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Chapter 1

Overview

1.1 Introduction

A rational map f(z) is a holomorphic map of the Riemann sphere C to itself,
and so deﬁlles a holomorphic dynamical system on the Riemann sphere. Given a

point z € C, the forward orbit orbit of z under f is the set {z, f(2), f°2(2), f°3(2), ..

The Riemann sphere decomposes into two dynamically distinguished sets. The
Fatou set F(f) of the map f is the set of points z for which the orbit of any
nearby point w is close to that of z. The Julia set J(f) of the map f is the
complement of the Fatou set. Thus for points on the Julia set, there is sensitive
dependence on initial conditions. Given a point z € J(f), there are points w
arbitrarily close to z such that the orbits of z and w eventually look completely
different.

The theory of iterated rational maps began with the investigations of Schréder
into the local dynamical behavior of points near a fixed point of a holomorphic
function. Fatou and Julia began the global theory by applying Montel’s theory
of normal families of holomorphic functions. For the most part, the subject was
dormant until relatively recently. One reason for its resurgence is that comput-
ers now allow easy visualization of the complexity of dynamical behavior. For
example, Figures 5.2, 5.4, 5.6, 5.7, 5.10, and 5.14 show examples of Julia sets.
In each case, the Julia set is the boundary between the black and white regions.

Another reason is the richness of the theory. Many problems which are in-
tractable in the general setting of smooth dynamics become much simpler when
restricted to holomorphic maps in one complex dimension, since a wide variety
of analytic tools apply. In addition to Montel’s theory of normal families, one
has at one’s disposal tools from geometric function theory. Hyperbolic geome-
try also gives a convenient method of proving many theorems. Sullivan applied
the theory of quasiconformal mappings to the study of conformal dynamics and
completed the classification of the dynamics on the Fatou set begun by Fatou
and Julia. As a result, the dynamics on the Fatou set of an arbitrary rational
map is now completely understood.

3.
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Holomorphic families, or parameter spaces, of rational maps also have a
rich structure coming from the the variation of dynamics within the family. A
rational map f of degree d may be written in the form

Fz) = agz® + ag_12% 1+ ...+ ag
bgz® 4+ bg_1291 + ...+ by

where the numerator and denominator are relative prime polynomials, and one
of agq,bq is nonzero. This representation is unique up to multiplication of nu-
merator and denominator by nonzero complex scalars. Sending f to the ho-
mogeneous coordinate [aq : bg : ... : ag : bg] identifies the set of rational maps
of degree d with a Zariski open connected subspace Raty in the the complex
projective space Cq2¢+! (see [Mil2], Appendix B, who follows [Seg]. ) We call
the complex manifold Raty the parameter space of rational maps of degree d,
equipped with the algebraic topology. The group of Mobius transformations
acts on Raty by conjugation. The quotient M| we call the moduli space of
rational maps of degree dj; it is a Hausdorff complex orbifold. Thus a point in
the moduli space of degree d maps determines a rational map, up to conjugacy.
Where the discussion is independent of the representative of a conjugacy class,
we will use the notation f for a point in moduli space. If we restrict our con-
sideration to polynomial mappings and affine conjugacy, then we may similarly
define the parameter and moduli spaces of polynomials of a given degree. For
example, every quadratic polynomial is affine conjugate to a unique map of the
form f.(2) =22 +¢,ce C.

Just as in dynamical space, parameter space decomposes into stable and
unstable regions. Some maps f are structurally stable. This means that the
dynamics of every map ¢ in a sufficiently small neighborhood of f is topologically
conjugate on J(g) to the map f on J(f). For other maps f, an arbitrarily small
perturbation will produce a map g whose dynamics on its Julia set is very
different.

Important examples of the first kind of parameter values are the hyperbolic
rational maps. As dynamical systems, they are expanding on their Julia sets,
and so are much easier to analyze. For example, the Julia set of a hyperbolic
rational map has area zero and is locally connected if connected. Hyperbolic
maps form an open subset of the set of all rational maps. The set of hyper-
bolic maps is conjectured to be dense in the space Raty;. The property of a
map being hyperbolic is an invariant of the conjugacy class of f. The image
of a connected component of the space of hyperbolic rational maps under the
projection to moduli space is called a hyperbolic component. Two points in the
same hyperbolic component define, up to conjugacy, maps which are topologi-
cally conjugate on their Julia sets. Thus the hyperbolic component containing
a conjugacy class of map f is a kind of deformation space of f. By varying the
map f within its hyperbolic component, we retain qualitative features of the
dynamics on the Julia set.

What happens as we deform a hyperbolic map through hyperbolic maps? To
make sense of the question, we must work in moduli space rather than parameter
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space. For we can always deform a map f by conjugating with a sequence A,,

of automorphisms of the sphere tending to infinity in Aut(C).

To understand what happens as we tend to the boundary of a hyperbolic
component, we first make some necessary definitions. There are several kinds
of points with special dynamical behavior under the iteration of a rational map.
A point z is called a periodic point of f if f°"(z) = z for some n > 0. A cycle
is the forward orbit of a periodic point. A periodic point is called attracting,
indifferent, or repelling according to whether the product of the derivatives of
f along the cycle is less than, equal to, or greater than one in modulus. An
indifferent cycle whose multiplier is a root of unity is called a parabolic cycle. A
rational map of degree d also has 2d—2 critical points, counting with multiplicity.
The postcritical set P(f) is defined as

rH= | ro.

n>0,f'(c)=0

If |P(f)| < oo we say that the map f is postcritically finite. The postcritical set
plays a fundamental role in the theory of iterated rational maps. For example,
if f is postcritically finite, then the Julia set of f is connected. A rational map
is hyperbolic if and only if |P(f) N J(f)| = @. Multipliers of periodic cycles and
the property of being hyperbolic or postcritically finite are all invariants of the
conformal conjugacy class.

Recall that a hyperbolic component containing a conjugacy clas of map f is
thought of as a kind of deformation space of f. Consider a sequence {f,}32,
of conjugacy classes of maps in M. There are essentially three possibilities for
the limiting behavior of the sequence {f,}52,. One possibility is that during
the deformation, the modulus of the multiplier of an attracting cycle of period
p approaches a root of unity. The limit fo, then has a parabolic cycle. Suppose
that the period of this parabolic cycle is equal to p. Then there exist arbitrarily
small perturbations of fo, to hyperbolic maps g with an attracting periodic
cycle of period k - p for some k£ > 1. The parabolic cycle of fo, bifurcates into
an attracting cycle of higher period and a repelling cycle of the same period for
the map g. The closure of the hyperbolic component containing g intersects the
hyperbolic component containing f. We say that the hyperbolic components
containing f and g touch. Other kinds of deformations reverse this process. This
first possibility for the limit is distinguished by the fact that for the limiting
map foo, the postcritical set P(f) and the Julia set J(f) intersect only in a
parabolic cycle. The second possibility is that in the limit, the postcritical set
and the Julia set intersect in a complicated manner. A third possibility is that
the limit does not exist as a rational map of degree d.

We will now describe a heuristic way of thinking about what happens in the
limit. This heuristic has been confirmed experimentally in many settings, and
has been well-established for degree two maps (see Section 1.4). The goal of
this work is to make precise the intuitive ideas sketched below.

The limiting map f in the first possibility is thought of as produced from
f by “pinching along a lamination”. Suppose that each Fatou component of
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f is an open disc, i.e. that J(f) is connected. Into each component of the
Fatou set of f, consider gluing a collection L of chords such that the interiors
of no two chords intersect, and such that the collection is invariant under the
dynamics of f. The collection L is called a lamination. Intuitively, as we tend
to the boundary within the hyperbolic component H(f), the chords forming
some lamination L gradually collapse to points. The Julia set of f, is obtained
from the Julia set of f by identifying any two points which are endpoints of the
same chord.

Another way to think about the limiting map f is as a combination of
f with another conformal dynamical system. Consider a finite family P of
polynomials acting on disjoint copies of the complex plane. This means that
each copy is mapped via a polynomial. By gluing in the dynamics of P into an
invariant set of Fatou components of f, we obtain a new topological map f x P
of the sphere to itself called the tuning of f by P. Intuitively, the gradually
collapsing chords L uniquely determine a finite family P such that the tuning
f %P leaves the set L of chords invariant. Conjecturally, collapsing every chord
to a point gives a semiconjugacy from f x P to foo.

The ideas in the previous two paragraphs can also be used to describe the
second possibility. The third possibility can also be explained using the above
ideas. What can go wrong is that the lamination L might separate the sphere.
For example, if some Fatou component 2 does not have Jordan curve boundary,
then one can insert a chord [ into €2 which separates the sphere. If this happens,
the domain of the map f,, is no longer a sphere. If we restrict the map f, to
some piece of the quotient which is a sphere, then we lose a definite portion of
the dynamics in the limit, and so the degree of f,, must decrease. A natural
question, then, is to determine when a Fatou component does not have Jordan
curve boundary, and when the closures of two Fatou components intersect in
such a manner that one can glue in a lamination whose chords separate the
sphere. In the former case, we say that the boundary of a Fatou component is
pinched. If the closures of two Fatou components intersect, we say that they
touch.

Another intuitive explanation of why the limit may not exist comes from
Thurston’s characterization of postcritically finite rational maps as branched
coverings of the sphere. The tuning f * P may have a topological obstruction
to being combinatorialy equivalent to a rational map, as defined by Thurston.
A topological map is combinatorially equivalent to a rational map if and only
if it does not have a topological obstruction called a Thurston obstruction. A
Thurston obstruction is a finite set of curves which have a special invariance
property. Basically, if a topological map has a Thurston obstruction, then it
cannot be deformed to a conformal map while at the same time retaining all of
the topology.

Let P be the finite family of polynomials determined by some deformation
of f which collapses a lamination L. Suppose f*P has a Thurston obstruction.
Sometimes, but not always, a Thurston obstruction for f x P is formed by a
finite set of periodic chords in L which separates the sphere. In this case, the
obstruction is a very special one called a Levy cycle. Since the chords separate
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the sphere, we do not expect the limiting map to exist. In this case, we say
that there is an obvious obstruction to the tuning f * P being combinatorially
equivalent to a rational map. Thus, there is an obvious obstruction for some
tuning f * P only if some periodic Fatou component of f does not have Jordan
curve boundary, or if there is a collection of periodic Fatou components which
touch. However, it is not always the case that an obstruction to a tuning f P
being combinatorially equivalent to a rational map is formed in this way. That
is, it is possible for the tuning f*7P to have a Thurston obstruction even though
the quotient space obtained by collapsing every chord to a point is a sphere. For
this reason, we say that there is a non-obvious obstruction to the tuning f * P.

Since the goal of this work is to make these intuitive ideas precise, we inves-
tigate the relationship between

e combining a hyperbolic rational map f with a finite family of polynomials
P, using the combinatorics developed by Thurston;

e the topology of the Julia set of f;
e compactness properties of the hyperbolic component containing f.

Our approach is guided by analogous known results in the theory of hyper-
bolic structures on three-manifolds. There, the key link relating combinations of
hyperbolic three-manifolds, deformation spaces of hyperbolic three-manifolds,
and the topology of fractal objects naturally associated to hyperbolic three-
manifolds is the notion of a cylinder. See Section 1.8 for further details.

In this work, we define a cylinder for an iterated rational map which is both
hyperbolic and postcritically finite. This is like considering hyperbolic three-
manifolds which are convex cocompact. For such maps, our main results are:

e 3 theorem which asserts that a rational map without cylinders can always
be combined with a finite family P of topological polynomials satisfying
a special property which we call starlike (Theorem 7.1).

Conjecturally, a degree d starlike polynomial is a postcritically finite hy-
perbolic polynomials lying in a hyperbolic component which touches the
hyperbolic component containing the map z — 2.

e a combinatorial characterization of when and how the closures of two pe-
riodic Fatou components intersect, and when and how a Fatou component
is not a Jordan domain. This will determine much (but not all) of the
topology of the Julia set. As applications (Section 5.4), we give combi-
natorial characterizations of rational maps whose Julia sets are Sierpinski
carpets and of maps all of whose Fatou components are Jordan domains.

e a characterization of cylindrical rational maps in terms of the dynamics
and topology of their Julia sets (Theorem 6.1) .

e (with Tan Lei) a combinatorial construction which yields new examples of
rational maps whose Fatou components have interesting topology (Section
5.6.2).



6 CHAPTER 1. OVERVIEW

e A reformulation of results due to Makienko into the language of cylin-
ders, which then imply that hyperbolic component which contain maps
with special kinds of cylinders have noncompact closure in moduli space
(Chapters 6 and 8).

There are no examples of hyperbolic components in the moduli space of
degree d rational maps which are known to have compact closure.

o A theorem which says that for a postcritically finite rational map f with
exactly two critical points which not conjugate to a polynomial, every
Fatou component of f has Jordan curve boundary (Chapter 9).

1.2 Contents of this chapter

In Section 1.3 of this chapter we discuss what is meant by combinations and
decompositions of rational maps.

In Section 1.4 we discuss some related known results for degree two rational
maps. We conclude the section by explaining what goes wrong when trying to
naively generalize the results for degree two to higher degrees.

In Section 1.5 we discuss how restricting to tunings by starlike polynomials
allows us to generalize some of the techniques used in degree two.

In Section 1.6 we discuss how we combinatorially detect intersections of
closures of Fatou components, and define cylinders for an iterated rational map.

In Section 1.7 we state a conjecture relating cylinders, tuning, compact-
ness properties of deformation spaces, and the topology and dynamics of Julia
sets. We call this conjecture the Limiting Map conjecture. This conjecture will
generalize the known results for degree two maps. Our results will prove this
conjecture in part.

In Section 1.8 we discuss the connection with the theory of hyperbolic three-
manifolds. We summarize known results from this theory into the Limiting
Manifold Theorem.

In Section 1.9 we conclude with a brief description of the contents of each
chapter.

1.3 Combinations and decompositions of ratio-
nal maps

1.3.1 Rational maps as combinatorial objects

For postcritically finite rational maps f(z), there is a well-defined notion of
combinatorics due to Thurston. A postcritically finite rational map may be
regarded as a branched covering of the sphere to itself, up to a kind of isotopy
called combinatorial equivalence. Thurston [DH2] has combinatorially charac-
terized those postcritically finite branched coverings which are combinatorially
equivalent to rational maps, and has shown that in all except a handful of
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completely understood special cases, a postcritically finite rational map is de-
termined by its combinatorial class, up to conjugacy by automorphisms of the
sphere. A postcritically finite branched covering f is combinatorially equivalent
to a rational map if and only if there does not exist a set of disjoint simple closed
curves I' which are invariant under f in a special manner. The collection I is
called a Thurston obstruction to the existence of a rational map combinatorially
equivalent to f.

1.3.2 Combining rational maps

Douady and Hubbard [DH1] have defined a way of combining a postcritically
finite hyperbolic rational map with a postcritically finite family P of polynomi-
als to yield a new combinatorial class of branched covering of the sphere. This
process is called tuning f by P. Let B be forward invariant subset of f~1P(f)
containing every critical point which eventually lands in B. Remove a neigh-
borhood of B, and glue in a finite family P of discs mapping by the action of
a finite family of polynomials on copies of the extended complex plane. The
result f x P is the tuning of f by P. An open question is to determine com-
binatorial conditions on f, P, and the gluing data for the tuning f * P to be
combinatorially equivalent to a rational map.

1.3.3 Decomposing rational maps

In [McM3], McMullen defines an inverse process to tuning which we call col-
lapsing. Though defined for arbitrary branched coverings, we will specialize to
the postcritically finite case. Let f be a postcritically finite branched covering
of the sphere to itself. To form a quotient g of f, find a set of discs D which is
forward-invariant up to isotopy fixing P(f). Collapse each component of D to a
point. The result is a new branched covering g, well-defined up to combinatorial
equivalence, called a quotient of f. We prove (Theorem 3.13) that if R and f
are combinatorial classes of branched covers, then f is a quotient of R if and
only if R is the tuning of f by some finite family P of topological polynomials.
McMullen has proved that the quotient of a rational map is always again a
rational map (Theorem 4.33). Using his result and the previous theorem, we
prove that a postcritically finite hyperbolic rational map R admits a quotient if
and only if it is the tuning f*P of a rational map by a finite family of conformal
polynomials (Theorem 4.34).

1.4 Known results for quadratic rational maps

Mating is a special kind of tuning. To define mating, let f and g be two monic
postcritically finite hyperbolic quadratic polynomials of the form z? + ¢. The
Julia sets J(f),J(g) are connected. There is a canonical extension of f and
g to maps of the complex plane compactified by the circle at infinity. The
maps f and g may be glued together as follows: identify A with the domain
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of the extension of f, and identify C — A with the domain of the extension of
g via reflection z — 1/% through the unit circle. The result is a postcritically
finite branched covering of the sphere which is called the mating of f and g.
The dynamics of f near the fixed critical point at infinity is replaced with the
dynamics of g acting on the extended complex plane.

We now present some evidence supporting the heuristic picture sketched in
the introduction. We begin by summarizing some well-known facts. Given a
quadratic polynomial f. = 2% + ¢, if J(f.) is connected, there is a canonical
Riemann map ¢ to the basin of infinity 2 sending 0 € A to oo and conjugating
2+ 22 on Ato f on Q. An external ray of angle t, denoted R;, is the image
d({z|z = re?™ r € [0,1)}) of a radial segment of argument 27it. If this arc has
a well-defined limit as r — 1, we say that the ray lands at the limit point.

The lamination L of f is the equivalence relation on the circle defined by
setting s ~ t if the s and ¢-rays land at a common point. The boundaries of
the convex hulls of the equivalence classes then form a set of chords in the open
unit disc.

For polynomials, there is a finite set of rays landing at each periodic point.
The landing point of the ray of angle 0 is called the § fixed point; the other (if it
exists) is called the a-fized point. Suppose g > 1 rays land at the « fixed point of
fe- The angles of the these rays form a finite set in S* which is permuted under
f in a manner which agrees with an orientation-preserving homeomorphism of
the circle. Thus this set has a well-defined rotation number p/q € (0,1). We
then say that the map f has combinatorial rotation number p/q at its a-fized
point. The set of all ¢ such that J(f.) is connected and f. has combinatorial
rotation number p/q is called the p/q-limb of the Mandelbrot set. The 1 —p/q-
limb is image of the p/q limb under the reflection ¢ — €. If f hyperbolic, and
is in the p/q limb of the Mandelbrot set, then there is a unique attracting fixed
point, and a unique attracting cycle of period larger than one.

Let f by a hyperbolic polynomial quadratic polynomial with a nonzero com-
binatorial rotation number at its a fixed point. Rees [Reel] has proved that
the hyperbolic component H(f) in the degree two moduli space M, of rational
maps is naturally biholomorphically equivalent to A x A. The map is given
by sending a map f to the pair (A, u), where X is the multiplier of the unique
attracting fixed point and g is the multplier of the unique attracting cycle of
period larger than one.

The following theorem is a summary of known results.

Theorem 1.1 Let f be a postcritically finite hyperbolic quadratic polynomial of
the form z — 22 + c,c # 0, and let H(f) denote the hyperbolic component in
Moy containing f. Let p/q be a rational number in (0,1). Then the following
are equivalent:

1. The map f(z) has combinatorial rotation number p/q near its a-fized
point.

2. If g is a posteritically finite hyperbolic polynomial which does not have
combinatorial rotation number 1 — p/q, then the the mating of f and g is
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combinatorially equivalent to a rational map.

3. For |A\| < 1, let fn denote the unique map in H(f) with o fixed point
at infinity of multiplier X\ and o periodic finite critical point. Then for
p'/qd #1—p/q, the radial limit

hm f/\7
A—e—2mip’/d'

exists in Ms.

4. Let Lg be the lamination for g as a subset of the unit disc. Let ¢ : (A,0) =
(€2¢,00) be the extension to the boundary of the canonical conjugacy from

z > 22 on A to f on its basin QU of infinity. Then the quotient space C/ ~
obtained by collapsing every chord in ¢(Lg) to a point is not homeomorphic
to a sphere.

These conditions concern (1) the combinatorial dynamics of f, (2) combi-
nations of f with other maps, (3) deformations of f, and (4) the topology of
J(f) and the dynamics of f on J(f). The implication (1) implies (2) shows that
there are only obvious obstructions to matings of postcritically finite quadatic
polynomials being combinatorially equivalent to rational maps.

That conditions (1) and (4) are equivalent follows immediately from the
definition of combinatorial rotation number and lamination. That (2) implies
(1) has been known for some time; see e.g. [Lev]. That (1) implies (2) is a
special case of the main result in [Tan2]. That (3) implies (1) is proved in
[Pet] using extremal length estimates for the multipliers of fixed points. This
also follows from a theorem in [Mak] which does not give estimates. According
to Rees (personal communication) the implication (1) implies (3) follows from
techniques in [Reel].

Rees [Ree2] and Ahmadi [Ahm] have extended the implication (1) implies
(2) to analogous results for the general quadratic postcritically finite hyperbolic
case. Their results also show that the only obstructions to the tuning of a
hyperbolic quadratic polynomial being combinatorially equivalent to a rational
map are obvious ones. That is, they show that the tuning of a postcritically finite
hyperbolic rational map by a family of quadratic polynomials has a Thurston
obstruction only when there are chords for the lamination which separate the
sphere when glued into the Fatou components of f.

Tan’s proof of (1) implies (2), and the proofs given by Rees and Ahmadi
mentioned in the previous paragraph, rely on the fact that for degree two maps,
a Thurston obstruction may always be reduced to a special one called a Levy
cycle. They then use the expanding nature of hyperbolic rational maps to
conclude that the existence of a Levy cycle implies the existence of an obvious
obstruction. However, an example of Tan and Shishikura [ST1] shows that there
are matings of cubic polynomials which are obstructed, but which have no Levy
cycles or obvious obstructions.
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1.5 Starlike polynomials

To circumvent the difficulties posed by the existence of non-obvious obstruc-
tions, we will consider only tunings by families of starlike polynomials. Using
a generalization of a theorem of M. Shishikura and Tan Lei ([ST1]), which we
call the Shishikura-Tan theorem (Theorem 4.29), we will show that if P is a
finite family of starlike polynomials, any Thurston obstruction to a tuning f P
may be reduced to a Levy cycle. A postcritically finite hyperbolic polynomial
p is starlike if there is a finite graph G whose vertices are the finite postcritical
points of p, such that p maps edges of G to edges of G, up to isotopy fixing the
postcritical set of p. The Shishikura-Tan theorem will imply that any Thurston
obstruction which meets this graph must be a Levy cycle. We will use the ex-
istence of a Levy cycle to deduce the existence of a cylinder for f to prove that
tunings of acylindrical maps by starlike polynomials are always unobstructed.

1.6 Cylinders and the characteristic subcomplex

Recall that there are obvious obstructions to the tuning f P being combinato-
rially equivalent to a rational map only when there are Fatou components with
non-Jordan curve boundary, or when there are Fatou components which touch.
We now discuss a combinatorial characterization of when this occurs.

1.6.1 Jordan domain Fatou components

Two preliminary results in this direction are the following results, which we
prove in Chapter 9. The techniques we use to prove these theorems, however,
will not be used in our subsequent characterization of pinching and touching.
In the following, note that the hypotheses of the theorems refer only to the
dynamics of f restricted to the finite set P(f).

Theorem 1.2 Let f be a postcritically finite rational map (not necessarily hy-
perbolic) with exactly two critical points, not counting with multiplicity. Then
exactly one of the following possibilities holds:

e f is conjugate to 2% and its set is a Jordan curve, or

e f is conjugate to a polynomial of the form z% + c,c # 0, and the Fatou
component containing infinity is the unique Fatou component which is not
o Jordan domain, or

o f is not conjugate to a polynomial, and every Fatou component is a Jordan
domain.

In the next theorem, there are no hypothesis on the number of critical points.

Theorem 1.3 Let f be a postceritically finite hyperbolic rational map for which
every postcritical point is periodic. Then there is at least one cycle of Fatou
components with Jordan curve boundary.
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Corollary 1.4 Let f be a postcritically finite map for which every postcritical
point lies in the same cycle. Then every Fatou component has Jordan curve
boundary.

The first theorem in this section, for special degree two cases, appears in
[Ree2]. The general degree two case appears in [Ahm]. Their arguments assume
without proof that a certain lamination associated to a postcritically finite de-
gree two rational map has a kind of backward invariance property. In Section
5.6 we give examples of maps for which the corresponding laminations fail to
be invariant. These examples provide motivation for using the dynamics of
isotopy classes of arcs in studying touching and pinching of Fatou component
boundaries, described below. Tan Lei (personal communication) has observed
that these examples may be constructed by a process which we call blowing up
an arc. We show in Section 5.6.2 that this construction provides another way
of producing new rational maps from a given rational map. The proof that
the blowing up construction is unobstructed depends on the Shishikura-Tan
theorem.

1.6.2 Laminations for rational maps

It is essentially enough to decide when the closures of periodic Fatou components
intersect, or when a periodic Fatou component has non-Jordan curve boundary,
when trying to determine when there are Fatou components with non-Jordan
curve boundary, or when two Fatou components touch.

We will reduce this question to the computation of the lamination associated
to a postcritically finite hyperbolic rational map f. Let Q(f) = f~*(P(f)). For
z € Q(f), let Q, denote the Fatou component containing x. A classical theorem
due to Bottcher implies that there exist Riemann mappings ¢, : (A,0) — Q,
conjugating z — z% to f, where d, is the local degree of f near . The theorem
also implies that there are finitely many such choices for the maps ¢,; fix one
such choice. Since f is hyperbolic, 91, is locally connected, so the ¢, extend
to A, by a theorem of Carathéodory.

The lamination of f is the equivalence relation on Q(f) x S! defined by
(z,8) ~ (y,t) if ¢, (€2™%) = ¢, (e*™). The set ¢, ([0, 1]e>™*) is called an internal
ray. A chord is a pair of equivalent points. The arc formed by a chord is the
union of the corresponding pair of internal rays.

Definition 1.5 (Preliminary definition) A cylinder for a postcritically fi-
nite hyperbolic rational map [ is a finite collection R of internal rays of f such
that

1. f(R) =R (periodicity),
2. the union of the rays in R separates the sphere (separation), and

3. no proper subset of R satisfies (1) and (2) above (minimality).
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We will now characterize combinatorially when this happens. One way to
do this is to require the following: there exists a set W of arcs in the sphere
with endpoints in Q(f) and interiors disjoint from Q(f), such that the preimage
f~Y(W) contains W, up to isotopy, and such that there is an embedded loop
made up of arcs in W which separates points of Q(f). We will take a different
avenue and study arcs individually.

Define an arc in (S%,Q(f)) to be an arc a with endpoints in Q(f) and whose
interior is disjoint from Q(f). Two such arcs are said to be isotopic if one can
be deformed to the other through such arcs. The set of isotopy classes of arcs
in (S2,Q(f)) we denote by A(Q(f)). Given a chord, the arc « it forms is an
arc in (S%,Q(f)). Consider the forward orbit {f°"(a)}5%,. This determines a
sequence of arcs in the sphere with endpoints in Q(f). Record the isotopy class
of each term as an element of A(Q(f)). We will show that this data suffices to
determine the chord.

We will actually show more than this. We define the pushforward relation
12 on A(Q(F)). An isotopy class [8] is in the image f2([a]) if and only if the
there is a representative of [«] whose image under f represents the element [3].
The set A of all eventually periodic elements under the relation ff? is finite
(Theorem 5.2). The restriction of f& to the product A x A determines a (not
necessarily irreducible) subshift of finite type (X¢,0¢). The underlying space
Y is the space of all possible forward orbits of elements in A under the relation.
The map oy is the one-sided shift map which forgets the first term in a sequence.
We call the pair (X7,0y) the combinatorial characteristic subcomplex (CCS) of
f- The CCS is isomorphic as a topological dynamical system to the action of f
on the space of chords of its lamination (Theorem 5.8).

As an immediate application of this fact (Section 5.4), we can combinatori-
ally characterize when and, roughly speaking, how two periodic Fatou compo-
nents intersect: the intersection is finite, countable, or contains a Cantor set if
and only if the corresponding portion of X is finite, countable, or contains a
Cantor set. A periodic Fatou component is a Jordan domain if and only if a
certain portion of Xy is empty. We also characterize when the intersection of
two Fatou components is a Jordan curve and one component is also a Jordan
domain.

Using this analysis, we characterize when a Julia set is a Sierpinski carpet:
this occurs if and only if A is empty, if and only if a slightly simpler set is empty
(one where we measure isotopy classes in (S?, P(f))).

The CCS can be empty-this occurs if and only if the Julia set of f is a
Sierpinski carpet. In [Mil4] an example is given which shows this can occur.
Their example is a degree two map with seven postcritical points, and their
proof uses polynomial-like mappings. We give an example in Section 5.6 of a
degree three postcritically finite hyperbolic map with four postcritical points
and show that its CCS is empty, thus proving that its Julia set is a Sierpinski
carpet.
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1.6.3 Cylinders

Given any set S C Xy, let A(S) denote the union of all coordinates occurring in
some sequence in S. Then A(S) is a subset of A. A finite subset E C A(Q(f))
is said to separate Q(f) if, given any collection of representatives of E, at least
two components of the complement of their union contains points of Q(f).

Definition 1.6 (Cylinder) A combinatorial cylinder is a finite set C C Ly
such that

1. o(C) = C (periodicity);
2. A(C) separates points of Q(f) (separation);
3. no proper subset of C satisfies (1) and (2) (minimality).

We will show that this definition of cylinder agrees with the previous one
(Theorem 6.5). A postcritically finite hyperbolic rational map for which A = @
we will call strongly acylindrical.

1.7 The Limiting Map conjecture

We propose the following conjecture which generalizes Theorem 1.1 .

Conjecture 1.7 (Limiting map conjecture) Let f(z) be a postcritically fi-
nite hyperbolic rational map of degree d > 2. Then the following are equivalent.

1. The map f(z) is acylindrical.

2. For every postcritically finite family of starlike polynomials P, the tuning
fxP of f is combinatorially equivalent to a rational map.

3. The hyperbolic component H(f) containing f has compact closure in the
moduli space of rational maps of degree d.

4. There is no finite set R of internal rays of f for which f(R) = R and
which separates the sphere.

Our main results establish the equivalence of (1) and (4) and the implication
(2) implies (1). Our reformulation of Makienko’s results becomes a partial proof
of the implication (3) implies (1). Conjecturally, the tuning of an acylindrical
map f by a finite starlike family P is again acylindrical. Thus one can continue
tuning an acylindrical map by starlike polynomials. Thus at least conjecturally,
for an acylindrical map, one can carry out any infinite sequence of bifurcations.

Alternatively, one might replace condition (2) with the following: the limit
in H(f) corresponding to pinching along the lamination corresponding to any
finite family P exists. Conjecturally, this limiting map is topologically conjugate
to the tuning f % P.

If f is strongly acylindrical, then the Julia set of f is a Sierpinski carpet;
compare this with the Limiting Manifold theorem below.
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1.8 Motivation from hyperbolic three-manifolds

We propose viewing the connection between tuning, compactness of hyperbolic
components, and the topology of the Julia set from the point of view of the
extensive analogy between the theories of rational maps and Kleinian groups as
conformal dynamical systems on the Riemann sphere.

For example, the limit set A(T") of a Kleinian group T is the analog of the
Julia set; the domain of discontinuity Q(T') is the analog of the Fatou set of a
rational map. While there is now a general notion of a holomorphic dynamical
system (see [MS]), we will instead focus on aspects of this analogy which stem
from the fact that Kleinian groups arise as the fundamental groups of hyperbolic
three-manifolds.

Thurston has proved that all atoroidal Haken three-manifolds admit hyper-
bolic structures; see [Thul], [Thu2], [Thu3], [Mor]. A hyperbolic structure on an
oriented three-manifold M, with possibly nonempty boundary, is a pair (1, N)
consisting of a Riemannian three-manifold N with constant sectional curvature
—1, together with a homotopy equivalence ¢ : M — N which preserves the
peripheral structure in 71 (M) if M has boundary.

There is a natural topology on the set of hyperbolic structures on M called
the algebraic topology, defined as follows. The map v determines a discrete faith-
ful representation of the fundamental group of M into the group Isom™ (HP) of
orientation-preserving isometries of hyperbolic three-space, up to conjugation.
The group Isom™ (HP) is naturally identified with the group Aut(C) of con-
formal automorphisms of the Riemann sphere, since the Riemann sphere is
naturally the boundary at infinity of hyperbolic three-space. Let V denote the

variety of discrete faithful representations of 71 (M) into Aut(C). Then the
set of hyperbolic structures on M is identified with the quotient of V by the
action of Aut(C) acting by conjugation. If m; (M) is nonabelian, this space is
Hausdorft.

A compact three-manifold M is toroidal if there is a map of a torus into M
which is injective on the level of fundamental groups but is not homotopic into
OM. Being atoroidal is a necessary condition for the existence of a hyperbolic
structure on M, since a Z @ Z subgroup of a hyperbolic three-manifold N is
necessarily the fundamental group of an end of N corresponding to a rank two
cusp. M is said to have incompressible boundary if it has no sphere boundary
components and if every curve on M which is contractible in M is contractible
in OM.

A three-manifold M is said to be Haken if it is compact, orientable, irre-
ducible, and contains an incompressible surface F. An incompressible surface
F in M is an embedded connected surface not equal to a sphere or projective
plane such that the inclusion map induces an injection of fundamental groups.
A Haken three-manifold is one which is built from copies of the three-ball by
successively gluing along incompressible boundary components. Any oriented
three-manifold with a boundary component which is not a sphere is Haken.

Thurston’s proof of this theorem proceeds by an inductive argument, us-
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ing the fact that the manifold is Haken. At the inductive step, one has a
geometrically finite (read: “nice”) hyperbolic structure (1), N) on a compact
three-manifold M with incompressible boundary and an orientation-reversing
homeomorphism h : M — M which is regarded as gluing data. The bound-
ary at infinity of N inherits a natural conformal structure, and the deformation
space of the (N,0N) then coincides with the Teichmiiller space of ON. The
gluing data h determines a map from the Teichmiiller space of N to itself
called the skinning map. A fixed point for the skinning map is a hyperbolic
structure N on M such that the following holds. Let I'y be the Kleinian group
corresponding to the hyperbolic manifold N. Then there exists a finite set of

elements G of Aut(C) such that H? /(T'y, G) is a hyperbolic structure on M/h.

A danger is that the manifold M might have a cylinder. A cylinder for a
three-manifold M with boundary is an essential map of pairs (I x S*,0I x S') —
(M, 0M) which is not homotopic into M. If M has a cylinder and the homeo-
morphism h identifies the ends of a cylinder, the glued manifold M /h is toroidal,
and hence has a topological obstruction to the existence of a hyperbolic struc-
ture. The characteristic submanifold of a three-manifold with incompressible
boundary is the unique (up to isotopy) minimal properly embedded submani-
fold which contains all of the cylinders; see [Jac].

It turns out that the presence of cylinders for M is reflected in compactness
properties of the deformation space of a geometrically finite hyperbolic structure
(N,4) on M, and in the topology of the limit set of the fundamental group of
N, regarded as a Kleinian group I'y acting on the sphere. For example, the
limit set of the Kleinian group which is the fundamental group of a fixed point
for the skinning map is a Sierpinski carpet where the holes are round discs. For
simplicity, we ignore cusps. A hyperbolic three-manifold N is said to be convez
compact if the image of the convex hull of its limit set under the projection from
HB to N is compact. Such a manifold has no cusps and is geometrically finite.

Theorem 1.8 (Limiting manifold theorem) Let N be a convex compact ge-
ometrically finite hyperbolic three-manifold with nonempty incompressible bound-
ary. Then the following are equivalent.

1. N is acylindrical.

2. Given any orientation-reversing homeomorphism h : ON — ON, the quo-
tient manifold N/h admits a hyperbolic structure.

3. The deformation space of N has compact closure in the space of all hyper-
bolic structures on M.

4. The limit set of the fundamental group of N, regarded as a Kleinian group,
is a Sierpinski carpet.

Alternatively, one might replace condition (2) with the following: the limit
of any deformation of N corresponding to pinching a finite set of disjoint simple
closed curves exists.
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That (2) implies (1) is clear. If a cylinder exists, any gluing map h which
identifies the ends of the cylinder yields a torus in N/h. That (3) implies (1) may
be proved as follows. Pinching the ends of the cylinder (we may assume they are
disjoint simple curves) yields a sequence of deformations whose limit does not
exist. This is well-known; we give a new proof in Section 8.5. That (1) implies
(2) is part of Thurston’s geometrization theorem; it proceeds by first proving
(1) implies (3) [Thul]. An alternative proof which does not take this route
may be found in [McM2]. That a cylinder in a geometrically finite hyperbolic
three-manifold causes closures of the domain of discontinuity to intersect follows
easily by considering the lifts of geodesics representing ends of the cylinder to
the Riemann sphere under the projection map from the universal cover; we
give a proof in Chapter 8. That (4) implies (1) seems to be well-known, but I
have been unable to locate the original reference. It is sometimes attributed to
Maskit. It also follows from work of Gromov.

1.9 Summary of chapters

2. Background from the theory of iterated rational maps. We state defini-
tions and facts needed throughout this work.

3. Branched coverings. We define branched coverings, combinatorial equiv-
alence, tuning, and collapsing, and prove that tuning and collapsing are
inverse.

4. Combinatorial dynamics of arcs and curves. We define the pushforward re-
lation on arcs and its well-known analog for simple closed curves, which we
call the lifting relation on simple closed curves. Using ideas of Shishikura
and Tan, we show that the presence of isotopy classes of periodic arcs
strongly restricts the possible dynamics of simple closed curves, and prove
their theorem in our language. We also show how the lifting and pushfor-
ward relations behave under tuning and collapsing.

5. The characteristic subcomplex. We begin by studing some motivating
examples, and apply the pushforward relation to construct the combina-
torial characteristic subcomplex. We apply our combinatorial analysis to
the study of when and how two Fatou components touch, and when the
boundary of a Fatou component is not a Jordan curve. We conclude with
further examples.

6. Cylinders. We define cylinders for postcritically finite hyperbolic ratio-
nal maps and prove the equivalence of our definitions of cylinders. We
also define starlike polynomials. We will actually define another kind of
cylinders. Combinatorial cylinders will be the cylinders defined above.
Geometric cylinders will be candidates for the hypothesis of Makienko’s
theorem giving sufficient conditions for a hyperbolic component to have
noncompact closure in moduli space. We construct a bijection between
the two kinds of cylinders.
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7. Existence of acylindrical starlike tunings. We show that tunings of acylin-
drical maps by starlike polynomials are combinatorially equivalent to ra-
tional maps.

8. Compactness properties of hyperbolic components. We re-exposit Makienko’s
theorem giving sufficient conditions for a hyperbolic component to be non-
compact, and apply his construction to Kleinian groups. We also give some
examples.

9. Rational maps whose Fatou components are Jordan domains. We prove
the theorems mentioned in Subsection 1.6.1 concerning rational maps
whose Fatou components are Jordan domains.
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Chapter 2

Background

In this chapter we give the definitions and known results from the theory of
iterated rational maps which we use throughout this work.

In Section 2.1 we list some conventions of notation.

