OI

With Lemma 5.5.1, we can give a precise definition of “sufficient com-
binatorial depth.” A polynomial P, will be said to have sufficient combi-
natorial depth between every renormalization level provided that there are

enough non-central return levels for the generalized polynomial-like mapping

gn,1: UV,-H"1 — V™0 50 that

MUV n vty
/\(Vn+1,0)

<t<l (116)

for a constant £ independent of the renormalization level. By Theorem 5.4.2,
Lemma 5.4.1, and Lemma. 5.5.1, the definition of sufficient combinatorial depth

is dependent only on the truncated secondary limbs.
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Let us now prove Theorem 5.1.3.

Proof: (of Theorem 5.1.3)
By a combination of Lemma 5.4.1 and Lemma 5.5.1, there exists a constant

£ < 1 such that
AUY™mY 0 v 117
A(%m,n—l) S é- ( )

for infinitely many values m,n € N. By Theorem 5.4.2, the long principle nest

V™™ shrinks to the critical point 0. Therefore the critical point can not be a

Lebesgue density point of the recurrent set R(F,).

Let z € R{P,) be chosen arbitrarily. Let z;, be the first point in the forward
orbit of z contained in Vom'n_l‘ Then zj, € v, for some v € T™" 1. Again by

Lemma 5.4.1 and Lemma 5.5.1, there exists a constant £ < 1 such that

Aquv™ing)
A7)

for infinitely many values of m,n. Here -y represents the puzzle piece, not

<¢ (118)

the word. By Theorem 5.4.2 and Lemma 5.5.1, mod(%mm"l \y) =28 >
0 for a constant & independent of m,n —1 € N (except when m,n — 1 is
in or immediately following a long cascade of central returns). Therefore «
pulls back along the orbit of z conformally and with distortion bounded by a
constant which is independent of the level m,n. By Theorem 5.4.2, the nested
sequence of puzzle pieces Uy corresponding to the pull-backs shrinks to {z}.
Tt now follows that z can not be a Lebesgue density point of the recurrent set
R(F,).

Because z was chosen arbitrarily, it follows that there are no Lebesgue
density points in R(P,), and therefore A(R(F;)) = 0. Combining this with

Proposition 5.3.1 completes the proof of Theorem 5.1.3. O
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