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Summary

In this thesis we investigate the topological nature of the Collet-Eckmann condi-
tion [11] for S-unimodal maps of the interval. The Collet-Eckmann condition holds,
by definition, if the Lyapunov exponent is positive along the orbit of the critical point;
this is a metric condition. It implies that the Lyapunov exponent is positive Lebesgue
almost everywhere [29] and that the map is chaotic [11, 45]. We relate topological
and metric properties using an extended form of Hofbauer’s tower construction [25].
The main results are as follows:

1. We prove that the Collet-Eckmann condition is invariant under quasi-symmetric
conjugacy between S-unimodal maps. It follows that the Collet-Eckmann con-
dition is a topological invariant of S-unimodal maps with quadratic critical
points, answering a conjecture of Van Strien [50] and of Guckenheimer [18].
This uses a new result of Lyubich communicated by him to the author.

2. We show that any S-unimodal map whose kneading invariant satisfies certain
simple conditions satisfies the Collet-Eckmann condition. The conditions are
topological analogues of those used by Benedicks and Carleson [5] in their proof
of Jakobson’s theorem [26]. We also give examples of kneading invariants corre-
sponding to failure of the Collet-Eckmann condition. This falls short of a com-
plete classification of kneading invariants into Collet-Eckmann or non-Collet-
Eckmann.

3. We prove that Lebesgue almost every value of the topological entropy has the
property that any S-unimodal map with that topological entropy must satisfy
the Collet-Eckmann condition. This is analogous to Lebesgue almost every
rotation number having the property that any smooth circle map with that
rotation number must possess an absolutely continuous invariant measure [23].
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Introduction

In this thesis we investigate the topological nature of the Collet-Eckmann condi-
tion for S-unimodal maps of the interval. Notation and terminology are defined in
chapter 1.

Pierre Collet and Jean-Pierre Eckmann introduced the Lyapunov exponent condition

lim inf 128/ PF (1)

1—00 17

> 0,

now called the Collet-Eckmann condition, in their 1983 paper “Positive Liapunov
Exponents and Absolute Continuity for Maps of the Interval” [11]. They showed that
any S-unimodal map satisfying their condition is chaotic, because it has an absolutely
continuous invariant measure.! An S-unimodal map satisfying the Collet-Eckmann
condition is called Collet-Eckmann.

The Topological Invariance of the Collet-Eckmann Condition

Our first major result is that the Collet-Eckmann condition is quasi-symmetrically
invariant for S-unimodal maps and therefore topologically invariant for S-unimodal
maps with quadratic critical points. The idea that the Collet-Eckmann condition
might be topologically invariant is due to Van Strien [50] and Guckenheimer [18].

We prove that the Collet-Eckmann condition is invariant under quasi-symmetric con-
jugacy between S-unimodal maps in chapter 4. Since Lyubich has recently announced
that all topological conjugacies between relevant S-unimodal maps with quadratic
critical points are quasi-symmetric, it follows that the Collet-Eckmann condition is
topologically invariant for such maps. By this we mean that any S-unimodal map
with a quadratic critical point that is topologically conjugate to a Collet-Eckmann
S-unimodal map with a quadratic critical point is also Collet-Eckmann. Lyubich’s
result is as yet unpublished and was communicated to me by him.

These results do not prove topological invariance when, for example, critical points

!They also required another condition which Nowicki has since shown to be unnecessary [45].
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are non-flat rather than quadratic, or when the maps do not have negative Schwarzian
derivative. A proof of Lyubich’s result using only real techniques might avoid the
need for a quadratic critical point.

Collet-Eckmann Kneading Invariants

Our second major result is that any S-unimodal map satisfying certain weak topo-
logical conditions is Collet-Eckmann.

We express this in terms of kneading invariants. We call a kneading invariant Collet-
Eckmann if every S-unimodal map with this kneading invariant is Collet-Eckmann
( not just those with quadratic critical points ). We call a kneading invariant
non-Collet-Eckmann if no S-unimodal map with this kneading invariant is Collet-
Eckmann.

In chapter 4 we give simple conditions for a kneading invariant to be Collet-Eckmann.
The kneading invariants satisfying these conditions strictly include the Misiurewicz
kneading invariants, the largest class of kneading invariants previously known to be
Collet-Eckmann [40]. Our conditions are analogous to the metric conditions that
Benedicks and Carleson used in proving that quadratic maps are Collet-Eckmann for
a positive Lebesgue measure set of parameter values [4, 5, 14].

We also describe two classes of non-Collet-Eckmann kneading invariants. This falls
short of a complete classification of kneading invariants into Collet-Eckmann and
non-Collet-Eckmann. Such a classification would be helpful for understanding why
some sorts of combinatorial behaviour are intrinsically metrically chaotic.

The Topological Abundance of Collet-Eckmann Maps
Our last major result is that most kneading invariants are Collet-Eckmann.

We measure kneading invariants in terms of Lebesgue measure on their topological
entropies. We call a value of the topological entropy Collet-Eckmann if every S-
unimodal map with this topological entropy is Collet-Eckmann.

In chapter 5 we prove that Lebesgue almost every value of the topological entropy is
Collet-Eckmann, so in this sense almost every kneading invariant is Collet-Eckmann.
By contrast, in this same sense it is known that almost no kneading invariant is
Misiurewicz [7].
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Analogies with Circle Maps

Similar results are known for circle maps. Herman has shown that Lebesgue almost
every rotation number has the property that any smooth circle map with that rotation
number is smoothly conjugate to the corresponding rotation, and therefore has an
absolutely continuous invariant measure [23, 14]. This is analogous to our result that
Lebesgue almost every topological entropy is Collet-Eckmann, since every S-unimodal
Collet-Eckmann map has an absolutely continuous invariant measure [11, 45].2

More is known for circle maps. Yoccoz has given necessary and sufficient conditions
in the C'* case for a rotation number to have Herman’s smooth conjugation prop-
erty [51]. Our conditions for a value of the topological entropy to be Collet-Eckmann
are only necessary.

In addition Herman has shown that rotation numbers with his smooth conjugation
property are taken on by a positive Lebesgue measure set of parameter values in
any reasonable one-parameter family of smooth circle maps [22, 14]; for this positive
Lebesgue measure set of parameter values the circle maps therefore possess absolutely
continuous invariant measures. The analogous result for S-unimodal maps would be
that Collet-Eckmann values of the topological entropy are taken on by a positive
Lebesgue measure set of parameter values in any reasonable one-parameter family of
S-unimodal maps. A demonstration of this, presumably by analysing the topological
entropy function, would give an interesting new proof of Jakobson’s theorem [26, 14].

Structure of the Thesis

In chapter 1 we describe those definitions and results from the general theory of
unimodal maps that will be used later. It is here that we define such terms as
S-unimodal, kneading invariant, topological entropy.

In chapter 2 we describe a modified version of Hofbauer’s tower construction [25]
and an extension of his kneading invariant analysis. These are used throughout the

thesis.

In chapter 3 we show how to approximate tent-map towers using parameter space
information. The results are used in chapter 5.

We start our analysis of the Collet-Eckmann condition in chapter 4.

In the first section of chapter 4 we prove that the Collet-Eckmann condition is quasi-

2Smooth conjugacy between S-unimodal maps and tent-maps is not feasible, so a more direct
analogy is unlikely ( but see Nowicki and Przytycki [42] ).
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symmetrically invariant for S-unimodal maps and deduce that the Collet-Eckmann
condition is topologically invariant for S-unimodal maps with quadratic critical points.

In the second section of chapter 4 we describe our class of Collet-Eckmann kneading
invariants. In the final section of chapter 4 we describe two classes of non-Collet-
Eckmann kneading invariants.

In chapter 5 we prove that Lebesgue almost every value of the topological entropy is
Collet-Eckmann.
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Chapter 1

Basic Definitions and Results

Unimodal maps are interesting for both physical and mathematical reasons. They
have the capacity to generate extremely complicated behaviour in spite of their ap-
parent simplicity. They have been used to model everything from insect populations
to the onset of turbulence with varying degrees of success. Since the physical aspects
lie outside the scope of this thesis we refer the interested reader to the reprint col-
lections of Cvitanovi¢ [13] and Hao Bai-Lin [21], the review paper of Eckmann and
Ruelle [16], and the book of Collet and Eckmann [10].

Their mathematical study goes back to the early years of this century when Fatou [17]
and Julia [28] already knew that some unimodal maps have infinitely many periodic
points. Further development was slow until the seventies, since when the field has
greatly expanded and matured. The books of Devaney [15], Collet and Eckmann [10],
and especially de Melo and Van Strien’s “One-dimensional Dynamics” [14] describe
the modern theory excellently and should be considered general references for this
thesis. Devaney’s exposition is more elementary than the others, if more up-to-date
than Collet and Eckmann’s. “One-dimensional Dynamics” is the most comprehensive
of the three.

In this chapter we describe the definitions and results from the theory of unimodal
maps that we will use; it is not intended to be a review of the field. The material is
more or less covered in each of the above three books. The section “Unimodal Maps”
defines some general terminology. “The Class C of S-unimodal Maps” introduces the
maps considered in this thesis. “Kneading Invariants and Topological Conjugacy”
defines the kneading invariant and gives conditions for it to characterize a unimodal
map. The relationship between a unimodal map and the tent-map with the same
topological entropy is described in “Topological Entropy and Conjugacy with Tent-
maps”.
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1.1 Unimodal Maps

In this section we define unimodal maps and terminology such as periodic attractor,
wandering interval, renormalizable map. The definitions are standard. We simply
introduce the particular forms and notations used in this thesis.

A unimodal map is a continuous function f : [0;1] — [0;1]* for which

2. There exists ¢ in (0;1) such that f is strictly increasing on [0;c| and strictly
decreasing on [c; 1].

3. The restrictions of f to [0;¢] and to [c; 1] are C*.

The restriction of a function f to a set I is denoted f|,. The last condition ensures
that the derivatives of f| 03] and f ‘ 1] have bounded magnitude. If f is differentiable

at ¢ then the derivative of f, which we write as f’ or D f, is also of bounded magnitude.
The point ¢ is unique; it is called the critical point of f.

Example 1.1 The quadratic map Q, : z — az(l — ) is unimodal ( with critical
point ¢ = 1/2 ) whenever a is in the range 0 < a < 4. Every unimodal quadratic map
belongs to the class C of S-unimodal maps described in the next section.

Example 1.2 The tent-map T is composed of two straight line segments of slope A
and —A\:

AT if x <

N[

T(z) =
AM1—2) ifz>

N[

It is unimodal ( with critical point c = 1/2 ) if A lies in (0;2]. In this thesis we only
consider the range 1 < XA < 2. No tent-map belongs to the class C.

!a; b] denotes the smallest closed interval containing both a and b regardless of the order of a
and b in the real line; (a;d) is its interior.
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1.1.1 Orbits and Limit Sets

Repeated application of f to a point x produces its orbit O(z) = {z, f(z), f(f(x)),...}.
Using f™ to indicate the n-fold composition fo fo---o f and writing z, for f"(x)
—_————

n times
allows us to write this as O(x) = {x, 11, Zs,...}. By f° we mean the identity function.

An orbit can be finite or infinite. Its w-limit set

w(z) = (] O(za)

n>1

describes the region it eventually approaches. We say that a set A attracts x if
w(z) C A. We call z recurrent if x € w(x).

1.1.2 Periodic Behaviour

A fized point is one satisfying the equation f(z) = z. A periodic point corresponds
to f*(z) = z for some positive integer n. The number n is called a period of z; the
smallest positive integer p for which fP(z) = z holds is the least period of . The set
P = {z,x1,%9,...,2,_1} is the periodic orbit generated by x, equal to the orbit of
any of its elements. A fixed point generates a periodic orbit of length 1.

The basin of a periodic orbit P is the set of points attracted to it:
Bp={y€[0;1] |w(y) = P}

The tmmediate basin is the union of those connected components of Bp that contain
points of P. An attracting periodic orbit, or periodic attractor, has a basin with non-
empty interior. It need not be attracting from both sides, as illustrated in figure 1.1.
A periodic attractor is a super-attractor if it contains c.

1.1.3 Homtervals and Wandering Intervals

A homterval is a non-degenerate interval I for which fi‘ ; is a homeomorphism for
every i > 1.

Lemma 1 Take [a;b] a subset of [0;1] and i > 1. Then f°
if and only if ¢ is not in (a;;b;) for any 0 < j < i.

;] 15 @ homeomorphism
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f f
(a) Two-sided hyperbolic (b) Two-sided non-hyperbolic
i f
(c) Attracting from the left (d) Attracting from the right

Figure 1.1: Some attracting fixed points.

The images of a homterval therefore never contain ¢ in their interior. The basin of
every attracting periodic orbit contains a homterval. Not every homterval limits to a
periodic attractor however: a wandering interval is a homterval of which none of the
points are in the basin of a periodic attractor. Wandering intervals are pathological;
well behaved maps do not have them ( see section 1.2 ).

Example 1.3 The tent-map T\ has no homtervals for 1 < A < 2 and therefore no
periodic attractors or wandering intervals. A tent-map for which the critical point is
periodic may nonetheless show some of the dynamical characteristics of a map with
a periodic attractor. For this reason we call such tent-maps periodic.

1.1.4 Renormalization

A unimodal map is renormalizable if some iterate of it, when restricted to an appropri-
ate subinterval, is itself unimodal ( see figure 1.2 ). More exactly, f is renormalizable
of degree n if f™ has a restrictive central point, defined below.

Define the map 7 by 7(c) = ¢ and, for x # ¢, f(7(z)) = f(z) where 7(z) # z. This
takes x to the dynamically symmetric point on the other side of ¢ ( see figure 1.3 ).
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N

restrictive central point

D

Figure 1.2: Renormalizing a unimodal map.

We call z # ¢ a central point of f™ if f"(x) equals r and f™ is increasing on (z;c).?
A central point plays the same role for f™ that the fixed point 0 plays for f.

A central point is restrictive if f™ maps [z;7(x)] into itself. In this case f" (37 (2 CATL

be affinely rescaled to obtain a new unimodal map, called a renormalization of f.

If f has no periodic attractors and is not renormalizable or is renormalizable for
only finitely many values of n then we call it finitely renormalizable. When f has
no periodic attractors and is renormalizable for infinitely many values of n we call it
infinitely renormalizable.

Example 1.4 For a given tent-map T\, A # 1, Lebesgue-almost every point in [0;1]
is attracted to the same set Ay, a finite union of intervals if A is in (1;2]. Figure 1.5
plots Ay against A ( compare figure 1.4 ).

The number of intervals is equal to the maximum degree for which Ty is renormal-
izable. There is only one interval for /2 < X\ < 2: these tent-maps are not renor-
malizable. For 1 < A < \/2 the tent-map is renormalizable of degree 2. The point
A/ (A +1) is a restrictive central point for T. The affine function

A—(A+1)z

Or:x— S 1

2The notation (z;c) does not imply that x is less than c.
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s @

Figure 1.3: The function 7.

rescales the interval [1/(A 4+ 1); \/(A +1)] to [0;1]; the rescaling of the restriction of
T? to this interval equals The.

If X2 is less than /2 then Ty: is itself renormalizable of degrele 2, and so Ty 1s
renormalizable of degree 4. By induction, for A in the range 2n+\/§ < X< A2 the
tent-map T is renormalizable of degrees 2, 4, ..., 2™ and Ay consists of 2" intervals.

1.2 The Class C of S-unimodal Maps

In order to prove precise results about unimodal maps it is necessary to impose
regularity conditions. For this thesis they are those of the class C. Fach f in C is a
C? unimodal map with

1. Negative Schwarzian derivative: S(f)(x) < 0 for every x # ¢ where S(f)(z) =
f"(@)/ f'(@) = 3(f"(z)/ f'(x))?/2.

2. Non-flat critical point: there exist [ > 1 and L > 1 such that |z —¢|'"1/L <
|f'(x)| < L|z — ¢|'~! for all z € [0;1].3

3. |£(0)] > 1.

Such an f is called S-unimodal.

3The number [ is unique and is called the order of the critical point. Note that f’' must be
non-zero except at the critical point.
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[e=] o o o
(=) [\ ~ (=] oo —
T T T T T
@
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@
~ F 4
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w L
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1 1 1 1 1 1

Figure 1.4: The approximate limit set of (), plotted against a.
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420

4170
490

Figure 1.5: The limit set of 7T plotted against A; also showing
c3 and c¢y.
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We use C; to denote the subclass with critical point of order [. Condition 3 avoids a
technical problem which might otherwise arise in theorem 2.

There are only three possibilities for the behaviour of a map in C.

Theorem 2 ( Blokh and Lyubich [6] ) Fach map in C either

— has a periodic attractor. This 1s unique and attracts almost every point. The
critical point s in the immediate basin of the periodic orbit.

or

— s infinitely renormalizable. Almost every point is attracted to a Cantor set,
the w-limat set of the critical point.

or

— 18 finitely renormalizable. Almost every point is attracted to a finite union of
intervals. The w-limit of a dense set of points is equal to the finite union.*

The proof of theorem 2 uses the non-existence of wandering intervals, a fundamental
result in the theory of unimodal mappings that will also be useful to us directly:

Theorem 3 ( Guckenheimer [19] ) Maps in C do not have wandering intervals.

1.2.1 Consequences of Negative Schwarzian Derivative

It is easy to show that the derivative of a map with negative Schwarzian derivative
has no positive local minima or negative local maxima [47]. We will use this technical
result in the following easily derivable form. Call f* a diffeomorphism if D f*(z)

[a;0]
is non-zero for every z € (a;b).

Theorem 4 ( Nowicki [44] ) Suppose f has negative Schwarzian derivative, [a;b]
is a subinterval of [0;1] and i > 1. If f* ) 18 @ diffeomorphism then

|l“z'—yz'| bi_$i| |l"z'—az'|

lz —y

> min{ | }

b—x| " |z —aq

“For maps in Cy the w-limit set of almost every point is equal to the finite union of intervals [35].
This is not true in general: according to Van Strien ( personal communication ) there exist finitely
renormalizable maps in C for which almost every point is attracted to a cantor set [20] inside the
union.



10 CHAPTER 1. BASICc DEFINITIONS AND RESULTS

and 1n particular

Df(x)] > min{] }

b—z|’ |z —al

for every x, y in (a;b) with z # y.

The distortion of f* restricted to an interval I is

i _ |sz(33)|
DY) = sup Lo by

The closer the distortion is to zero, the more fi| ; resembles a straight line.

We control distortion using lemma 5 below. An interval J is a p-scaled neighbourhood
of a subinterval J' if the lengths of the two components of J \ J' are both at least
Pl

Lemma 5 ( Koebe principle,” Van Strien [14] ) For each p > 0 the constant
Kp(p) = (1 + p)?/p? has the following property: for any f with negative Schwarzian
derwative, any subinterval [a;b] of [0;1] and i > 1 such that f° ) 15 @ diffeomor-

phism,

| |Dfi()
Kolp) = [Dfiy) < K2

for every x, y in (a;b) for which fi[a;b] is a p-scaled neighbourhood of f'[z;y].

