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In 1'918 Julia and Fatou proved that for any given quadratic polynomial the set
of points which do not tend to infinity with repeated application of the polynomial
is either connected or a Cantor set. Naturally they wondered for which quadratic
polynomials would that set be connected, but no one had any féal idea until 1980
when Mandelbrot began to investigate this question numerically on a computer.
Mandelbrot’s computer pictures indicated that the set of quadratic polynomials
for which the points not attracted to infinity are connected is unlike those sets
traditionally studied by mathematicians. Its boundaries seemed to be the opposite

of smooth; they looked complicated at whatever level of magnification. The set in

question became known as the Mandelbrot set.

The Mandelbrot set has since been besieged by mathematicians and physicists.
The attackers include B\enedicts, Berstein, Brolin, Branner, Carleson, Cvitanovic,
Douady, Eremko, Feigenbaum, Guckenheimer, Hubbard, Lavaurs, Levy, Ljubich,
Milnor, Rees, Sentenac, Sibony, Sullivan, Tan, Thurston, Yacobson, and others.
To a considerable degree, the Mandelbrot set has yielded to this onslaught and is

now fairly well understood.



But quadratic polynomials are such simple functions. If we study the iteration
of more complicated functions, do we encounter sets which make the Mandelbrot
set look tame by comparison? This work is an attempt to answer that question.
In particular, we try to understand the itefation of rational functions of degree
two (i.e. a quadratic polynomial divided by a quadratic polynomial) in terms of
the iteration of quadratic polynomials. Despite the fact that this study is by no
means complete, what we have seen so far indicates that the iteration of rational
functions of degree two can be understood in terms of the iteration of quadratic

polynomials, but the combinatorics are a good deal more complicated.

¢




Chapter 1. Introduction.

§1.1. Broad Goals.

In 1918 Julia and Fatou f)roved that for any given quadratic polynomial the set
of points which do not tend to infinity with repeated application of the polynomial
is either connected or a Cantor set. Naturally they wondered for which quadratic
polynomials would that set be connect‘ed, but no one had any real idea until 1980
when Mandelbrot began to investigate this question numerically on a computer.
Mandelbrot’s computer pictures indicated that the set of quadratic polynomials
for which the points not attracted to infinity are connected is unlike those sets
traditionally studied by mathematicians. Its boundaries seemed to be the opposite
of smooth; they looke(i complicated at whatever level of magnification. The set in
question became known as the Mandelbrot set.

The Mandelbrot set has since been besieged by mathematicians and physicists.
The attackers include Benedicts, Berstein, Brolin, Branner, Carleson, Cvitanovic,
Douady, Eremko, Feigenbaum, Guckenheimer, Hubbard, Lavaurs, Levy, Ljubich,
Milnor, Rees, Sentenac, Sibony, Sullivan, Tan, Thurston, Yacobson, and others.
To a considerable degree, the Mandelbrot set has yielded to this onslaught and is

now fairly well understood.
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But quadratic polynomials are such simple functions. If we study the iteration
of more complicated functions, do we encounter sets which make the Mandelbrot
set look tame by comparison? This work is an attempt to answer that question.
In particular, we try to understand the iteration of rational functions of degree
two (i.e. a quadratic polynomial divided by a quadratic polynomial) in terms of
the iteration of quadratic polynomials. Despite the fact that this study is by no
means complete, what we have seen so far indicates that the.iteration of rational
functions of degree two can be understood in terms of the iteration of quadratic

polynomials, but the combinatorics are a good deal more complicated.

‘

81.2. Introduction to the introduction.

Sections 1.1 through 1.9 of this introduction are intended for a general audi-
ence. Section 1.10 is intended for the specialist who is already familiar with the
notions of mating and capture among rational functions but who desires a specific
guide to what is new mathematically in this work.

Since this paper attempts to explain the iteration of rational functions of de-
gree two in terms of the iteration of quadratic polynomials, we cannot introduce

the main ideas without a brief introduction to the dynamics of quadratic polyno-

mials. Sections 1.3 and 1.5 do so. Sections 1.4, 1.6, 1.7, 1.8, and 1.9 introduce

the ideas of this paper in an intuitive, non-rigorous way. Everything will be made

precise later.

Since the subject of this paper is iteration, it is almost impossible to proceed
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without a notation for composition. We let f°* denote the composition of f with

itself n times. So for example,

f(2) = f o f o f(z) = F(£(f(2)))-

This introduction is intended for a wide audience. Experience shows that
many people who might otherwise understand our terminology are confused by
our view of critical points. If the reader is not confused by statements such as,
“The map f.(z) = 22 + ¢ has a critical point at infinity,” or “The critical points of
a complex analytic map f are precisely those points having no neighborhood on
which f is injective,” then the rest of this section is of no interest.

Recall that if f is a complex analytic map, then for every zy in the domain of
f, there is a neighborhood U of zp, a neighborhood V' of f(zp), and co-ordinates
on U and V with respect to which f is z — z? for some integer d > 1. d is called
the local degree of f at z. Those zg at which the local degree of f is greater than
one are called critical points of f. So one characterization of critical points is that
they are precisely those points having no neighborhood on which f is injective.

Another characterization of critical points is that they are precisely the points
where the derivative of the map expressed in local co-ordinates is zero. For maps
to and from the Riemann sphere one can use the local co-ordinate z for all points
in C and 1/z for oo.

For example, for e some complex number in C — {0} let

1

fe(z):= ez? —(e+1)z+1
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For any e in C — {0}, fe(o0) = 0, so to see if oo is a critical point of f. we use the
co-ordinate 1/z in the domain and z in the range. In those co-ordinates f, is of

the form

1
e(1/2)? = (e + 1)(1/2) +1

which has derivative 0 at 0. So oo is a critical point of f..

For another example, let
fo(z) =22 +¢,

where ¢ is any complex number. f.(co) = 00, so we use the co-ordinates 1/z in

both domain and range. In those co-ordinates, f. is of the form

1/((1/2)" +¢)

which has derivative 0 at 0. So oo is a critical point of f..

§1.3. Quadratic polynomials.

Suppose f and g are maps from some space X to itself. If ¢ : X — X isa

map with inverse map ¢~! : X — X such that

pofop™l =g,

then iteration of f and iteration of ¢ are essentially the same because

g°" = ($o fog™l)"
=(pofopo(pofos Ho--o(dofos)
=¢o(fofo---0of)og™
=g¢o(f ) og™t.
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In such a case we say that f and g are conjugated by ¢.

It is not hgrd to see that all quadratic polynomials are conjugate to exactly
one of the form

fe(2):=2%+¢

for some ¢ € C., ForAa,ny po¥yﬁomia1, complex numbers of sufficiently large ab-
solute value tend to infinity under repeated applications of the polynomial. It is
interesting, therefore, to consider the set K. of points z in C such that fJ"(z)
does not tend to infinity as n tends to infinity. Julia and Fatou proved that K, is
connected if and only if the critical point 0 is in K, and K. is a Cantor set (intu-
itively, infinitely many separate particles of dust with én affinity for one another)
if and only if 0 is not in K.

We look at some examples. Figures 1.1 and 1.2 show K, in black for ¢ = —1
and ¢ & —.12352 + .74290s respectively. The orbit of 0 is marked with white dots.
In both cases K. is connected.

In those figures, the points not in K. have been colored in shades of red,
yellow and green. The reason is ;che following. It can happen that . has no
interior. (This is always the case when K, is a Cantor set, but it can happen when
I is connected also.) In such cases if one were to use onlyl two colors, one for
points in K, and another for points not in K, then K, would not be visible since
it would be highly unlikely that any points on the grid checked by the computer

would be in K.. If, however, we shade the points not in K, according to how

many iterations of f. were required to send them to a particular neighborhood of




Figure 1.2. K, for ¢ ~ —.12352 + .742905.
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infinity, K. will still be visible as in figures 1.3 and 1.4. Figure 1.3 shows K, for
¢~ —.22815 + 1.11517 and figure 1.4 shows K. for ¢ ~ —.28156 4 .982165. The I,

of figure 1.3 is connected and the K, of figure 1.4 is a Cantor set.

Figure 1.3. K, for ¢ = —.22815 4 1.1151s.

For many of the ¢ for which K. is connected, there is a continuous map Y.

mapping the unit circle onto the boundary of I, such that

fc('?c(emrit)) = ’?0(62‘”(%))'
To lighten notation we define

’)’C(t) = '3’0(62m.t)~

ve 1s called the Carathéodory loop of f..



Figure 1.4. K, for ¢ ~ —.28156 4 .98216.

Finally, we give a brief intuitive definition of Hubbard trees. If the orbit of
0 under f. has finitely many points, join each pair of points in the orbit by the
“shortest” curve which stays in K.. The union of all these curves is the Hubbard

tree of f..

§1.4. Mating.

The mating of polynomials to form rational functions of degree two was dis-
covered by Hubbard and Douady in 1982. Suppose c¢g and ¢; are such that K,
and K., are connected and f,, and f,, have Carathéodory loops 7., and 7.,. The
idea of mating f., with f., is to form a sphere out of K., and I{, by sewing them
together along their boundaries. Looking at figures 1.1, 1.2, and 1.3 one might

wonder if that is possible, but in certain cases we know it is. In fact, we know that
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in these cases it is possible to do so in a way that 7¢,(t) sews to v, (—t). In those
cases we can let f., and f. define a map on the sphere we created by sewing.

Rational functions f are best thought of as maps from the Riemann sphere to
the Riemann sphere because f might take infinity to a point in C and visa-versa.
If the map on the sphere we formed by sewing K to K., is conjugate to a rational
function, we call that rational function the mating of f., with f.,.

Té make this all Bit more concrete, we illustrate how we know we can sew as
described above for a particular example. Let K., be the one pictured in figure 1.1
and let K., be the one pictured in figure 1.2. Instead of sewing the K.’s together
along their boundaries, 'sew them together along a big circle surrounding each K cl
(see figure 1.5 where K, is in black and K., is in light green). We now apply a
procedure devised by Thurston that allows K., and K., to slowly move towards
each other (see figures 1.5 throug;h 1.12). Tt follows from the work of Thurston,
Levy, Tan and theorem 6.1.1 below that the red and blue regions separating K,
from I ., will vanish in‘'the limit, leaving a sphere sewn in the way described above
(see figure 1.12):

It also follows that the map on the sphere defined by f., and f., is conjugate
to some rational function. We happen to know that in this case, the rational

function can be expressed as

1

fel2) = ez? —(e+ 1)z +1

for e & .57735¢. It turns out that for any e in C—{0}, (00, 0, 1) forms an attracting
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1/3 in, O lifts

Figure 1.6. Thurston construction of 1/7 mating with 1/3, 1 lift.
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: Figure 1.8. Thurston construction of 1/7 mating with 1/3, 3 lifts.
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Figure 1.12. Thurston construction of 1/7 mating with 1/3, 50 lifts.
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~ periodic cycle for fe‘ (ie. fe(oo) =0, fe(0) =1, fe(1) = oo and for z sufficiently
near oo but not equal to oo, f.(z) will be near 0, f:z(z) will be near 1, and
f£23(2) will be nearer to oo than was z.). In figure 1.13 we have left black those
z which are not attracted to that cycle. The z which are attracted to that cycle
are colored red, green, or blue depending upon what iterate (mod 3) of f, takes

z near oo. 0 and 1 are marked by exes. Notice the similarity between figure 1.12

and figure 1.13.

Figure 1.13. z-plane for e ~ .57735:.

Mating can be very exotic. For examf)le it can be possible to mate f., with
fe, even though neither K., nor K., has any interior. In that case, the image of
Yeo (O 7¢,) in the sphere formed by sewing is the entire sphere. Not only is ve,

a Peano curve, but the map which sends 7., (¢) to 7¢,(2t) is well defined on the
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sphere and conjugate to a rational function. In figures 1.14 through 1.21 we mate
the f. of figure 1.3 with itself by sewing along a big circle and letting the K’s

move towards each other. Note the Peano curve forming.

Figure 1.14. Thurston construction of 1/4 mating with 1/4, 0 lifts.

8§1.5. The Mandelbrot set.

By definition the Mandelbrot set is

M :={c € C| K, is connected }.

By the work of Julia and Fatou mentioned earlier

M={ceC|0€ K,}.
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Figure 1.15. Thurston construction of 1 /4 mating with 1/4, 0 lifts blown up.

Figure 1.16. Thurston construction of 1 /4 mating with 1/4, 1 lift.
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Figure 1.18. Thurston construction of 1/4 mating with 1/4, 3 lifts.
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Figure 1.21. Thurston construction of 1/4 mating with 1/4, 10 lifts.

This suggests a way to make a computer picture of M. Namely, for some sampling
of ¢ in C, see if 0 tends to infinity under repeated applications of f.. Figure 1.22
is such a picture, with M in black and the complement of M shaded so that M
will not be missed where it is thin. Outlined in figure 1.22 is figure 1.23.

Douady and Hubbard proved that M is connected. In figure 1.24 we have
approximated in white how to connect a point in the interior of M to two boundary
points. How to connect those points is probably obvious from figure 1.23, but in
versions of M to be seen below it might not be obvious and the corresponding

white lines (called veins) will be of help.

As indicated in figures 1.22 and 1.23, M is a cardioid with other parts at-

tached. Each of those other parts is called a limb and is attached to the central
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Figure 1.22. Mandelbrot set.

Figure 1.23. Blow up of Mandelbrot set.
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Figure 1.24. Veins of the Mandelbrot set.

cardioid at exactly one point. If the points of attachment of two limbs are complex

conjugates of each other, then the limbs are called conjugate limbs.

Finally, we wish to describe a sort of Carathéodory loop for M. Think of
M as made of a conducting piece of metal and put electric charge on M. Near
infinity, the electric field lines of M will be asymptotic to rays emanating from the
origin. To define y4(%), find the electric field line which is asymptotic near infinity
to the ray emanating from 0 and passing through €2, Follow that electric field
line in towards M. If you approach some one particular point of the boundary
of M as you follow that field line in, that point is by definition ys(¢). Douady
and Hubbard have shown that for rational ¢, yp;(%) is well defined. We think it is

well defined for all t. (v actually has a lot to do with the dynamics of quadratic
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polynomials, but we will not discuss that until the next chapter.)

§1.6. A nice rational family.

Suppose some rational function f of degree two is the mating of f., with f.,.
So the domain of f (i.e. the Riemann sphere) can be thought of as K., sewn to
K.,. Let z¢ (resp. yo) be the point in the domain of f corresponding to 0 € K,
(resp. 0 € K¢,). Since f., (resp. fe,) is not injective on any neighborhood of g
(resp. Yo), Zo (resp. yo) is a critical point of f. But rational functions of degree
two only have two critical points. So z¢ and y, are all the critical points of f.

Now we consider rational functions f which are matings of f., with f.,, where
co = —1. We have seen K, in figure 1.1. Since 0 is periodic of period two under
feo, by the preceding paragraph, one of the critical points of f must be periodic of

period two. By conjugating f with a Mdbius transformation taking that critical

. point to co, its image to 0, and the other critical point to —1, f can be written in

the form

d
22 4+ 22°

fa(z) =

for some d € C — {0}.
Conversely, if f; is a mating of some f., with some f.,, then 0 must be
periodic of period two for at least one of f., and f.,. But there is only one c
(namely ¢y = —1) for which 0 is periodic of period two under f.. So any fy which

1s a mating is the mating of f., with some f, .

We would like to have an algorithm which given any d € C — {0} determines

T

T e s
e A e o L L T

=
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if fq is the mating of f., with some f.,. Unfortunately, all we have is an algorithm

that can detect that f; is not the mating of f,, with some f.. It is based on

the fact that the orbit of 0 under f., is in the interior of K., (see figure 1.1).

That means that if f4 is a mating of f., with some f.,, then the critical point —1

of fq cannot be attracted to the attractive cycle (0o, 0). Figure 1.25 is based on
that algorithm. If for a particular d, —1 is attracted to the cycle (00, 0), then d is
marked red or green depending upon what iterate (mod 2) of fy brings —1 near

00. (The yellow in the photograph is due to the photography; there was no yellow

on the computer screen.) Otherwise d is left black. There is some shading in the

red and green, but that can be ignored. Figure 1.26 is outlined in figure 1.25.

Figure 1.25. d-plane.

So the matings with f,, are all among the black. The black region resembles
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Figure 1.26. Blow up of d-plane.

M in many ways. By an argument slightly too involved for this introduction one
can see that if ¢y and ¢; are in conjugate limbs of M, then the mating of f., with
fe, does not exist. Douady and Hubbard conjectured that the converse is true and
that the black region in figure 1.25 is a Mandelbrot set with the limb containing
Cp = —1 removed. In fact the point in M where that limb had been attached is
now situated at d = 0, the only d € C for which f; is not a rational function of
degree two. In figures 1.25 and 1.26 we have shown the veins corresponding to
those in figure 1.24. We call this Mandelbrot set of matings with a limb removed a
mutilated Mandelbrot set and the point where the removed limb had been attached

is called the amputation point.

Actually, we believe the black set in figure 1.25 is as described above, but
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with some identification of boundary points of M. To see what identification

there should be, we now consider the red and green regions.

It is true but not obvious that all points in the interior of K, are attracted to

the cycle (0, —1) under f., (Sullivan or Douady and Hubbard). Figure 1.27 shows
K., with different coloring than in figure 1.1. Points which are attracted to the
cycle (0, —1) under iteration of f,, are colored red or green depending upon which
iterate (mod 2) of f., brings the point near 0. (There is some shading in the red and
green, but we can ignore that.) All other points are colored black. Figure 1.28 is

figure 1.27 after it has undergone the invertible transformation ¢(z) = —(2+1)/z.
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Figure 1.27. K. for ¢ = —1.

Notice the similarity between the red and green regions of the z-plane drawing

in figure 1.28 and the red and green regions in the d-plane drawing in figure 1.25.




Figure 1.28. Inversion of K, for ¢ = —1.

In fact, what we believe we are seeing here is a mutilated I{., turned inside out
and sewn into the mutilated M according to the rule yp(t) sews to ¢, (—1) (see
figure 1.29 in which the mutilated limbs are shaded and some of the threads for

sewing are shown with dotted lines). In order to show why we believe this, we

S have to discuss captures, the topic of the next section.

§1.7. Captures.

For some point y; in K., the capture at y; by f. is a function built in some

sense from f,, but having y; as the image of a critical point other than 0. We
llustrate with an example.
As in the previous section, let ¢y = —1 throughout. Let y; be the point in

the interior of K, indicated in figures 1.30 and 1.31. Figure 1.32 shows é(y1)
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(where ¢ is as in the last section). We will suggest how to build f, the capture at
y1 by fe,- Unfortunately, we have not been able to make the suggested definition
rigorous. We present it rather than the definition we have been able to make
rigorous because it gives a better feel for captures. (To lighten notation, we no

longer distinguish between ¢(X,,) and K, or between ¢ o fo, 0 ¢! and f,.)

Figure 1.30. Point in K, for ¢ = —1.

Start by letting f equal f., on K., and let v := ~.,. Since y; is not the
image of a critical point of f, we make the following modification. Figure 1.33 is a
schematic drawing of figure 1.32 with y; in the component labeled . The inverse
image under f of W is U’ and U". Let t,, be such that ~(t,,) is on the boundary

of W. Recall that on the boundary of K,, f is given by

Flr(2)) = v(2¢).