In Section 2.2 we introduce the basic objects of study in the theory of iterated
rational maps, namely the Fatou and Julia sets. We summarize known results
which show that the dynamics on the Fatou set is now completely understood.

In Section 2.3 we define hyperbolic and postcritically finite rational maps.
Hyperbolic postcritically finite maps have important expanding properties and
combinatorial properties which allow the dynamics on their Fatou component
boundaries to be described using laminations (see Section 2.6).

In Section 2.4, we discuss parameter and moduli spaces of rational maps of
degree d and stability properties of hyperbolic maps.

In Section 2.5 we define “mapping scheme”, which is a combinatorial tool
we will use to keep track of maps from a finite set of copies of a space into itself.

In Section 2.6 we define the lamination of a postcritically finite rational
map. It describes the pinching of the boundary of a Fatou component and the
touching of two Fatou components.

2.1 Notation and conventions
We denote by

o C, the complex plane,

e A={z] [2l<1},

e S ={z] |2ll=1},

o CuSL , the compactification of the complex plane by the circle at infinity,

~

e C, the Riemann sphere,

19
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e X, the closure of a set X, and

e 0X, the boundary of a set X.

The open unit disc A carries a canonical metric of constant curvature —1

which we call the Poincaré metric; it is given by %.

The Riemann sphere C carries a canonical metric of constant curvature +1

which we call the spherical metric; it is given by %g.

The notation S? will refer to the Riemann sphere equipped with the spherical
metric. Thus it makes sense to speak of a round circle on S2. The space S?
is equipped with a distinguished point which we call the point at infinity, and
denote it by oo.

2.2 Rational maps, the Fatou set, and the Julia
set

2.2.1 Rational maps

A rational map f(z) is a holomorphic map of the Riemann sphere C to itself.
Any rational map can be written as a quotient f(z) = p(z)/q(z) where p(z)
and ¢(z) are relatively prime polynomials; this representation is unique up to
multiplication of the pair (p,¢) by nonzero complex scalars. The degree of f we
define as the maximum of the degrees of p and ¢. This definition of degree can
be shown to coincide, for example, with the topological degree of f as a map
of the Riemann sphere to itself. It is also equal to the number of preimages of

a generic point. Near any point # € C we may choose coordinates on domain
and range so that x corresponds to the origin and the map f near z is of the
form w = 2" for n > 0; the integer n is called the local degree of f near z. If
n > 1 the point z is called a critical point; the multiplicity of the critical point
is defined to be the integer n — 1. The Riemann-Hurwitz formula shows that a
rational map of degree d has 2d — 2 critical points, counted with multiplicity.
Iterating the map f yields a holomorphic dynamical system. The dynamics of
maps of degree less than two are completely understood, so we will assume that
the degree of f is at least two.

A conjugacy between two rational maps f and g is a bijection ¢ : C = C
such that g o ¢ = ¢ o f. The conjugacy ¢ is said to be measurable, continuous,
quasiconformal, smooth, conformal, etc. according to the degree of regularity of
¢. Degree one maps are automorphisms of the Riemann sphere, i.e. are Mobius
transformations. We denote the group of automorphisms of the Riemann sphere

~ ~

by Aut(C). Two rational maps which are conjugate in Aut(C) have conformally
isomorphic dynamics.
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2.2.2 The Fatou and Julia sets

There is a basic dichotomy present in the dynamical behavior of points under
the iterates of a rational map. The sphere decomposes into two complementary
invariant subsets: the open Fatou set on which the behavior of points is stable
under mild perturbations of the point, and the closed, often fractal Julia set
where the behavior of a point is chaotic.

Definition 2.1 (Normal family) A family of functions F defined on an open

set U C C is said to be normal if every sequence {f,} of elements in F has a
subsequence converging uniformly on compact subsets of U.

Definition 2.2 (Fatou and Julia sets) The Fatou set of a rational map

f(2) is defined to be the set of points z € C such that there exists a neigh-
borhood U of z on which the iterates of f form a normal family. The Julia set
is defined to be the complement of the Fatou set. We denote the Fatou set by
F(f) and the Julia set by J(f).

Thus the Fatou set is open and the Julia set is closed. The Fatou and Julia
sets are each fully invariant under the dynamics. This means that f~1(J(f)) =

J(f), fHE(F) = F(f)

2.2.3 Periodic points

A point of period p of a rational map f(z) is a solution of the equation f°P(z) = z
which is not a solution of any similar equation for p’ < p. A cycle is the forward
orbit of a periodic point. Let zg, 21, ..., Zp—1 be a cycle of points of period p under
a rational map f. The multiplier A of the cycle is defined to be A = (f°P)'(z;),
there x; is any point in the cycle. By the Chain Rule, it is independent of the
choice of point in the cycle. Periodic points come in one of five flavors.

Definition 2.3 (Periodic points) Let x be a periodic point with multiplier X.
The point x is called

e superattracting if |A| = 0;
e attracting if 0 < |A| < 1;

e parabolic, or rationally indifferent, if \? = 1 for some nonzero integer
q;

e irrationally indifferent, if [\| =1 but A is not a root of unity;
e repelling if |\ > 1.

The following two theorems give the local picture of the dynamics near at-
tracting and superattracting fixed points.
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Theorem 2.4 (Konig’s theorem) Suppose f(z) is a holomorphic map such
that
f(z) =Xz +0(z%),0 < |\ < 1.

Then there exists a holomorphic map ¢ defined on a neighborhood of 0 such that
¢ is injective, ¢(0) = 0, and ¢ gives a conjugacy between f near 0 to the map
z + Az. The germ of the map ¢ near 0 is unique up to multiplication by nonzero
complex constants.

Theorem 2.5 (Bottcher’s theorem) Suppose f(z) is a holomorphic map such
that near the origin,

f(z)=az"+0(""1),a #0,n > 2.

Then there exists a holomorphic map ¢ defined on a neighborhood of 0 such that
¢ is injective, ¢(0) = 0, and ¢ gives a conjugacy between f near 0 to the map
w — w” near 0. Moreover, the germ of this conjugacy near the origin is unique
up to multiplication by (n — 1)st roots of unity.

Corollary 2.6 Let f(z) be a rational map and let {xi}f;Ol be a superattracting
cycle. Let §; be the Fatou component containing x;, and let d; be the local
degree of f near xz;. If each ; contains exactly one critical point of f°P, then
there exist Riemann mappings ¢; : (A,0) — (4, 2;) such that f o ¢;(z) =
®i+1 mod p(zd“). The number of distinct choices for the collection of maps ¢; is
equal to ([, di) — 1.

Proof: Since there are no other critical points in the cycle of Fatou components
Q;, we may lift the local conjugacy given by Bottcher’s theorem applied to
fPlq, to obtain a new local conjugacy on a larger region extending the old one.
Tterating this process, we obtain a conjugacy from the open disc A to all of Q.

The following theorem is due independently to Fatou and Julia.

Theorem 2.7 (Repelling points dense in J(f)) The Julia set of a rational
map f(2) is equal to the closure of the set of repelling periodic points of f.

2.2.4 The classification of stable regions

The dynamics on the Fatou set is now completely understood.

Definition 2.8 (Fatou cycles) Let 2 be a period p Fatou component and let
h(z) = f°P. Then  is called a

e superattracting basin if every point in Q tends to a superattracting fized
point of h;
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e attracting basin if every point in § tends to an attracting fized point of
h;

e parabolic basin if every point in Q tends to a parabolic fixed point of h;

o Siegel disc if Q is conformally isomorphic to the unit disc A and h|q is
conformally conjugate to an irrational rotation;

e Arnold-Herman ring if ) is conformally isomorphic to an annulus {z :
1 < |2| < R} for some R > 1, and h|q is conformally conjugate to an
wrrational rotation.

The Schwarz lemma implies that every attracting or parabolic cycle of Fatou
components contains the forward orbit of a critical point.

Theorem 2.9 (Classification of Fatou components) Let ) be a Fatou com-
ponent.

Then the image of Q) under some iterate of f is periodic, and is one of the
above five types. All five types can occur.

This classification was begun by Fatou and Julia. Hermann, Arnold, and
Siegel showed that Hermann-Arnold rings and Siegel discs can exist. Sullivan
completed the classification of Fatou components by ruling out the existence of
a so-called wandering domain, i.e. a component of F'(f) which is not eventually
periodic.

Shishikura gave a sharp bound on the number of components of each type.

Theorem 2.10 (Number of Fatou cycles) Let f be a rational map of degree
d. Then the number of attracting and superattracting cycles, plus the number of
indifferent cycles, is bounded by 2d — 2. The bound is sharp.

2.2.5 The postcritical set
Notation. We let C'(f) denote the set of critical points of f.

Definition 2.11 (Postcritical set) The postcritical set P(f) of a rational
map f(z) is defined to be

rH= U .
n>0,ceC(f)

The map f is called posteritically finite if |P(f)| < oco. We will call the
preimage of the postcritical set the lifted postcritical set, and denote it by

Q(f) = f1P(f).

We will abbreviate the phrase “postcritically finite” by PF.
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The postcritical set plays an extremely important role in the theory of it-
erated rational maps. The lifted postcritical set will play an important role in
our combinatorial analysis of PF rational maps in Chapters 4 and 5.

A rational map of degree larger than one has at least two points in its
postcritical set. It will be useful to single out those maps which realize this lower
bound since these will be extremely special cases to which our combinatorial
techniques will not apply.

Definition 2.12 (METIS) The Mazimal Elementary Totally Invariant Subset
of a rational map f(2) of degree at least two is the largest set E(f) consisting
of at most two points such that f~1(E) = E.

Suppose f has degree at least two. If |[E(f)| = 1, f is conformally conjugate
to a polynomial. If |E(f)| = 2, f is conformally conjugate to z — 2™, for some
integer n with |n| > 2. If |P(f)| = 2, then P(f) = E(f), and so f is conformally
conjugate to z — 2.

Definition 2.13 (Postcritically elementary) A rational map f(z) we call
postcritically elementary if |P(f)| = 2.

The Julia set of a postcritically elementary map is a round circle in the
Riemann sphere.

2.3 Hyperbolic and postcritically finite maps

2.3.1 Hyperbolic maps

Definition 2.14 (Hyperbolic maps) A rational map f(z) is said to be hy-
perbolic if P(f)NJ(f) = @.

We will abbreviate the phrase, “postcritically finite hyperbolic” by PFH.

A hyperbolic map cannot possess indifferent cycles or Arnold-Herman rings
(see [Bea] or [Mil2]). Indifferent cycles in the Julia set attract critical points.
The boundaries of Siegel discs and Arnold-Hermann rings attract critical points.

Hence hyperbolic maps have only attracting or superattracting periodic Fa-
tou components. Also, the complement of the postcritical set of a hyperbolic
map is always connected: every critical point is attracted to either an attracting
or superattracting cycle.

2.3.2 Expanding properties of hyperbolic maps

Let M be a Riemannian manifold and f : M — M be a C! map. Let X C M
be a compact invariant subset.

Definition 2.15 (Expanding map) The map f is said to be expanding on
X if there is an integer n such that for each tangent vector v to a point x € X,

I Df () | > [l o |l-
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A rational map f(z) is said to be exzpanding if there exists a C' metric p
defined on a neighborhood U of J(f) for which f is expanding on J(f).

Theorem 2.16 A rational map f(z) is expanding if and only if it is hyperbolic.

We sketch the proof. An expanding map f cannot have critical points or
indifferent cycles in the Julia set. Hence if f is expanding, |P(f) N J(f)| = O,
and so expanding maps are hyperbolic. Conversely, if f is hyperbolic, then
C — P(f) is connected. If f is postcritically elementary, then f is conjugate to
z + 2" for some n, and J(f) = S*. Then f is clearly expanding on J(f). So
suppose f is not postcritically elementar/}\f. Then by the Uniformization theorem
(see e.g. [FK]), the universal cover of C — P(f) is conformally isomorphic to
the unit disc. The Poincaré metric on the the unit disc descends to a metric on
C - P(f). This metric pulls back to a metric on C — Q(f) such that f is an
isometry on C — Q(f). Lifting to the universal cover, the Schwarz lemma shows
that the inclusion map i : C — Q(f) - C - P(f) is a contraction. Hence f,
restricted to C — Q(f), expands the Poincaré metric on C — P(f). See [Mil2],
Section 14 for further details.

Since J(f) is compact, if f is expanding with respect to one smooth metric,
it is expanding with respect to all smooth metrics. As an important special case,
a hyperbolic rational map is expanding with respect to the spherical metric on
C. If f is expanding with respect to some metric p defined on U D J(f), then
on every compact subset K such that J(f) C K C U, f expands the lengths of
tangent vectors to points in K by a definite factor. As a consequence, we have

Theorem 2.17 If f(2) is expanding and if L C J(f) is a connected subset such
that f|r : L — L is a homeomorphism, then L is a point.

2.3.3 Postcritically finite maps

In this section we state a well-known property about postcritically finite maps.

Proposition 2.18 Let f(z) be a postcritically finite rational map. Then for
every Fatou component Q, |QN P(f)| <1 and the Julia set of f is connected.

See [McM1], p. 35 for the proof.

If f(z) is a postcritically finite rational map, then every Fatou component
) contains exactly one point of the set Up>0f°~"P(f) which we call the center
of 2. The Fatou set of a postcritically finite map may be empty: this occurs if
and only if there are no periodic critical points ([Mil2], Corollary 14.6).

2.4 Parameter and moduli spaces of rational maps

~

Since Aut(C) is noncompact, the orbit of any map f € Raty under the action
of Aut(C) by conjugation has noncompact closure in Ratg.
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Theorem 2.19 If d > 2, the moduli space M is Hausdorff.
Proof: Let f, = f be a convergent sequence in Ratg. Let {A4,}52, C Aut(@),
and suppose A4, o f, o A, — g € Raty. We must show that g is conjugate to

f, i.e. that the A4, converge in Aut(C).

Since the number of indifferent cycles is bounded by 2d—2; there is an integer
p depending on f such that every point of period p for f is repelling. We may
assume there are at least three points of period p. Let Per,(h) denote the set of
points of period p for a rational map h(z). By Proposition 8.4, there is an integer
N such that if n > N, there is a conjugacy ¢, : Perp(fn) — Pery(f) such that
én — id as n — oo. Similarly, there are conjugacies v, : Perp(A, fnA;') —
Per,(g) for n sufficiently large, with ¢, — id as n — co. But then Per,(g) =
lim,, 0 Pery (AnfnA, ) = limy, oo An(Pery(frn)) = limy—oo An(Pery(f)). It
follows that the A,, converge to a conjugacy between f on Per,(f) and g on

Per,(g). Since |Per,(f)| > 3, this implies that the A,, converge in Aut(C).
|

Remark: Compare this with the argument in [Thul] proving the analogous
result for Kleinian groups.

The set of hyperbolic maps forms an open subset of Ratg (see e.g. [MSS]).
Hyperbolicity is invariant under conjugation by elements of Aut(C), and there-
fore it makes sense to speak of the set of hyperbolic maps in the moduli space
M of rational maps of degree d.

Definition 2.20 A hyperbolic component in parameter space is a con-
nected component of the space of hyperbolic maps in Raty. A hyperbolic com-
ponent in moduli space is the image of a hyperbolic component in parameter
space under the projection map from Raty to M.

The next theorem says that a hyperbolic component in parameter space
consists of maps which are deformations of f near J(f).

Theorem 2.21 Let f € Raty be a hyperbolic rational map. If g is in the hy-
perbolic component of f, then there exists a quasiconformal homeomorphism h
sending a neighborhood U of J(f) to a neighborhood V' of J(g) such that for all

z € fHU), ho f(z) =goh(2).

The homeomorphism h is not canonical. The proof will use the theory of
holomorphic motions. Following [McM3] and [MSS], we make the following
definition.

Definition 2.22 Let W be a connected compler manifold and w € W. Let
E c C. A holomorphic motion of F parameterized by (W,w) is a

family of injections ¢x : E — C, one for each X € W, such that ¢x(e) is a
holomorphic function of \ for each fized e, and ¢, = id.
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A fundamental fact about holomorphic motions is the following;:

Theorem 2.23 (A-lemma) A holomorphic motion ¢ of a set E C C has a
unique extension to a holomorphic motion of E. Given X\, the map ¢, of a set

E extends to a quasiconformal homeomorphism of C.

See [MSS], [BR], [ST2] for proofs and a discussion of the general theory of
extending holomorphic motions.
For convenience during the proof, we introduce the following definition.

Definition 2.24 An expanding-like map is a triple (Uy,Uy, f), where Uy
and Uy are open, planar, finitely connected domains with Jordan curve boundary
components, Uy C Uy, and f : Uy — Uy is a holomorphic covering map of finite
degree. The Julia set of an expanding-like map is the set J = Npsof~™(Uo).

Note that expanding-like maps have no critical points. We allow U; and Uj
to be disconnected.

Lemma 2.25 Let f(z) be a hyperbolic rational map. Then there is a subset

Uy C C such that (f~1(Uy), U, f) is an expanding-like map with Julia set equal
to J(f), and such that there are no critical points in Up.

Proof: Let A be the set of all attracting and superattracting periodic points of
f- By Konig’s and Béttcher’s theorems, near any point @ € A of period p, there
are local coordinates about a such that f°P is conjugate either to to z — Az,
where |A| < 1, or to z — 2™ for some n > 1. It follows that we may find a
collection D of closed discs in F'(f) with smooth boundaries about points in A

such that C — f=1(D) c C—D. The collection D contains all but finitely many
postcritical points of f. Hence there is an i/r\lteger n such that the interior of
f~™(D) contains P(f). Then setting Uy = C — f~(D), U, = f~1(Up) yields
an expanding-like map. Since Uy D J(f) and U; = f~'Uy, the Julia set of
(U1, Uy, f) is the same as J(f).

Proof of Theorem

It is enough to prove the following: let f be a hyperbolic map. Then there
is a neighborhood W of f such that for every f, € W, the conclusion of the
theorem holds for g = fx. For a path in H(f) joining f to g, by compactness,
is covered by finitely many such neighborhoods W.

Let (U1,Us, f) be an expanding-like map given by the preceding lemma.
We now claim that for all f) in a sufficiently small neighborhood W of f,
(fy 'W0o, Uo, fx) is also an expanding-like map. As a subset of the sphere, the
preimage f, Uy varies continuously as the map f varies. Since Uy contains no
critical points, U; contains no critical points in its closure. Since the critical

points of fx also vary continuously as a subset of C, for all fy sufficiently close
to f, the claim holds.
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The maps f: Uy — f U1 = Uy — Uy and fy : U} — f71U} = U — U} are
holomorphic covering maps with the same combinatorics. It is therefore possible
to define f, ! so that ¢x = fy o f : Ui — f~1U; — U — fy, 'U} is a holomorphic
motion of U; — f~1U;. We may then lift ¢y to obtain a holomorphic motion of
Uy — f7"Uy for all n > 0.

Hence there is a holomorphic motion ¢y of Uy — J(f) such that for all
z € f~1(UL = J(f)), Pa 0 f(z) = fx o ¢ar(z). By the A-lemma, and since J(fx)
is nowhere dense in C, this extends uniquely to a holomorphic motion of Uy
such that for all z € f=1Us, ¢x o f(2) = fr 0 ¢a(2). Setting h = ¢, proves the
theorem.

The next theorem says that if f; is hyperbolic and J(f1) is connected, then
to understand the dynamics of f; on J(f1), it is enough to understand the dy-
namics of a postcritically finite hyperbolic map fo on J(fo). Combined with
the preceding theorem, we have that the dynamics near the Julia set of a hy-
perbolic map with connected Julia set is conjugate to that of a postcritically
finite hyperbolic map.

Theorem 2.26 Let f(z) be a hyperbolic rational map with connected Julia set.
Then there is a unique PFH map in H(f).

This theorem is an immediate consequence of [McM1], Corollary 3.6.

2.5 Mapping schemes

The notion of a mapping scheme is developed in [Mil5] to study parameter
spaces of holomorphic maps of finitely many copies of the complex plane into
itself. This will be a convenient tool which we will use in our definition of tuning
in Chapter 3 and in our definition of laminations in the following section.

Definition 2.27 (Mapping scheme) A mapping scheme is a triple (S, T, w)
consisting of

1. a finite set S of points;
2. a function T from S to itself;

3. a “weight function” w which assigns to each point x € S a nonnegative
integer.

An element © € S is called critical if the weight w(z) is greater than one.
If T C S is a subset which satisfies 71T = T, the triple (T, 7|7, w|7) will
be called a subscheme of the mapping scheme (S,7,w). If a given scheme
is fized throughout the discussion, we will refer to a subscheme by referring
to its underlying set. A component is a subscheme such that for each pair
z,y € T, °™(x) = 7°"(y) for some m,n > 0. A mapping scheme is said to
be of hyperbolic type if for every cycle in S, the product of the weights along
the cycle is larger than one.
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Example: Let f(z) be a PF rational map. Then (Q(f), flo(s),ws()) is a
mapping scheme, where Q(f) = f 1P(f) and wy(z) is the local degree of f
near z. If f is hyperbolic, then this mapping schema is of hyperbolic type.

Let X be an orientable manifold, possibly with boundary, and let (S, 7, w) be
a mapping scheme. A family of maps of X covering the mapping scheme
(S,7,w)isamap F: S x X = S x X such that F|s;xx is a map of X to itself
of degree w(s), where degree means the cardinality of the preimage of a generic
point.

Remark: In [Mil5], the weights of the mapping scheme associated to a PF
polynomial f(z) represent the multiplicities of points, rather than local degrees.
For our purposes, however, we have found it more convenient to measure local
degrees.

A mapping scheme can also be represented as a finite directed graph with
weighted vertices. The vertices of the graph are the elements of S weighted by w.
There is a directed edge from z to y if 7(z) = y. A component of the mapping
scheme is a component of this graph. A subscheme of the mapping scheme is a
union of components of this graph. The disjoint union of two mapping schema
is also a mapping scheme.

Definition 2.28 (Isomorphism of schemes) Two mapping schemes (S, T,w)
and

(S',7',w'") are said to be isomorphic if there is a bijection h : S — S’ which
preserves weights and for which hot = 7' o h. An automorphism of (S, T, w)
is an isomorphism of (S,T,w) to itself.

2.6 Laminations for postcritically finite hyper-
bolic rational maps

In this section, we define the lamination of a PFH rational map. This will
require some results from geometric function theory which we list in the first
section.

Laminations have been used to give both a combinatorial model for the
global dynamics of a degree two rational map, as well as conjectural models
for certain parameter spaces of rational maps (see the Notes and the end of
this chapter). In this work, we define laminations with a more modest goal in
mind: we seek a combinatorial description of the touching of two periodic Fatou
components, and of the pinching of the boundary of a Fatou component.

2.6.1 Riemann mappings and local connectivity

Definition 2.29 A set K C C is said to be full if it is compact, connected,
and if its complement is nonempty and connected. A full set is said to be non-
degenerate if it is not a point.
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Theorem 2.30 (Theorem of F. and M. Riesz) Let f(2) is a bounded ana-
lytic function on the unit disc. Suppose that for every s € E C S,

. 2misy __
lim f(re™) = {x}.
If E has positive Lebesgue measure, then f is the constant map to {z}.

Definition 2.31 (Rays) Let ¢: (A,0) — (U, z) be a Riemann map uniformiz-
ing an open disc U. For t € R/Z the ray of angle t for ¢ is the set
{p(re*™®)|r € [0,1)}, and is denoted by Ry. If lim,_, ¢(re* ™) exists and
is equal to x, the ray R, is said to land at x.

Remark: The set of angles for which the corresponding rays land forms has full
measure with respect to Lebesgue measure on the circle (see [McM3], Theorem
6.1). We will not need this fact.

Theorem 2.32 (Carathéodory) Let K be a full nondegenerate set in C. Let
¢ :(A,0) — (@\K,oo) be a Riemann map uniformizing the complement of K
in @ Then ¢ extends to a continuous map ¢ : A — @ if and only if OK is
locally connected, or if and only if K is locally connected.

Thus Carathéodory’s theorem says that QU is locally connected if and only
if every rays land, and the landing point of R; varies continuously in ¢. The

next theorem says that two rays which land at a common point separate C —U
into at least two pieces lying on different sides of their union.

Theorem 2.33 Let K be a full nondegenerate set in C and U = C\K . Let
¢:(A,0) = (U,00) be a Riemann mapping. Suppose two distinct ¢-rays Ry and
Ry land at a common point x of OU. Then each component of the complement
of the Jordan curve C = Ry U Ry U {z} contains a component of K\{z}.

Proof: Suppose C failed to separate K. Then some component of its com-
plement contains no points of K. Since ¢ is a homeomorphism on U, two distinct
¢-rays cannot intersect in U. By relabelling ¢ and ¢ if necessary we may assume
that for the set W = {re?™||r| < 1,s € (t,t')},¢(W) N K = {z}. Then for
every s € (t,t'), lim,_,; ¢(re?™®) = {x}. This contradicts the Theorem of F.
and M. Riesz.

The following lemma will be useful in our discussion of laminations, and in
the proofs of our theorems in Chapter 9. The first conclusion may be found
in [DH1], Section 2.4.3. The remainder follows from Schonflies theorem and
Jordan curve theorem.

Lemma 2.34 Let K be a full nondegenerate subset of C whose boundary is
locally connected. Let V be a bounded component of C\OK. Then
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1. V is a Jordan domain,

2.V and @\V are closed discs, and

3. a Jordan curve in K is contained in the closure of a unique bounded com-
ponent U of C\OK.

2.6.2 Local connectivity of Fatou component boundaries

Theorem 2.35 Let f(z) be a PF hyperbolic rational map. Then the boundary
of every Fatou component is locally connected and locally path connected.

For the case when  is the basin of infinity of a hyperbolic polynomial, this
theorem follows from a theorem of Douady and Hubbard [DH1]. See also [Mil2],
Theorem 17.5 for a proof in this case.

Proof: (Sketch) First, it suffices to prove local connectivity, since a compact,
connected, locally connected metric space is locally path connected ([Mil2],
Lemma 16.4).

Since every Fatou component is eventually periodic, it suffices to consider a
Fatou component 2 which is fixed under f. The argument given for polynomials
then applies. For completeness, we sketch the proof.

Since f is PF, there is a unique fixed critical point x € Q. Let n be the local
degree of f near z. By Corollary 2.6, there is a conjugacy ¢ : (A,0) — (Q,z)
from z — 2™ to f|o. The fact that f expands the hyperbolic metric on S?—Q(f)
implies that with respect to this metric, the length of every truncated ¢-ray
{p(re*™®)| r € [1/2,1)} is uniformly bounded. Hence the continuous maps
5.t — ¢(re?™) converge uniformly as r — 1.

2.6.3 Abstract laminations

Definition 2.36 (Lamination) e A lamination is an equivalence rela-
tion A on S such that the convex hulls of the equivalence classes in A,
taken in the Fuclidean metric, are disjoint in the closed unit disc. The
support is the union of the equivalence classes containing more than one
point.

e A chord of A is a pair of distinct points which are in the same equivalence
class. A leaf is a chord such that the interior of its convex hull meets the
interior of the convex hull of no other chord.

e A gap is the closure of a component of A — L, where L is the union of
the leaves.

The definition of chord is my own. Chords will play an important role in
Chapter 5. Note that a chord is not necessarily a leaf. For example, if four
points form an equivalence class, the corresponding gap is a quadrilateral. The
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diagonals are chords which are not leaves. Our definition of support is taken
from [McM3].

Remark: In [Thu4], a lamination is defined as a set of chords in the closed unit
disc whose interiors are disjoint, and whose union is a closed subset of the open
unit disc. The closure of the set of leaves of a lamination in our definition is a
lamination in the sense of Thurston. Thurston calls a lamination clean if two
chords with a common endpoint either coincide, or are the sides of a common
gap. Our laminations are clean by definition.

2.6.4 Lamination associated to a polynomial

In this section, we recall the definition of the laminations associated to a poly-
nomial as a prelude to our definition of the lamination for a rational map.

Let p(z) be a monic postcritically finite degree d polynomial, and suppose
its filled-in Julia set K (p) is locally connected; this is true if and only if J(p) is
connected and locally connected (see [Mil2], Corollary 17.4). Let Q denote the
basin of infinity for p(z). Since J(p) is connected, 2 contains a unique critical
point which is the point at infinity. By Corollary 2.6, there is a unique Riemann
map ¢ : (C — A, 00) = (Q,¢) conjugating z — 2% on C — A to f on Q. We
will use laminations to obtain a combinatorial model for p(z) acting on J(p).

By Carathéodory’s theorem, the map ¢ extends continuously to S'. The
lamination A, of p(z) is the equivalence relation on S' generated by s ~ ¢ if
the rays R; and R, land at the same point. Since a simple closed curve C in S2
which intersects both components of the complement of a simple closed curve
C' cannot intersect C' in exactly one point, this defines a lamination. Note that
the equivalence classes are closed, since the map ¢ extends continuously.

Invariant laminations. The lamination associated to a monic degree d poly-
nomial satisfies certain invariance properties, since the extension of the Riemann
map over S! gives a semiconjugacy from z? on S* to p on .J(p). These properties
were explicitly abstracted in [Thud]; we list them below.

Definition 2.37 (Invariant laminations) A lamination A is said to be

1. forward-invariant under z — 2¢ if the image of the endpoints of a leaf
is either a single point, or else form the endpoints of another leaf;

2. backward-invariant under z — z¢ if
(a) if l is any leaf, there is a collection of at least d leaves mapping onto
1 under z — z%; and
(b) for any gap G, the convex hull of its image is either
i. a gap, or
. a leaf, or
114. a single point;
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3. invariant if it is both forward and backward invariant.

The following proposition depends on the fact that the basin of infinity is
fully invariant.

Proposition 2.38 Let p(z) be a monic degree d polynomial with locally con-
nected Julia set. Then the lamination A, is invariant under z — 2¢.

Proof: Forward invariance is clear. That there are at least d leafs in the
preimage of a leaf follows by considering the local picture of p near a point
xz € J which maps onto p(z): if k rays land at p(z), then there are at least
n(z) - k rays landing at x, where n(z) is the local degree of f near x, since {2
is fully invariant under p(z). This argument also shows that the image of a gap
which is the convex hull of a single equivalence class is also a gap which is the
convex hull of a single equivalence class. It remains to show that the image of a
gap G which is not the convex hull of a single equivalence class is again a gap.

The boundary of such a gap R consists of leaves and portions of the circle.
The image ¢(0G) is a Jordan curve C in J(p). Since f is a polynomial, 0K (f) =
J(f), hence the curve C bounds a Fatou component U, by Lemma 2.34. The
component U maps to a Fatou component U’'. Lemma 2.34 implies that the
component U’ is bounded by some Jordan curve C’, and so C' is the image of
C under f. It then follows that the image of R must be a gap which projects
to C' under ¢.

Laminations as combinatorial models. The next proposition establishes
that laminations form a combinatorial model for locally connected Julia sets.
This fact is also stated without proof in [Thu4] and is well-known.

Proposition 2.39 Let A be the lamination of a monic polynomial p(z) with
locally connected filled-in Julia set, and let L be the convex hull of its equivalence

classes. Then there exists a map T : (SQ,Z_) — (C,K(p)) and a postcritically
finite branched covering p: (S%2,A) — (S2,A) such that

1. 7 is a semiconjugacy between D and p which is a homeomorphism off Ly,

which agrees with ¢ on C — A, and which collapses each component of L,
to a point;

2. If p is postcritically finite, then P is combinatorially equivalent to p.

The proof follows from the fact that the lamination associated to a polyno-
mial with locally connected Julia set is invariant. The idea for producing the
map P is to extend z — z% on S! to a map of A preserving the convex hulls of
equivalence classes, and then glue this extension to 2% on C — A. This can be
done since (1) if U is a Fatou component, U is homeomorphic to a closed disc,
by Lemma 2.34, and (2) the diameters of the Fatou components tend to zero,
since J(f) is locally connected.
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Remark: In [Ree2], a generalization of invariant laminations is used to give
a combinatorial model for the dynamics of a postcritically finite hyperbolic
quadratic rational map on its Julia set.

2.6.5 Definition of lamination for PFH rational maps

In this section we define the lamination of a PFH rational map f(z).

Definition 2.40 Let S be a finite set. A lamination covering S is an equiv-
alence relation on S x S' such that the following conditions hold.

1. For x =y, the restriction of the equivalence relation to every component
({z} x S) x ({y} x S*) is a lamination.

2. Suppose x # y. Let [-1,1] x S* be equipped with the Euclidean metric.
Identify {1} x St with {z} x S and {—1} x S* with {y} x S*. Then for
each equivalence class E, there is a choice of convex hull K(E) such that
K(EYNK(E"Y=0 if E+#+ E'. Achord in A is a pair of distinct points
in the same equivalence class.

This definition of lamination reduces to the usual definition in the case when
|S| =1.

The set of chords inherits a natural topology which is the subspace topology
on the set of unordered pairs of distinct points in S x S1. We denote the space of
chords by x(A), or by x if the lamination A is fixed throughout the discussion.

Definition 2.41 (Forward-invariant lamination covering a mapping scheme)
Let

(S, 7,w) be a mapping scheme, and let Fy : S x ST — S x ST be the map covering

the mapping scheme which is gien by z — 2% on {z} x S . A forward-
invariant lamination A covering (S, 7, w) is a lamination covering the set S

such that the image of any equivalence class under Fy is contained in a single
equivalence class.

This reduces to the usual definition of forward-invariance for the case when
|S| = 1. We do not require any form of backward invariance, nor do we require
that the image of an equivalence class is equal to an entire equivalence class. The
reason is the following. Suppose for example that (2 is a fixed Fatou component
for a PFH rational map f containing a superattracting fixed point z. Let ¢ be
the Riemann map produced by Corollary 2.6. Then ¢ induces a lamination on
S1 as in the case for polynomials. However, the resulting lamination can fail to
satisfy the conditions of gap invariance and backward invariance. For example,
see Figure 5.4.

Lamination associated to a rational map.
Let f(z) be a postcritically finite hyperbolic rational map. Recall that the
lifted postcritical set f~1(P(f)) we denote by Q(f).

o Let (Q(f), flo(s),wy) be the mapping scheme of f.
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o If f*(x) € P(f) for some n, we denote by 2, the Fatou component with
center x.

o Let {Q;}zeq denote the set of Fatou components with centers in Q(f).

e For z € Q(f), let ¢, : (A,0) = (Qs, ) be a choice of Riemann mappings
such that f o ¢, (2) = ¢y(q)(2*f (2)). Since f is postcritically finite, every
Fatou component contains a unique point mapping onto P(f), and so
Corollary 2.6 applies. Hence these maps exist, and there are finitely many
such choices.

By Theorem 2.35, the boundary of every Fatou component of f is locally
connected. Hence the maps ¢, may be extended to a continuous map ¢,
on A by Carathéodory’s theorem. We denote the collection of extensions

by EQ.
Thus EQ gives a semiconjugacy between the map Fp : Q(f)xA — Q(f)xA
given by Fy(z) = 2%/(*) on {z} x A and the map f on {Q:}zeqi)-

e Given ¢g, we define the ¢g — (z, s)-ray of f by
Rz,s = gz([oa ]-] : eXp(27m't)).

Note that our definition of “ray” includes the landing point. If the choice
of ¢q is fixed during some discussion, we will call R, s the (z,t)-ray of f.

Definition 2.42 (Lamination associated to a rational map) . The lam-
ination of f, denoted by Ay, is the equivalence relation ~ defined on Q(f) x A
given by (z,8) ~ (y,t) if Ry,s and Ry have a common landing point.

The equivalence relation defined above is indeed a lamination covering the
set Q(f). It is also forward-invariant under the map Fy. The image of an
equivalence class under EQ is a point in the boundary of {Q;}zecq, and the
image of a point under f is a point. The space of chords is closed, but need
not be compact. The arc formed by the chord {(z,s), (y,t)} is defined as the
set a((z,8), (y,t)) = {Raz,s U Ry, }. The interiors of arcs formed by two distinct
chords intersect in at most one point, since all such intersection points are in
the Julia set.

If f is hyperbolic, the lamination of f satisfies a slightly stronger version of
forward invariance which we call chord invariance.

Proposition 2.43 (Chord invariance) The image of a chord under Fy is al-
ways a chord, and never o single point.

Proof: If a chord (x, s) and (y,t) both mapped to the same point under Fp, the
common endpoint of the rays R, s and R, ; would be a critical point in J(f).
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2.7 Bibliographic notes

For a history of the subject up to and including the work of Fatou and Julia, see
[Ale]. The original writings of Fatou and Julia are in [Fatl], [Fat2], and [Jul].

For a general introduction to the subject, see e.g. [Bea] and [Mil2].
Section 2.2.

For proofs of Bottcher’s theorem, the density of repelling cycles in J(f), the
fact that hyperbolic maps are expanding, see e.g. [Bea] and [Mil2]. These also
contain a discussion of the classification of Fatou components. For a proof of
the No Wandering Domains theorem, see [Sull] for Sullivan’s original paper. A
proof may also be found in [Bea]. In [MS] a modification of Sullivan’s original
argument is given in the spirit of the analogy with Kleinian groups. Shishikura’s
proof of Theorem 2.10 may be found in [Shil].

Section 2.3. For a treatment of expanding properties of hyperbolic maps, and
the fact that hyperbolic maps have no indifferent cycles, see e.g. [Bea] and
[Mil2], Section 14.

Section 2.5. The theory of mapping schema is well-developed in [Mil5].
Section 2.6. A proof of Carathéodory’s theorem may be found in [Mil2],
Theorem 16.6. A proof of the Theorem of F. and M. Riesz may be found in
[Car], Volume II, Section 313. Tan Lei and Yongchen Yin [TY] have proved the
following: suppose |P(f) N J(f)| < co. Then every periodic component of J(f)
is locally connected. The proof proceeds as follows. By results of McMullen
in [McM1], one reduces to the case where J(f) is connected. Next, one shows
that boundaries of all Fatou components are locally connected. The case of
parabolic basins requires some delicate arguments. Finally, one shows that the
diameters of the Fatou components tend to zero using the fact that f expands
the hyperbolic metric on C — P(f).

The use of the theory of Riemann mappings and external rays to study the
dynamics of iterated complex polynomials was begun in [DH1]. An introduction
to this topic is given in [Mil2] and [McM3].

The theory of invariant laminations was made explicit in [Thu4]. Lamina-
tions are useful for giving combinatorial models for the dynamics of individual
polynomials. Laminations have also been explicitly used to give conjectural
combinatorial models for parameter spaces of special families of rational maps;
for example, quadratic polynomials [Thu4], one-dimensional subspaces of degree
two rational maps [Ree2], [Ahm], and cubic Newton’s methods [Tanl].

Our definition of lamination is essentially different from that given in [Ahm].
Suppose two Fatou components €y, 5 touch along a set E. Let ¢; be a Riemann
map to ; given by Béttcher’s theorem, i = 1,2. In [Ahm] the associated
lamination is a pair of equivalence relations, one for each ¢, defined as follows.
Fix some i € {1,2}. Consider the set ¢; *(E). Then two points s and ¢ are
called equivalent if and only if they are the endpoints of a geodesic lying in the
boundary of the Euclidean convex hull of ¢;1E.