1.2.2 Consequences of Non-flatness of the Critical Point

Non-flatness of the critical point limits the degree to which intervals near ¢ are con-
tracted by the action of f as shown by the integrated version of the non-flatness

condition: | |l | |l
T —c T —c
—& <) - 19 < LT (L)

Non-flatness also implies that f is reasonably symmetric about ¢, as shown by
lemma 6 below ( the lemma implies |7(z) — ¢| is comparable to |x — ¢| ). Recall
that 7 : [0; 1] — [0; 1] was defined by 7(c) = ¢ and, for = # ¢, f(7(z)) = f(x) where
7(x) # x ( see figure 1.3 ).

5In analogy with the Koebe lemma of complex analysis. The Schwarzian derivative itself plays
an important role in complex analysis.
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Lemma 6 If the critical point of a unimodal map is non-flat then 7 is Lipschitz.

Proof. The function 7 is clearly Lipschitz away from the critical point since it is a
composition of diffeomorphisms there. It is Lipschitz at ¢ if and only if |7(z)—c|/|z—c]|
is bounded for z # ¢. From equation 1.1 we have |7(z) —c|'/(IL) < |f(7(x))— f(c)| =
|f(x) — f(c)| < Ljz — |/l and so

@) = el _ o
o= =

as required. W

1.3 Kneading Invariants and Topological Conju-
gacy

The seminal papers of Metropolis et al. [37] and Milnor and Thurston [38] estab-
lished the importance of symbol dynamics for the study of unimodal mappings. In
particular Milnor and Thurston introduced the kneading invariant and the corre-
sponding kneading theory with great success. The kneading invariant describes the
critical orbit® of a unimodal map f in terms of an infinite one-sided symbol sequence
0(f) = 66?63 - - .. Each symbol is either 0, 1 or C depending on whether the corre-
sponding image of the critical point is to the left of, to the right of or exactly equal
to c:

. 0 ifg<ec
=< C if¢g=c
1 ife >ec.

We say that f and g are topologically equivalent or topologically conjugate if there
is a homeomorphism h : [0;1] — [0;1] of the interval [0;1] onto itself such that
ho f = goh. This implies ho f* = g" o h for every positive integer n. The map h,
called the conjugacy between f and g, thus maps orbits of f onto orbits of g. It is
automatically orientation preserving and takes the critical point of f to the critical
point of g. The kneading invariants of f and g are therefore the same.

Topologically conjugate maps can be considered identical for most purposes. However
there is no reason to suppose that topological conjugacy implies equality or even

8The critical orbit is the orbit of the critical point.
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similarity of lengths or derivatives for the two maps since conjugacies are not normally
differentiable ( see chapter 4 ).

In 1979 Guckenheimer proved that equality of kneading invariants is often equivalent
to topological conjugacy.

Theorem 7 ( Guckenheimer [19] ) If f and g are both in C and have no periodic
attractors then they are topologically conjugate if and only if 6(f) = 6(g).

In the presence of periodic attractors equality of kneading invariants need not imply
topological conjugacy. However the kneading invariant registers the fact that there
is a periodic attractor. We say that a kneading invariant is periodic if it consists of a
finite string of symbols infinitely repeated or, equivalently, if 87 = #7 for some i > 1
and all 7 > 1.

Lemma 8 A map f in C has a periodic attractor if and only if 6(f) is periodic.

Proof. Suppose f has no periodic attractors. Since it has no wandering intervals
it has no homtervals. Therefore every subinterval I of [0;1] of positive length is
eventually mapped over c: there exists j > 1 such that ¢ € f/(I). Taking I = [c; ¢;]
gives #**7 # 07, Since this holds for some j for all i > 1, the kneading invariant is
not periodic.

For the converse, suppose first that f has a super-attractor: ¢; = ¢ for some 7 > 1.
In this case the kneading invariant is clearly periodic.

Now suppose that f has a periodic attractor of period ¢ that is not a super-attractor:
c is not in its orbit. We know from theorem 2 that c¢ is in the immediate basin of
attraction. Set I = [c,¢;]. Then c is not in f/(I) for all j > 1 and so i is the value
we are looking for. m

1.4 Topological Entropy and Conjugacy with Tent-
maps

Adler, Konheim and McAndrew [2] introduced the topological entropy in 1965 as an
invariant of continuous maps. A measure of complexity, it describes the rate at which
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observing an orbit imperfectly gives information about its initial point. They defined
the topological entropy for any continuous mapping from a compact topological space
to itself. For unimodal maps there is an equivalent definition due to Misiurewicz and
Szlenk [39]:
. logl(f™)
hiop(f) = lim —5)

n—oo n

where [(f™) is the number of laps ( monotone pieces ) of f™. This limit always exists.

The topological entropy of any unimodal map therefore lies in the range [0;log2].
Every value in this range is taken on by some unimodal map, for example A, (7))
equals log A and this varies from 0 to log2 as A varies from 1 to 2.

As theorem 9 below states, periodic tent-maps excepted” each tent-map is a standard
representative of its topological entropy: every map in C with the same entropy is
topologically conjugate to it. This is analogous to the relationship between rota-
tions of the circle and rotation number: rational rotations excepted, a rotation is
topologically conjugate to every smooth circle map with the same rotation number.

Theorem 9 ( Milnor and Thurston [38, 50]; Guckenheimer [19] ) If T) is
not periodic then any f in C with hip(f) = log A is topologically conjugate to Ty. In
particular the kneading invariants of f and T are the same.

This is a reformulation for maps in C of the following result of Milnor and Thurston.
We say that two maps f and g are topologically semi-conjugate if there is a non-
decreasing map h : [0; 1] — [0; 1] for which ho f = goh. This is similar to topological
conjugacy except that h is not required to be a homeomorphism. For h to be a
homeomorphism it is enough that in addition h~*(z) be a single point for every z in
[0; 1].

Theorem 10 ( Milnor and Thurston [38, 50] ) If f is a unimodal map with
positive topological entropy hiop(f) then it is topologically semi-conjugate to the tent-
map T with hyop(f) =logA. The semi-conjugacy maps the critical point of f to the
critical point of Ty. If Ty 1is not periodic then h™'(x) is either a point, contains a
wandering interval or is in the basin of a periodic attractor for every x in [0;1].

Derivation of theorem 9 from theorem 10. Since A, (f) > 0 we have A > 1.
The hypothesis that T} is not periodic shows A # 1 and so we will only be considering
maps with positive topological entropy. In addition the semi-conjugacy h between

7A periodic tent-map is one for which the critical point is periodic.
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f and T) given by theorem 10 has the property that h~!(z) is a point, contains
a wandering interval or is in the basin of a periodic attractor for every z in [0;1].
Since f is in C it has no wandering intervals — we can immediately eliminate that
possibility. We will show that f has no periodic attractors and therefore that h='(z)
is a point for every z in [0; 1]; thus A is a homeomorphism and f and T) topologically
conjugate.

So let us prove that if f has a periodic attractor then T) is periodic. The proof is
similar to that of lemma 8. We use ¢(f) and ¢(7)) for the critical points of f and T)
respectively.

Suppose first that f has a super-attractor. In this case ¢, (f) = ¢(f) for some positive
integer n. The same equation c¢,(7T)) = ¢(T)) holds for T since h takes the critical
point of f to the critical point of T), and so T} is periodic.

Now suppose that the periodic attractor of f is not a super-attractor. We know from
lemma 8 that 6(f) is periodic, say of period n. This means that I = [¢(f);c,(f)] is
a homterval for f. Since T\ has no homtervals h(I) must be a single point, in fact
the critical point of T) since h maps c(f) to ¢(T)). The other endpoint c,(f) of I is
mapped to ¢, (7)) because h is a semi-conjugacy; it is also mapped to ¢(7)) because
h collapses the entire interval I to this point. Therefore ¢(T)) = ¢,(T)) and T) is
periodic. m



Chapter 2

Towers and Analysis of the Kneading In-
variant

In this chapter we describe a simple but effective approach to the analysis of unimodal
maps using towers. Originally introduced by Hofbauer in a study of the topological
entropy [24], towers were later developed by Hofbauer and Keller in order to study
invariant measures [25]. They are used throughout this thesis. Our approach is based
on de Melo and Van Strien’s exposition [14],! though we use towers based at ¢, rather
than at c. This gives extra combinatorial information. Some of the ideas presented
here are new, especially in the later sections.

The opening sections “Definitions” and “Cutting and Co-Cutting Times” describe the
tower of a unimodal map and its properties geometrically. The remaining sections
“Analysis of the Kneading Invariant” and “Return Times” develop the associated
combinatorial theory.

To simplify the exposition we assume that the unimodal map f has no homtervals

( there are therefore no periodic attractors ) and that its kneading invariant is not
periodic.

2.1 Definitions

The graph of f™~! consists of segments on which f®~! is monotone, called laps. We
follow the lap of f™~! containing ¢, as n increases. The notation used is summarised

!See also the preprint of Bruin [9].

15
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Figure 2.1: The lap of f® ! containing c;.

in figure 2.1. The left endpoint of H,, is

an = inf{y € [0:1] | /",

., is monotone}
y;c1]

and the right endpoint is

B, = sup{y € [0;1] | f** is monotone}.

[e139]

We will sometimes refer to L, = [a,; 1] and R, = [c1; 8,] as the left- and right-hand
parts of H,, respectively.

Notice that H,, is the domain, and F,, the image, of the lap of f*~! containing c;, not
the lap of f. In particular, F,, = f* 1(H,), a, = f* *(a,) and b, = f* (8,). This
ensures that ¢, ( rather than ¢, ) is in F),. Note that H, always contains H, .

The tower of f is the collection of sets F,, x {n} for n = 1, 2, etc. along with
their orientations ( +1 or —1 according to whether f"~! is orientation preserving or
reversing on H,, ). These are called the levels of the tower; we draw them in the plane,
as in figure 2.2, the arrows indicating whether the orientation is positive (——) or
negative (—=— ).
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Ts=12
11

Ta=10

S4=8

Ta=6
To=5
S3=4
Ti=3
Sy=2

S1=1

It may seem necessary to know a great deal about laps in order to calculate a tower,
but this is not at all the case. The entire tower can be generated iteratively from

C1

F12 3 Cc12
1 c11 F11
: ———
C10 | Fio
i Fy (&)
1 —_—
Fg cg
3 Fr cr
i ——
[ 3 Fs
3 F5 Ccs
3 C4 F4
F3 3 c3
c2 1 F2
C

Figure 2.2: The tower of the Feigenbaum map [14].

F; =[0;1]. The rule relating F,,; to F,, depends on whether c is in F,.

If ¢ is not in F, then F,,; = f(F,) because H,,; = H, in this case. This follows
from lemma, 1.

If cis in F;, then f"| o is not monotone. There are two laps on H, with domains
[an; y] and [y; B,] where y = (f*~ ,; )7'(¢). Hny1 is the domain containing c;. Its
image under f"~! is the component of F;, \ {c} that contains ¢, ( denoted E,? and
drawn thicker in figure 2.3 ). Therefore F,, ;1 = f(E,).

2Gtrictly speaking the closure of the component of F), \ {c} containing c,. This adds the point c

back in.
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The recursion relationship is thus

( f(F) itcgF,
Foin = { F(E,) ifceF, (2.1)

where E, is the closure of the component of F,, \ {c} containing c,, and F; = [0;1].

The orientations of F,,; and F;, are the same if ¢, is to the left of c. The orientation
of F,1; is the reverse of that of F, if ¢, is to the right of c.

Example 2.1 The condition that f should not have any periodic attractors and that
the kneading invariant should not be periodic imply that the first two iterates of c
satisfy co < ¢ < ¢1. Therefore Fy = [0;1], F» = [0;¢1] and F3 = [0;¢1]: a1 = 0 and
bp =1, a9 =c; and by = 0; az = ¢, and b3 = 0. The orientations are +1, —1 and —1
respectively.

2.2 Cutting and Co-Cutting Times

The recursion relationship for the levels of the tower, equation 2.1, shows that if ¢ is
in F, then F, ., equals f(E,) not f(F,). In other words a piece of F, is “cut off”
when calculating F, 1. If ¢ is in F}, then we call n either a cutting or a co-cutting
time, depending on the position of ¢ in F,,. If ¢ is in [a,; ¢, then n is a cutting time.
If cis in [by; ¢,) then n is a co-cutting time. It is impossible for n to be both a cutting
and a co-cutting time.

Equivalently, n is a cutting or co-cutting time when H,,,; is strictly smaller than H,,.
A cutting time corresponds to L, being strictly smaller than L,,, a co-cutting time
to R,.1 being strictly smaller than R,,.

We label the cutting times S;, Ss, ...and the co-cutting times 77, 75, ...in order of
size, as shown in figures 2.2 and 2.3. A tower always starts with S = 1 and S; = 2
( see example 2.1 ). The co-cutting sequence starts at 7; = min{j > 1 | ¢; > c}.

The importance of cutting and co-cutting times comes from their close relationship
both with the structure of the tower and with the structure of the kneading invariant.
The relationship with the kneading invariant is described in the next section. Here
we describe their basic geometric properties.

We start by showing how to explicitly calculate tower levels. The result is stated in
lemma 11.
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12
Te=11

T5=10

S4=5
Ti=d

S3=3

C11

19

C12

C10

C9

c7

| c8

C6

C5

Cq

C3

C2

C1

Figure 2.3: The tower of the Fibonacci map [14, 36, 31].
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We derive explicit formulae for F;, and its endpoints as follows. The endpoints a,
and b, satisfy

_ flan) if ¢ & [ag; cq]
Gn+1 = { ¢ if ¢ € [an; ) (22)
e f(bn) if ¢ & [bn; cnl
n) 1 C n; Cn
b1 = { c1 if ¢ € [by; cy)- (2.3)

If n is a cutting time S; then a,41 = ¢; and otherwise a,41 = f(a,). Therefore
an = Cys; for §; < n < Sj41. In general, given n, we write S(n) rather than S; for
the last cutting time before n:

S(n) = I§1Zalx{8j | S; < n}.

It is well defined for every n > 1. Clearly a,, = c,_s(n) for n > 1. Example 2.1 shows
that a; = 0.

The last co-cutting time before n is
Tin) = max{7; | 7; <n},

which is well defined for n > 7;. Therefore b, = c,_7(,) for n > 7. Otherwise b, = 0
for1<n <7 and by = 1.

In terms of F,, these calculations give
Lemma 11 We have F,, = [cp_s(n); Cn—7in)] for every n > 7.

Now let us derive recursion formulae for the cutting and co-cutting times.

Recall that S;41 = min{j > S, | ¢ € [aj;¢;]}. We know that a; = ¢;_s,. Therefore
Siy1 =min{j > S; | c € fi5c;cs,]} = S+ min{j > 1| c € fI[c;cs,]}. If we define
R(z) = min{j > 1| c € flc;z]}

then we can write
Si_|_1 = Sz + R(CS,-)

and

Tiv1 =Ti + R(cr).

Since f has no homtervals, R(x) is finite for every z # c.
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R(z)
iS4
o—e + O
o——=o Sz e—oO
o—eo Sy T+ e— 0

*——————— o S1 T o——————— @
f f f et f f |
0 Cg, Cs, Cg c Cg) TCs) C.g) T 1

Figure 2.4: Schematic representation of the function R.

These recursion formulae and the practical calculation of cutting and co-cutting times
are discussed in detail in the next section.

Now let us consider the function R.

The function R is depicted schematically in figure 2.4. The points {c_g, },>1 are
defined below. The figure is a graphical representation of the following lemma:

Lemma 12 We have R(x) = minj»1{S; | & (c_s;;7(c_s;))} for every x # c.

It follows from lemma 12 that every value of R is a cutting time, an important result
with many combinatorial consequences. In particular, the difference between any two
successive cutting times or successive co-cutting times is always a cutting time.

Before proving lemma 12 we introduce some terminology and basic results.

The following are immediate from the definition of R:

1. R(z) is non-decreasing as x approaches ¢ and becomes arbitrarily large.
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ASit1
T
7S
f
, P . | . R
T T T I T T T
C‘S C‘S+1 C‘3+2 - G T(C'S+2 T(C'S+1) T(C'S)

Figure 2.5: The points {as,+1},>1; their inverses under f, the
discontinuity points {c_gs, },>1 and {r(c_s,)}.>1 of R.

2. R takes on only integer values.
3. R(z) and R(7(z)) are equal.

4. Each discontinuity of R ( except at ¢ ) occurs at an inverse image of ¢ ( though
not every inverse image of ¢ is a point of discontinuity ).

Understanding the discontinuities of R is the key to proving lemma 12. Recall the
definition of «,,, the left-hand endpoint of H,:

a, = inf{y € [0;1] | f”’1| [y:ca] 1S Monotone}.

y;c1]

The points {a,},>1 are inverse images of ¢ except for «; and ay which equal 0 and
c respectively. Not all of the points {a,},>; are distinct. For example ag, 11, as; 12,
...ag,,, are all equal; and ag, 41 # as; from the definition of a cutting time. We
choose as representative the distinct elements {cs,+1},>1. They form an increasing
sequence converging to ¢; ( see figure 2.5 ). The point ags, ;1 is an inverse image of ¢
of degree S; — 1, meaning &~ !(as,11) = c.

We denote the inverse of ag,;; to the left of ¢ by c_g;; the other inverse under f
is therefore 7(c_s;) ( see figure 2.5 ). The notation reflects the fact that c_g, is
an inverse image of ¢ of degree S;. The points of discontinuity of R are {c_g, }:>1,
{7(c_s,) }»>1 and c. This follows from the following lemma:

Lemma 13 The restriction fSi+

point with this property.

s 15 a homeomorphism and c_g, 1s the leftmost
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Proof. By definition fsi“’l‘ las. . 1] is a homeomorphism and ag,,, is the left-
i+17

most point with this property. We remarked above that as,_ , = as;41. Therefore
fSi+1_1‘ ] is a homeomorphism. It follows that fSi+1 s ] is also a homeo-

[as;+15€1

morphism and that c_g, is the leftmost point with this property. m

Of course the same lemma holds with c_g, replaced by 7(c_s,) and leftmost by right-
most.

We can now prove lemma 12. Take some z # ¢ and suppose c_s, , < < c_gs;. From

lemma 13 we have that fSi s is a homeomorphism, so ¢ is not in the interior of

foz;c] for 1 < j < S;. We know that ¢ is not in fI[z;c] for 1 < j < &; since (a)
x> c s, , and (b) cis not periodic. But f[z;c| contains ¢ because [z;c] contains
c_s,. Therefore R(z) = S;. The other cases are similar.

2.3 Analysis of the Kneading Invariant

In this section we show how to calculate cutting and co-cutting times from the knead-
ing invariant and describe some related results.

In the recursion formulae for the cutting and co-cutting times,
Si+1 = Sz + R(Csi)

and
7;4-1 =T+ R(Cﬂ)>

R is only evaluated at forward images of c. Lemma 14 below shows that in this case
the values of R can be calculated from the kneading invariant. The sequences of
cutting and co-cutting times can therefore be calculated from the kneading invariant
also.