-1.

Figure 1.31. Blow up of point in K, for ¢

—1.

Figure 1.32. Inversion of point in K. for ¢
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So if we let ty := t4,/2 and tyr 1=ty + (1/2), then y(tu) is on the boundary of

U', v(ty) is on the boundary of U", and

f(7(tu')) = f(7(tu")) = 7(tw)'

Now cut v at ¢, and t,» (see figure 1.34). Reconnect (i.e. deform 7) as indicated
in figures 1.35, 1.36, and 1.37. Now under the map +(¢) — ~(2t), the boundary of
the new component U wraps twice around the boundary of W. So we can let f
map U to W so that in some coordinates on U and W f is z +— 22 and so that y;
is the image of the critical point of f in U.

But now, since U’ and U" no longer exist, f is undefined on the two com-
ponents which f used to map to U’ and the two components which f used to
ma.p to U". Also, f is now discontinuous on the two inverse images of v(¢,/) and
the two inverse images of (£, ). So cut v at those points (see figure 1.38) and
reconnect in the only way possible (see figure 1.39). The boundary of each of
the two new components V' and V' wraps once around the boundary of U under
() — v(2t). So let f map V' (resp. V") onto U homeomorphically (i.e. so that
in some coordinates on V' (resp. V") and on U, f is the identity).

Hopefully, one can continue cutting, reconnecting, and mapping the new com-
ponents homeomorphically. The new components can be formed so that the set
on which f is defined is dense in the sphere. We hope that f extends continuously
to the whole sphere. We also hope that the f we have formed is independent (up

to conjugacy) of the choices we have made.
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As mentioned above, we have not been able to make this definition rigor-
ous, but our computer experiments suggest it is correct. For example, to form
figure 1.40 we chose a particular d in C — {0} and colored points black if they
were not attracted to the cycle (00, 0) and otherwise red or green, depending upon
which iterate (mod 2) of f; took the point near co. (Again, the yellow is due
to the photography.) The critical point of f; not equal to co is —1. We have
marked fy(—1) with a white dot and f;(co) = 0 with a white ex. Figure 1.41
is figure 1.40 with everything blacked out except the components containing oo
and 0. Figures 1.42 through 1.49 show successive inverse images under f; of the

colored regions in figure 1.41.

Figure 1.40. A capture.

In defining f we did not alter the component of I, containing 0 and f = fe
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Blackened capture, 0 lifts.

Figure 1.42. Blackened capture, 1 lift.

Figure 1.41.
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lifts.
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4 lifts.

?

kened capture

Figure 1.45. Blac

5 lifts.

’

kened capture

igure 1.46. Blac



Figure 1.48. Blackened capture, 7 lifts.



Figure 1.49. Blackened capture, 8 lifts.

on that component. So f has a critical point zy corresponding to the critical
point 0 of f.,. f also has a critical point, which we shall call yo, which we created
when we let U map to the component containing y; like z — 22, Also, since we
did not alter the component of K, containing f.(0) = —1, and f = f., on that
component, f(f(zo)) = zo.

It is important to note further that in defining f we did not alter in any way
the components of I{,, containing the orbit of y; under f., and weleft f = f., on
those components. So since every point in the interior of I, is attracted under
iteration of fc, to the cycle (0,—1), y; will be attracted to the cycle (zo, f(20))

under iteration of f. .

We have suggested a definition of the capture at y; by f., for a particular 1
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Moving capture, step 1.

Figure 1.51.
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Figure 1.54. Moving capture, step 4.

pairs of components of K., with single components. In deforming this capture
to a capture at yj for y; on the boundary, we have made each single component
back into a pair of components. We claim that the components have all the
necessary connections to reform K. In fact, the connections between components
of I, were never destroyed; the pairs of components were just merged to single
components having connections to twice as many components as either component
in the pair. But whereas each pair was well separated in K, in 'the capture at yi,
they are touching at the pinch point. So the capture at y] by f., can be viewed

as formed by taking f., acting on I, , then pulling appropriate pairs of points in

U & vih
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together. (Since

oo

U & md)

n=1
is dense in the boundary of I{,,, this causes some further identification of points
on the boundary of IK,.)

Not all points in the boundary of K., are on the boundary of a component

of the interior of I, , but the view of capture at a boundary point presented in
the preceding paragraph makes sense for those points also. We have some reason

to believe that the capture at such a point y} so defined would be in some sense

the limit of captures at points in the centers of a sequence of components of the

interior of If,, approaching yj.

§1.8. A nice rational family revisited.

We now can explain why we believe that figure 1.25 is a mutilated Mandelbrot
set sewn to a mutilated K, according to the rule yps(t) sews to v, (—t). Asin
the previous two sections, let ¢ = —1 throughout.

Recall that the points d in figure 1.25 colored red or green are the d for which
the critical point —1 of f; is attracted to the cycle (o0, 0) and the choice of red and
green depends upon what iterate (mod 2) of f; carries —1 near co. Now suppose
fy, is a rational function of degree two which is conjugate to the capture at y; by
feo- Except for the special case where y; equals the critical point zg of fy,, fy; Will
be conjugate to f for some d by a Mébius transformation taking zo to 0o, fy, (%0)

to 0, and yo to —1. Call that d, d(y;). If y; is in the interior of K,, then d(y1)
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will have to be colored red or green as we mentioned in the previous section. It is
reasonable to believe that d(y;) is continuous in y;. (See figures 1.55 through 1.60.
Figure 1.55 shows the same portion of the d-plane as does figure 1.26. Figure 1.56
is outlined in figure 1.55 and has four d marked with exes and numbered 0 through
3. Figures 1.57 through 1.60 show the corresponding z-plane of fyq with fy(—1)
marked with a white dot and 0 with an ex.) So the closure of the red and green
regions in figure 1.25 contains the continuous image of the set of y; in K, such

that the capture at y; by f¢, is defined and conjugate to a rational function.

Figure 1.55. d-plane.

We have explained the mutilated K., in figure 1.25; now we should explain
the sewing of vus(t) to 7.,(—t). Even though we have proved such a sewing for a

dense set of ¢ in chapter 8 (for a somewhat different definition of captures), the




.57. Capture 0.

Figure 1




Figure 1.58. Capture 1.

igure 1.59. Capture 2.
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Figure 1.60. Capture 3. a8

proof rests on arguments due to Thurston which we have never been able to make
Intuitive in this context. We will, therefore, only offer a plausibility argument.
Let t; be a rational number in lowest terms with even denominator, and let

¢1 := Ypm(t1). Douady and Hubbard proved that K., has empty interior and that

761(t1)261=fc1(0)' . :

So the mating of f., with f., can be viewed as formed by sewing various points g

on the boundary of I{,, to each other and making

700(_t1) ~ Ye (tl)

into the image of a critical point. Recall the last view presented in the previous
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section of the capture at y; by f, for y; on the boundary of K. If

Y1 = Yeo(—11),

we said that the capture at y; by f., is formed by pulling various points on the
boundary of K, together in such a way that y; = 7v.,(—t1) becomes the image of
a critical point.

So the mating of f., with v;(¢;) and the capture at v.,(—%;) by f, are formed
in roughly the same way. The part we have not been able to make intuitive is why

the identification of points on the boundary of K., is the same in both cases.

§1.9. A not-so-nice rational family.

Due to what we have seen in the d-plane, the reader might be feeling optimistic
about understanding all rational functions of degree two in terms of matings and
captures. We know matings and captures are not enough, but we do not know
whether or not we can understand all rational functions of degree two in terms of
matings, captures and things called anti-matings and anti-captures. In this section
we present another family of rational functions of degree two with the purpose of

showing that even just matings and captures can be rather complicated. For e in

C — {0}, let

1

fel2) = ez? —(e+1)z+1

One critical point of f. is 0o, and fe(co) = 0, f.(0) = 1, and f.(1) = oco. The

other critical point of f, is (e + 1)/2e.
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Since one critical point is periodic of period three, if f. is a mating of f., with
fey, 0 must be periodic of period three for one of f., and f.,. There are only three
¢ for which 0 is periodic of period three for f.. They are

1) ¢ ~ —1.754877,

[\]
~—

cg ~ —.12352 + .74291¢, and
3) ¢y = the complex conjugate of cj.
We have seen Ko in figure 1.2. Ky is just the complex conjugate of Ken.
Figure 1.61 shows I{¢ in black with the orbit of 0 marked with white dots. Fig-

ure 1.62 shows schematically the location in M of ¢j, ¢y and &

Figure 1.61. K, for ¢ &~ —1.754877.

Conversely, any mating with ¢, ¢j or ¢j is conjugate by a Mobius trans-

formation to f. for some e. So among the f. we expect to see three mutilated




Figure 1.62. Location of ¢}, ¢j, and & in M.

Mandelbrot sets of matings. The mutilated Mandelbrot set of matings with cj
(which we shall call M") should contain the unshaded portion of M in figure 1.63.
Figure 1.64 shows the expected mutilated M for matings with ¢j (denoted by

M"), and figure 1.65 shows that for & (denoted by M").

Figure 1.66 shows an e-plane picture analogous to the d-plane picture shown
in figure 1.25. M', M" and M" are in fact to be found in the black. M’ has
been turned inside out. The cusp of its central cardioid is near the left edge of
figure 1.66, and its amputation point is at co. To see the others, we look at some
blow-ups. Figure 1.67 is outlined in figure 1.66, and figure 1.68 is outlined in
figure 1.67. (We should mention that the round red region and the round green

region are mistakes. They should be blue and red respectively. Also the yellow



Figure 1.64. Mutilated Mandelbrot set .of matings with cj.



Figure 1.65. Mutilated Mandelbrot set of matings with &.

circle around the round green region is due to the photography.)

In figure 1.68 we have marked the same veins we marked in figures 1.24,
1.25, and 1.26. The larger ones are the veins in M’, the smaller ones are in M.
Figure 1.69 shows the smaller ones in greater detail. M" is in figure 1.68, but it

is somewhat distorted. Figure 1.70 shows M undistorted with some components

labeled and figure 1.71 shows how M" sits in figure 1.68 with the components

labeled as in figure 1.70. M" is just the complex conjugate of M". They both
have their amputation point at e = 0.

Notice that the region of M" labeled e in figure 1.71 is also part of M’
as indicated by the big veins in figure 1.68. Similarly, the region labeled c in

figure 1.71 is part of both M’ and M". We call this phenomenon shared mating.




Figure 1.67. Blow up of e-plane.
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Figure 1.70. M" undistorted.

In shared mating, a single rational function can be interpreted as a mating in two
different ways.

We have actually seen shared mating before. We saw in the d-plane a muti-
lated Mandelbrot set of matings with f., for ¢g = —1. That mutilated Mandelbrot
set was sewn into a mutilated K, according to the rule vps(t) sews to . (—1).

There are many pairs tg,#; for which

Yeo(=t0) = Yeo(—11)

but
ym(to) # Ym(t1)-

So the fy which is the capture at v,(—to) by fe, is the mating of fo, with var(o)
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Figure 1.71. How M" sits in the e-plane.
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and the mating of f., with yar(¢1). We will call shared matings arising in this way
degenerate.

The shared matings we see in regions ¢ and e of figure 1.71 are different from
degenerate matings in two ways. First, they are part of different mutilated Man-
delbrot sets of matings. Second, they are in the interior of mutilated Mandelbrot
sets of matings. We look at an example.

Figure 1.72 shows the z-plane for f., where e is a point in the interior of
the region labeled ¢ in figure 1.71. The coloring is exactly the same as that of
figure 1.13. The points 0 and 1 have been marked with a white ex and the orbit of
the critical point (e 4+ 1)/2e is marked with white dots. Figures 1.74 through 1.86
show the I, of figure 1.2 and the I, of figure 1.73 slowly mating to form fe..
Figures 1.88 through 1.100 show the K. of figure 1.61 and the K, of figure 1.87
slowly mating to also form fe..

In chapter 11 we prove a theorem which has as a consequence that all the
points of M' in figure 1.68 between the big blue region and the big red region
are also in M". The converse is not true, as shown by the following figures. Fig-
ure 1.101 shows the same portion of the e-plane as does figure 1.67, and figure 1.102
is outlined in figure 1.101. In figure 1.102 we have approximated half the boundary

of M' by drawing white lines between successive points of the form

P
M \ 512

for 0 < p < 211, Figure 1.103 is figure 1.101 with this approximation drawn in.
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Figure 1.72. z-plane for e in center of region C.

Figure 1.73. I for bifurcation of bifurcation.
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Figure 1.76. Thurston construction of 1/7 mating with 6/15, 1 lift.

Figure 1.77. Thurston construction of 1/7 mating with 6/15, 2 lifts.




Figure 1.78. Thurston construction of 1/7 mating with 6/15, 3 lifts.

Figure 1.79. Thurston construction of 1/7 mating with 6/15, 5 lifts.
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Figure 1.80. Thurston construction of 1/7 mating with 6/15, 6 lifts.

Figure 1.81. Thurston construction of 1/7 mating with 6/15, 7 lifts.




Figure 1.83. Thurston construction of 1/7 mating with 6/15, 10 lifts.
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Figure 1.85. Thurston construction of 1/7 mating with 6/15, 20 lifts.
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Figure 1.88. Thurston construction of 3/7 mating with 3/15, 0 lifts.

Figure 1.89. Thurston construction of 3 /7 mating with 3/15, 0 lifts blown
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Figure 1.90. Thurston construction of 3/7 mating with 3/15,
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Figure 1.93. Thurston construction of 3/7 mating with 3 /15, 5 lifts.
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Figure 1.96. Thurston construction of 3/7 mating with 3/15, 9 lifts.

Figure 1.97. Thurston construction of 3/7 mating with 3/15, 10 lifts. i




Figure 1.98. Thurston construction of 3/7 mating with 3/15, 15 lifts.

Figure 1.99. Thurston construction of 3/7 mating with 3/15, 20 lifts.
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Figure 1.100. Thurston construction of 3/7 mating with 3/15, 50 lifts.
Figure 1.104 is outlined in figure 1.103. Figure 1.105 is figure 1.104 with that

portion of the approximated boundary of M’ between

293 d 085
Y™\ o) Ama MY\ Sy

greatly refined. Figure 1.106 shows a similar greatly refined approximation to the
boundary of M".

It 1s fun to look at close-ups of these approximations. Figures 1.108 and 1.109
are outlined in figure 1.107. Figure 1.108 shows our approximation of the boundary
of M' and figure 1.109 shows our approximation of the boundary of M". In
chapter 11 we give an algorithm (based on a conjecture) to determine which points
in the boundary of M" are also in the boundary of M'. The algorithm also shows

that those points in the boundary of M" which are also in the boundary of A{’
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Figure 1.101. e-plane.

Figure 1.102. e-plane with half of boundary of M.




Figure 1.104. Blow up of figure 1.103.




Figure 1.106. Refined boundary of M".
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Figure 1.107. e-plane.

are in the limb of M" which contains the regions labeled ¢ and e in figure 1.71.
These approximations to the boundary of M' show another interesting aspect
of matings among the f.. Figure 1.110 shows the same portion of the e-plane as
does figure 1.66 and figure 1.111 is outlined in figure 1.109. In figure 1.110 is a
somewhat refined approximation of half of the boundary of M'. Notice how it
dips below the real axis (compare with figure 1.102). If we think of M’ as drawn
in figure 1.63, then M' has an upper half and a lower half. It is not quite obvious
from figure 1.111, but the black region in figure 1.111 marked with a white ex is
in both the upper and lower half of M’. So the map from M' to the e-plane in

not injective even on the interior of M'.

Another point to be made about the black regions in the e-plane is that they




Figure 1.109. Blow up of boundary of M".
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Figure 1.111. e-plane with boundary of M'.
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are not all part of one or more of M', M", and M". For e =~ 4.3114, the critical
point (e + 1)/2e is periodic of period four, but f. is not a mating. We know this
because a theorem of Thurston implies that if two rational functions are conjugate
to the same mating, they are conjugate to each other by a Mdbius transformation.
It is easy to see that none of the f. are conjugate to each other by a Mobius
transformation and we can find elsewhere in the e-plane all possible matings of
fCB » fey, and fég with f. for which the critical point 0 is periodic of period four
under f.. It might be possible to interpret these non-matings as captures at
periodic points on the boundary of Ko (theorem 8.4.1 gives a restriction on at

what points).

Finally, we consider captures by fo, for, and fw. The sad fact is that in
general we do not know how to define captures at y; by f. for y; which are in
the interior of the Hubbard tree of f.. We prove in theorem 8.4.1 that if we gut
I, (i.e. remove the Hubbard tree and all the components of the interior of I,
through which it passes) in addition to appropriately mutilating it, then what is

left does sew into the appropriate mutilated Mandelbrot set of matings according

to the rule we mentioned earlier.

K. and Kz gutted and appropriately mutilated consists of only two pieces
(see figure 1.2), so the picture we see of the gutted mutilated K in figures 1.68,
1.69, 1.108, and 1.109 is quite understandable. On the other hand, Il gutted

and appropriately mutilated (see figure 1.61) is a terribly disconnected set. There




85
is one part which is not affected by the gutting, and that shows up in the tame
boundary we see in figure 1.102. But the captures by fo to the right of the large
blue region are very confusing. Contemplate how they could sew themselves into

M'" according to our rule in light of figure 1.111.

§1.10. Introduction for the specialist.

This work has two main goals. One is to define captures (section 8.1) and show
that some captures are also matings (theorem 8.4.1). The other is to show how
a rational function of degree two can be interpreted as a mating in two different
ways (theorem 11.1.1 and complement 11.1.3), a phenomenon we called shared
mating. Together, theorem 8.4.1, theorem 11.1.1, and complement 11.1.3 can go a
long way towards explaining some parts of the parameter space pictures presented
earlier in this introduction.

There are also two lesser goals. One is to show that some captures do not
exist (proposition 8.2.1). The other is to present an algorithm for determining in
some cases all four participants in a shared mating (complement 11.1.2 and its
proof).

All proofs in this work fall along a line of deduction to one of the results
mentioned in the two preceding paragraﬁhs.

Central to our definition of capture and pfoof of theorem 8.4.1 is the notion
that some branched covers of S2 to S? can be defined uniquely up to Thurston

topological equivalence by their action on certain graphs. Making this notion
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precise is the purpose of embedding graphs, introduced and studied in chapters 3
and 4 (and in particular, in theorem 4.4.1). We believe embedding graphs can be
of use to others.

Following Thurston and Levy, we use the following definition of mating. Poly-
nomials naturally act on C with a line adjoined at infinity. Appropriately sewing
two such lines together gives a branched cover from S? to S2. A rational function
Thurston topologically equivalent to such a branched cover is called a mating of
the two polynomials. To prove the results about shared matings, we need a more
complete picture of mating. Theorem 6.1.1 shows how a mating can actually be
thought of as a sewing together of two filled in Julia sets.

Our results about shared matings also require a mating criterion due to
Thurston (chapter 7) and the notion that one can identify a polynomial by its
action on a kind of abstract Hubbard tree which we call a quadratic tree (chap-
ter 5). Quadratic trees also provide a good example of the use of embedding
graphs.

Finally, in order to specify the algorithm to determine all four participants
in a shared mating, we needed an algorithm due to Douady and Hubbard for
calculating the identification of S! induced by the Carathéodory loop (chapter 9)
and the notion that for stars (i.e. direct bifurcations off the central cardioid of the
Mandelbrot set) one can specify the external angle of a periodic or pre-periodic
point in the Julia set by specifying an address of that point with respect to the

internal structure of the filled in Julia set (chapter 10).




