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In 1'918 Julia and Fatou proved that for any given quadratic polynomial the set
of points which do not tend to infinity with repeated application of the polynomial
is either connected or a Cantor set. Naturally they wondered for which quadratic
polynomials would that set be connected, but no one had any féal idea until 1980
when Mandelbrot began to investigate this question numerically on a computer.
Mandelbrot’s computer pictures indicated that the set of quadratic polynomials
for which the points not attracted to infinity are connected is unlike those sets
traditionally studied by mathematicians. Its boundaries seemed to be the opposite

of smooth; they looked complicated at whatever level of magnification. The set in

question became known as the Mandelbrot set.

The Mandelbrot set has since been besieged by mathematicians and physicists.
The attackers include B\enedicts, Berstein, Brolin, Branner, Carleson, Cvitanovic,
Douady, Eremko, Feigenbaum, Guckenheimer, Hubbard, Lavaurs, Levy, Ljubich,
Milnor, Rees, Sentenac, Sibony, Sullivan, Tan, Thurston, Yacobson, and others.
To a considerable degree, the Mandelbrot set has yielded to this onslaught and is

now fairly well understood.



But quadratic polynomials are such simple functions. If we study the iteration
of more complicated functions, do we encounter sets which make the Mandelbrot
set look tame by comparison? This work is an attempt to answer that question.
In particular, we try to understand the itefation of rational functions of degree
two (i.e. a quadratic polynomial divided by a quadratic polynomial) in terms of
the iteration of quadratic polynomials. Despite the fact that this study is by no
means complete, what we have seen so far indicates that the iteration of rational
functions of degree two can be understood in terms of the iteration of quadratic

polynomials, but the combinatorics are a good deal more complicated.

¢




Chapter 1. Introduction.

§1.1. Broad Goals.

In 1918 Julia and Fatou f)roved that for any given quadratic polynomial the set
of points which do not tend to infinity with repeated application of the polynomial
is either connected or a Cantor set. Naturally they wondered for which quadratic
polynomials would that set be connect‘ed, but no one had any real idea until 1980
when Mandelbrot began to investigate this question numerically on a computer.
Mandelbrot’s computer pictures indicated that the set of quadratic polynomials
for which the points not attracted to infinity are connected is unlike those sets
traditionally studied by mathematicians. Its boundaries seemed to be the opposite
of smooth; they looke(i complicated at whatever level of magnification. The set in
question became known as the Mandelbrot set.

The Mandelbrot set has since been besieged by mathematicians and physicists.
The attackers include Benedicts, Berstein, Brolin, Branner, Carleson, Cvitanovic,
Douady, Eremko, Feigenbaum, Guckenheimer, Hubbard, Lavaurs, Levy, Ljubich,
Milnor, Rees, Sentenac, Sibony, Sullivan, Tan, Thurston, Yacobson, and others.
To a considerable degree, the Mandelbrot set has yielded to this onslaught and is

now fairly well understood.
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But quadratic polynomials are such simple functions. If we study the iteration
of more complicated functions, do we encounter sets which make the Mandelbrot
set look tame by comparison? This work is an attempt to answer that question.
In particular, we try to understand the iteration of rational functions of degree
two (i.e. a quadratic polynomial divided by a quadratic polynomial) in terms of
the iteration of quadratic polynomials. Despite the fact that this study is by no
means complete, what we have seen so far indicates that the.iteration of rational
functions of degree two can be understood in terms of the iteration of quadratic

polynomials, but the combinatorics are a good deal more complicated.

‘

81.2. Introduction to the introduction.

Sections 1.1 through 1.9 of this introduction are intended for a general audi-
ence. Section 1.10 is intended for the specialist who is already familiar with the
notions of mating and capture among rational functions but who desires a specific
guide to what is new mathematically in this work.

Since this paper attempts to explain the iteration of rational functions of de-
gree two in terms of the iteration of quadratic polynomials, we cannot introduce

the main ideas without a brief introduction to the dynamics of quadratic polyno-

mials. Sections 1.3 and 1.5 do so. Sections 1.4, 1.6, 1.7, 1.8, and 1.9 introduce

the ideas of this paper in an intuitive, non-rigorous way. Everything will be made

precise later.

Since the subject of this paper is iteration, it is almost impossible to proceed
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without a notation for composition. We let f°* denote the composition of f with

itself n times. So for example,

f(2) = f o f o f(z) = F(£(f(2)))-

This introduction is intended for a wide audience. Experience shows that
many people who might otherwise understand our terminology are confused by
our view of critical points. If the reader is not confused by statements such as,
“The map f.(z) = 22 + ¢ has a critical point at infinity,” or “The critical points of
a complex analytic map f are precisely those points having no neighborhood on
which f is injective,” then the rest of this section is of no interest.

Recall that if f is a complex analytic map, then for every zy in the domain of
f, there is a neighborhood U of zp, a neighborhood V' of f(zp), and co-ordinates
on U and V with respect to which f is z — z? for some integer d > 1. d is called
the local degree of f at z. Those zg at which the local degree of f is greater than
one are called critical points of f. So one characterization of critical points is that
they are precisely those points having no neighborhood on which f is injective.

Another characterization of critical points is that they are precisely the points
where the derivative of the map expressed in local co-ordinates is zero. For maps
to and from the Riemann sphere one can use the local co-ordinate z for all points
in C and 1/z for oo.

For example, for e some complex number in C — {0} let

1

fe(z):= ez? —(e+1)z+1
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For any e in C — {0}, fe(o0) = 0, so to see if oo is a critical point of f. we use the
co-ordinate 1/z in the domain and z in the range. In those co-ordinates f, is of

the form

1
e(1/2)? = (e + 1)(1/2) +1

which has derivative 0 at 0. So oo is a critical point of f..