Recall that the kneading invariant is an infinite symbol sequence 6(f) = 6'6%---
where 8* =0if ¢; < ¢, 8" = C if ¢; = cand 6 = 1 if ¢; > c. In this chapter the symbol
C does not occur because the kneading invariant is assumed to be non-periodic.

Define R(n) = min{j > 1| ™" £ 67} for n > 1. This function is our main tool for

analysing the kneading invariant. The relationship with R is simple:

Lemma 14 We have R(n) = R(c,) for every n > 1.
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Proof. Since c¢ is not in fI[c;cnyj] = [¢j;¢n] for 1 < j < R(cy), the points ¢;
and ¢, ; have the same kneading coordinate §7 = 7. But c is in ff)[c; c,], so
QR(cn) ?é 0n—|—R(cn)_ m

So large values of R occur when ¢, is close to c.

Recall that all values of R are cutting times. Therefore all values of R are also cutting
times. Writing R(n) = S; for some j, define R~ (n) = S;_; if j > 1.

The recursion formulae for the cutting and co-cutting times become

and
Tiv1 = Ti + R(To). (2.5)

The sequences start at S =1 and 7 = min{j > 1| 6/ = 1}.

Example 2.2 The kneading invariant of the Fibonacci map [14, 36, 31] starts

T ToTs TaTs Ts Tr Ts To
v Vo Vv Vv

Q(f) — 11 2O 3041 51 61 7081 91 10O 11O 121 13 141 15O 16O

o

AoA A A A A

S1 S 83 Su Ss Se
The values of R are R(1) =1, R(2) =1, R(3) =2, R(4 ) R(5 ) R(6) =1,
R(7) =2, R(8) =5, R(9) =1, R(l(]) =1, R(ll) ( ) = (14) =1
and R(15) = 1. These are all cutting times, for example R( ) = 84, therefore
R~ (8) = 83 = 3. There are not enough digits to calculate R(13).

For example, to calculate R(1) compare the start of the kneading invariant to the
section from position 2 onwards. Since the first coordinates compared, 6* and 62, are
different, we have R(1) = 1. To calculate R(5), compare ' onwards to the section
of the kneading invariant starting at 6° ( figure 2.6 ). Since 8° matches 0' and 07
matches 62 but 6% does not match 63, we have R(5) = 3.

To calculate the cutting times start with S, = 1. Applying the recursion formula
Sit1 = Si + R(S;) gives S; =2, S3 =3, S4 =5, S5 = 8 and S = 13. The cutting
times form the Fibonacci sequence, which is why f s called the Fibonacci map.

The co-cutting times start at T, = min{j > 1 | §/ = 1} which equals 4 in this case.
Applying the recursion formula Tipw = T; + R(T;) gives To = 6, T3 =7, T4 = 9,
To=10, To = 11, T = 14, Ts = 15 and T = 16.
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5 6 7 8 9 10, |11, |12, |13

Figure 2.6: Calculating R(5) for the Fibonacci map.

Using lemma 11 it is now easy to determine the levels of the tower. For example, the
thirteenth level is Fi3 = [c5; co] since S(13) =8 and T{13) = 11.

Now we describe an important bound on cutting times. There is no comparable
bound for co-cutting times.?

Lemma 15 The inequality R(S;) < S; holds for every i > 1.4
Proof. From figure 2.4 or lemma 12 above we know that R(S;) < S; is equivalent
to cs, ¢ [C_Si;T(C_Si)]'

If cs, was in [c_s,;;7(c_s,)] then, because fSi[c s.;;c] = fSi[c;7(c_s.)] = [c;cs.], we
would have either fSi[c s.;¢] C [c_s;;¢c] or fSi[c;7(c s,)] C [e;7(cs,)]-

But these both imply the existence of a periodic attractor since f& and

o

[C—Si;c]

) are homeomorphisms [15]. m

[eT(c—s;

We end this section with a technical discussion of the relationship between R(Z) and
R(i —n) when n < ¢ < n+ R(n). Throughout the discussion n will be fixed and ¢
will vary. We want to know when R(i) < R(i —n). The results play an important
role in the next section.

Sometimes R (i) and R(i — n) are equal. Taking n = 3, the kneading invariant shown
in figure 2.7 has R(4) = R(1), R(5) = R(2) and R(7) = R(4) for example. The cri-
terion for R(i) = R(i — n) is as follows: since 71 ...gn+R(M-1 gquals ' - . . gR()-1

3The kneading invariant of figure 2.8(c) has R(7;) > T1 for example.
“Here as in the rest of this chapter it is assumed that the kneading invariant is not periodic and
that f has neither periodic attractors nor homtervals.
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Figure 2.7: R(i) and R(i —n) for n < i < n + R(n). Here
n=23,R(n)=7and R (n) =5.

from the definition of R, if R() is calculated solely from #7+!...4"+RM~1 then
the calculation of R(i —n) yields the same result. This happens exactly when
i+ R(i) <n+R(n).

Sometimes R(:) > R(i —n), for example in figure 2.7 we have R(8) > R(5). This
occurs exactly when i + R(i) > n + R(n), in other words when §+!...gn+R(M) —
gl ... 9ntR(M=%: recall that 7R and R are never equal, from the definition of
R. So while #i="+1...4R(M~1 equals ! - - - g7+ R(V=i=1 hecause §t1 - . . R~ does,
the next digit #%(™ does not equal #"tR(™~% gince R i = gn+R()  Therefore
R(i—n)=n+R(n) —iand so R(7) > R(i — n).

Sometimes R(i) < R(i —n). In figure 2.7 we have R(6) < R(3) and R(9) < R(6)
for example. The criterion is R(i) < R(i —n) if i + R(i) = n 4+ R(n) since then
i+ R —n)>n+R(n).

We summarise these results as follows:
Lemma 16 Ifn>1 andn <i<n+ R(n) then

1. R(i) = R(i—n) if and only if i + R(7) < n+ R(n) if and only if i —n +
R(i—n) < R(n).

2. R(i) > R(i —n) if and only if i + R(i) > n+ R(n) if and only if i — n +
R(i —n) =R(n).
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3. R(i) < R(i—n) if and only if i + R(i) = n + R(n) if and only if i — n +
R(i—n)>R(n).

Therefore R(i) < R(i — n) if and only if i + R(i) < n+ R(n) if and only if i — n +

So let us prove the following lemma. This shows that R (i) < R(i — n) always holds
except if ¢ is too large:

Lemma 17 ( Bruin [9] ) IfR(n) > 1 andn <i < n+R ™ (n) then R(i) < R(i —n).
On the other hand, R(n + R (n)) > R(R (n)).

Proof. We will prove that if n < i < n+ R (n) then i — n+ R(i —n) # R(n),
which is equivalent to R(i) < R(i —n) by lemma 16.

Take a cutting time &; > 1 ( this represents R(n) ) and some 1 < j < S;1 (
represents ¢ —n so this corresponds ton <i <n+R7(n) ). Theni—n+R(i —n) =
R(n) corresponds to j + R(j) = S;. The proof is by contradiction so suppose j +
R(j) = Si.

Put I = [¢;¢;] and J = f97Y(Ls,_,1+1). Each of these intervals has ¢; as an endpoint.
Since c is in I but not in J, either J is contained in I or the two intervals lie side by
side having only the point ¢; in common.

If J is contained in I then, as c is contained in fSi-177(J), ¢ is also in fSi-1=9(1).
However ¢ € fS-17J(I) implies R(c;) < S;_1—j. Since R(c;) = R(j), this contradicts
R(j)=8i—J.

Now suppose I intersects J only at c¢;. We know that fsi_j| ; is a homeomorphism
from the definition of J, and fS—7 | 1s a homeomorphism from the assumption
R(j) = S — j. It follows that fSi=J | ;s 15 a homeomorphism. However c is in
f579(J). This means that c is not in fS777(I), contradicting R(c;) = R(j) = S; — .

The inequality R(n+ R~ (n)) > R(R~(n)) follows from part 2 of lemma 16 and
R~ (n) + R(R~(n)) = R(n) ( recall that R~(n) and R(n) are successive cutting
times, so this is equation 2.4 ). ®
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2.4 Return Times

In this section we define a new sequence, the sequence of return times, and describe
some of its properties. It is made up of cutting and co-cutting times, but only the
most important. This technical tool is used in chapters 4 and 5.

The first return time is 7; — 1, denoted M. This is a cutting time. The subsequent
return times are given by

M1 = M; + R™(M,).
We prove below that R™(M;) is always defined.’

Figure 2.8 shows the return times for several kneading invariants.

We observe

1. Each return times is either a cutting or a co-cutting time. An odd index May; ;
corresponds to a cutting time and an even index Ms; to a co-cutting time.

2. If M, is a cutting time then M, is the last co-cutting time before the next
cutting time. If M; is a co-cutting time then M, is the last cutting time
before the next co-cutting time.

The last observation gives a simple way of generating return times if the cutting and
co-cutting times are known.

So let us prove these observations using lemma 18 below. The cases S, < T3 < S5 in
figure 2.8(d) and 7; < 83 < 75 in figure 2.8(c) illustrate the lemma particularly well.

Lemma 18

1. If Sj < 7; < Sj+1 then

a. 7, =8+ S for some k > 1.
b. S; + R°(S;) =T, for somel > i.
c. {Ti; Tivrs -, T} = {Sj + Sk, Sj + Spt1:- .., S + R7(S)) -

7 s the last co-cutting time before Sj1.

°If we had R(M;) = 1 then R~ (M;) would not be defined.
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Figure 2.8: The return times, cutting times and co-cutting times
of (a) the Feigenbaum map, (b) the Fibonacci map, (c) the
kneading invariant of figure 2.7 and (d) a miscellaneous kneading
invariant.
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2. If T; < 8; < Tj41 then

a. §; =7+ S for some k > 1.
b. 7, + R~ (7;) =& for some | > i.
c. {8i,Sit1,-- 8} ={T; +S,T; + Sk+1,..., T, + R~ (T;)}.

S, is the last cutting time before Tji1.

Proof. The proof is inductive.

Take any S; and 7; such that S; < 7; < S;41 and suppose 7; = S; + S for some
k > 1. In other words, that part 1(a) of the lemma holds. The case starting the
induction has 7; = 7; and S; = 7; — 1; (1)(a) holds since 7; — S, = 1, a cutting time.

Let us prove (1)(b) and (1)(c) simultaneously. If 7; = S; + R™(S;) then there is
nothing to prove, so suppose S < R™(S;). Then T,+R(T; — S;) = S;+Sk+R(Sk) =
S; + Sgt1. Since R™(S;) is a cutting time the assumption S < R*(S ;) implies
Sk+1 < R7(S;). Therefore 7, +R(T; — S;) < S; +R(S,). The first case of lemma 16
shows that R(7;) = R(T; — S;) and so 741 = S + Skt1-

Now repeat the argument for 7;.,: either Ty = S + R7(S;) or Tiyo =
Sk+2- Continuing, eventually we will have S; + R™(S;) = 7, for some | > i
{75, Tivas o T} ={Sj + Sy Sj 4 Sk, -, S+ R7(S)) 1

i+
and

From the last statement of lemma 17 we have R(7;) = R(S; + R™(S;)) > R(R™(S;)).
Therefore 711 > S; + R(S;) + R(R™(S;)) = Sj41 and so 7, is the last co-cutting

time before S; ;.

But now ( )
R(S;) =R~ (

follow as fo

(a), (2)(b), and (2)(c) hold for the triple 7, < S;41 < Ti41: Sjp1 — T =
S;) = R(R™(S;)) is a cutting time, giving (2)(a), and parts 2(b) and 2(c)
( )(b) and (1 )(c) above.

Write S, for 7, + R(T;). Then S, is the last cutting time before 7, for the same
reason that 7; was the last co-cutting time before S;,;.

In addition the triple S, < Try1 < Spq1 satisfies (1)(a). Now repeat the argument
indefinitely. m

Observations 1 and 2 above now follow inductively. For example, if M, = §;, a
cutting time, then the lemma shows that M, + R~ (M,,) is a co-cutting time, the
last before S;;;. These are observations 1 and 2 in this case. A similar argument
proves observations 1 and 2 when M, is a co-cutting time.
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However to apply the lemma it is necessary to show that there is some co-cutting
time® between M,, and M,,+R(M,). But this is a simple induction using lemma 18.
As a by-product we have R(M,,) > 1 and therefore R~ (M,,) is always defined.

Now let us describe some properties of return times that will be used later.

The other results are based on the following technical lemma. It shows that iterates
between return times are dominated by the return times.

Lemma 19 If M,, < i < M, then R(i)) < R(i — M,), i + R(i) < M,, + R(M,,)
and therefore R(i) < R(M.,,).

Proof. This combines the first statement of lemma 17 and the last statement of
lemma 16. ®m

Let us show that every closest return time is a return time. We say that n > 1
is a closest return time if R(n) is larger than R(z) for every 1 < i < n.”

Lemma 20 FEvery closest return time 1s a return time.

Proof. Since R(j) = 1for j = 1,...,M; — 1, if n is a closest return time then
n > M. If n is not a return time then M; < n < M;,; for some M;, but then
R(n) < R(M;), from the last lemma, a contradiction. So n must be a return time.
|

The next result also shows that a dynamically significant event must occur at a return
time, though in this case the event is more technical. This result is used in the proof
of lemma 59.

Lemma 21 Ifi> 1 and R(S;) = S; then S; is a return time.

Proof. Requiring ¢ > 1 ensures §; is greater than M. If §; is not a return time
then M,, < §; < My for some M,,. Note that M, must be a co-cutting time.

6A cutting time if M, is a co-cutting time.
If f is asymmetric this need not mean that |c, — c| is smaller than |c; — ¢| for every 1 <i < n,
though this is the idea behind the definition.



32 CHAPTER 2. TOWERS AND ANALYSIS OF THE KNEADING INVARIANT

From lemma 18 we have §; = M,, + S for some k£ > 1. Clearly Sy < §;. Lemma 19
gives R(S;) < R(Sk). But 8 < S; and S; = R(S;) < R(Sk) show R(Sk) > Sk. This
contradicts the conclusion of lemma 15, namely R(S;) < S.

So S; must be a return time. ®

We will also need the following lemma. A kneading invariant satisfying either condi-
tion is called slowly recurrent.

Lemma 22 We have

;[ RG) RG>
=110 otherwise

lim lim sup - =0
l=o0 500 1

if and only if

g=1 otherwise

o[ RM,) f RM,) >
zief g

lim lim sup
l=o0 500 Mz

Proof. The ‘only if’ part is immediate, so let us prove ‘if’. Suppose

> {R(Mj) if R(M;) >1

=11 0 otherwise 0

lim lim sup
l=o0 500 M;

and take any 0 < € < 1/2. By taking [ large enough we can assume

i {R(Mj) if R(M;) =1

=10 otherwise - (2.6)
M € .
for all 4 > 1. This implies R(M;) < M; if R(M;) > L.
Let us prove
n N N N NS
[ RG) HRG) 1 ) s~ [ROM) $RM) =1
—~ | 0 otherwise 0 otherwise
j=1 M;<n
inductively for all n > 1 and therefore
n ] RG) HER@G) =1
=110 otherwise
< 2 (2.8)

n
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because of equation 2.6.

Suppose

0 otherwise otherwise

i { R(j) HR(G) 21 o 5 {Z)ewj) if R(M;) > 1 (2.9

j=1 M]‘ <z

holds for all 1 <4 < n. It certainly holds for 2 = 1,..., M. We verify equation 2.9
for ¢+ = n.

Choose My, such that M < n < Mgy, If R(My) < I then R(n) < [ also, from
lemma 19, and there is nothing to prove.

So suppose R(My) > I. Then

n N . ) Mp—1 N )
;{(7)3(]) gtﬁ%;l S {(7)3(]) FR(j) 21

= otherwise

SR SR e
<2 ¥ {R(Mj) if R(M;) >1

MMy 0 otherwise

RM)+ Y {R(j) if R(j) > 1

PRy vl 0 otherwise

using the inductive hypothesis.
Lemma 19 shows that R(i) < R(i — My) for My < i < n and so

i {R(j) ifRG) > 1 f{ R(j) if R(j) > 1

0 otherwise 0 otherwise

J=M+1 j=1

< 2e(n — My) < 2eR(My),

using the inductive hypothesis® and equation 2.6, as in equation 2.8. Therefore

i{?(y‘) RG>, g {R(Mj) it R(M,) > 1

otherwise M, 0 otherwise
J
(1 -+ QG)R(Mk)
<2y (Mj) if R(Mj) >1
Mion otherwise.

8Permissible since n — My, < R(My) < Mj,.



34 CHAPTER 2. TOWERS AND ANALYSIS OF THE KNEADING INVARIANT

This completes the proof that equations 2.7 and 2.8 hold for all n > 1.

Since equation 2.8 holds for each 0 < € < 1/2 if [ is large enough this proves

i ) R() HR@G) =1
=110 otherwise

lim lim sup . =
20 500 (4




Chapter 3

The Parameter Dependence of Tent-Map
Towers

In this chapter we describe how the tower of T\ varies with A\. The results are
used in chapter 5 to estimate the abundance of tent-maps with particular dynamical
properties.

The analysis is based on a few simple observations drawn from figures 3.1-3.4. In the
first section, “The Images of ¢”, we examine ¢, (), the n’th image of the critical point
under T}, in the context of figures 3.1 and 3.2. In “The Endpoints of the Tower”
we describe the relationship between c¢,(A) and the endpoints a,(\) and b, (A) of the
n’th tower level of T). In the last section, “Towers and Parameter Space”, we show
how to approximate tower levels using parameter space information.

Some technical details have been omitted for brevity.

In this chapter a,, b, and c, mean these quantities as functions of A. For example
et [1;2] = [0;1] is A = T)\"(c).

3.1 The Images of c

In this section we describe how ¢, (\) depends on A.

Figures 3.1 and 3.2 graph ¢, for the first few values of n. We observe:

1. The graph of ¢, is continuous. It is composed of smooth segments with cusps

35
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at their end points.!

2. The graph of ¢, has a cusp wherever the graph of ¢, has a cusp; a new cusp
is created for ¢, ; wherever c, crosses y = 1/2 and only there.?

3. The segments become steeper as n increases, except near A = 1.

4. The segments become straighter as n increases, except near A = 1.

Example 3.1 Figure 3.1 shows c3 crossingy = 1/2 at A\ = (1 ++/5)/2. The tent-
map Ty, /52 15 periodic with least period 3; ¢, has a cusp at (1 + V'5)/2 for all
n > 3. Note that if n > 3 is a multiple of 3 then the graph of c, dips down and
touches y = 1/2 at A = (1 ++/5)/2 without crossing.

Let us now prove observations 1-4.

The proofs of the first two observations are left to the reader; it follows from obser-
vation 2 that the cusps of ¢, occur at those A values for which T} is periodic with
period less than n. In other words, where ¢,,(A) = 1/2 for some 1 < m < n.