Chapter 2. Background and Notation.

§2.1. General notation.

We denote the Riemann sphere by C if it is the domain of a polynomial and
by P! otherwise. We let D, be the open unit disc in C of radius r centered at 0
and we let D := D;.

Set T := R/Z and define Exp : T — 9D by
Exp(t) := ™.

Given t € Q/Z, the dynamic denominator of t is the smallest ¢ of the form
2™(2™ — 1) such that ¢ = p/q for some p. Note that if the dynamic denominator
of t is 2™(2" — 1), then 2™¥™t = 2™¢,

Let X be an oriented surface and let p be a point in X. Let R =
{Ro, R1,...,Rr—1} be a set of non-intersecting line segments in X each having
p as an endpoint. By definition, o is the clockwise-around-p permutation of R if
o is as follows. Choose orientation preserving co-ordinates on a neighborhood of
p so that the segments R; are straight. Using those co-ordinates, o(R;) should be
the next segment encountered after R; when going around p clockwise.

87




88

§2.2. Rational functions.

An excellent introduction to the dynamics of rational functions is given in
[B]. Except for slight changes in notation, we reproduce here almost word for

word those results from [B] we shall need.

Definition. A family of functions F is normal if every sequence of functions in
F has a sub-sequence which converges uniformly on compact subsets.

Let f be a rational function of degree greater than one.

Definition. A point z € P! is an element of the Fatou set F¢ of f if there exists a
P b

neighborhood U of z in P! such that the family of iterates {( f°m)

} is a normal
U

family. The Julia set J¢ is the complement of the Fatou set.
Clearly Jy is closed.

Definition. The eigenvalue of a periodic orbit of period n is by definition

A= (£ (20)

for some zq in the orbit. By the chain rule, this definition is independent of the
choice of zp. A periodic orbit is

attracting if 0 < [A| < 1,

super-attracting if A =0,

repelling if [\ > 1,

neutral if |A| = 1.
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Proposition 2.2.1. If a periodic orbit is attracting or super-attracting, then it

is contained in F'. If it is repelling, then it is contained in J.

Definition. A point z is eventually periodic if, for some n, f°™(z) is a periodic

point. The point z is preperiodic if it is eventually periodic but not periodic.
We use the notation (f°*)(*)(z4) to represent the kth derivative of f°".

Theorem 2.2.2. Let zy be a point in a super-attracting periodic orbit. Suppose

kE>2, (fo)® £0, and

(£ (z0) = (fM)P(20) = -+ = (f*)F 7V (z0).

Then there exists a neighborhood U of zyp and an analytic homeomorphism ¢ :

U — D, (for some r) such that ¢(zp) = 0 and the following diagram commutes:

v v
e Lo
D, =3 D,

Furthermore, such a ¢ is unique up to post-composition with multiplication by a

(k — 1)st root of unit.
Theorem. (Sullivan) Every component of the Fatou set is eventually periodic.

Definition. Let U be a periodic component of the Fatou set of period n and let

g:= f°".

1) U is an attracting domain if U contains a point p of an attracting periodic

cycle and all points of U are attracted to p under iteration of g.
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2) U is a super-attracting domain if U c;)ntains a point p of a super-attracting
periodic cycle and all points of U are attracted to p under iteration of g.

3) U is a parabolic domain if there exists a periodic point p in QU whose period
divides n and all points of U are attracted to p under iteration of g.

4) U is a Siegel disk if U is simply connected and g u is analytically conjugate
to

(z > ef2).

5) U is a Herman ring of U is conformally equivalent to an annulus and ¢ . is
analytically conjugate to a rigid rotation of the annulus.

Siegel disks and Herman rings are often referred to as rotation domains.

Theorem 2.2.3. (Sullivan) Every periodic component of the Fatou set is either
attracting, super attracting, parabolic, a Siegel disk, or a Herman ring. Further-
more, there are finitely many such domains. In the parabolic case, ¢'(p) = 1. The
attracting and parabolic domains both contain infinite forward orbits of critical
points, and the boundaries of rotation domains are contained in the closure of the

forward orbit of the critical points.

Corollary 2.2.4. Suppose every critical point of f is either periodic, attracted
to a periodic cycle or pre-periodic. Then every point in the Fatou set will be

attracted to an attracting or super-attracting periodic cycle.
The following is not stated in [B], but it is a standard result.

Theorem 2.2.5. Suppose every critical point of f is either periodic, attracted
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to an attractive periodic cycle, or pre-periodic. Let W C P! be a closed set
containing the forward orbits of those critical points of f which are either periodic
or attracted to an attractive periodic cycle. ’fhen there an open set U D P — W,
a number p < 1 and a metric u on U such that f~3(U) C U and f . is locally

expanding with respect to u by a factor of at least 1/p.

§2.3. Quadratic polynomials.

Most of definitions and results in this section come from [DH1] and [DH2].

All quadratic polynomials are conjugate by an affine map to one of the form
fe(z) =2 +¢

for some ¢ € C.

Definition. The filled in Julia set of f. is by definition,

Ke:={z| f"(z) /2 00asn — oco}.

K. is closed and the boundary of I is J. := Jy,.

R S e S P

Theorem. K, is connected if and only if 0 € K, and K. is a Cantor set if and

e e

only if 0 ¢ K.

TEPT O

Definition. The Mandelbrot set is by definition

M := {c € C| K is connected }

—{ceC|0ecK.}.
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Theorem. For c in M, there is a unique analytic map
p.:C—D—~C-K,
such that
£olBe(2) = $ulz?) (2.1
for all z € C — D.

Theorem 2.3.1. Suppose ¢ is in M and 0 is periodic, attracted to an attractive

periodic cycle, or pre-periodic under f.. Then 1. extends continuously to

such that (2.1) is also satisfied for z € OD.

Definition. In i, extends as in the previous theorem, we define the Carathéodory
loop

Yo : T — J,
of K, (or of f.) by

7c(t) = 115(:(EXP(75))'
Note that v, is onto J,.

Definition.
R(Ko, 1) = {&c(r Exp(?)) | r € [1,00[} .

Notation. Let Dy be the set of ¢ for which 0 is periodic under f.. Let D; be the

set of ¢ for which 0 is pre-periodic under f.. (We will define D; later).
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Proposition. If ¢ € Dy, then K. # 0 and if ¢ € Dy, then K. = 0.
Proposition. The components of K. are finite or countable.

Proposition 2.3.2. Let ¢ bein Dy. Let 0 be periodic and let Uy be the component
of I, containing 0. For i = 1,2,3,... let U; be the rest of the components of

o]

K. For; = 0,1,2,... let i' be such that f(U;) = Uy. Then there is a unique set

of homeomorphisms

vi: D —T;

for i = 0,1,2,... satisfying the following.

1) Fori=0,
Fe(2)) = u (")
for all z € D.
2) Fori = 1,2,...,

vy =1 . .
('Qbi’) Och’I,[)iz 1d,
3) b, is analytic on U;.
Notation. By definition, the point in U; of internal angle ¢ and radius r is 9(r -

Exp(t)). We let

R(Uj,t) == {fj;i(r -Exp(t)) |r €[0,1]} .
Proposition 2.3.3. Let f = f¢, U, and p be as in theorem 2.2.5. Let V be such

that CZ} . Then any set of the form

R(K,t)NV or RU;t )NV




—
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is of finite length with respect to p.

Definition. For ¢ € Dy U D, we say an arc v in K, is regulated if for all 7, y N U;

is contained in two rays of the form R(U;,t).

Proposition. For ¢ € Dy U D, and for any distinct points ¢ and y in K., there

is a unique regulated arc from z to y which we denote by

[$, y] I(c ‘

Definition. A set X C K, is regularly connected if for all z and y in X,

[3"7 y]}-{c C X‘

The regulated envelope [A] of a set A C I, is the intersection of all regulatedly

connected sets containing A.

Proposition 2.3.4. Let zi1,...,z, be points in K,. The regulated envelope
{z1,...,2n}] of {z1,...,2,} is a finite topological tree.
Remark 2.3.5. All extremities of [{z1,...,z,}] are in {z1,...,zx}.

Definition. For ¢ € DyUDs, the Hubbard tree X g, of f. is the regulated envelope

of the set

{fo(0)|n=0,1,2,...} .

Properties.

1) f(Xm)C Xg..
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2) Xu, — {0} has at most two components and f. is injective on the closure of
each component.

3) fc(0) is an extremity of Xp,.

Notation. The external angles of a point z in J, are the elements of v 1({z}).

Proposition 2.3.6. If z € J. has more than one external angle, some forward

image of z lies on Xp,.

Claim 2.3.7. Let ¢ be in J, and let [z,y] Kk, be the regulated arc joining z to y.

If ¢ has only one external angle, then ¢ is not in the interior of [z,y|k, -

§2.4." The Mandelbrot set.
We defined M in the last section. One can easily see that M is closed.
Definition. A component of M is called hyperbolic if it contains a point of Dy.

Proposition. If M; is a hyperbolic component of M, then for all ¢ in M;, f. has
an attractive or super-attractive periodic cycle other than co. The map ¢; which
maps a ¢ in M; to the eigenvalue of that cycle is an analytic isomorphism of M;

with D. That map extends to a homeomorphism from M; to D.

Definition. With M; and ¢; as above, the point in M; at internal angle ¢t and

radius r is by definition
((f),-)—l (r - Exp(t)).

The point of M; at internal angle 0 and radius 1 is called the root of M;. No

(o]
point is the root of more than one component of M. By definition, D; is the set of
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roots of hyperbolic components of M. The center of M; is by definition the point

in Dy N M;.

Theorem. There is a unique analytic isomorphism
v:6-Do>C-M

such that ¥ is tangent to the identity at co. Hence, M is connected.

Theorem. Ift isin Q/Z, then the curve
r— U(r - Exp(t))

converges to a point yp(t) in M as r — 1. If ¢t has even dynamic denominator,

then yp(t) € Dy. If t has odd dynamic denominator, then yar(t) € Dy.

So fhis defines

vy Q/Z — OM.

Notation. By definition, the external ray of M at angle t is the set
R(M,t) := {T(r - Exp(t)) | r € ]1,00[}.

If t € Q/Z, we say that R(M,t) corresponds to vp(t). If vp(t) € Dy and ¢ is

the center of the component of M of which vp(¢) is the root, then we say that

R(M,t) corresponds to c.

Proposition 2.4.1. Let t € Q/Z — {0} have dynamic denominator 2" — 1 and

let ¢ € Dy correspond to R(M,t). Let z be the root (i.e. the point at internal




—

angle 0 and radius 1) of the component of K, containing f.(0). Then

#rr () =2 and v (vm(t)) = v (2).

Also f2™(0) = 0.

Proposition. Let t € Q/Z have even dynamic denominator. Then

1 (Y () = 77 (2).

| Proposition and Definition. The component of M containing 0 is denoted
{ by My and is called the central cardioid of M. M, is hyperbolic. For every

t € Q/Z — {0}, let ¢; be the point at My-internal angle ¢ and radius 1. M — {¢:}

I
i
{

has two components, one containing 0 and the other which we denote by M; and
call the Iimb of M attached to the central cardioid at internal angle t. We call ¢,

the root of M;.

M=\ | Mt)uaMo.

teQ/Z

Proposition and Definition. The root of a limb is the root of a hyperbolic
component of M. The center of that component is called the star of the limb.
The external rays of M corresponding to the root are said to correspond to the

limb and the star of the limb.

Definition. The fixed points of f, are

(1+£v1—4c)/2.
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If c € [1/4, 0], they are complex conjugates. We can choose a branch of /1 —4c

for ¢ in C ~ [1/4, 00] so that /1 = 1. For those ¢ we let
Be:=(14++V1-4c)/2 and ac:=(1-+v1-4c)/2.

]
Proposition. S. is in J. and is repulsive. For ¢ € My, a. is in K. and is
attractive. For ¢ € OMy, a. is in J. and is neutral. For ¢ € C — (]\Zfo Ull/4, oo]),

a. is in J,. and is repulsive.

Proposition 2.4.2. Let ¢t be in Q/Z — {0} and let 8 and 6’ be the angles of the
external rays of M corresponding to M;. Let the dynamic denominator of ¢ be
2™ — 1. Then for all ¢ € M, with Carathéodory loop 7,
vz Yae) = {2%6,2'6,2%9,...,2" 719}
= {2%¢',2'¢',2%¢',...,2"70"}
and

7:1(60) = {0} .

Proposition 2.4.3. Let ¢ be a star and let [z,y| . be a regulated arc in I{; which

intersects .. Then there exists a neighborhood U of a. in [z,y]y such that
Und.={a.}.

Proposition 2.4.4. Let ¢ be a star and let § be the angle of an external ray of

M corresponding to ¢. The dynamic denominator of 8 can be written 27 — 1. Let

0 := {2%,2'9,2%9,...,2" 714} .
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The Hubbard tree X g, of ¢ is homeomorphic to
Se:={r-Exp(t) | r € [0,1],t € O}
and f: Xy — Xp, is conjugate to
(2 2%): Sg — S,.
Proposition. Let ¢ be a star and let Xy be the Hubbard tree of ¢. Then
X NJ.={a}.

Claim. Points of the form vp(p/(2™)) are dense in OM .

Proposition. If f hasa Carathéodory loop ., then points of the form v.(p/(2™))

are dense in 0K..

Proposition. Points of the form 7,;(p/2™) have only one corresponding external

ray of M.

Proposition 2.4.5. Points of the form ~.(p/2™) have only one external angle.

Caution. In order to minimize the number of sub-sub-sub scripts required, in
later chapters we abuse notation with statements such as “Let f be in Dy”. Of

course, by that we mean, “Let f = f. for some ¢ in Dy.”

§2.5. Thurston’s topological characterization of rational functions.

We shall make heavy use of an algorithm and theorem due to Thurston. We

reproduce here the definitions and statements. For a more complete discussion the




100

reader can consult [Thl], [Th2]|, or [DH3]. Except for slight changes in notation,
this section is taken almost word for word from [DH3].
Let f : S? — S? be an orientation preserving branched covering map. We

will call

Q1= {c| deg,f > 1}

the critical set of f, and

Pr=J Qs

n>0

the post-critical set. The mapping f will be called critically finite if Py is a finite
set.

Clearly there exists a smallest function
vs: Pp— NU{oo}

such that v¢(z) is a multiple of v¢(y) - deg, f for each y € f7'(z). We will say

that the orbifold Of := (S2,v¢) of f is hyperbolic if its Euler characteristic
x(0p)=2- > (1—(1/vs(2)))
zE€Py
satisfies x(Oy) < 0.
Two branched covers f,g : S? — S$? are topologically equivalent (or Thurston

topologically equivalent) if and only if there exist homeomorphisms

8,6': (5%, Ps) — (S%,P,)
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such that the diagram "
(527Pf) — (527Pg)

b L

9
(5%, P5) — (5% Py)
commutes, and 6 is isotopic to 8’ (rel Py).
If v is a simple closed curve on S? — Py, then the set f~!(y) is a union of
disjoint simple closed curves. If ¥ moves continuously, then so does each commponent

of f71(7).

We will need to consider systems

P={71,..,,7n}

of simple, closed, disjoint, non-homotopic, non-peripheral curves on S% — P (v is
non-peripheral if each component S? — « contains at least 2 points of Py). Such a
system will be called a multicurve on S% — Pj.

A multicurve will be called f-stable if for any v € I', all the non-peripheral
components of f7!(v) are homotopic in S% — Ps to elements of T'.

To each f-stable multicurve I' we can associate the Thurston linear transfor-

mation

fr: RV > RT

as follows. Let 7; ;.o be the components of f~!(v;) homotopic to v; in S* — P.

Define

Folm) = (1 dssa )
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where

di,j,oz = deg <f’ Y5 T 7j) .

Yig,

The Thurston transformation commutes with iteration. That is

(f*")r = (fr)™

Since fr has a matrix with non-negative entries, there exists a largest eigen-
value A(T, f) € Ry; the corresponding eigenvector has non-negative entries.

Thurston’s criterion is the following.

Theorem 2.5.1. A critically finite branched map f : S? — S? with hyperbolic
orbifold is topologically equivalent to a rational function if and only if for any
f-stable multicurve T, we have A(T', f) < 1. In that case the rational function is

unique up to conjugation by an automorphism of P!,

Douady and Hubbard completely describe the branched mappings with non-
hyperbolic orbifolds in section 9 of [DH3).

To prove theorem 2.5.1, the basic construction is a mapping o from an ap-
propriate Teichmiiller space to itself. The mapping o will be of interest in its

own right.

Definition. The Teichmiiller space Ty is the Teichmiiller space modeled on

(52, Py).
Remark. The spé,ce T can be constructed as the space of diffeomorphisms

phi: (S, Pf) — P,
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with ¢; and ¢, identified if and only if there exists a Mobius transformation
h: P! — P! such that the diagram
(52,P;) 24 p!

oL

(s2,P;) 2 p!

commutes on Py, and commutes up to isotopy (rel Py)

Proposition. There is an analytic map o5 : Ty — Tj such that if 7 € Ty is

represented by ¢ : (S%,P;) — P!, then 7' := o4(r) can be represented by ¢’ :

(S?, Ps) — P! with

pofo(sH:P - P!
analytic.

Proposition. The mapping f is topologically equivalent to a rational function if

and only if o has a fixed point.
Definition. The Thurston’s method for f starting at 7 is the sequence {a}”(r)}.

The idea of the proof of the “if” part of theorem 2.5.1 is to show that any
Thurston’s method for f converges to the unique fixed point of of. In some
cases, Thurston’s method can be run on a computer. In order to do so, however,

representatives of the o$™(7) must be chosen.

Definition. Given a representative ¢ of some 7 € 7y and ¢ = (go,¢1,¢2) an

ordered triple of distinct points in $%, the Thurston’s method for f normalized at
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g starting at ¢ i1s the unique sequence of diffeomorphisms
. o2 11 i
{an ) S - P }n=0 “

satisfying the following four conditions.

1) ¢n is a representative of o3"(7).

2) ¢o = ¢.

3) fri=¢npofo qﬁ,‘{il is analytic. i

4) qsn(QO) =0, ¢n(‘h) = 0) and ¢n(q2) =1.

We say that the normalized Thurston’s method converges if the ¢, converge (not
necessarily to an injective map). Note that in that case the f, converge to a

rational function called the output.
The following claim follows from the proof of theorem 2.5.1.

Claim. If f has hyperbolic orbifold and is topologically equivalent to a rational
function h, then any normalized Thurston’s method will output a rational function

conjugate to h by a Mo6bius transformation.

We end this section with a useful lemma about the leading eigenvalue of

matrices with non-negative entries.

Lemma 2.5.2. Let A = (a;;) and A" = (a};) be two square matrices of the same
size with a;; > aj; > 0. Then the leading eigenvalue A\ of A is greater than or

equal to the leading eigenvalue \' of A'.

Proof 2.5.2. Let z, (resp. z!,) be the largest entry in A™ (resp. in (4")*). By
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considering Jordan canonical form, one can see that
Tp = kA" + o(A") and  z), =k'(\)" +o((A)")
for some non-zero constants k and %’. Since z, > z/,, for all n, we are done.

End 2.5.2.

§2.6. A parameterization of rational functions of degree two.