Chapter 3

Branched coverings

A branched covering f : S? — S? is a continuous map such that for each
x € S2, there exist continuous charts near x and f(z) such that z and f(z)
correspond to the origin and f is of the form w = 2™ for some positive integer
n. The integer n is called the local degree of f near n. Points of local degree
greater than one are called critical points of f. The set of critical points of f
we denote by C(f). The degree of f is defined to be the topological degree of
f as a map from the sphere to itself. For a branched covering f, we define the
posteritical set P(f) by

r(fy=|J .
ceC(f)

A branched covering f is said to be postcritically finite (abbreviated PF) if
P(f)] < oo.

A PF branched covering of the sphere to itself, up to a kind of isotopy, is
the combinatorial analog of a PF rational map. This chapter is devoted to a
discussion of decompositions and combinations of postcritically finite branched
coverings of the sphere to itself.

A PF branched covering may sometimes be combined with a family of poly-
nomials acting on copies of C U S} to form a new branched covering of the
sphere to itself. This process is called tuning; see e.g. [DH1], [Mill], [Ree2].
In the case of quadratic complex polynomials, the term “tuning” is due to A.
Douady and J.-H. Hubbard [DH1]; for maps of the interval to itself, the term is
due to J. Milnor and W. Thurston [MT].

For example, let f(z) be a PFH rational map, and suppose zg is a critical
point of period n > 1 such that the first return map of zg has local degree two.
Let 2; = fi(x0), 4 = 1,...,n— 1. By perturbing f slightly through postcritically
finite branched coverings we may assume that there exists a cycle D; of discs
centered at xz; such that f(D;) = Djt1 modn and such that f°"|sp, is topo-
logically conjugate to z — 22. Now suppose that g(z) is a postcritically finite
quadratic polynomial. Then ¢ extends canonically to a map of the complex

37
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plane C union the circle at infinity S. . The space CU S1 is homeomorphic to
a closed disc, which we identify with Do. Then sending Dg to Dy via ¢(z), D;
t0 D41 mod n via f, and the complement of the D;’s by f gives a new branched
covering called the tuning of f(z) by the polynomial ¢(z), denoted f * gq.

Conversely, suppose that f is a PF branched cover and D = {D,-}i":_o1 is a set
of discs such that f(D) = D, up to isotopy. Then by collapsing each component
of D to a points, one obtains a new branched covering g which is well-defined
up to a kind of isotopy. This process we call collapsing. More formally, we say
that the process of collapsing the discs D gives a quotient map ¢ : f — g; see
[McM3], Appendix B.

We will show that tuning is inverse to collapsing in the following sense: every
map R which is a tuning of another map f by a family of topological polynomials
admits a quotient map to f, and every map R which admits f as a quotient is
the tuning of f by some family of topological polynomials. The proof we give
requires a definition of tuning for arbitrary PF branched coverings. In Section
3.4 we discuss several complications which arise when making such a definition.

The first three sections give the definitions of branched covering, combina-
torial equivalence, and quotient map. Section 3.4 discusses ambiguities in the
above definition of tuning, and explains how we will resolve them through the
use of mapping schemes and peripherally rigid maps. Section 3.5 defines periph-
erally rigid maps. Section 3.6 defines matings as a warm-up to the definition
of tuning in Section 3.7. The theorems in Section 3.8 show that tuning and
collapsing are inverse. We conclude in Section 3.9 with a few remarks about
other definitions of tuning, and the dependence of the combinatorial class of
tuning on the data.

3.1 Branched coverings

Let f be a PF branched covering, and let P(f) be the postcritical set of f. The
lifted postcritical set is defined by

A degree d branched covering has 2d—2 critical points, counted with multiplicity.
A branched cover is called posteritically elementary if |P(f)| = 2. A branched
covering f for which f~1(oco) = {oco} is called a topological polynomial. A
postcritically finite branched covering f is said to be hyperbolic if every cycle in
P(f) contains a critical point. For example, if p(z) is a PFH polynomial, then
p is also a PFH topological polynomial if we forget the fact that p is conformal.
Mapping scheme of a branched cover. Let f be a postcritically finite
branched covering. The mapping scheme associated to f is the triple (Q(f), flo(s), wys)
where wy(z) is the local degree of f near x € Q(f). The restriction of f
to a subset B C Q(f) gives a subscheme of (Q(f), flo(s),wy) if and only if
(f 'B)NQ(f) = B. The subscheme B is of hyperbolic type if and only if every
cycle in B contains a critical point. This is equivalent to the product of the
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weights along every cycle being strictly greater than one. Hence the mapping
scheme of a hyperbolic PF map is of hyperbolic type.

3.2 Combinatorial equivalence
The following definition is due to Thurston.

Definition 3.1 (Combinatorial equivalence) Let f and g be two branched
coverings of the sphere to itself. Then f and g are said to be combinatorially
equivalent if there are homeomorphisms Yy and Y1 such that

L ;i (S2,P(f)) - (S%P(g)),i =0,1;

2. Ygo f=go; i.e the diagram

($2,P(f)) X (52 P(g))

fl lg

(S%P(f)) 25 (% P(g))
commutes;

3. o and 1 are isotopic through a continuous family ¥y, t € [0,1] of home-
omorphisms for which Y| p(s) = o|p(s) for all t.

An isotopy class of homeomorphism v : (S%, P(f)) — (52, P(g)) is said to be
a combinatorial equivalence from f to g if there exist 9, 11 € ¥ making the
diagram above commute. We shall denote the combinatorial class of a branched
covering f by [f], and the total space of all elements in [f], equipped with the
uniform topology, by S([{]).

Combinatorial equivalence defines an equivalence relation on the set of branched
coverings which is much coarser than topological conjugacy.

Example: Let f(2) = 22, and let g be a map defined in polar coordinates by
g(r,8) = (r,260). The map g extends uniquely to a map of the Riemann sphere.
Then f and g are combinatorially equivalent, but not topologically conjugate.

A basic question is, when does a combinatorial class of postcritically finite
branched covering contain a rational map? Thurston has answered this question;
we state his theorem in the next chapter.

Let f and g be two combinatorially equivalent maps. A choice of combina-
torial equivalence ¥ between f and g determines an isomorphism between their
mapping schemes which depends only on the isotopy class relative to P(f) of

.

Proposition 3.2 Let f be a PF branched covering. Then |P(f)| = 2 if and
only if f is combinatorially equivalent to z — 2™ for some n.
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Proof: Since |P(f)| = 2, there are exactly two critical values of f. It follows
that there are exactly two critical points of f, by counting local degrees. Again
by counting local degrees, every critical point is also a critical value. We may
conjugate f by a homeomorphism such that P(f) = {0,00}. Then the identity
map gives a combinatorial equivalence between f and z — 2™.

Remark: To specify a combinatorial class of postcritically finite branched cov-
ering of the sphere to itself, it is enough to specify a covering f : S? — Q(f) —
8?2 — P(f) and an embedding i : S? — Q(f) — S? — P(f), up to isotopy fixing
P(f). The covering may be specified by choosing a basepoint z € S? — P(f) and
choosing a subgroup of m;(S? — P(f), ). The embedding may be specified by
choosing a point y € S% — Q(f), arranging so that i(y) = x, and specifying a ho-
momorphism of 7 (S2—Q(f)) — m1(S?— P(f)) which preserves the appropriate
“peripheral data”. The concept of fundamental groups of surfaces with periph-
eral data is outlined in [Hem]. It can then be shown that this group-theoretic
data is enough to pin down the combinatorial class of the map.

Remark: A useful equivalent formulation of combinatorial equivalence can be
made as follows: f and g are combinatorially equivalent if there is a continuous
one-parameter family f; of branched coverings such that fo = f, fi = g, and
P(f;) varies isotopically as ¢ varies. Hence changing f by pre- or post- composing
with a homeomorphism isotopic to the identity through maps fixing P(f) yields
a map which is combinatorially equivalent to f. The proof depends on results
from the theory of mapping class groups; see [Bir].

3.3 Quotients

The following development is based on material found in [McM3]. Let A and B
be closed subsets of S2.

Definition 3.3 (Quotient map) A quotient map ¢ : (5%, A) — (S%,B) is
a continuous surjective degree one map such that

1. (A) = B;

2. ¢~1(b) is connected for all b € B;

3. ¢~ ()| =1 for all z € S? — B.

Two quotient maps ¢o and ¢1 are said to be isotopic if there is a continuous
one-parameter family ¢.,t € I of quotient maps between them such that ¢¢|a =
¢ola for all t € I. The combinatorial class of a quotient map ¢ is the set of
all quotient maps which are isotopic to ¢.

We now add dynamics to the picture. Intuitively, the idea is that by “col-
lapsing” together points in the postcritical set, we may sometimes be able to
get a new branched covering.
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Definition 3.4 (Quotient of covering) Let f and g be two branched cover-
ings of the sphere, and let

¢: (8%, P(f) = (5%, P(9)

be a combinatorial class of quotient map. We say that g is a quotient of f,

and write f 4 g, if there exist ¢g,p1 € ¢ such that go ¢1 = ¢g o f, i.e. if the
diagram

$%,P(f)) 5 (S P(g)
f l lg
(S%,P(f)) £ (S%P(g)
commutes. The quotient ¢ is said to be proper if for some b € P(g), |¢~1(b) N

P(f)] > 2. A point b for which this holds is referred to as a point which is
blown up under ¢~ !.

(

Mapping scheme of a quotient map. Let ¢ : f — g be a combinatorial
quotient map. Let B’ C P(g) denote the set of points x € P(g) for which
|¢~1(x)| > 1. Let B be the smallest subset containing B’ such that the restric-
tion of (Q(9),9|o(g),wy) to B is a mapping scheme. (Thus B is the set of all
points in Q(g) which eventually land in blown-up points.) The mapping scheme
of ¢ is defined to be the restriction of the mapping scheme of g to B.

Definition 3.5 (Support of quotient map) Let ¢ : (S?, P(f)) — (S2, P(g))
be a combinatorial class of quotient map, and let B C Q(g) be the set of all points
which land on points which are blown-up under ¢. The support of ¢ is a finite
set of closed discs {Dgy},cq(r) contained in the domain of ¢ which is defined
up to isotopy as follows. Choose a representative ¢g € ¢. For each x € B,
we choose a small closed disc N, about x such that N, N B = {z}, and set

D, = ¢61(Nz)

Since ¢g !(x) is connected and ¢ is degree one, the preimages D, are indeed
closed discs. This definition makes sense. Given a fixed choice of discs N, any
two maps ¢o,$1 € ¢ are isotopic, and so there is an ambient isotopy fixing
P(f) from discs D, defined by ¢ to those defined by ¢;. Given two sets of
discs N, N., there is an ambient isotopy fixing P(g) sending N, to N.. The
isotopy classes of the boundaries of the D, are independent of the choices made
and form an invariant of the combinatorial quotient map. Thus the support
of ¢ consists of a collection of discs in the domain which is forward-invariant,
up to isotopy. Away from the support of a quotient map ¢ : f — ¢, f and g
look similar, since ¢ is degree one outside of the preimages of the finite set of
blown-up points.

The next proposition says that postcritical points of g which are blown up
under ¢! are forward-invariant; its proof can be found in [McM3], Appendix
B.
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Proposition 3.6 (Blown-up points are invariant) Let f and g be branched

coverings, let f 4 g be a combinatorial quotient map, and let B' C P(g) denote
the set of points b for which |¢~1(b) N P(f)| > 1. Then g(B') C B'.

If D, is a component of the support of ¢ which is the preimage of a small
neighborhood z € B, then the boundary of D, maps by the local degree of g
near x onto the boundary of D the component of the support containing
61 (g(x)-

A corollary to the previous proposition is the following fact: if ¢ : f — g is
a combinatorial quotient map, we may take the discs D, and N, to be forward-
invariant under f and g by suitably modifying f and g within their combinatorial
classes. Moreover, one may actually achieve this modification through a family
of maps which agree with f and g on Q(f) and Q(g), respectively.

Conversely, suppose D is a collection of disjoint closed discs such that f(D) C
D, up to isotopy. Then one may form a quotient map from f to a PF branched
covering g by collapsing every component of D to a point.

g9(z)>

Example: Let p(z) be a postcritically finite polynomial of degree d. Then z¢
can be realized as a quotient of p(z). To see this, note that the filled-in Julia set
K (p) is connected. Let ¢g(z) be a continuous map which collapses K (p) to 0,
sends infinity to infinity, and sends the complement of K homeomorphically to
the punctured plane. Then ¢y is a quotient map. Since p and 22 are both degree
two coverings of the plane off of K (p) and 0 respectively, ¢o|c— k() pulls back to
a map ¢; which may be extended to a quotient map by sending infinity to itself
and again collapsing K (p) to the origin. By construction, ¢y and ¢; are isotopic:
they agree on K (p), and any two orientation-preserving homeomorphisms of the
punctured plane are isotopic through maps fixing the puncture. Hence the class
¢ of ¢ is a combinatorial quotient map from p(z) to z%.

Example: If p(z) is an infinitely-renormalizable quadratic polynomial, Mc-
Mullen [McM3] has shown that p admits infinitely many critically finite hyper-
bolic quotient maps p,. Conjecturally, these maps converge to p. By work of
J.-C. Yoccoz (see e.g. [Hub]), this convergence for all such p would imply the
density of hyperbolic dynamics in the quadratic polynomial family.

The next proposition says that the existence of a quotient map between two
coverings is a property of their classes, and not of the individual representatives.

Proposition 3.7 Let ¢ : f — g be a quotient map. quotient map. Then given
any f € [f] and g € [g], there exists a quotient map from f to g.

Proof: Let v,b(’; and ¥y and ¥Y be homeomorphisms giving combinatorial
equivalences from f to f and g to g as in the definition given above. Let ¢
and ¢1 be representatives of ¢ as in the definition of quotient map. We just
concatenate the diagrams on the left by the equivalence for f and on the right
by the equivalence for g. By composing the three isotopies between ¢g and
¢{ , ¢1 and ¢o, and ¥§ and ¢y, we obtain an isotopy between the composition
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1/;(]; opgor)§ and 1/1{ o ¢ 04{ which is constant on the postcritical set of f. Hence
this composition forms a combinatorial quotient map, as required.

3.4 Discussion of tuning

There are three ambiguities in the definition of tuning, as sketched in the intro-
duction to this chapter.

Let f(z) be a PFH rational map. First, suppose ¢ is a strictly preperiodic
postcritical point of f(z), and suppose f(c) = xo. Then after gluing in the discs
D;, we no longer have a natural identification of f(c) with a point in the domain
of ¢(z). Hence we must make a choice of identification of f(¢) with a point in
Dy which is eventually periodic under ¢(z), if we want the tuning f * g to be
PF. Second, one must find and choose a perturbation of f(z) which possesses
an invariant set of discs {D,} as in the above example. Third, if the degree of
q is larger than two, one must choose a conjugacy from g on S., to f°" on dDg
along which to identify the dynamics of ¢ on S., and f on dD.

We deal with the first ambiguity as follows. We first define
Family of topological polynomials covering a mapping scheme. Let
(S, 7,w) be a mapping scheme. A family P of topological polynomials covering
(S, 7,w) is a map

P:SxS5*—SxS°

whose restriction p; to {z} x S? maps {z} x 5% to {7(x)} x S? by a degree w(x)
topological polynomial sending infinity to infinity with local degree w(z). The
family P is said to be postcritically finite if

I U P < oo
n>0,2€S
c€C(pa)

The family P is said to be a family of polynomials covering the the mapping
scheme if the map P is conformal, i.e. each map is given by a complex polyno-
mial.
Example: Consider the polynomials po(2) = 22 — 1 and p;1(z) = 2° — 1. Then
we may let po(2) and p;(2) act on two copies Cg, C; of the sphere by sending
Cy to C; by py(z) and C; to Cy by p1(2). Then P = {p;,p-} is posteritically
finite. The family P covers the mapping scheme (S, 7,w) where S consists of
two vertices zg, z; weighted by w(zo) = 2, w(z1) = 3, 7(x¢) = z1,7(21) = Zo.
Let B C Q(f) be a forward-invariant subset such that (B, f|,ws|B) is a
subscheme of the mapping scheme of f. Let P : Bx (CuSL ) — Bx(CuSL,) be
a PF family of polynomials, extended to maps of CUS._, covering the mapping

schema B x (C U SL). That is, the restriction of P to each component is a
polynomial, and the forward orbits of the set of critical points of P is finite.
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If we then carry out the tuning construction by gluing the restriction of P to
{z} x (CuU SL) into a disc D, near z for each € B, the dynamics of the
resulting tuned map f x P is well-defined on the postcritical set since B is a
subscheme of the mapping scheme of f.

Bottcher’s theorem gives a way of resolving the second problem for rational
maps. That is, if B C Q(f) is as in the previous paragraph, then there is always
a canonical set of discs D such that each disc D, € D contains a unique point
of B, f(D;) = Dy, for all z € B, and f : D, — 0Dy, is topologically
conjugate to z — z%7(#), Since for each x, the restriction P to {z} x (CU SL)
is topologically conjugate to z — 2#(*) we can indeed replace the dynamics of
f on D with that of P on B x (CU SL). We will explain this in more detail in
the next section.

If f(2) is hyperbolic, then the set of conjugacies along which to glue is always
finite, and so we just equip the pair (f,P) with a choice of such a conjugacy to
resolve the third ambiguity. Thus this conjugacy amounts to a choice of “gluing
data” for the tuning.

However, if we attempt to define tuning for PFH branched covers in a similar
fashion, we may no longer appeal to Bottcher’s theorem for the second step. We
will therefore restrict the definition of tuning to those PFH branched covers f
which are topologically conjugate on a neighborhood of Q(f) to a PFH rational
map g near Q(g). We call such maps f peripherally rigid maps.

3.5 Peripherally rigid maps

Definition 3.8 (Peripherally rigid map) A postcritically finite branched cov-
ering f is said to be peripherally rigid if for all © € Q(f), there exist home-
omorphisms M, : (S%,z) — (52,0) such that Mg,y o0 foM;*: (A,0) = (A,0)
is given by z — o)z @) where |a(z)| = 1 and wy(x) is the local degree of f
near x, and such that the discs D, = M, (A) are disjoint.

The set D = Uzeq(y) Dz is called the support of the peripherally rigid map
f- The subspace of S([{]) consisting of all peripherally rigid maps combinatori-
ally equivalent to f in the subspace topology will be denoted by N ([{])-

The discs D, satisfy f(Dz) = Dy(,). As a closed subset of the sphere, the
support D of a peripherally rigid map is uniquely determined, since points on
the interior of the support converge to attracting periodic points, while points
on the boundary do not.

More generally, if f is a postcritically finite branched covering, and if B C
Q(f) is any subscheme, the map f is said to be peripherally rigid near B if it
satisfies all the conditions in the definition of peripherally rigid where we replace
the set Q(f) with B. The B-support of f is then defined to be the union of the
discs D,,, x € B.

We will now prove that peripherally rigid maps exist. We will not need the
fact that they are dense, but it is an easy consequence of the proof.
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Theorem 3.9 (Peripherally rigid maps are dense) Let f be a PF branched
covering. Then the set of peripherally rigid maps is C° dense in S([{]).

To prove this, we will need the following notion.
Family of local homeomorphisms of S' covering a mapping scheme.
Let (S,7,w) be a mapping scheme. A family F of local homeomorphisms of S*
covering the mapping scheme (S, 7,w) is a continuous map

F:SxS'—>8§xs!

whose restriction to the component {z} x S* sends {z} x S! to {r(x)} x S! by
an orientation-preserving local homeomorphism of degree w(x) with respect to
the counterclockwise orientation on S'. F is said to be rigid if it is of the form
2+ a(x)z"® on {z} x S! for some a(z) with |a(z)| = 1. The space of all such
local homeomorphisms in the uniform topology will be denoted by F(S, T, w),
and the space of rigid maps will be denoted by R(S, 7, J).

The space R(S, 7, w) is canonically homeomorphic to the space

I s

TES

via the homeomorphism F — (F(z,1))zcs.

Theorem 3.10 There is a canonical deformation retract of F(S,T,w) onto

R(S, T, w).

Proof: We first do the case where |S| = 1. The set of degree d orientation-
preserving local homeomorphisms p of the circle to itself is a product space
S1 x H. The projection maps are p — p(1) € S* and p — p(1)~! - p. The
fiber H; above t € S! is contractible to the map z + t - z%. To prove this, we
may assume that p(1) = 1. Let p be the lift of p to the universal cover (R, 0)
mapping by z — exp(2wiz). Let ps(z) = exp(27i[(1 — s)p(z) + s - d - z]). Then
ps is a deformation retract of H; onto z — z¢.

To prove the general case, we apply the same argument on each factor
{z} x S',z € S. The space F(S,7,w) is homeomorphic to the product space
([T,es S*) x H, where H = {F|F(S x {1}) C S x {1}}. The fiber H is con-
tractible, using the same lifting argument.

Proof of Theorem 3.9.

We need to prove the following assertion. Let f be a PF branched covering
of the sphere to itself. Then given any small e-neighborhood V' of Q(f), there is
a family of maps f; such that fo =0, fi|s2_y = f for all ¢, and f; is peripherally
rigid.

Suppose V is given. By the continuity of f, for each z € Q(f), there is a
closed disc D, C V such that D, NQ(f) = {z}, and such that every component
of f~1D, which intersects Q(f) is contained in V. By precomposing f by a map
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isotopic to the identity through maps fixing Q(f), and which are the identity
off V, we may assume that f(D,) = Dy(,). Let D = Ugeo(q)Ds-

Hence we may assume that f has this property. The Alexander Trick ([Bir],
Section 4.2) shows that we may assume f is radial. This means that for all
z € Q(f), there are homeomorphisms hy : (Dy,z) = (A,0) such that hy,) o
fohy':(A,0) = (A,0) is given in polar coordinates by

(r;0) = (7, p2(0))

for some homeomorphism p, : St — S*.

The homeomorphisms {hs},cq(s) identify f|,p with an element F' of the
space F(Q(f), flo(s),wy)- By Theorem 3.10, there is a canonical deformation
of F to an element of R(Q(f), flg(s),wys). Extending this deformation to a
deformation of f through maps which are radial on the discs D, proves the
theorem.

We will define the “gluing data” for tuning by defining markings of periph-
erally rigid maps.

Definition 3.11 (Marking of peripherally rigid map) Let f be a periph-
erally rigid map and (Q(f), flo(s),wy) its mapping scheme. Let B C Q(f) be
a subscheme of its mapping scheme. A marking of the rigid map f near
B is a choice of homeomorphisms {M,}.cp as in the definition of peripher-
ally rigid map. A marking of f near B is said to be invariant if in addition,
Myzyo foMyt:(R,0) = (&,0) is given by z — 1- 27 where wy(x) is the
local degree of f near x. Two markings are said to be equivalent if they agree
on the boundary of the B-support of the map f.

Let B be a subscheme of the mapping scheme of f. The set of markings of
f near B, up to equivalence, is the same as the set R(B, f|p,ws|p): an initial
choice of a marking of f near B gives an identification of {0D, },cp with Bx S'.
This homeomorphism is not canonical, however, since it depends on an initial
choice.

If the mapping scheme of f restricted to B is of hyperbolic type, then invari-
ant markings always exist, since z = az™,n > 2 is conjugate via rigid rotations
of S to z +— 2™ for any a with |a| = 1. If B is of hyperbolic type, then the set
of markings of f near B is nonempty and finite, since any orientation-preserving
homeomorphism A : S' — S! conjugating z — 2™, n > 1 to itself is necessarily
a rigid one, i.e. is multiplication by a root of unity.

The following examples will all be used in the sequel.

Example: Canonical peripherally rigid map associated to a monic

polynomial. Let p(z) be a monic degree d polynomial acting on C. Let
B = {oo}. Since oo is a fully invariant superattracting fixed point, p(z) may be
extended canonically to a map on CUS! by sending the ideal point exp(2mit)-co
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to the point exp(27id-t)-oo. We may then form a peripherally rigid map of the
sphere to itself by identifying CU S, with the lower hemisphere A, and setting

_ p(z) if z € A,
27 ifzeC-A

We call the resulting map p(z) the canonical map peripherally rigid near oo
associated to p(z).

The map p(z) admits d — 1 distinct invariant markings near the point at
infinity (up to equivalence) which are the maps z — wz, where w is a (d — 1)st
root of unity. The identity map will be called the canonical invariant marking
of P near infinity.

If p is monic quadratic polynomial, the canonical marking of p is the unique
invariant marking. More generally, suppose f is a B-peripherally rigid map for
some subscheme B of its mapping scheme. If every vertex of B has weight one
with one exception x of weight two, then f admits a unique invariant marking
near B, up to equivalence.

Example: PF maps. Let f(z) be a PF rational map and B C Q(f) a
component of hyperbolic type of its mapping scheme. We can produce a B-
peripherally rigid map in a canonical fashion by appealing to Bottcher’s theorem.

Since B is a component of the mapping scheme of f, the set B contains a
unique superattracting cycle {zg, 21, ...,2,—1}. By Bottcher’s theorem, there
exist Riemann mappings ¢; : (A,0) — (U;, x;) conjugating f°P on U; to z — z¢,
where d = [[, wy(z;). Let A(r) = {z| |2] < r}.

We now “dilate” the map f by postcomposing with a canonical homeomor-
phism so that the discs of radius one-quarter in the local coordinates given by
Bottcher’s theorem are mapped onto each other. Set D; :Agbi(A(l /4)), and

postcompose f by the homeomorphism g such that g = id on C — D!, and such
that ¢;11090¢;(2) : A — Ais given by (r,8) = (pi(r), ), where p; is the unique
piecewise-linear map chosen so that g(f(D;)) = D;+1. The homeomorphism g
is canonical, by the uniqueness part of Bottcher’s theorem.

The map g o f may then be similarly adjusted near points in B — U;x; so
that the resulting map f is B-peripherally rigid. The Riemann maps ¢,,z € B
determine an invariant marking { M, }cB.

Example: Families of topological polynomials covering a mapping
scheme. Let P be a family of PF topological polynomials covering a mapping
scheme (S, 7,w). Then the restriction of P to the set of points at infinity gives
a mapping scheme which is canonically isomorphism to the scheme (S, 7, w).
We say that the family P is rigid near infinity if P : S x S2 — S x S? can
be equipped with discs D, about the point at infinity in {z} x S? such that the
following holds. There exist homeomorphisms N, : (S2,00) — (S2,0) such that
Nj@yoPoN,1:(A,0) = (A,0) is given by z — a(z)2"®), where |a(z)| = 1.
We define markings and invariant markings in a manner analogous to that for
branched coverings. A family P of monic polynomials acting conformally on
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copies of the Riemann sphere and covering the mapping scheme (S, 7,w) yields
a canonical family P of topological polynomials which are rigid on the discs

C — A, in the same way as for polynomials.

3.6 Mating

In this section we define the mating of two topological polynomials which are
peripherally rigid near their distinguished totally invariant postcritical points.

Let f and g be two topological polynomials which are rigid near infinity.
Given markings M of f and N of g near the points at infinity, a new branched
covering h = (f, M) (g, N) can be constructed by removing the discs and gluing
along the markings. More precisely, we set

) Mofom? if € C— A,
h(z) = - R
1/zoNogoNtol/z ifz€A.

We call the resulting map h the mating of f and g along M and N.

Example: matings of polynomials. Let p(z) and ¢(z) be two monic poly-
nomials of degree d. Let p(z) and g(z) be the associated canonical peripher-
ally rigid maps. Then by gluing along their canonical markings, we obtain a
branched covering of the sphere which is called the mating of p and q. This
coincides with the definition of mating given in [Tan2].

3.7 Tuning

Let f be a PF branched covering, and let B C (Q(f), f,ws) be a subscheme
of the mapping scheme associated to f. Suppose that B is of hyperbolic type;
this means that every cycle in B contains at least one critical point. Suppose
further that f is peripherally rigid near B.

Let P be a PF family of topological polynomials covering the mapping
scheme B, and assume that P is rigid near the set B of points at infinity.
Then the mapping scheme (B, P|g,wp) is canonically isomorphic to the map-
ping scheme (B, f|p,wy|B), where wp(y) is the local degree of P at the point
Y.

Recall that the idea is to glue in the family P into the B-support {D;}.cB
of f. We now choose gluing data. Choose an invariant marking {M,},cp of f.
Let {N'},, . be an invariant marking for P. As with matings, the tuning of
f by P along {My}zep and {Nyp},, g is defined by gluing P into the discs
associated to f and B along the given markings. Suppressing the dependence
on the markings, we denote the resulting map by f*P. Since B is of hyperbolic
type, the set of invariant markings is finite, therefore the set of possible choices
of gluing data is also finite.

To write the formula in a convenient way, given z € B, we define m,(z) =
N_' 01/z0 M,(2); given 2’ € B, we define ny (z) = M; ' 01/20 N, (z). Then



3.8. TUNINGS AND QUOTIENTS AS INVERSES 49

h = f =P is defined by

h) = £(2) , if z is not in the B-support of f,
T\ nyoPoma(z) ,ifze M;YA,

where f(z) = y,P(z') = y'. The union of the discs D, is called the support of
the tuning f % P.

Example: Mating is a special case of tuning. The mating of a pair f,g
of degree d topological polynomials that are rigid near infinity is topologically
conjugate to the tuning of f by g, or g by f.

Example: quadratic polynomials. Let f(z) = 22 + ¢ be a PF hyperbolic
polynomial, and let g(z) = 22 + ¢’ be any PF quadratic polynomial. Then f(z)
contains a unique finite superattracting cycle of some period k. The component
B of the mapping scheme containing this cycle is Q(f) — {o0}. The set B
contains a unique critical point 0 € B of multiplicity one, so the mapping scheme
B C (Q(f), f,wy) contains a unique vertex of weight larger than one which has
weight equal to two. Since f(z) is PF and hyperbolic, B is of hyperbolic type.
The general construction given in Section 3.5 applies, and so by varying f(z)
within its combinatorial class we may find a representative fo € [f] which is
B-peripherally rigid. Moreover, fo admits a unique invariant marking. Define a
family of polynomials {p,}zep =P : Bx C — B x C by p,(2) = g(2) if z =0
and p, (2) = z otherwise. Then P is PF since g is PF. Let P denote the canonical
peripherally rigid family of maps associated to this family of conformal monic
polynomials. Mark P near its points at infinity by the identity maps. Then the
tuning fy * g along these markings is canonical, up to the choice of the rigid
representative fy.

3.8 Tunings and quotients as inverses

An immediate consequence of the definition of tuning and quotient map is the
existence of a canonical combinatorial class of quotient map ¢ : f *P — f.

Theorem 3.12 (Tuning yields quotient) Let R be the branched covering which
is the tuning f*P of a PF branched covering by a family of topological polynomi-
als P. Then there is a canonical combinatorial class of quotient map ¢ : R — f
given by each component of the support of the tuning to a point.

Alternatively, one may think of this as cutting out the discs {D, } comprising
the support of the tuning and gluing in z — 2%(*), The next theorem shows
that a map which admits a quotient is a tuning of some map by a family of
polynomials.

Theorem 3.13 (Quotient yields tuning) Let ¢ : R — f be a combinatorial
quotient map. Suppose that the mapping scheme B C (Q(f), f,wy) of ¢ is of
hyperbolic type. Then there are R and f combinatorially equivalent to R and f
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such that f is B-peripherally rigid and R is the tuning of f by some family P
of topological polynomials covering B and rigid near infinity.

We call the family P the family of polynomials induced by the quotient map

@.

Small neighborhoods of the blown-up points in P(f) under ¢ form an in-

variant set of discs, up to isotopy. Cutting along these discs and collapsing the
boundary will yield the family of polynomials.

Proof: First, we may assume that there exist discs N, centered at x € B such
that f(Ny) = Ny(y), and that for D, = ¢ 1(N,), R(D;) = Dy(y), ie. the
discs N, are mapped onto themselves by f, and their preimages under some
representative of ¢ are mapped onto themselves by R.

By precomposing R by a homeomorphism isotopic to the identity through
maps preserving Q(f) and dD,, we may assume that R leaves invariant a set
of topological annuli whose interiors contain the curves 0D,. By conjugating R
by a homeomorphism isotopic to the identity rel Q(f) and 0D, we may assume
the annuli A, are preserved under R, i.e. R(Az) = Af(y)-

By the Alexander trick and Theorem 3.10, there is a one-parameter family
of maps R; agreeing with R off of the union of the A, and joining R to a map
R which is rigid on 8D,. The map R is combinatorially equivalent to R, by
construction.

Since the mapping scheme (B, f|p,w¢|p) is of hyperbolic type, there exist
coordinates on 0D, induced by homeomorphisms h, : 8D, — S* such that the
map R|sp, in these coordinates is given by z — 2%(®)| where w(z) is the local
degree of f near x € B. Fix one such choice of coordinates.

Let U = S2—UD,. Define a branched covering f be the branched covering as
follows. Set ﬂU = }_2|U. The homeomorphisms h, extend to Riemann mappings
hs : Dy — A. The maps hy(;) o f o h;' then extend to a map (A,0) — (A,0)
of the form z — 2%#(%)_ We then define f on D, by h;(lz) 0 z%1(®) o . Define
a family P of topological polynomials by as follows. Set

Pligyxa =hs@y o fo ht,

and
Pliayx(s2-a) = 27,

Then f and P are peripherally rigid maps equipped with invariant markings
such that f x P = R.

We now show that f is combinatorially equivalent to f. Since the existence
of a quotient to f is an invariant of the combinatorial class of R, there is a
quotient map ¢ from R to f. Let ¢o,$1 € ¢ be such that ¢o o R = f o ¢ with
$o ~ ¢1 through maps fixing P(R). The restriction of ¢ and ¢; to U may then
be extended to give maps 1y, 1, such that ¢ o f = f o). Since ¢y and ¢, are
isotopic, so are 1y and 11, and so the 9; determine a combinatorial equivalence

between f and f.
|
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3.9 Notes

Our definition of mating coincides with the formal mating of polynomials as
defined in [Tan2]. There is another notion of mating where we are allowed to
collapse pieces of the postcritical set which lie in disjoint closed discs which
are permuted up to isotopy and map by degree one. We will not consider this
definition; see [Tan2].

The question of how the combinatorial class of the tuning f * P depends
on the class of f, the “class” of P (see Section 4.11 for the definition), and the
“gluing data” is a subtle one. This will be the subject of later work.
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Chapter 4

Combinatorial dynamics of
arcs and curves

Let C(P(f)) denote the set of isotopy classes of simple closed curves in S2— P(f).
A branched covering f defines a relation on C(P(f)) x C(P(f)) which we call
the pullback relation, and denote by f*. The pullback relation was used by
Thurston to characterize those PF branched coverings which are combinatorially
equivalent to rational maps. The idea is that if there exists a finite set I' of
disjoint simple closed curves behaving in a certain way under f*, then I" forms
a topological obstruction to the existence of a rational map which is equivalent
to f. Such a set I' is called a Thurston obstruction. In practice, however, it is
usually difficult to decide when a given map satisfies Thurston’s criterion, since
there are infinitely many collections I" to check.

In this chapter, we introduce another relation which is a natural analog of
the relation f*. Let A(P(f)) denote the set of embedded arcs whose interiors
are contained in S? — P(f) and whose endpoints lie in P(f), up to isotopy fixing
P(f). The map f defines a relation on A(P(f)) x A(P(f)) which we call the
pushforward relation and denote by f*.

There is a natural notion of an intersection number between an isotopy class
of arc and curve. Using intersection numbers and ideas of Shishikura and Tan,
we show that arcs and curves which intersect have restricted dynamics under
the relations f, and f*, respectively. We then show that topological obstruc-
tions to a branched covering being combinatorially equivalent to a rational map
are severely restricted by the presence of periodic arcs under the pushforward
relation. The main result is the Shishikura-Tan theorem, which says that a
Thurston obstruction which intersects a periodic arc is a very special one called
a Levy cycle.

Section 4.1 lists basic definitions. In Section 4.2 we prove an important
topological fact needed for our analysis. Section 4.3 lists definitions concern-
ing relations and their iterates. Sections 4.4 and 4.5 give the definitions and
basic properties of the pullback and pushforward relations on curves and arcs.

53
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In Section 4.6 we give a detailed analysis of how intersections of curves with
arcs and arcs with arcs restrict the dynamics under the relations. In Section
4.7 we introduce linear transformations associated with invariant sets of curves
and arcs and state Thurston’s classification of PF rational maps. Section 4.8
applies the analysis of intersection numbers to Thurston obstructions. Section
4.9 is a digression which shows that certain linear transformations associated to
pushforward and pullback relations are adjoint with respect to a pairing defined
by intersection numbers.

Section 4.10 gives an analysis of how the relations behave under tuning and
passing to quotients. There, we prove that a rational map R which admits a
quotient is the tuning f % P of a rational map f by a family of polynomials
P. The fact that f is equivalent to a rational map will follow from results in
[McM3]; for completeness, we also give a proof. In the appendix to this Chapter,
Section 4.11, we prove a generalization of the necessity of Thurston’s criterion
which we will need later.

4.1 Arcs and curves

Definition 4.1 (Simple closed curves) e A simple closed curve v in
(82, A) is the image of a continuous embedding of the unit circle into
S2— A

o Two simple closed curves v,~' are said to be isotopic relative to A,

(or more simply, isotopic rel A, or, if the set A is understood, merely
isotopic ) if there erists a continuous one-parameter family hy,t € I of
embeddings of the unit circle such that ho(S') = v and hy(S') = ~'.

o Two simple closed curves v,y will be called parallel if they are isotopic.

o A simple closed curve which is contractible will be called inessential; oth-
erwise, it is essential.

o A simple closed curve 7y is said to be peripheral if v is isotopic into every
neighborhood of a point a € A.

e A curve system I is a collection of disjoint, essential, simple closed
curves, no two of which are parallel. A curve system is called nonpe-
ripheral if none of its elements are peripheral.

o The set of isotopy classes of simple closed curves in (S%, A) will be denoted
by C(A).

Remark: A nonperipheral curve system is also called a multicurve in [Thu4]
and [DH2].

Two simple closed curves on a compact orientable surface are isotopic if and
only if they are homotopic. Thus the definitions given above are equivalent to
those obtained by replacing “isotopy” with “homotopy”. See e.g. [Eps].
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A peripheral curve is one which can be shrunk to a point in A.

Curve systems are always finite: there can be at most 2|A| — 3 elements in a
curve system, and at most |A| —3 elements in a nonperipheral curve system. We
will prove the first statement by induction; the other can be proved similarly.
Let T be a curve system in (S2, A). If |A| < 3, then every simple closed curve is
peripheral, and the fact is obvious. So assume |A| > 3. If I" consists entirely of
peripheral elements, then |T'| < |A| < 2|A4| — 3, since |A| > 3, so the fact is true
in this case. Now suppose v € T' is nonperipheral. Let U and V be the closures
of the two components of S? —~, and suppose |UNA| = m, |V N A| = m. Then
m,n > 2 since v is nonperipheral. Induction now shows that there are at most
2(m+1)—3 curvesin I'NU and 2(n+ 1) — 3 curves in 'N'V. We have counted
~ twice, so the total number is given by 2(m + n) — 3 = 2|A| — 3.