To prove observation 3 we show that slopes grow like A", in other words that state
and parameter space derivatives are comparable. The method of proof is taken from
Benedicks and Carleson’s paper [5] on the Hénon map. Similar results have been
proved by Coven et al. [12]; see also the preprint of Brucks and Misiurewicz [7]. The
upper bound holds even when n < N ().

Lemma 23 For each € > 0 there exists K(¢) > 1 and N(e) > 1 such that if X is in
14+ ¢€2], n> N(e) and c, is differentiable at X\ then

Proof. We must show that

pal()) = 2

is bounded from above and away from zero for n large, uniformly for A € [1 + ¢; 2].

!Except at the endpoints of [1;2].
2A careful justification of this fact needs the monotonicity in A of the kneading invariant [8].
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Figure 3.1: The dependence of ¢, c3 and c3 on A.
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Figure 3.2: The dependence of ¢4, c5 and cg on A.
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The proof is in three steps. First, we show that p,(\) converges uniformly on [1 + €; 2]
as n — oo. The limit is uniformly bounded above on [1 + €;2]. It therefore suffices
to show that p,, is uniformly bounded away from zero on [1 + €; 2] for n large. In the
second step we observe that p, is uniformly bounded away from zero on [/2; 2] for n
large. In the final step we pull the bound back to smaller A values by renormalizing.

Differentiating ¢, 11(A\) = Ta(cn(A)) with respect to A gives the recursion formula

Ac,(A) + cn(N) if ¢, (N) <
(N = {

A, (A) +1=cp(A) if cp(N) >

N[

N [—=

and 80 [pui1(A) — pu(A)| < 1/(2A"1) for all n > 1. Therefore, for any m > n > 1,

) = 2] < =

Thus the sequence {p,(A)},>1 is Cauchy and so converges. The convergence is clearly
uniform on [1 + € 2]. The limit is uniformly bounded above because p; is.

It is easy to verify that pg(\) > 1/(2A%(X — 1)) holds for v/2 < A < 2. Because
lpm(A) — pg(A)| < 1/(2X8(X — 1)) it follows that p,,()) is uniformly bounded away
from zero for m > 9 and v/2 < X\ < 2. There is therefore some K; > 1 such that

1 _ e

— <
K, — am

<K,

for v/2 < XA < 2 and m > 10.

Now consider A < /2. We renormalize using the map ¢, :  +— (A—(A+1)z)/(A—1).
This has the property

AA(TX (65 (2))) = The(x)
for all z € [0;1]. A straightforward calculation yields
—(A+1) con(A) — 2
/ )\2 — ( / 2 .

The term (cg,(\) — 1/2)/(A(A — 1)?) is bounded so can be ignored. Therefore ¢! (\?)
and 4, (\) are approximately proportional for n large. It follows that there exist
K5 > 1 and Ny > 1 such that

1/Ky < e,(N)]/A" < K,

for v2 < A< +v/2and n> N,. Continuing inductively, we conclude the existence of
the required K(e) > 1 and N(e) > 1 for any ¢ > 0. m
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Define I,()) to be the domain of the smooth segment of ¢, containing A. The left
endpoint of I,,(A) is therefore

max{\ < \ | T} is periodic with period less than n},
and its right endpoint
min{\ > A | A = 2 or T} is periodic with period less than n}.
We do not define I,,(\) if A is a cusp point of ¢, or an endpoint of [1;2].

Let us prove observation 4. This was that segments of ¢, become straighter as n
increases, in other words, that the distortion

ch (A
[n()\)) = Sup log | I( 1)|

Dl(c,
( A, A2€LL (N) |Cn()\2)|

decreases as n approaches infinity. We prove in lemma 24 below that the distortion
limits to zero. Brucks and Misiurewicz [7] have a similar result.

Lemma 24 If T s not periodic then limn_moD(cn‘ In(A)) = 0. The convergence is

uniform on [1 + € 2] for every e > 0.

Proof. Let us first show that the distortion is bounded for n large. We know that
A # 1 since T) is not periodic. If n is large enough and € > 0 small enough then
I,()\) C [1+¢;2]. Thus from the last lemma there is a K > 1 such that

f ~
K= » =

for n large enough and A € I,,(\). Bounding D(c, In(A)) on I,()) is therefore equiv-

alent to bounding A;"/A2" in a way which is independent of n and holds for any
A1, A2 € I,(A). Since

A" A — Ao nlA;=Ao|
— =1 n < X
Ny o) e
this amounts to bounding n|A; — Ay|. But |\ — Ay| < K/A3" for some Az in I,,()\)
since

L > fea(M) = en(A2)]
A3" A = Ao

= Ol = ] 2 2
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Since n/A3" — 0 as n — oo the distortion is bounded. We will use this fact freely in
the remainder of the proof.

So now let us prove that the distortion limits to zero. Take Aj, Ay € I,,(A). Then
lcn(A)] 1‘ < la) =g ()|
cn (X)) - |cn(A2)]
|cn(A3)[[Ad1 — Ao

- en(A2)]
for some A3 € (A1; A2). Substituting |A; — Ao| < K/A3"™ and |c],(A2)| > A3"/K gives
QD] | o Jen(a) | K2
— A32n :

cn(A2)]

We need to show that |¢”(A3)|/X3* — 0 as m — oo no matter how we choose
A3 € I,(A). From the recursion formula

20%()\3) + )\30,’,’n()\3) if Cm()\) <

N[

C;In+1()\3) =
—2c,(A3) — Asch (A3) if en(N) >

N

we deduce

Cni1 (M) _ [en(Rs)] 2 |cm(As)]
A31.5(m—|—1) — )\31.5m )\30.5m )\3m

by dividing through by A5"*! taking magnitudes and adjusting some indices. It
was shown in the last lemma that |c/,(A3)|/A3™ has an upper bound independent of
m and uniform on [1 + €; 2] for any € > 0. It follows that [c”()3)[/As"" is uniformly
bounded above on [1 + ¢; 2] and so |¢(X3)|/As*™ — 0 as n — oo, as required. W

3.2 The Endpoints of the Tower

In this section we describe how the endpoints a,(\) and b, (A) of the n’th tower level
vary with A.

It is important to realise that, unlike ¢,(A), the endpoints do not vary continuously
with A\. However figures 3.3 and 3.4 show that a,, and b, are piecewise continuous,

with their discontinuities occurring at points where ¢, has cusps.

Denote by I,,° the interior of I,,. We observe:
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Figure 3.3: The dependence of a,, b, and ¢, on A for n =1, 2
and 3.
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Lemma 25 For each smooth segment I,, of c,,

o

1. a, and b, are continuous and differentiable on I, ()
2. Neither a, nor b, intersects y =1/2 on I,,°.

3. cn(A) lies strictly between a,(\) and b,(\) for every A € I,°.

Proof. Recall from chapter 2 that a,(\) = ch—smyo)(A) and b,(A) = carmyny (A).
Though both S(n)()\) and T{n)(\) depend on X they are constant on I,,(\)° because
they only depend on the first n — 1 digits of the kneading invariant and these digits
are constant on I,(\)°. Otherwise there would be some A € I,(A)° with ¢n, () = 1/2
for some 1 < m < n. But then A would be a cusp point of ¢, 11, and therefore of ¢,,
in the interior of I,,(\), a contradiction.

Let us write a,(A) = ¢, (A) and by (N) = e, (A) for A € I,°. Since m; and my are
both strictly less than n the curves ¢, and ¢,,, are smooth on I,,°. This proves the
first part of the lemma.

If a,, or b, intersected y = 1/2 on I,,° then ¢, 41 OF ¢my11 and so ¢, would have a
cusp on I,°, a contradiction. This proves the second part of the lemma.

The last part of the lemma holds because ¢, (A) is always in F,,(A) = [a,(N); b,(N)],
and in the interior unless 7T) is periodic of period less than n. That is, unless A is a
cusp point of ¢,. m

Now let us prove that a, and ¢, ‘join up’ at left-hand endpoints of segments, and
that b, and ¢, ‘join up’ at right-hand endpoints of segments:?

Lemma 26 For every n > 1 and smooth segment I, = [z1; 22| of ¢,, with z; < zs,

lim an(A) = en(21)

and

lim bn(A) = ca(22).
lim b, () = ca(22)

3This is the reason for the alternating high and low positions of the pieces of a, and b, in
figure 3.4.
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Figure 3.5: The definition of F},()\).

Proof. This is a simple induction, using the recursion relationships (2.2) and (2.3)
for a,, and b,. The monotonicity of the kneading invariant prevents exotic behaviour
by ¢,. m

Our final result shows that the slope of ¢, becomes increasingly steeper than the
slopes of a, and b, as n increases:

Lemma 27 IfT) is not periodic then

. an(A)
o "
and " (/\)
i (V) =0.

Proof. From lemma 23 we have |a;,(\)| = [c;,, (A)] < KA™ and |c,(A)| > A"/K if n
is large enough. Recall that m; = n — S(n)(A). Therefore

W K
L ()] T ASmA
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Cn

Fr())

Figure 3.6: Upper right corner of figure 3.5.

But S(n)(A) — 0o as n — oo and so |a),(A)|/|c,(A)| = 0. The other limit is proved
similarly. m

3.3 Towers and Parameter Space

In this section we illustrate the above results by describing a simple way of approxi-
mating the tower levels of a tent-map using parameter space information.

Recall that the n’th tower level of T is Fj, () = [an(\); bu())]. We define F,()), our
approximation to Fy,(A), to be [c,(21); ¢n(22)] where I, () = [z1; 22] ( see figure 3.5 ).

Let us prove that this approximation is good.

The Hausdorff distance H(I,J) between two intervals I and J is the size of the largest
of the components of I\ J and J \ I.
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Proposition 28 If T) is not periodic then

H(EL(), Fu(N)
V)

lim sup = 0.

n—o0

Proof. We use the notation of figure 3.6. We can treat the curves as straight lines
because of lemma 24. The ratio €,/l, thus equals the ratio of the slopes of b, and
¢n. Lemma 27 states that this goes to zero as n — co. Therefore so does €, /|F},(\)].
A similar argument works for the other end of F,,()A). Therefore

H(Fa(A), Fn(N))

e AL — 0.
[FL (M)







Chapter 4

The Collet-Eckmann Condition

We say that f in C is Collet-Eckmann, or satisfies the Collet-Eckmann condition, if

lim inf —log |Df (e

1—00 1

>0

or equivalently, if there exist k > 0 and A > 1 such that
IDf"(c1)| > kA"

for all n > 1. The metric properties of such maps have been intensively studied [30,
32]. For example it is known that they have invariant measures absolutely continuous
with respect to Lebesgue measure [11, 45] and positive Lyapunov exponent Lebesgue
almost everywhere [29]. In this chapter we consider the Collet-Eckmann condition
from a topological point of view

In the first section, “Topological Invariance of the Collet-Eckmann Condition”, we
show that the Collet-Eckmann condition is topologically invariant for maps in C5. We
do this by proving the quasi-symmetric invariance of the Collet-Eckmann condition
and then applying a new result of Lyubich.

In “Collet-Eckmann Kneading Invariants” we describe a large class of kneading invari-
ants for which any map in C must be Collet-Eckmann. These kneading invariants sat-
isfy conditions analogous to the metric conditions of Benedicks and Carleson [4, 5, 14].

In “Non-Collet-Eckmann Kneading Invariants”, the final section, we describe some

kneading invariants for which no map in C is Collet-Eckmann. This falls short of
classifying every kneading invariant as Collet-Eckmann or non-Collet-Eckmann.

49
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4.1 Topological Invariance of the Collet-Eckmann
Condition

In this section we show that the Collet-Eckmann condition is topologically invariant
in C2.1

Theorem 29 If f € Cy is Collet-Eckmann and topologically conjugate to g € Cy then
g 1s Collet-Eckmann.

Theorem 29 is a consequence of the following two results. The first result, that
conjugating homeomorphisms are in general quasi-symmetric, was communicated to
me by Mikhail Lyubich; the proof has not yet been circulated.? The second result,
that the Collet-Eckmann condition is invariant under quasi-symmetric conjugacy, is
proved in this section.

We say that a homeomorphism A : [0; 1] — [0; 1] is M-quasi-symmetric [3, 33] if

1 |h(z+e) - ha)
M Tha—e) —hz)] =

for any z in [0;1] and € > 0 for which x + ¢ and x — € are both in [0;1]. It is

quasi-symmetric if it is M-quasi-symmetric for some M > 1.

Theorem 30 ( Lyubich ) If f € Cy is finitely renormalizable, without periodic
attractors and topologically conjugate to g € Cy then the conjugating homeomorphism
1S quasi-symmetric.

Theorem 30 is a personal communication from Lyubich.

Theorem 31 If f € C is Collet-Eckmann and topologically conjugate to g € C and
if the conjugating homeomorphism is quasi-symmetric in a neighbourhood of ¢, then
g 1s Collet-Eckmann.

Theorem 31 is proved below.

1Recall that Cs is the subclass of C for which critical points are of order 2.
2Results along these lines by Jakobson and Swiatek [27] are available in preprint form.
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To prove theorem 29 from theorems 30 and 31, suppose f € Cy is Collet-Eckmann
and topologically conjugate to g € Cs. Since f is Collet-Eckmann it has no periodic
attractors and is finitely renormalizable [43, 14]. From theorem 30 the homeomor-
phism conjugating f to g is quasi-symmetric. Theorem 31 shows that g is therefore
Collet-Eckmann, completing the proof of theorem 29.

In the remainder of this section we prove theorem 31. The proof uses the following
lemma, a useful characterization of the Collet-Eckmann condition for maps in C. This
result is also used in the next section.

Lemma 32 A map f in C satisfies the Collet-Eckmann condition if and only if it
has no periodic attractors and there exist kK > 0 and A > 1 such that

lesm=al s (4.1)
|a5i+1 - cl‘
and
Ry 42)
Ti+1 — C1
forall i > 1.

Proof. The ‘only if’ part of the present lemma has been proved by Nowicki [45, 46].

So suppose f has no periodic attractors and that there exist kK > 0 and A > 1 such
that equations 4.1 and 4.2 hold for all z > 1. Define

. |ait1 — ciya| [bip1 — iy
p; = min{ , )
@i — | T B —

Note that [a;y1;¢iy1] = faig;ei] and [biyy; cig1] = fBig1; 1]

It follows from lemma 4 that f is Collet-Eckmann if there exist x > 0 and A > 1 such
that p; > kA* for all i > 1. We will prove p; > k1 \! for all ¢ > 1 inductively using
the values of xk; and \; chosen below.

We choose k; > 0 and \; > 1 as follows: there is some N > 1 for which kAN > 1.
Take A\; > 1 such that A\ < kAY. Since S(i) — oo as i — oo and likewise
for T{i), we can choose N; large enough that S(N;) > N and 7(IN;) > N. Take
k1 = min{1, min;<;<n, p;}. This gives p; > k1A' automatically for 1 < i < Nj.

Take n > N; and suppose p; > ki \" for all 7 < n. Let us show pn > K1 AT, First we
show

Qpt1 — C

—‘ ntl n—|—1| > I{l/\?.

|C¥n+1 - Cl|
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Rewrite |ap11 — cpy1l|/|ans1 — c1] as

|an+1 - Cn-f-l‘ _ |08(n+1)+1 - 01| |an+1 - Cn+1‘ (4 3)
|04n+1 - Cl| |a8(n+1)+1 - C1| \Cs<n+1)+1 - 01\’

using Q41 = QSni1)41-

The factor |csm+1)+1—C1|/|®sn+1)+1 —¢1| can be estimated directly from equation 4.1:

|csmty+1 — al S gASmHD)
|a8(n—|—1)—|—1 - Cl‘

The other factor is |an11 — cat1|/|Csny1y+1 — 1l

If n =8(n+ 1) then |ap41 — coq1l/|Csnsy41 — 1| =1 > k1.

n—8(n+1)

When n > S(n+1) we show |ani1 — Coy1l/[Csmiry1 — 1] > KAy using
n—8(n+1), —S(n+1 _ pn—8(n+1 :
Pr-snt1) = K1y : since f" ) les(n+ny41ie1] T f ) S [aprse] B2

homeomorphism, by definition H, s@m41y4+1 contains [cs<n+1>+1;c1]. Applying theo-
rem 4 to fP=SH0 | with [a;b] = H,_sm41y+1, © = c1 and § = Cs(nt1)+1, We have

|an+1 - cn—|—1| — |xn7$(n—|—1) - ynfs(n+1)|
|Csnt1y+1 = Cif |z —y|
> Pn—8(n+1) > /{1)\1n_$<n+1)-

Substituting back into equation 4.3,

[nt1 = Cniil o\t y nmStr) 5 g (4.4)
‘an—l—l - cl‘

where the last inequality uses the choice of ;.
The same methods give
|bn+1 - cn+1|
> kA (4.5)
‘571—1—1 - Cl‘
Equations 4.4 and 4.5 together show p, > k1 A{".

Therefore by induction p; > k1At for all i > 1 and so f is Collet-Eckmann. m

The following is a standard result [33]:
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Lemma 33 For each M > 1 there exists K > 0 and n > 0 such that
|h(z) = h(y)| < K|z —y["

for every z, y € [0;1] and M -quasi-symmetric homeomorphism h : [0; 1] — [0; 1].
So let us prove theorem 31:

Theorem 31 If f € C is Collet-Eckmann and topologically conjugate to g € C and
if the conjugating homeomorphism is quasi-symmetric in a neighbourhood of ¢, then
g 1s Collet-Eckmann.

Proof. Suppose f is Collet-Eckmann, so neither f nor g has a periodic attractor.
Lemma 32 shows that there exist k; > 0 and A\; > 1 such that

|Csi+1(f) — C1(f)|

S;
s —al) M (4.6

and

lcria(f) —a(f)]
1Br+1(f) — er(f)]

for all 7+ > 1. Note that equations 4.6 and 4.7 show that |as,1(f) — c1(f)] <
5.1 () — er()] and [Bra(f) — ()] < lera(F) — en(f)] if 4 1s large.

> kAT (4.7)

Lemma 32 shows that g is Collet-Eckmann if there exist k5 > 0 and Ay > 0 such that

lcsi+1(g) — ci(g)]

> KoASi 4.8
oo~ alg)] e
e er(g) — ()
cri+1\g) — al\g Ti
> Koot 4.9
Bralg) —alg)] 2" (4.9)
for all 7 > 1.

So let us show the existence of Kk, > 0 and Ay > 1 such that equations 4.8 and 4.9
hold for all # > 1. We first rescale equations 4.6 and 4.8 using

m R — R
$—05i+1(f)

lesi41(f) = ea(f)]

T
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|

AN /

Csi+1(J;j as; +1(f)

,w

cs; +1 as; +1

Figure 4.1: Rescaling the conjugating homeomorphism.

0 Yi

and

m:R — R
= csit(9)

L7 @) —a@)l

Define h; = #;0hon !, y; = mi(as,41(f)) and §; = 7;(as,41(9)). We have h;(y;) = 9,
hi(1) =1 and h; : [0;1] — [0;1] a homeomorphism for all 7 > 1 ( see figure 4.1 ). In
this notation equation 4.6 is

i — 1] < A% /K (4.10)

for all 7 > 1.