Given any rational function g of degree two, we can let h be a Mobius trans-
formation taking one critical point of g to oo, the other critical point to 0, and
one fixed point of g to 1. It is easy to verify that hogoh~?! can be written in the

form

az®+1—a
b224+1-=0b"

gab(z) 1=
Of course g has two critical points and k fixed points for some k € {1,2,3}, so
there will be 2k pairs (a,b) such that g is conjugate by a Mdbius transformation

t0 Ga,b-

We will let
R i={(a,0) € C? | 65"+ (00) = g7 (c0) } -

R » is a one complex dimensional algebraic curve in C2.

We let M R, , be the set of (a,b) € Ry, » such that g:,jb(O) does not approach
the cycle containing forward images of co as 7 tends to infinity.

We let ]\/IRf;%n be the pairs (a,b) € R, such that g, has an attractive

periodic cycle of period k& not containing co. Since that cycle must attract O
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(proposition 2.2.1 and theorem 2.2.3), MR%  C MR, . For every component

U of MRE | the map ¢ : U — D which maps (a,b) to the eigenvalue of the

m,n’

attractive periodic cycle is an isomorphism. The map ¢ extends continuously to

the boundary of U. We call ¢~!(1) the root of U and ¢~1(0) the center.

§2.7. A topological lemma. i

Proposition 8.1.2.1. Let A be a closed annulus, let f : A — A be a homeomor-
phism, and let A be the universal covering space of A. If there is a lift f:A— A
of f which is the identity on the boundary of A, then f is homotopic (rel OA)

through homeomorphisms to the identity.




Chapter 3. Embedding Graphs.

83.1. Definitions.

Definition. An embedding graph (or e-graph) G consists of the following;: |

1) A topological space X which is a finite topological graph (i.e. a finite disjoint
union of closed intervals modulo some indentification of endpoints).

2) A finite subset Vg C X called the vertices containing all points of X which
do not have neighborhoods homeomorphic to an open interval. The connected
components of Xg — Vi are called edges and the set of edges is denoted by
Eg. We require that each edge has two distinct vertices in its closure. Given

a vertex v, the edges incident upon v are by definition members of the set
E% :={e € Eg | v is in the closure of e}.
3) For each vertex v, a cyclic permutation
og: EL — Eg
which is non-trivial unless #E¢& = 1.

Definition. Given an e-graph G, we define the topological space X¢ (called Xg
cut) and an associated quotient map 7 : X — Xg as follows (see figure 3.1. for
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an example). Let e be an edge of G. For each vertex v in €, let away(e,v) be the
orientation of € such that v is encountered first while traversing & consistently with
away(e,v). Also, for each orientation w of €, let tip(e,w) be the vertex encountered
last while traversing € consistently with w. Finally, for each orientation w of €, let
€. be a copy of &, and for each point z € €, let ¥ be the corresponding point in
Eu }:’G is by definition the disjoint union of the €, modulo all identifications of
the form
w away(oy(e),v)

Ve ~ UL ) for v = tip(e,w).

We give X the quotient topology. We let
tg(z?) == z.

It 1s easy to see that mg is closed and hence a quotient map.

The following proposition is clear.

Proposition 3.1.1. The connected components of X defined above are each

homeomorphic to S!.
In order to make definition 3.2.1 below, we need the following proposition.

Proposition 3.1.2. Given a finite topological graph X embedded in an oriented
surface Y, for each point z in X and neighborhood U of z in Y, there is a neigh-
borhood V of @ in Y and an orientation preserving homeomorphism ¢ : V — D

such that
dVnX)={r -Exp(¢t/N)e D |t=0,1,...,N —1}

= the standard N -fold star,
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Figure 3.1. Cut of an embedding graph.
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#(z)y=0,and V CU.
Proof 3.1.2.

Claim 3.1.2.1. We may choose V such that V N X is a topological star with x |

at the center, V is simply connected, and 0V is a Jordan curve.

Proof 3.1.2.1. Choose X' a neighborhood of z in X such that X' is a topo-

logical star with = at the center and X' is connected. Choose X' a neighborhood
of z in X such that X" is a topological star with z at the center, X" is con-
nected, and X" C X'. We can fatten X" sufficiently little to form the desired V.
End 3.1.2.1.

Let N be the number of components of XNV —{z}, and let those components

be labeled Xo,Xq,...,Xn~-1 so that X,1; = 0(X,) where o is the clockwise-

around-z permutation of the X;. Let V,, be the component of V — X having X,

and X471 1n 1ts closure. Let

1
Dn::{r-Exp(t)|%<t<n+

¥ and0<r<1}

and let

R, := {r-Exp(%)|0<r<1}.

Since the V; are simply connected and their boundaries Jordan curves, there are

orientation preserving homeomorphisms %, : D — V,, with 4,(0) = z,

Yo(Exp(n/N)) = X, NoV
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and
Yo(Exp((n +1)/N)) = Xp41 N V.

So ¥, and w41 restricted to R,y are orientation preserving homeomorphisms

onto X,+1. So we may let v, : [0,1] — [0, 1] be such that

Y <’Yn(7') : EXP(R; 1)) = Ynt1 (7" . Exp(n; 1)) :

Let

ta(s) i= (1 —s) (-]7\’7) +s (”;1) :
and let
Yn (7 - Exp(ta(s)) := b (1 — $)7 + s7(r)) - Exp(ta(s)) -
Then ¥p = pt1 on Rpqq and ¢ = ‘Unin is continuous. ¢ := 1! is the map we
seek.

End 3.1.2.
§3.2. Assorted properties.

Definition. Given an e-graph G and an oriented surface Y, an embedding
t: Xg—Y

is an e-graph embedding if the cyclic permutations are those induced by Y
(i.e. 0&(e) = ¢’ implies that o(¢(e)) = ¢(e') where o is the clockwise-around-«(v)

permutation of ((Eg)).

Notation. If :: X — X is an e-graph embedding, by :~! we mean

T Xg) — Xa
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Definition 3.2.1.
Let G be an e-graph, let X& be Xg cut, and let g : Xs — Xg be the
associated quotient map. Given an oriented surface Y and an e-graph embedding
. : Xg — Y, we define the topological space ¥ (called Y cut along (Xg)), a

closed map 7 : VY Y (called the associated quotient map) and an embedding

i: Xg — Y (called the associated embedding) so that the diagram

X & ¥
Xe¢ — Y

cominutes.

The points of ¥ are as follows. For each point y in ¥ — ¢(X¢), there is a
unique point 77! in Y. For each point z¢ in Xg, there is a unique point {(z¥) in

For each point y in Y — L(X ) a basis of neighborhoods of #~*(y) is as follows.
Choose a neighborhood U of y such that UN«(X @) = . A basis of neighborhoods
of 7~(y) is then the sets of the form =~}(W NU) where W is a neighborhood of
Y.

For each point z¥ in X such that z is not a vertex of G, a basis of neigh-
borhoods of i(z¥) is defined as follows. For each neighborhood U of «(z), by
proposition 3.1.2 there is a neighborhood V of «(z) and an orientation preserving

homeomorphism ¢ : V' — D such that ¢(«(z)) = 0,

d((Xe)NV)=¢(enV)=RND,
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and v(s) := (1 — s)(1) + s(—1) traverses R N D consistently with ¢(¢«(w)). Let
W= ¢~ ({z € D | Im(z) < 0})
and let
L:= {zZ’EXG | L(Z)EV}.

Finally, let

Z :=a"Y (W)U iL).

The set of all such Z is a basis of neighborhoods of i(z¥).

For each point v¥ in X such that v = tip(e,w), a basis of neighborhoods of
{(v¥) is defined as follows. For each neighborhood U of «(v), by proposition 3.1.2
there is a neighborhood V of «(v) and an orientation preserving homeomorphism

¢ :V — D such that ¢(c(v)) =0, d(eNV)=RTND, and
H(Xg)NV)={r-Exp({/N)|t=0,1,...,N —1}.

Let

W :=¢ ' {r -Exp(t/N) | N-1<t< N}

and let

L :={z: cXe|uz)e v} U {za‘“”(”u(e)’”) e Xg|uz)e v} .

oy(e)

Finally, let

Z =1 Y W)U i(L).
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The set of all such Z is a basis of neighborhoods of {(v¥).

It is easy to see that 7 is closed and that ¢ is an embedding.

End 3.2.1.

Remark. It is clear from the definition that ¥ is a surface with boundary, and ¢

maps X ¢ homeomorphically onto Y.
Definition. An e-graph G is connected if X is connected.

Proposition 3.2.2. Let G, Xg, ng, Y, t, Y, 7, and i be as in the definition of
Y cut along «(Xg). If G is connected and Y is homeomorphic to S?, then the

connected components of Y are homeomorphic to D.

Proof 3.2.2. Each component of Y — «(X¢g) is of genus 0 and orientable
since it is a subspace of S2. Since X is connected, each component of 5% — (X g)
has one boundary component. So each component of Y is an orientable surface of
genus 0 with boundary homeomorphic to S'. We are done by the classification of

orientable surfaces with boundary. End 3.2.2.

Proposition 3.2.3. Let G be a connected e-graph, and let
ko: Xg—S% and ky1:Xg— S?

be e-graph embeddings. Then there exists a homeomorphism ¢ : S* — S? such

that

¢ 0Ky = Ki.




Proof 3.2.3.

Let Xg be X cut, and let 7g : Xg — Xg be the associated quotient map.
For y = 0,1 let 5'12 be S? cut along kj(Xg), let m; : 512 — S? be the associated

quotient map, and let &; : X — S'J2 be the associated embedding. So we have
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the commutative diagram in figure 3.2.

We will define ¢ : 53 — Sf so that m; o é factors through 7. For each
component Us of 5"8, let & be &0 #5% on dU,. Since &1 is injective, qE(az}O) is the
boundary component of some component U; of Sf By proposition 6.4.1, U, and

U1 are both homeomorphic to D, so we can extend ¢ on U, to a homeomorphism

S3
KO 5'2
o /
Xg —» Xg
K S?
. T
St

Figure 3.2. Commutative diagram.

q?) Uy — U,. Factor m o.qz through 7y to get the desired ¢.

End 3.2.3.
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Theorem 3.2.4. Suppose G is a connected e-graph and ¢; : Xg — S? fort € [0, 1]
is a homotopy through e-graph embeddings. Then there exists a homotopy through
homeomorphims ¢; : S? — S? for t € [0,1] such that ¢o is the identity, and
¢1 019 = t1. Furthermore, if «; is independent of t for some subset X C Xg,
then ¢, can be chosen to be the identity on to(X(;), and ¢; can be chosen to be

the identity on any components of S? — 1o(X¢) which have boundary contained
in o(X§).
Proof 3.2.4.

Let Xg be X cut and let 7g : Xg — X be the associated quotient map.
For each ¢ in [0,1], let S? be $2 cut along :((Xg), let 7; : S — S2 be the
associated quotient map, and let i : X5 — 52 be the associated embedding.

For each component Z of X¢ let Uy(Z) be the component of $2 having i;(Z) as

boundary.

Claim 3.2.4.1. For every t in [0,1], there is an interval T; with ¢ € T; and
homeomorphisms (¢;), : 52 — 52 for t € T} such that

1) (¢3)e0io =1y,

2) ¢+ 0(¢;): is a homotopy, and

3) if{ = 0, then (¢;)o is the identity.

Proof 3.2.4.1.

For each component Z of Xg, we will define ¢; Sepérately on Ug(Z). Let

U, := m(U(Z)) for all ¢ in [0,1]. Choose a point y in the interior of U and a
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tangent vector £ to S% at y. Choose a point 2 in the interior of U; and a tangent
vector ¢ to S% at z. If £ = 0, let z = y and ¢ = £. Let I be an interval about £
small enough so that z is in the interior of U; for all ¢ in 1.

By proposition 3.2.2, Ut(Z) is homeomorphic to D, so for t in I there is a

unique conformal isomorphism
o

Py D—+ interior(Uy(Z))

such that
(ri0)(0) =2 and  (m0%:)'(0) € RY(.
By the Carathéodory Extension Theorem ([Du] p. 12 or [DHI] or [G]) the ¢, can

be continuously extended to a homeomorphism
'l/)t : D — Ut(Z)

By the Carathéodory Convergence Theorem ([Du] p. 76) 7 0 ¢, ,, converge uni-
formly in ¢ on compact subsets of D. The bounds on the modulus of continuity at
a boundary point of D in the proof of that theorem depend only on a bound on
an area and on the modulus of local connectivity of dU;(Z). In our case, we can
malke these bounds independently of £, so ;0 9; is a homotopy. Similarly, we can
let

a:D — Uy(2)

be the unique homeomorphism which is analytic on D with

(mooa)(0) =y a,nd (mo 0 @)'(0) € RHE.
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Let ~;: Z — 7 be given by

Y 1= Zt_l oproatoip

(see-the commutative diagram in figure 3.3).

Tt i Yt
Z —» 7 > 7
) l Zo l l L
D > D
Ty

Figure 3.3. Commutative diagram.

Let 'y : 0D — 0D be given by

I‘t:=a"loloo7t’10l'alooz.

I"; is a homeomorphism, and we can extend it to a homeomorphism Ty : D — D
by radial projection, i.e. by letting

Ty(r - Exp(t)) :=r - Ty(Exp(t)).
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We can now define (¢;); on Up(Z) by

(¢;)t == 0 T,oa™ L

Now let T} be the intersection over all components of X ¢ of the corresponding

I, and let (¢;):) be the union over all components of X¢ of the corresponding (d:)e.

End 3.2.4.1.

Because [0,1] is compact, we can choose tq = 0,%1,%5, ..., %, such that

n

UJTi =001 and T,nT

3

- #@ for :=0,1,2,...,n—1.
=0

For: =0,1,2,...,n—1let s; be in T3, N T} Since each component of 5322 is

i1’

homeomorphic to D, and

(¢i,~)3i = (¢f‘-+1)3; on 053,

we can let n; : [0,1] x S? — S2 be a homotopy (rel 852) through homeomorphisms

between (43, )s;

t

and (43, )s;- The homotopy we seek is

P3, ¥ Mo * Pg KNy Kk Npoy *k Py,

where a * b denotes “first do the homotopy a, then do the homotopy b.”

End 3.2.4.

Supplement 3.2.5. Suppose G is an e-graph and ¢; : Xg — S? fort € [0,1] is a

homotopy through e-graph embeddings. Let X[, be the subset of X upon which it

¢t is independent of time. If each component of S? — 1o(X ) has at most two




ﬁ

120
boundary components and at least one is contained in to(X;), then there exists a
homotopy through homeomorphisms ¢, : S* — S? for t € [0, 1] such that
1) ¢¢ is the identity,
2) ¢ro019 =14 fort €[0,1],
3) ¢, is the identity on to(X};), and

4) ¢, is the identity on any components of S* — 14(Xg) which have boundary

contained in X.

Proof 3.2.5.

We only mention the differences between the proof of this supplement and
the proof of theorem 3.2.4.

Because one boundary component of every component of S? — 1o(Xg) is con-
tained in ¢o(X ), we can choose the points y and z from the proof of claim 3.2.4.1
so that y = zisin U, for all t € [0, 1]. This allows us to get ¢:0¢9 = ¢; for t € [0, 1]
instead of only for t = 1.

Because some of the components of S% — (o(X ) are annuli instead of discs,
the normalization for the corresponding Carathéodory Convergence argument is

different. Let

Ay ={z€ C|1/R: < |z] < R4}

be such that the modulus of A, is the same as that of U;. Choose a

CEQAt
]

tefo,1
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and map A4; to U; conformally so that ¢ maps to y = z.

End 3.2.5.



Chapter 4. Embedding Graph Dynamics.

§4.1. Almost e-graph maps and an associated cut map.

Definition. Given an e-graph G, a continuous map f : Xg — X¢ is an almost

e-graph map if f(Vg) C Vg and f is injective on each edge of G.

Definition. Given e-graphs G and H, we say H is a sub-e-graph of G if
1) Xpg CXg,
2) Vg C Vg, and
3) o} = og restricted to EY.
Clearly, given any closed subspace ¥ of X with 8Y C Vg, there is a sub-e-graph
H of G with Xy =Y. We call such an H, the sub-e-graph of G defined by Y.
To follow the next definition, the reader is encouraged to consult the example

presented in figure 4.1.

Definition. Let G and H be e-graphs. Let Zbea component of Xc;, and let G(Z)
be the e-graph defined by w(Z). Given an almost e-graph map f : Xz — X,
we define f 7 - }:’H as follows. For each edge e in E¢ and orientation w of e
such that €, is in Z, let e, eq,...,€e, and wy,ws,...,w, be such that e; is in Fg,

w; is an orientation of e, and as = traverses & consistently with w, f(z) traverses

122
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f(0)

A1)

fla)

f(2)

£(8)

Figure 4.1. Lift of an almost e-graph map to the cut.
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first €; consistently with w;, then €, consistently with ws, ..., then finally e,
consistently with w,. For each z in e U {tip(e,w)}, let j be such that f(z) is in
e; U {tip(e;,w;)}, We set

f(@) = (F(a))e.
§4.2. The extension criterion.

Definition. Let G and H be connected e-graphs, and let f : Xg — Xy be an
almost e-graph map. For each component Z of X¢, let G(Z) be the e-graph
defined by 7c(Z), let fz be f restricted to 76(Z), and let H(Z) be the e-graph
defined by f Z(ﬂ'c(Z )). We say that f satisfies the extension criterion if for every

component Z of X ¢, we have that fZ A XH(Z) is continuous and injective.

Remark. Note that in the example given in figures 4.1 through 4.4, f » 1s neither
continuous nor injective. See the example in figure 4.2 for an example of an f

which does satisfy the extension criterion.
§4.3. Germs of almost e-graph maps and edge dynamics.

Definition. Given an almost e-graph map f : X¢ — Xy and a vertex v of G, let
U be a neighborhood of v such that for all e € E%, f(e N U) is contained in some
edge which we shall call f¥(e). f”(e) does not depend on the choice of U, so this
allows us to define

f: B — EI™.

fU is called the germ of f at v.
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2 . 1) £(0)

Figure 4.2. Example which satisfies extension criterion, part (a).



XG(ZO)

Figure 4.3. Example which satisfles extension criterion, part (b).




f(0)

X5
G(Z1) ‘YH(ZI)

Figure 4.4. Example which satisfies extension criterion, part (c).




128
Definition. If f: X¢ — Xy is an almost e-graph map, the set of critical points

of f is by definition

Qs :={v e Vg| f* is not injective } .
If G = H, the post-critical set of f is defined as
Ppo={f""(Qy) [n21}.
Note that Py C Vi and is therefore finite.

Definition. Let G and H be e-graphs, f : X¢ — Xy an almost e-graph map, and
w an orientation of each edge of G and H. For each edge e of G, if A:]0,1[ — e

is an orientation preserving parameterization of e, then f o A traverses a sequence

of edges of H (possibly together with some vertices, but we are not interested
in them). That sequence together with a specification for each edge traversed
of whether or not the edge was traversed consistently with its orientation is by
definition the edge dynamics of f with respect to w on e. This data for all edges
e constitutes the edge dynamics of f with respect to w. Note that if we know w
and the edge dynamics of f with respect to w, then we know the edge dynamics
of f with respect to any known orientation of the edges of G and H. So we can,

therefore, refer to this data as simply the edge dynamics of f.