For another example, let
fo(z) =22 +¢,

where ¢ is any complex number. f.(co) = 00, so we use the co-ordinates 1/z in

both domain and range. In those co-ordinates, f. is of the form

1/((1/2)" +¢)

which has derivative 0 at 0. So oo is a critical point of f..

§1.3. Quadratic polynomials.

Suppose f and g are maps from some space X to itself. If ¢ : X — X isa

map with inverse map ¢~! : X — X such that

pofop™l =g,

then iteration of f and iteration of ¢ are essentially the same because

g°" = ($o fog™l)"
=(pofopo(pofos Ho--o(dofos)
=¢o(fofo---0of)og™
=g¢o(f ) og™t.
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In such a case we say that f and g are conjugated by ¢.

It is not hgrd to see that all quadratic polynomials are conjugate to exactly
one of the form

fe(2):=2%+¢

for some ¢ € C., ForAa,ny po¥yﬁomia1, complex numbers of sufficiently large ab-
solute value tend to infinity under repeated applications of the polynomial. It is
interesting, therefore, to consider the set K. of points z in C such that fJ"(z)
does not tend to infinity as n tends to infinity. Julia and Fatou proved that K, is
connected if and only if the critical point 0 is in K, and K. is a Cantor set (intu-
itively, infinitely many separate particles of dust with én affinity for one another)
if and only if 0 is not in K.

We look at some examples. Figures 1.1 and 1.2 show K, in black for ¢ = —1
and ¢ & —.12352 + .74290s respectively. The orbit of 0 is marked with white dots.
In both cases K. is connected.

In those figures, the points not in K. have been colored in shades of red,
yellow and green. The reason is ;che following. It can happen that . has no
interior. (This is always the case when K, is a Cantor set, but it can happen when
I is connected also.) In such cases if one were to use onlyl two colors, one for
points in K, and another for points not in K, then K, would not be visible since
it would be highly unlikely that any points on the grid checked by the computer

would be in K.. If, however, we shade the points not in K, according to how

many iterations of f. were required to send them to a particular neighborhood of




Figure 1.2. K, for ¢ ~ —.12352 + .742905.
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infinity, K. will still be visible as in figures 1.3 and 1.4. Figure 1.3 shows K, for
¢~ —.22815 + 1.11517 and figure 1.4 shows K. for ¢ ~ —.28156 4 .982165. The I,

of figure 1.3 is connected and the K, of figure 1.4 is a Cantor set.

Figure 1.3. K, for ¢ = —.22815 4 1.1151s.

For many of the ¢ for which K. is connected, there is a continuous map Y.

mapping the unit circle onto the boundary of I, such that

fc('?c(emrit)) = ’?0(62‘”(%))'
To lighten notation we define

’)’C(t) = '3’0(62m.t)~

ve 1s called the Carathéodory loop of f..



Figure 1.4. K, for ¢ ~ —.28156 4 .98216.

Finally, we give a brief intuitive definition of Hubbard trees. If the orbit of
0 under f. has finitely many points, join each pair of points in the orbit by the
“shortest” curve which stays in K.. The union of all these curves is the Hubbard

tree of f..

§1.4. Mating.

The mating of polynomials to form rational functions of degree two was dis-
covered by Hubbard and Douady in 1982. Suppose c¢g and ¢; are such that K,
and K., are connected and f,, and f,, have Carathéodory loops 7., and 7.,. The
idea of mating f., with f., is to form a sphere out of K., and I{, by sewing them
together along their boundaries. Looking at figures 1.1, 1.2, and 1.3 one might

wonder if that is possible, but in certain cases we know it is. In fact, we know that
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in these cases it is possible to do so in a way that 7¢,(t) sews to v, (—t). In those
cases we can let f., and f. define a map on the sphere we created by sewing.

Rational functions f are best thought of as maps from the Riemann sphere to
the Riemann sphere because f might take infinity to a point in C and visa-versa.
If the map on the sphere we formed by sewing K to K., is conjugate to a rational
function, we call that rational function the mating of f., with f.,.

Té make this all Bit more concrete, we illustrate how we know we can sew as
described above for a particular example. Let K., be the one pictured in figure 1.1
and let K., be the one pictured in figure 1.2. Instead of sewing the K.’s together
along their boundaries, 'sew them together along a big circle surrounding each K cl
(see figure 1.5 where K, is in black and K., is in light green). We now apply a
procedure devised by Thurston that allows K., and K., to slowly move towards
each other (see figures 1.5 throug;h 1.12). Tt follows from the work of Thurston,
Levy, Tan and theorem 6.1.1 below that the red and blue regions separating K,
from I ., will vanish in‘'the limit, leaving a sphere sewn in the way described above
(see figure 1.12):

It also follows that the map on the sphere defined by f., and f., is conjugate
to some rational function. We happen to know that in this case, the rational

function can be expressed as

1

fel2) = ez? —(e+ 1)z +1

for e & .57735¢. It turns out that for any e in C—{0}, (00, 0, 1) forms an attracting
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1/3 in, O lifts

Figure 1.6. Thurston construction of 1/7 mating with 1/3, 1 lift.
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: Figure 1.8. Thurston construction of 1/7 mating with 1/3, 3 lifts.
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Figure 1.12. Thurston construction of 1/7 mating with 1/3, 50 lifts.
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~ periodic cycle for fe‘ (ie. fe(oo) =0, fe(0) =1, fe(1) = oo and for z sufficiently
near oo but not equal to oo, f.(z) will be near 0, f:z(z) will be near 1, and
f£23(2) will be nearer to oo than was z.). In figure 1.13 we have left black those
z which are not attracted to that cycle. The z which are attracted to that cycle
are colored red, green, or blue depending upon what iterate (mod 3) of f, takes

z near oo. 0 and 1 are marked by exes. Notice the similarity between figure 1.12

and figure 1.13.