To show the existence of ko > 0 and A\, > 1 such that equation 4.8 holds for all 7 > 1,
in this notation
9 = 1] < A% /Ry (4.11)

for all 7 > 1, take M > 1 such that h is M-quasi-symmetric in a neighbourhood of
c1 and note that h; is M-quasi-symmetric since it is a linear rescaling of h. From
lemma 33 there exist K > 0 and n > 0 depending only on M such that

[hi(x) = ha(y)| < Kz —y[?
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for every z,y € [0;1] and ¢ > 1. In particular, |§; — 1| < Kly; — 1|7 for all 7 > 1.
Therefore |y; — 1| < A=5i/ky, equation 4.10, implies |§; — 1| < KA[™ /7, and this
holds for all 7 > 1.3

Taking ko = K/kJ and Ay = A], we therefore have equation 4.11 and thus equation 4.8
for all 7 > 1.

A similar argument shows that equation 4.7 implies equation 4.9, again with Ay = A].
The rescaling needs to be modified since c¢7, and (7, are on opposite sides of ¢;. This
is not difficult, though it does result in a slightly different value of k.

Therefore g is Collet-Eckmann since equations 4.8 and 4.9 hold for all7 > 1. m

4.2 Collet-Eckmann Kneading Invariants

We call a kneading invariant Collet-Eckmann if every f in C with this kneading
invariant is Collet-Eckmann. In this section we give simple conditions for a kneading
invariant to be Collet-Eckmann.

Before stating the main result of this section we give some definitions. Unless stated
otherwise, A is a fixed positive integer. To simplify notation, dependence on A is
only indicated where necessary.

Given a kneading invariant we define its A-return times vy, vs, ... as follows:
v =min{j > 1| R(j) > A}

and
vin =min{j > v; +p; | R(j) > A},

where p; = R~ (v;) is called the binding period of v;. Lemma 43 below shows that
V1, Vs, ... are just those return times M; with R(M;) > A. There can be either a
finite or infinite number of A-return times. We will assume for simplicity that there
are infinitely many A-return times. The results hold in either case.

3There are two minor problems which may occur. First, 4; may not be in [0;1]. This occurs
when |cs;4+1(f) — c1(f)]| is less than |as,+1(f) —c1(f)|- This can only happen for a finite number of
1 so can be ignored.

Second, h; may not be quasi-symmetric on the whole of [0;1]. This occurs when cs,+1(f) is
outside the domain of quasi-symmetry of h. A variation of the argument easily deals with this case.
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We say that an iterate n is bound if v; < n < v; + p; for some 7 > 1. Otherwise n is
free. We use B(n) to denote the number of bound iterates occurring before time n:
if n > v; then

B Ej‘:ﬂ’j ifn>v+p;
B(n)—{ n—Vi+Z;;11pj ifv, <n<vy+p;

where v; = max{v; | v; <n}. If n <y then B(n) = 0.

Similar definitions were used by Benedicks and Carleson [4, 5, 14] in their proof that
@, is Collet-Eckmann for a positive Lebesgue measure set of a. However they define
return times and binding periods using metric rather than topological criteria.

Benedicks and Carleson’s metric conditions (BA) and (FA) for @, to be Collet-
Eckmann are analogous to our topological conditions, equations 4.12 and 4.13 re-
spectively in theorem 34 below.*

While there are maps satisfying our conditions that do not satisfy Benedicks and
Carleson’s and vice versa,® it follows from work of Tsujii [49] that Lebesgue almost

every quadratic map close to a Misiurewicz map satisfying Benedicks and Carleson’s
(BA) and (FA) satisfies our equations 4.12 and 4.13.

The main result of this section is

Theorem 34 Any kneading invariant satisfying

lim sup @ =0 (4.12)

1—00 ?

and Bl
lim sup ﬂ <1 (4.13)

i—00 ]

for some A > 1 s Collet-Eckmann.

Before giving the proof of theorem 34 we state some corollaries.

We say that f is Misiurewicz if it has no periodic attractors and the critical point is
not recurrent. The following result was originally proved by Misiurewicz [40, 48]:

4Benedicks and Carleson also require @, to be close to a Misiurewicz map. This was an artifact
of their method and has been eliminated in theorem 34.

SEquation 4.12 is stronger than (BA) because it implies limsup,_, ., —log|c; — ¢|/i = 0. This
follows from lemma 39.
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Corollary 35 FEvery Misiurewicz map in C 1s Collet-Eckmann.

Proof. We claim that f € C is Misiurewicz if and only if the function R is bounded.
Indeed, f has no periodic attractors if and only if its kneading invariant is not pe-
riodic, which is equivalent to R(n) always being finite. Moreover, since c is not
recurrent, the orbit of ¢; always stays a definite distance away from c. This implies
that R(c,) is bounded independently of 7, and so R is bounded ( see chapter 2 ).

If A is larger than the bound on R then there are no A-return times, so B(i) = 0 for
all 4. Clearly limsup, . R(i)/i = 0.

Since the hypotheses of theorem 34 are satisfied, f is Collet-Eckmann. m

We say that a kneading invariant is slowly recurrent if

. [ RG) HRG) >
=] 0 otherwise
lim lim sup - =0
20 500 ?

In chapter 5 we show that, in a sense, almost every kneading invariant is slowly
recurrent.

Corollary 36 FEvery slowly recurrent kneading invariant is Collet-Eckmann.

Proof. Clearly limsup, . R(i)/i = 0. In addition limsup, . B(i)/i — 0 as
A — 00, from the definition and the definition of slow recurrence. Therefore the
hypotheses of theorem 34 are satisfied if A is sufficiently large. m

There are two main steps in the proof of theorem 34.

First we prove theorem 37 below. We say that n is close to 7 if i <n < i+ R(i) and
R(i) < A. Denote the cardinality of A by #(A).

6This definition was inspired by Tsujii’s metric notion of weak regularity [49]. It can be shown
that every f in C with a slowly recurrent kneading invariant is weakly regular. The converse does
not seem to hold.
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Theorem 37 If f is in C and satisfies

R(5)

lim sup
i—00 ?

=0,

i inf #{1<§;<i|S;is cl?se to S(S;) and T(S;)})

1—00 2

>0

and

lim inf #{Ti < T; <i| T, is close to S(T;) and T(T;)})

i—00 1

>0

for some A > 1 then f is Collet-Eckmann.

Theorem 37 is proved below in “Conditions for being Collet-Eckmann”.

Next we show that the hypotheses of theorem 34 imply those of theorem 37, and
therefore that any f satisfying the hypotheses of theorem 34 is Collet-Eckmann. In
fact we prove that the hypotheses of theorems 34 and 37 are equivalent:

Theorem 38 If f satisfies limsup,_,,  R(i)/i =0 then

Bli
limsupﬂ <1

i—00 1
for some A > 1 if and only if

#{1 < S; <i|S; is close to S(S;) and T(S;)})

lim inf >0
i—00 1
and
< i T . .
lim inf #{TI <T; <i|Tjis cl?se to S(T;) and T(T;)}) >0

i—00 7

for some A > 1.

Theorem 34 therefore follows from theorems 37 and 38. We prove theorem 38 in
“Equivalent Conditions” below.

4.2.1 Conditions for being Collet-Eckmann

Here we prove theorem 37:
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Theorem 37 If f is in C and satisfies

lim sup Rz(l) =0,
lizginf #{1<S§;<i|S;is cl(;se to S(S;) and T(S;)}) -0
and ' .
lim inf #{TI <T; <i|Tis cl?se to S(T;) and T(T;)}) 50
1—00 7

for some A > 1 then f is Collet-Eckmann.
We need the following technical result:

Lemma 39 If f in C has no periodic attractors then there exists K > 0 such that
—loglc, — ¢ < KR(n)

for every n > 1.

Proof. Let us show there exists a K; > 1 such that
s —¢| > K™

for every ¢ > 1.

First note that fSi[c_g,;c] cannot be significantly smaller than [c_g,; ] itself. After
all, £ maps [c_s,; ] diffeomorphically to [c;cs,]. Since R(S;) < S; ( lemma 15 ),
lemma 12 shows that [c; cs,] contains either [c_g;; c] or [¢;T(c_s,)]. Take Ky > 1 such
that |7(c_s;) — ¢| > |c_s; — ¢|/Ks. Such a Ky > 1 exists because 7 is Lipschitz, from

lemma 6. We thus have
‘C_Si - C‘

e (4.14)

[fo sl =

Now note that f shrinks [c_g,; ] substantially if c_g, is close to c¢. Indeed, from

equation 1.1,

Llc_s, — c|'

|fle—s;c]| < l

where L > 1 and [ > 1 measure the non-flatness of the critical point.

(4.15)

Finally, f5i~! can only expand f[c s,;c] by a limited amount:

[ lesis ]| < K5 fles; ]| (4.16)
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where K3 is the maximum size of the derivative of f.

Combining equations 4.14, 4.15 and 4.16,

‘C*Si - C|
K,

Lic_s, — ¢

l
< |fPe-sisdl < K5 fleos ol < ——— K5

Rearranging gives |c_s, — ¢/ > K, %, if we absorb the constants into one.

So let us show the result follows. Take any n > 1. We know that R(n) = S; for
some i > 1 and from lemma 12 we have ¢, & (c_gs;;7(c_s,)). Since |1(c_s,) — ¢| >
lc_s, — c|/ Ky we have |c, — ¢| > |c_s, — ¢|/ K3. Therefore

len — | > K7™ /K,
Rearranging and taking K > 2log K gives —log|c, —c| < KR(n). m
There are two steps in the proof of theorem 37.

First we characterize the Collet-Eckmann condition when limsup, , . R(i)/i = 0
using the following variation of lemma 32:

Lemma 40 If f is in C and limsup,_,, R(i)/i = 0 then f is Collet-Eckmann if and
only if there exist K > 0 and A > 1 such that

‘a3i+1 — Cl| < K)\isi
and

Bris — i < KX
for all i > 1.

Proof. First note that if lim sup,_,., R(7)/i = 0 then f has no periodic attractors:
in lemma 8 we showed that if f has a periodic attractor then its kneading invariant
is periodic. But a periodic kneading invariant has lim sup,_,., R(i)/i = occ.

Lemma 32 shows that f is Collet-Eckmann if and only if there exist Kk > 0 and A > 1

such that
cs;1 —

> kS
|a5i+1 - Cl‘
and
i1 — al > )i

|Br41 — ci
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for all 7 > 1.

In other words, f is Collet-Eckmann if and only if

log |cs;41 — c1| —log|as, 41 — a1 -

hzzg(l)glf s 0

and | |
limn inf 128 crit1 — c1] = log |Brip1 — ¢ -0

i—00 Ti

Let us show
0.

liminf log |CSi+1 - cl| _
Indeed, lemma 39 gives a K > 0 such that —log|c, — ¢| < KR(n) for all n > 1 and
in particular —log|cs, — ¢| < KR(S;). Therefore

R(S;) < log |cs, — |
S~ S;

for all 4 > 1. Since limsup,_,, R(S;)/S; = 0 we have liminf; , log |cs, — ¢|/S; = 0.
It follows that liminf; , log|cs.4+1 — ¢1|/Si = 0.

-K <0

A similar argument shows

log |er41 —

hg> c1)101f T =0.
Therefore f is Collet-Eckmann if and only if
| 1=
lim sup 08 |asi1 — ¢l <0
and |

1—00 7:
for all 4 > 1. In other words, if there exist K > 0 and A > 1 such that

|a5i+1 — Cl| < K)\_Si

and
Brisr —a| <KX

foralli>1. m

Now we prove theorem 41 below. Lemma 40 shows that theorem 37 follows from
theorem 41.
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Theorem 41 If f € C satisfies

#{1 < §; <i|S; is close to §(S;) and T(S;)})

lim inf >0
i—00 1
and oy o s J
g #UT < T <01 Ty s close to S(T) and T} _

i—00 1

for some A > 1 then there exist K > 0 and X\ > 1 such that
‘Oéi — Cl| < K\

and .
|ﬁz — 01| < K\

for all i > 1.

Most of the work in proving theorem 41 is done in the following lemma. Recall that
| 1 — ¢1| < |a; — ¢q] if and only if 4 is a cutting time and |B;41 — ¢1| < |B; — 1] if
and only if 7 is a co-cutting time.

Lemma 42 For each A > 1 there exists a 0 < p < 1 such that

las, 41 — ci

<p
|a8i_cl|

whenever S; is close to S(S;) and T(S;) and

|Bris1 — a1
W’Fi - C1|

whenever T; is close to S(T;) and T{T;).

<p

Proof. Suppose S; is close to S(S;) and T(S;). First we will prove that there exists
an € > 0 such that |cs,_s(s;) — ¢| > € and |cs,—ys;) — Cs;| > € ( see figure 4.2 ). Recall

%

that |cs;—s(s;) — ¢| and |cs,—7s;) — cs;| are the endpoints of the S;’th tower level.

For the first inequality note that S; — §(S;) < A from the definition of close. There-
fore cs, s(s,) is one of ci,cy,...ca and taking € < min{|c; —c|,...,|ca — c|} shows
|C$i_5<3i) - C| > €.

Take o € [as;; ¢1] to be the point mapping between cg,_ss,) and ¢, and distance €/2
from c, under f5~1, asin figure 4.2. The above inequalities show that [Csi—5(8;); CS;—T(S:)]
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length > € length > €

Csi_5<si ¢ Csi Csi_T<Si)

KA

as, o as;+1 c1 Br(s;y+1

Figure 4.2: Cutting the S;’th tower level.

is a €/2-scaled neighbourhood of [f$1(a);cs,]. Lemma 5 then shows that for every
z,y € [ ¢1] we have

1 _ D)

Kp(e/2) = |DfSH(y)

:gmﬂﬂ) (4.17)

where Kp(e/2) was defined in lemma 5.

We can now estimate
‘a8i+1 - Cl|
|a5i - Cl|

Take z € [o;as,41] such that |DfSi=1(z)| = |fS 1 (a) — c|/|a — as,11|. Take y €
[vs, 115 ¢1] such that |DfSi=1(y)| = |cs. — c|/|as, 41 — ¢1|. Equation 4.17 gives
€/2

‘a - a8i+1|

— |DfS7@)] < Kole/2) DS (y)] = Kole/2) -1

las, 41 — el
Replacing |cs, — ¢| by 1, its upper bound, and rearranging,
la— | > : | —a
o — as, as; 1.
Sittl = 2Kp(e/2) Sitl '

Using |as, — 1| > | — as, 41| + |as, 41 — c1/, a simple calculation now gives

las, 41 — ¢ - 1

las, —al T+ sy
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Taking p = 1/(1 +¢/(2Kp(€e/2))) < 1 we therefore have

las, 41— ¢ <
|a5i - Cl‘
A similar calculation shows
1 —cC
|Br:41 — ¢ <
‘572 - 01|

whenever 7; is close to S(7;) and T{7;). ®

So let us prove theorem 41.

The last lemma gives

#({1<8;<i|S; is close to 8(S;) and T(S;)})

la; — | < p
and
18 — ¢1| < ptUTI<Ti<ilT; is close to S(T;) and T(7;)})
for all 7 > 1.
Since
lim inf #{l1<S;<i|S;is c]o'se to S(S;) and 7(S;)}) -0
1—00 7
and
<l T s el . .
lim inf #{TI <T; <i|7Tis CPSe to S(7;) and T{T;)} 50
12— 00 7

this shows the existence of K > 0 and A > 1 such that
o — 1| < KA

and
8;i —e1] < KA~

for all 4 > 1, proving theorem 41.

Theorem 34 now follows.
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4.2.2 Equivalent Conditions

Here we prove theorem 38:

Theorem 38 If f satisfies limsup,_,,, R(%)/i = 0 then

Bli
lim sup ﬂ <1
i—00 ]

for some A > 1 if and only if

#{1<S; <i|S; is close to S(S;) and T(S;)})

lim inf ; >0
and T < T <i| T, is close to S(T;) and T(T;
i inf FATL<T; S 0] T; 1s close to 5(T;) and T(T;)}) _

for some A > 1.

First we show that A-return times are return times. The ‘if’ part of theorem 38 will
then follow as a corollary.

Lemma 43 The A-return times vi, v, ... are exactly those return times M; with

Proof. Let us show that every A-return time is a return time. Clearly v; = min{j >
1| R(j) > A} is a closest return time, so a return time by lemma 20.

Suppose v; is a return time, so we can write v; = M; for some j > 1. Let us show
Viy1 is a return time. If v;,4 is not a return time then My, < v;,1 < My for some
k > j. In fact k > j because v;11 > v; + R (v;). This implies R(My) < A; but
lemma 19 gives R(v;41) < R(My) < A, contradicting R(v;11) > A. Therefore v; 1,
is a return time. By induction every A-return time is a return time.

The proof that every M; with R(M;) > A is a A-return time is left to the reader.
|

Corollary 44 We have that lim sup,_, ., B(7)/i is a non-increasing function of A.
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Proof. It follows from the last lemma that a free iterate cannot change into a bound
iterate as A increases, though a bound iterate may become free. Therefore B(i) is a
non-increasing function of A for each fixed ¢ > 1. The result follows. m

Corollary 45 If

#{1 < §; <i|S; is close to S(S;) and T(S;)})

lim inf >0
i—00 1
e T < T <i| T is close to S(T;) and T(T,
liminf#({ 1 <Tj <i|7; 15 close to S(T;) and T{T))}) _
i—00 1
then Bli
limsupﬂ < 1.
i—00 7

Proof. Let us show that every n > M; which is close to S(n) and T{n) is free. If
n < M; then it is free trivially because v; > M;.

So take some n > M; which is close to S{n) and T{n) and write M; < n < M;;
for some i > 1. Since either S(n) = M, or T{(n) = M, we have R(M;) < A from

the definition of close. So M, is not a A-return time and therefore n is free.

Thus

B(7) #{1<n<i | n is bound})

i i
_#{1 <S; <i|S;is close to S(S;) and T(S;)})
- :

<1
Taking limits, the result follows. m

So let us prove the ‘only if” part of theorem 38.

Lemma 46 If f satisfies

lim sup R(z) =0
i—00 ]
and Bli
lim sup ﬂ <1

i—00 1
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for some A > 1 then

#({1 < S; <i|S; is close to S(S;) and T(S;)})

lim inf >0
71— 00 7

and T < T <i| T is close to S(T:) and T(T:
liminf#({ 1 < T; <i|7Tj s close to S(T;) an T(j)})>0

for some A > 1.7
First we give some definitions.
We call n strongly free if n < vy or v; + R(v;) + A < n < v; for some j > 1.

Put C(n) = #({1 < i < n | iis strongly free}) and Cn) = #({n <i <n|
i is strongly free}), so C(n) = C(n) + min{n, v, }.

These definitions are motivated by the following result:

Lemma 47 We have

#{1 < S; <n|S; is close to S(S;) and T(S;)}) > %
and )
#{Ti <T; <n|T;is close to S(T;) and T{T;)}) > %

for every n > 1.