§4.4. Existence and Uniqueness of Corresponding Branched Covers.

Theorem 4.4.1. Suppose G is a connected e-graph. (Existence) Suppose f :

Xg — X is an almost e-graph map which satisfies the extension criterion. If
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¢ : XG — $% is an e-graph embedding, then there is a post-critically finite branched
cover g : S® — S? which is an extension of vo f o ™! and has P, = «(Py).
(Uniqueness) Suppose for j = 0,1 we have that ¢; : Xg — S? and kj : Xg — 2
are e-graph embeddings, g; is a branched cover with Q,. C k;(Vg), and f; =
c;'logjo;cj is an almost e-graph map. If fy and f, have the same edge dynamics and
tj is homotopic to k;j through e-graph embeddings (rel Py, ), then gq is topologically

equivalent to g;. I

Proof 4.4.1. «
Let Xo be Xg cut, and let 7 : Xg — X be the associated quotient map.

Let S? be S? cut along ((Xg), let 7 : §2 — $2 be the associated quotient map,

and let i : Xg — S? be the associated embedding. So we have the following

commutative diagram.

Xc;—L—>52

| |~

Xe — S?

We will define ¢ : 52 — 5% in such a way that g is well defined on the quotient
7(S%) = S?. The absorption of the following definitions might be facilitated by

consulting the commutative diagram in figure 4.5.

For each component U of $? we make the following definitions. Let Z be

the component of X such that U = i(Z). Let G(2), fz, H(Z), and fZ be
as in the definition of the extension criterion. Let ZH( 7 X ) S? be the

restriction of ¢ to Xy zy. Let XH(Z) be Xz cut and let g2y XH(‘Z') = Xz
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Z = [
<\>‘ 4
L‘G(Z) 7r"

i lfz

XH(2) ———— 52
LH(Z)

P-
v A@) \ )

Xz » 52

ZH(Z)

Figure 4.5. Commutative diagram.

be the associated quotient map. Let g?[(é’) be S? cut along ‘H(Z")(XH(Z))’ let

P 52(2) — S? be the associated quotient map, and let ZH(Z’) : XH(Z) — 512:1(2)

be the associated embedding.
Claim 4.4.1.1. fZ maps Z homeomorphically onto a component of XH(Z)-

Proof 4.4.1.1. By hypothesis, fZ is continuous and injective. Since XH(Z) is
Hausdorff, f 5 maps Z homeomorphically onto f Z(Z ). So f Z(Z ) is homeomorphic
to S! and is a subset of a component of X H(Z) which is itself homeomorphic to

S1. So f3(Z) equals that component. End 4.4.1.1.

By claim 4.4.1.1 we can let W be the component of 5?1(2) with OW =




- e ——— R S R R
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LH(Z)(fZ(Z)) By proposition 3.2.2, W and U are homeomorphic to D. Also,
ZH(Z) o] fZ [} (Z Z)—l

1s a homeomorphism mapping AU to W, so we may extend it to a homeomorphism

9 U — W. The union of the
Pogy: U— 82

factors through = giving g : $? — S2.
Clearly g is surjective, a local homeomorphism at exactly S? — «(Qy) and of i

finite degree. So g is a branched cover and P, = ((Py) [ref A. and R. Douady].

This ends the proof of existence. The proof of uniqueness rests upon the

following lemma, proved for me by A. Douady.

U
Lemma 4.4.1.2. Let V C S? and suppose there exist continuous maps ¢ : D — U

and v : D — U such that ¢ : D — U and ¢ : D — U are homeomorphisms and ¢

and 1 are not constant on any arc of 0D. Let

= (9,) "+ 4,)

So he : D — D is such that ) o hg = ¢. Suppose there exists an orientation

preserving homeomorphism hy : 9D — QD such that Yohy = ¢. Let h := hy U hs.

Then h is continuous.
Proof 4.4.1.2.

Claim 4.4.1.2.1. hg extends to a continuous map h=hsUh;.
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Proof 4.4.1.2.1.

Lemma 4.4.1.2.1.1. (Carathéodory) Suppose ¢ : D — S? is continuous inducing
a homeomorphism ( : D — U, and that ( is not constant on any arc of dD.

Suppose B, is a decreasing sequence of connected sets in D with diam({(B,)) — 0.

Then diam(B,) — 0.

Proof 4.4.1.2.1.1. Without loss of generality, replace all B, by their closure.

So by compactness,

diam(NB,) = lim diam(B,,).

NB, is connected because it is a decreasing intersection of connected compact sets.

¢(NB,) C N¢(By), and since the ((B,) are compact,

! diam N {(B,) = lim diam({(B,) =0,

so {(NB,,) contains only one point. If NB, (D # §, we are done since ( restricted
to D is a homeomorphism onto U. Otherwise, we are done since ( is not constant
on any arc of 0D. End 4.4.1.2.1.1.

We now define k1. Let t be a point in 8D. Let
Ac:={zeD||z—t <e}.
Because ¢ is continuous,
diam(¢(A)) - 0 as e—0.
¢(Ae) = ¥(h2(4e)), so

diam(¥(ho(Ae)) = 0 as e— 0.



133

Also, ha(A¢) is connected. So
diam(h2(Ac)) -0 as e—0

by lemma 4.4.1.2.1.1, and we can let

ha(t) = (] ha(Ao).

e—0

It is straightforward to check that h := ko U k; is continuous.

End 4.4.1.2.1.

We now must show that hy = k. Let v := hyo0 R7!. We will show that v is the
identity. izl is a homeomorphism since by reversing the roles of ¢ and ¥ we can
define A7, Also, k; is orientation preserving since hq is. So v is an orientation
preserving homeomorphism.

For all z € 0D, ¢(v(z)) = é(z). Suppose for some g,

v(Exp(to)) # Exp(to).

Since 7 is an orientation preserving homeomorphism, there is an ¢ > 0 such that
+ t—19 < e implies y(Exp(t)) is in the component of D — {Exp(to), v(Exp(t9))} not
containing t. For all ¢ € (¢,%¢ + €), since ¢ is injective on D and ¢(y(Exp(t))) =
¢(Exp(t)), we get that ¢(Exp(t)) = ¢(Exp(to)) (see figure 4.6). But this contra-
dicts the hypothesis that ¢ is not constant on any arc of OD.

End 4.4.1.2.
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#(0)° S(Exp(te)) =

¢(v(Exp(t0)))

8(Ry)

Figure 4.6. Use of hypothesis of not constant on any arc.
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Before proving uniqueness, we make two simplifications. First, by theo-
rem 3.2.4, there exist ¢; : S? — S? such that ¢;0x; = ¢; and t; is homotopic (rel
#;(Py; )) to the identity through homeomorphisms. So we may assume ¢; = &;.
Second, by proposition 3.2.3 there exists a homeomorphism ¢ : S? — 52 such that
@ 0 Ko = Kj. SO we may assume Kg = K1 =: K.

We will construct a homeomorphism 8 : $2 — S? such that go = g1 0 8 and ,
g is isotopic to the identity (rel Py,). For each component U of S* — k(Xg), g;
restricted to U is a homeomorphism onto its image because Qg N U = § and U

is homeomorphic to D by proposition 3.2.2. So we can let § := g;'0g, on U.

Since f; is an almost e-graph map, for each edge e in Eg, g; restricted to x(e) is

a homeomorphism onto its image, so we can let § := g;' 0 go on x(e). We let 8 be

the identity on x(Vg). It is easy to check that 6 is a homeomorphism.
Since the edge dynamics of fy equals that of f1, k and 8 o k are isotopic (rel

Vi ). By theorem 3.2.4 we can extend that to an isotopy from 6 to some 6’ which

is the identity on «(Xg).

By proposition 3.2.2, for each component U of $? — k(X G) there exists a

continuous orientation preserving ¢ : D — U such that ¢ restricted to D is a

homeomorphism onto U. By lemma 4.4.1.2 there is a continuous map 6:D —D

such that ¢ 0§ = 6’ o0 ¢, and § is the identity on 8D. By Alexander Shrinking
we can isotope 6 to the identity, and carry that isotopy through ¢ to an isotopy
between ' and the identity.

End 4.4.1.
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84.5. e-graph maps.

Definition. Given a cyclic permutation ¢ of a finite set E and some subset Eg of
E, then the restriction of o to Ey is defined by e — ¢°"(e) where n is the smallest

integer greater than 0 with o°™(e) € Eyq.

Definition. Suppose f : X — Xy is an almost e-graph map. For every vertex v
of G , let f¥ be the germ of f at v. We say that f respects the cyclic permutations ;
if for every vertex v of G, and for every subset E of E¢ upon which f? is injective,
we have

goo f'=f"oay,

where o 1s a{{(v) restricted to fY(E) and oy is o restricted to E.

Definition. An almost e-graph map is an e-graph map if it respects the cyclic il

permutations.

Definition. Let G be an e-graph and v a vertex of G. A map ¢ : E¢ — T is said 1

to respect the cyclic permutations if for every e in E%,

16(e), $(eg(e))[ N ¢(Eg) = 0.

Definition. Let f: X — Xy be an e-graph map. Let v be a vertex of G and let

f? be the germ of f at v. f? is said to be quadratic if there are maps ¢ : Eg — T

and ¢ : Egv) — T which respect the cyclic permutations and are such that

¢(f7(e)) = 2- do(e)

for all e in E&.
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Proposition 4.5.1. Suppose the following.
1) f: Xg — Xpy is an e-graph map.
2) Xg is a loop L with trees attached.
3) f(Xg) is a tree.
4) There exist distinct vertices vy and vy in L such that f* and f* are quadratic
and f is injective on each component of L — {vg,v1}.

Then f satisfies the extension criterion.

Proof 4.5.1.

Let Ly and L; be the two components of L — {vp,v;}. Because f(X¢g) is a
tree and because f is injective on Ly and on Li, we have that f(L) is the unique
line segment S joining f(vo) to f(vy) in f(Xg).

Let Xg be Xg cut, and let 7 : Xg — X be the associated quotient map.
For each component Z of Xg, we have that ﬂg(Z ) is L with trees attached on
only on side (see figure 4.7). We call those trees the subtrees of Tg(Z).

For v = vg,v;, we have that f¥ maps the two edges in E% N L to the single
edge in Egv) NS. So, since f? is quadratic and f(Xg) is a tree, f is injective on
those subtrees of 7g(Z) attached to L at v.

So, since f is injective on each component of L — {vg,v;} and since f respects
the cyclic permutations, we have that f merely collapses L to S leaving the reset
of m¢(Z) unaltered (see figure 4.8).

End 4.5.1.
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—

Figure 4.7. Loop with trees attached on only one side.

S

Figure 4.8. Collapse of loop with trees attached on only one side.




Chapter 5. Quadratic Trees.

§5.1. Introduction and Definition

Quadratic trees are a kind of abstract Hubbard tree. Every Hubbard tree

defines a quadratic tree, but not conversely.

Definition. A triple (H, f,z¢) is a Quadratic tree if it satisfies the following:
1) H is a connected e-graph.
2) Xy is a tree (i.e. has no closed loops).
3) zo € VH.
4) zo has at most two incident edges.
5) f:Xm — Xpg is an e-graph map.
6) f is injective on the closure of each component of Xy — {zo}.

7) The set of vertices of H with only one incident edge is contained in
{f**(zo) In 2 0}.

§5.2. Existence and Uniqueness of Corresponding Branched Covers.

Theorem 5.2.1. Let (H, f,z¢) be a quadratic tree. (Existence) There is an e-

graph embedding « : Xy — S* and a branched cover g : §* — S? of degree two
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which is an extension of 1o f o:™! with one critical point at «(zo) and the other
critical point fixed in S? — (X y). (Uniqueness) Suppose for j = 0,1 we have that
i; 1 Xg — S? and k; : Xg — S? are e-graph embeddings, gj : S — S? isa
branched cover of degree two with one critical point at «j(z) and the other fixed

in S® — (,j(XH)Urj(XH)), and fj:= 17  0gjok; is an almost e-graph map. If f,

and f; have the same edge dynamics and ¢; is homotopic to k; through e-graph

; embeddings (rel Py, ), then go is topologically equivalent to g;.

Proof 5.2.1.
Notation. Given two points yo and y; in a topological tree X, denote by [y, y1]x

the intersection of all connected subsets of X containing {yo,y1}. Note that if

Yo # Y1, then [yo,y1]x is homeomorphic to [0, 1].
Notation. Let

zi = f°(z).
Notation. Let U be the component of

XH — {ICO}

!
not containing z; if it exists and the empty set otherwise.

Lemma 5.2.1.1. f is surjective.

Proof 5.2.1.1. f(Xp) is connected and contains all the vertices of H with

one incident edge. End 5.2.1.1.
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Lemma 5.2.1.2. There is a point b € U U {z¢} and a point b’ € f~*({b}) such
that
1) zo € [b,b']xy and
2) fHIf(B), b)xy — {F(ONNT =0.
Proof 5.2.1.2.

IfU =0, let b:= z¢ and let b’ be the unique inverse image of 5. Otherwise,

define B; inductively by

B() = [.’I)Q, $1]XH

and

By = f7HB) O (U U {z}).

Note that

BiN Biy1 = f({z0}) N (U U {zo}). (6.1)

So B := | B; is homeomorphic to an interval and so is B, the closure of B in Xg.

Let b be the endpoint of B not equal to zj.

Case. There exists 1 > 0 with B; = {.

Then f(b) # b but by construction

FTHU @), bxy = {f(NNTU =1

So b has no inverse image in U. So by lemma 5.2.1.1, we can let ' be the inverse

image of bin Xy — U and 1) is satisfied.
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Case. There does not exist 1 with B; = {.

Then by (5.1), b is the limit of a sequence of inverse images and is therefore
fixed. Thus 2) in the statement of lemma 5.2.1.2 is satisfied. By 7) of the definition
of a quadratic tree, we can let j be smallest such that z; is a forward image of g

which is not in the component of Xy — {b} containing z1. Then

be f([zo,zj-1lx4)
and
[zo,2zj—1]xy NU = 0.

So if we let b’ be the inverse image of b in [zg,z;_1)x,, then b isin Xy — U and
1) is satisfied.

End 5.2.1.2.
We now construct an embedding graph G and an embedding graph map
fG . X G — .X G

such that H is a sub embedding graph of G and fg is an extension of f. To form
X¢, append to Xy a new vertex which we shall call yo and two edges e and e’.

Let € join b to yo and €’ join &' to yg. Let
fo:Xe — Xg

fix yo, map e injectively onto the interior of [f(b),yo](xs—e), and map e’ injec-
tively onto e. If necessary, make b and b' into vertices so that fg respects cyclic

permutations.

!
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Claim 5.2.1.3. fo satisfies the extension criterion.

Proof 5.2.1.3.

Let W and W' be the components of

X —{zo,v0}

containing e and e’ respectively. By 2) of lemma 5.2.1.2, fg is injective on W and
on W',

X is a loop L containing e U e’ U {yo} with trees attached. By 1) of
lemma 5.2.1.2, L contains {zo}. The edge ¢’ has no inverse image, so fg(X¢g)
is a tree. fg is injective on L N W and on L N W'. Clearly, % and f¥% are
quadratic. So by proposition 4.5.1 we are done.

End 5.2.1.3.

Since Xy is a tree, there is an e-graph embedding
¢ Xy — S?,

and S% — (X ) is homeomorphic to D. So we can extend ¢ to eUe’ U {yg}. So
we get the existence of the branched cover ¢ in the statement of this theorem by

claim 5.2.1.3 and theorem 4.4.1.

(Uniqueness) By theorem 4.4.1, we only need extend ¢y, ¢1, kg, and £; to X¢
so that for y = 0,1 we have
1) Qg Ck;(Va),

2) the extended f; are almost e-graph maps with the same edge dynamics, and
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3) ¢; is homotopic to «; through e-graph embeddings ( rel Py, ).
For 7 = 0,1, we will only describe the images under ¢; and «; of e and €.

Actually specifying ¢; and «; is trivial but a nuisance.
Notation. Denote by oo the fixed critical point of g; in
S? — (¢j(Xg)U k(X H))-
Case. f;(b) =0.
Let ¢j(e) and ¢j(e') be disjoint curves in
S% —;(Xn)

such that ¢;(e) joins ¢;(b) to oo, ¢j(e") joins ¢;(b") to oo, and ¢; is still an embedding

graph embedding. We can let x;(e) be the component of g;"l(t ;j(e)) which begins (
at x;(b) and ends at co. We can let xj(e') be the other component of gj—l(cj(e)).

So k;(e') joins x;(b") to co.

Case. f;(b) #b.

By 2) of lemma 5.2.1.2 there is a component E of

g5 (ei(1£5(0), bl x — {£3(B)}))
such that x;(b) € E and
ENncij(Xm)=0.
E is homeomorphic to a half open interval. Let «;(e) be E together with a curve
jolning

Eng;(e5(8))
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to oo In
52 - (KJ(XH) @] E)
Then if we let ¢j(e) equal g;(x;(e)), we get that L;»'l 0 gj 0 k; maps e injectively

onto
[£3(8), yol(xg—eny — {£i(0)}

as does fj. Now let ¢j(e') be any curve joining ¢;(b') to co in
S = (15(Xm) U (e))-

Let xj(e') be the component of g;!(¢;(e)) which joins «;(b") to oco.

In both cases it is clear from the local nature of g; that ¢; and «; are still e-
graph embeddings and 15! 0gg0 g is an e-graph map with the same edge dynamics
as 171 0g1 0k Also, . ; 1s homotopic to «; through embedding graph embeddings
(rel Py, ) since ¢ Xu is homotopic to & X through embedding graph embeddings
(xel Py,),

ti(eUe )N (Xp) =10,

and

ki{eUe)Nkj(Xg)=0.

End 5.2.1.




Chapter 6. Mating.

§6.1. Non-intimate mating

Notation. Given a branched cover f : $? — 52, we will let Q be the set of
critical points of f, P{l; be the set of periodic critical points of f, and P; be the

post-critical set of f.

Notation. We let

C:=CU{oo-Exp(t)|te T},

where a basis of open neighborhoods of co - Exp(tg) are the sets of the form
{r-Exp(t) | r€]R,0], t € Jto —€,t0 + €[}

Definition. Given two critically finite quadratic polynomials fq and fy, we define
the non-intimate mating of fo with f; as follows. For ¢ = 0,1 let K; := Ky, and
let

g@i:é—D—-)é—-I{,’
be the unique continuous map such that

~

Fi(#i2)) = (%)

146
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for all z € C — D and ; restricted to C — D is an analytic isomorphism onto

C — K; (see section 2.3). Let
$;:C—-D—C K,
be defined by ¥; := z@,- on C— D, and

i (oo - Exp(t)) := oo - Exp(t).
Note that %; is continuous. Now let
§2:= (CUE)/ ~
where

o (00 - Exp(t)) ~ 11 (oo - Exp(—t)).

Note that S% is homeomorphic to S?. We define f : % — S% by

f —— {fz on -{_{i;
= 1 (i(r - Exp(t)) = :(r - Exp(2t))) on C — K.

The branched cover f: S?c — szc is called the non-intimate mating of fy with f;.
The following definition and theorem show that if a non-intimate mating is
topologically equivalent to a rational function, then that rational function is a

good deal more intimate than the non-intimate mating.