Figure 1.13. z-plane for e ~ .57735:.

Mating can be very exotic. For examf)le it can be possible to mate f., with
fe, even though neither K., nor K., has any interior. In that case, the image of
Yeo (O 7¢,) in the sphere formed by sewing is the entire sphere. Not only is ve,

a Peano curve, but the map which sends 7., (¢) to 7¢,(2t) is well defined on the
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sphere and conjugate to a rational function. In figures 1.14 through 1.21 we mate
the f. of figure 1.3 with itself by sewing along a big circle and letting the K’s

move towards each other. Note the Peano curve forming.

Figure 1.14. Thurston construction of 1/4 mating with 1/4, 0 lifts.

8§1.5. The Mandelbrot set.

By definition the Mandelbrot set is

M :={c € C| K, is connected }.

By the work of Julia and Fatou mentioned earlier

M={ceC|0€ K,}.
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Figure 1.15. Thurston construction of 1 /4 mating with 1/4, 0 lifts blown up.

Figure 1.16. Thurston construction of 1 /4 mating with 1/4, 1 lift.
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Figure 1.18. Thurston construction of 1/4 mating with 1/4, 3 lifts.
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Figure 1.21. Thurston construction of 1/4 mating with 1/4, 10 lifts.

This suggests a way to make a computer picture of M. Namely, for some sampling
of ¢ in C, see if 0 tends to infinity under repeated applications of f.. Figure 1.22
is such a picture, with M in black and the complement of M shaded so that M
will not be missed where it is thin. Outlined in figure 1.22 is figure 1.23.

Douady and Hubbard proved that M is connected. In figure 1.24 we have
approximated in white how to connect a point in the interior of M to two boundary
points. How to connect those points is probably obvious from figure 1.23, but in
versions of M to be seen below it might not be obvious and the corresponding

white lines (called veins) will be of help.

As indicated in figures 1.22 and 1.23, M is a cardioid with other parts at-

tached. Each of those other parts is called a limb and is attached to the central
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Figure 1.22. Mandelbrot set.

Figure 1.23. Blow up of Mandelbrot set.
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Figure 1.24. Veins of the Mandelbrot set.

cardioid at exactly one point. If the points of attachment of two limbs are complex

conjugates of each other, then the limbs are called conjugate limbs.

Finally, we wish to describe a sort of Carathéodory loop for M. Think of
M as made of a conducting piece of metal and put electric charge on M. Near
infinity, the electric field lines of M will be asymptotic to rays emanating from the
origin. To define y4(%), find the electric field line which is asymptotic near infinity
to the ray emanating from 0 and passing through €2, Follow that electric field
line in towards M. If you approach some one particular point of the boundary
of M as you follow that field line in, that point is by definition ys(¢). Douady
and Hubbard have shown that for rational ¢, yp;(%) is well defined. We think it is

well defined for all t. (v actually has a lot to do with the dynamics of quadratic
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polynomials, but we will not discuss that until the next chapter.)

§1.6. A nice rational family.

Suppose some rational function f of degree two is the mating of f., with f.,.
So the domain of f (i.e. the Riemann sphere) can be thought of as K., sewn to
K.,. Let z¢ (resp. yo) be the point in the domain of f corresponding to 0 € K,
(resp. 0 € K¢,). Since f., (resp. fe,) is not injective on any neighborhood of g
(resp. Yo), Zo (resp. yo) is a critical point of f. But rational functions of degree
two only have two critical points. So z¢ and y, are all the critical points of f.

Now we consider rational functions f which are matings of f., with f.,, where
co = —1. We have seen K, in figure 1.1. Since 0 is periodic of period two under
feo, by the preceding paragraph, one of the critical points of f must be periodic of

period two. By conjugating f with a Mdbius transformation taking that critical

. point to co, its image to 0, and the other critical point to —1, f can be written in

the form

d
22 4+ 22°

fa(z) =

for some d € C — {0}.
Conversely, if f; is a mating of some f., with some f.,, then 0 must be
periodic of period two for at least one of f., and f.,. But there is only one c
(namely ¢y = —1) for which 0 is periodic of period two under f.. So any fy which

1s a mating is the mating of f., with some f, .

We would like to have an algorithm which given any d € C — {0} determines

T

T e s
e A e o L L T

=
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if fq is the mating of f., with some f.,. Unfortunately, all we have is an algorithm

that can detect that f; is not the mating of f,, with some f.. It is based on

the fact that the orbit of 0 under f., is in the interior of K., (see figure 1.1).

That means that if f4 is a mating of f., with some f.,, then the critical point —1

of fq cannot be attracted to the attractive cycle (0o, 0). Figure 1.25 is based on
that algorithm. If for a particular d, —1 is attracted to the cycle (00, 0), then d is
marked red or green depending upon what iterate (mod 2) of fy brings —1 near

00. (The yellow in the photograph is due to the photography; there was no yellow

on the computer screen.) Otherwise d is left black. There is some shading in the

red and green, but that can be ignored. Figure 1.26 is outlined in figure 1.25.

Figure 1.25. d-plane.

So the matings with f,, are all among the black. The black region resembles
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Figure 1.26. Blow up of d-plane.