Proof. Let us show
#{vi < Sj < viq1 | Sj is close to S(S;) and T(S;)})

, #({vs <J < vi | s strongly frec))
- A

"Note that the value of A for which we will prove

lim inf #{1<S§;<i|S; is clqse to §(S;) and T(S;)}) >0
1—00 ?
and . .
lim inf #({TL < T; <i|Tj is close to S(T;) and T(T;)}) 50

i—00 1

will in general be large, even if lim sup,_, ., B(%)/7 < 1 holds for A small.
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and
#{vi <T; <vig1|T;is close to S(T;) and T(T;)})
o #{¥ <j <wiga | j Is strongly free})
- A
for all 7 > 1. Summing over ¢ then gives the result.

So take some 7 > 1. We can suppose

#({vi <Jj < vy | J is strongly free})
A

and this implies v;,1 > v; + R(v;) + A. Note that one of {v; + p;,v; + R(v;)} is a
cutting time, and the other is a co-cutting time, because v; is a return time. Now
note that if v; + p; < S; < v;41 then R(S;) < A and therefore S;1; — S; < A.
Likewise if v; + p; < T; < viy1 then R(7;) < A and Tj;41 — 7; < A. Therefore

>0

Vi1 — V; — R(l/z) - A
A

#({Sj v + R(v) < S; < Vit1}) >

and
Viy1r — V3 — R(l/z) — A

A

Since these §; and 7; are all close to their preceding cutting and co-cutting times,
this gives

#({T; | vi +RW;) < T; < viga}) >

#({Vz < Sj < Viy1 | Sj is close to S<8j> and ﬂSJ>})

S #{v; < j < vy |jis strongly free})
- A

and

#{vi <T; <viy1| T is close to S(T;) and T(T;)})

N #({vi <Jj < vy | J is strongly free})
- A

foralli>1. m

We need the following technical lemma. We write B(i;A), C(i; A) and so forth
to show dependence on A explicitly.

Lemma 48 If
lim sup R@ =0
i—00 ]
and Bli- A
lim sup (Z_ ) <1
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for some A > 1 then there ezist A>1,0>1 and e > 0 with the following property:
for every A1 > A, Ay > OA; and 1 > 1, either

or

C(i; Ay)

l

> €.

Proof. First let us choose the values ofAA >1,© >1and e > 0: put p =
lima o0 limsup; o, B(i; A)/i < 1 and take A; and N; large enough that B(4; A;) /i <
/P for all i > Ny. Take A, large enough that pZ(A) < R(vi(A)) < (1+ €)pi(A) for

every A > Ay and i > 1. The existence of such a Az uses lim sup; , . R(#)/i = 0 and is
left to the reader. Set e = (1—,/p)/6,© = 1/e and A= maX{Al, AQ, maxi<j<n, R(j)}-

Now take any A; > A, Ay > ©A; and 7 > 1, and suppose
— |

If i < v1(A;) then C(i;Aq)/i = 1, giving the result, so suppose ¢ > v;(A;). Take
k1 > 1 and ky > 1 such that vy, (A1) < @ < vk, (A1) and v, (As) < @ < v, (As). Then

1

1—

[\ RN

Let us prove C(i; Aq)/i > e.

G

SC6A) < Y(RE(A)) +A)

+€)B(i; A1) + k1A
+€)B(i; A1) + (k1 — ko + ko) Ay,

— =]

~ /.

where we have assumed i > v,(A;) + A; in the first step for simplicity; this does
not alter the final result. Now we use ky < B(i;Ay)/As and ki — ky < (B(i; A1) —
B(i; Ay))/A;. Recall that Ay > ©A;. Thus

B(i; A2)
5 .

Note that © = 1/e and 1 — B(i; Ag)/i < 3(1 — B(4; A1)/i)/2, and that B(i;A) < i
for all A > 1. Therefore

— C(i; A1) <2B(i; A1) — B(i; Ag) + €B(i; Ay) +

i+ B(i; Ay)

5 + 2et.

i—C(A) <
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We have B(i;A1)/i < /p using ¢ > N; and the definition of N;.® Recall that
e = (1—/p)/6. Therefore

PRV S/

i—C(4A;) < 2 3
= i(1—ce).
Thus Olie A
1
and the lemma is proved. m
So let us prove lemma 46:
Lemma 46 If f satisfies
lim sup R(z) =0
i—00 1
and Bl
lim sup ﬂ <1
i—00 1

for some A > 1 then
i inf #{1<S;<i|S; s clése to S(S;) and T(S;)})

1—00 1

>0

and

lim inf #H#{A{T <T; <i|T,is cl?se to S(T;) and T(T;)}) .
1—00 1

for some A > 1.

0

Proof. Take A > 1,0 > 1 and € > 0 as in the last lemma, put p = lims_,__limsup, , . B(i)/i
and N = [—log(1 — /p)/log1.5], where [z] denotes the greatest integer less than or
equal to x.

Set A = OV A and take i > 2v;(A)/e. Put

L @QJ+LA vy
M:min{j20|1_w<g<1_w>}.

7

Since B(i; A)/z < /P, as was shown in the proof of lemma 48, we have M < N.

8We have i > N; because i > v1(A1) > Ni; and v1(A1) > Ni because R(v1(A1)) > A >
maxi <; <N, R(j)-
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Because 1 — B(i; OM+1A) /i < 3(1 — B(i; ©™A) /i) /2, lemma 48 shows

C(i; OMA)

]

> €.

Using i > 2v1(A) /e we therefore have C(4; ©MA) /i > ¢/2. Lemma 47 gives

#{1 < S; <i|S;is close to S(S;) and T(S;)}) o _ € o€
i T 20MA T 2A
and
#{Ti <T; <i|7T;is close to S(7;) and T(T;)}) o_ € o€
i T 20MA T 2A7
independently of 7. Therefore
< g i . )
lim inf #{1<§;<i|S;is cl(;se to S(S;) and 7(S;)}) >0
and ‘ _
lim inf #{T <T;<i|Tis cl(')se to S(7;) and T(7;)}) >0
1—00 2
|

This completes the proof of theorem 38.

4.3 Non-Collet-Eckmann Kneading Invariants

We call a kneading invariant non-Collet-Eckmann if no f in C with this kneading
invariant is Collet-Eckmann. For example periodic kneading invariants are non-
Collet-Eckmann since no map in C with a periodic attractor is Collet-Eckmann; like-
wise infinitely renormalizable kneading invariants are non-Collet-Eckmann because
all Collet-Eckmann maps are known to be finitely renormalizable [43, 14].

In this section we describe two classes of non-Collet-Eckmann kneading invariants.
The results complement those of the last section though fall short of classifying all
kneading invariants as Collet-Eckmann or non-Collet-Eckmann.

The first class we consider consists of those kneading invariants for which

lim sup R(Z)
i—00 ]

=0
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and Bli

lim ﬂ =1

i—o0 1
for every A > 1. In theorem 49 below we show that every such kneading invariant is
non-Collet-Eckmann.

In theorem 34 we showed that any kneading invariant satisfying

lim sup R(l) =0
i—00 1
and Bli
lim sup ﬂ <1
i—00 ]

for some A > 1 is Collet-Eckmann.

Neither theorem 34 nor theorem 49 applies to those kneading invariants with

lim sup R(z) =0
i—00 ]
for which Bl
lim sup (Z) =1
i—00 ]
for all A > 1 but
Bli
lim inf ﬂ <1
i—00 1

for some A > 1. There seem to be both Collet-Eckmann and non-Collet-Eckmann
kneading invariants of this type.

Theorem 49 Any kneading invariant satisfying

lim sup m =0
i—00 ]

and Bl
lim (Z)
i—oo ]

=1

for every A > 1 is non-Collet-Eckmann.

To prove theorem 49 we need the following technical lemma. This result is analogous
to lemma 6.1 in de Melo and Van Strien’s exposition [14, 41] of Benedicks and Car-
leson’s work. Recall that every value of R is a cutting time. If R(z) = S; then we
define R (z) = 8,1 if i > 1.
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Lemma 50 Suppose limsup,_, R(i)/i = 0. For every A > 1 there exists ¢(A) > 0
with the following property: for any x € [0;1] with R(xz) > A we have

1. A distortion estimate on [z1;c]:

for every y,z € [z1;¢1] and 0 < i < R (x).
2. A bound on derivative growth at x:
[Dfi(x)] < eSF@|D ey

for every 1 <i < R™(x). Herel > 1 is the order of the critical point.
In addition e(A) — 0 as A — oo.

Proof. Let us show that the second part of the lemma follows from the first part, so
take €(A) > 0 such that the first part holds and any z € [0;1] with R(z) > A. Take
y € [z1;¢1] such that |z; — ¢;| = |Df*(y)||z1 — cul-

From part 1 we have |Df"'(z,)| < |[Df(y)|e™E @) 5o the definition of y and
lz; — ¢;| <1 give
_ (BB (@)
D) <

e E— 4.18
S P (4.18)
From the definition of non-flatness of the critical point there exist L > 1 and [ > 1
such that |z—c|'"1/L < |Df(x)| < L|z—c|'"!. Equation 1.1 gives |z—c|' < [L|z,—c|,
and combining the two inequalities yields | D f ()| < K|x1 — c1|¢Y/ for some K > 0.
Using this to eliminate |27 — ¢;| in equation 4.18, a simple rearrangement gives

(AR (2)

|Df(£E)| < ‘Dfiil(f,ﬂl”(l*l)/l’
where we have absorbed unwanted constants into €(A). Therefore

IDf(2)] = |Df()||Df"" (1)

€ —(x ‘sz_l(‘rlﬂ € ~(x i—
(DR ( )|Dfi71(x1)|<z—1)/l = S ME@)| D fi~1 ()|
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Part 1 gives |Df* '(z,)| < |Df* ey)|e“®E @) and thus |Dfi(z)| < 2R (@)
|D f=(z,)|"/!. This proves the second part of the lemma.

Let us prove the first part of the lemma. We start by bounding the distortion of
fR @)1 | using lemma 5.

[z1;e1

We know that f& (-1 is a diffeomorphism since R™(z) < R(z). Recall that

[z15¢1]
the largest interval around ¢; on which f® (®-1 is a diffeomorphism is H R-(z) =
[ar-4; Br-o)- Clearly [z1;¢1] C [ag-(z);c1]. Let us show that f& @~1(Hg () =
(@~ (2); br- ()] is & p-scaled neighbourhood of f&™ @ =1[zy; ¢1] = [z k- (4); Cr-(x)] Where
p=e “AE" () and é(A) — 0 as A — oco. A p-scaled neighbourhood was defined just
before the statement of lemma 5.

First we estimate [ag-(;) — Zr-(s)|- Because R™(z) is a cutting time, the interval
[aRr-(2); DR (z)] contains c. Also zg-(;) and cg-(y), both in this interval, are on the
same side of ¢ since R™(x) < R(x), and this is the same side as bp- () because R~ (z)
is a cutting time. Therefore |ag-(;) — Tr-(z)| > |ar-(s) — ¢|. Recall that ag-(,) =
CR-(2)-S(R-(z))- Lemma 39 shows there exists a K > 1 such that |c, —c| > K—R®)

for all n > 1, and this gives us |ag-(y) — ¢| > K~RE @=8E"@)) and so

|aR—(:z) — ‘/'ER_(,’L‘)| > K_R(R_(I)_S(R_(z»).

We leave it to the reader to show R(R ™ (z) — S(R (z)))/R (z) — 0as A — oo. Note
that R~ (z) — oo as A — oo, and that there exists a K; > 0 such that R(n) < Kin
for all n > 1, because limsup,,_,, R(n)/n = 0.

Taking €;(A) = log K R(R™(z) — S(R™(z)))/R™ (x) we thus have |ap-(z) — T g-(z)| >
e 1 ME7@) and € (A) — 0 as A — oo.

Now we estimate |bg-(z) —Cr-(z)|- Note that [br-(4); Cr-(s)] does not contain c because
R~(z) is a cutting time, not a co-cutting time. Denote by 7(R™(x)) the first co-
cutting time after R~ (). We therefore have ¢ € f7 (B @)-R @)[p,_ ()} CR-(z)] and
this is the first time that c is in an image of [bg-(4); Cg-()]. We have

[T N @ b s cre@)]| > o+ — ¢ > KT @D,

Take K5 to be the maximum value of |Df|, so

(R~ (2))— R~ (z THR (2))—R (z
|fT (R~ (@) - R )[bR—(m);cR—(m)H < K, @) ( )|bR—(w) _CR‘(z)|'
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Therefore

br- () — Cr- ()] > K~ TR @) R @+R(THE= @)

7

if necessary taking K bigger than K.

Note that TT(R (z)) — R (z) < R(T{R (x))). We leave it to the reader to show
(TH{(R (z)) — R (z))/R (z) = 0 and R(TH(R (2)))/R (z) = 0 as A — <.

Taking e(A) = log K (TH{R (z)) — R~ (z) + R(T (R (x))))/R(z) we therefore
have |bg-(s) — Cr-(z)| > e~ 2@ and y(A) — 0 as A — oo.

Putting é(A) = max{e;(A),e2(A)} and p = e 4N (@) the inequalities [ap-(z) —
xR_(m)\ > ~A)R™(2) and \bR_(m) — CR—(m)I > e~€A)E7 (@) show that fR_(w)—l(HR_(m))
is a p-scaled neighbourhood of f% @~1[z;;¢;]. The reader has shown é(A) — 0 as
A — o0.

Lemma 5 now gives

P DI D7) (1 +p)°
(L+p)? = [DFE@()] = p?
()R (@)

for every y, z € [z1;¢1]. Writing (1 +p)?/p®> =e
A — o0.

we clearly have e(A) — 0 as

We use a trick to bound |Df*(y)|/|Df*(z)| when 1 < i < R (z) — 1: we can con-
clude from lemma 5 that the above bounds on the distortion hold equally well for
fR (@)=t because & (®='(Hp-(,)) is equally well a p-scaled neighbourhood

filz1;en]
of fE @17 (filz:cq]).

Since Dfi(y) = DfR @=1(y)/DfE @=1=i( fi(y)) and likewise with y replaced by z,
we have . . A
o 2(A)R (@) — __P < |Df'(y)\ < (1+p) — 2(A)R ()
(1+p)* ~ [Dfi(2)] p*

for every y, z € [x1;¢;] and 0 < ¢ < R~ (). This completes the proof of the lemma. m

So let us prove theorem 49:

Theorem 49 Any kneading invariant satisfying

lim sup R(Z)
i—00 ]

=0
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and B(i
lim ﬂ =1
i—soo 1

for every A > 1 is non-Collet-Eckmann.

Proof. Set loe | D f
AT = lim sup log |Df (er)] f ()]
i—00 1
and low |D £
A~ = liminf 28 P2S (D]
i—00 7

We will argue by contradiction by supposing A~ > 0. Let us first show that if A is
large enough then any z € [0;1] with R(z) > A has

Dfi(a)| < XY
for every 1 <i < R (x).

From part 2 of the last lemma we have |Df(z)| < e®E @|Dfi=1(c)|'/! for all
1 <i< R (z). Since ¢(A) — 0 as A — oo we can take A large enough that

IDfi(x)| < [Dfi~Y(er)| YV (4.19)

for every 1 <14 < R~ (x). This uses A~ > 0.

Now take N large enough that [Dfi(c;)| < e** V! for every i > N. This uses [ > 1
and the definition of A*. From equation 4.19 we therefore have

|sz(x)‘ < eiA+/<1/i

for every N < i < R (z). We can extend this inequality to all 1 < i < R (x)
if we take A large enough. After all, by taking A large enough we can force
max{|Df(z)|,...,|DfN(x)|} as small as we like. We therefore have

v

|sz(x)‘ < eiA+/\/
for every 1 <i < R (x).

Let us apply this to the orbit of the critical point. Recall that R(v;) > A for every
7 > 1 and so

[Dfi(e,,) < eV

for every 1 <14 < p;,.
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Take any n > 1 and note that |Df"(¢;)| = [17; |Df(¢;)|- The terms in this product
are of two sorts: if i is bound, by v; say, then |Df(c;)| is a term of |D fPi(c,,)|; if 4 is
free then |Df(c;)| < K where K is the maximum value of |Df|. Therefore

IDf*(c1)] < K" P 1] IDfP(c,)|

vi<n

< (n=B(n)log K+X*B(n)/ V1

if n itself is free. If n is bound then the first inequality is not quite correct, but the
conclusion still holds: we have

IDf™cy)| < el(1=B(n)/m)log K+2+ B(n)/(n Vin

for all n > 1. Since lim,_, B(n)/n = 1, taking logarithms and limsups gives the
contradiction At < A\t /vI. m

The second class of kneading invariants we consider are those with

i R(j) i R(G)>Fk
=11 0 otherwise

lim lim sup - = 00.
k—oo 500 4

We show in theorem 51 below that any such kneading invariant is non-Collet-Eckmann.

In the last section we showed that any kneading invariant with

; R() fR() >k
=10 otherwise

=0

lim lim sup ,
k—oo o ?

is Collet-Eckmann. Again there are both Collet-Eckmann and non-Collet-Eckmann
kneading invariants that satisfy neither of these conditions.

Theorem 51 If a kneading invariant satisfies

s [RO) RO 2k

L =10 otherwise

lim lim sup - =00
k—oo o ?

then it s non-Collet-Eckmann.

Proof. We argue by contradiction, so suppose f is Collet-Eckmann and

i [ RG) RG>

o =) 0 otherwise

lim lim sup - = 00.
k—=oo 00 4
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Using the fact that f is Collet-Eckmann it is not hard to show the existence of a
K > 1 such that |e, — c| < K=®™ for all n > 1, at least if R(n) > 2. From non-
flatness of the critical point we have |Df(c,)| < L|e, —c|[*"! for some L > 1 and [ > 1
and therefore we can write

\Df(cn)| < LKf(lfl)R(n)
for all n > 1. Note that L is also a bound for the maximum size of Df.

Take k large enough that LK (VR < K=(-1IRM)/2 whenever R(n) > k. Then

prie)] = IInse)
- I Iprepnl I IDf(e)

j<i and R(j)<k j<i and R(j)>k

< LD Xici and r(yze RO/2.

Since )
> j<i and R()>k R(J)
7

— 00

as 1 — 00, this gives the contradiction liminf; . |Df(c;)| = 0. m

Corollary 52 If a kneading invariant satisfies limsup,_,., R(i)/i = oo then it is
non-Collet-Eckmann.

There are Collet-Eckmann kneading invariants with limsup,_, . R(i)/i > 0.



Chapter 5

The Topological Abundance of Collet-Eckmann
Maps

Recall that the topological entropy takes its values in [0;log2]. We call a value of
the topological entropy Collet-Eckmann if every f in C with this topological entropy
is Collet-Eckmann. The main result of this chapter is

Theorem 53 Lebesgue almost every value of the topological entropy is Collet-Eckmann.

Therefore, in this sense, almost every kneading invariant is Collet-Eckmann.!

Theorem 53 follows from

Theorem 54 The kneading invariant of Ty is slowly recurrent for Lebesque almost
every 1 < A < 2.