Notation If f: SJ% — SJ% is the non-intimate mating of fo with fi, we let

R#(t) = {o(r - Exp(t) | r € [1,00]} U {¢h1(r - Exp(—1)) | 7 € [L,00]} .
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Theorem 6.1.1. (Analytic is very intimate) If

f:S}—>S§

is a non-intimate mating and

g: P! - P!
is analytic and topologically equivalent to f, then there exists a continuous

$: 5% — P!

satisfying the following:

1) ¢ is surjective.

2) pof=god.
3) ¢~1(P1—J,) = (f(o U 11-’1).

(o] [
4) ¢ is injective and analytic on <K0 U K1>.

5) For eacht € T, ¢ is constant on R¢(t).

6) ¢ is a uniform limit of homeomorphism having properties 1) and 2). {
!

We will prove theorem 6.1.1 below in section 6.8.

§6.2. Historical notes on the definition of mating.

There are quite a few definitions of mating floating around, and we do not
know all we would like about their relationship. Discovering this has been some-

what painful, so we present what we know to save others the pain.
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Definition. Given quadratic polynomials fy and f; having Carathéodory loops
~o and v; respectively, algebraic fo, f1-equivalence is the equivalence relation gen-
erated by the following two equivalence relations.
1) s ~ tif and only if vo(s) = ~o(2).

2) s ~ tif and only if v1(—3s) = y1(—1). /

Definition. Given quadratic polynomials fy and f; having Carathéodory loops,
fo, fi-equivalence is the smallest equivalence relation the graph of which contains
the closure of the graph of algebraic fy, f1-equivalence.

Douady first defined mating as follows.

Definition. Given quadratic polynomials fy; and f; having Carathéodory loops

~vo and v respectively and filled in Julia sets Ky and K; respectively, let
= K II IX’l/ ~,

where yo(t) ~ v1(—t). fo and f; define a map f: ¥ — . If f is conjugate to a
rational function by a map analytic on K¢ and K, then that rational function

is the mating of fo with f;.

If algebraic fy, fi-equivalence and fy, fi-equivalence are not the same, then &
is not homeomorphic to S?. We therefore thought the following definition would

be useful.

Definition. Given quadratic polynomials fy; and f; having Carathéodory loops

vo and ~; respectively and filled in Julia sets Ify and K; respectively, let

ZI = I{() I I\’l/ ~,
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where vo(t) ~ y1(—t) and 7o(t) ~ vo(s) if t and s are fy, fi-equivalent. f; and
f1 define a map f : &' — X', If f is conjugate to a rational function by a map

[} o
analytic on K and K;, then that rational function is the intimate mating of fo

Wlth fl .

\ We had hoped that the fibers of the map ¢ of theorem 6.1.1 would be either

) points in K¢ U K or sets of the form

U »s®)

teP

for some fy, fi-equivalence class P. Since ¢ is a uniform limit of homeomorphisms,

¢ is cell-like. So by 5) of theorem 6.1.1, any set of the form

| U »s@)

tepP

for some fy, fi-equivalence class P must be contained in a fiber of ¢, but we were
unable to find a reason why there could be at most one such set per fiber. So
the rational function topologically equivalent to the non-intimate mating might

be even more intimate than even the intimate mating.

§6.3. Essential topological equivalence and very intimate mating.

Unfortunately, topological equivalence to the non-intimate mating seems to
be too strong a notion to encompass all the rational functions which seem in some

sense to be matings.

Example. Let f; be the polynomial corresponding to the external ray of M of

angle 1/7 and let f; be the polynomial on the boundary of M at exterior angle
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3/14. Let f be the non-intimate mating of fo with fi. Let yo be the critical point

of fi and let
yi i= 1 (yo)-

The ray R(1/7) has one endpoint at y3, R(2/7) has one endpoint at y4, and R(4/7)
has one endpoint at ys. On the other hand, R(1/7), R(2/7), and R(4/7) all have

their other endpoint at the fixed point « of fy. Let
R:=R(1/T)UR(2/TYUR(4/T).

One component of f~!(R) is R. The other has empty intersection with Pf. So the

boundary of a thin neighborhood of R is an f-stable multi-curve with eigenvalue

1.

For many such examples, however, we have run on a computer a normal-
ized Thurston’s method for the non-intimate mating. Every time, the normalized

Thurston’s method seemed to converge with output a rational function of degree

two (Levy noticed this independently [L]). In addition, the output is reasonable
“in following sense. Let fo and f; be the two quadratic polynomials such that their

non-intimate mating f is not topologically equivalent to a rational function, but

a normalized Thurston’s method converges outputting some rational function g
of degree two. Now let h, be a sequence of polynomials approaching f; in A
such that the non-intimate mating of fo with A, is topologically equivalent to a

rational function g,. Then the g, always seem to approach ¢g. This motivates the

following somewhat unsatisfactory definition.
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Definition. A critically finite branched cover f : §2 — S? of degree d is es-
sentially topologically equivalent to a rational function ¢ if some normalized

Thurston’s method for f converges outputting g and g is of degree d.

Remarks.

1) This definition is unsatisfactory in the sense that it should be topological, but
we believe this will come in due course. We also believe theorem 6.1.1 holds
for essential topological equivalence and that a proof can be found based upon
showing that the slow mating pictures (such as figures 1.5, 1.7, 1.35 and 1.37)
converge.

2) As mentioned in section 2.5, f is topologically equivalent to a rational function

g only if o has a fixed point 7 € T; with representatives ¢ and ¢’ such that

g=dofo(s)

In that case, any normalized Thurston’s method for f starting at ¢ will be the
sequence {¢,} with ¢ ofqu;_}_l = ¢ for all n. So f is essentially topologically
equivalent to g.

3) As mentioned in section 2.5, if the orbifold of f is hyperbolic and f is topo-
logically equivalent to some rational function ¢, then any Thurston’s method
for f converges to the unique fixed point of of. So any normalized Thurston’s
method for f which converges will output a function which is conjugate to g
by a Mobius transformation.

4) Aside from what we said in 3), we do not know to what extent the output of
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a normalized Thurston’s method depends on its starting point.
5) If the Thurston’s methods for f starting at ¢ and normalized at ¢ and at ¢

converge, then their outputs are conjugate by a Mobius transformation.
We now present our favorite notion of mating,.

Definition. If the non-intimate mating of fy with f; is essentially topologically

equivalent to a rational function ¢, then ¢ is a very intimate mating of fo with fi.

§6.4. Who mates with whom?

Douady and Hubbard noticed that matings as defined in [D] do not exist
between polynomials from conjugate limbs of M. The following translates their

proof to our context.

Proposition 6.4.1. If fy and f; are in conjugate limbs of M, then the non-

intimate mating of fy with fi is not topologically equivalent to a rational function.

Proof 6.4.1.
Let f be the non-intimate mating of fy with f; and let 6 and 6’ be the exterior
rays of M associated to the limb containing fo. Then R(6) and R ¢(6") both go

from the fixed point a of fy to the fixed point « of f;. (See figure 6.1.) Let
C:=Rs(6) UR(6".

Let 70 := C if neither of the fixed points a are post-critical and C slightly pulled

back off & towards the critical values otherwise. Let I'' be all the inverse images
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of 4. Since 7¢ is formed essentially from external rays, the curves in I do not
intersect essentially. So there are finitely many non-peripheral curves in I''. So we
may let T" be the f-stable multicurve generated by ~o.
It is easy to see that there are curves v1,72,...,¥n—1 (where 2” — 1 is the
dynamic denominator of ) in I' such that -; covers 7¥it1(mod ») Once under f.
So the matrix of I' has a diagonal square with eigenvalue 1. So by lemma 2.5.2
the matrix of I' has eigenvalue greater than or equal to 1. So we are done by

theorem 2.5.1.

End 6.4.1.

Conjecture. If fy and f; are in conjugate limbs of M, then the very intimate

mating of fy with f1 does not exist.
Douady and Hubbard also conjectured the converse.

Conjecture 6.4.2. If fy and f, are not in conjugate limbs of M, then the very

intimate mating of fo with f, exists.

This conjecture seems very hard to prove, but Levy [L] and Tan [T] have
partial results. There is rumor that Mary Rees may have proved some version
of this conjecture. Strong confirmation of the conjecture comes from parameter

space computer drawings such as those presented in the introduction.

§6.5. Mutilated Mandelbrot sets in parameter space.

Recall that M, is the limb of M attached to the central cardioid of A at
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interior angle §. Let fo be in (Dy U D2) N My and let m and n be smallest such

that
£E(0) = £5m(0)
Let MR, » be as in section 2.6.

Conjecture 6.5.1. There is a continuous map
pi:(M—-—M_p) - MR, ,

such that p(f1) is the very intimate mating of fo with f; for f; € Dy U D, and for
those f1 in M — M_4 with an attractive periodic cycle (other than oo), p( f1) has

an attractive periodic cycle of the same period and with the same eigenvalue.

The evidence for this comes mainly from computer drawn parameter space
pictures such as those presented in the introduction, but Douady has suggested a

plan for proof of some partial results.

§6.6. Please don’t be too intimate.

Before proving theorem 6.1.1, we state a conjecture we will need in the section

on shared matings.

Conjecture 6.6.1. Let f : S} — S% be the non-intimate mating of fo with f;
and suppose f is topologically equivalent to a rational function. Let ¢ be as in
theorem 6.1.1. If a fiber of ¢ contains Rys(to) for to € Q/Z, then that fiber is

exactly

U Rs®)

teP
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where P is the fq, f1-equivalence class of ty.

We have never seen the kind of convolution one would expect to see in a
computer drawing of the dynamical plane of a counter example. Also, Douady

thinks it is true.

§6.8. Proof of theorem 6.1.1.

The main ideas in this proof are to be found in the work of Posdronasvili

([DH] Exposé VI).

Proposition 6.8.1. Let f,g:S? — S? be critically finite branched covers of de-

gree two which are topologically equivalent. That is, there exist homeomorphisms
80,1 : (5%, Py) — (5%, Py)

such that

I’) ¢pof=go¢y, and

2’) ¢q is homotopic to ¢} through homeomorphisms ¢, t € [0,1], fixed on Py.
Suppose that for every x € PQy of period n, there exists a neighborhood F
of the orbit of z and a neighborhood G, of the orbit of ¢y(z) = ¢}(z) such
that f restricted to F. and g restricted to G, are analytic. Then there exists

homeomorphisms
¢0)¢1 : (527Pf) - (Sz,Pg)
and a neighborhood F, of the orbit of x such that

1) ¢00f:g0¢17
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2) ¢o is homotopic to ¢1 through homeomorphisms ¢, t € [0,1] fixed on Py,

3) fOI'tE[O,]_], $o = ¢¢+ = ¢1 on U F,, and
.’EEPQ}

4) fort € [0,1], ¢o = ¢ = ¢y is analyticon |J F;.
:cGPQf

Proof 6.8.1.

Let zo be the unique critical point of f in F}, and let z,, := f°™(z). Define
Ym similarly for g. In light of theorem 2.2.2 there is a real number s with 0 < s < 1,
neighborhoods U,, of z,,, neighborhoods W, of y,,, and analytic isomorphisms
Y i Dg = Uy and €, : Uy — W, such that

@b;ﬁ*.l ofo, = (€m+1 0 7/)m+1)__1 cgo (£m+1 o ¢m+1)
: for m=0 (6.1)

= (Z — 22)
: and

m1 0 Fotm = (Emy10Pme1) 090 (Emy1 0 Pmai1)
for m=1,2,...,n-1.
= identity

(6.2)

Choose real numbers ¢ and r such that 0 < ¢ < r < s and

U #i(¥m(8D,)) N ém(pm(8Dg2)) =0 for m=0,1,...,n—1. (6.3)
t€[0,1)
For 7in T, let R;: Dy — D, be given by

R.(z) = z - Exp(T).

We let ¥ be the class of homeomorphisms ¢ : $2 — S? such that

c=¢f on S?—Untm(D,), (6.4)
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and
c=6mo(PmoR, o9 t) on $nu(Dp) for some 1, €T. (6.5)

We now define a continuous map T : & — R™ as follows. Intuitively, T(o) is

how much one would have to unwind ¢ to get some fixed oy. Formally, let
A:=D,— D,

let

A:={z¢€ C|log(¢®) <Re(z) <logr},

and let 7 : A — A be given by 7(z) = e*. So 7 : A — A is a universal covering

map. By equations (6.4) and (6.5), for each ¢ in I, we can let A,,(c): A — A be
given by
Am(0) = (Emohm) oo othy,.

By equation (6.4), Am(o) is the identity on dD,. Let Am(c) : A — A be the lift

of Ap(0) which is the identity on 771(0D,). We let
Tm(0) ;= m'® component of T(c)

= 5ot (o)) los(e))

All 0 in ¥ are isotopic ( rel Py ) to ¢y. So we can let & be the unique

homeomorphism from S? to S? such that
go f =go g.

By equation (6.4),

F=¢7 on S%—Untbm(D,).
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By theorem 2.2.2,
G=Emo (¢m oR;z, o ¢;,1) on tYm(Dg) forsome e T.

By supplement 3.2.5 and equation (6.3), there is an L(o) in ¥ such that L(o)
is homotopic to & through homeomorphisms fixed on Um¥m(Dg2). If we can
produce a o such that L(o) is homotopic to o through homeomorphisms fixed on
Um®m(Dy2), we would be done. By proposition 2.7.1 it is sufficient that T'(¢) =
T(L())-

By supplement 3.2.5, T is surjective. Let ¢ be such that T(¢) = 0. Then for

all o in X,
T(o) =z = T(L(0)) = Az + T(L(00)),
where )
0 3
10
A= 1 0
1 0

Let b:= T(L(oy)).

Since T is surjective, we need only show that (z — Az + b) has a fixed point.

Claim 6.8.1.1. There is a norm on R™ with respect to which the norm of A is

less than one.

Proof 6.8.1.1. The eigenvalues of A are the n distinct roots of A" —
(=1)*(1/2) = 0. If we use the magnitude of the coordinates with respect to

the basis of eigenvectors, then the norm of A is (1/2)". (In fact, the infimum of
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norms of a matrix is always the norm of the largest eigenvalue, but we do not need
this general fact here.) End 6.8.1.1.

So there is a sufficiently large ball in R™ which is mapped to itself by (z —
Az + b). So we are done by the Brouwer fixed point theorem.

End 6.8.1.

By the definition of topological equivalence there exist homeomorphisms
¢'t : (S%,Pf) —r (Pl,Pg)

for t = 0,1 such that ¢y o f = go ¢} and a homotopy @ : S?c x [0,1] — P! from
¢q to ¢} through homeomorphisms fixed on Pj.

Let P := PN <I°{0 U 19\'1> Every point in P (resp. ¢4(P) = ¢{(P)) lies in
the orbit of a periodic critical point of f (resp. g). Since f (resp. g) is analytic
on on’o U I\?l(resp. P1), for every n > 0 there is a neighborhood of the orbit of
every periodic critical point of period n on which f°" (resp. ¢°") is analytically
conjugate to z +— z2. Let F' (resp. G') be the union of those neighborhoods
of the orbits of the periodic critical points of f (resp. g). Since the distance
from @ (SJ% - F’,t) to ¢o(P) = ¢7(P) is continuous in ¢, we can choose F' small
enough so that &) (S’fp — F', [0, 1]) CcG.

"Proposition 6.8.1 now gives us the existence for n = 0 of

1) homeomorphisms ¢, drnt1 : (S},Pf) — (Pl,Pg) such that ¢p,o0f = godnyy,
2) a homotopy @, : Sjﬁ x [0,1] — P! from ¢, to ¢,+1 through homeomorphisms

fixed on Py, and
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3) a neighborhood F' of the orbits of the periodic critical points of f such that
3a) for z € F and t € [0,1], ¢n(z) = ®,(2,t) = dpya1(z), and
3b) ¢, is analytic on f~"(F).

Having defined ¢,, ¢n+1, and @, as above for n = ng, we wish to do so for
n = ng + 1

Indeed, since ¢ is homotopic to ¢n,+1 through homeomorphisms fixing Py,

(#0)y = (Pno+1),

as isomorphisms mapping 7 (S% ~ f(Qf)> to 71 (P! — g(y)). The existence of
$1 shows that (¢o), satisfies the lifting criterion, so too, therefore, does (¢ny+1),-

So we can lift ¢, 41 to dpny42. Similarly, we can lift ®,, to $,,41.

Claim 6.8.2. For z € f~(™*+)(F) and t € [0, 1],

¢no+1($) = (I)no—i-l(w’t) = ¢no+2(‘r)'

Proof 6.8.2. By the induction hypothesis, for ¢t € [0, 1],

Gno(f(2)) = By (f(2),1) = Gnos1(f(2)) =1 v
So
B pota(z,t) € g7 ({¥}).

But ¢7'({y}) is a discrete set and ®,,1;(z,t) is a continuous function of ¢.

End 6.8.2.
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Clearly ¢n,41 is analytic on f~(Re+D(F).
By theorem 2.2.5, there exists a neighborhood U of J,, a metric ¢ on U, and
p < 1, such that
1) g7 (U)cU.
2) g is locally expanding with respect to u by a factor of at least 1/p.

3) ¢n (S}—F) CUforalln>0.
Claim 6.8.3. The ¢, converge uniformly.

Proof 6.8.3.
Since ¢n = ¢ny1 on F' U Py, we only have to show that the ¢, converge
uniformly on §% — (F'U Py).

Let A, ; be the path defined by
An,z(t) 1= @n(z,t).
S0 Ap,; starts at ¢,(z) and ends at ¢,41(z). Note that by the definition of @,
An,f(z) = 9 O An+tl,z-
Also note that if z ¢ Py, then
An,z([0,1]) N Py =10

since

%, (Ps,[0,1]) = P,.
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For x ¢ F'U Py, let A, ; be the set of differentiable paths in U — P, which are

path homotopic to A, , in P! — P;. Since A, ; # 0, we may let
en(z) :=Inf {{,(A) | A€ An}.
Claim 6.8.3.1. e +1(2) < p- e (f(2)).

Proof 6.8.3.1.

For € > 0, let A € A, (4 be such that :

(A) S en(f(2)) + e

We may lift the path homotopy between A, ¢(;) and X to a path homotopy between
An+1,z and some other path, say \. Since g is analytic, X is differentiable. Since
¢g~Y(U) C U, the image of X is contained in U. Since g(P,) C P,, the path
homotopy between A and Apyq ; liesin P — P,. So X € Apyy ..
Since go A = )\,
L(3) < - LA,

So

ent1(2) < L(V) < p-1,(A) S p-(enlf(2)) + ).
Now let € — 0.

End 6.8.3.1.

Since ¢n = ¢ny1 on Py, if g € Py, then ey(z) — 0 as  — 2¢. So we may

continuously extend e, to equal zero on Py, and claim 6.8.3.1 still holds. So

sup{en(:v)\:vesjzc—F}Sp"-sup{eo(w)leS;’;—F},
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with the supremum on the right hand side being finite since eq is continuous and
5? — F 1s compact. Since the usual metric on the sphere is at most a constant
times p, we are done.

End 6.8.3.

Let ¢ be the limit of the ¢,. ¢ is surjective since it is the uniform limit of

surjective maps on a compact space. It is also clear that ¢o f =go ¢.