Definition 4.2 (Arcs) e Anarc a in (S2, A) is the image of an embedding
of the closed unit interval I into S* such that the image of the interior of
the interval is contained in S% — A.

e An endpoint of an arc o is the image of a point in OI.

e Two arcs a,a’ are said to be isotopic relative to A (or more simply
isotopic rel A, or isotopic ) if there is a continuous one-parameter
family hy,t € I of embeddings of the interval such that

1. h()(I) = a,hl(I) = O[I,'

2. if E = h3"(A), then h¢|pxr is constant on each component of E, i.e.
the endpoints of a which lie in A do not move under the deformation.

o Two arcs will be called parallel if they are isotopic.

o An arc a is said to be inessential if it is isotopic into every neighborhood
of a point a € A; otherwise it is said to be essential.

o The set of isotopy classes of arcs in (S%, A) will be denoted by A(A).

Inessential arcs come in three types, depending on how many of their end-
points intersect A. An arc is inessential if and only if either one of its endpoints
is not in A, or both of its endpoints are a € A and the arc can be shrunk down
to the point a without crossing other points of A. We will denote the endpoints
of an arc a by e(a). The endpoints of an essential arc, or of any arc whose end-
points are the same and lie in A, are an invariant of the isotopy class. Two arcs
on a compact, orientable surface are isotopic if and only if they are homotopic;
see [Eps].

Definition 4.3 (Intersection numbers) Let [n],[v] be two isotopy classes of
arcs
or curves. The intersection number is defined by

inf [ {1 —em)n(@—e(@)) }].

o= _inf
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Thus the intersection number between two arcs or curves is the infimum over
the representatives in the classes of the number of points in their intersection,
where we do not count intersecting endpoints. The intersection number of any
inessential class of arc or curve with any class of arc or curve is zero. The
self-intersection number [n] - [§] = 0 for any simple closed curve or arc, since
the sphere is orientable, and since we consider only embedded closed curves and
arcs. If [y] contains elements which are peripheral and isotopic into a € A, then
for any essential class [a] of arc with an endpoint at a, [v] - [a] # 0.

4.2 A convention and an important topological
fact

In this section we define lifts of arcs. We also prove a topological proposition
which says that unless |P(f)| = 2, no two essential lifts of a curve or arc are
isotopic in (52, Q(f)).

Convention. Let f be a PF branched covering, and let a be an arc. We will
call the closure of a component of the preimage of f~'(a — e(a)) a lift of the
arc a, or sometimes a component of the preimage of a.

Proposition 4.4 (Classes in ) encode essential lifts) Let f be a nonele-
mentary PF branched covering of the sphere to itself, and let n be an essential
arc or simple closed curve in (S?, P(f)). Then the lifts of n, as arcs or simple
closed curves in (S%,Q(f)), are essential, and no two lifts §,8' of n are isotopic

rel Q(f).

Proof:

Lifts are essential. Suppose 7 is a curve. An inessential lift § of  bounds a
disc D C $% — Q(f) which maps onto a component of S? — 7. Thus a compo-
nent of S? — 7 contains no elements of P(f), and thus n was inessential. Now
suppose 7 is an arc with distinct endpoints. Then any lift é of 7 is an arc with
distinct endpoints in Q(f) and is thus essential. Finally, suppose n is an arc
with indistinct endpoints. If a lift § has distinct endpoints it is essential; if its
endpoints are the same, and is inessential, then similar reasoning given for the
case of a curve shows that 7 must be inessential if § is inessential.

Case when 7 is a simple closed curve. The set of lifts of  under f is
a collection of disjoint simple closed curves. Hence if two are both essential
and isotopic, they bound an open annulus A C S? — Q(f). On the one hand, A
contains no critical points. On the other, A is a component of the lift of a disc D
which is a component of S — 5 under the branched covering f, a contradiction.
Case when 7 is an arc. There are a few sub-cases to consider.

1. The endpoints of 7,d,4' are distinct. If § and §' are isotopic, they
bound an open disc in $%2 — Q(f) which maps onto the complement of
n. Hence the complement of 5 contains no elements of f(Q(f)) = P(f),
which implies that f is elementary.



4.3. RELATIONS AND THEIR ITERATES 57

2. The endpoints of 7 are the same.

(a) The endpoints of §,d’ are the same. In this case if § and §' are
isotopic then they bound an open region A C S? — Q(f) which maps
onto a component D of S? — 7. Hence D C S? — P(f). This implies
that 7 is inessential.

(b) The endpoints of ,¢’ are different. Similar reasoning as in the
previous step applies. One concludes again that 7 is inessential.

4.3 Relations and their iterates

In this section we state definitions which are needed to discuss iterates of rela-
tions.

Defining a relation R on a the product of a countable set Z with itself is
equivalent to specifying a directed graph whose vertices are the elements in the
set Z and for which there is exactly one directed edge from z to y if zRy. We
can then iterate such a relation. Given a positive integer n, we form a new
relation R™ by specifying that zR™y if and only if we can get to y from z by
going along exactly n directed edges.

Definition 4.5 (Invariance under relations) Let R be a relation on the prod-
uct of a countable set Z with itself. Let X C Z. Then X is called

o forward-invariant if for all ¢ € X, 2Ry implies y € X;

e backward-invariant if for all y € X, 2Ry implies x € X;

o fully invariant if it is both forward- and backward-invariant;

e irreducible if given any two elements x,x' € X, there exist x = x1, T2, ..., Tp
=1’ such that z; € X and x;Rz;y1,i=1,2,....,n — 1.

Furthermore, we say:

e an orbit of zp under R is a sequence {z,}°2, such that £, Rxnq1 for
all n;

e a cycle is an orbit {z,} such that there exists a p > 1 such that n =
m mod p implies that x, = x.,,. The least such p is called the period of
the cycle;

e an element x € X is periodic if it is contained in some cycle; it is
eventually periodic if there is an orbit of x containing periodic elements.

e asimple cycle is a cycle for which the elements {xo, 21, ...,Zp—1} are all
distinct, where p is the period of the cycle.
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To say that X is irreducible means that one can get from any point of the set
X to any other point using the arrows in the directed graph while staying in
the set X. The set {y | zRy } is allowed to be empty. Also, if W C Z, then
restricting R to W x W or W x Z give new relations.

Notation. We will use the notation R(z) to denote the set of all y for which
xRy. We will often think of relations as set-valued functions.

4.4 Pullback relation on simple closed curves

In this section we define the pullback relation. Let f be a PF map with |P(f)| >
2. The map f will define a one-to-finite relation fC_ ! from C(P(f)) to C(Q(f))

and function i from C(Q(f)) to C(P(f)). The composition iy o fc_1 will be the
pullback relation on simple closed curves and will be denoted f*.

The relation fé 1, The map f induces a set-valued function

fgtC(P(f)) = C(Q(f))

defined by sending a class [y] to the set of classes represented by components
of the preimage of some representative v € [y]. This gives a well-defined map
on classes. By Proposition 4.4, Classes in @ encode lifts, essential simple closed
curves map to a set of essential simple closed curves, and no two essential lifts
represent the same class. Moreover, this relation is injective in the sense that
given [y1] # [v1], the sets fc_l([yl]) and fc_l(['y{]) are disjoint, i.e. it is the
inverse of a map. The image of a class has at most d elements under fC_ L where
d is the degree of f.

Degrees. Suppose [y] € C(P(f)) and [0] € C(Q(f)) are classes of essential
simple closed curves 4, with § C f~1(v). By Proposition 4.4, § is the unique
component of the preimage of v in [0]. Hence the degree deg(f : § — ) is
an invariant of the pair of classes of [y] € C(P(f)) and [§] € C(Q(f)), and will
be denoted by deg(f : [6] = [y]). The degree is an additional piece of data
associated to the relation f& L

The map ip. The inclusion i : §? — Q(f) < S? — P(f) (sometimes called the
erasing map since we “erase” points in Q(f) which are not in P(f)) induces a
function i : C(Q(f)) = C(P(f)) by sending a curve in S? — Q(f) to its class in
S? — P(f). The class of the image is independent of the representative chosen.
This map is in general infinite-to-one.

The following proposition says that these relations are invariants of the com-
binatorial class of f.

Proposition 4.6 (Curve relations are combinatorial) Let ¢ be a combi-
natorial
equivalence between PF branched coverings f and g. Then ¢ induces bijections
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Yp : C(P(f)) = C(P(g)) and g : C(Q(f)) = C(Q(g)) which preserve the prop-
erty of being essential, inessential, or peripheral, which preserve intersection
numbers and degrees, and which the make the diagrams

f
cP(f) S @)
¢pl le

cPe) S Qo)

and
cu) <Y ew)
Yo l?bP
cQ) ¥ e
commute.

Proof: By the definition of combinatorial equivalence, there exist homeomor-
phisms 9,11 such that the diagram given in the definition of combinatorial
equivalence commutes. Since o : (S?, P(f)) — (5% P(g)) is a homeomor-
phism, it induces a bijection from the set C(P(f)) to C(P(g)) which preserves
the intersection numbers and the property of being essential, inessential, or pe-
ripheral. The map v1 : (5%, Q(f)) = (S%,Q(g)) also gives an isomorphism from
C(Q(f)) to C(Q(g)) which preserves these properties since it is also a homeo-
morphism. Since ¥y o f = go)y, degrees are also preserved, as are the relations.

Definition 4.7 (Pullback relation on simple closed curves) The compo-

sition i o f, 51 will be called the pullback relation on simple closed curves
and will be denoted by f*.

Note that the pullback relation is 1 — &, where k < d and d is the degree of
f. Also, by the above proposition, the pullback relation is an invariant of the
combinatorial class [f] of branched covering.

Recall that the postcritical set of f and f°™ is the same for all n. The next
proposition says that the pullback relation is natural with respect to iteration.

Proposition 4.8 (Naturality of pullback) The pullback relation commutes
with iteration. That is,
(7o) = (7)™

Proof: For any set K C S2, the preimage (f°")~1(K) can be thought of also as
(f~1)°"(K), i.e. as taking a sequence of successive preimages. Given represen-
tatives of curve classes, we see that equality holds on the level of representatives.
Since the relations are independent of representative, the proposition holds.
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[ |
Notation. We denote by

e Cper(P(f)) the set of all essential classes of simple closed curves in C(P(f))
which are periodic under the pullback relation; and

o Cper(Q(f)) the set of all essential classes in the image fc_l( Cper (P(1)))
which map to elements of Cper(P(f)) under the map ip.

We will need to single out some special kinds of periodic classes of simple
closed curves.

Definition 4.9 (Levy orbit) A Levy orbit is a sequence {v;}5°, of simple
closed curves such that each v; has a lift v;,, which is isotopic to v;11 and which
maps to v; by degree one. A Levy orbit is called simple if for each i, there is a
unique such lift v;, . A Levy orbit is called nonperipheral if the elements are
nonperipheral. It is said to be periodic if the ~y; cycle up to isotopy. A Levy
orbit whose elements are disjoint and nonperipheral and which cycle under f*
is called a Levy cycle. A Levy cycle whose elements bound disjoint discs which
cycle, up to isotopy, s called a degenerate Levy cycle.

In terms of the relations, a Levy orbit is an orbit {[v;]}52, of essential (pos-
sibly peripheral) curve classes with the following property: for all i, there exists
an element [7},,] € Cper(Q(f)) such that [vi1,] € (fp ' ([nl) N (i)™ (i)
and deg(f : [vi;;] — [v]) = 1. A Levy orbit is simple if |(fC_1)([7,]) N

(i) [yt D)] = L.

Lemma 4.10 . Let f be a PF branched covering of hyperbolic type. Then f
has no degenerate Levy cycles.

Proof: If g is any branched covering of a closed disc D; onto another closed
disc Da, then deg(g) = deg(g|sop,). Hence if f had a degenerate Levy cycle
with permuted discs {D;}!-;, the degree of f on the interiors of the D; must
be one. Hence D; N C(f) = @ for all 1. Since the D; are also forward-invariant
up to isotopy, and f is of hyperbolic type, this implies that D; N P(f) = @, a
contradiction.

4.5 Pushforward relation on arcs

In this section we define the pushforward relation on the set of classes of arcs.
The inclusion map induces a one-to-infinite relation i 4 from A(P(f)) to
A(Q(f)) and a function f 4 : A(Q(f)) — A(P(f)). The composition f 4 014
will be called the pushforward relation on arcs and will be denoted by f..
We consider pushforwards, rather than pullbacks, for two reasons. The most
significant one is that we will later use the pushforward relation to encode the
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topological dynamics of points in the Julia set which lie in the intersections of
the closures of periodic Fatou components. Also, the pullback and pushforward
relations induce linear transformations which are naturally adjoint.

The relation i 4. The inclusion map i : S — Q(f) — S* — P(f) induces
a one-to-many (in general one-to-infinite) relation from A(P(f)) to A(Q(f))
defined by setting

iAglla)) = {[8] € A(Q) [ [i o B] = [a], some § € [A]}.
By construction, this is well-defined.

The map f 4. The branched covering f induces a relation f 4 from A(Q) to
A(P) by setting
[8] € £ 4([a])

if there exist representatives o € [a], 8 € [B] such that « is a lift of 3. Again,
by construction, this is well-defined on the level of classes.

Proposition 4.11 (f 4 is a function) The relation f 4 is a function from A(Q(f))
to A(P(f)).

Proof: Let @ and o' be two arcs which represent the same class in A(Q). We
must show that if the images of @ and o’ under f are arcs, then they are isotopic.
By postcomposing an isotopy between a and o' with the map f, we obtain a
homotopy between the images of a and o'. But homotopy and isotopy yield the
same equivalence relation on the set of arcs.

Definition 4.12 (Multiplicity) The multiplicity of f. from an essential class
[ag] to [a1] € f«([w]) is the nonnegative integer defined by

mult(fs : [ao] = [ea]) = | i g ([eo]) N (£.4) " (fua]) |-

The multiplicity is equal to the number of components of f~!(a;) which
are isotopic to ag after including into S? — P(f). The multiplicity is always
bounded by the degree of f. Unlike degree, the multiplicity is a number which
is encoded by the data of the relations f 4 and i 4.

Example: Let f(2) = 22—1. Then P(f) = {00,0,—1} and Q(f) = {0,0,—1,1}.
Let a; = [00,—1] C RU{cc}. Then a; has two lifts ag, afy which are arcs joining
0 and oc. These arcs are nonparallel in S? — Q(f), but their images under the
inclusion map i : %2 — Q(f) — S? — P(f) are parallel. Thus the the multiplicity
of f, from [ag] = o] to [au] is equal to two.

Invariance properties. Let ¢, and vy give a combinatorial equivalence from f
to g. Then v induces a bijection ¥p : A(P(f)) = A(P(f)) and 91 a bijection
Yo  AQ(f)) — A(Q(g)). Since 1o,y form a combinatorial equivalence,
Ypofy=fygovqandthgoiy =14 0¢p. Hence the relations i 4 and f 4 are
invariants of the combinatorial class of f.
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Definition 4.13 (Pushforward relation on arcs) The composition f 4oi
will be called the pushforward relation on arcs and will be denoted by f..

By the above remark, the pushforward relation on arcs is an invariant of
the combinatorial class of f. Note that the image of a class of arc under the
pushforward relation may be empty, since the image under f of a complicated
arc is often non-embedded.

Proposition 4.14 (Naturality of pushforward relation) The pushforward
relation on arcs is natural with respect to iteration, i.e. (fx)°™ = (f°)..

The proof is analogous to the case for simple closed curves.
Notation. We will denote by

o A, (P(f)) the set of all essential classes of simple closed curves in A(P(f))
which are periodic under the pushforward relation;

o Aper(Q(f)) the set of all essential classes in the image i 4(Aper(P(f)))
which map to elements of Ape-(P(f)) under f 4;

o Aqup(P(f)), the set of all essential classes in A(P(f)) which are eventually
periodic under the pushforward orbit;

® Aeop(Q(f)), the set of all essential classes in the image i 4(Aevp(P(f)))
which map to elements of A.,,(P(f)) under f 4.

The set Ape, (P(f)) may be empty. In Section 5.6 we give an explicit example
of a PF hyperbolic rational map for which Ap.,(P(f)) is empty.

4.6 Intersection numbers

In this section, we show that elements of Aper(P(f)) and Cper(P(f)) which have
nonzero intersection number have restricted combinatorial dynamics under the
pullback and pushforward relations.

The following proposition can be found in [ST1] and is the key ingredient in
the proofs of the theorems in the next two subsections.

Proposition 4.15 (Degree restricts intersections) Let K,L C S? be one-
dimensional submanifolds, possibly with boundary, such that |KNL| < co. Sup-
pose L' C S?, and suppose that f|rr : L' — L is a degree k covering map.
Then

[(f'K)NL|=k-|KNL|.

Proof: Each point in L N K has exactly k preimages under f which lie in
L'nf K.
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4.6.1 Simple closed curves intersecting arcs

In this subsection, we show how the dynamics of a periodic curve class is re-
stricted if it intersects a periodic arc class. The main result is Theorem 4.19.

In the next lemma, note that the first two parts of the conclusion involve
representatives, while the last two involve isotopy classes.

Lemma 4.16 (Curve-arc lemma) Suppose
1. [ao], [o1] € Aper (P(f)) with [aa] € fu[a];
2. [0], [m1] € Cper (P(f)) with [yo] € f*[m];
3. [m] - [a1] #0; and

4. ag,a1,%, and vy, are chosen such that f(ag) = a1, f(y) = M, and |a; N
ml=loa] - [n].
Then

L |voNao| = |y Naul;

2. o is the unique component of f~1v; which intersects ag;

3. [v0] - [ao] = [n] - [eu];

4. [y0] is the unique class in f*([y1]) which has nonzero intersection number
with [ag)].

Proof:

1. By the previous proposition, Degree restricts intersections, |yo N ag| <
1- |y Nayl, since fla, : @0 — a1 is a degree one covering map. Suppose
|70 Nag| < |1 Nag|. If the periods of the given cycles containing [a]
and [y1] are p and g, respectively, then by pulling back along the cycles
we can find lifts 4o of 4o under f~®9=1) and ag of ag under f~® =1 for
which 4o € [11] and ap € [a1]. By the previous proposition, the number
of points of intersection between pairs of lifts cannot increase. Hence at
the final stage, we have | Nag| < |11 Nau |, contradicting our hypothesis
that v; and a; minimized the number of intersections.

2. This follows immediately from the previous result, and the proposition
Degree restricts intersections.

3. This will follow from an argument analogous to that given to prove the
first statement. By the first step, [yo] - [ao] < [11] - [@1], since we have
found representatives which intersect in a set of size [y1] - [@1]. But if
[v0] - [@o] < [1] - [ea], we can find representatives of these classes realizing
this intersection number. Pulling back these representatives, the previous
proposition, Degree restricts intersections, shows that we eventually obtain
representatives for [y1] and [e] which intersect in fewer than [y1] - [ou]
points, a contradiction.
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4. This follows immediately from the second step and the definition of inter-
section number between classes.

[ |
The next proposition relates degrees and multiplicities of elements in cycles.

Proposition 4.17 Suppose ag, oy represent periodic classes with mult(f, : [ao] =
[@1]) = m. Let vyo and vy, represent periodic curve classes with [yo] € f*([11]).
If [v0] - [ao] # 0, then for any lift v§ C (S%,Q(f)) of y1 which is isotopic to g
under the erasing map, deg([vy] = [1]) > m.

Proof: Since 79 and ¢ intersect, so do 71 and a;. We may assume that
a1 and v, are chosen so as to minimize the number of intersections. Then by
Lemma 4.16, Curve-arc lemma, ~§ is the unique component of the lift of o
which intersects ag. Let {co1, o2, ..., %om } be the set of periodic lifts of a; in
(S2%,Q(f)) which are isotopic to ag after including into (52, P(f)). Then by
Lemma 4.16, for all 4,

170 N aoi| = |11 N agl.

Hence

m - | N aoi
170 N (Uicoi)|
7o N F~ ()]
k- [y Nal,

m- |y Na

IA

where k = deg(f : [v] = []), and the last equality holds by Proposition 4.15.

The next lemma says that if we consider only periodic classes, [y1] - [a1] =
[11] - [¢}], where [a1],[e)] € f«([ao]) are two elements in the pushforward of

some arc class. We will use this in Section 4.9.

Lemma 4.18 (Pushforwards intersect in same number) Let [a;],[o]],

€ Aper(P(f)) with [al]a[all] € f*[ao]. Suppose [70]7[’71] € CPGT‘(P(f)) with
[v0] € f*[m]. Then [vo] - [aw] = [n1] - [aa] = [n] - [e4]-

Proof:

Case 1: [ag] - [v] = 0. In this case, since the classes are periodic, we may
pull back nonintersecting representatives of [ag] and [yo] by a suitable iterate
to obtain representatives of [aq], [e]], and [y1] which do not intersect.

Case 2: [ag] - [10] # 0 . In this case, both [aq] and [@]] satisfy the hypotheses
of Lemma 4.16, Curve-arc lemma. So [y1] - [ca] = [v0] - [ao] = [n1] - [¢4]-
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The next theorem says that an irreducible set of curves which intersects a
cycle of arcs is actually a special kind of cycle: every curve in the cycle has
a unique periodic lift. Moreover, all non-periodic lifts avoid the cycle of arcs.
The cycle of arcs, then, controls the dynamics of the set of curves. The main
reason for this is that the arcs map by degree one, which restricts the possible
intersections of lifts of curves with lifts of arcs.

Theorem 4.19 (Curve intersecting arc) Let [I'] C Cper (P(f)) be any finite
set which is irreducible for f*. If some element of [I'] has nonzero intersection
with an element of a cycle [X] C Aper (P(f)), then

1. the restriction of the relation fc_ L 40 [T x Cper (Q(f)) is an injective func-
tion;

2. the restriction of the relation f* to [[]XCper(P(f)) is an injective function;

3. the elements of [T] form a cycle {[v:]}'=y with [Yit1 mod p] = F*([:]) N
Cper (P(f));

4. [T is the unique cycle under the relation f* containing any of its elements,
and

5. Given any element [0] in the set

(Jumemm) -1,

n>0

the intersection number of [0] with any element of [X] is zero.

Proof: Let [y1] € [I'] be an element which intersects an element [ai1] €
Aper(P(£)). Choose a cycle {[a;]}I_4 containing [a;]. By Lemma 4.16, there is
a unique component of the preimage of any representative of [y;] which intersects
arepresentative in [ap]. Hence | fe '[11]] = 1. Denote the class in C(P(f)) of this
component by [yo]. Then f*([1]) = [y, [v] € [I], and [7o] - [ao] # 0. Repeat-
ing the argument with [ag] and [yp] shows that the relations defined in the first
two conclusions are functions. The injectivity of the relation f& 1|[F]><Cper Q)

follows from injectivity of f& . Since f*|[r]><Cp”( P() is a function, and since
[T] is irreducible, [I'] must be a cycle. This also proves the injectivity statement
in the second conclusion. The fourth statement follows immediately from the
fact that f, restricted to [['] X Cper (P(f)) is injective.

We now prove the last statement by contradiction. Let [vo], [1] € [[] with
[v] € f*([71])- Suppose that some element [6] € f*([y1]) — [[] has nonzero
intersection number with an element [ag] € [E]. Since [0] € f*([11]) intersects
[ao] € [X], [11] must have nonzero intersection number with an element [o4] €
f«(Jao) N [E]. For otherwise [0] and [ag] would be representable by elements
which are the lifts of disjoint elements, and therefore [§] and [ap] would also
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be representable by disjoint elements, contradicting our hypothesis. By Lemma
4.16, Curve-arc lemma, [yo] is the unique class in f*([y1]) which intersects [ao],
a contradiction.

4.6.2 Arcs intersecting arcs

The results of this section will not be used in the sequel; we have included it for
completeness. In this subsection, we show how the dynamics of a periodic arc
class is restricted if it intersects another periodic arc class. The main result is
Theorem 4.21.

The next lemma is the analog of Lemma 4.16, Curve-arc lemma, in the
previous section. Its proof is completely analogous.

Lemma 4.20 (Arc-arc lemma) Suppose
1. [ao], [a1] € Aper (P(f)) with [ea] € fulao];
2. [Bol, [B1] € Aper (P(f)) with [B1] € fu[Bol;
9. [aa] - [B] £ 0; and
7

ai € [aa], B1 € [B1], a0 € [aw], and By € [Bo] are chosen such that f(ap) =
at, f(Bo) = B1, and |y N B1] = [aa] - [B1].

Then

1. |Oé() ﬂﬁ0| = |041 ﬂﬂ1|,‘

2. By is the unique component of f~13, which intersects ay;
3. [ao] - [Bo] = [an] - [B1];

4- o] is the unique class in (f.)~'([1]) which has nonzero intersection
number with [ag].

We also obtain a similar theorem whose proof is also the same as that of
Theorem 4.19, Curve intersecting arc, suitably modified.

Theorem 4.21 (Arc intersecting arc) Let [X] C Aper(P(f)) be any finite
set which is irreducible for f.. If some element of [X] has nonzero intersection
with an element of a cycle [©] C Aper(P(f)), then

1. the function f 4 restricted to i 4([X])NAper(Q(f)) is an injective function;

2. the restriction of the relation fi to [X] X Aper (P(f)) is an injective func-
tion;

3. the elements of [£] form a cycle {[o:]}?2q with [0ig1 mod p] = f*([oi]) N
Aper(P(£));
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4. [X] is the unique cycle under f, containing its elements, and

5. Given any element [0] in the set

(J @) mED - =)

n>0

the intersection number of [0] with [©] is zero.
As a consequence, we have

Theorem 4.22 Let [ao], [a1] € Aper (P(f)) with [a1] € fi([ao]), and suppose
either

1. [ fu(lo]) N Aper (P(f))| > 1, or
2. mult(f« : [ao] = [ou]) > 1.

Then the elements of any cycle containing [ag] or [aq] intersect no other ele-

ments of Aper (P(f)).

Proof: The first statement follows from the second part of the conclusion
of Theorem 4.21. The second follows from the first part of the conclusion of
Theorem 4.21.

4.6.3 Arcs intersecting Levy cycles

We will need the results of this section in the sequel.

The proof of Theorems 4.19 and 4.21 rested on the fact that arcs map by
degree one. Using this fact, we were able to conclude that arcs or simple closed
curves which intersected periodic arcs have restricted dynamics under the re-
lations. We can therefore prove in the same manner a similar theorem for the
case of a periodic Levy orbit which intersects a cycle of arcs.

Theorem 4.23 Suppose an element of a periodic Levy orbit [I'] C Cper(P(f))
and an element of a cycle [X] C Aper (P(f)) have nonzero intersection. Then

1. the relation f, Y restricted to [T] x Cper (Q(f)) is an injective function,
(and so [T'] is a simple Levy orbit), and the restriction of the relation f*
to [I'] X Cper(P(f)) is an injective function;

2. the relation f 4 restricted to i g([E]) X Aper(P(f)) is an injective function,
(and so mult(f. : [ag] = [aa]) = 1 for all [ag],[0a] € [E]) , and the
restriction of the relation f. to [X] X Aper (P(f)) is a function;

3. [T] and [X] are the unique cycles under f* and f., respectively, containing
any of their elements; and
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4. No element [8] of
(JumHeman) -

n>0

intersects an element of [¥], and no element [n] of

(YJuHmasn ) - 13

n>0

intersects an element of [I].

4.7 Thurston’s theorem

In this section we state Thurston’s theorem characterizing PF rational maps
as branched coverings of the sphere to itself. It is formulated in terms of the
eigenvalues of linear transformations associated to multicurves with certain in-
variance properties.

The Perron-Frobenius theorem. We first recall some facts about square
matrices with nonnegative entries; see e.g. [Gan]. A matrix with nonnega-
tive entries is called nonnegative. A nonnegative square matrix (A4;;) is called
irreducible if given any pair (i, j), there is an integer n such that (4™);; > 0.

Theorem 4.24 (Perron-Frobenius theorem) Let A be a nonnegative square
matriz. Then

e there exists a positive real eigenvalue A(A) equal to the spectral radius of

A-

)

o if in addition A is irreducible, there exists an eigenvector v(A) for A(A)
such that the entries of v(A) are all strictly greater than zero.

The eigenvalue \(A) is usually called the leading eigenvalue of A. If A and
B are two nonnegative square matrices of the same dimension, and if A;; < B;j,
then A\(A) < A\(B).

Thurston linear transformation associated to a curve system. Let ' be
a curve system. The Thurston linear transformation is the linear map

AT, f): R - RIF

given by the matrix

1
(AT, Nov= Y deg(f 7 =)
nef—1ly
n~d

where the sum is taken over all components n of f~lv which are isotopic in
S? — P(f) to 4. If there are no such elements, the sum is taken to be zero.



4.7. THURSTON’S THEOREM 69

The leading eigenvalue of A(T, f) will be denoted by A(A(T, f)). When the
discussion revolves around a fixed f we will drop reference to the map f and
write A(T).

Unweighted linear transformation associated to a curve system. Let I’
be a curve system. The unweighted Thurston linear transformation is the linear
map

(T, f) : Rl - R
given by the matrix

(T* (T, ey = 1
nef~ly
n~4
where the sum is taken over all components n of f~'+4 which are isotopic in
S? — P(f) to 4. If there are no such elements, the entry is taken to be zero.
The leading eigenvalue of T*(T, f) will be denoted by A(T*(T, f)). Again, when
the discussion revolves around a fixed map f, we will shorten the notation and
denote T*(T, f) by T*(T).

Properties of A(T') and T*(T'). Since the entries of the weighted Thurston
transformation are all less than or equal to those of the unweighted transforma-
tion, we have that A(A(T")) < A(T*(T")). The linear transformation associated
to a curve system is an invariant of the combinatorial class of f and the classes
[T] in the curve system I'. Moreover, the data of the degrees plus the pullback
relation fc_ ! and i¢ suffice to determine the weighted and unweighted linear
transformations associated to any curve system. The linear transformations
T*(T) and A(T) are irreducible if and only if the set of classes [I'] is irreducible
under the pullback relation f*. Finally, given a curve system I and the corre-
sponding linear transformations A(I") and T*(I"), there is always a subsystem
I’ C TV for which [T is irreducible under f* and such that A(A(T)) = A(A(T"))
and A\(T*(T)) = X(T*(T)).

Invariant curve systems. Let f be a PF branched covering. An f-invariant
curve system is a curve system I' = {1, ya, ..., 7o } such that for all ¢, each com-

ponent of f~1(v;), after including into S2— P(f), is either inessential, peripheral,
or isotopic to an element of T'.

Theorem 4.25 (Thurston) Let f be a PF branched covering of the sphere to
itself. Then f is combinatorially equivalent to a rational map g if and only if
for every f-invariant nonperipheral curve system T, either

1. AM(A(T)) = 1 and the orbifold associated to f has signature (2,2,2,2), in
which case g is covered by an integral endomorphism of the torus, or

2. M(AD)) < 1.

In the first case, up to conjugation by elements of Aut(C), there is a real one-
parameter family of maps g; combinatorially equivalent to f. In the second case,

the map g is unique up to conjugation by elements of Aut(C).
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See [DH2] for the proof. For the definition of the orbifold associated to a
rational map, see [DH2], [McM3], or [Thu4].

The first case does not arise for branched covers of hyperbolic type. In
the first case of the above theorem, the maps g; have no periodic critical points.
Hence their Julia sets are all equal to the whole sphere. They are not hyperbolic
maps.

Definition 4.26 (Thurston obstructions) Let f is a PF branched covering
whose orbifold does not have signature (2,2,2,2). A non-peripheral f-invariant
curve system T for which \(A(T')) > 1 is called a Thurston obstruction. A
non-peripheral irreducible curve system T' for which A(A(T)) > 1 is called a
reduced Thurston obstruction.

Any Thurston obstruction contains a reduced Thurston obstruction which is
irreducible but may be non-invariant. A Levy cycle is an example of a reduced
Thurston obstruction.

We will now reformulate Thurston’s theorem by dropping the requirement
of nonperipheral and replacing the condition of invariance with irreducibility.

A set of classes of disjoint simple closed curves which includes peripheral
elements is irreducible if and only if the set consists only of a cycle of periph-
eral elements, since the preimage of a peripheral curve is either peripheral or
inessential. Furthermore, if I' = {y9,71,...,7p—1} are the elements of a cycle
of peripheral elements with ~; isotopic into xz; € P(f), and if up to isotopy
f(vi) = vit1(modp), then deg f : v; — ~vit1 is the local degree of f near z;.

Theorem 4.27 Let f be a PF branched covering of the sphere. Then [ is
combinatorially equivalent to a rational map g if and only if for every irreducible
curve system I, either

1. MAT)) = 1, which occurs if and only if either

(a) T consists entirely of peripheral elements enclosing a cycle of point
in P(f) containing no critical points, or

(b) the orbifold associated to f has signature (2,2,2,2); or
2. MAD)) < 1.

Again, the first case does not arise for maps of hyperbolic type.

4.8 Periodic arcs restrict Thurston obstructions

We now apply the combinatorial analysis of intersecting periodic arcs and simple
closed curves to the study of Thurston obstructions.

The following theorem, and the first part of the next theorem, is due to ideas
of Tan Shishikura.
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Theorem 4.28 Let I' be an irreducible set of classes for the pullback relation
f*. Suppose that an element of T intersects an element of A\/}V('P({)). Then

1. NT*T)) = 1;
2. MAD)) < 1;

3. if M(A(T)) = 1, then T is a simple periodic Levy orbit such that each
element has a unique image under fc_1 to an element of Cper(Q(f)).

Proof: By Theorem 4.19, T is a cycle under f*, and each element in the cycle
has a unigque component of its preimage which is periodic. Hence the matrix
giving T*(T") is a permutation matrix of zeros and ones, and so A(T*(T")) = 1.
The second statement follows immediately from the first since the entries of the
weighted Thurston transformation are less than or equal to those of the matrix
for the unweighted transformation. Since I' is a cycle, the leading eigenvalue
A(A(D)) is the product of the degrees along the cycle. Hence if A(A(T")) =1,
then these degrees must all be equal to one, and so T is a periodic Levy orbit.
Theorem 4.23 then applies, proving the third statement.

Theorem 4.29 (Shishikura-Tan Theorem) LetT be a reduced Thurston ob-
struction.

1. If [T] intersects an element [a1] of Aper(P(f)), then

(a) [T] is a simple nonperipheral Levy cycle;

(b) the elements of [T'] all have zero intersection with the set

(U@ maEn) - =

n>0

2. [[] intersects no element of Aper(P(f)) which is contained in more than
one cycle,

3. [[] intersects no element of Aper (P(f)) which is contained in a cycle con-
taining elements mapping by multiplicity greater than one.

Proof: Part 1(a) follows from Part 3 of the previous theorem and the fact that a
reduced Thurston obstruction, by definition, is nonperipheral. Part 1(b) follows
from Part 4 of Theorem 4.23. Part 2 follows from Theorem 4.23, Part 3. The
third statement can be proved two ways. One may either use Proposition 4.17
to show that the elements of a cycle in Cp,.(P(f)) which intersect arcs mapping
by multiplicity greater than one cannot map by degree one. Alternatively, one
may use Theorem 4.23, Part 2.
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Remark: Not every PF branched covering which is not combinatorially equiv-
alent to a rational map possesses a Levy cycle. In [ST1] an example is given of
an obstructed mating of two cubic polynomials which does not possess any Levy
cycles. Thus the above theorem represents a significant reduction in the kinds
of Thurston obstructions which can exist. That degree two branched coverings
which are not combinatorially equivalent to rational maps have Levy cycles was
proved in [Lev]. Simpler proofs are given in [Ree2] and [Tan2].

4.9 Linear transformations associated to arcs:
duality

In this section we show that certain linear transformations associated to the
pushforward and pullback relations are adjoint with respect to the a pairing
given by the intersection number.

It is hoped that this result will generalize to show that the weighted Thurston
transformation is adjoint to some kind of weighted transformation of arcs. It
may be necessary to expand the notion of invariant arcs to include cases of arcs
which do not map by degree one to achieve this generalization.

The transformation T, (X). Let f be a branched covering. Let ¥ C Ay, (P, f)
be any finite irreducible collection of arcs. Consider the restriction of the push-
forward relation to the subset ¥ x X.

We define the pushforward linear transformation

T.(2) : R* - R
as follows. If ¥ = {[a;]}?,, then image of the basis vector [;] is defined as

1

L) = rrayas [ﬁ]ef*%mw -

That is, we send [a;] to the formal sum of the elements in the intersection of its
image under the pushforward relation with [X], scaled by the reciprocal of the
number of such elements.

Note that the matrix associated to T%(X) has the property that the sum of
the entries in any column is equal to one, by the irreducibility of [X] and the
definition. It then follows that the leading eigenvalue A\(T (X)) is equal to one.

Intersection form. The geometric intersection number between classes of arcs
and simple closed curves may be extended bilinearly to give a bilinear form

(,)V:RExRY 5 R
such that ([v],[a]) =[] - [¢] for all [y] € T, [a] € .

Theorem 4.30 (Duality) Let f be a PF branched covering. Let ¥ be a finite
irreducible set of arc classes and T be any irreducible curve system. Let T*(T)
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denote the unweighted Thurston linear transformation associated to I', and let
T.(X) denote the pushforward linear transformation of X. Then T*(T) and
T.(X) are adjoint with respect to the intersection pairing. That is, for any

veR® welRT,

(T.(S),0) = (o, T*(T)w).
Proof: It suffices to prove the theorem on basis vectors. Let [y1] € T, [a] € [E].
Suppose f.([a]) NE = {[B;}{Z,. Then

(T(D)a], In]) = 1/m - 8], [n)) = 1/m - Z[ﬂi] [l

K3

by the definition of the transformation T,(X) and the definition of the pairing.
By Lemma 4.18, since [y1] and the [;] are periodic, [8;] - [11] is the same for
any element [3;] € f«[a]. Hence

1/m{Y I8, nl) = ([Ba), [n))

(3

for any element [31] € f«([a]) N Z. Pulling back, we apply Lemma 4.16, Curve-
arc lemma, to conclude that

([81], ) = (e, [7])

where [y] is the unigue class in f*([y1]) which has nonzero intersection with
[@]. By this uniqueness, we have

(T.(X)([e]), In]) = ([, [T [n]) = (o], T*@) (1))

and so the theorem holds.
[ |

4.10 Behavior of pullback and pushforward re-
lations under quotients and tunings

In this section, we study how the pullback and pushforward relations change
under tuning and collapsing.

The next theorem is a direct consequence of the definition of combinatorial
quotient map and the definition of the relations introduced in Section 4.4. The
reason is that a quotient map is degree one outside of its support, and so off its
support, f looks like g, up to isotopy.

Theorem 4.31 (Quotients and simple closed curves) Let ¢ : f — g be a
combinatorial class of quotient map. Then ¢ induces injections

¢p' = C(P(g)) = C(P({))
and

9o C(Q(9)) = C(Q(S))
such that
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1. ¢3" and qﬁél map C(P(g)) and C(Q(g)) surjectively onto the sets of simple
closed curves in C(P(f)) and C(Q(f)), respectively, which do not intersect
the support of the ¢;

2 folodp =9q o9z
4. d)}l and d)él preserve degrees;

5. d)}l and d)él preserve the properties of being essential, inessential, and
parallel, but not the necessarily the property of being peripheral.