Let us explain why theorem 53 follows from theorem 54. Slow recurrence was defined
in chapter 4.

If the kneading invariant of T} is slowly recurrent then 7T) is not periodic. If f € C
has topological entropy log A then lemma 9 shows that f is topologically conjugate
to T)\. In particular f and 7 have the same slowly recurrent kneading invariant. In
corollary 36 we showed that any map in C with a slowly recurrent kneading invariant is
Collet-Eckmann, so f is Collet-Eckmann. This shows that log A is a Collet-Eckmann
value of the topological entropy.

!By contrast, almost no kneading invariant is Misiurewicz [7].

79
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3cn(zz)

z A 29

:cn(zl)

Figure 5.1: The smooth segment of ¢, containing .

Theorem 54 therefore shows that Lebesgue almost every value of the topological
entropy is Collet-Eckmann.

There are two main steps in the proof of theorem 54.

The first step characterizes slow recurrence in terms of parameter space properties
as follows. Suppose Ty is not periodic and denote by I,,(A) = [21;29] the smooth
segment of ¢, containing A ( see figure 5.1 ). Define ¢ (n) =0 if ¢ & (c,(21); ca(22)).
Otherwise there is some unique z € (z1; 22) such that ¢,(z) = ¢ and we define

2z — 2| |z — 2|

el e

Ox(n) = log min{ |

Only large positive value of ¢,(n) will be relevant.

Theorem 55 For each 1 < A < 2 the kneading invariant of T 1s slowly recurrent if
and only if T is not periodic and

i 0a(g) ifoa(s) =1

L = o otherunse

lim lim sup - =0.
=00 500 (4

We prove theorem 55 in the first section, “The Parameter Space Characterization of
Slow Recurrence”.
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The second step performs the measure estimates for theorem 54. The result is due
to Tsujii [49], with modifications.

Theorem 56 ( Tsujii ) We have that T) is not periodic and
i o) oy =1
> { A7) if o)

o =110 otherwise
lim lim sup - =0
l=o0 500 ?

for Lebesque almost every 1 < A < 2.

Theorem 54 follows from theorems 55 and 56. Theorem 56 is proved in the second
section, “Measure Estimates”.

If we only consider A values for which T is close to a fixed Misiurewicz map then our
method of proof essentially reduces to the method by which Benedicks and Carleson
proved that many quadratic maps are Collet-Eckmann [4, 5, 14]. However the method
used here continues to work even without the support of a Misiurewicz map. This lets
us conclude that T has a slowly recurrent kneading invariant for Lebesgue almost
every A and not just for a positive measure set.

5.1 The Parameter Space Characterization of Slow
Recurrence

In this section we prove theorem 55:

Theorem 55 For each 1 < A < 2 the kneading invariant of T 1s slowly recurrent if
and only if Ty is not periodic and

o =110 otherwise
lim lim sup _ =0
l=o0 500 1

i { ox(4) if oa(j) > 1

First we use the techniques of chapter 3 to move the problem to the state space of
T). Recall that the endpoints of F},(A) are an () = ¢p_sny(A) and by (A) = crgmy (A).
Define $,(n), the state space analogue of ¢)(n), by

an(A) — ¢ \bn()\)—d}
[en(A) =l " fea(A) =™

~

Oa(n) = min{‘
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Only large positive values of §)(n) will be relevant. If {,(n) is positive then F,())
contains c.

Lemma 57 IfT) s not periodic then

s 0a(g) i oa(s) =1

R =10 otherwise

lim lim sup , =0
l=o0 500 ?

if and only of

o =10 otherwise
lim lim sup - =0
l=0 00 ?

i { Ox(5) ifOr() >1

Proof. Let us show [$x(n) — 0x(n)| < 1/2 holds whenever n is large and $(n) > 1
or Ox(n) > 1. The result clearly follows from this.

Suppose Ox(n) > 1 or 0x(n) > 1 and write z; and z, for the endpoints of I,()).

If 0x(n) > 1 then there exists, from the definition of ¢)(n), a unique z € (21; 23) such
that ¢,(z) = c ( see figure 5.2(a) ).

Such a z also exists when 0,(n) > 1 if n is large enough. Indeed, if 0»(n) > 0 then
¢ € F,()) so the situation is either as in figure 5.2(a) or figure 5.2(b). We eliminate
figure 5.2(b) by noting that the slope of ¢, is much greater than the slope of a,, if
n is large. In figure 5.2(b) this gives |a,(\) — ¢| < |c,(A) — ¢| and the contradiction
<A>)\(’I”L) < 0

From lemma 24 we can treat the curves in figure 5.2(a) as straight lines. Recall that

21— 2| |z — 2|

e e

Ox(n) = log min{ |

Using “similar triangles” we have

cn(21) = €| |en(22) = €|

len(A) = ¢f 7 [en(A) = ¢

Ox(n) = log min{ |

and we wish to compare this with

{\an(/\) — ¢ [n(A) — ¢

Ox(n) = logmin ,
len(A) = ¢l " [ea(A) = ¢
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cn(22)
bn()‘)\ :/ by,
b 1
(a) e (b) e
s L N oL
‘ z A :;'2 Z‘1 ] 2‘-’2
i i 7
Cn an(N) an
Cn(ZI)/ an()‘) g

Figure 5.2: (a) When ¢(n) > 0. (b) Here ¢5(n) = 0.

The difference between the first terms is

) e ealz) =l _ o)
OB e B ) —d % lea(m) — o
Let us estimate
) = 1‘ aa()) = eal22)]
lealzr) — @ en(z2) —
a0(N) — a(2)] [ea(N) = eal1)
ea(N) —alz)] Jenlzr) — €

The first term |a,(A) — cn(21)|/|en(X) — cn(21)] is the ratio of the slopes of a, and c,.
Lemma 23 shows that this converges to zero as n — oo.

The second term |c,(\) — ¢,(21)|/|cn(21) — ¢| is bounded: if ¢x(n) > 1 then |c,(A) —
cn(21)|/|en(21) — ¢| < 1 from the definition of 0y(n). If Ox(n) > 1 and n is large
then |c,(A) — ¢n(21)]/|en(21) — ¢| < 2 (otherwise the contradiction $y(n) < 1 can be
derived; we leave this to the reader ).
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Therefore, if n is large enough,

n A) —
lan) =l 4l )y
en(21) — ¢
and so
— 1
gl =el ez —el| 1
cn(A) — ¢ len(A) — ¢ 2
A similar calculation shows
ol =el o Jeaz) —el| 1
en(A) — ¢ en(A) — ¢ 2

Therefore |$x(n) — Ox(n)| < 1/2. This proves the lemma. m

From here on we drop the explicit dependence of $x(n) on .

Call Ty good if T}, is not periodic and

.63 S>> 1
=11 0 otherwise

lim lim sup - =
20 500 (4

The notation good is only used in this section.

Lemma 57 shows that theorem 58 below is equivalent to theorem 55. We will prove
theorem 58. The proof of theorem 58 takes up the remainder of this section.

Theorem 58 A tent-map has a slowly recurrent kneading invariant if and only if it
1S good.

The idea is that ¢(n) and R(n) are comparable often enough to deduce the equiv-
alence of goodness and slow recurrence. Recall that the kneading invariant of T is
slowly recurrent if

i [ RG)ERG) >
o =10 otherwise

lim lim sup - =
I=00 500 4
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We say that {(n) and R(n) are comparable if
1 < R(n)

K = §(n)

<K,

where K > 1 will be fixed independent of n. If $(n) and R(n) were always compa-
rable, which they are not, the equivalence of goodness and slow recurrence would be
immediate.

We start with the technical lemma on which our comparability estimates are based
( compare lemma 39 ).

Lemma 59 If T is either good or has a slowly recurrent kneading invariant® then
there exists K > 1 such that

1 R(n)

— < <K
K=

—logle, — ¢ —

for all n > 1.

Proof. We will prove that there exist K; > 1 and K5 > 1 such that
K% <les —c <Ky® (5.1)

for all 7 > 1. Let us show that the result follows. From lemma 12 we have |c_R(n)—c\ <
lcn — ¢| < [c_r-(n) — c| and therefore, if equation 5.1 holds for all ¢ > 1,

K < ey — o] < Kt ™

Lemma 15 and the definition of R~ show R(n) < 2R~ (n) ( all cutting times satisfy
Si11 < 28; ). Using this and taking logarithms,

1 R(n) 2
< < .
log Ky = —loglc, —¢| ~ log K,

Taking K > max{log K1,2/log K5} gives the lemma.

The existence of K is easy: lemma 13 shows that 75 is a homeomorphism.

[e—s;3¢)

e is linear with slope £A%. But

TSilc_s,;¢] € [0;1] and so |c_s, — ¢| = [T [c_s,; c]| /XS < A= for all i > 1. We can
therefore take Ky = .

As T) is a tent-map this means that Ty

2Some such hypothesis is necessary. Using the techniques of chapter 3 it is possible to show that
there are uncountably many tent-maps for which the conclusion of lemma 59 fails to hold.
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The existence of K is more difficult. The proof is divided into two steps.

Step 1. Define D(S;) = log(|c_s,_, — c|/|cs;, — ¢|) if R(S;) = S; and otherwise define
D(S;) = 0. Define D(n) = 0 if n is not a cutting time.

In this step we prove that if
21 D()
n
is bounded independently of n then there exists K; > 1 such that |c_s, — ¢| > K[
for all 2 > 1, as required.

Let us estimate |c_s,—c| in terms of |c_g(s,;)—c|. Since Ty Z‘ c is a homeomorphism

—5;3¢]
and therefore linear we have |c_s. — c| = |cs, — ¢|/A%, as above. Lemma 12 gives
lci — ¢| > |c_gr(s;) — ¢| and so

lc_rs) — ¢

) (5.2)

|C_Si - C| >

Equation 5.2 is uninformative when R(S;) = S; since |c_s, — c| occurs on both sides.
In this case we modify the equation to include the factor D(S;): define R(S;) = S;—1

‘C—fz(si) — ¢

eSilog A+ D(S;) (5.3)

|C*Si - C| >

This is the same estimate as that of equation 5.2 except when R(S;) = &;, in which
case the estimate is trivial.

Using equation 5.3 repeatedly,

|C_7”z(si) — ¢l
o = oS 10g A D(S;)
> |Cf7"2(7”a(si)) — ¢
= e(Si+R(Si))log A+D(8;)+D(R(S:))
>
> |C_]- B C|

o1V (R (8:) log A D(RI (1))
where N(S;) = min{j > 0 | R¥(S;) = 1}.

Let us show that there exists K5 > 0 such that

N(Si)
3" (RI(S)log A+ D(RI(S)))) < K3S;

=0
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for every i > 1. We can then take K; = e

The hypothesis that >7_; D(j)/n is bounded shows that E';i({)si)D(ﬁj(Si))/Si is
bounded, so we can ignore the second term in the sum.

So it is enough to find K5 > 0 such that ZN(S

prove inductively that

RI(S;) < K3S8; for all 4 > 1. Let us

N(

o

) N
RI(S;) < 28141 (5.4)

0

J
holds for all 7 > 1. Since S;;; never exceeds 2S;, this trick gives ZN(S RI(S;) < 4S;
and we take K3 = 4.

Equation 5 4 holds if i = 1. Take i > 1 and write R(S;) = S. Since k < i we can
suppose E V) RI(Sk) < 28ks1. Then

NES) NR(S))
YRS = Si+ D, RI(R(S))
§=0 §=0

< S+ 28k

We must show S; + 28;11 < 28;41.

If R(S;) = S; then Sg11 = S;, so we need to verify 3S; < 28;,1; but this is clear since

Otherwise Sk = ’R,(Sz) = Si_H—S,' and so SH‘QS/C_H == Si+28k+2(8k+1—8k) = 28i_|_1+
2(Sk11—S8k)—S;i. The problem is therefore reduced to showing that 2(Sg11—Sk) —S;
is non-positive. Because Sk, is no greater than 25, we have Sx11 — 25, < 0 and it
suffices to show that Sy — S; is non-negative. This is clear since k is less than 1.

Therefore Y- Ri(S;) < 48 for all i > 1.

Unravelling the argument, we have shown that if

?:1 D(])
n

is bounded independently of n then there exists some K; > 1 such that |c_gs, — ¢| >
K75 forall i > 1.

Step 2. In this final step we show that
?:1 D(j)

n
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is bounded independently of n if T}, is either good or has a slowly recurrent kneading
invariant.

Combined with the last step this will complete the proof of the lemma.

Suppose T has a slowly recurrent kneading invariant. Then limsup,_, . R(7)/i = 0,
so R(S;) = &; can only occur finitely often. This means that D(n) = 0 except for
finitely many values of n, and so 3-7_; D(j)/n is bounded.

Suppose Ty is good. Let us prove that if D(n) > 0 then D(n) < $(n). We specify
D(n) > 0 because ¢(n) may be negative when D(n) = 0. It can be shown from the
definition of goodness that

=)0 otherwise

n { 0() if 6(4) >0

n

is bounded, so D(n) < §(n) will prove that 37, D(j)/n is bounded.

If D(n) > 0 then n = §; for some ¢ > 1, R(S;) = S; and D(n) = log(|c_s,_, —
c/les; — ).

We have
sy — €| [en—Tim) — ¢ )

|Cn - C|

Therefore D(n) < o(n) if

min{|cn—8(n) - C|, |Cn—7'(n) - C‘} > |C—Si—1 - C|'
Lemma 12 shows that this is equivalent to R(n — S{n)) < §;_1 and R(n — T{n)) <
Si—1.

Let us show R(n —8(n)) < &; 1. Since n = §; we have S(n) = S; ;1. Therefore
n—8(n) =R(S;—1) and R(n — S(n)) <n—8(n) = R(S;i—1) < Si_1.

Let us show R(n — T{n)) < §; ;. Since R(S;) = S; we know from lemma 21 that S;
is a return time, so write n = M;. Then T{n) = M,_; and n — T{n) = R~ (M,_4).
In lemma 17 we proved R(R™(M;_1)) < R(M;). With our definitions this gives

Therefore D(n) < $(n) whenever D(n) > 0, proving

j=1 D()

n
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is bounded independently of n if T} is good. m

Corollary 60 FEvery tent-map with a slowly recurrent kneading invariant is good.

Proof. Suppose T) has a slowly recurrent kneading invariant. From lemma 59 there is
a K > 1 such that —log |c, —c| < KR(n) for all n > 1. However $(n) < —log|c, —c|
is immediate from the definition of {(n). Therefore $(n) < KR(n) for all n > 1.
This is enough to conclude that T} is good. W

It remains to be shown that every good tent-map has a slowly recurrent kneading
invariant. We will use the following technical lemma to identify times when R(n)
and {(n) are comparable.

Lemma 61 IfT) is good then there exists K > 1 and [l > 1 such that

1 < ?(M”)
K= 0(My)

<K

whenever

1. R(My) > M, —SM,)
or both R(M,) > (M, — S(M,))/4 and M,, — S(M,,) > 1

and

2. R(My) > M, — TIM,)
or both R(M,) > (M, — T{M,))/4 and M, — T(M,) > L.

Proof. In the proof of corollary 60 we showed that ¢(M,) < K;R(M,) holds for
all n > 1, where K; > 1 is the constant given by lemma 59. Therefore we only need
to find K > 1 such that R(M,,) < KO(M,,) holds, or equivalently that

) — ¢

RIM,) < K log |%Ma—S6 (5.5)
lem, — ¢
and
R(M,) < K log |SMa=TuM) = €| (5.6)

lem, — ¢
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hold, whenever the hypotheses of the lemma are satisfied.

Let us first show that equations 5.5 and 5.6 hold if R(M,) > M, — S(M,,) and
R(M,) > M, — T{M,). We will use this fact below when proving the general case.

From lemma 59 we have

1 R(M)
K, —

< K,
—log [cam, — ¢

and

K, = —log|epm,—simn) — ¢

Combining the two equations, a simple calculation gives

R(My) < Ki log ‘CM";‘A‘A“M_")C‘_ UL KRMa - SM). (67

To estimate the last term we use the fact that M, — S{M,,) is always a cutting
time. Indeed, if M,, is a cutting time then S(M,,) is the preceding cutting time and
therefore M, — S{(M,,) = R(S(M,)), a cutting time. If M, is a co-cutting time
then S(M,,) = M,_; and so M,, — S(M,,) = R (S(M,,)), a cutting time.

Therefore we can write M,, — §{M,,) = S; and using lemma 15 rewrite equation 5.7
as

R(M,) < K, log [M2=8n) =€l | pag. (5.8)
lem,, — ¢l

To estimate S; we use the hypothesis R(M,,) > S;. From lemma 12 this implies
cm, € (c_s;;7(c_s,;)) and so, since T is symmetric, |cpm, — ¢| < |c_s, — ¢|. We
showed |c_s. — c| = |cs, — ¢|/ASi in the proof of lemma 59, near the start. Therefore
lem,, — ¢| < |es, — ¢|/ASt which we write as

|CMu—s(Ma) — ¢l

Silog A < log (5.9)
e, — ¢
Combining equations 5.8 and 5.9,
K, [CM,—S(Mp) — €]
RIM,) < K, (1 n—5(Mn . 5.10
M) = < +logA> e, — ¢ (510

Putting K = K;(1 + %), this is equation 5.5.
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A similar argument shows

K - —
R(M,) < Ky (14— log (e TiM) C|,
log A lem,, — ¢

which is equation 5.6, again with K = K;(1 + 1({;1/\).

This shows that R(M,,) < K&(M,,) holds for some K > 1 independent of n whenever
R(M,) > M, — S(M,,) and R(M,,) > M,, — T{M.,).

Now let us use this fact to show that if 7} is good then limsup, . R(i)/i = 0.

It is clear from the definition of goodness that limsup, . 0(i)/i = 0. To prove
limsup, ., R(7)/i = 0 it is enough to prove the existence of a K > 1 such that
R (i) < K{(i) whenever i is a closest return time, closest return times corresponding
to the largest values of R. From lemma 20 we know that closest return times are
return times, so we can write i = M;. If we can show R(M,) > M; — §{M;) and
R(M;) > M; — T{M;) then what we proved above will give us R(M;) < K&(M;)
as required.

Let us show R(M;) > M; — S(M;). We know M; — S(M;) = R(S(M;)) if M;
is a cutting time and M; — S(M;) = R™(S(M;,)) < R(S(M;)) if M, is a co-
cutting time. Since M; is a closest return time, R(S(M;)) < R(M,) and thus
R(M;) > M; — S(M;).

A similar argument shows R(M;) > M;—T{M,). Therefore R(i) < K&(i) whenever
i is a closest return time, proving that limsup, . R(i)/i = 0.

Finally, suppose we have
1. R(M,) > M, —8M,)

or both R(M,,) > (M,, — S{M,))/4 and M,, — S(M,,) >
and

2. R(M,) > M, —T(M,)
or both R(M,,) > (M, — T{(M,))/4 and M,, — T{M,) > L.

Since T) is good we have limsup, , R(i)/i = 0. We require [ to be large enough
that R(i)/i < 1/(8K?) for all 1 > .
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Reconsider equation 5.7:

R(M,) < K, log ‘CM(;:\‘;%)CF d 4 K2R(M,, — S(M,)). (5.11)

If R(M,) > M,, — S(M,,) then we proceed as before, obtaining equation 5.10.