M in many ways. By an argument slightly too involved for this introduction one
can see that if ¢y and ¢; are in conjugate limbs of M, then the mating of f., with
fe, does not exist. Douady and Hubbard conjectured that the converse is true and
that the black region in figure 1.25 is a Mandelbrot set with the limb containing
Cp = —1 removed. In fact the point in M where that limb had been attached is
now situated at d = 0, the only d € C for which f; is not a rational function of
degree two. In figures 1.25 and 1.26 we have shown the veins corresponding to
those in figure 1.24. We call this Mandelbrot set of matings with a limb removed a
mutilated Mandelbrot set and the point where the removed limb had been attached

is called the amputation point.

Actually, we believe the black set in figure 1.25 is as described above, but




25
with some identification of boundary points of M. To see what identification

there should be, we now consider the red and green regions.

It is true but not obvious that all points in the interior of K, are attracted to

the cycle (0, —1) under f., (Sullivan or Douady and Hubbard). Figure 1.27 shows
K., with different coloring than in figure 1.1. Points which are attracted to the
cycle (0, —1) under iteration of f,, are colored red or green depending upon which
iterate (mod 2) of f., brings the point near 0. (There is some shading in the red and
green, but we can ignore that.) All other points are colored black. Figure 1.28 is

figure 1.27 after it has undergone the invertible transformation ¢(z) = —(2+1)/z.
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Figure 1.27. K. for ¢ = —1.

Notice the similarity between the red and green regions of the z-plane drawing

in figure 1.28 and the red and green regions in the d-plane drawing in figure 1.25.




Figure 1.28. Inversion of K, for ¢ = —1.

In fact, what we believe we are seeing here is a mutilated I{., turned inside out
and sewn into the mutilated M according to the rule yp(t) sews to ¢, (—1) (see
figure 1.29 in which the mutilated limbs are shaded and some of the threads for

sewing are shown with dotted lines). In order to show why we believe this, we

S have to discuss captures, the topic of the next section.

§1.7. Captures.

For some point y; in K., the capture at y; by f. is a function built in some

sense from f,, but having y; as the image of a critical point other than 0. We
llustrate with an example.
As in the previous section, let ¢y = —1 throughout. Let y; be the point in

the interior of K, indicated in figures 1.30 and 1.31. Figure 1.32 shows é(y1)
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(where ¢ is as in the last section). We will suggest how to build f, the capture at
y1 by fe,- Unfortunately, we have not been able to make the suggested definition
rigorous. We present it rather than the definition we have been able to make
rigorous because it gives a better feel for captures. (To lighten notation, we no

longer distinguish between ¢(X,,) and K, or between ¢ o fo, 0 ¢! and f,.)

Figure 1.30. Point in K, for ¢ = —1.

Start by letting f equal f., on K., and let v := ~.,. Since y; is not the
image of a critical point of f, we make the following modification. Figure 1.33 is a
schematic drawing of figure 1.32 with y; in the component labeled . The inverse
image under f of W is U’ and U". Let t,, be such that ~(t,,) is on the boundary

of W. Recall that on the boundary of K,, f is given by

Flr(2)) = v(2¢).




-1.

Figure 1.31. Blow up of point in K, for ¢

—1.

Figure 1.32. Inversion of point in K. for ¢
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So if we let ty := t4,/2 and tyr 1=ty + (1/2), then y(tu) is on the boundary of

U', v(ty) is on the boundary of U", and

f(7(tu')) = f(7(tu")) = 7(tw)'

Now cut v at ¢, and t,» (see figure 1.34). Reconnect (i.e. deform 7) as indicated
in figures 1.35, 1.36, and 1.37. Now under the map +(¢) — ~(2t), the boundary of
the new component U wraps twice around the boundary of W. So we can let f
map U to W so that in some coordinates on U and W f is z +— 22 and so that y;
is the image of the critical point of f in U.

But now, since U’ and U" no longer exist, f is undefined on the two com-
ponents which f used to map to U’ and the two components which f used to
ma.p to U". Also, f is now discontinuous on the two inverse images of v(¢,/) and
the two inverse images of (£, ). So cut v at those points (see figure 1.38) and
reconnect in the only way possible (see figure 1.39). The boundary of each of
the two new components V' and V' wraps once around the boundary of U under
() — v(2t). So let f map V' (resp. V") onto U homeomorphically (i.e. so that
in some coordinates on V' (resp. V") and on U, f is the identity).

Hopefully, one can continue cutting, reconnecting, and mapping the new com-
ponents homeomorphically. The new components can be formed so that the set
on which f is defined is dense in the sphere. We hope that f extends continuously
to the whole sphere. We also hope that the f we have formed is independent (up

to conjugacy) of the choices we have made.
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As mentioned above, we have not been able to make this definition rigor-
ous, but our computer experiments suggest it is correct. For example, to form
figure 1.40 we chose a particular d in C — {0} and colored points black if they
were not attracted to the cycle (00, 0) and otherwise red or green, depending upon
which iterate (mod 2) of f; took the point near co. (Again, the yellow is due
to the photography.) The critical point of f; not equal to co is —1. We have
marked fy(—1) with a white dot and f;(co) = 0 with a white ex. Figure 1.41
is figure 1.40 with everything blacked out except the components containing oo
and 0. Figures 1.42 through 1.49 show successive inverse images under f; of the

colored regions in figure 1.41.

Figure 1.40. A capture.

In defining f we did not alter the component of I, containing 0 and f = fe
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Blackened capture, 0 lifts.

Figure 1.42. Blackened capture, 1 lift.

Figure 1.41.
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lifts.
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4 lifts.

?

kened capture

Figure 1.45. Blac

5 lifts.