Claim 6.8.4. For alln > 0,

67 (n(F TN = FTHEF)

and
¢ =¢n on f_n(F)'

Proof 6.8.4. Since ¢pim = ¢ on f~*(F) for m > 0,
= bn=bntm (6.6)
on f~™(F). Since the ¢nim are injective,
mtm($n(fTH(EF))) = fT(F) (6.7)
for m > 0. Since ¢,(f1(F)) 1s open, equations (6.7) and (6.6) imply that
87 (a(fTH(F)) = fTHE).

End 6.8.4.
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Claim. (]S_I(Pl - Jg> :I(() U Ii—l.

Proof. By corollary 2.2.4,

J 97" (¢o(F)) =P~ 7.

n=0

Since g~ (¢o(F)) = ¢(f~(F)),

[eo]

U ¢=(s7(F)) =P* = J,.

n==0

So by claim 6.8.4,

6T P =T = | FT(E).

n=0

Again by corollary 2.2.4,

G FE) =Ko UKy . (6.8)

n=0
End.

Claim. ¢ is injective on Ky U K.
Proof. Let z,y €K U K1 with ¢(z) = #(y). By equation (6.8), we can

choose n large enough so that z and y are in f~"(F). By claim 6.8.4,

$u(z) = d(z) = ¢(y) = dnly)-

Since the ¢, are injective, z = y. End.

é is analytic on Ko U K1 by claim 6.8.4 since ¢, is analytic on f~"(F).

Claim 6.8.5. For each t € T, ¢ is constant on R ¢(t).
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Proof 6.8.5.
Let
A= U R g(t).
teT

Define the continuous surjection @ : [—1,1] x T — A by
i (;I;Exp(t)) if r > 0;
a(r,t) :=
¥y (+Exp(—t)) ifr <0.
Let the path A, be given by A, (s) := a(sr,t).
Let A, - be the set of differentiable paths which are path homotopic in ¢,(4)

to ¢n 0 Ar . Since A, r¢ # 0, we may let
/ en(r,t) :==1Inf {{,(A) | A € An,rt}.

Claim 6.8.5.1. eny1(7,t) < p-en(r, 2t).

Proof 6.8.5.1.

Let € > 0 and let A € A, r2: be such that [,(X) < e,(r,2¢) + ¢). Since

¢nof=go¢n+l

and f : A — A is a covering space, ¢ : ¢p41(4) = ¢,(A) is a covering space
and we may lift the path homotopy in ¢,(A4) between ¢, 0 A, 2: and A to a path
homotopy in ¢,41(A) between ¢,41 0 Ar; and some other path, say X. So Aisin

Apt1re Since go X =,

(R < p- LY.
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So

ens1(r1) < Lu(8) < p- LX) < p- (en(r, 20) + ).

Letting € — 0 we are done.

End 6.8.5.1.

By induction,

en(r,t) < p" - eo(r,2™).

Since eg is continuous and [—1,1] x T is compact,
sup {eo(r,t) | r € [-1,1],t € T} < oo.
So en(r,t) — 0 as n — co. That is

dy (¢n(a(r,t)), dn(a(0,t))) — 0 as n — 0o.

End 6.8.5.



Chapter 7. Thurston’s Mating Criterion.

§7.1. Definitions

Definition. If f : $2 — S? is a branched cover of degree two and A is a closed
path in S? — f(§) which separates the critical values of f, then there is a unique
path A in S — f=1(F(Q)) such that f o\ = (s = A(2s)). We call X the double

Iift of A by f.

Definition. Let f : S — 52 be a critically finite branched cover of degree two
and let K be a compact subset of S%. A simple closed path A in S? — (PUK) is
an equator of f in the complement of K if

1) X separates the orbits of the two critical points, and

2) X is homotopic to \ in §2 — (Ps U K), where X is the double lift of \ by f.

The following claim follows directly from supplement 3.2.5.

Claim 7.1.1. Let f : S — S? be a branched cover of degree two. Let K be
a compact subset of S? having two components and containing the orbits of the
two critical points of f. If X is an equator of f in the complement of K, then
there is a homeomorphism 0, ;i : S? — S? homotopic to the identity through
homeomorphisms fixed on Py U I such that ) g o X =\

169
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Notation. Let fa g := fo 9;1}‘
The following four items are obvious.

1) fax=fon K.

2) fa,k is topologically equivalent to f.

3) fa,xkoA={(sm A(2s)).

4) The quotient space obtained from S? by mapping the image of A to a single
point is homeomorphic to two spheres joined at a point. fy x is well defined
on the quotient and maps each topological sphere to itself as a branched
map of degree two with the image of A being a fixed critical point. Call the

restriction of fi x to the i*" topological sphere fx ;.

§7.2. Thurston’s mating criterion.
The following theorem is due to Thurston.

Theorem 7.2.1. If f : S? — S? is a critically finite branched cover of degree
two which is topologically equivalent to a rational function and X is an equator of
f in the complement of some compact K, then fy i ; is topologically equivalent
to some quadratic polynomial h; for ¢+ = 0,1. Furthermore, f is topologically

equivalent to the non-intimate mating of hg with hy.

Proof 7.2.1.
Suppose fi, k,; were not topologically equivalent to a rational function. Then
by theorem 2.5.1, there would be an f) g ;-stable multicurve T' with eigenvalue

greater than or equal to one. But then I" would also be an fj g-stable multicurve



m

171
with eigenvalue greater than or equal to one, contradicting the fact that fy i is
topologically equivalent to f.
So fi, K, is topologically equivalent to some rational function of degree two.
That rational function has a fixed critical point, so it is conjugate to a quadratic
polynomial h;. Let h : S2 — S? be the non-intimate mating of hy with h;. Recall

the notation that

sp=(CTC)/ ~
where
(00 - Exp(t)) ~ ¥1(co - Exp(—1)).
Call {po(c0 - Exp(t)) | t € T} C S? the equator of S;. Since fi k,; is topologically
equivalent to h;, there are obvious homeomorphisms

b0, #1 : (S7 — equator, Py) — (P! —image()), Py)

such that

dooh = frx o

and ¢ is homotopic to ¢; through homeomorphisms fixing Pj.
It may not be possible to extend the ¢; continuously to the equator of S, so

we do the following. Let A be a closed annulus in S — P}, containing the equator.

Let

B = ¢o(A) U image(N).
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Let ¢p : S? — S? be a homeomorphism mapping A onto B and equal to ¢o on
S2— A. Now,

h:h71(4) = A
and
fax: fix(B)— B
are covering maps of degree two, so we can let
¢1:h7H(A) = Fix(B)
be a lift of ¢ which agrees with ¢; on 0A. Extend ¢} by setting it equal to ¢; on

S2 — h71(A).

¢} is a homeomorphism and is homotopic to ¢{ through homeomorphisms fixed
on P, by supplement 3.2.5.

End 7.2.1.



Chapter 8. Captures.

§8.1. Definition.

Let fo be in Dy U D,. Let zg be the critical point 0 of fy and let

z; = foi(xo).

Definition. A periodic or pre-periodic point y in K5, not equal to z; and not in
the interior of the Hubbard tree of fy is called a capture site of f;.
Let y; be a capture site of fy. Let y{ and yg§ be the inverse images of y; under

fo,and for:=2,3,... let
Yi = J“'”(yl).
Let
X ={z;11=0,1,2,...},
and let
Yi={yi|i=1,23,...3U{yo90}) — X.
X and Y are finite sets, so if we let X{; be the regular envelope in K¢ of X UY,

then X is a finite topological tree (proposition 2.3.4).

Claim 8.1.1. y, and y{ are extremities of X,.
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Proof 8.1.1.

For p e X UY, let n(p) be the number of edges of X, incident upon p. From

" the local behavior of fj, we get that for p # =z,

n(p) < n(fo(p))- (8.1)

If one

y €Y — (X U{ypu0})

is an extremity of X, then we are done by (8.1). So suppose all

yeY ~(XU{v,v0})

are not extremities of X(;. Let X be the Hubbard tree of fy. Neither yj nor y{
is in the interior of Xy, because if so, by the local nature of fy, y; would be in
the interior of Xy (recall that y; # ;). So suppose y; is not an extremity of X¢,.
Then yg and y§ must be in the same component of X — {zo}, contradicting the
fact that fq is injective on each component of X, — {z¢}.

End 8.1.1.

Now let X be X with yg and yg identified to a single point we shall call yo.
We form the embedding graph G with topological space X¢g as follows. Let the
vertices of G be the projection of X UY together with any points in X ¢ not having
a neighborhood homeomorphic to an interval. For all vertices other than yq, let

the cyclic permutation of the incident edges be that induced by the embedding of
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X[ in P, Let 0 be the unique (by claim 8.1.1) non-trivial permutation of E.

Obviously

fo: Xe— Xg
factors through the projection to X¢g giving
f:Xe— Xg
an almost e-graph map.
Theorem 8.1.2. (Existence) There is an e-graph embedding
(i Xg— 5?
and a branched cover
g:5% - 52
of degree two which is an extension of 1 o f o ¢~} with one critical point at ¢(z;)
and the other at ¢(yo). (Uniqueness) Suppose for j = 0,1 we have that ¢; : Xg —

5% and k; : Xg — S? are e-graph embeddings, g; : S* — S? is a branched

cover of degree two with the critical point at kj(zo) and the other at k;(y,), and

fi= c;-'l 0 g; 0 k; is an almost e-graph map. If fo and fi have the same edge

dynamics and ¢; is homotopic to r; through e-graph embeddings ( rel Py, ), then

go Is topologically equivalent to g;.

Proof 8.1.2.

(Existence)

Claim 8.1.2.1. f: X — X respects boundaries.
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Proof 8.1.2.1.

Let €' (resp. €") be the unique (by claim 8.1.1) edge of X incident upon y),
(resp. yg ). By claim 8.1.1, y{, and yg are extremities of X (. So the only possible
inverse image under f : X§ — X{; of yg or yg is a forward 'image of y;. So at least
one of yg or yg has no inverse image under f : X — X(. So at least one of ¢’ or
e¢'’ has no inverse image under f. So f(Xg) is a tree.

f is injective on the components of X — {zg,yo} containing e’ and ¢’ respec-
tively, and X ¢ is a loop with trees attached. Clearly fX° and f*' are quadratic.
So we are done by proposition 4.5.1.

End 8.1.2.1.

Since X is a tree embeddable in S$? with two extremities identified, there is
an e-graph embedding ¢ : Xg — S2%. So we get the existence of the branched cover
g by claim 8.1.2.1 and theorem 4.4.1.

(Uniqueness) Uniqueness follows immediately from theorem 4.4.1.

End 8.1.2.
Theorem 8.1.2 allows us to make the following definitions.

Definition. The branched cover g given by theorem 8.1.2 is the topological cap-

ture at y; by fo.

Definition. If a rational function is essentially topologically equivalent to the

topological capture at y; by fo, we say that rational function is the capture at ¥

by fo.
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Definition The tree X is called the tree of the capture at y; by fo.

§8.2. At where are there captures?

Definition. Let fo be in (Do U D;) N L where L is some limb of M. Let 6 and
8" be the angles of the external rays of M corresponding to L. Let a be the fixed

point « of fy. Then

R(Kg,,0)UR(Ky,,0)U{0,a} =:C

is a simple closed curve. Let U be the connected component of P! — C containing

the critical value. Then the mutilated filled in Julia set of fg is

]VfI‘ffo = I{fo - U

If fois z > 22, then we let

MKy, = Ky,.

Proposition 8.2.1. Let fy be in Dy U D, and let y; be a capture site of fo. If
y1 is not in M Ky,, then the topological capture at y; by fo is not topologically

equivalent to a rational function.

Proof 8.2.1.
Let z1, XF, ¢, and f, be as in the definition of the topological capture at y;
by fo. Let & € X correspond to the fixed point « of fy, and suppose there are k

edges of X incident upon a.
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Claim 8.2.1.1. There are k connected components of Xr — {a}.

Proof 8.2.1.1. Let —a be the inverse image of a other than «. Since
y1 ¢ MKy, the segment in X joining y; to the Hubbard tree intersects the
Hubbard tree at some point p in [21, 0] x,-{y,} (recall that ; is an extremity of
the Hubbard tree). So the segments joining yo to the Hubbard tree intersect the
Hubbard tree in [a, —a] x - {y,}- S0 no two components of Xr —{,yo} are joined

by adding yo. End 8.2.1.1.

Let Wy (resp. Wj) be the component of Xr — {a} containing {z¢} (resp.
{z1}). f permutes the edges incident upon a and is injective on all components
of Xz — {a} other than W, so we can let W; be the component of Xp — {a}

containing {z;} for j =2,3,...,k— 1.

Let A be a small enough neighborhood of «(a) so that AN«(Vp) = {¢(a)} (see
figure 8.1). Forj =0,1,2,...,k-1, let y; be a simple closed curve in (5’2 - L(KF))U

A with 4; N ((KF) a single point in AN W;. v; isin §? — Py,.

Since y; ¢ MKy, y1 € Wi. Since f maps W; injectively onto Wji1(med &)
forj =1,2,...,k—1,y; € W and y; # zj for y = 0,1,2,...,k — 1. So the v;
are not peripheral, and none separate the critical values of f,. So 7t (v;) has two
components each mapping to 7; with degree one. This means that 7;_1(mod )
is isotopic (rel Py,) tvone of the inverse images of <;, and no two v; for j =

0,1,2,...,k — 1 intersect.
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Figure 8.1. Capture not equivalent to a rational function.
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Now consider all the curves in
oo
I':= ] ().

n=0
Suppose two curves v,v' € I'" were to intersect. Let n be large enough so that
fe™(y) and f°(v') are both in {yo, 71, .., vk—1}. But f°?(v) and f°"(y") intersect
contradicting the fact that no two +; intersect for j = 0,1,2,...,k—1. So no two
curves in I intersect. So if we let I" be the non-peripheral curves in I/, then T
is finite. So I' is an f-stable multicurve with a sub-block of its matrix having
eigenvalue 1. So by lemma 2.5.2 and theorem 2.5.1 we are done.

End 8.2.1.
Proposition 8.2.1 suggests the following conjecture.

Conjecture. Let fy be in Dy U Dy and let y; be a capture site of fy. If y1 is not

in MKy, then the capture at y; by f, does not exist.

Conjecture. Let fy bein DoUD; and let y; be a capture site of fo. Ify, € M Ky,

then the capture at yy by fo exists.

§8.3. Mutilated gutted filled in Julia sets in parameter space.

Definition. For fy € Dy U D,, the guts of the filled in Julia set of fy is the
Hubbard tree of fy together with the components of the interior of Ky, which
intersect the Hubbard tree. We denote the guts of the filled in Julia set of fy by

GI{fO'
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Conjgcture. Suppose fo is in Dy U Da. Let m and n be smallest such that
£3mE(0) = £5™(0):
Then there is a continuous map
p:MKp —GKfy — Rpn

satisfying the following.

1) Ify; € MKy, — GKjy, is a pre-periodic capture site of fo, then u(y1) is the
capture at y; by f.

2) Ify1 € MKy, — GKjy, is a periodic capture site of fo of period k, then p(y:)
is the root of the component of M Rﬁz,n having the capture at y; by fy as
center.

3) If fo is in Dy and y; € MKy — GKy, lands in the component of the interior
.of Ky, containing 0 for the first time after k applications of fy at interior
angle 6 and radius r, then g,(,,)(0) lands in the component of P! — gty

containing oo for the first time after k applications of g,,, ) at interior angle

8 and radius r.

§8.4. Matings in parameter space of mutilated Mandelbrot sets with mutilated

gutted filled in Julia sets.

So far we have conjectured that given some quadratic polynomial fo, there
will be in parameter space a mutilated Mandelbrot set of matings with fy and a

mutilated gutted filled in Julia set of captures by f,. The following theorem says
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that if they are there, then for ¢t € Q/Z with dynamic denominator of the form
2™ or 2" — 1 they sew according to the rule y/(t) sews to vk, (—t) as discussed
in the introduction. Recall from section 2.4 that points of the form vas(¢) (resp.
Yx,,(—t)) for t € Q/Z with dynamic denominator of the form 2™ are dense in the

boundary of M (resp. Ky,).

Theorem 8.4.1. Let f4 bein DyUD,. Let fy be either in Dy or on the boundary of
M with corresponding external ray of diadic angle 1. Let vy be the Carathéodory -
loop of fy. If vo(—84) is a capture site of f,, then the non-intimate mating of f,

with f1 is topologically equivalent to the topological capture at yo(—81) by fo.
Theorem 8.4.1 will be proved below.

Remark. We believe that theorem 8.4.1 could be proved for all f; € Do U Dy if

we had a good topological definition of essential topological equivalence.

Proposition 8.4.2. Let fy and fy be in DoUDs, let 81 be the angle of an external
ray of M corresponding to f1, and let vy be the Carathéodory loop of fo. Suppose
fo and f1 satisfy the following.
1) vo(—01) is a capture site of fy.
.2) All points if the form f3’(vo(—61)) are extremities of the tree of the capture
at vo(61) by fo.
3) The orbit of y9(—0,) under fy has the same number of points as the orbit of
the critical value of f;.

Then the non-intimate mating of f, with f, is topologically equivalent to the
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topological capture at vyo(—61) by fo.

Proof 8.4.2.

Let ¢ : ng — S’g be the non-intimate mating of fy, with f;. Let yo € 5'3
be the critical point of f; and let y; := f2%(yo) = ¢°*(yo). Consider the tree of
the capture at yo(—8;) by fo as it sits in Ky of 53. For: = 1,2,3,..., extend
that tree by adding on the rays 729(——2("_1)91), the points y1, and if f; € Dy, the
internal rays of I-ox’l going from ~;(20°"16;) to y;. Also add in the rays R,(61/2)
and R,((61/2)+(1/2)), the point yo, and if f1 € Dy, the internal rays of on’l going
from v1(61/2) and v1((61/2) + (1/2)) to y3. Call this new graph X,.

Conditions 2) and 3) in the statement of the proposition imply that X, is
homeomorphic to the graph Xr as defined in the definition of captures (recall that
the inverse images of vo(—61) are always extremities of the tree of the capture).
Make X, into an embedding graph in the obvious way, and then g : X; — X has
the same edge dynamics as f : Xp — Xp of the definition of captures. We are
therefore done by the uniqueness part of theorem 8.1.2.

End 8.4.2.

Proof 8.4.1.

Let z¢ be the critical point of f; and let zy := f°*(zo). Let y; = v0(61) and

let y; := f°(=Y(y;). Finally, let X be the tree of the capture at y; by fo.

Claim 8.4.1.1. For:=1,2,3,..., the y; have only one external angle.



184

Proof 8.4.1.1.

Suppose some y; has two or more external angles. If 8; is diadic, this contra-
dicts fact 2.4.5. So suppose f; is in Dy. So 6 is periodic under angle doubling,
and so y; is periodic under fo.

Let X g be the Hubbard tree of fo. Since y; has at least two external angles,

by fact 2.3.6, some forward image of y; is in Xg.

Claim 8.4.1.1.1. Neither y; nor any forward image of y; equals z.

Proof 8.4.1.1.1. Suppose one did. If fy is in Dy, then since y; is periodic,
y1 would be in the interior of K, (proposition 2.2.1). If f, is in Dy, then y;, and

hence y;, would not be periodic. End 8.4.1.1.1.

Claim 8.4.1.1.2. No forward image of y; is in the interior of Xg.

Proof 8.4.1.1.2. Suppose one were. Since by claim 8.4.1.1.1 no forward
image of y; equals zg, all forward images after the one in X g would be in the
interior of Xg. But y; is periodic. So y; would be in the interior of Xg. But y1

is a capture site. End 8.4.1.1.2.