If RM,) > (M,, — §(M,))/4 and M,, — S(M,,) > [ then R(M,, — S(M,)) <
(M, —S(M,))/(8K?) < R(M,,)/(2K?) using the choice of [. Substituting back into
equation 5.11 gives

R(IM,,) < 2K, log |Mo-s0ta) = | (5.12)
e, — ¢l

Therefore, since we have either equation 5.10 or equation 5.12,

K, |CAMp—S(Mn) — €]
R(M,) < max{2Ky, K; (1 log 1 Mn=8tMn) — ¢,
(M) < max(2661, K (14 158 ) log [24e-stet

A similar argument shows

K _ _
R(M,) < max{2K;, K; (1 + 10g1)\> }log |CMa—TtMa) c|‘

|0Mn - C|

Taking K = max{2K, K;(1 + l(f?/\)} we therefore have R(M,) < KO(M,,). This
completes the proof. m

So let us complete the proof of theorem 58.
Lemma 62 FEvery good tent-map has a slowly recurrent kneading invariant.

Proof. This means showing that

i [ 60) ifO() >k
o =10 otherwise
lim lim sup , =0 (5.13)

k—oo 500 4

implies
o [ RU) RG) >k
=11 0 otherwise 0

lim lim sup -
k—=oo 500 ?
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or equivalently, from lemma 22,

i { R(M;) if R(M;) >k
0

J=1 otherwise

=0. (5.14)

lim lim sup

We will show equation 5.14.

Take K > 1 and [ > 1 as given by lemma 61. Let us first show that

1 _R(My)
K~ M,

<K

holds whenever n > 2 and
(1) R(Mn) >1

(2) R(My) > R(Myu_1)/4
and

(3) R(Mp) > R(My_z)/4.

We do this by verifying the hypotheses of lemma 61. So take n > 2 for which M,,
satisfies (1)—(3) above and suppose M, is a cutting time. The method works equally
well if M,, is a co-cutting time.

Hypothesis 2 of lemma 61 is that either R(M,,) > M,, — T{M,,) or both R(M,,) >
(M, — TIM,)) /4 and M,, — TIM,,) > L.

Let us verify the hypothesis. Because M,, is a cutting time we have T{M,,) = M,_;
and so M, — T{IM,,) = R~ (M,_1). f R~ (M,_1) <l then R(M,,) > M,, — T{M,),
from (1). Otherwise M, — T{M,) > [ and R(M,) > (M, — TIM,))/4 follows
from (2) since R(M,_1) > R (M,_1) = M,, — T(M,,). Therefore hypothesis 2
holds in either case.

Hypothesis 1 of lemma 61 is that either R(M,) > M,, — §{(M,,) or both R(M,,) >
(M, — §(M,))/4 and M,, — S(M,,) > L.

Let us verify the hypothesis. The argument is not quite the same as for hypothesis 2.
We know that M, — S(M,) = R(S(M,)) since M,, is a cutting time. As before,
if R(S(M,,)) < I then (1) gives M,, — S(M,) = R(S(M,)) < R(M,,). The other
possibility is M, — S(M,,) > [ and we need to show R(M,) > (M, — S(M,))/4,
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which is the same as R(M,) > R(S(M,)). This splits into two cases according to
whether S(Mn> =M,_o0r M,_1 < S<Mn> < Mu_1+R" (Mn—l)-

In the first case R(M,) > R(S(M.,))/4 because of (3). Otherwise R(S{M,)) <
R(M,_1) from lemma 19 and so R(M,) > R(S(M,))/4 from (2). Therefore hy-
pothesis 1 holds in all cases.

Applying lemma 61 therefore shows that

1 _R(M.)
K~ M,

whenever we have (1)—(3) for some n > 2.

<K

Denote by E the set of n > 2 for which M,, satisfies (2) and (3), and add n =1 and
n = 2 to simplify matters later:

E={12}U{n>2|R(My) > R(Mm_1)/4 and R(Mp) > R(My_o)/4}.

From the above argument and equation 5.13 we have

5 R(M;) if R(M;) >k
o 1 jeband j<i otherwise 0 - 15
g, o M, =0 6B
We claim that
i ] RM;) if R(M;) >k
o =0 otherwise
lim lim sup =0 (5.16)

k=00 400 M;

follows from equation (5.15) and the definition of E.
Fix k > [ and define r; = R(M,) if R(M;) > k and r; = 0 otherwise. With this

notation ' .
i{MMpﬁRWMEk:iW
j=1

e 0 otherwise

If j ¢ E then, from the definition of E, either r; < r;_/4 or r; < r;_5/4. Putting
j—1 ifj¢FEandr; <r;j_1/4
qj)= j—2 ifj¢FEandr; >r; 1/43
i ifjeE
we have r; < ry;)/4forall j & E. Defining Q(j) = {i > 1| ¢"(¢) = j for some n > 0}
it is clear that {1,2,3,...} = Ujcr Q(j), a disjoint union.

®In this case r; < rj_2/4.
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Let us prove that
i
<2 >
j=1 JEE and j<i

for all 7 > 1.

Take j in E and m € Q(j). Then ¢"(m) = j for some n > 0 and we can suppose
n is minimal. Clearly r,, < r;/4". Since ¢ never decreases by more than 2 we have
n > (m — j)/2. Therefore r,, <r;/2™ 7 and so

Z rmgr]ZQmJ—er

meQ(4)

Thus

JX;TJ'_ > Y. tm <2 YT

JEE and j<i meQ(j) JEE and j<i

for all 7 > 1. In other words,

otherwise - 0 otherwise.

Z{éz(/vt.) if R(M;) >k, > {R(Mj) if R(M;) >k

j=1 jJ€EE and j<i

Therefore equation 5.16 follows from equation 5.15 and T) has a slowly recurrent
kneading invariant. m

5.2 Measure Estimates
In this section we prove theorem 56:

Theorem 56 ( Tsujii [49] ) We have that T is not periodic and

i ] oad) foa(s) =1
=11 0 otherwise

lim lim sup - =0
l—o0 500 7

for Lebesgue almost every 1 < A < 2.
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First we give some definitions.

We use P, to denote the set consisting of 1, 2 and the A values corresponding to cusp
points of ¢,. The smooth segment I,,(\) of ¢, containing A therefore equals [z1; 25]
where 2z = max{z € P, | z < A} and 2o = min{z € P, | z > A}.

Write A, for P,;1\ Py, so each z € A, has ¢,(z) = ¢. Recall that ¢x(n) =0if A € P,
orif A, NI,(\) is empty. If A € P, and there is some z € A, N [,(A\) then we defined

|21 — 2| \Z2—Z|}
[A—z[7 A=

Ox(n) = log min{

if A # z, where [21;29] = I,(A). The point z is unique. We define ¢,(n) = oo for
convenience.*

Put
i o) ifoa(h) =1
=] 0 otherwise

Es={X€e[1;2]| lliglolimsup

i—00 4

> 0}.
This set contains every A > 1 for which 7) is periodic.

We use | | to denote Lebesgue measure. To prove theorem 56 it is clearly enough to
prove |E;| = 0 for each § > 0.

To prove |Es| = 0 we use the following result. Define limsup, ., A; = N2, Uj2; 4;
for {A,},>1 a sequence of sets.

Lemma 63 ( Borel-Cantelli [34] ) If {A,},>1 is a sequence of Lebesgue measurable
subsets of an interval and

oo
> A < o0
=1

then
[lim sup 4;| = 0.

i—00

Proof. Clearly [limsup; ., Ai| = lim; o0 [U;2; Ai| < lim;oo 3552, Al As 352, [A;l
is a convergent series, this last term is equal to zero. B

Fix § > 0 small. First we express Fs; in such a way that lemma 63 is directly
applicable to showing |E;| = 0.

4This differs from earlier in this chapter where ¢ (n) was left undefined for periodic T}.
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Define Q! to be the set of all (my,...,mg;i1,...,i5) € U, N* such that

1.m >1,....mg>1,
2. 1< <9< ... <13 <n, and

3. Yo my = [on].

By [z] we mean the greatest integer less than or equal to z.

Put Z" = {X € [1;2] | 0x(d) > m} and AL, = Ugm,.,...i)enr, Niz1 Zi, -

mj

Note that 0x(i;) > m; for each A € Nj_; Z;,” and 1 <j <ss.

Lemma 64 We have®
Es C limsup limsup A,

[—o0 n—oe

Proof. Take any A € F5 and choose a d; > ¢ such that

o {0,\(1') if Ox(i) > 1

o =110 otherwise
lim lim sup > 0.
l—»00 nooo n
Then there are [ arbitrarily large with
n Oa(i) if Oa(7) > 1
_ =110 otherwise
lim sup > 01,
n—00 n

and for each such [ there are n arbitrarily large such that

s o) if 0x(0) 21
=] 0 otherwise
> 0.

n

5An inequality because lim sup,_, ., limsup,,_, ., A!, may contain points for which

3 Ox(g) i ON() 21
=110 otherwise _s

lim lim sup -
=00 500 ?
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Take such an n, denote those i < n which satisfy ¢,(i) > [ by i1, 4s,...,4s and put
m; = [0x(i;)] for each 1 < j < s. Because }.7_; Ox(i;) > ndy and each 0 (i;) > [, we
can take [ large enough that 3>3_; m; > dn > [dn]. This is the case if [ > 6,/(d; — 9)
for example.

We claim that there exists {¢],...,i%} C {i1,...,is} and integers m} > [1/2],...,m/, >
[1/2] with the following properties: if i, = i; then m}, < mj;, and 35_, m} = [0n].
The simple proof is left to the reader.

These two properties give A € ﬂj'zl Zzzzj and (m},...,m.;d, ... i) € Q/? respec-

tively; therefore A € A2 and, n being arbitrarily large, A € limsup,,_,., AL/2. Since
| is arbitrarily large we have A € lim sup,_, . limsup,,_, ., 4.

Therefore E; C limsup,_, ., limsup,,_,., A.. &

So if we can show Y>.°°, |Al | < co then we can conclude |Es| = 0 from lemma 63.

We use the next two lemmas to estimate |AL|. Lemma 65 below counts the number
of elements of QL. We use # to indicate cardinality.

Lemma 65 There exists N > 1 such that
#(Q,) < el
for all n > 1 whenever | > N.
Proof. Define the projection 7 of Q! onto U2, N by 7(mi,..., M i1,...,0) =

(i1,...,45), put Q = 7(QL) and Q;, i, = 7 (41,...,4,). This decomposes QL as
U(i1 _____ is)eQ ,,...i, and therefore

#(QL) < #(,y,.,) #().

-----

Let us show
on]+[on/l
#(QZI ----- Zs) S C%Jn]/_lk][ /} (517)

a al
By p WE Imean m

Think of C%gz];{][&"/ " as representing the number of ways of placing [0n/l] black pebbles
and [0n] white pebbles in a line, in any order. If we can associate a distinct such
pebble sequence to each (my,...,mg41,...,%5) € €., then we will have shown
equation 5.17. Note that the values of 71, ...,%, are fixed.
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So take (my,...,ms;01,...,1s) € Q. and imagine forming a line by putting down
my white pebbles, followed by a black pebble, msy white pebbles, again a black pebble,
and so on, finishing with mg white pebbles and a black pebble. Now add [0n/l] — s
black pebbles on to the end; note that s < [dn/l] due to the restrictions on the m’s.

A total of [dn] + [6n/I] pebbles have been laid down, [dn/l] of them black and [dn]
of them white. The values of my,..., ms can clearly be reconstructed from the line,

proving that each such pebble sequence is distinct. This shows equation 5.17.

Now let us show

#(Q) < Cip /. (5.18)
If we had a line of n + [dn/l] white pebbles, we could colour black the pebbles at
positions iy, s, ...,is and a further [dn/l] — s pebbles chosen from the pebbles in

positions n + 1 to n + [dn/l]. Each distinct (i1,...,i5) € 2 gives a distinct way
of colouring black [0n/l] pebbles chosen from a total of n + [dn/l] white pebbles.
Equation 5.18 follows.

Now let us estimate
dn]+[on/l n+[on/l
#(0,) < #(Q,,0) #(Q) < C{Jn/l e C[(S:El]/] (5.19)
using Stirling’s formula [1], written in the form
(1+b/a)*(1+b/a)’
- (b/a)’ ’
which holds for all positive integers a and b. This gives
on
ot (1 +6/1)°(1+ /1)1
[on/t] = (6/1)1/1

so if we choose N large enough — recall [ > N — then

Ca—|—b

Ciuflt < der
Similarly,
Clonl+on/1 ((1 +1/0)(1 + 1/l)1/l) o
e NV
and

cli < do
if N is large enough. Therefore

#(Q'ln) < 6[571]/4.
|

Continuing the calculation of |AL|, we now estimate the size of Nj=1 VAR
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Lemma 66 Ifl > 4 then
mj —[on]/2
) 2] < et
=1

for every (mq,...,mgi1,...,15) € QL and n > 1.

Proof. We will use the following notation. For z € A; we put d;(2) = minsep, |2 —Z|.
Then D;(z) = (z — d;(2); z + d;(z)) is the subset of I;(z) on which the function A —
Oa(7) is positive. We denote by D; = U,ca, Di(z) the subset of [1;2] on which
A = 0,(4) is positive. This is a disjoint union. Define Z"(z) = Z" N D;(z) =
[z — e ™d;(2); 2 + e ™d;(z)] and note that Z]* = U,ca, Zi"(2), a disjoint union, and
|27 (2)| = ™| Di(2) .

We prove by induction on s > 2 that

12 () N () 20| < |20 ()| e 2ima ™l (5.20)

j=2

for any z € A;, and choice of integers 1 <) <1y <...<igand m; >4,...,mg > 4.

To see that the result follows, take any (my,...,mg; i1, ...,4) € QL. From disjoint-
ness we have , s

1N 271 = > 127 (2)n () 2.

j=1 2€A;, j=2

Using equation 5.20 to estimate each term in the sum,

|mZZJnJ‘§€ sz]/2 Z |Zm1

j=1 2€A;;

Now we estimate 3°.ca, |Zi;" (2)|. To do this we use | U.ea,, Dii(2)| < 1, which comes
from U,ea,, Dii (2) € [1;2]. The union is disjoint 80 | Uea,, Diy(2)| = E.ea,, [Di(2)]-
Therefore 3,ca, |77 (2)| = X.ea,, €™ |Di(2)| < e™™. This shows

S 8
[N 20| < e ™l

=1

From the definition of ), we have >5_, m; = [6n] and therefore

A <o
Z]' — I
j=1
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Z; 2 (2) 1
o2 22 B2
Y
Zi N (2)NZ] (22) T T
1 2 A my
Zi1 (2:1)
a1 21 B1

Figure 5.3: The intersection of Z;" (21) and Z,”(z2).

as required.

So let us now prove by induction on s > 2 that
S S
Z7 ()0 () 207 < 12 (2)] e 2™ (5.21)
j=2
for any z € A;; and choice of integers 1 <1y <iy <...<igsand m; >4,...,mg > 4.

First let us show that equation 5.21 holds when s = 2. In other words that
|Z5 (1) N Z332) S |25 ()| e Omatme)/2 (5.22)
holds for any z; € A;; and integers 1 < 4; < iy and m; > 4 and mg > 4.

Take z1 € A;, and z, € A;, and suppose Z;" (z1) N Z;*(z2) # 0. We first show
Diy(20) € Z7" (=),

Put aj = max{z € P}, | z < z;} and ; = min{z € P;; | z > z;} for j = 1,2. Because
iy > i1 we have z; € P;, and therefore either [ag; B3] C [au; 21] or [ae; 2] C [21; 5]
( see figure 5.3 ). Suppose without loss of generality that [caw; (2] C [aq;21] and take
Yy € ZZLI (2’1) N ng(ZQ)

Clearly we can choose zo < y < z; and so we have a; < g < 20 <y < B3 < 21, as in
figure 5.3. The definition of Z*(23) gives |y — 22| < [B2 — 22|72 < |21 — 2o|e™™2.
Using this equation we can estimate |z; — 23| in terms of |y — z|:

_ |21 — 2]
21— 2| = |y—a|
21 — 22| — [y — 22|
1 < e?
< |?/—Zl|m_§|y—2’1|a
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where we have used moy > 4.

Now D;,(z2) C [20 — |21 — 22];21] so if A is in D;,(z2) then |A — 21| < 2|27 — 29| <
2|y — 2z1|. Since y € Z™(21), this gives A € Z™ *(z,) and so D;,(25) C Z;™ *(z)).

Now let us show equation 5.22. Put Z = {z € A;, | Z;;?(2) N Z" (=) # 0}.
Then U,ez Diy(2) € Z™7*(21), and this is a disjoint union. The disjointness im-
plies |Unez Z22(2)] = ™| Uses Du(2)] < €™ (202 (zn)| = -2 270 (3,)].
However e_(m2 2) < e=™2/2 hecause my > 4. Therefore

|Z5 () N 257 | =125 (20) N (U Z32(2)] < 125 ()| e ™12,

2€Z

which is equation 5.22.
The demonstration of equation 5.21 when s > 2 is left to the reader. m
Combining lemmas 65 and 66 shows that
|AL| < elonl/de[onl/2 < o loml/4
whenever | > max{N, 4}. Using lemma 63 we therefore have
limsup AL| =0

n—o0

and using lemma 63 once more,

|11m sup limsup A% | = 0.

—00 n—oo

We conclude from lemma 64 that |E5| = 0. Since 6 > 0 was arbitrary this proves
theorem 56.
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She comes! she comes! the sable Throne behold
Of Night Primaeval, and of Chaos old!
Before her, Fancy’s gilded clouds decay,

And all its varying Rainbows die away,

Wit shoots in vain its momentary fires,

The meteor drops, and in a flash expires.

As one by one, at dread Medea’s strain,

The sick’ning stars fade off th’ ethereal plain;
As Argus’ eyes, by Hermes’ wand opprest,
Clos’d one by one to everlasting rest;

Thus at her felt approach, and secret might,
Art after Art goes out, and all is Night.

See skulking Truth to her old cavern fled,
Mountains of Casuistry heap’d o’er her head!
Philosophy, that lean’d on Heav’'n before,
Shrinks to her second cause, and is no more.
Physic of Metaphysic begs defence,

And Metaphysic calls for aid on Sense!

See Mystery to Mathematics fly!

In vain! they gaze, turn giddy, rave, and die.
Religion blushing veils her sacred fires,

And unawares Morality expires.

Nor public Flame, nor private, dares to shine;
Nor human Spark is left, nor Glimpse divine!
Lo! thy dread Empire, CHAOS! is restor’d;
Light dies before thy uncreating word:

Thy hand, great Anarch! lets the curtain fall;
And Universal Darkness buries All.

Alexander Pope, from The Dunciad.