The following two theorems are due to McMullen [McM3]. For completeness,
we include the proofs.

Theorem 4.32 (Quotients of rational maps are of hyperbolic type) Let
¢ : f — g be a proper combinatorial quotient map. If f is a rational map, then
the mapping schema of ¢ is of hyperbolic type.

Proof: Recall that the points of P(g) which are blown-up under ¢ are forward-
invariant under g. Hence if the theorem fails, there is a set of peripheral simple
closed curves which cycle by local degree one under g. These simple closed curves
form a peripheral Levy cycle for g. Since some point in this cycle is blown up
under ¢! to at least two points of P(f), these curves form a nonperipheral
Levy cycle for f, which is impossible since f is rational.

Theorem 4.33 (Rational quotients) Let f(z) be a PF rational map. If ¢ :
f — g is a quotient map, then g is combinatorially equivalent to a rational map.

Proof: By the previous theorem, g contains a cycle of postcritical points con-
taining a critical point. Hence the orbifold associated to g does not have sig-
nature (2,2,2,2). This also implies that the orbifold of f is not the (2,2,2,2)
orbifold. Therefore g and f are combinatorially equivalent to rational maps if
and only if they has no Thurston obstructions. By Theorem 4.31, a Thurston
obstruction for g maps under ¢! to a Thurston obstruction for f.

Remark: A stronger version of this theorem is proved in [McM3], which says
that a PF quotient of any (not necessarily PF) rational map is combinatorially
equivalent to a rational map.

The definition of combinatorial equivalence of families of branched coverings
covering a mapping scheme is given in the next section. The next theorem,
together with Theorem 4.33, completes the picture for decompositions of post-
critically finite hyperbolic rational maps.
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Theorem 4.34 Let R be a PFH rational map and ¢ : R — f be a combinatorial
quotient map. Then the induced family of topological polynomials P is combi-
natorially equivalent to a family of polynomials covering the mapping scheme of

¢.

Corollary 4.35 If a postcritically finite hyperbolic rational map R admits a
quotient ¢ to a postcritically finite hyperbolic rational map f, then R is the
tuning of f by a finite family of polynomials P covering the mapping scheme of
@.

Proof: By the definition of induced polynomials, R is combinatorially equiva-
lent to f*P. Hence P is combinatorially equivalent to a family of maps which is
obtained by first restricting the conformal map R to a set D of invariant discs,
and then collapsing the boundary components of these discs to points.

The next theorem is a version of Theorem 4.31 for arcs. Its proof is also a
direct consequence of the definitions of quotient map and the relations defined
in Section 4.5.

Let ¢ : f — g be a combinatorial class of quotient map. Let G C P(g) denote
the set of points which do not eventually land on points which are blown-up
under ¢ 1. Let A(P(g),G) denote the set of classes in A(P(g)) represented by
elements whose endpoints lie in G. Let A(Q(g), 9 'G) denote the set of classes
in A(Q(g)) represented by elements whose endpoints lie in g~71(G).

Theorem 4.36 (Quotients and arcs) Let ¢ : f — g be a combinatorial class
of quotient map. Then ¢ induces injections

¢p + A(P(9),G) = A(P(f))

and
90" AQ(9),97'G) = A(Q()))
such that
1. ¢p' and qﬁél map A(P(9),G) and A(Q(g),9 'G) surjectively onto the
set of classes of arcs in A(P(f)) and A(Q(f)) which do not intersect the
support of ¢;
20,000 =dg 0ig,;
3. onqu_?l :¢;109A;

4. the maps preserve the property of being essential, inessential, and parallel.
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4.11 Appendix: PF branched covers covering a
mapping scheme

In this section, we generalize PF branched covering, combinatorial equivalence,
and the necessity of Thurston’s theorem to PF hyperbolic families of branched
coverings of the sphere to itself covering a mapping scheme.

Definitions. A family of branched coverings of the sphere covering a mapping
scheme (S, 7, w) is a map

F:Sx82>59x%x5?2

such that the restriction of F to {z} x S? is a branched covering of degree w(z).
We denote by C(F) the set of critical points of F'. The postcritical set is the set

pFR) = |J PF0.

n>0,ceC(F)

The family F is said to be postcritically finite if |P(F)| < co. We say that F is
hyperbolic if every cycle of postcritical points contains a critical point.

We say that two PF families F, G covering a mapping scheme (S, 7,w) are
combinatorially equivalent if there are homeomorphisms ¥o, ¥y : (SxS%, P(F)) —
(S x 8%, P(Q)) such that ¥;({z} x S?) = {z} x S2, ¥go0 F = G o ¥y, and ¥,
is isotopic to ¥y through homeomorphisms agreeing on P(F).

Generalization of the necessity of Thurston’s theorem Suppose F is a
hyperbolic PF family of branched covers of the sphere covering the mapping
scheme (S, T, w).

A curve system in (S x S?, P(F)) is a finite set of disjoint, nonparallel,
essential simple closed curves.

The map F' defines a pullback relation on the space of curves in the same way
as for a single map. We may therefore define the Thurston linear transformation
A(T) associated to a curve system T.

Proposition 4.37 The family F' is combinatorially equivalent to a PFH family
of polynomials only if for every nonperipheral F-invariant curve system I, the
leading eigenvalue A\(A(T)) is greater than one.

Proof: Suppose A(A(T")) > 1. Then the leading eigenvalue of any iterate of A
is also at least one.

We may assume that A(T") is irreducible. Let n be the least common multiple
of the periods of the periodic elements of S under 7. Then since the Thurston
linear transformation commutes with iteration, the matrix of A°" decomposes
into square blocks along the diagonal. There is one block for each periodic
point of S. Since A(A(T")) > 1, the leading eigenvalue of A°™ coincides with the
leading eigenvalue of one of the blocks. Hence there is a (F°")|{;}x s2-invariant
nonperipheral curve system I contained in {} x S? for some periodic point
z € S for which A(A(T")) > 1. Since F is assumed to be equivalent to a family
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of conformal polynomials, (F°")|5} s> is combinatorially equivalent to a PFH
rational map. Since F' is hyperbolic, (F°")|(;)xs> is also hyperbolic. This
violates Thurston’s theorem.

Theorem 4.38 Let f be a PFH rational map and B C Q(f) a subscheme of
the mapping scheme of f. Let P denote a PFH family of polynomials covering
the mapping scheme (B, f|g,wys|B). Let D denote the support of the tuning,
and let Dy, denote the periodic components of D.

If T is any reduced Thurston obstruction for the tuning f = P, then every
element v € T' has nonzero intersection number with the boundary of some
component of Dpey.

Proof: Suppose otherwise. Since I' is irreducible, if some element v € T is
contained in Dy, up to isotopy, then I' C Dy, up to isotopy. But then I' yields
a reduced Thurston obstruction for P, contradicting the previous proposition.

Conversely, if some element v € T is disjoint from D,p,,, then again by
irreducibility, I' is disjoint from Dp.,, up to isotopy. In the latter case, by
considering preimages, we may conclude that T is disjoint from all of D. But
this violates Theorem 4.33.
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Chapter 5

The characteristic
subcomplex

In this chapter, we modify slightly the definition of the pushforward relation on
arcs. We show that this modified pushforward relation essentially determines
how periodic Fatou components touch and touch themselves. The main results
are:

e the construction of the combinatorial characteristic subcomplex (CCS) of
a PFH rational map f, and

e the construction of the isomorphism between the CCS and the dynamics
on the space of essential chords in the lamination associated to f.

The definition of a combinatorial cylinder for a PFH rational map in the next
chapter will be given in terms of the combinatorial characteristic subcomplex.
A chord is essential if the arc it forms is essential in (S2, Q(f)).

In Section 5.1 we discuss examples which show why a modification of the
pushforward relation given in Chapter 4 is necessary. Section 5.2 contains the
definition of the combinatorial characteristic subcomplex. In Section 5.3 we
show that dynamics on the space of essential chords is isomorphic as a topo-
logical dynamical system to the CCS. In Section 5.4 we apply the isomorphism
theorem to give combinatorial characterizations of topological features of Julia
sets. In Section 5.5 we discuss how the topology of the Julia set changes under
tuning. We conclude in Section 5.6 with further examples, including an informal
discussion of Tan Lei’s construction of “blowing up an arc”.

5.1 Examples

The semibasilica. The proof that the lamination of a polynomial is backward
invariant depends on the fact that for polynomials, the basin of infinity is totally
invariant.

79
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The following example shows that this need not be the case in general. We
begin by comparing it with a well-known quadratic polynomial.

Figure 5.2 is the filled-in Julia set of the quadratic polynomial p(z) = 22 — 1.
The unique finite critical point at 0 is periodic of period two. The 1/3 and 2/3
rays in the basin of infinity meet at the a-fixed point of p(z). Let n = Ry /3URy /3.
Then 7 is an arc with endpoints at infinity mapping homeomorphically onto itself
under p(z) so that the 1/3 and 2/3 rays are interchanged, and so has period one
under the pushforward relation. There are two preimages of n: 7 itself, and v,
the union of the 1/ 6A and 5/6 rays, together with Ehe point at infinity. Note that

v is inessential in (C, P(p)), but is essential in (C, Q(p)). Figure 5.1 represents
the polynomial z — 22 — 1 as a branched covering of the sphere. Arcs with a
given Roman number map to the arc with the same Roman number. Arcs with
arrows have the point at infinity as an endpoint.

The lamination for p(z) consists of the segment joining 1/3 and 2/3, together
with the unique set of backward images such that the resulting set of leaves is
disjoint. A few preimages are shown in Figure 5.3. The set of leaves is countable:
every leaf eventually lands on the unique fixed leaf.

Figure 5.4 is a picture of the Julia set of the degree three rational map given
by
2(z = 1)%(z +2)

fo) =20

which we call the degree three semibasilica. The point at infinity is a fixed
simple critical point, the point 0 is a critical point of multiplicity two and
period two, and 1 is a simple critical point mapping onto 0. The Riemann map
to basin of infinity given by Bdéttcher’s theorem allows us to define rays for
this basin, determines a lamination corresponding to the identification of the
landing points of these rays. As with the basilica, the 1/3 and 2/3 rays land
at a common repelling fixed point for f, and are interchanged under f. Let
7' = Ry/3U Ry/3U. Then 5’ is a period one arc under the pushforward relation.

However, i has no essential preimages in (C, Q(f)) joining the point at infinity
to itself. The arc ' has three lifts, one of which is itself; the other two “unwind”
under f~! to form a simple closed curve in the sphere mapping by degree two
onto 7. See Figure 5.5.

The lamination for the basin of infinity for the map giving the semibasilica
consists of a single leaf joining the 1/3 and 2/3 points. Hence this lamination
is not backward-invariant, since the 1/3 — 2/3 leaf has only a single preimage.
Also, the condition of gap invariance fails. The Jordan curve bounding the
right-hand half of the Figure 8 comprising the boundary of the basin of infinity
does not map to a Jordan curve under f.

There are actually many postcritically finite hyperbolic rational maps for
which the lamination produced by the Riemann map to a periodic superat-
tracting basin does not yield an invariant lamination. For example, the family

gr,d(z) = #Nd opgo M,
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Q(f)

Figure 5.1: The map z — 22 — 1 as a branched covering of the sphere.

P(f)
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Figure 5.2: The filled-in Julia set of the degree two basilica.

R
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5/6

112
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Figure 5.3: A portion of the lamination for the degree two basilica.
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Figure 5.4: The degree three semibasilica.

where M(z) = 21, pg(2) = (d—1)2¢ —dz? ' + 1, and Ny = (1 — d)=2,
yields many such examples. For maps in this family, the point at infinity is a
fixed simple critical point, 1 is a critical point of multiplicity d — 2 mapping
onto 0, and 0 is a critical point of multiplicity d — 1 mapping onto —r. When
d = 3 and r = 2, we obtain the degree three semibasilica. When d = 3 and
r is chosen so that 0 is periodic of period three and g 3(0) is complex, the
result is a “semirabbit”, shown in Figure 5.7. In comparison, the Julia set of
f(z) = 22 — 0.1226... + 0.7449...i is commonly called Douady’s rabbit. The 1/7,
2/7, and 4/7 rays meet at a common repelling fixed point; see Figure 5.6.

For the degree three semirabbit, however, there are only two rays in the
immediate basin of infinity meeting the preimage of the common landing point
of the 1/7-2/7-4/7 rays, as opposed to three in the polynomial case. This also
shows that the image of a finite-sided gap need not be an entire finite-sided gap.

When r = d — 1, the result for all degrees is a variation of the semibasilica;
the degree four example is shown in Figure 5.8, found with assistance from J.
Kahn and C. McMullen.

In Subsection 5.6.2 we outline a construction, due to Tan Lei, which we will
show always yield rational maps with this property.

These examples suggest that the dynamics of classes of arcs joining periodic
points in the postcritical set play an important role in determining invariance
properties of the set of points where the boundary of a Fatou component is
pinched.

The real period three quadratic polynomial.

Figure 5.9 shows the filled-in Julia set of the quadratic polynomial p(z) =
22 — 1.7548877... for which the critical point 0 is periodic of period three.

The lamination has a period three cycle of leaves given by 1/7—6/7,2/7—5/7,
and 4/7 — 3/7. It also has a period one cycle of leaves given by 1/3 — 2/3. Let
n= R1/3 UR2/3. Let ag = R2/7UR5/7, o = R4/7UR3/7, and as = R1/7UR6/7.



84 CHAPTER 5. THE CHARACTERISTIC SUBCOMPLEX
v A
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- ® >
v Q(f)
iv A
i i i
< ® o >
Y P(f)

Figure 5.5: Arcs for the semibasilica. The bounded region formed by the dashed
curve C' maps onto the complement of the arc numbered by (ii). The point p
maps to the point at infinity.



5.1. EXAMPLES 85

Figure 5.6: Douady’s rabbit. The critical point at zero is periodic of period
three.

Figure 5.7: The degree three semirabbit.
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Figure 5.8: The degree four semibasilica.

Figure 5.9: The filled-in Julia set of 22 — 1.754877.... The critical point 0 is
periodic of period three.
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Note that [ag] = [e1] = [5] in A(P(p)).

Under the sixth iterate of this polynomial, each of the arcs is fixed as an
oriented arc, up to isotopy. However, the three classes [ao], [@1], and [n] are all
the same as elements of A(P(p)), since the postcritical set does not change by
taking iterates. Hence the orbit {[8;]}$2, given by 8; = ag for all ¢ does not
determine the ray ag uniquely, since there are at least three other rays with the
same itinerary as isotopy classes of arcs in Ay, (P(p)).

To get around this difficulty, we will consider isotopy classes of arcs in

A(Q(f))-

5.2 The combinatorial characteristic subcomplex

Let f be a postcritically finite branched covering. Recall that pushforward
relation f. on A(P(f)) is defined by the composition f 4 0i 4. We will now
define an analogous relation on A(Q(f)).

5.2.1 The @Q-pushforward relation

Let f2 : A(Q(f)) = A(Q(F)) be given by f@ = igofy- Then 12 defines a
relation from A(Q(f)) to itself which we call the Q-pushforward relation. This
relation is an invariant of the combinatorial class of f, by the results proved in
Section 4.5. However, naturality under iteration no longer makes sense, since

the sets Q(f°") = (f°*)~H(P(f)) and Q(f) = f~1(P(f)) are distinct unless f

is elementary.

The following proposition says that given an essential arc a and a finite se-
quence of essential classes of successive backward images under the pushforward
relation, there is a unique sequence of preimages of «a representing the sequence
of classes.

Proposition 5.1 Let {[a;]}7? 1 C A(Q(f)) be a set of essential classes sat-
isfying [aip1] € fO([ai]),i = .on — 1. Suppose B, € [a,]. Then there
exists a unique arc B € [oy] uch that [f°1(B1)] = [ai], i = 1,...,n — 1, and
[ (B1) = Bn-

Proof: This follows immediately from Proposition 4.4 and induction on 7.

5.2.2 Finiteness of eventually periodic arc classes for ra-
tional maps

Theorem 5.2 Let f(z) be a PFH rational map. Then Aeyp(Q(f)) is finite.

Proof: We will use the expanding properties of f. The proof will not give an
explicit bound. The idea is to pull back arcs and show that a suitably defined
“length” shrinks by a definite multiplicative factor, up to an additive constant.
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Let ¢g be a family of Riemann mappings as defined in Section 2.6. Let
U = ¢o(Q x {2z : |z2| < 1/2}). Then each component of U is an open disc

meeting exactly one point of Q(f). Let K = C —U. Then f~}(K) C K, and
every component of K — f1(K) is a half-open annulus.

Given [a] € A(Q(f)), define
L([a]) = inf{l(¢’ N K)|a' € [a] and o/ N K is connected },

where [ denotes length in the spherical metric. Note that a sequence {[a,]}22,
tends to infinity in A(Q(f)) only if L([a,]) — 0.
Set A = (sup,cp-1(x) Il f'(2) [|) -1, where the norm of the derivative is mea-

sured in the spherical metric. Set C = 2-sup {diam(C)|C is a component of K — f~1(K) }.

Lemma 5.3 If [o1] € f&([ao]), then L([ao]) < A - L(Jeu]) + C.

To see this, fix € > 0, and choose n; € [ay] such that 7, N K is connected
and I(n N K) < L([a1]) + €. By Proposition 4.4, there is a unique lift 7o of 71
representing [y

The set no N f~1(K) is connected, so 7 intersects df~1(K) in two points,
say a and b. Let z and y be the endpoints of 7y, and let C; and C, be the
components of K — f~!(K) separating z and y from the remainder of Q(f).
Call the boundary component of C, nearest x the inner boundary component
of C,, and similarly call the boundary component of C, nearest x the inner
boundary component of Cy.

Modify 7o as follows. Remove 5o N f~1(U). Glue in a connected spherical
geodesic segment in C, joining a and any point @’ on the inner boundary com-
ponent of C,. Join a' to = by an arbitrary curve in U. Repeat this construction
with the other end of ng. Call the resulting arc nj. Since we have only modified
1o on U, ny is isotopic to 1.

Then n{ N K is connected, I(no N f~1(K)) < A-I(m N K), and I(no N (K —
F1(K))) < C. Hence I(n}) < X-1(no) + C, and so

L([ao]) <l NK) <Xl NK)+C <X (L([a1]) +€) + C.

Since € is arbitrary, this proves the lemma.

The function h(z) = A -z + C has a unique attracting fixed point zg. If [a]
is any period p class in A(Q(f)), by pulling back [a], we have that L([a]) <
h°?(L([e])). Hence L([e]) < o, so the set of periodic classes of arcs is bounded.
If [o] is a preperiodic class which maps onto a periodic class [3] after n iterates,
then L([a]) < h°™(L([B]). Since L([f]) < zo, L([a]) < zo. Hence the length
of every eventually periodic arc class is uniformly bounded, and so the set of
eventually periodic arcs is finite.

Remark: This theorem may fail for maps with Levy cycles. Let p(z) = 22 — 1
and let f(z) = p* p be the mating of p(z) with itself. Let X_ denote the
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union of the segment [—1,1] with the 1/3 and 2/3 rays in the extended complex
plane, regarded as the lower hemisphere of the Riemann sphere. Then X_ is
topologically a figure “X”. Let X denote its reflection through the unit circle
by the map z — 1/Z. Then X = X_ U X is a graph in the sphere which is
forward-invariant under f and contains a Levy cycle v which is the union of the
1/3 and 2/3 rays. By altering f slightly within its combinatorial class, we may
assume f2 = id on an annulus which is a regular neighborhood of this Levy
cycle. We may find infinitely many essential arcs which are periodic of period
one obtained by performing a Dehn twist about this annulus.

Remark: If f is a PF branched covering, the set of elements of the mapping
class group of S? — P(f) which commute with f, up to isotopy, forms a group
which we call the set of isotopy automorphism of f. If f is a rational map, this
group is the same as the group of conformal automorphisms of f. If f has a Levy
cycle, however, the group of isotopy automorphisms is infinite: conjugating by
Dehn twists about the curves in the cycle yield an infinite set of elements.

Using Theorem 4.21, it is possible to give a slightly stronger proof of the
above theorem. The idea is that two periodic classes of arcs which intersect in
more than one point of their interiors yield a Levy cycle for f. This proof also
allows one to calculate a bound on A(Q(f)) in terms of |Q(f)|-

5.2.3 Construction of the CCS

By Theorem 5.2, if f is a PFH rational map, the set Ae,p(Q(f)) of eventually
periodic classes in A(Q(f)) under the relation f is finite. Set A = Aeyp(Q(f))
and fa = f§laxa-

The pair (A, f4) may be described by a matrix of zeros and ones. Suppose
A = {[ai]};- We encode the relation (A, f4) by the matrix (A;;)7';—; where
A;; =11if [a;] € fa([e;]) and is zero otherwise.

Let X denote the set of one-sided infinite sequences {[3;]}52, of elements of
A, subject to the constraint that for all 4, [B;11] € fa([8:]).- Equivalently, the set
Y is the set of all infinite trips through the directed graph associated to (A, f4)-
The set ¥ has a natural metric: the distance between two sequences {[a;]}52,

and {[3;]}$2, is given by
d(fai], () = 3 e 5D

91
>0

where 0([a;], [8:]) = 0 if the classes are the same and is equal to one otherwise.

Equipped with this metric, ¥ is a compact metric space which is either a a
point, a countable set, or a Cantor set union a countable set, since any totally
disconnected compact metric space has of one of these forms. (Section 2.15,
[HY]). The shift map o is the map of ¥ to itself which forgets the first term in
each sequence.

Definition 5.4 (Combinatorial characteristic subcomplex) The combi-
natorial
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characteristic subcomplex (CCS for short) of a PFH f(z) the subshift
of finite type (X,0).

5.3 The isomorphism G : (X,0) = (Xess, F0)
Let f(z) be a PFH rational map. We let

o (A, fa) denote the restriction of the Q-pushforward relation to the set of
eventually periodic classes of arcs in Ag,p(Q(f)). Then A consists of a
finite set of classes {[a,]}, and fa is given by a matrix (Ag,) such that
Ak,l =1if [ak] S fA([al]) and Ak,l = 0 otherwise.

e (X,0) denote the CCS of f;
e ¢ be a choice of Riemann maps;

e A be the lamination of f with respect to ¢¢g, which is invariant with
respect to the map Fp : Q(f) x S* — Q(f) x S* covering the mapping
scheme of f, and

e x, the space of chords of Ay.
Essential and inessential chords.

Definition 5.5 (Essential chord) A chord {(z,s),(y,t)} of the lamination
A is called essential if the arc o = R, s U Ry that it forms is essential in

(5%,Q(f))-

A chord is inessential if and only if its endpoints are the same, and the arc
it forms bounds a unique disc in S? — Q(f).

Let x.ss denote the space of essential chords in the subspace topology of
chords on A. Since any lift of an inessential arc is again inessential, Fo(xess) C

XGSS -

Theorem 5.6 (Chords are eventually essential) Let f be a PFH rational
map and A the lamination of f. Then every chord of A eventually maps onto
an essential chord under Ey.

Proof: We argue by contradiction, using expansion of the spherical metric.
Suppose {(z,s), (y,t)} is an inessential chord, and let ap be the arc it forms.
Set a;, = f°"(a). Suppose that a,, is inessential for every n.

Without loss of generality, we may assume that the endpoint of g is periodic.
Let z, denote the endpoint of a,,, and let €2, denote the Fatou component
containing . Then the (2, are periodic Fatou components with non-Jordan

curve boundary. The arcs a,, separate C into two discs, exactly one of which is

contained in C — Q(f). Let U,, denote this disc. Then U,, contains components
of J(f), by Theorem 2.33. Let K,, = J(f) N U,. Since a,, is inessential for all
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n, Un_1 is a component of f~1(U,,), and f : U,—1 — U, is a homeomorphism.
Hence f : K,,—1 — K, is a homeomorphism. Since f is hyperbolic, some iterate
of f expands the spherical metric by a definite factor on J(f). The previous
two facts imply that there exist an integer N > 0 and A < 1 such that for
every n > N, diam(K,,_n) < Adiam(K,). Since the diameters of the K,, are
uniformly bounded, the diameter of Ky must be zero. But this violates the
conclusion of Theorem 2.33.

The preimage of an inessential chord under Fjy is always a canonically deter-
mined collection of chords. To see this, we may assume Fp : {z}xS! — {z} x S*.
Let s and ¢ are the angles of an inessential chord. Let L be a component of
the complement S' — {s,t}. Then there are exactly ws(z) components of the
preimage of L under Fp, where wy(z) is the degree of Fy on {z} x S'. Two
points in the preimage of the set {s,t} form a chord if they are the endpoints of
one of these components. Hence the space of chords is determined by the space
of essential chords. Consequently, the lamination is uniquely determined by the
set of essential chords.

Proposition 5.7 Let {(z, s), (y,t)} be any essential chord. Then a((z,s), (y,t))
A.

Proof: A sequence of essential classes {[a,]}52; tends to infinity in A(Q(f))
only if there is a pair of arcs with intersection number at least two.

Let a,, = f°"(a),n > 0. Then the interiors of the «, may intersect in at
most one point. Since the a,, are all essential, by the above remark, there must
exist some m > n such that [a,] = [a,], and so [a] € A.

Hence the arc a formed by an essential chord determines an itinerary
{[f (@)}, C 5.

The isomorphism theorem.

The previous theorem implies that the map sending an essential chord to
the itinerary of the arc it forms (as a class in A) induces a map H : Xess = &
conjugating Fy to o. This map is clearly continuous: if two chords are close,
the arcs they form are close as closed subsets of the sphere, and so the classes of
these arcs must also be close since there are no postcritical points in the Julia
set.

The goal of this section is to prove

Theorem 5.8 The map H : ¥ — Xcss S a homeomorphism.
As an immediate corollary, we have

Corollary 5.9 The space of essential chords is compact.
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To prove this theorem, we need some preliminary results and notation.

Hausdorff metric on closed subsets of S2. Let K and L be two closed
subsets of S2. Let d(z,y) denote the chordal distance between two points.
Then the Hausdorff distance between K and L is defined by

D(K, L) = max {ng (d(o. 1) sup (K, y)}} .

The Hausdorff metric turns the set of all closed subsets of 52 into a compact
Hausdorff metric space.
Peripherally rigid arcs. Any arc a in (S%,Q(f)) with endpoints in Q(f) is
isotopic to an arc which coincides with a ¢g-ray near its endpoints. We will
refer to such an arc as a peripherally rigid arc.

If a is a peripherally rigid arc with endpoints = and y, we set

E,(a) = sup{r|a coincides with ¢, ([0,7) - exp(27is))},

and
E,(a) = sup{r|a coincides with ¢,([0,7) - exp(2mit))},
and
E(a) = min{E;(a), By(a)},
where ¢, and ¢, are the restrictions of ¢ to {z} x A and {y} x A. Thus for
peripherally rigid arcs a, 1 > E(a) > 0. We will call the part of a peripherally
rigid arc coinciding with a part of a pair of rays near the center of Fatou com-
ponents the rigid part and its complement the non-rigid part. We denote the
non-rigid part by a™". We define the angles of a by Z,(a) = s, Zy(a) = ¢, and
/(a) = {s,t}.
Good isotopies.Let a and 3 be two peripherally rigid arcs isotopic in (52, Q(f))
with endpoints z and y. Suppose E(a), E(8) < 1. Then there exists an isotopy
hy from a = ho(I) to B = hy(I) through peripherally rigid arcs hy(I) such that
E(hi(I)) > min(E(a), E(8)). If E(a) = E(f) = 1, we may choose the isotopy
hy to satisfy E(hi(I)) > 1/2. We call such an isotopy h a good isotopy.
The length of h is defined as follows. Set

L= [ 1LGum)
and L

L = [ 12,mar
The length I(h) we define by

I(h) = max(l;(h),l,(h)).

Lemma 5.10 1. If B is a lift of a and the endpoints of 8 are x and y , then
E(8) = (B(a))/4, where d = min(uw; (x), w; (y)).
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2. If B; is a lift of a under f°, then
diam(BP") < X¥ - diam(a™),
where A < 1 is a constant depending only on o and f.

3. Let h be a good isotopy from ay to B1. Let ag,Bo be isotopic lifts of ay
and (1 with endpoints x and y. Then h lifts to a good isotopy h from ag
to Bo such that

1(R) < max(1/wy(z), 1/wy (y)) - 1(h).

Proof: Part (1) follows immediately from the definition of E(a). Part (2)
follows from the fact that I expands the spherical metric by a definite factor on

every compact subset of C — Q(f). Proposition 4.4implies that the isotopy h
in Part (3) lifts to an isotopy from g to fo; it is good by Part (1). The length
satisfies the given inequality since the map Fg is a degree wys(z) covering map
on each component {z} x S*.

Proof of Theorem 5.8.

We will construct the inverse G of H.

Choose a fixed set of representatives {a, } for the set A which are peripherally
rigid. Given {[an]}52y € %, let §; be the unique lift of a,,; under f~* such
that for all 0 < j <4, [f(8:)] = [an(;)]- The lift 3; exists and is unique by
Proposition 5.1, and is peripherally rigid by 5.10.

Define

G({[an]}) = lim B;,

i—00
where the limit is the Hausdorff limit. We claim

1. The limit exists, is an arc a formed by a chord, and satisfies [f°(a)] =
[an(i)] for all 7.

2. The definition of G is independent of the chosen arcs {ay, }, so long as they
are peripherally rigid.

3. GoH =id,,,,.

Proof of 1: First, for each ordered pair (k,!) such that A;; # 0, choose a good
isotopy hy i, from og to the unique lift aj of aj that is isotopic to a;. The idea
of the proof of this step is to lift a collection of these isotopies along the given
orbit and then concatenate to obtain an isotopy of finite length from «q to S;.

Next, for 0 < j <, let b} denote the unique lift, of hy,(j)p(j41) Such that for
all k < j, fo*(h%) is an isotopy between a pair of arcs in [a,()]. (That is, we

just lift A, (jyn(j+1) along the given orbit. Uniqueness of this lift is guaranteed
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by Proposition 5.1.) The map h;'- is then an isotopy between a pair of arcs in
[an(o)]-

Let h* = h{ * hi * ...  h} denote the concatenation of the isotopies h%. Then
h' is a good isotopy from ay, (g to B;.

We now claim that the lengths of the good isotopies k! are uniformly bounded.
Since f is hyperbolic, every postcritical point eventually lands on a periodic crit-
ical point. By Lemma 5.10, I(h%) < Ci - 27020 where C; and Cy are positive
integers depending only on the mapping schema of f. Hence the lengths I(h?) are
all uniformly bounded independent of i and the chosen orbit. Hence the limit
lim; o £(B;) exists. Since E(B;) — 1 and diam(8?") — 1 by Lemma 5.10,
the B; converge in the Hausdorff topology to an arc a formed by a chord. By
construction, f°¢(a) = [an(;)] for all 4, so a is essential since [o] = [ay,0)] € A.

Proof of 2: Suppose {«),} is any other initial choice of peripherally rigid
representatives of A. Let 3] be the corresponding lifts as in the definition of G.
Let p,, be a good isotopy from a, to o, Then for all i, pp ;) lifts (by Proposition
5.1 ) along the orbit to a good isotopy p* from §; to §;. By Lemma 5.10, and
the fact that f is hyperbolic, I(p?) — 0 as i — oco. Since diam(8") — 0 and
diam((8})"™") — 0 as i — oo, we have that lim; ,o(8;) = lim; o (8}) in the
Hausdorff topology.

Proof of 3:

The previous two steps show that H is surjective. We now show H is injec-
tive.

Let a and 8 be two arcs formed by a pair of distinct chords in y¢ss. Suppose
the itineraries of these arcs were the same, measured as isotopy classes in A.
Let a; = f°(a),B; = f°!(B). Fix some large i. Choose a good isotopy p
between «; and ;. Then by Proposition 5.1, and Lemma, 5.10, p lifts under f°?
to a good isotopy p* between o and . Since f is hyperbolic, by Lemma 5.10,
1(p?) < Cy-27%2%, for the constants C; and Cs as in Step 1. Since i is arbitrary,
it follows that we can make the length of p¢ arbitrarily small, and hence that

a=p.

Remark: In [McM3], a similar argument is given to give a topological criterion
for a set of periodic external rays to land at a common point for a quadratic
polynomial p with connected Julia set. The analog of an arc is a topological tree
which coincides with a set of external rays outside of some given equipotential,
and which is periodic up to isotopy fixing P(p) through such trees. No other
assumptions are placed on p. The argument proceeds by pulling back the tree
under the dynamics and using a form of expansion to show that the lifts converge
to a set of periodic external rays landing at a common point.
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5.4 The topology of J(f)

We now list some corollaries relating the combinatorial characteristic subcom-
plex (X,0) and the topology of J(f). We assume the same notation as in the
previous two sections.

The starting point of our discussion is the fact that the map EQ defines a
continuous map from the space x of chords to {0z },cq(s)-

5.4.1 Finitely many rays land

In this subsection, we prove

Theorem 5.11 Let Q2 be a Fatou component of a PFH rational map f. Let
z € 00Q. Then the number of internal rays of f landing at z from Q is bounded

by |Q(F)| — 1.

The bound is almost sharp: there are 2 rays landing at the a-fixed point of
the quadratic polynomial f(z) = 22 — 1, and |Q(f)| = 4.
Proof: The proof is outlined as follows.

1. Step 1. Show that we may assume (2 is periodic.

2. Step 2. Show that we may assume that z is periodic. To prove this, we
will use the fact that every chord is eventually essential and the compact-
ness of the space of essential chords.

3. Step 3. There are at most finitely many rays landing at z.

This step follows immediately from a well-known fact: if X is a compact
metric space and f : X — X is a homeomorphism which expands distances
by a definite factor, then X is finite. See [Mil4], Lemma 18.8 for the proof.

4. Step 4. The chords formed by the rays landing at the periodic point z
are all periodic, hence they are all essential. This will prove the bound.

Proof:
Let S be the angles corresponding to the set of rays landing at z. Let R be
the set of rays in Q with angles in S.

1. Step 1. Since there are no critical points in J(f), f°*(R) is a homeomor-
phism for every n > 0. Hence, the number of rays landing at f°"(z) is at
least as great as the number landing at z. So pushing z forward under f
cannot decrease |S|.

Every Fatou component is eventually periodic, by the classical case of the
No Wandering Domains theorem. Hence we may assume that Q = Q,,
where z € P(f) is periodic.
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2. Step 2.

We begin by proving a lemma.

Let {(, ), (x,t)} be any chord in {z} x S*. Define the length [, (s,t) to be
the distance between s and t along the circle S* of circumference 1. Thus
the length of a chord is always at most one-half. The length function is
continuous on the space of chords. Since the space of essential chords is
compact, every essential chord has length at least L > 0.

Lemma 5.12 Let T be a set of three essential chords {(z, s;), (z,t;)},i =
1,2,3, such that

(a) si,ti €S, where S is the set of angles of rays landing at some point
z € 09Q);

(b) with respect to the cyclic ordering on the unit circle, s1 < t1 < 83 <
ta < 53 <135

(c) the arcs a; formed by {(z, s;), (x,t;)} are distinct essential classes in

A.

Then the Euclidean area of the convex hull of S is bounded from below by
a positive constant depending only on f.

Condition (2) implies that the rays formed by the angles s;,t; and landing
at z are also cyclically ordered near z, but in the opposite fashion.

Proof: The length function is continuous. The space of essential chords
is compact by Corollary 5.9. Hence there is a lower bound to the length of
each chord in 7y which depends only on f. By condition (2), the Euclidean
area of the convex hull of the angles of the chords in T is bounded from
below by a positive continuous function in the lengths of the chords in 7.
The convex hull of the angles in T is contained in the convex hull of S.

We now prove Step 2.

We may assume |S| > 3. Then there exists a collection 7 of three chords
{(z, 1), (z,t:)},i = 1,2,3 satisfying (1) and (2) above. Let a; be the
arc formed by the ith chord. For all n > 0, the forward images T,, =
E§™(T) also satisfy (1) and (2). For since f is hyperbolic, f is a local
homeomorphism near each z € J(f). Hence the cyclic ordering of the rays
landing at z is the same as the cyclic ordering of the images of these rays
at the point f(2).

We will now prove that there is some N > 0 such that n > N implies
T n satisfies (3). By Theorem 5.6, each chord in 7 is eventually essential.
Moreover, we cannot decrease |S| by pushing z forward under f. Hence
there exists an N such that n > N implies that 7, consists of essential
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chords. Let af = f°"(w;). Then the af are essential for all n and i. By
condition (2), for a given n, the classes [a?],i = 1,2,3 are all distinct.
Hence T, satisfies (3).

Let S, = f°*(S). By the Lemma and the previous paragraph, the Eu-
clidean area of the convex hulls of the S,, are bounded from below. Since
the total area of the disc is finite, for some n > m, S, N S,,, # @. The
sets S, either coincide, or are disjoint. Hence &, is eventually periodic,
and so z is eventually periodic. Hence we may assume z is periodic.

. Step 3. Let p be the period of Q,. The map F,?: {z} x S* — {z} x S*

is expanding. Since ¢, : {z} x S' — Q) is continuous, S C S is closed.
The point z is periodic of some period k, and f is hyperbolic, hence
Fy? : S — S is injective. By Lemma 18.8 of [Mil2], S is finite.

. Step 4. By Theorem 5.6, every periodic chord is essential. Hence every

pair of angles in S determines an essential chord. Let R = U, g(Ry,s)-

Then every component of C — R is an open disc containing points in
Q(f). The center z of Q, lies in R, hence there are at most |Q(f)| — 1

components of C — R. This proves the theorem.

5.4.2 Touching of Fatou components

By Theorem 5.11, the composition $Q 0G : Xess = 109 }zeq(y) is a continuous
semiconjugacy for which the size of a preimage of a point is uniformly bounded
by |Q(f)| — 1. We will use this fact to prove several theorems which are steps
toward a classification of the possible dynamics of f(z) on the set of touching
points. We first establish some notation.

Notation. We denote by

z and y, two distinct periodic points of Q(f);

p, the least common multiple of the periods of x and y;

d, and d, the local degrees of f°P near = and y respectively;
Q, and €, the Fatou components containing z and y;

Az,y C A, the set of all classes with distinct endpoints z and y;

Xy, the subspace of ¥ consisting of all sequences beginning with elements
of Az .

The subspace X, is closed and forward- invariant under the shift o.
The following two theorems are immediate consequences of Theorem 5.11,
Theorem 5.8, and the continuity of ¢q.
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Theorem 5.13 (Two distinct components touching) The intersection QN
Q, either

1. is empty, if and only if X, , is empty;

2. is finite, if and only if X, , is finite;

3. is countably infinite, if and only if ¥, , is countably infinite.

4. contains a Cantor set, if and only if ¥, , contains a Cantor set.

Theorem 5.14 Let 0,55(f;) denote the image of X, , under EQ oG. Then
BCSS(QH))

1. is empty, if and only if O is a Jordan curve, if and only if ¥, , is empty;
2. is finite, if and only if ¥, , is finite;
3. is countable, if and only if ¥, , is countable;

4. contains a Cantor set, if and only if ¥, , contains a Cantor set.

Theorem 5.15 The set 0Q, is a Jordan curve and Q, N QY = 08, if and only
if every sequence {[0;]}$2, € X, has at least d, preimages under o”lx, .