’

kened capture

igure 1.46. Blac



Figure 1.48. Blackened capture, 7 lifts.



Figure 1.49. Blackened capture, 8 lifts.

on that component. So f has a critical point zy corresponding to the critical
point 0 of f.,. f also has a critical point, which we shall call yo, which we created
when we let U map to the component containing y; like z — 22, Also, since we
did not alter the component of K, containing f.(0) = —1, and f = f., on that
component, f(f(zo)) = zo.

It is important to note further that in defining f we did not alter in any way
the components of I{,, containing the orbit of y; under f., and weleft f = f., on
those components. So since every point in the interior of I, is attracted under
iteration of fc, to the cycle (0,—1), y; will be attracted to the cycle (zo, f(20))

under iteration of f. .

We have suggested a definition of the capture at y; by f., for a particular 1
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Moving capture, step 1.

Figure 1.51.
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Figure 1.54. Moving capture, step 4.

pairs of components of K., with single components. In deforming this capture
to a capture at yj for y; on the boundary, we have made each single component
back into a pair of components. We claim that the components have all the
necessary connections to reform K. In fact, the connections between components
of I, were never destroyed; the pairs of components were just merged to single
components having connections to twice as many components as either component
in the pair. But whereas each pair was well separated in K, in 'the capture at yi,
they are touching at the pinch point. So the capture at y] by f., can be viewed

as formed by taking f., acting on I, , then pulling appropriate pairs of points in

U & vih
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together. (Since

oo

U & md)

n=1
is dense in the boundary of I{,,, this causes some further identification of points
on the boundary of IK,.)

Not all points in the boundary of K., are on the boundary of a component

of the interior of I, , but the view of capture at a boundary point presented in
the preceding paragraph makes sense for those points also. We have some reason

to believe that the capture at such a point y} so defined would be in some sense

the limit of captures at points in the centers of a sequence of components of the

interior of If,, approaching yj.

§1.8. A nice rational family revisited.

We now can explain why we believe that figure 1.25 is a mutilated Mandelbrot
set sewn to a mutilated K, according to the rule yps(t) sews to v, (—t). Asin
the previous two sections, let ¢ = —1 throughout.

Recall that the points d in figure 1.25 colored red or green are the d for which
the critical point —1 of f; is attracted to the cycle (o0, 0) and the choice of red and
green depends upon what iterate (mod 2) of f; carries —1 near co. Now suppose
fy, is a rational function of degree two which is conjugate to the capture at y; by
feo- Except for the special case where y; equals the critical point zg of fy,, fy; Will
be conjugate to f for some d by a Mébius transformation taking zo to 0o, fy, (%0)

to 0, and yo to —1. Call that d, d(y;). If y; is in the interior of K,, then d(y1)
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will have to be colored red or green as we mentioned in the previous section. It is
reasonable to believe that d(y;) is continuous in y;. (See figures 1.55 through 1.60.
Figure 1.55 shows the same portion of the d-plane as does figure 1.26. Figure 1.56
is outlined in figure 1.55 and has four d marked with exes and numbered 0 through
3. Figures 1.57 through 1.60 show the corresponding z-plane of fyq with fy(—1)
marked with a white dot and 0 with an ex.) So the closure of the red and green
regions in figure 1.25 contains the continuous image of the set of y; in K, such

that the capture at y; by f¢, is defined and conjugate to a rational function.

Figure 1.55. d-plane.

We have explained the mutilated K., in figure 1.25; now we should explain
the sewing of vus(t) to 7.,(—t). Even though we have proved such a sewing for a

dense set of ¢ in chapter 8 (for a somewhat different definition of captures), the




.57. Capture 0.

Figure 1




Figure 1.58. Capture 1.

igure 1.59. Capture 2.
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Figure 1.60. Capture 3. a8

proof rests on arguments due to Thurston which we have never been able to make
Intuitive in this context. We will, therefore, only offer a plausibility argument.
Let t; be a rational number in lowest terms with even denominator, and let

¢1 := Ypm(t1). Douady and Hubbard proved that K., has empty interior and that

761(t1)261=fc1(0)' . :

So the mating of f., with f., can be viewed as formed by sewing various points g

on the boundary of I{,, to each other and making

700(_t1) ~ Ye (tl)

into the image of a critical point. Recall the last view presented in the previous
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section of the capture at y; by f, for y; on the boundary of K. If

Y1 = Yeo(—11),

we said that the capture at y; by f., is formed by pulling various points on the
boundary of K, together in such a way that y; = 7v.,(—t1) becomes the image of
a critical point.

So the mating of f., with v;(¢;) and the capture at v.,(—%;) by f, are formed
in roughly the same way. The part we have not been able to make intuitive is why

the identification of points on the boundary of K., is the same in both cases.

§1.9. A not-so-nice rational family.

Due to what we have seen in the d-plane, the reader might be feeling optimistic
about understanding all rational functions of degree two in terms of matings and
captures. We know matings and captures are not enough, but we do not know
whether or not we can understand all rational functions of degree two in terms of
matings, captures and things called anti-matings and anti-captures. In this section
we present another family of rational functions of degree two with the purpose of

showing that even just matings and captures can be rather complicated. For e in

C — {0}, let

1

fel2) = ez? —(e+1)z+1

One critical point of f. is 0o, and fe(co) = 0, f.(0) = 1, and f.(1) = oco. The

other critical point of f, is (e + 1)/2e.
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Since one critical point is periodic of period three, if f. is a mating of f., with
fey, 0 must be periodic of period three for one of f., and f.,. There are only three
¢ for which 0 is periodic of period three for f.. They are

1) ¢ ~ —1.754877,

[\]
~—

cg ~ —.12352 + .74291¢, and
3) ¢y = the complex conjugate of cj.
We have seen Ko in figure 1.2. Ky is just the complex conjugate of Ken.
Figure 1.61 shows I{¢ in black with the orbit of 0 marked with white dots. Fig-

ure 1.62 shows schematically the location in M of ¢j, ¢y and &

Figure 1.61. K, for ¢ &~ —1.754877.