Proof: We first prove the necessity. By hypothesis, since the endpoints are
distinct, every chord {(z,s), (y,t)} is essential. By Theorem 5.8, an infinite
sequence in ¥, , corresponds to a unique chord {(z, s), (y,t)}. Since Q, NQ, =
09, is a Jordan curve, there is a lift of the arc a formed by {(z, s), (y,t)} under
(f~1)°P to d, distinct essential arcs joining x to y. Applying the isomorphism
theorem again, we conclude that there are d, preimages of the given element in
¥z,y under oP|x, .

We now prove the sufficiency. Let 7 C {z} x S! be the set of angles for
chords of the form {(z,s),(y,t)}. The set T is closed by the continuity of
¢,. We will show 7T is dense in {z} x S'. By hypothesis and Theorem 5.8,
T is nonempty and every chord {(z,s),(y,t)} has d, preimages of the form
{(z,s"), (y,t")}. Since d, is also the degree of F}|,xs1, every point in 7 has d,
preimages in 7, and so 7 is dense in the circle.

We now relate the touching of arbitrary Fatou components to the touching
of periodic components. The proof of the following theorem follows immediately
from the fact that there are no critical points in the Julia set.

Theorem 5.16 Let f(z) be a PFH rational map. Let x,y be two distinct points
in the grand orbit of P(f). Then

1. If 99, is not a Jordan curve, then 0Q; is also not a Jordan curve.

2. If @, NQy, # O, then
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(a) If f(z) # f(y), then Qpz) N Q) # 0.
(b) If f(x) = f(y), then Oy (4 is not a Jordan curve.

Case 2(b) can occur for hyperbolic postcritically finite maps. For the semibasil-
ica, the basin of the pole p = 2/3 touches the basin of infinity in two points,
each of which map onto the unique separating point in the boundary of the
basin of infinity.

Definition 5.17 (Sierpinski carpet) A Sierpinski carpet is a closed subset
of S? which is the complement of a countable dense family of open discs whose
diameters tend to zero and whose closures are pairwise disjoint closed discs.

Corollary 5.18 The Julia set J(f) is a Sierpinski carpet if and only if A = O,
if and only if Aevp(P(f)) = 0, if and only if Ape,(P(f)) = 2.

Proof: Since f is expanding there are at most finitely many Fatou components
with a given spherical diameter. Hence it suffices to show (1) no two Fatou
components touch, and (2) every Fatou component has Jordan curve boundary.
By repeated applications of Theorem 5.16, two Fatou components touch if and
only if either two periodic Fatou components touch, or there exists a periodic
Fatou component with non-Jordan curve boundary. Hence it suffices to prove (1)
and (2) for the case of periodic Fatou components. Since A = ) by hypothesis,
Yoy = O for every x,y € Q(f). Theorems 5.13 and 5.14 then imply that (1)
and (2) hold for periodic components. The last two statements are clear.

In practice, it is easiest to verify the last condition.

Polynomials. In the special case where f is a polynomial, the CCS takes
a special form. First, ¥, o, is nonempty for every z. For since oo is totally
invariant, the preimage of any arc joining x € P(f) to infinity pulled back to
a point y € Q(f) is also an arc joining y to co. Moreover, by Theorem 5.14,
Y o,00 18 empty if and only if the basin of infinity has Jordan curve boundary.
The basin of infinity of a PFH polynomial is a Jordan curve if and only if it
is conjugate to an elementary map. If 2 # oo, £, , = O since every bounded
Fatou component has Jordan curve boundary. If z,y # oo, then |X, ,| =1 by
Theorem 5.8 and the fact that two bounded Fatou components can meet in at
most one point.

Definition 5.19 (Starlike polynomial) A PFH polynomial f(z) is said to be
starlike if there exists a finite connected graph G C C such that the following
holds:

o P(f) —{oo} =V(G) =GN P(f), where V(Q) is the set of edges of G;

e f:G — G maps edges homeomorphically to edges, up to isotopy through
maps fizing P(f).

Given G, we denote by Gper the periodic part of G.
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Thus the edges of G form representatives of elements of Ac,,(P(f)). Thereis
a natural generalization of the definition of starlike to families P of polynomials
covering a mapping schema.

Definition 5.20 (PFH family of starlike polynomials) Let P be a PFH
family of polynomials covering the mapping schema (S, T,w). P is said to be
starlike if there is a finite graph G C S x C with vertices V/(G) such that for all

z, GN ({z} x C) is connected, and such that the following two conditions hold:
o P(P)— (S x{oc}) =V(G) =GN P(P);

o P:G — G maps edges homeomorphically to edges, up to isotopy through
maps fizing P(P).

Given G, we denote by Gper the periodic part of G.

In light of the discussion in the previous paragraph, the following proposition
is immediate:

Proposition 5.21 A PFH polynomial f(z) is starlike if and only if for each
pair of distinct points xz,y € P(f) — {oc}, there exists a finite sequence x =
T1,T2, ..., Tn =Y of points in P(f) such that Xy, 5, # J,i=1,2,...,n— 1.

Note that the restriction is on X, for pairs of points in P(f), not Q(f).

The notion of a Hubbard tree of a postcritically finite polynomial f was
introduced in [DH1] as a way of combinatorially encoding the tree-like structure
and combinatorial dynamics of its Julia set. It can be shown that a PFH
polynomial f is starlike if and only if its Hubbard tree intersects the Julia set
of f in a finite number of points, iff X o is finite.

Example: Let f(z) = 22 + ¢ be any PFH quadratic polynomial which is the
center of a hyperbolic component tangent to the main cardioid. Then f(z) is
starlike, and these are all of the starlike PFH quadratic polynomials of this form.

5.5 How tuning affects the Julia set

By Theorems 4.36 and 3.12, if R = f x P, then there is an injection from the
set of elements of Ay which do not intersect the support of the tuning into
Apg which preserves the pushforward relation f,f‘? . Hence there is a continuous
conjugacy from an invariant subspace of (X¢,0y) into (g, or).

Conjecturally, the Julia set for f P is equal to a quotient space of the Julia
set for f. The idea is to transport the lamination for P, regarded as a disjoint
union of convex hulls of equivalence classes in the open unit disc, into the Fatou
components {2;},eq(s)- By taking preimages of f, one transports these leaves
and gaps to a fully invariant subset of F(f). The Julia set for f = P is then
conjecturally the quotient space obtained by collapsing the gaps and leaves to
points.
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Thus the above remark may be viewed as a first step in the verification of
this conjectural picture.

Remark: I am grateful to Curt McMullen for suggesting this approach. See
[McM3] for related arguments in the case of quadratic polynomials.

5.6 Examples

In this section we discuss several more examples illustrating the phenomena
discussed in this chapter.

5.6.1 A Julia set which is a Sierpinski carpet

In [Mil4], an explicit example is given of a Julia set of a quadratic postcritically
finite hyperbolic quadratic rational map whose Julia set is a Sierpinski carpet.
The proof uses the theory of polynomial-like mappings and the symmetry of the
map; the map is conjugate to a map which commutes with conjugation. The
postcritical set of this map has nine points.

We now give an explicit example of a Julia set for a cubic postcritically finite
hyperbolic rational map whose Julia set we shall prove to be a Sierpinski carpet
using Corollary 5.18. Though of higher degree, the postcritical set is much
smaller, consisting of only four points, and this makes the analysis much easier.
The example we give is also real. Let f.(z) = c¢- % This is equal to
ge,3 for the family g, 4 defined in Section 5.1. There is a unique real value for ¢
for which the following hold: (1) the origin is periodic of period three; (2) —2
is in the forward orbit of 0; (3) the image of 0 is strictly between 0 and 1; this
occurs when ¢ & —0.695620.... Let f(z) denote the corresponding map. Then
P(f) consists of a cycle of period three and a fixed point. The Julia set of f is
shown in Figure 5.10.

We first express this map as a branched covering of the sphere to itself
which has the same mapping schema and ordering of postcritical set. We will
then prove that there are no Thurston obstructions for this covering. By the
uniqueness of the parameter value, this will imply that the candidate branched
covering is combinatorially equivalent to f(z). Figure 5.11 describes a covering
g(z) of the sphere. Laying the top picture over the bottom defines a branched
covering of the sphere to itself.

Proof that g is combinatorially equivalent to a rational map. Since g has
exactly four postcritical points, there is at most one element of any Thurston
obstruction. Since g commutes with conjugation, and all of the postcritical
points lie on the extended real axis, any Thurston obstruction must be symmet-
ric with respect to the real axis, up to isotopy. But there are exactly two such
curves: one enclosing the points —2 and 0, the other enclosing 0 and —¢, and
by examining the diagram in Figure 5.11 one can rule these out.

Proof that J(f) is a Sierpinski carpet. By Corollary 5.18, it suffices to
prove that A = A, = 0.
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Figure 5.10: The Julia set of f(z) = —0.695620%2_(?2) is a Sierpinski carpet.

The Fatou component containing the pole z = 2/3 is too small to be visible at
this scale. Equipotentials for the immediate basin of infinity are shown.
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Figure 5.11: A triangulation expressing g(z) as a branched covering of the
sphere. Edges marked by small Roman numerals or signed letters map to edges
marked by the same numeral. Faces marked by capital Roman numerals map
to faces marked by the same capital Roman numeral. The pole of the map is
denoted p. The top picture is to be overlaid the bottom to obtain a covering of
the sphere to itself.
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Since the map is real, the reflection of any periodic arc through the real
axis is also a periodic arc. By Theorem 5.8, a pair of classes of periodic arcs
is always representable by a pair of arcs associated to chords. The interiors of
these arcs intersect in at most one point. It follows that any periodic class of
arc is representable by an arc which is symmetric with respect to the real axis.

The proof now proceeds in several steps.

1. ¥o,00 = @. In this case, the possible arcs which may arise are determined
by where they intersect the real axis. But an examination of Figure 5.11
shows that any essential arc joining infinity to itself is eventually inessen-
tial, hence cannot be periodic. Thus the basin of infinity has Jordan curve
boundary.

2. Yoog =D,z € P(f) —{o0}. Again, by the symmetry, any arc joining the
point at infinity to a finite point in P(f) is represented by an arc lying
entirely in the upper or lower half-planes. But any arc joining the point
—c to oo and lying entirely in the upper half plane must pass through
faces which map onto faces I, II, and IV, and hence its image cannot be
symmetric with respect to the real axis. Thus the basin of infinity touches
no other periodic Fatou components.

3. ;2 =0, x € P(f) — {oo}. Any arc joining the point —2 with itself,
symmetric with the real axis, and essential as an arc in (S?, P(f)) maps
to an arc which intersects the real axis at least twice, since it must intersect
at least two edges which map to a common edge in the real axis. This
cannot occur, hence every bounded Fatou component has Jordan curve
boundary.

4. %, ,=0,2,y € P(f) — {o0}. By the symmetry of the map, any periodic
arc joining a pair of bounded points of the postcritical set must intersect
the real axis in at most one point. If it intersects the real axis essentially
(i.e. the point of intersection cannot be removed through an isotopy of
the arc), the union of this arc with its reflection yields a pair of essential
arcs meeting in a point. But this can occur if and only if a bounded Fatou
component did not have Jordan curve boundary. Thus no two bounded
Fatou components touch.

5.6.2 Blowing up an arc (with Tan Lei)

In this section, we present an informal discussion of Tan Lei’s construction of
“blowing up an arc”. A more thorough treatment will be presented in a co-
authored preprint in the near future.

Tan Lei has shown that examples like the semibasilica and semirabbit may
be obtained topologically by a construction which she has called “blowing up
an arc”. This process is a topological operation on certain kinds of branched
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Figure 5.12: The interior of the disc maps homeomorphically to the complement
of the arc .

coverings which yield new branched coverings of one or several degrees higher.
Using Theorem 4.29, we have been able to prove that intelligently blowing up
an arc for a branched covering which is combinatorially equivalent to a rational
map yields a new map which is combinatorially equivalent to a rational map.

This is a perhaps remarkable theorem since it is a general way of constructing
new rational maps out of old ones, and is not limited to maps of a certain degree
or to maps which possess some global combinatorial property. Moreover, the
construction seems to be robust: empirically, it works for non-critically finite
maps as well.

Let f be a postcritically finite branched covering of the sphere to itself. We
do not assume that the map is nonelementary. It will be convenient to think
of f as a covering from one copy of the sphere to another copy, followed by the
inverse of an identification of the domain with the range. We will change the
covering to change the map, and leave the identification alone. Let a be an
essential arc in (S2, P(f)) with distinct endpoints, and suppose that 8 = f(a)
is an embedded arc which also has distinct endpoints.

We may form a new branched covering Blow(f,a,2) as follows (the reason
for the “2” will become clear momentarily). Cut the sphere along a. Sew in
a copy D of the closed unit disc, and map D to the complement of f(a) = S
in such a way that the interior maps homeomorphically and the boundary is a
degree two branched covering. See Figure 5.12.

For example, one can realize this conformally via the map z — z+1/2z which

takes A to C —[~2,2] and S* onto [~2,2]. The resulting map can be easily
shown to yield a branched covering of the sphere. The degree is increased by one.
The postcritical set remains the same. The local degree near each endpoint of «
is increased by one. The multiplicity mult(Blow(f, a,2)) : [a] = [#]) is increased
by one.

Now, the map 2 + 2+ 1/2 is holomorphically conjugate to the map z — 22.
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® L] - @
Figure 5.13: Gluing for Blow(f, a, d).

There are therefore variants of this construction. Instead of the open disc D
mapping homeomorphically onto the complement of #, we may map D to the
sphere punctured at the endpoints of 8 by a d-to-one map. See Figure 5.13.

There is a generalization of this construction where we cut not along the
entire arc, but only along part of it. The postcritical set, however, now changes
under this operation. For example, if « is fixed pointwise under f, we may blow
up a sub-arc of a to obtain a map with two extra fixed critical points. We will
refer to this more general construction as blowing up an arc as well.

To define this construction more precisely, it will be convenient to consider
postcritically finite branched coverings with some additional associated data.
This idea was suggested to me by A. Poirier.

Postcritically finite branched covering with additional marked prepe-
riodic points. Let f : S? — S? be a postcritically finite branched covering. Let
X C S? be a finite subset containing P(f). A map g combinatorially equivalent
to f and satisfying g(X) C X is called f marked by the set X.

Example: Let f(z) be a postcritically finite rational map, and let X be any
finite forward-invariant set of periodic and preperiodic points containing the
postcritical set. Then f(z) may be regarded as a postcritically finite branched
covering marked by the set X.

Example: Let f(z) be a postcritically finite rational map, and let R; be a
periodic or preperiodic ray for the map ¢. Choose a point x # 0 on this ray.
Then by postcomposing f by a suitable homeomorphism isotopic to the identity,
we may assume that z is periodic of the same period as R; if R; is periodic, and
similarly for the preperiodic case. Let g1 denote this map. Then marking g1 by
the forward orbit of = together with the postcritical set produces an example of
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a branched covering marked by additional points.

There is a natural notion of combinatorial equivalence of postcritically finite
branched coverings with additional marked points: two maps f,g marked by
X(f), X (g) respectively are combinatorially equivalent if they satisfy the defini-
tion of combinatorial equivalence given in Section 3.2 with the sets P(f), P(g)
replaced by the sets X (f), X(g). Thus this definition of combinatorial equiva-
lence reduces to the usual one in the case when X = P(f). Given a branched
covering f marked by X, one may define the pushforward relation on arcs with
endpoints in X as for ordinary branched coverings. Thus it makes sense to
speak of periodic and preperiodic arcs. We let Aeyp (X (f)) denote the set of
eventually periodic arcs for f under the pushforward relation.

Blowing up an arc is a combinatorial construction on postcritically finite
branched coverings marked by additional points. Note that when a and 8 are
periodic, the combinatorial dynamics of the blown-up map on the complement
of the forward orbit of «a is essentially the same as the original map. One can
make this precise by proving an analog of Theorems 4.31 and 4.36 for blowing
up an arc.

The next theorem says when blowing up an arc in a rational map viewed as
a postcritically finite branched covering marked by a set of points again yields
a rational map.

Theorem 5.22 (Blowing up arcs in rational maps) Let fi(z) be a post-

critically finite rational map. Let X C C be a finite subset containing P(f),
and let f denote a map which is combinatorially equivalent to fi and satisfies
f(X) C X. Regard f as a branched covering marked by X. Suppose o and 8 are
chosen so that [a] € Aevp(X(f)), and let [B] € f«([c]). Let g = Blow(f,a,n).

1. If a is periodic, g is combinatorially equivalent to a rational map if and
only if at least one endpoint of o is contained in a superattracting cycle of

fr.

2. If «a is strictly preperiodic, g is combinatorially equivalent to a rational
map if and only if at least one endpoint of o lands in a superattracting

cycle of f1.

Proof: The necessity of the conditions is clear: otherwise, small neighborhoods
of the periodic arcs in the forward orbit of « lift univalently under g along the
orbit, forming a Levy cycle for g.

We now prove the sufficiency. It suffices to show there exist no reduced
Thurston obstructions.

Suppose [a] is periodic for f. The class [a] is then periodic for g as well,
by construction of g. Hence any Thurston obstruction intersecting the orbit of
[a] must be a simple Levy cycle, by Theorem 4.29, Part 1(a). Since blowing up
increases the multiplicity, by Theorem 4.29, Part 3, no Thurston obstruction
can intersect the orbit of [@]. But on the complement of the orbit of [a], the
combinatorial dynamics of g is the same as that of f. Hence if g has a Thurston
obstruction, so does f, a contradiction.
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Now suppose that [a] is strictly preperiodic. Any reduced Thurston obstruc-
tion intersecting the orbit of a must be a Levy cycle. For an element of a Levy
cycle may be pushed forward until it intersects a periodic cycle X in the forward
orbit of [a], in which case Theorem 4.29 applies. By Part 1(b) of this theorem,
such a Levy cycle must have zero intersection with the set of strict preimages of
the elements of . We may now reason similarly as in the previous case: a Levy
cycle for g avoiding the orbit of a must yield a Levy cycle for f, a contradiction.

As a consequence of Theorems 5.13 and Theorems 5.14, we have

Corollary 5.23 Let f and g be as above. Suppose the arc [a] which is blown
up 1s periodic and has one endpoint x which is not in P(f1). Let y denote the
other endpoint of [a]. Then for the blown-up map g,

1. x is a periodic critical point;
2. 0Q, Jordan curve and Q, N ﬁy is a Jordan curve;

3. the basin of y for the blown-up map does not have Jordan curve boundary
unless g is elementary.

Proof: The first part follows from the definition of the construction. To see
the second part, note that The local degree of the first return map of z under
Blow(f, a,n) is equal to n. But n is also the multiplicity of « under Blow(f, a, n).
By Theorem 5.15, the second part of the corollary follows. The third part
then follows immediately: two open discs in the sphere with locally connected
boundary cannot intersect in a Jordan curve unless either one disc is not a
Jordan domain, or the both are Jordan domains meeting in a common boundary.
The latter cannot occur unless the map g is elementary.

Example: The degree three semibasilica and semirabbit. By examining
Figure 5.5, it can be shown that map yielding the degree three semibasilica
is Blow(2% — 1,[0,1],2), i.e. obtained from the map yielding the usual basilica
by simple blowing up of the preperiodic arc [0,1]. Similarly, the degree three
semirabbit is obtained by blowing up a preperiodic segment contained in the
filled Julia set and joining the point 0 to the unique non-periodic preimage of 0.

Example: The degree four semibasilica. This map is the same as Blow(z2 —
1,0,1],3).

Example: Cubic polynomials. If f(z) = 2%, we may blow up an arc joining
a periodic or strictly preperiodic point on S to the point at infinity. The
resulting cubic map has a totally invariant critical point at infinity, and so is a
cubic polynomial.

2
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Figure 5.14: Blowing up a periodic arc.

-1 °

rational maps for which infinity is ;11 fixed simple critical point, the point one
is a critical point of local degree three mapping onto zero, and zero maps onto
one. There is one other simple critical point at the point ¢. This family contains
all maps which are obtained by simple blowing up of the basilica along internal
rays joining 0 to a point on the boundary of its immediate basin. For example,
there is a unique value for ¢ ~ 0.768... for which c is real, periodic of period
two, and lying strictly between zero and one; see Figure 5.14. This example is
obtained as follows. The period two cycle of Fatou components for the basilica
admit a unique parameterization by Riemann mappings given by Boéttcher’s
theorem. Let Ry denote the zero ray in the basin of zero and R_; denote its
image. By postcomposing 22 — 1 with an isotopy we may assume that Ry and
R, are fixed pointwise under the second iterate of a map f combinatorially
equivalent to z — 22 — 1. Choose a point € Ry which is not an endpoint.
Choose a homeomorphism h such that for f; = ho f, f{?(z) = xz. Mark f; by
{z, fi(z)} U P(f1). Let a denote the arc which is the segment in Ry joining 0
to . Then f, for ¢ as above is combinatorially equivalent to Blow(f, , 2).

If we allow z to be the landing point of Ry, then z is fixed under the map
f. The resulting map is combinatorially equivalent to g., where ¢ = 1/2; see
Figure 5.15.

A portion of the parameter space for this family is shown in Figure 5.16.
The picture is centered at the point ¢ = 1 and the distance from the center to
the left edge is about 1/3. The maps g. corresponding to blowing up rays in
the immediate basin of zero of angle p/q for ¢ even are contained in the white
outward-sticking bulges; those for ¢ odd correspond to copies of the Mandelbrot
set sticking inward. These copies have very small diameter and do not appear

Example: The family g.(z) = (‘Z_;l)s This family consists of the set of cubic
Tt
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Figure 5.15: Blowing up Rp.

clearly at this scale. The semibasilica is contained in the center of the white
region at the far right. The maps in the white region in the center of the picture
have disconnected Julia sets.

Tan Lei has done a combinatorial study of this family, and has found it to
be intimately related to the mating of cubic polynomials. Let S be the set of
cubic polynomials with connected Julia set and one critical point fixed. This set
was studied by D. Faught [Fau], J. Milnor in [Mil3], and by Tan Lei in [Tanl].
Tan Lei (unpublished) has shown that any element map ¢ € S which is matable
with the map po(2) = —(z — 1)® occurs in this family.

Remark: Tan Lei (personal communication) has also observed that some maps
with disconnected Julia set in this family arise by quasiconformal surgery on
quadratic maps with connected Julia set.
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Figure 5.16: Parameter space for g.
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Chapter 6

Cylinders

In this chapter we define cylinders for a rational map, in analogy with cylinders
for hyperbolic three-manifolds.

We will actually define two kinds of cylinders. Let fy be a postcritically
finite hyperbolic rational map. Combinatorial cylinders will be defined for fy
using the combinatorial characteristic subcomplex. We prove

Theorem 6.1 (Characterization of cylindrical) A PFH rational map fo(2)
is combinatorially cylindrical if and only if there exists a finite set R of internal
rays of f such that

1. f(R) =R (periodicity),
2. the union of the rays in R separates the sphere (separation), and

3. no proper subset of R satisfies (1) and (2) above (minimality).

Geometric cylinders will be defined for maps f; in the hyperbolic component
H(fp) in parameter space which contain no periodic critical points. We prove

Theorem 6.2 There is a bijection between geometric cylinders for fi and com-
binatorial cylinders for fy.

For compact three-manifolds, the Annulus Theorem [Jac] asserts that a
three-manifold which has a cylinder has an embedded cylinder. We define em-
bedded combinatorial and embedded geometric cylinders as well, and formulate
several conjectures relating the kinds of cylinders.

Section 6.1 contains the definition of combinatorial cylinder and proves the
first theorem. Section 6.2 contains the definition of geometric cylinder. Section
6.3 proves the second theorem. Sections 6.4 and 6.5 define embedded com-
binatorial and geometric cylinders. We conclude in Section 6.6 with a list of
conjectures.

113
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6.1 Combinatorial cylinders

In this section, we define combinatorial cylinders for a PFH rational map f and
relate them to the topology and dynamics of J(f).

Definition 6.3 A finite set W of arcs in (S%,Q(f)) is said to separate Q(f)

if the set
T= U o
acW
contains a simple closed curve vy such that each component of C —~ contains a

point of Q(f). A finite set of classes of arcs [£] C A(Q(f)) is said to separate
Q(f) if every set of representatives of [X] separates Q(f).

Let f be a postcritically finite hyperbolic rational map. Let A be the set of
eventually periodic classes of arcs in A(Q(f)) under the @-pushforward relation.
Let (X¢,0y) be the combinatorial characteristic subcomplex associated to f.

Definition 6.4 A combinatorial cylinder is a finite subset C' C Xy satisfy-
mg

1. Periodicity. o;(C) =C.

2. Separation. Let A(C) denote the union of all classes in A which appear
as a term in any element of C. Then A(C) separates Q(f).

3. Minimality. No proper subset of C satisfies the previous two conditions.

The length of a cylinder is the number of distinct endpoints in the classes
in A(C). An n-cylinder is a cylinder of length n. A map is said to be com-
binatorially n-cylindrical if it has a cylinder of length n. The period of a
cylinder is the least common multiple of the periods of elements of C under oy.

Recall that the map G : (Xf,0¢) = (Xess, Fo) is an isomorphism, by Theo-
rem 5.8.
Theorem 6.1 follows immediately from

Theorem 6.5 (Chords for cylinders separate sphere) Let f(z) be PFH ra-
tional map which is not postcritically elementary. Let C C Xy be a finite subset.
Then C is a combinatorial cylinder if and only if

1. G(C) satisfies Fo(G(C)) = G(C).

2. Let W be the collection of arcs formed by the chords in G(C), and let T
be the union of the set of arcs in W. Then C — T is disconnected.

3. no proper sub-collection of chords in G(C) satisfies the previous two con-
ditions.

Our proof of this theorem will depend on the following lemma.



6.1. COMBINATORIAL CYLINDERS 115

Lemma 6.6 ((Q)-separation lemma) Let f be a PFH branched covering of
the sphere to itself which is not postcritically elementary. Let W be a finite
set of arcs in (S?,Q(f)), and let T = Ugewa. Suppose fly :T > Tisa
homeomorphism. If W does not separate Q(f), then either

1. T is a finite union of disjoint trees in S?, or

2. There is a collection D of closed discs in S? whose interiors are contained
in S%2 — (T UQ(f)), whose boundaries are simple closed curves in T, and
which cycle under f.

Note that W is a collection of arcs, not isotopy classes of arcs. The hypothe-
ses imply that every arc is periodic as a subset of the sphere.
Proof: Suppose 7 is not a disjoint union of trees. Since W does not separate
Q( f\), there exist simple closed curves contained in 7 which bo/l\md open discs
in C— (TUQ(f)). Any such curve v bounds a unique disc D in C— (T UQ(f)),
since f is not postcritically elementary.

Hence there exist simple closed curves 73,7 C 7T such that the following
hold:

e ~; bounds a unique discs D; in C- (Tu(f),i=1,2;

Yo is a lift of vq;

e there is a component D{ of f 1Dy such that D§ C D.

Condition (3) holds since C- Dy contains points of Q(f). For if no compo-

nent of f~1(D;) is contained in Dy, then C — Dy is a component of f~1(Dy).
The open disc Dy contains no points of Q(f) by hypothesis, hence if condition

(3) fails, then C — Dg contains no points of f~1Q(f) D Q(f), a contradiction
to the fact that f is not postcritically elementary.
We will show that Dj = Do; this will prove the lemma. Let vy = 0D;. Then

74 is a Jordan curve in C. Let us call v; N Q(f) the vertices of D;,i = 1,2. Call
the set of points vy N Q(f) the vertices of Dj. Note that the vertices of Dy
are points in P(f), since they are periodic. Hence the vertices of D are points
of Q(f). A vertex of Dj cannot be contained in the interior of Dy, since by
hypothesis Do contains no points of Q(f) in its interior. Since vo C T, 7o is
periodic under f. Hence the set of vertices of D is equal to the set of vertices
of Dg. Let {a;}%, be the subset of W consisting of arcs that are contained in
1. Let {n;}?, denote the subset of arcs in W that are contained in 7. Then
f(mi) = aiyi =1,2,..n. Let {n}}"_, denote the set of arcs in (5%, Q(f)) formed
by 74, labelled so that f(n)) = a;,i = 1,2,...,n. Each 7; is either isotopic in
(S2,Q(f)) to a unique arc 5} which is contained in ), since Dy contains no
points of Q(f), or coincides with some n;. The former case cannot occur if f is
not postcritically elementary, by Proposition 4.4. Hence Dy = Dj,.
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Proof of Theorem 6.5.

We prove sufficiency by contradiction, using the expansion of the Poincaré
metric and the @-separation lemma. Since G is a conjugacy, if G(C) is and
finite satisfies Fy(G(C)) = G(C), then C is finite and satisfies o4(C) = C. Let
W be the set of arcs formed by the chords G(C). Let T = Ugewa. Then T
is the union of an invariant set of periodic internal rays for f. Suppose that 7
separates the sphere. We will show that A(C) separates Q(f).

Two arcs «, f € W intersect only in their endpoints, or in a single point in
J(f). Therefore if W separates points of Q(f), then there exists a collection of
arcs W' C W whose elements represent distinct isotopy classes in (5%, Q(f)),
and which separates Q(f). Moreover, since the elements of W' intersect mini-
mally, the classes [IW'] must separate Q(f). Hence it suffices to prove that W
separates Q(f).

Suppose that W did not separate Q(f). Since the chords G(C) satisfy
Fp(G(0)) = G(C),
f(W) = W. The set T is not a union of disjoint trees, since 7 separates
theAsphere. Hence by the @Q-separation lemma, the collection D of components
of C — T that bound discs in Q(f) cycle under f.

We will show this is impossible, using the fact that f expands the Poincaré
metric. N

Suppose {D,}f;ol is one such cycle of open discs in C — (T U Q(f)).

Case 1: For some i, 0D; meets the Julia set in at least two points a,b. Since
the D; are invariant, there exists a topological arc L joining a to b in D; — P(f)
which is invariant under f°P, up to isotopy in D; through maps fixing the
endpoints of L. Let L, = (f°?|p,) "(L). Then L, is homotopic to L for all

n. However, since f expands the Poincaré metric on C — P(f) uniformly off of
a neighborhood of Q(f), the diameters of the L, must tend to zero. It follows
that the endpoints of L cannot be distinct, a contradiction.

Case 2: For every i, 0D; meets the Julia set in exactly one point. Then OD;
consists of the union of a pair of rays R, ;,, Ry, +;, from a point z; € P(f) to
itself. But by Theorem 5.6, the chord {(z;,s;), (z;,ti)} is eventually essential
under iteration. Hence the arc formed by this chord is essential in (52, Q(f)).
Since the endpoints of this arc are the same, this implies that this arc forms a
simple closed curve in (S%, Q(f)) separating points of Q(f).

We now show the minimality of the set of classes A(C). Given any proper
subset C' C C, we have G(C') C G(C). Hence by condition (3), the union of
the arcs forming the chords G(C") cannot separate the sphere. But these arcs
represent the classes A(C'), by Theorem 5.8, hence A(C') does not separate
Qf)-

We now show necessity. If C is a cylinder, the set of classes A(C) separate
Q(f). G(C) is a collection of chords whose arcs W represent the classes A(C),
by Theorem 5.8. Hence W separates Q(f), and so the set Uyecw « separates the
sphere. It remains to show the minimality of the set . If some sub-collection
W' satisfied conditions (1) and (2). By Theorem 5.8, there is a sub-collection
C' such that the arcs formed by G(C") is the collection W'. By the sufficiency,
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C' is a cylinder. By the minimality condition, C' = C, hence W is minimal
with respect to conditions (1) and (2).

6.2 Geometric cylinders for rational maps.

In this section we define geometric cylinders for rational maps. Let f; be a
hyperbolic rational map without periodic critical points. Geometric cylinders
are finite collections of isotopy classes of simple closed curves in the quotient
Riemann surface of fi, which we define below. These surfaces are analogous to
the Riemann surfaces at infinity for a geometrically finite hyperbolic manifold
with infinite volume.

Quotient Riemann surface of a rational map. Our definition is taken
from [MS]. Let f(z) be an arbitrary rational _map. The grand orbit equivalence

relation of f is the equivalence relation on C defined by z ~ y if there exist
positive integers m and n such that f°™(z) = f°"(y). Let J(f) denote the
closure of the grand orbit equivalence classes of all periodic and postcritical
points. Let F( f) denote the complement of J ( f). The map f acts on F( f) as

a covering transformation. Let Fy;,(f) denote the subspace of F(f) on which
the iterates of f act discretely; this subspace is equal to the grand orbit of all
attracting and parabolic Fatou components minus the set .J ( f). The quotient
X(f) = Fuis(f) / < f > will be called the quotient Riemann surface of f. This
surface is sometimes empty. We let 7 : ﬁdis( f) = X(f) denote the quotient
map.

The components of X (f) are finitely punctured tori (one for each cycle of
attracting, but not superattracting, Fatou components), or punctured copies of
C* (one for each cycle of parabolic Fatou components). Each component of this
surface is hyperbolic, i.e. admits a conformal metric of constant curvature —1.
The number of such components is bounded by 2d — 2 where d is the degree
of f, since every attracting or parabolic cycle of Fatou components contains a
critical point. The number of punctures can vary, however, since two critical
points can have the same grand orbit.

Geometric cylinders. Let f;(2) be a hyperbolic rational map without periodic
critical points. Then X (f;) is a finite union of punctured tori.

Lifts of curves. Suppose v C X (f1) is a closed curve, not necessarily simple,
such that there is a cycle W (7y) of components of 771(y). We call the set W, if
it exists, the lift of v. Each component of W (%) is a curve in F(f) which cycles
under f and limits, at one end, at an attracting periodic point of f;. If the lift
exists, it is unique.

Note that the only closed curves for which lifts do not exist are closed curves
which lift under 7! to closed curves which separate a point in the grand orbit
of an attracting cycle from the Julia set. The property of a closed curve having
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a lift is an invariant of its homotopy class. A homotopy class of closed curve
which has a lift is called liftable.

Definition 6.7 (Geometric cylinder) A geometric cylinder for f; is a
finite collection [©] = {[0;]}1, of distinct liftable isotopy classes of closed curves
on X(f1) such that the following holds. Given any collection T' = {~;}_, such
that [y;] = [0:],4 = 1,2,..n, the set W = _;,r W(7) satisfies:

1. Periodicity. fi(W)=W.
2. Separation. W separates the sphere.

3. Minimality. No proper subset of I has the previous two properties.

The set W is called the lift of T'. The length of [O] is the number of Fatou
components intersecting W. The period of [O] is the least common multiple of
the periods of the components of W.

The period and length are invariants of [0].

We do not require that the set each class in [0] is representable by a simple
closed curve, nor do we require that pairs of distinct classes in [O] have zero
intersection number.

6.3 A bijection between combinatorial and geo-
metric cylinders

In this section we prove

Theorem 6.8 (Bijection of cylinders) Let fo(2) be a postcritically finite hy-
perbolic rational map and let f1(z) be any map in H(fo) without periodic critical
points. Then there is a bijection ¥ from the set of geometric cylinders of fi to
the set of combinatorial cylinders of fo which preserve length and periods.

To prove Theorem 6.8 we will need to some facts about the topology of plane
sets. Let K be a nondegenerate full set in C.

Definition 6.9 (Access) Let x € K. An access a to z from @ — K is the

image of [0,1] under an embedding p into the sphere such that [0,1) C @ - K
and p(1) = {z}. A point © € OK is said to be accessible if there exists an

access to © from C — K. Two accesses a, 8 to x are said to be homotopic if
there is a continuous one-parameter family of accesses to x joining them.

Proposition 6.10ALet K be a nondegenerate full locally connected set in C.

Let ¢ : (A,0) = (C — K,00) be a Riemann map. Then a homotopy class of
access to x determines a unique ¢-ray landing at x in the given homotopy class.



6.3. A BIJECTION BETWEEN COMBINATORIAL AND GEOMETRIC CYLINDERS119

The proof depends on the following construction, due to Carathéodory, which
we take from [Mil2], Chapter 15. This proof was sketched to me by McMullen.

Let U = C— K. A transverse arcis a set A C U —{oo} which is homeomor-
phic to [0,1] and which intersects OU only at its endpoints. The neighborhood
N(A) of a transverse arc is the component of U — A not containing co. A fun-
damental chain is an infinite sequence A;, Ao, ... of disjoint transverse arcs such
that the corresponding neighborhoods are nested, i.e. N(4;) D N(A2) D ....
Two fundamental chains {A4;}$2,,{B;}2, are equivalent if each N (A;) contains
some N(Bj) and each N(Bj) contains some N(A;). An equivalence class of
fundamental chains is called a prime end of U. Any two equivalent chains are
either equivalent, or are disjoint. R

The Carathéodory completion of U of U is the union of U and the space
of prime ends of U, topologized as follows. For any transverse arc A, define
a neighborhood N (A) which is the union of N(A) and the set of prime ends
containing a representative fundamental chain which is contained in N (A). If

U = A c C, then the identity map determines a homeomorphism of U with A.
More generally,

Proposition 6.11 The map ¢~ : (U, 00) — (A, 0) extends uniquely to a home-
omorphism between U and A

See e.g. [Mil2], Theorem 15.9 for the proof.

We now prove the theorem. Let ay,t € [0, 1] be a homotopy between accesses
ap,0; to a point z € K. Since K is locally connected, ¢ is continuous on A,
hence there are unique arcs @; C A such that ¢(a;) = a;,i = 0,1. By the
Theorem of F. and M. Riesz ([Car], Section 313), each arc &; has a unique limit
point ¢; € St. Let Ry, be the ¢-ray of angle t;.

It is enough to prove that ¢, = ¢;. By the above theorem, it is enough to
show that there is a single fundamental chain {A4;}$2, such that for for any i,
there is an €(¢) such that for all ¢, the set a;((1 —€,1)) C N(4;). But this is
clear since the homotopy «; is continuous and fixes a;(1) = {z}.

Invariant accesses. Let f(z) be hyperbolic rational map. Suppose that € is
a periodic Fatou component and =z € 0f). An invariant access to z from
Q is an access a of x contained in Q such that f°"(a) D « for some n > 0.
The point z is called the landing point of a. Two invariant accesses are said
to be homotopic if they are joined by a continuous one-parameter family of
invariant accesses. A set W' of homotopy classes of invariant accesses is called
a cycle if f acts transitively on W' and f(W') = W', up to homotopy. If W is
a finite collection of cycles of invariant accesses, we say that W separates J(f1)
if J(f1) — W is disconnected.

We will use the following proposition in the proof of the next theorem. Its
proof follows immediately from the definition of homotopy of accesses.
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Proposition 6.12 Let fi be a hyperbolic rational map without periodic critical
points. Let v C X (f1) be a simple closed curve. Then the lift W (v) is a cycle of
invariant accesses whose homotopy classes depend only on the homotopy class

of []-

Proof of Theorem 6.8.

Let f; € Raty be a hyperbolic rational map contained in the hyperbolic
component of a postcritically finite hyperbolic map fy in parameter space.

Let us denote by

e GC(f1), the set of geometric cylinders for fi,

e SA(f1), the set of finite collections W of homotopy classes of cycles of
invariant access which separate J(f1)

o SA(fo), the set of finite collections W of homotopy classes of cycles of
invariant accesses which separate J(fo)

e CC(fo), the set of combinatorial cylinders of fq.

By Theorem 6.5 and Proposition 6.10, there is a bijection between CC(fo)
and SA(fo). By Theorem 2.21, there is a conjugacy between f; and f; on
a neighborhood of J(fo) and J(f1) respectively. This conjugacy transports
homotopy classes of invariant accesses to points in J(fo) to homotopy classes of
invariant accesses to points in J(f1). A collection of accesses which separates
J(fo) is mapped to a collection of accesses which separates J(f1), since h is a
homeomorphism on a neighborhood of J(fy. By the previous proposition, there
is a bijection between the set of cycles of homotopy classes of closed curves on
X (f1) and the set of cycles of invariant accesses to points in J(f1). This gives
a bijection between SA(f1) and GC(f1), by the definition of geometric cylinder.
Composing these bijections gives the desired bijection W.

6.4 Embedded combinatorial cylinders.

In this section, we define embedded combinatorial cylinders, and give a nontriv-
ial example of a cubic polynomial with no embedded combinatorial 1-cylinders.
Rotation numbers. Let F be a family of local homeomorphisms of S* covering
the mapping schema (S, 7, w), and let E C S x S! be any finite subset for which
F(E) = E. We say that E has a generalized rotation number if there exists an
orientation-preserving homeomorphism H of S x S! such that H| Eyper = FlB

per”

We now define embedded combinatorial cylinders. Recall that the map G :
(24,07) = (Xess(f), Fo) gives a conjugacy from the combinatorial characteristic
subcomplex to the action of f on the space of essential chords. A chord is a
pair of points in Q(f) x S! which are equivalent for the lamination of f.
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Figure 6.1: A cubic polynomial without an embedded combinatorial 1-cylinder.

Definition 6.13 (Embedded combinatorial cylinder.) Let C be a combi-
natorial cylinder for a postcritically finite hyperbolic rational map f(z). The
cylinder C is said to be embedded if G(C) C Q(f) x S! has a generalized
rotation number.

Example: Let f(z) = 22 — 1. Let 5 denote the union of the 1/3 and 2/3 rays,
together with the point at infinity. Recall that 5 is forward-invariant, and so
its class is also forward-invariant. Then the orbit {[n]}$2, is a combinatorial
1-cylinder of period one. The image G({[n]}) consists of the points exp(2mil/3)
and exp(2mi2/3), which are interchanged under Fy = 22. Thus this cylinder is
also embedded.

Example: A cubic polynomial with no embedded 1-cylinders.

Using Tan Lei’s blowing up construction, we may obtain examples of poly-
nomials with 1-cylinders which are not embedded.

First, note that since the boundaries of bounded Fatou components for poly-
nomials are all Jordan domains, there are no 1-cylinders whose endpoints are
not the point at infinity.

To construct our example, let R; denote the ray of external angle ¢ for the
basin of infinity of the map f(z) — 22. Consider f(z) marked by the forward
orbit of the landing point zo of the ray R3/5. Note that the ray R3/s does not
have a well-defined rotation number as seen from infinity, since 1/5 — 3/5 —
4/5+ 2/5 + 1/5 under angle tripling. Let fo(z) = Blow(f, R3/5,2). The result
is the cubic polynomial fo(2) = 23+c-22 for ¢ &~ 1.151613988...+0.435445479...i,
up to affine conjugacy; see Figure 6.1.
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The high precision is necessary since the diameters of the period four Fatou
components are quite small. The lamination for this polynomial has exactly four
periodic leaves lp = 29/80 — 56/80, I, = 7/80 — 8/80, l» = 21/80 — 24/80, and
I3 = 63/80—72/80. The map fo(z) sendsl; to l;41 mod 4. Since the rays defining
the endpoints of these leaves do not have a combinatorial rotation number, but
do separate the sphere, the union of these rays form a combinatorial cylinder
which is not embedded. Moreover, by construction, there are no periodic rays
joining infinity to itself other than the ones determined by the angles for the [;.
Hence there are no other 1-cylinders, and so there are no embedded 1-cylinders.

Remark: One may also construct this example by using Hubbard trees; see
e.g. [Poi].

6.5 Embedded geometric cylinders

In this section, we define embedded geometric cylinders.
Let f1(2) be a hyperbolic rational map without periodic critical points. Let
X (f1) be the quotient surface of f;.

Definition 6.14 (Embedded geometric cylinder.) An embedded geomet-
ric

cylinder for f; is a geometric cylinder [©] which is representable by a collection
of disjoint simple closed curves.

Thus an invariant lift of an embedded geometric cylinder consists of disjoint
arcs in the Fatou set.

Example: It is possible to show that the example of Figure 6.1 has no per-
turbations in its hyperbolic component which have embedded geometrically 1-
cylinders.

If we perturb fo(2) slightly near infinity so that the resulting map f;(z) has
an attracting fixed point at infinity and a single critical point in the basin of
infinity of multiplicity 2, the quotient surface X (f1) becomes a once-punctured
torus. Since fo is hyperbolic, the maps fo and f; are quasiconformally conjugate
on some neighborhood of their Julia sets, by Theorem 2.21. It follows that the
map fi(z) has a geometric cylinder consisting of two classes of curves on a
punctured torus.

We claim these geodesics are not disjoint and simple, hence that the cylinder
formed by them is not embedded. The map f; has a cycle of invariant accesses
without a rotation number. It follows that these invariant accesses cannot be
disjoint. Lifting f; on the basin of infinity to the unit disc via a Riemann map,
one obtains a degree three Blaschke product with a single critical point and a
cycle of arcs joining an attracting fixed point to a cycle of points on the circle
without a rotation number. It follows that these arcs must intersect. Hence the
images of these invariant accesses under the projection map 7 to X (f1) must
intersect.
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6.6 Conjectures about cylinders

In this section we discuss several conjectures about cylinders.

Conjecture 6.15 Let fo(z) be a posteritically finite hyperbolic rational map
and let Cy be a combinatorial embedded cylinder. Then there exists a perturba-
tion of fo to a map f1 without periodic critical points, and a choice of conjugacy
h from fo near J(fo) to fi near J(f1), such that the bijection ¥ in Theorem
6.8 sends the cylinder Cy to an embedded geometric cylinder T'y

A weaker version of this conjecture is

Conjecture 6.16 Let fo(2) be a posteritically finite hyperbolic rational map.
If fo has an embedded combinatorial cylinder, then there exists an embedded
geometric cylinder for a perturbation f1 of fo.

The analog of the Annulus Theorem of Jaco and Shalen is then

Conjecture 6.17 (Cylinder conjecture) A combinatorially cylindrical PFH
rational map fo(z) has an embedded combinatorial cylinder.

P. Makienko ([Mak]) proves a related theorem, which we recast into the
language of cylinders.

Theorem 6.18 (Makienko) Let fo(z) be a PFH polynomial with connected
Julia set.
If fo(2) has a repelling fived point x with combinatorial rotation number

p/a,p # 0, then

1. There is a cycle {Ry, ;-1:_11 of q rays landing at x such that the angles t; are
ordered by t;) < ti1) < ... <tiq—1). The cycle of chords { {(00,tn(i)), (00, tn(i)+1 mod q)) } };-1;11
corresponds to an embedded combinatorial cylinder under the isomorphism
G between essential chords and the combinatorial characteristic subcom-
plex.

2. There is a perturbation near infinity of fo to a map f1 and a conjugacy h
such that the above combinatorial cylinder corresponds under the bijection
U induced by h to an embedded geometric 1-cylinder for f;.

Otherwise, fo has a superattracting fized point x.

1. There is a combinatorial 2-cylinder of period 2 formed by two chords
{(wasl)a(ooatl)} and {(x732)a(003t2)}'

2. There is a perturbation f, of fo near infinity and near x, and a conjugacy
h from fo near J(fo) to fi near J(f1), such that the above combinato-
rial cylinder corresponds under the induced bijection ¥ to an embedded
geometric 2-cylinder.

Since the theorem covers all PFH polynomials, the Cylinder Conjecture is
thus established for all PFH polynomials.
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Chapter 7

Existence of acylindrical
starlike tunings

In this chapter, we prove

Theorem 7.1 The tuning of an acylindrical PFH rational map f(z) by a PFH
family of starlike polynomials P is combinatorially equivalent to a rational map.

Conjecturally, the map f * P is also acylindrical.

First, we fix some notation. Next, we outline the proof. We then give the
proofs of the steps in the outline.

Comparison with matings of quadratic polynomials.

This will be an informal discussion; the details will be postponed to a later,
more thorough discussion.

In [Tan2], it is proved that the mating of two PFH quadratic polynomials
p and q exists if and only if p and ¢ are not in complex conjugate limbs of the
Mandelbrot set. The argument proceeds as follows. A Thurston obstruction is
reduced to a very special kind of Levy cycle. This Levy cycle is pulled back
under the dynamics. The mated map is not quite expanding, but it does have
the property that as the Levy cycle is pulled back under the dynamics, the limit
is a graph consisting of unions of external rays for p and ¢ ([Tan2], Proposition
2.7). A possible complication is that this graph may not separate the sphere.
However, the fact that the Levy cycle is quite special implies that they do indeed
separate the sphere. Moreover, the rays forming this graph must actually be
the union of the set of rays landing at the a-fixed points of p and ¢, implying
that p and ¢ are in complex conjugate limbs.

The same argument, mildly generalized to the case of tunings rather than
matings, shows the following theorem. It says that an obstruction to a tuning
f =P of a PFH rational map by a family of starlike polynomials is an obvious
one.

Theorem 7.2 Let f be a PFH rational map with |P(f)| > 2. If the tuning
[ *P of f by a starlike family of polynomials is not combinatorially equivalent

125
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to a rational map, then there is a finite set Ry of internal rays of f and a finite
set Rp of external rays for P such that f(Ry) = Wy, P(Rp) = Rp, and such
that the union Ry U Rp forms a Levy cycle for the tuning f = P.

7.1 Notation

Let f(z) be an acylindrical PFH rational map, let B be a subschema of the
mapping schema (Q(f), flo(s), wy), and let By, be the subset of points in B
which are periodic under f. We will use the notation f(z) to also denote the
canonical peripherally rigid map associated to f, as constructed in Section 3.5.
Choose a fixed marking for f near B.

Let P be a PFH family of monic starlike polynomials covering the mapping
schema B. Let G be a graph as in the definition of PFH family of starlike
polynomials. Then the edges of G form eventually periodic arcs for P. By
definition of starlike, P|g,,., is a homeomorphism from G to itself, up to isotopy
through maps fixing P(P). We will also use the notation P to refer to the
canonical family of associated maps which are peripherally rigid near infinity.

Let R = f %P denote the tuning of f by P, glued along the chosen marking
for f and the canonical marking of P near infinity.

We will denote the support of the tuning by D = UyepD,. D, is a round

disc in C which is identified with the disc A in the domain of ’P|{ @ by
Ty X
the definition of tuning. Thus R(D;) = Dy(,) for all x € B. We set Dpe, =

UgzeB,., Dsz. Thus components of Dy, cycle under R.

per

7.2 Outline of the proof

By Thurston’s theorem, if f * P is not combinatorially equivalent to a ratio-
nal map, there is a Thurston obstruction I'. Let T be any reduced Thurston
obstruction contained in I".

1. By Theorem 4.38, every v € I has nonzero intersection number with 0D,
for some D, € Dpe,. We may assume that I'N (D — Dper) = 0.

2. By the definition of intersection number, if v has nonzero intersection
number with 8D, then vy must separate points of P(R) N D. Since P is
starlike and T" is irreducible, there exists v € I and o € E(Gper) such that
[v] - [a] # 0. Thus [a] € Aper(P(R)).

3. By Theorem 4.29, since T is irreducible, I' must be a simple Levy cycle.

4. We may assume that elements of I' minimize the number of intersections
with components of 8Dp.,. Since I' is a simple Levy cycle, there exists a
homeomorphism A isotopic to the identity through maps fixing Q(R) and
D such that for Ry = Roh, R;|r : T' —» T" is a homeomorphism.
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5. Let f; denote the map which is obtained from R; as follows. Cut out
D. Glue in maps p, such that p;|sp, = R|sp,, p- carries the center of
0D, to the center of 0Dy (,), and such that p, carries radial segments
isometrically to radial segments. The resulting map R; is combinatorially
equivalent to f. Let W be the union of I' N (C — D) together with radial
segments joining the centers of the discs D, to the points of I' N 0D,.
Then W is a finite set of essential arcs joining points of P(f;) such that
filw is a homeomorphism. Note that W is not homeomorphic to a tree
since I' consists of simple closed curves.

6. If W does not separate Q(f), we will show by using Lemma 6.6 that the
Levy cycle I' must be degenerate. This, by Lemma 4.10, is impossible
since R is of hyperbolic type.

7. Therefore the arcs W separate the sphere in a ()-essential fashion, and
so fi has a cylinder. Since f; is combinatorially equivalent to f, f has a
cylinder.

7.3 Proof of the theorem

1. This step follows immediately from Theorem 4.38.

2. Suppose [7] - [0Dz] # 0, Dy € Dper. If 7 intersects no edge of Gper,
then for all n, no preimage of v under (f°")~! intersects a preimage of
a periodic edge in Gper. Since I' is irreducible, v cannot intersect any
element in G, since the edges of G are all eventually periodic. But then ~y
is isotopic to a curve which does not intersect 0D, a contradiction.

Hence vy intersects a periodic edge of G, and so + intersects an element of

Aper (P())-
3. By Theorem 4.29, the Shishikura-Tan theorem, I' is a simple Levy cycle.

4. We now show that we may adjust R so that I is invariant.

First, we may choose representatives of I' so that for every v € T', and for
every Dy € Dper, |[YNOD,| = [v] - [0D,].

Next, since I' = {v;}?, is a simple Levy cycle, for each ;1 € T, there is
a unique lift 7 of ;41 isotopic to an element v; € T'. Let h; : S} x I be
an isotopy from «; € T to the lift 7/. We may assume that h;(S} x I) N
(DU Q(R) — Dper) = 9, since T is irreducible and simple.

By approximating the 7; with smooth arcs, and the isotopies h; with
smooth maps, we may assume that each isotopy h; is transverse to the
boundaries of the elements of Dp.,. We may also assume that the collection
{h:}™, gives an isotopy H of the disjoint union of the elements of I whose
trace does not intersect Q(R) or D — Dpe,. We wish to show that the
isotopy H may be extended to an isotopy on I' U {8D}DED,,”' Let Hy be

the map at time ¢, and let I'y = H(U;S}).
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By transversality, H; '(T'; N 8D,e) forms a submanifold in the disjoint
union of annuli U, (S} x I). The only components of such submanifolds
are arcs joining S} x {0} to S} x {1}.

It follows that the set intersection points I'y N 0Dy moves isotopically
under H;. From this it follows that we may extend H to an isotopy of
ru{obnj, eD,..- We may assume that the trace of this isotopy is disjoint
from Q(R)UD—D,e,. Extend H to a an isotopy of a regular neighborhood
of TU {8D}EEDPET which fixes Q(R) and D — D,,. By the Ambient

Isotopy Theorem [Hir] there is an extension to an isotopy H; of all of C
that preserves Q(R), D — Dper, and Dpe,r. Let h = H; be the end map
of the isotopy. Then for Ry = Roh, Ry|r : I' = T is a homeomorphism.
Moreover, Ry preserves Q(R) and D.

5. Let {A,},p be a collection of disjoint discs indexed by B. The marking
of f gives an identification of D, with A, which sends the center of D,
to 0. The map R;|sp, induces a map sending A, to 6Zf(x) by a degree
wy(z) local homeomorphism. Extend each of these maps radially to a
map p, on all of A,. Denote by f; the map which is given by f; = R; on
C—-Dand by f; = p, on D,. Then f; is combinatorially equivalent to f.

Note that ~ = Ri|~ .
h C-p,.. ll(Cfp,,e,

Let W denote the set TN (C—D,,.), together with radial segments joining
0€ A, toI’'NdD,, for each z € Byer. Then f; sends W homeomorphically
into itself. W cannot be homeomorphic to a tree since I' consists of simple
closed curves.

6. Suppose W did not separate Q(f1). We will show that T is a degenerate
Levy cycle. This is impossible, by Lemma 4.10.

Define a piece to be a component of C — (D, UT), regarded as a subset
of the domain of R. Call a piece essential if it contains elements of Q(R).
The assumption that W does not separate the sphere in a Q(f1)-essential
fashion implies that there is a unique essential piece; call it Uy. By Lemma
6.6, the set of inessential pieces are permuted under the map R;.

Each curve v € T' has a preferred component of its complement, namely,
the one which does not intersect Up. Call this component the inside of ~;
we denote it by Ins(vy). We let Ins(T") denote the union of the insides of

elements of I'. The inside of a curve y € T, intersected with C — Dy, is

a union of inessential pieces. Since f; = R; on C — Dper, the inessential
pieces are permuted homeomorphically under R;. Hence the components

of Ins(T') N (C — Dper) are permuted under R;.

We now claim that the components of Ins(y) N Dy, are also permuted
under R;. This will show that T" is a degenerate Levy cycle.
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Figure 7.1:

Let 1 € B and let D,, be a component of Dp.,. Let 74 € I'. Let K; be a
component of the intersection of Ins(vy) with D,. Let vo = (R1|r) "t (m).
Then 1, = K1 N7y lifts to a segment 7y which is a component of N D,,,
for some uniquely determined zo € B. Let Ky be the component of
D,, — no which intersects the inside of v9. See Figure 7.1.

If K is not the lift of K, then there is a strictly preperiodic component 7
in the preimage of 7; which is contained in K. But this implies that there
is a strictly preperiodic element ~}y of Ry ' (1) which intersects the inside

of 7p. Since the intersection of Ins(vp) with C — Dy, is a union of pieces
which are all permuted homeomorphically under f, this is impossible.
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Chapter 8

Noncompactness in moduli
space

In this chapter we discuss compactness properties of hyperbolic components in
the moduli space of rational maps.

We prove the following two theorems, which are reformulations of special
cases of theorems of Makienko [Mak], and which we prove using his techniques.

Theorem 8.1 Let f(z) be a hyperbolic map with connected Julia set and with-
out periodic critical points. If f(z) has an embedded geometrically cylinder, then
H(f) does not have compact closure in M.

Theorem 8.2 Let f be a hyperbolic rational map without periodic critical points.
If J(f) is disconnected, then H(f) does not have compact closure in M.

A hyperbolic rational map with disconnected Julia set is the analog of a
geometrically finite three-manifold with compressible boundary.

We will give a new application of Makienko’s techniques to the study of
Kleinian groups. We show that the deformation space of a geometrically fi-
nite Kleinian group without parabolics arising from a cylindrical or boundary-
compressible three-manifold is noncompact. While this result is now well known,
the proof we present is similar to Makienko’s proof, and relies almost exclusively
on two-dimensional methods.

Section 8.1 is a survey of known compactness and noncompactness results for
hyperbolic components of rational maps. Section 8.2 contains a brief discussion
of the Teichmiiller space of a rational map and Kleinian group. A general
definition of the Teichmiiller space of a holomorphic dynamical system may be
found in [MS]. Section 8.3 gives the proof of Theorems 8.1 and 8.2. Section
8.4 contains a brief discussion of some examples. Section 8.5 gives a proof of
the analogous theorem for Kleinian groups. Sections 8.6 and 8.7 contain some
technical results used in the proofs.

131
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8.1 Other known compactness and noncompact-
ness results

Rees [Reel] and Ahmadi [Ahm] have obtained partial compactness results for
certain subspaces of degree two hyperbolic components. Their proofs use Thurston’s
characterization of postcritically finite rational maps as branched coverings.

C. Peterson [Pet] has obtained noncompactness results for hyperbolic com-
ponents in Rats containing quadratic polynomials f. His approach is to obtain
estimates for the multiplier of the f-fixed point for a perturbation fy of f which
has an attracting fixed point of multiplier A at infinity. He shows that if f has
combinatorial rotation number p/q, then as A — exp(—2wip/q), the multiplier
at the a-fixed point of f) tends to exp(2mip/q). For any rational map with
multipliers n; =# 1 at its fixed points, we have the equality

1
zi:l—m:l’

(see [Mil2], Theorem 9.2). Hence the multipliers of the S-fixed points of f must
tend to infinity, so there is no limit of the fy. His techniques may also be used
to show that the hyperbolic components containing PFH quadratic rational
maps which have obstructed tunings all have noncompact closures, using the
classification by M. Rees and D. Ahmadi.

Milnor in [Mil4], asks when a hyperbolic component in the moduli space of
degree two maps has compact closure. The Quadratic Mating Conjecture asserts
that mating can be defined continuously for any pair of points not in complex
conjugate limbs of the Mandelbrot set. He asserts that this conjecture implies
the following: if f, and f, are PFH quadratic polynomials which are matable,
then the hyperbolic component containing the mated map has compact closure
in the moduli space of degree two maps. He also presents computer pictures
which illustrate the results found in [Pet].

However, there is no known example of a hyperbolic component which is
known to have compact closure in My for some d. McMullen [McM1] poses
a conjecture which reduces to the following for hyperbolic maps: if J(f) is a
Sierpinski carpet and f is hyperbolic, then the hyperbolic component in moduli
space containing f has compact closure in M.

8.2 The Teichmiiller space of a rational map

Our definition of the Teichmiiller space of a rational map is taken from [MS],
where a general notion of the Teichmiiller space of a holomorphic dynamical
system is defined.

Definitions. Let f(z) be a rational map. We let

N dz
My(C, ) = {n | [l 1l < 1. £ () = 1}
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denote the space of f-invariant Beltrami differentials. Let QC(@, f) denote
group of all quasiconformal homeomorphisms of @ conjugating f to itself, and
let QC’O(@, f) denote the subgroup consisting of maps isotopic to the identity.
The group QC(@,f) acts on Ml(@, f) by pullback.

Definition 8.3 The Teichmiiller - space of a rational map f(z ) is defined as
the quotient space My ((C f)/QC’O((C f) and is denoted by Tezch((c .

Teich(@, f) may be equal to a point. If it is not equal to a point, it is a
connected complex manifold equipped with a natural metric (see [MS]).

There is a natural map ® : Teich(C, f) — M| obtained by using the Measur-
able Riemann Mapping Theorem (MRMT); see e.g. [Gar]. Given an f-invariant
Beltrami differential, the MRMT yields a quasiconformal map h, : C - C,
well-defined only up to postcomposition with M6bius transformations, which
transports the conformal structure given by p to the standard one. Thus
hyofohyt: C = C is a conformal map of the Riemann sphere which is
quasiconformally conjugate to f. Moreover, this new map is the same for any
p#' which is the pullback of pu by any quasiconformal self-conjugacy of f which
is isotopic to the identity. This gives the desired map. The fibers of the map
@ : Teich(C, f) — H(f) are discrete and coincide with the orbits of the modular
group Mod(C, f) (Theorem 2.3, [MS]).

Now suppose f is hyperbolic and has superattracting cycles or critical re-
lations, i.e. no two critical points are identified under the grand orbit equiva-
lence relation and no critical points are periodic. Then by Theorem 2.2, [MS],
Teich(C, f) is naturally identified with the Teichmiiller space of the quotient
surface X (f), as defined in Chapter 6.

We will assume this for the remainder of this chapter.

Since f is hyperbolic, the quotient space X (f) = Q(f)/f is then a union
of punctured tori., Teich(C, f) is naturally isomorphic to Teich(X(f)), and
® : Teich(C, f) — H(f) C M. In general, this map is not onto. Two maps in

the image of ® are conjugate on all of C. However, the two maps in the same

hyperbolic component may not be conjugate on all of C, since they need not be
conjugate on their postcritical sets.

8.3 Hyperbolic components in moduli space with
noncompact closure, after P. Makienko

8.3.1 Tending to infinity in moduli space

How can we tell if a sequence of rational maps does not converge in M;?
Makienko’s idea is to argue by contradiction: the assumption of convergence
in Mrimplies that there is a convergent sequence in Ratq , and this implies that
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all periodic points of a given sufficiently high period converge without collision.
More precisely,

Proposition 8.4 (Convergence of periodic points) Suppose f, — f in Raty
. Let N(f) denote the length of the largest nonrepelling cycle of f. Then for
every p > N(f), there is an integer N (p, f) such that for all n > N(p, f), there
is a conjugacy ¢, isotopic to the identity, from the set of p-periodic points of f
to those of f,. Moreover, these conjugacies converge to the identity as n tends
to infinity.

Proof: Repelling cycles of a map g are simple periodic points of g, and are thus
determined by polynomial equations in the coefficients of g with only simple
roots. Hence the location and multipliers of repelling cycles of maps near g
vary continuously as a function defined on an open neighborhood of g in Ratg.
Moreover, the condition of being a repelling cycle is an open condition. The
claim then follows.

In particular, repelling periodic points of f,, cannot undergo wild bifurca-
tions under arbitrarily small perturbations of f..

Corollary 8.5 (Geometric limit contains algebraic limit) Suppose f, —
foo in Ratq . Then the Julia set J(f) is contained in the Hausdorff (geometric)
limit of J(frn)-

Proof: Choose a finite set of long periodic cycles which approximate the Julia
set of f in the Hausdorff topology. These cycles do not disappear under per-
turbations, and moreover they do not move very far in the spherical metric.

If the convergent sequence {f,} happens to be constructed by deformations
which are conformal off some open set, this has strong consequences.

Proposition 8.6 (Convergent deformations off an open set) Suppose {h,}
is a sequence of quasiconformal conjugacies between f and f, whose complex di-
latations all vanish on an open connected set D. Suppose f, — foo in Raty.
Then

1. if fu # [ (up to conjugacy) for some n, then D C F(f);

2. the restrictions {hp|p} form a normal family of holomorphic functions;

3. if heo is any nonconstant limiting map, then hoo(D) C F(foo)-
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Proof: If D intersects J(f), then since f is locally eventually onto near J(f),
the complex dilatation of each h,, is identically zero. Otherwise, h,,(D) C F(fn),

for all n. A sequence of holomorphic embeddings of an open set U # C, C*,

or C into Cis normal if the Hausdorff limit of the complement of their images
consists of three or more points; this limit exists, since the set of closed subsets
of Cis compact in the Hausdorff topology. But the Hausdorff limit of the Julia
sets of the f, contains the Julia set J(f). Since J(f) contains at least three
points, and since h, (D) C F(f,, the second result holds, by Corollary 8.5. The
images of a closed disc in D under h,, eventually nearly coincide if there is a
nonconstant limit hy,. It follows easily that the image of any such disc under
hn for N sufficiently large is in the intersection of the Fatou sets for infinitely
many f,,, and so the third result follows, by Corollary 8.5.

Any nonconstant limit of holomorphic embeddings is again an embedding,
50 he is an embedding of D into C. Note that when there exists a nonconstant
limit hy on D, by induction we can assume that there exist nonconstant limits
on the grand orbit of D. So if a nonconstant limit exists, it prolongs to a
holomorphic conjugacy (which we also denote by ho, between f and fo, on the
grand orbit of D. Moreover, limits which are constant can often be ruled out if
D separates nontrivial pieces of the dynamics.

Proposition 8.7 (Limit is nonconstant) With the hypotheses of the previ-
ous proposition, suppose that either

1. D separates points in J(f), or
2. D contains infinitely many periodic points on its boundary.

Then any limiting map ho, is nonconstant.

Proof: If f has one of these properties, then so does every f,. Now choose
p sufficiently large and for which there are points of period p which are either
separated by D or on dD. Then period p points of fo, must be very close
to those for f, for large n, and so it follows that the limiting map cannot be
constant.

8.3.2 Pinching deformations

Any doubly-connected Riemann surface is isomorphic to either the punctured
plane, punctured disc, or to a Euclidean cylinder of height H and circumference
C for some finite H,C. The ratio H/C is called the modulus of the annulus. A
basic fact in conformal geometry is that if X is a Riemann surface and A C X is
an essential embedded annulus of large modulus, then the hyperbolic length of
the geodesic in the free homotopy class of A (if it exists) is short. The converse
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is also true. We will also need the fact that if A is an annulus contained in the
Riemann sphere of definite diameter and large modulus, then the diameter of
at least one of the complementary components is small.

The basic idea is to consider shrinking a geodesic on the quotient surface
X(f). We will carry out this shrinking by defining a sequence of Beltrami
coefficients which vanish on most of X (f) so that we may apply the results in
the previous section.

If A= {z|1/r < |z| < r}, the modulus of A is 7/log(r). Let F(z) = z|z|;
this defines a quasiconformal map of A into C which is an affine stretch of
constant dilatation equal to two in the Euclidean coordinates for A. Let 7, be
the dilatation of F™. Let C,, = F~™A, and define a Beltrami differential u,, on
A by

0 OIlA\Cl
n =94 m;  onC;\Cit1
Nn  onChp

See Figure 8.1. Note that the pairs of annuli C;\Cj41 are all conformally isomor-
phic, so that the moduli of (A, u,,) tend to infinity. Let h, be the straightening
map for p. If m > n, the composition A,y o h,! is conformal on A\C,,, which is
a pair of annuli of modulus n/2 mod(A).

Now let v be a simple closed geodesic on a Riemann surface X and let A(7y)
be an embedded annulus homotopic to v. The pinching deformation associated
to A(y) is the sequence in Teich(X) defined by Beltrami differentials u,, as
above which are supported on A(y). Since the p, are rotationally symmetric
the Beltrami differential is independent of the map used to uniformize A(7)
and so this map is well-defined. We may apply this construction to a disjoint
union of geodesics as well. By construction, the u, tend to one in norm, and
since the moduli of the straightened annuli tend to infinity, the length of the
corresponding geodesic tends to zero. So X tends to infinity both in Teichmiiller
and moduli space. See Figure 8.1.

Now let f be a hyperbolic rational map without critical relations and X (f)
the quotient surface. Let v C X (f) be a simple closed geodesic, and let A(7)
be an embedded annulus about 7y; one always exists, by the well-known Collar

Theorem. Denote by Dx the complement of A in X and D the lift of Dx to C.

Consider a sequence of pinching deformations supported on this annulus.
By lifting this differential to the Riemann sphere, we then obtain a sequence
fn of rational maps and quasiconformal conjugacies h,, from f to f, which are
conformal on D. Suppose f, — fo for some lift to Raty . If a nonconstant
limiting map ho on D exists, it is a conformal conjugacy of f on D to fo on
a subset Do, C F(fs). The quotient of this subset by f is an open subset of
the limiting Riemann surface X, and so ho, descends to an embedding v of
D into X (fx) so that the diagram in Figure 8.2 commutes on D.

8.3.3 Proofs of the theorems

Compressible case
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Figure 8.1: The deformation is a horizontal affine stretch along rings. Here the
dilatation for pg is shown. The rings are all conformally isomorphic with respect
to the conformal structure induced by ps.

Since J(f) is disconnected, there exists a simple closed geodesic v C X (f)

which lifts to simple closed curves in C. Let A(y) be a collar about v, and
let D be as in the previous section. Then since J(f) is disconnected, some
component U of D is a cover of Dx which separates components of J(f).
Consider a sequence of pinching deformations supported on A(y), and sup-
pose the corresponding rational maps converged in Rat; . By Propositions 8.6
and 8.7 , there is a limiting nonconstant conjugacy ho, from f to fo on D.
Let Uss, = hooU. By the pinching construction, there are annuli B, ; disjoint
from Uy with 0B,,; D 0U of arbitrarily large modulus. Since Uy, has defi-
nite diameter, this implies that components of the complement of Uy, must be
collapsed to points, and this is impossible, by Proposition 8.4.

More generally, the image of Teich(C, f) under ® for any f with disconnected
Julia set does not have compact closure in M. The proof is essentially the same.

Remark: A similar proof also applies to show that geometrically finite
hyperbolic three-manifolds with compressible boundary do not have precompact
deformation spaces in the algebraic topology.

Incompressible with embedded geometric cylinder case
Let ([v],p) be an invariant access for p € 0Q and suppose 7 is the corre-
sponding geodesic in X (f). Let A(y) be an annular collar, Dy its complement

~

in X(f), and D the lift of Dx to C. Consider the pinching deformation sup-
ported on A, and assume that a limiting map fo, € Raty exists. Any limiting
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0 Q
Q-
V V
o

Figure 8.2: A nonconstant limit hy, gives a holomorphic conjugacy from f on
D to foo on Do, = hooD. The diagram commutes on D. Marked points are not
shown.
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map h is necessarily nonconstant. For if U is a component of D whose closure
intersects the attractor a € ), the intersection of U with J(f) is a Cantor set
containing infinitely many periodic points, and so Proposition 8.7 applies. Let
U; be the components of D whose closures contain a; they cycle of some period
k. By Proposition 8.6, U® = heUj; is also a periodic subset of F(fs). The
points h,(a) also converge to a periodic point as of foo. The Maskit Inequal-
ity implies that as is parabolic (see Appendix I), and hence that every point
in U tends to as under iteration of fo,. Hence if (25° is the Fatou compo-
nent of fo, containing U®, (2$° is an immediate attracting parabolic basin for
the parabolic point as. Let X (fs) denote the corresponding quotient surface
for fwo; the component coming from the Q° is isomorphic to C* with added
marked points. The boundary components of (D) lift to curves in Q5° which
are invariant under f¥  and hence the endpoints of this lift terminate at a,
since €25° is parabolic. It follows that we can always extend h, continuously to
the boundary of the Uj;.
We first claim

Proposition 8.8 (Limit is literally pinched) The map hoo can be extended
to R give a
smooth semiconjugacy H : Q@ — C from f* to fX which is a conjugacy on the
complement of w1~ and which collapses each component of 7'~ to a point.

See Figure 8.3.
Proof: It is enough to prove this for the pinching deformation associated to a
single geodesic. First, note that the complement of U/® in {2§° cannot contain
any marked points. Otherwise, for large n, the complement of h,U; in its
corresponding Fatou component contains marked points, which is impossible
since A(y) contains no marked points and marked points move continuously
under small perturbations. The complement of (D) thus consists of a union
of punctured discs. Hence there is a smooth extension of ¢ to a diffeomorphism
of X(f)\7y onto X(fs) which is unique up to isotopy. Since the complement
of ¥(D) contains no marked points, each component of the coinplement lifts to

a topological disc. Hence there is a lifting this extension to C, and this gives
our map H. That H collapses components of 7!+ follows easily from the local
picture of the dynamics near parabolic points.

[ |
Proof of Theorem

Applying the pinching construction to disjoint annuli about the geodesics rep-
resenting independent accesses, we conclude by the previous proposition that
there is a continuous semiconjugacy from f* on  (or f*¥1*2 on Q; U €, in the

second case) into Cwhich collapses the lifts of the geodesics to a point. But
by hypotheses, some of these lifts piece together to form a simple closed curve
separating the U;, which is impossible.
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Mox
@é N

Figure 8.3: The limit is parabolic and literally pinched along preimages of +.
We have suppressed most lifts of A(y) and marked points.
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Figure 8.4: The pinching deformations have a limiting map. The curves drawn
are the preimages of circles near the attractors a and co. The lifts of v are
shown as transversals to these curves.

8.4 Examples

The assumption that f have no critical relations is not absolutely necessary. In
the examples below, we keep one cycle superattracting.

Consider the map f.(z) = 22 + ¢, ¢ small and negative real, regarded as a
polynomial map of C to C. The quotient X (f) of the basin of zero is a once-
punctured torus. If a denotes the attracting fixed point of f., the multiplier of
a is real and negative. The quotient surface X (f) is isomorphic to the quotient
of C* by < z — Az >, via the local linearization of f near a, where we also
transport marked points by the linearization map. The map z — Az preserves
any line through the origin which avoids the marked point, and flips direction.
It follows that this line projects to a geodesic in the quotient torus, and this
geodesic lifts in Cto a pair of arcs joining a to a two-cycle of repelling periodic
points. As we perform the pinching deformation, the number ¢ decreases towards
—1. The limit exists, as a polynomial. See Figure 8.4.
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Figure 8.5: The pinching deformations have no limiting map.

Next consider the map g.(z) = Cz;z—jrll, ¢ small and negative real. For this
family, 0 and —1 form a period two superattracting cycle. The quotient surface is
a punctured torus lifting to a fully invariant basin containing infinity. Applying
the analysis in the previous section to the basin of infinity, we see that there is a
geodesic in the quotient surface which this time lifts to a pair of accesses which
terminate at a common repelling fixed point. As we carry out the pinching
deformation, ¢ tends to —1, and we are forced to decide what portion of the
dynamics we wish to keep through the use of normalization. If we normalize
to keep a superattracting period two cycle at zero and —1, we are forced to
collapse other portions of the dynamics. See Figure 8.5. It appears that in the
limit, the Fatou component containing —1 disappears.

Next, we consider the family f.(z) = zz;;tlz has a period three cycle of

multiplier 2¢%/(1+t) at 0,1, co. If |t| < 1 this cycle contains both critical points,
and when ¢t = 0 the map f; is critically finite with both critical points in the
same period three cycle. As ¢ stays real and increases from 0 to 1, the quotient
surface is a twice-punctured torus. The analysis of Blaschke products given in
[Mak] shows that there are two disjoint curves in this punctured torus which lift
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Figure 8.6: The pinching deformations have no limiting map. Four invariant
accesses meet at a common fixed point to form a simple closed curve in the
sphere which must be collapsed if a limit exists.

to two independent invariant accesses ([a;], p), ([ai], g) in each attracting basin
Q; which join the attractors to repelling fixed points p and ¢. See Figure 8.6.

It appears as if we are losing a portion of the dynamics in the limit. However,
it is not obvious from the picture that no limit in M exists, since our picture
may reflect the wrong choice of normalization: we may be artificially preventing
the attracting fixed points from colliding and becoming parabolic.

8.5 Analogs for Kleinian groups

In this section we formulate and prove analogous theorems for Kleinian groups.
We concentrate on the two-dimensional, rather than three-dimensional, aspects
of the theory.

Let G be a torsion-free finitely generated group, and denote by Rgthe set of

discrete faithful representations of G into Aut(C) . Endow G with the compact-
open topology; this gives the same topology as that of pointwise convergence
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on some fixed set of generators for G. This topology we refer to as the algebraic
topology and denote the space by Rg. This space is naturally a subspace of the
space of all representations of G. The image of G under some such representation
we call a Kleinian group and denote by I'. We will usually refer to the image
of G under the representation, rather than the representation itself. The group
of Md&bius transformations acts on this space by conjugation; the quotient we
denote by Mg. If G is nonelementary, that is, contains no abelian subgroup of
finite index, M¢ is Hausdorff [Thul] , and any limiting representation in Rgis
also discrete and faithful, by Chuckrow’s Theorem ( see [Mas]). Mis naturally
a subspace of a larger, typically non-Hausdorff space which is the space of all
representations, modulo conjugation.

Definition 8.9 We say that a Kleinian group T' is geometrically finite if for
all points x in its limit set A, there ezists an element v € I' such that |y'z| > 1,
where the norm of the derivative is measured with respect to the spherical metric.

This is usually defined by requiring that a unit neighborhood of the convex
core of the quotient three-manifold has finite volume. The definitions coincide,
by a theorem of Sullivan [Sul2]. For our purposes, geometrically finite groups
play the role of hyperbolic rational maps.