Conversely, any mating with ¢, ¢j or ¢j is conjugate by a Mobius trans-

formation to f. for some e. So among the f. we expect to see three mutilated




Figure 1.62. Location of ¢}, ¢j, and & in M.

Mandelbrot sets of matings. The mutilated Mandelbrot set of matings with cj
(which we shall call M") should contain the unshaded portion of M in figure 1.63.
Figure 1.64 shows the expected mutilated M for matings with ¢j (denoted by

M"), and figure 1.65 shows that for & (denoted by M").

Figure 1.66 shows an e-plane picture analogous to the d-plane picture shown
in figure 1.25. M', M" and M" are in fact to be found in the black. M’ has
been turned inside out. The cusp of its central cardioid is near the left edge of
figure 1.66, and its amputation point is at co. To see the others, we look at some
blow-ups. Figure 1.67 is outlined in figure 1.66, and figure 1.68 is outlined in
figure 1.67. (We should mention that the round red region and the round green

region are mistakes. They should be blue and red respectively. Also the yellow



Figure 1.64. Mutilated Mandelbrot set .of matings with cj.



Figure 1.65. Mutilated Mandelbrot set of matings with &.

circle around the round green region is due to the photography.)

In figure 1.68 we have marked the same veins we marked in figures 1.24,
1.25, and 1.26. The larger ones are the veins in M’, the smaller ones are in M.
Figure 1.69 shows the smaller ones in greater detail. M" is in figure 1.68, but it

is somewhat distorted. Figure 1.70 shows M undistorted with some components

labeled and figure 1.71 shows how M" sits in figure 1.68 with the components

labeled as in figure 1.70. M" is just the complex conjugate of M". They both
have their amputation point at e = 0.

Notice that the region of M" labeled e in figure 1.71 is also part of M’
as indicated by the big veins in figure 1.68. Similarly, the region labeled c in

figure 1.71 is part of both M’ and M". We call this phenomenon shared mating.




Figure 1.67. Blow up of e-plane.




11S.

«

plane with ve

Further blow up of e-

68.

.

Figure 1

mns.

Blow up of smaller vei

69.

Figure 1




Figure 1.70. M" undistorted.

In shared mating, a single rational function can be interpreted as a mating in two
different ways.

We have actually seen shared mating before. We saw in the d-plane a muti-
lated Mandelbrot set of matings with f., for ¢g = —1. That mutilated Mandelbrot
set was sewn into a mutilated K, according to the rule vps(t) sews to . (—1).

There are many pairs tg,#; for which

Yeo(=t0) = Yeo(—11)

but
ym(to) # Ym(t1)-

So the fy which is the capture at v,(—to) by fe, is the mating of fo, with var(o)
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Figure 1.71. How M" sits in the e-plane.




62
and the mating of f., with yar(¢1). We will call shared matings arising in this way
degenerate.

The shared matings we see in regions ¢ and e of figure 1.71 are different from
degenerate matings in two ways. First, they are part of different mutilated Man-
delbrot sets of matings. Second, they are in the interior of mutilated Mandelbrot
sets of matings. We look at an example.

Figure 1.72 shows the z-plane for f., where e is a point in the interior of
the region labeled ¢ in figure 1.71. The coloring is exactly the same as that of
figure 1.13. The points 0 and 1 have been marked with a white ex and the orbit of
the critical point (e 4+ 1)/2e is marked with white dots. Figures 1.74 through 1.86
show the I, of figure 1.2 and the I, of figure 1.73 slowly mating to form fe..
Figures 1.88 through 1.100 show the K. of figure 1.61 and the K, of figure 1.87
slowly mating to also form fe..

In chapter 11 we prove a theorem which has as a consequence that all the
points of M' in figure 1.68 between the big blue region and the big red region
are also in M". The converse is not true, as shown by the following figures. Fig-
ure 1.101 shows the same portion of the e-plane as does figure 1.67, and figure 1.102
is outlined in figure 1.101. In figure 1.102 we have approximated half the boundary

of M' by drawing white lines between successive points of the form

P
M \ 512

for 0 < p < 211, Figure 1.103 is figure 1.101 with this approximation drawn in.
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Figure 1.72. z-plane for e in center of region C.

Figure 1.73. I for bifurcation of bifurcation.
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Figure 1.76. Thurston construction of 1/7 mating with 6/15, 1 lift.

Figure 1.77. Thurston construction of 1/7 mating with 6/15, 2 lifts.




Figure 1.78. Thurston construction of 1/7 mating with 6/15, 3 lifts.

Figure 1.79. Thurston construction of 1/7 mating with 6/15, 5 lifts.
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Figure 1.80. Thurston construction of 1/7 mating with 6/15, 6 lifts.

Figure 1.81. Thurston construction of 1/7 mating with 6/15, 7 lifts.




Figure 1.83. Thurston construction of 1/7 mating with 6/15, 10 lifts.
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Figure 1.85. Thurston construction of 1/7 mating with 6/15, 20 lifts.
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Figure 1.88. Thurston construction of 3/7 mating with 3/15, 0 lifts.

Figure 1.89. Thurston construction of 3 /7 mating with 3/15, 0 lifts blown




1 lift.

Figure 1.90. Thurston construction of 3/7 mating with 3/15,

2 lifts.
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Figure 1.91. Thurston construction of 3/7 mating w




Figure 1.93. Thurston construction of 3/7 mating with 3 /15, 5 lifts.
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Figure 1.96. Thurston construction of 3/7 mating with 3/15, 9 lifts.

Figure 1.97. Thurston construction of 3/7 mating with 3/15, 10 lifts. i




Figure 1.98. Thurston construction of 3/7 mating with 3/15, 15 lifts.

Figure 1.99. Thurston construction of 3/7 mating with 3/15, 20 lifts.
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Figure 1.100. Thurston construction of 3/7 mating with 3/15, 50 lifts.
Figure 1.104 is outlined in figure 1.103. Figure 1.105 is figure 1.104 with that

portion of the approximated boundary of M’ between

293 d 085
Y™\ o) Ama MY\ Sy

greatly refined. Figure 1.106 shows a similar greatly refined approximation to the
boundary of M".

It 1s fun to look at close-ups of these approximations. Figures 1.108 and 1.109
are outlined in figure 1.107. Figure 1.108 shows our approximation of the boundary
of M' and figure 1.109 shows our approximation of the boundary of M". In
chapter 11 we give an algorithm (based on a conjecture) to determine which points
in the boundary of M" are also in the boundary of M'. The algorithm also shows

that those points in the boundary of M" which are also in the boundary of A{’




78

Figure 1.101. e-plane.

Figure 1.102. e-plane with half of boundary of M.




Figure 1.104. Blow up of figure 1.103.




Figure 1.106. Refined boundary of M".
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Figure 1.107. e-plane.

are in the limb of M" which contains the regions labeled ¢ and e in figure 1.71.
These approximations to the boundary of M' show another interesting aspect
of matings among the f.. Figure 1.110 shows the same portion of the e-plane as
does figure 1.66 and figure 1.111 is outlined in figure 1.109. In figure 1.110 is a
somewhat refined approximation of half of the boundary of M'. Notice how it
dips below the real axis (compare with figure 1.102). If we think of M’ as drawn
in figure 1.63, then M' has an upper half and a lower half. It is not quite obvious
from figure 1.111, but the black region in figure 1.111 marked with a white ex is
in both the upper and lower half of M’. So the map from M' to the e-plane in

not injective even on the interior of M'.

Another point to be made about the black regions in the e-plane is that they




Figure 1.109. Blow up of boundary of M".
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Figure 1.111. e-plane with boundary of M'.
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are not all part of one or more of M', M", and M". For e =~ 4.3114, the critical
point (e + 1)/2e is periodic of period four, but f. is not a mating. We know this
because a theorem of Thurston implies that if two rational functions are conjugate
to the same mating, they are conjugate to each other by a Mdbius transformation.
It is easy to see that none of the f. are conjugate to each other by a Mobius
transformation and we can find elsewhere in the e-plane all possible matings of
fCB » fey, and fég with f. for which the critical point 0 is periodic of period four
under f.. It might be possible to interpret these non-matings as captures at
periodic points on the boundary of Ko (theorem 8.4.1 gives a restriction on at

what points).

Finally, we consider captures by fo, for, and fw. The sad fact is that in
general we do not know how to define captures at y; by f. for y; which are in
the interior of the Hubbard tree of f.. We prove in theorem 8.4.1 that if we gut
I, (i.e. remove the Hubbard tree and all the components of the interior of I,
through which it passes) in addition to appropriately mutilating it, then what is

left does sew into the appropriate mutilated Mandelbrot set of matings according

to the rule we mentioned earlier.

K. and Kz gutted and appropriately mutilated consists of only two pieces
(see figure 1.2), so the picture we see of the gutted mutilated K in figures 1.68,
1.69, 1.108, and 1.109 is quite understandable. On the other hand, Il gutted

and appropriately mutilated (see figure 1.61) is a terribly disconnected set. There
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is one part which is not affected by the gutting, and that shows up in the tame
boundary we see in figure 1.102. But the captures by fo to the right of the large
blue region are very confusing. Contemplate how they could sew themselves into

M'" according to our rule in light of figure 1.111.

§1.10. Introduction for the specialist.

This work has two main goals. One is to define captures (section 8.1) and show
that some captures are also matings (theorem 8.4.1). The other is to show how
a rational function of degree two can be interpreted as a mating in two different
ways (theorem 11.1.1 and complement 11.1.3), a phenomenon we called shared
mating. Together, theorem 8.4.1, theorem 11.1.1, and complement 11.1.3 can go a
long way towards explaining some parts of the parameter space pictures presented
earlier in this introduction.

There are also two lesser goals. One is to show that some captures do not
exist (proposition 8.2.1). The other is to present an algorithm for determining in
some cases all four participants in a shared mating (complement 11.1.2 and its
proof).

All proofs in this work fall along a line of deduction to one of the results
mentioned in the two preceding paragraﬁhs.

Central to our definition of capture and pfoof of theorem 8.4.1 is the notion
that some branched covers of S2 to S? can be defined uniquely up to Thurston

topological equivalence by their action on certain graphs. Making this notion
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precise is the purpose of embedding graphs, introduced and studied in chapters 3
and 4 (and in particular, in theorem 4.4.1). We believe embedding graphs can be
of use to others.

Following Thurston and Levy, we use the following definition of mating. Poly-
nomials naturally act on C with a line adjoined at infinity. Appropriately sewing
two such lines together gives a branched cover from S? to S2. A rational function
Thurston topologically equivalent to such a branched cover is called a mating of
the two polynomials. To prove the results about shared matings, we need a more
complete picture of mating. Theorem 6.1.1 shows how a mating can actually be
thought of as a sewing together of two filled in Julia sets.