In what follows, we shall restrict our attention to nonelementary geometri-
cally finite Kleinian groups without parabolic elements. For such groups, the do-
main of discontinuity Q(T") is always nonempty, and the quotient surface X (") is
a finite union of compact Riemann surfaces, by the Ahlfors Finite Area Theorem.
As for rational maps, we have that the Teichmiiller space Teich(C, T') is naturally
isomorphic to Teich(X (T")), and the MRMT gives a map from Teich(X (I")) into
Mwhich factors through the set GF(T") of geometrically finite representations
of T.

Definition 8.10 Let Qo C QT") be a component of the domain of discontinuity
of a Kleinian group T'. Let p € 0Q). An access ([a],p) of p in Qo is a closed
topological arc with interior contained in Qo and with an endpoint equal to p, up
to isotopy in Qo fizing endpoints. An access ([a],p) is said to be invariant if
it isotopic to the lift of a simple closed curve in X(T'). Two invariant accesses
are said to be independent if the corresponding simple closed curves can be
isotoped to be disjoint.

Note that the endpoints of an invariant access are always fixed points for
some element y € T'.

Theorem 8.11 Let T" be a geometrically finite Kleinian group without parabol-
ics. Suppose A(T') is disconnected. Then GF(T') does not have compact closure
mn Mg.

Theorem 8.12 Let T" be a geometrically finite Kleinian group without parabol-
ics. Suppose that there are two components Q1,Qs of QT), not necessarily
distinct, and two points p,q € 00 N Oy for which there exist two independent
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invariant accesses [a;] C 4,4 = 1,2 whose endpoints are p and q. Then GF(T)
does not have compact closure in Mg.

It turns out that precisely the same proof works as that given for rational
maps.
A basic fact which we need is the following: given any finitely generated sub-

~

group of Aut(C) , there are only finitely many conjugacy classes of parabolic or
elliptic elements; see [Mas]. So any nonelementary group has lots of hyperbolic
elements.

Proposition 8.13 (Convergence of hyperbolic elements) Suppose T',, —
I'w in Rg. Then given any hyperbolic element yoo € Ioo, thfre exists an integer
N(v) such that for all n > N(v), v is close to v, in Aut(C) , and v, = Yoo,
where v, is the corresponding element in T',.

Proof: This follows immediately from the definition of Rgas a topological
space.

Corollary 8.14 (Geometric limit contains algebraic limit) SupposeT), —
Fw in Rg. Then the limit set of I's is contained in the Hausdorff limit of the
limit sets for T,,.

Proof: The fixed points of hyperbolic elements are dense in the limit set for
any nonelementary group.

The analogs of Propositions 8.6 and 8.7 are proved in exactly the same way
as for rational maps; one replaces the Fatou set with the domain of discontinuity.
For brevity, we omit the statements.

Proof of Theorem 8.11.

Lemma 8.15 Suppose Qg is a non-simply connected component of Q(T'). Then
there exists a simple closed curve v in X (I') which lifts to a simple closed curve
in Qo separating components of A(T).

Proof: I don’t know of a strictly two-dimensional argument. In Appendix II,
we give a three-dimensional argument.

Now let A(y) be an annular collar about <y, and consider the pinching de-
formations supported on A(vy). Assume that there is a limiting group in Mg.
Then as before, this implies that there is a sequence of lifts to Rgwhich limit
on some group ', € Rg. The remainder of the proof is precisely the same as
that given for rational maps.
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Proof of Theorem 8.12

Let 4 be an invariant access to p in a component Qg of Q(I'), and suppose 7y
is the corresponding simple closed curve in X (I'). Again, consider the pinching
deformations supported on an annular collar about «y, and suppose that there
is a limiting group. The same discussion given for rational maps applies: the
limiting element 7y, € I's is necessarily parabolic, by the Maskit Inequality
(see Appendix). Moreover, there is an extension H of the nonconstant limiting
map ho to a semiconjugacy of I' to I' on all of Qg which collapses lifts of v
to points, since Yo, is parabolic. The remainder of the proof goes through just
as for rational maps.

8.6 Appendix I: The Maskit inequality

Suppose A € C*, |[A\] > 1, and let T,be the quotient of C* by the group
generated by z — Az. Then T,is a torus. The family of circles about the
origin descend to give a well-defined longitude on T, which we denote by .
There is no well-defined meridian; fixing one is equivalent to choosing a branch
of log A\. Let us suppose we have fixed a meridian; call it m.

Theorem 8.16 (Maskit inequality) Suppose vy C T is freely homotopic to
I7Pm9. Let A(y) be an annular collar about v. Then the modulus of A(v)
satisfies
log” |A| + (arg(}) — 27p/q)”
2 log |A|

< 1/Mod(A(7))

In particular, if the modulus of A(y) tends to infinity, then the norm of A
must tend to one. The proof of this follows easily from the extremal length
definition of modulus. See [Mas].

8.7 Appendix II: Three-dimensional topology

Aut(a) is naturally isomorphic to the orientation-preserving isometries of hy-
perbolic three-space. If M is a compact three-manifold with boundary, the set of
all hyperbolic structures on M, denoted by H (M), is the set of all pairs (h, N),
where h : M — N is a homotopy equivalence preserving peripheral structure,
modulo the equivalence relation (h, N) ~ (h',N') if there is an orientation-
preserving isometry i : N — N’ homotopic to h' o h~!. Any point in this set
determines uniquely a representation of the fundamental group of M, up to con-
jugation, and conversely. So the sets H(M) and Mg are naturally isomorphic.
H(M) equipped with the algebraic topology is usually denoted by AH (M) and
is called the algebraic topology on the set of all hyperbolic structures on M. If
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N is a geometrically finite hyperbolic 3-manfifold without cusps, and has fun-
damental group T, there is a natural compactification N of N by the boundary
at infinity, which is the quotient of Q(T') by I'. With this compactification,
the homotopy equivalence between M and N can be extended to one of pairs
(M,0M), and by a theorem of Waldhausen [Jac], may be assumed to be a
homeomorphism, since M is necessarily Haken (see below).

Theorems 8.11 and 8.12 are better known via the three-dimensional picture.

Definition 8.17 Let M be an oriented compact three-manifold with boundary,
and suppose that no boundary components are spheres.

1. M is said to have incompressible boundary if for every component
S C OM, the map i, : m S = m M induced by inclusion is an injection.

2. M is said to be cylindrical if there is a map of pairs (S* x I, S! x 0I) —
(M,0M) which is essential and not homotopic into OM .

Theorem 8.18 (Compressible implies AH(M) noncompact) Suppose M
has compressible boundary. Suppose N € AH(M) with GFWP fundamental
group T'. Then GF(T') has noncompact closure in Mg.

Theorem 8.19 (Cylindrical implies AH(M) noncompact) Suppose M is
cylindrical, and suppose N € AH(M) with GFWP fundamental group T. Then
GF(T) has noncompact closure in Mg.

These theorems will follow immediately from Theorems 8.11 and 8.12, once
we know how to extract independent accesses.

A technical point is that a compact oriented three-manifold with non-sphere
boundary is Haken; see [Hem)].

In the first case, this follows from the Loop Theorem ([Jac], p.2) , which
implies that if some component S of M does not inject on the level of 7y,
then one can find a simple closed curve in S which bounds an embedded disc
in M. In the second case, this follows from the Annulus Theorem of for Haken
three-manifolds of Jaco and Shalen (see [Jac], p. 154), which similarly implies
that if M is cylindrical, then one can find an embedded cylinder in M. By
Waldhausen’s theorem, there are embedded compressing discs or cylinders in
N. Their boundaries give the required curves representing invariant accesses.
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Chapter 9

Jordan domain Fatou
components

In this chapter, we prove two theorems which give information about the topol-
ogy of the Julia set for a class of maps defined by conditions on its mapping
schema.

We prove

Theorem 9.1 Let f be a critically finite rational map with exactly two crit-
ical points, not counting with multiplicity. Then exactly one of the following
possibilities holds:

e f is conjugate to 2 and the Julia set is a Jordan curve, or

o f is conjugate to a polynomial of the form z% + c,c # 0, and the Fatou
component containing infinity is the unique Fatou component which is not
a Jordan domain, or

e f is not conjugate to a polynomial, and every Fatou component is a Jordan
domain.

Theorem 9.2 Let f be a hyperbolic critically finite rational map for which
every postcritical point is periodic. Then there is at least one cycle of Fatou
components with Jordan curve boundary.

Corollary 9.3 Let f be a critically finite map for which every postcritical point
lies in the same cycle. Then every Fatou component has Jordan curve boundary.

Our proof of these theorems is based on an analysis of how Jordan curves in
the Julia set of a rational map behave under taking preimages.
Remarks:

1. Any rational map with exactly two critical points is conjugate to a map
of the form M o z¢, where M is a Mdbius transformation determined up

149
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to nonzero scalar multiples. Any critically finite quadratic rational map
has two critical points and so is in this family. Thus Theorem 9.1 covers
all critically finite quadratic maps.

2. Shishikura [Shi2] has proved a related result. Let p(z) be a cubic polyno-
mial with three distinct roots. Let N(z) = z — p'(z)/p(2) be the rational
map which is Newton’s method applied to p. For these maps, it is known
that the roots of p are fixed critical points lying in simply-connected basins
A;yi=1,2,3. Suppose the Julia set for N(z) is locally connected. Then
Shishikura proves that the A; and their first preimages all have Jordan
curve boundary. See [Tanl].

3. F. v. Haeseler [vH] has also proved a related theorem in the topological
category. We state the theorem as it appears in [Tanl].

Theorem 9.4 Let U C S2 be open and simply connected. Suppose F :
U—Uand H: A = U are continuous maps such that

(a) {F~Y(z)}| <2 for all x in OU,

(b) H: A — U is a homeomorphism,

(c) F(H(z)) = H(2?) for all z in A, and

(d) F extends to an injective map in a neighborhood of H(1) in S2.

Then H : OA — 0U is a homeomorphism iff there exists an open connected
set V. .C S%2 — U such that H(1) € OV.

As Tan Lei remarks, condition (d) is not explicitly stated in [vH] and is
automatically satisfied if F' is a rational map, U is a Fatou component
fixed under F, and F|y is conjugate via H to 2z — 22 on A. An example
due to Shishikura shows it is necessary. Tan Lei also notes that condition
(a) is difficult to check, and that Shishikura does not use this result in
proving his result about Newton’s method Julia sets. The examples we
give in section 5.1 shows that condition (a) need not always be satisfied.

4. Since there are usually many rational maps with isomorphic mapping
schema, there are probably very few theorems which give topological in-
formation about the Julia set from the postcritical data alone.

Section 9.1 develops techniques used in the proof. Section 9.2 gives a sketch
of the proof of Theorem 9.1. Section 9.3 collects notation and a few technical
facts used in the proof. Section 9.4 contains the proofs of the theorems.

9.1 Dynamics of Jordan curves in J(f)

In this section we study the dynamics of Jordan curves in the Julia set. Since
the forward image of a Jordan curve is not usually a Jordan curve, we consider
the dynamics under preimages of the map.
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Let f be a critically finite hyperbolic rational map and €2 be a Fatou com-
ponent of f. A choice of point z € 2 determines a preferred orientation on
the set of Jordan curves in the Julia set: a curve 7 is positively oriented if x
lies in the component of the complement of v lying to the right of . Since 2
is connected, this orientation depends only on 2 and not on the chosen point.
Given an oriented Jordan curve «y in J(f), this orientation determines the sign
sign(y) which is defined to be positive if the curve is positively oriented and
negative otherwise.

Given an oriented Jordan curve 7 in the sphere, let the inside Ins(vy) and
outside Out(~y) of the curve denote the components of its complement lying to
its left and right, respectively. Let T'g be the set of positively oriented (with
respect to ) Jordan curves in Q. With respect to this orientation,  C Out(y)
for all v € Ty. If we write é\ﬁ as a union of connected components, each of
these components is a Jordan domain (see Lemma 2.34) with boundary in the
Julia set. Let A denote the set of closures of such components, plus the choice of
either a positive or a negative sign for each component . Then I'y = U,c 4+ 0a,
where A7 is the set of positive elements of A. Tt is useful to imagine conjugating
the map so z € ) becomes the point at infinity. Then C\( is a full set in the
plane, and the orientation induced by 2 then gives every v € I'g the usual planar
counterclockwise orientation.

The idea is to study how a sequence of backward images of curves in I'y
intersects elements of A by writing the itinerary of such a sequence with respect
to the “alphabet” A, equipped with signs to record orientation. We do this
in order to deduce information about how the discs Ins(y) and Out(y) behave
under inverse branches of f. There are two basic ingredients: Montel’s Theorem,
which implies that a forward-invariant open set omitting at least three points
is in the Fatou set, and the fact that preimages of disjoint sets are disjoint.

Given (2, let Ty be as above, and denote by X'y the set of sequences of
consecutive preimages of curves vy € [, i.e. the set of sequences {vo, 71,72, ...}
where v, € f~"Ty, is a Jordan curve in the Julia set equipped with an orienta-
tion so that the map f : yp4+1 — 7V is orientation-preserving. Each term of the
sequence has a well-defined sign. If two consecutive terms have different signs,
we say that there is a sign change in the sequence; this occurs when the map f
reverses orientation with respect to the orientation defined by (2.

A Jordan curve in the Julia set is contained in the closure of a unique
component of C\Q2. This gives a well-defined projection map pa : Ty — A
which sends a Jordan curve in the Julia set to the signed element of A which
contains it. Thus for an oriented curve v € J(f),pa(y) = a if and only if the
signs of v and a agree, and v C a. This map extends to a map p4 : Ty — AN
by sending the sequence {7V, }nen to the sequence {pa(yn)}nen. Denote the
image of this map by X A.

The space XT'j is too large to be analyzed by studying its image under p4,
so we introduce a smaller space which captures the features in which we are
interested. For any finite collection of disjoint Jordan curves in a component
a € A, there is at least one outermost one, i.e. one which is not separated from
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Q by any other curve in the collection. It is not unique, in general. We want to
choose a subset of ¥I'g which consists of such “outermost” curves. Given XI'y,
let Y00 denote the subset of sequences which have the following property:
given any two consecutive terms 7y,t1,7vn regarded as unoriented curves, 7y,
is outermost among the collection f~1(7y,) N a, where a = po(yny1) is the
component containing “y,41.

It follows easily that all outermost preimages of +,, have the same sign. For
the space £ou:I'o, in a sequence {7y,} the nth term is positive (negative) and
the n + 1st term is negative (positive), if and only if the preimage V' of Ins(vy,) (
respectively Out(vy)) contains €, and in this case 9V forms the set of outermost
preimages of 7,. As a consequence, we have the following basic fact:

Proposition 9.5 (1 fixed iff no sign changes) The Fatou component Q is
forward-invariant if and only if there are no sign changes in elements of X0yt Lo .-

Also, if the nth term is positive (negative), and there are no sign changes after
this term, then the full backward preimage of Ins(vy,) (respectively Out(vyy))
under all iterates of f avoids (2.

Examples:

1. Let f(2) = 1/2%, & = 0o, and Q be the basin of infinity. Then Iy consists of
a single element and so Ty consists of a single element {+}. The sequence
space XTo then consists of one element {+,—,+,...}. There is a single
component of the complement of Q, and so £I'g and A coincide. Since
all curves are outermost, the set Yoo is the same as XI'g.

2. Let f be any critically finite hyperbolic quadratic polynomial different
from 22. Let ) be the basin of infinity. Then I'y consists of Jordan curves
which form the boundaries of the bounded Fatou components, and so 'y
is the set of oriented Jordan curves in the Julia set. This implies that
every curve is outermost. Moreover, these are boundaries of the bounded
Fatou components. Hence A and T’y are naturally isomorphic via p4. The
map f respects the orientations on these curves, hence the sequence spaces
contain no sequences with sign changes. It follows that the two sets XT'g
and ¥ A are isomorphic via p4. Note that in the above two cases, since the
image of a Jordan curve in the Julia set is again a Jordan curve in the Julia
set, we can actually extend the above constructions to sets of bi-infinite
sequences. This is not always possible; see the examples in Section 5.1.

3. Let f(z) = 22 — 1 but now let z = —1 and Q be the Fatou component
containing zero. Then T’y consists of a single element +7_;, where we use
the plus sign to emphasize its positive orientation with respect to 2. Note
that the orientation of +v_; is different from the usual planar orientation
in which planar Jordan curves go counterclockwise: the boundary of €2
goes clockwise (with respect to the usual planar orientation). All other
curves in J(f) go counterclockwise with respect to the usual planar ori-
entation. If +v; and 4y denote the boundaries of the Fatou components
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containing one and zero, respectively, together with orientations induced
by €2, then the preimage of +vy_1 consists of a single curve —vq. The ori-
ented curve —yp has two preimages, one of which is +v_1, and the other
is —y.

There are two periodic sequences in this space:
{+’7—17 —Y, +7-1, } and {+’707 —7-1,

+0, -.-}. For any other sequence, if the curve +7y; or —y; appears as the
nth term, there are no sign changes after the nth term. Again, all curves
are outermost.

Since  is a Jordan domain, A consists of a single letter a, and so the map
pq just records the sequence of signs.

For example, in the three examples above, all curves are outermost. In the
last example, there is not a unique outermost curve.
We now list the basic facts concerning the structure of the set Xpy:L-

Proposition 9.6 (2 not fixed) Suppose Q is not forward-invariant under f.
Let ag € A contain f(Q). Then

1. for +no = Oagq, with positive orientation, there exists an outermost preim-
age m of no such that pa(m) = —agq.

2. If {yn} has a sign change between yn and YNy1, then pa(yN) = taq, and
there is some other outermost preimage vy, of Yv such that pa(vy,1) =
taq. The signs of yny1 and vy, are both the opposite of the sign of yn-

Proof: By definition f(2) C Ins(ng), hence there is a preimage V of Ins(ng)
containing €. It follows that there is a preimage 7; of 7o of negative orientation.
The set of outermost preimages of 7y are all negatively oriented and form the
boundary of V. If no such preimage is contained in ag, then V' O Ins(rg). But
then Montel’s theorem implies that V is in the Fatou set, which is impossible.
This proves the first statement.

To prove the second statement, we may suppose that vy is positively ori-
ented; the argument in the other case proceeds similarly. A sign change at
v~ implies that a component of the preimage of Ins(yx) contains Q. Hence
Ins(yn) D f(Q). Since yn is assumed positively oriented, Ins(y) is a Jordan
domain in the complement of €2, and since it contains f(f2) it must itself be
contained in the component ag containing f(€2). The proof of the last half of
the second statement is completely analogous to the proof of the first step.

Denote the interior of a set X by Int(X). The next proposition relates the
dynamics of curves in the boundary of 2 to dynamics in the complement of 2.

Proposition 9.7 (Q fixed) Suppose Q is forward-invariant under f. Let E C
Int(a) be a nonempty subset, and suppose f~'E C UZIb;, where the b;’s are
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distinct elements of A and each intersects the preimage of E. Let vy be the
positively oriented boundary of a. Then for any positively oriented outermost

v1 such that f(v1) =70, pa(y1) = b; for some b;.

Proof: This follows directly from the fact that preimages of disjoint sets are
disjoint. Since Qut(7yp) is disjoint from Int(a), the component V of the preimage
of Out(vg) containing g is disjoint from the full preimage of Int(a). The set
V must be disjoint from the full preimage of E. The boundary components of
V' comprise the entire set of outermost preimages of 79. Hence the boundary
components of V' must lie in the union of the b;s.

We next refine the conclusions in the previous two propositions in cases
where the topology is simpler.

Proposition 9.8 (2 not fixed plus disc preimages) Suppose for all Jordan
curves v € J(f), every component of Ins(vy) is a Jordan domain. Then

1. If sign(yn) # sign(yn+1), then pa(yN) = —pa(ynt1) = +aq, ie. any
sign changes are concentrated in ag.

2. For any sequence {y,} € Towlo, if pa(y) # taq, there are no sign
changes;

3. (Un>(]f"Q)\Q C aq;,
4. f7laca.

Proof: The first statement follows from Proposition 9.6,  not fized, and the
fact that there is a unique outermost preimage if there is a sign change, since
the preimage V' of Ins(y) containing Q is a Jordan domain, by hypothesis.

To see the next statement, let {v,} be any subsequence containing a sign
change and suppose pa(y0) # aq. Let N be the point at which the first sign
change occurs. We may assume that vy is positively oriented and yn4+1 nega-
tively oriented. Since every preimage of Ins(y) is a Jordan domain, by hypothe-
sis, and since there are no sign changes until the Nth step, Ins(yn) avoids 2 and
maps onto Ins(yg). The component V' of the preimage of Ins(yy) containing 2
is a Jordan domain containing Q2 and whose boundary is yx+1. Hence there is
a unique outermost preimage. By Proposition 9.6, Q not fized, p(yny1) = aq-
If p(yn) # aq, then V C Ins(7y), so f¥(V) C V. But then Montel’s theorem
implies that V is in the Fatou set, which is impossible since by hypothesis there
are at least two Jordan curves in 0.

That (2) implies (3) is clear, since the absence of sign changes means the
backward orbits of the insides avoid Q.

Finally, by the first part, it follows that the preimage of Out(daq) must be
contained in ag. Since 2 C Out(dag), the conclusion holds.
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Proposition 9.9 (2 fixed plus disc preimage) Suppose E, a, and vy are
as in Proposition 9.7. Suppose the component V of the preimage of Out(~yo)
containing Q is a Jordan domain. Then f~'E C b for a unique b € A, and
is a Jordan domain if and only if a = b.

Proof: The boundary of V is the unique outermost preimage of g, since V is
a Jordan domain. Thus f~'E is contained in a unique b € A, by Proposition
9.7, Q fized. If Q) is already a Jordan domain the statement is trivially satisfied;
the other direction follows from the fact that if a = b, then 8V C a and so
V' D Out(p). But then V is in the Fatou set. Since 0V C J(f), Q is a Jordan
domain.

9.2 Sketch of proof of Theorem 9.1

Theorem 9.2 is essentially a straightforward application of Proposition 9.9, Q
fixed plus disc preimage.

Fact 9.10 If f is a rational map and U is a Jordan domain whose closure
contains at most one critical value, then every component of the preimage of U
s also a Jordan domain.

Proof: Since U is simply-connected, such a critical value cannot be a critical
value for the map restricted to V in the sense that the restriction is locally
non-injective near the critical point. Hence f restricted to the closure of V is a
homeomorphism.

There is another basic topological fact about rational maps with exactly two
critical points which makes the analysis given in the preceding section much
easier, since there are very limited possibilities for the preimage of a Jordan
domain. See Figure 9.1.

Fact 9.11 Let f be a rational map with exactly two critical values. Let U be
a Jordan domain and V a component of its preimage. Then exactly one of the
following holds:

1. if U contains no critical values, V maps homeomorphically to U;

2. if U contains exactly one critical value in its interior, then V is a Jordan

domain mapping as a degree d cover branched over exactly one point in
U;

3. if U contains two critical values, then V is topologically a sphere minus
d disjoint closed discs, the boundaries of which map homeomorphically to
their images;
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Figure 9.1: In the top figure, U contains a critical value on its boundary and
none in its interior. In the bottom figure, U contains a critical value in its
interior and on its boundary.

4. if U contains one critical value in its interior and one in its boundary,
then V is topologically the sphere minus a union of D closed discs meeting
in one common point on their boundaries, and the boundaries of these
discs map homeomorphically to their images;

5. if U contains two critical values on its boundary, then V is a Jordan
domain mapping homeomorphically to its image, and this homeomorphism
extends to a homeomorphism of V.

Proof: This is a topological assertion, not a dynamical one. Choose coordi-
nates on domain and range so that the map is z — z¢ with respect to these
coordinates. The fact is then clear.

Note that a component of the preimage of a Jordan domain is either a Jordan
domain, or is the full preimage.

Suppose that f is a critically finite hyperbolic quadratic rational map. Then
f has exactly two critical points. To prove Theorem 9.1 we use the analysis in
the previous section. It is easy to reduce to the following: let ¢; be a period
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Figure 9.2: The Q;,i =1,...,p — 1 are contained in V.

p > 2 critical point and let v; be the image of ¢;. Let g be the Fatou component
containing v;. We will show that Qg is a Jordan domain. It is useful to visualize
the map conjugated so that v; is at the point at infinity. Let ; = fP~i(),i =
1,...,p; note that €, = . Since the Q; are Fatou components, they are
contained in unique components of a\Q_O,i =1,...,p— 1. Since Q is not fixed,
there are sign changes in the set of sequences Y0, I'¢. Let ag, be the component
of (AZ\Q_O containing fq,, and let ¢ be the positively oriented boundary of aq, .

Step 1
Lemma 9.12 The set Uf;llﬂi C agq,-

Proof: This follows immediately from Proposition 9.8, Q not fized plus disc
preimages.

We now have a basic picture of part of the dynamics; see Figure 9.2.
Step 2

Lemma 9.13 Let f, Qo, and o be as above. Let vy be the other critical value
of the map f. If vy € Int(agq,), then Qg is a Jordan domain.

Proof:
Let Dy = Out(yp). The pth iterate of f fixes Q1 C agq,, so by Proposition
9.9, Q fized plus disc preimage, it suffices to prove that the component D, of
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the preimage of Dy under f? containing ) is a Jordan domain. We prove this
by pulling back Dg along the orbit of {2y and using induction.

Let D; be the component of the preimage of Dy under fP containing Q;,7 =
0,...,p. We first claim that D; C aq. Since vy € agq,, Do contains exactly
critical value in its closure, so D; is a Jordan domain. The boundary v; of D;
is the full preimage of the boundary of D;, which is 79. By Proposition 9.6, 2
not fized, we must have v; C aq, and its sign must be negative. Since the sign
of gamma; is negative, Out(y;) = Dy avoids Q and so Dy C agq,-

We now use induction. Assume D; is a Jordan domain contained in agq,,? =
1,...,n. Then D,4; is also a Jordan domain since D,, contains at most one
critical value in its closure. A sign change between 7, and v,41 implies that
Ynt+1 C aq,, by Proposition 9.8, Q not fixed plus disc preimages, and hence
that D, 41 D Dg. But this implies that Qg is a Jordan domain fixed under the
(n + 1)st iterate of f, which is impossible if n + 1 < p. The absence of a sign
change then implies that D,4; C aq,, and so the induction proceeds. At the
(n + 1)st stage, we must see a sign change since D, D Q. This proves the step.

|
Step 3

So to prove the theorem, it suffices to show that vs € Ins(y).

The proof of this step requires more information than used in the preceding
steps. In particular, we need to know that if D), is the component of the preimage
of Do = Out(y) under f? containing Qo, then 8D, C 9. We also need the
fact that a hyperbolic critically finite rational map cannot send a Jordan curve
in the Julia set homeomorphically to itself.

We argue by contradiction. Again, let Dy = Out(y). If vo & Ins(vy), the
preimage of Dy is topologically an annulus D; whose boundary components
map univalently to 8Dg. The fact that there are only two critical points, plus
the picture obtained in the first step, implies that as we pull back along the
orbit of ¢;, we obtain annuli D; C agq, such that D;;1 maps homeomorphically
to D;,i = 2,...,p— 1, and 0D; C 09Q;,i = 0,...,p; see Lemma 9.14. In Figure
9.3 we have drawn the situation for degree three hyperbolic maps.

We now apply Proposition 9.7, Q fized, to the pth iterate of f to conclude
that there is a sequence of the form {agq,,aq,,*}. But then the discussion
above implies that vy maps homeomorphically to its image under f?, which is
impossible for a Jordan curve in the Julia set of a hyperbolic map.

|
Extending to higher-degree maps and to non-hyperbolic maps

The proofs of the first two steps do not make reference to the degree of the
map. The proof of the third step also goes through: the only difference is that
D, is homeomorphic to a sphere minus d disjoint closed discs, where d is the
degree of the map.
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Figure 9.3: The dashed regions D; D Q;,0D; C 0Q;, and D; C V,i=1,....p—1.
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The results stated in Section 9.1 remain true even when there is a single
critical points in the Julia set: if a curve in the Julia set passes through the
critical value, components of its preimage are topologically one-point unions of
Jordan curves, and we may take these curves to be the “preimages” of the curve.

So the first two steps may be proved in precisely the same manner. Moreover,
the third step also goes through with minimal modifications. Instead of D; being
homeomorphic to a sphere minus d disjoint closed discs, it is homeomorphic to
a sphere minus d closed discs which meet in exactly one point. Also, critically
finite maps are expanding on their Julia sets with respect to the canonical
orbifold metric; this rules out the existence of Jordan curves in the Julia set
mapping homeomorphically to themselves. The remainder of the proof of this
step also applies in this case.

9.3 Background

We will denote the two critical points of a critically finite map f with only two
critical points by ¢; and ¢y , and the corresponding critical values by v; and
vy (they are necessarily distinct). We will only consider maps with at least one
periodic critical point which we will denote by ¢, for otherwise the Fatou set of
f is empty. Throughout, U and V', possibly with subscripts, will denote open
discs, where “disc” means a simply connected subset of C whose complement
contains at least two points. We will reserve the notation 2, possibly with
subscripts, for components of the Fatou set.

9.3.1 Topology

The following lemma is somewhat technical. The idea is to control how the
boundaries of two nested sets behave under taking preimages. We will only
need the case where X is a Fatou component homeomorphic to an open disc
and Yp is homeomorphic to the sphere minus a finite union of closed discs whose
boundaries meet in at most one point. See Figure 9.4.

Lemma 9.14 Let f: C — C be a rational map. Let Xo and Yy be proper open
subsets of Cwith Xo C Yy. Suppose 0Yy C 0Xp.

1. Iin = f_1Y0 and X1 = f_lXo, then 6Yb C BXO

2. If Y1 is a component of f~'Yy, if fly; : Yi — Yo is a homeomorphism,
and if X1 = (fly7) 7" (Xo), then 8Y; C 9X.

Proof:

1. Since f is a nonconstant rational map, it is an open map, and so for any
proper open subset Z C C, f~10Z = 0f'Z. So 8Y1 = 0f 'Yy = f~10Ys C
f716X0 = 6f71X0 = 0X;.

2. Since Y7 is a component of f~1Yy, (Y1) C 8Yp. Since f : Y1 — Y,
is a homeomorphism and X1 = (flg;) '(Xo),0X1 = (f|Y1) '(8Xo). Hence
oY) C 0X;.
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Figure 9.4: Y; and Y; are the large discs. X; is the complement of the shaded
discs in Y;,i =1, 2.

Remark: The second statement is no longer true if we drop the requirement
that Y; maps homeomorphically to Yy. For example, let Y be the open unit
disc, ,let X be the open disc minus the interval [0,1), and let f(z) = 22 map
the Riemann sphere to itself. Let X; be the intersection of the upper half-plane
{z|Im(z) > 0} with the unit disc, and let Y3 be the unit disc again. Then all
other hypotheses of the lemma are satisfied but 9Y; ¢ 0X;.

9.3.2 Expanding nature of critically finite maps

For reference, we state the corollary to Montel’s theorem which we have been
using.

Lemma 9.15 Let f be a rational map such that some iterate maps an open set
U into itself. Suppose the complement of U contains at least three points. Then
U is in the Fatou set.

Proof: This follows immediately from Montel’s Theorem: the iterates of
f, when restricted to U, must all avoid three values, and hence form a normal
family of holomorphic functions. So U is in the Fatou set.

Critically finite maps have important expanding properties analogous to
those of hyperbolic maps. For the definition of orbifold, the canonical orb-
ifold associated to a critically finite map, and the definition of the orbifold
Poincaré or Euclidean metric associated to this orbifold, see [Mil2]. This metric
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is constructed so as to behave very much like the usual Poincaré or Euclidean
metric. on C\P(f). Let Ppy,(f) denotes the set of postcritical points which
eventually land on cycles containing critical points. Then the orbifold metric is
supported on C\ Py, (f) and lifts under f to a metric on C\ f~! Puy,(f). With

respect to this metric on 6\ 7 Phyp(f) and the orbifold metric on G\Phy,,( 5,
the inclusion is a contraction. Hence

Proposition 9.16 Let f be a critically finite map. Then f is uniformly ex-
panding with respect to the canonical orbifold metric on the complement of a
neighborhood of = Ppy,(f). In particular, f is uniformly ezpanding on J(f).

Proof: See [Mil2], Theorem 14.4.
The next two facts may then be proved in exactly the same manner as for
hyperbolic maps.

Lemma 9.17 Let f be a critically finite map and K a compact connected set
in J(f). If f(K) = K and [ is injective on K, then K is a point.

Proposition 9.18 Let f be a critically finite rational map and Q0 a period p

Fatou component. Then 0Q and Q are locally connected and locally path con-
nected.

9.4 Proof of Theorems

For this section, f will denote a critically finite rational map with exactly two
critical points, at least one of which is periodic of period p > 1. We denote by

e ¢y, a periodic critical point of period p > 1;
e vy, the image of ¢g;
e vy, the other critical value;

e ()y, the Fatou component containing v;

If p > 2, denote by
o ); = fP7i0y, i.e. the Fatou component containing fP~¢(v1), i = 1,...,p;
® 7o, the boundary of aq,, oriented so Out(yg) D Qo;
e V, the inside Ins(7yp). This is the same as the interior of agq,.
e Dy the outside Qut(~yg). This is the same as the complement of aq, .

e D;, the component of f~iDy containing fP~i(vy), i = 1,...,p.
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We further assume by conjugating f that the point vy is at infinity. We
let f denote this new map as well. Then C\Qp is a full set in the plane with
locally connected boundary, by Lemma 9.18. If p = 1 the map f is conjugate
to a polynomial, and €y corresponds to the basin at infinity. By Lemma 2.34,
V and Dy are open discs with Jordan curve boundaries, and their closures are
closed discs. Since g C Dy, we have that Q; C D;,i = 1,...,p. Note also that
0Dg C 9, and that Qo = Q,. Also, note that 0D; C J(f).

9.4.1 Proof of Theorem 9.1

We first prove that Qg is a Jordan domain if p > 2. As mentioned in Section
9.2, it suffices to prove that v, € V.

Lemma 9.19 Suppose Q is not fized under f. Then vs € V.
Proof:

1. We first show that 6D, C 0.

Since ¢1_€ Qo C D1, the first case of Lemma 9.14 applies, and so D1 C
oy C V. It follows that D; must be contained in V. For otherwise,
Dy D Dy, and so Dy C F(f), by Lemma 9.15. But then p =1 and so Q
is fixed.

We now argue by induction. Assume that D; is contained in V', and that
0D; C 99;. We show that this implies 0D; 1 C 0Q;41,7 =1,...,p—1, and
that D;41 is contained in V ifi=1,...,p— 2. Since Q; CV,and D; CV
with 8D; C 09Q;, D; is contained in V, for otherwise D; contains Dy,
implying that € is fixed under fi*1. The set V is an open topological disc
with Jordan curve boundary in J(f) containing at most one critical value
in its closure. Let V' be the component of f~'V containing D;,;. Since
V contains no critical values, by Fact 9.11, the basic fact for maps with
two critical points, flz7: V! — V is a homeomorphism. By restriction,
flom D;y1 — Dj; is also a homeomorphism. We may now apply the
second case of Lemma 9.14 to conclude that 8D; 1 C 8;1. Moreover,
if i +1 < p, then Q;;1 C V, and hence 9Q;,1 C V. An application of
Lemma 9.15 again shows that D;y; C V. Hence 0D, C 09, = €y, and
D, D Q.

2. We next claim that the boundary of every component of the complement
of D;y1 (for convenience, let us call these boundary pieces of D;), i =
0,...,p — 1 maps injectively onto its image under f, and so that every
boundary piece of D, maps injectively onto its image 8Dg under fP.

This follows easily: the map f : D; — Dg has this property, by the basic
fact for maps with two critical point, and for 1 < ¢ < p — 1, the map
f:D;y1 — D; is a homeomorphism, by the argument given above.

The next step provides a contradiction.
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3. We now claim that f? maps 79 homeomorphically to itself, which violates
Lemma 9.17.

By Proposition 9.7, Q fized, applied to f?, there must be some boundary
piece of D,, contained in ag,. But since 0D, C 912, this implies that some
boundary piece of D, is actually equal to dag,. The map f restricted
to a single boundary component of D;,i = 1,...,p is one-to-one, by the
previous step, and so the map f? sends 9 homeomorphically to itself.

Proof of Theorem 9.1

Suppose f is conjugate to a polynomial which is not z%. A critically finite
polynomial which is not conjugate to z — z¢ cannot have a Jordan domain
for its basin of infinity. For such a polynomial has at least two bounded Fatou
components, and the boundaries of these components are distinct Jordan curves,
by lemma 2.34. These Jordan curves are contained in the connected Julia set,
which is the boundary of the basin of infinity. It follows that the basin of infinity
cannot be a Jordan domain.

So we may assume that f is not conjugate to a polynomial, and so p > 2.

By the previous argument, €y is a Jordan domain. Moreover, v, & g, by
Lemma 9.19. Hence ; is a Jordan domain, since it is a covering of a closed
disc branched over exactly one point in its interior. Moreover, €2 is the unique
preimage of Qg so any Fatou component mapping to Qy maps first onto ;.
Any other Fatou component in the grand orbit of ¢ can contain at most one
critical value in its closure, since v € Q. Induction now shows that any Fatou
component in the grand orbit of €y is a Jordan domain. Since our choice of
periodic critical point was arbitrary, every Fatou component in the grand orbit of
a periodic Fatou component is a Jordan domain. Since every Fatou component
of f is eventually periodic, these account for all Fatou components, and so every
Fatou component is a Jordan domain.

9.4.2 Proof of Theorem 9.2

Given an element z € P(f), there is a partial ordering on P(f) defined as
follows: for two elements p and ¢ of P(f), p < ¢ if the boundary of the Fatou
component containing g separates p from z.

Let y be any minimal element with respect to this ordering. Then y is
periodic of period p > 1, since f is postcritically periodic. Let 2 be the Fa-
tou component containing y and let Ty be the set of oriented Jordan curves
in the boundary of Q. Since y is minimal and f is hyperbolic, P(f)\{y} C
Ins(vg), for some unique 9 € T'o. Moreover, since f is postcritically periodic,

(FP(P(H\{yD)) N (P(H\{y}) # @. (If p > 1 this is obvious, since fP must
fix every point in the orbit of y; if p = 1, this follows since not all points
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in the postcritical set can land on y if f is postcritically periodic). Hence
fPIns(yo) N Ins(yo) # @. Moreover, Out(vyo) contains a unique critical value of
fP in its closure, since y is minimal, hence every component of the preimage
of Out(vp) under f? is a Jordan domain. Proposition 9.9, Q fized plus disc
preimage, applied to the pth iterate of f now shows that )y is a Jordan domain.
Since f is hyperbolic, there are no elements of P(f) in Q2. So every preimage
Q' of Q is also a Jordan domain, since € is a branched cover of § branched
over at most one point.

Proof of Corollary 3 By the above Theorem, the periodic cycle of Fatou
components consists of Jordan domains. Since there are no critical points in the
Julia set, there are no critical values for iterates of f in the boundaries of these
Jordan domains. Hence they all pull back to Jordan domains under iterates of

1.
n
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