Our results about shared matings also require a mating criterion due to
Thurston (chapter 7) and the notion that one can identify a polynomial by its
action on a kind of abstract Hubbard tree which we call a quadratic tree (chap-
ter 5). Quadratic trees also provide a good example of the use of embedding
graphs.

Finally, in order to specify the algorithm to determine all four participants
in a shared mating, we needed an algorithm due to Douady and Hubbard for
calculating the identification of S! induced by the Carathéodory loop (chapter 9)
and the notion that for stars (i.e. direct bifurcations off the central cardioid of the
Mandelbrot set) one can specify the external angle of a periodic or pre-periodic
point in the Julia set by specifying an address of that point with respect to the

internal structure of the filled in Julia set (chapter 10).




Chapter 2. Background and Notation.

§2.1. General notation.

We denote the Riemann sphere by C if it is the domain of a polynomial and
by P! otherwise. We let D, be the open unit disc in C of radius r centered at 0
and we let D := D;.

Set T := R/Z and define Exp : T — 9D by
Exp(t) := ™.

Given t € Q/Z, the dynamic denominator of t is the smallest ¢ of the form
2™(2™ — 1) such that ¢ = p/q for some p. Note that if the dynamic denominator
of t is 2™(2" — 1), then 2™¥™t = 2™¢,

Let X be an oriented surface and let p be a point in X. Let R =
{Ro, R1,...,Rr—1} be a set of non-intersecting line segments in X each having
p as an endpoint. By definition, o is the clockwise-around-p permutation of R if
o is as follows. Choose orientation preserving co-ordinates on a neighborhood of
p so that the segments R; are straight. Using those co-ordinates, o(R;) should be
the next segment encountered after R; when going around p clockwise.

87
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§2.2. Rational functions.

An excellent introduction to the dynamics of rational functions is given in
[B]. Except for slight changes in notation, we reproduce here almost word for

word those results from [B] we shall need.

Definition. A family of functions F is normal if every sequence of functions in
F has a sub-sequence which converges uniformly on compact subsets.

Let f be a rational function of degree greater than one.

Definition. A point z € P! is an element of the Fatou set F¢ of f if there exists a
P b

neighborhood U of z in P! such that the family of iterates {( f°m)

} is a normal
U

family. The Julia set J¢ is the complement of the Fatou set.
Clearly Jy is closed.

Definition. The eigenvalue of a periodic orbit of period n is by definition

A= (£ (20)

for some zq in the orbit. By the chain rule, this definition is independent of the
choice of zp. A periodic orbit is

attracting if 0 < [A| < 1,

super-attracting if A =0,

repelling if [\ > 1,

neutral if |A| = 1.
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Proposition 2.2.1. If a periodic orbit is attracting or super-attracting, then it

is contained in F'. If it is repelling, then it is contained in J.

Definition. A point z is eventually periodic if, for some n, f°™(z) is a periodic

point. The point z is preperiodic if it is eventually periodic but not periodic.
We use the notation (f°*)(*)(z4) to represent the kth derivative of f°".

Theorem 2.2.2. Let zy be a point in a super-attracting periodic orbit. Suppose

kE>2, (fo)® £0, and

(£ (z0) = (fM)P(20) = -+ = (f*)F 7V (z0).

Then there exists a neighborhood U of zyp and an analytic homeomorphism ¢ :

U — D, (for some r) such that ¢(zp) = 0 and the following diagram commutes:

v v
e Lo
D, =3 D,

Furthermore, such a ¢ is unique up to post-composition with multiplication by a

(k — 1)st root of unit.
Theorem. (Sullivan) Every component of the Fatou set is eventually periodic.

Definition. Let U be a periodic component of the Fatou set of period n and let

g:= f°".

1) U is an attracting domain if U contains a point p of an attracting periodic

cycle and all points of U are attracted to p under iteration of g.
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2) U is a super-attracting domain if U c;)ntains a point p of a super-attracting
periodic cycle and all points of U are attracted to p under iteration of g.

3) U is a parabolic domain if there exists a periodic point p in QU whose period
divides n and all points of U are attracted to p under iteration of g.

4) U is a Siegel disk if U is simply connected and g u is analytically conjugate
to

(z > ef2).

5) U is a Herman ring of U is conformally equivalent to an annulus and ¢ . is
analytically conjugate to a rigid rotation of the annulus.

Siegel disks and Herman rings are often referred to as rotation domains.

Theorem 2.2.3. (Sullivan) Every periodic component of the Fatou set is either
attracting, super attracting, parabolic, a Siegel disk, or a Herman ring. Further-
more, there are finitely many such domains. In the parabolic case, ¢'(p) = 1. The
attracting and parabolic domains both contain infinite forward orbits of critical
points, and the boundaries of rotation domains are contained in the closure of the

forward orbit of the critical points.

Corollary 2.2.4. Suppose every critical point of f is either periodic, attracted
to a periodic cycle or pre-periodic. Then every point in the Fatou set will be

attracted to an attracting or super-attracting periodic cycle.
The following is not stated in [B], but it is a standard result.

Theorem 2.2.5. Suppose every critical point of f is either periodic, attracted
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to an attractive periodic cycle, or pre-periodic. Let W C P! be a closed set
containing the forward orbits of those critical points of f which are either periodic
or attracted to an attractive periodic cycle. ’fhen there an open set U D P — W,
a number p < 1 and a metric u on U such that f~3(U) C U and f . is locally

expanding with respect to u by a factor of at least 1/p.
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