So some forward image of y; is an extremity of Xg. The extremities of Xy
are among the z; (remark 2.3.5). Since y; is periodic and the z; are forward
invariant, y; is some zy, for ¢ = 1,2,3,.... So X(; is the regular envelope of the
z1’s and one other point (namely that inverse image of y; which is not in the orbit

of y1). So by claim 8.4.1.1.2, fo(y;) is an extremity of X(,. Since y; # o, this
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contradicts the fact that fy is a local homeomorphism at points other than zg.

End 8.4.1.1.

Part 1) of the hypothesis of proposition 8.4.2 is satisfied by hypothesis. Part
2) is satisfied by claim 8.4.1.1.

Part 3) is satisfied if 6, is diadic because all points with a diadic external
angle have only one external angle (fact 2.4.5). If the dynamic denominator of
6, is of the form 2" — 1, the orbit of the critical value of f; contains n points
(proposition 2.4.1). On the other hand, by claim 8.4.1.1 the orbit of y; has n
points.

End 8.4.1.




Chapter 9. Calculating the Identifications Induced

by the Carathéodory Loop.

§9.1. Definitions and Statements.

Let 6 € Q/Z and let ¢ € Dy U D; correspond to . Let y:=v, . Fort €T
we define an object, &(t), which can be effectively computed for ¢t € Q/Z, such
that

&(t1) = &(t2) = (1) =(t2).

Let 6; := £ and 6, := & + 1.

Let gg be the dynamic denominator of 6.

Given a partition w : T — S, we define the associated sequence
O(t) 1= w(2°),w(2),w(2%), ... .

Of course, if t is rational, then &(t) repeats after some point and so is actually a

finite object.
Case. ¢ € Ds:

Let n: T — {0,1,2} be given by

n(t) =1 iftelb,b;

2 otherwise.

186
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Let

Ty:={t € T [~(t) =0}.

Proposition 9.1.1.
Ty = {t € Q/Z | dynamic denominator of 2t = ¢4 and 7(2t) = 7(8)} .

Proposition 9.1.1 is proved below.

Let
0 ifteTp;
€(t):=91 iftelf,b[—To;
2 otherwise .
Case. ¢ € Dy:

Let 4 : T — {1,2} and n- : T — {1,2} be given by

L if ¢ 6]91,92] ;
T+ {2 otherwise .

pi= {1 it € [0y,00] ;
- 2 otherwise .

Let
Ty :={p/qe | 75(p/q6) = 15(#)} and

T_ :={p/qs | 1=(p/q6) = 7=(6)} .
Let ¢’ be the unique angle such that v, (8") = v ,,(6) and 6' # 6.

Proposition 9.1.2.
T — {0} #0 < 0" > 6.

T--{0}#0 < 0' <.
Proposition 9.1.2 is proved below.

Let

€= Nt lf91>9,
= 6 <.
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Theorem 9.1.3. (Douady - Hubbard)
é(t1) = &(t2) <= v(t1) = v(t2).
Theorem 9.1.3 is proved below.

Remark. Propositions 9.1.1 and 9.1.2 give an effective way to compute e. In fact,
Pierre Lavaurs has proved that there is anther way to determine if §' > 6 [La).
His method is probably usually less computationally expensive than that given by

proposition 9.1.2, but we will not discuss this any further.

§9.2. Proofs.

If ¢ € Dy, let n be the period of 0. For & = 1,2, ...,n let Uy be the component
of I, containing P,°*(0). As stated in proposition 2.3.2, there are unique analytic
isomorphisms %y : D — Uy, such that ¢py; = Pooy for k=1,2,...,n — 1 and

Pe(9n(2)) = 1(2?). Let
Ri(t) := {¢x (re*™) | r €]0,1[} .
As in figure 9.1 let
Lo = R(K¢61)U{7(61)} URL(0)U {0} URA(1/2) U {7(02)} UR(K,, ).
If ¢ € Dy, then as in figure 9.2, let
Lo i= R(K e, 6:) U {0} UR(Ko, 62).

Two points zy and z; are said to be on the same side of Lo if zg,21 €

C — Ly = zy and z; are in the same component of C — Lg.
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Figure 9.1. Definition of Ly for ¢ €. D,.

Figure 9.2. Definition of Lg for ¢ € D,.
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Theorem 9.2.1. If a partition w has the property that w(t1) = w(tz) = (1)

and «(t,) are on the same side of Lg, then

G(t1) = (t2) = v(t1) = 7(t2).

Proof 9.2.1.
As in theorem 2.2.5, we define a neighborhood U of J. and a metric on U

with respect to which P, is expanding by a factor > p > 1.

Definition. A path in U, v, joining zo to 2z is called admissible if no lift under
P.°F of v is forced to cross Lo ( i.e. for k =1,2,... and for all 5 € P, *({z})
there is a lift 7 of v under P.°* such that 7 begins at 75 and 7 ends at a point on
the same side of Ly as zp. Of course, once we have specified that 7 begins at 2,

v is completely determined unless v passes through the critical value. ).

Lemma 9.2.1.1. There exists lnax such that any two points in J, can be joined

by an admissible path of length less than or equal to lyax.

Before proving lemma 9.2.1.1, we show how it can be used to prove theorem

9.2.1.

Suppose @(t;) = @(t2) but v(t1) # v(t2). Let N be large enough so that

N
(%) L < it {I(0) |  joins 7(t1) to 7(t2)}

By claim 9.2.1.1 we can let vy be an admissible path of length < [ joining
PN (4(t1)) to P.°Y (y(ty)). For k= N,N —1,N —2,...,1 we inductively define

vi_1 as follows. Having defined an admissible vy joining P.°*(v(#1)) to P.°*(y(t2)),
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we can let v be the lift of v} beginning at Pc°(k_1)(7(t1)) such that v;—1 begins

and ends on the same side of Ly. By hypothesis
¥(2871) = P (y(1y))

and

¥(2F2) = PP (4(8))

are on the same side of Lo. So vg_; ends at P.°* 7V (4(¢3)). Since v is admissible,
so too is vi_;y.
So vg € {v | v joins y(¢;) to ¥(t2)}, contradicting the fact that by the expan-

siveness of P,
1\" 1\V
l(vo) < (;) H{vp) < (;) Imax < Inf {{(v) | v joins v(t1) to ¥(t2)}.

Proof 9.2.1.1.
Let «v(¢1) and v(¢2) be two points in J. with ¢; < t3. By theorem 2.3.1we can
let

%:C—-D— C-K,

be the unique analytic map such that 1¥(c0) = oo, ¥'(c0) = 1, and ¥(z?) =
f(#(z)). Let R be such that C :=¢(0Dg) C U.

Consider the path from «(t1) to v(t2) given as follows. Follow R(K,,t1) out
from J, until hitting C. Follow C counter-clockwise until hitting R(K,,t2). Then

follow R(IK,,ts) into J.. This path may fail to be admissible precisely because it
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Crosses
o .
L P (Ly).
i=1
But
S .
U PcoJ(LO)
j=1

is a finite union of sets of the form R(K,,270) where j > 0. The path crosses each
R(K.,276) at most once. We remove these finitely many crossings by adding the
following detours.

If ¢ € D,, stop at the point of crossing and then follow R(K,,276) into J,

(see figure 9.3). Then follow R(K.,276) back out to the point of crossing (see

figure 9.4).

Figure 9.3. Construction of admissible path for ¢ € D,, part (a).



Figure 9.4. Construction of admissible path for ¢ € D,, part (b).

For ¢ € Dy, as for ¢ € D,, follow R(Kc,2j9) into J.. But then follow
R;+1(0) in towards P.°*1(0), stopping at some point t;.1(r) where 7 is such
that ¥(0D,;) C U for k = 1,2,...,n. Follow ¢¥;4+1(8D;) once around clockwise
(see figure 9.5). Then follow R;41(0) back out to J, and follow R(K,,276) back
out to the point of crossing (see figure 9.6).

Clearly the original path is of finite length. The detours are of finite length
by proposition 2.3.3. The detours introduce no new crossings, so the new path is
admissible and of finite length. We can let [, be the sum of the lengths of all
the possible detours plus a bound on the length of the original path.

End 9.2.1.1 and 9.2.1.

Proof 9.1.3 (=). The partition ¢ satisfies the hypothesis of theorem 9.2.1
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Figure 9.5. Construction of admissible path for ¢ € Dy, part (a).

Figure 9.6. Construction of admissible path for ¢ € Dy, part (b).
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because external rays do not cross. End 9.1.3 (=).
Proof 9.1.3 («).

Obviously we are done if we can show that

Y(t1) = v(t2) = €(t1) = e(t2).

Case. 7(t;) € C — Ly:

If 4(t;) is in the same component of C — Ly as is v(0), then €(t;) = 2.

Otherwise €(t;) = 1.
) Case. 7(t;) € Lo and ¢ € Dy:
1 By definition €(t;) = 0.
/ Case. «(t;) € Ly and ¢ € Dy:

We assume 6’ > 6 and v(t;) = y(62). The other three cases are proved in the
K same way.

Let 8} := & and 8} := £ + 1. We have ¢ €9,6'[ = v(¢) # 1(6). So
t € 182,05 = 7(t) # 7(62). (9.1)
Now, v(63) = 7(61), so
t € [62,1] U [0,61] = 7(t) # v(2). (9.2)

So (9.1) and (9.2) give t € Ty = ~(¢) # v(62). So t; and ty are in T.

End 9.1.3 («).
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Proof 9.1.1. In light of theorem 9.1.3,

Ty = {t € Q/Z | dynamic denominator of 2t = g4 and é(2t) = &(9)}.

The dynamic denominator of any ¢ € Ty is 2¢y, so

{t € Q/Z | dynamic denominator of 2¢t = go} N Tp = 0.

So
To = {t € Q/Z | dynamic denominator of 2¢t = gy and &(2t) = &(4)}
= {t € Q/Z | dynamic denominator of 2t = g5 and 7(2t) = 1(9)}.
End 9.1.1.
Proof 9.1.2.

Suppose 8' > 6. Then ny = e. So by theorem 9.1.3, 8' € Ty — {8}. To show

that T_ — {8} = 0 we note that n_ satisfies the hypothesis of theorem 9.2.1, so

T-C{teT|y()=~(0)}.

So by theorem 9.1.3, if n is the period of 8 and ~(t) = (), then ¢2""18) =

e(2"71t). But 2"t ¢ {6,,02} and 2710 € {6;, 6.}, so
1-(2718) = e(2771) = (27716) £ (2",

So in fact T = {6}.
Similarly, 6' < 0 = (6' € T- — {6} and T = {6}).

End 9.1.2.



Chapter 10. Stars.

§10.1. Addresses.

Definition. Let A be a star and let p be an inverse image of the fixed point «
of h. We denote by o, the clockwise-around-p permutation of the internal rays of

K}, incident upon p.

Claim 10.1.1. If ¢ € J, has more than one external angle, then ¢ is an inverse

image of a.

Proof 10.1.1. By fact 2.3.6, some forward image of ¢ is in the Hubbard tree
of h. So we are done by claim 2.3.7. End 10.1.1.
Definition 10.1.2.

Let h be the star corresponding to the exterior ray of M at angle 6. Let p be
a point in Jp. We define the address of p as follows.

Let [a,p]f, be the regulated arc joining the fixed point « of k to p, and let

P = [o,plx, NJr—{p}.

Claim 10.1.2.1.
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Proof 10.1.2.1. Let ¢ be in P. If ¢ = o we are done. So by claim 2.3.7, ¢

has at least two external angles. So we are done by claim 10.1.1. End 10.1.2.1.
Claim 10.1.2.2. P is discrete.

Proof 10.1.2.2. Let ¢ be in P. By claim 10.1.2.1 there is a neighborhood U
of ¢ and an n > 0 such that 2°™ maps U homeomorphically onto a neighborhood
of @. Then A°" maps U N [«, p|K, to a regulated arc which intersects o. Then we

are done by proposition 2.4.3. End 10.1.2.2.
It follows from claim 10.1.2.2 that we can set

_ { {po,p1,P2,---} if P is infinite;
B {p07P1,P2a---,PN—1} if #P =N

so that p; is closer in [a, p]x, to @ thanispjifandonly if ¢ < 7. f #P = N < oo,
we let py := p. Since P is discrete, for j = 1,2,3,... if P is infinite and for
J=12,3,...,N if #P = N, there is a component W; of on’h such that p;_; is
on the boundary of W; at some internal angle s;. Let Wy be the component of
on’ p containing the critical point.

Let the dynamic denominator of 8 be 2® — 1. Let m; € Z/nZ be such that
R(Wjt1,0) = 0, (R(Wj, 85))-

If p = @, then the address of p is empty. If p is on the boundary of some W, then

the address of p is

(m0)31>m17s27m23 R 7Sj—1amj—1>3j)'
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Otherwise, the address of p is
(mO,SI’ml’ 527m2, .. .).

End 10.1.2.
Claim. The map p — address(p) is injective.

Proof. Let p and p' be two distinct points in Jz. As in the section on

properties of regulated arcs on page 16 of [DH1], there is a ¢ € K, — {p,p'} with

[O‘>p]Kh N [avp,]Kh = [a’q]Kh'

So ¢ is either in P or the center of one of the W;’s. In either case, the claim follows
easily. End.

Claim 10.1.3. If p has infinite address (mg, s1,m1, .. .), then all the s; are diadic.

Proof 10.1.3. Since « is at interior angle 0 for every component of K, with «

on its boundary, all inverse images if « are at diadic internal angles. End 10.1.3.
§10.2. Address dynamics.

Definition. Let h be the star corresponding to the external ray of M at angle 6,
and let the dynamic denominator of § be 2" — 1. Then m € Z/nZ is the rotation
of h at a if

R(R(Wo),0) = o™ (R(W),0)),

[+
where W, is the component of K\, containing the critical point of A.
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Claim 10.2.1. Let h be a star with rotation m at «a. Let p be a point in J), with

infinite address

(mo, 81, M1, 82, M2,...).

If mg # 0, then

address(h(p)) = (mo + m, 81, M1, $2,M2,...).

If mg =0 and s; # 1/2, then

address(h(p)) = (m,2s1, m1, s2,m2,...).

Ifmg =0 and s; = 1/2, then

address(h(p)) = (m + my, s2,m2, 83, M3, ...).

The proof if claim 10.2.1 is trivial.

§10.3. Eventually periodic addresses.

Definition. An infinite address (mo, s1,m1,...) is eventually periodic if there is
a v and a & such that for j > v, mj; = m; and sj;, = s;. The smallest such
v is called the onset of periodicity and the smallest such « is called the period of

the address.

Caution. The period of a point and the period of the address of a point need not

be the same.
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Proposition 10.3.1. Let h be the star corresponding to the external ray of M at
angle 6. Let p be a point in J;, with eventually periodic address (mg, s1,m1,...).
Let x be the period of the address of p and let v be the onset of periodicity. Then

1) p has exactly one external angle, 8,

2) 6, is rational (i.e. p is eventually periodic), and

3) there is an algorithm to compute 8, given 8, k, v, and (Mg, $1,M1,..., 8y, M,).
Furthermore, if v = 1, then the dynamic denominator of 8, is odd (i.e. p is
periodic).
Proof 10.3.1.

It is obvious from claim 10.2.1 that p is either periodic or eventually periodic,

that p is periodic of v = 1, and that no forward image of p is a. Since no forward
image of p is «, by claim 10.1.1, p only has one external angle.

From 6 one can compute m, the rotation of h at «, since m is such that
20 = oc°™(0)
where o 1s the cyclic permutation of
O := {9,29, 2%, .. -}

which carries each angle in © to the next smallest one. It is obvious from
claim 10.2.1 that one can compute the dynamic denominator of 6,. Now, given
any j, it is possible to compute from (mq, sy, $2,...,8j,m;) in which connected

component of
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8, must lie. But for large enough j, there will be at most one angle with dynamic

denominator equal to that of 8, in each component.

End 10.3.1.



Chapter 11. Shared Matings.

§11.1. -Statements.

Theorem 11.1.1. Let fy and f1 be quadratic polynomials with

foEDo and fle(DOUD2>nL

where L is some limb of M. Let 8 and 6] be the angles of external rays of M
corresponding to fo. Let 8; be the angle of an exterior ray of M corresponding to
f1, and let 8 be the angle of one of the two external rays of M corresponding to
L. Let f: S]% — S?c be the non-intimate mating of fo with f;. If

1) f is topologically equivalent to a rational function,

2) {—6p,—6i}n{2"0 | n > 0} # 0, and

3) 8¢ {201 |n >1},
then f is also topologically equivalent to the non-intimate mating of the star of L

with some quadratic polynomial.

Complement 11.1.2. Conjecture 6.6.1 implies that if 6, is diadic, then up to
conjugacy, there is only one quadratic polynomial hy such that f is topologically

203
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equivalent to the non-intimate mating of the star of L with h;y, and there is an

algorithm to find hy.

Complement 11.1.3. Let 8, be the unique element in {6;,05}N{—-2"6 | n > 0}.
Let 2V — 1 be the dynamic denominator of 8, and 0. Let to := 2V 716, and let
to :=to+1/2. Let T be the component of T —{to,t,} containing {0}. Inductively
define t; by

i o= {45/2,(4/2) + (1/2)) N (T U {t}).

There is a kg such that
~ty, ¢ {6,26,2%9,...,2Y710} .

Let k be the smallest such ko. If k > 1, then conjecture 6.6.1 implies that if we
fix fo and let fi vary through all diadic points in L, then the hy produced by the

algorithm of complement 11.1.2 all lie in the same limb of M.

\§11.2. Proof of theorem 11.1.1.

Let 8y be the unique element in {6}, 0} N{—2"0 | n > 0} (see figure 11.1). Let
Ty € Sfc be the critical point of fo and let z; := f°*(z). Let U; be the connected
component of the interior of Ky containing {z;}. Let R; be the ray at angle zero
in the interior of U;. By definition, R; is without endpoints. For: = 0,1, 2,... let
r; be the endpoint of R#(2'6,) in Ko, let s; be the endpoint of Rf(2i90) in Iy,
and let

Si = ’Rf(zieo) - {7".,',81'} .
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Let

e;i :=R;U{r;} US,.

So e; is homeomorphic to an open interval and z; and s; are in its closure. Let oy
be the fixed point a of f;.

By fact 2.4.2 and the fact that —f8y € {28 | n > 0}, we get that s; = a;.
Claim 11.2.1. The e; are disjoint.

Proof 11.2.1.

Clearly the R; and the S; are disjoint. So suppose j # k yet r; = rg.

One possibility is that r, = r; for all n. In that case, fo and f; are in
conjugate limbs of M, and that together with the fact that the non-intimate
mating of fo with f; is topologically equivalent to a rational function contradicts
proposition 6.4.1.

The other possibility is that there exists an [ with r; # r; (see figure 11.2). Let
o be the clockwise-around-«; permutation of the S;. Wi;chout loss of generality,
we assume that S; = o(Sy). If S, = o(5}), then r; = rp, because the iterate of f
which carries St onto S; will carry S; onto Sp,. But then S, would have to cross
either S; or Sj.

End 11.2.1.

Let

Xy = U({xz} Ue; U{ag}).
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Figure 11.2. Why there does not exist an [ with r; # ;.
Xy is a star with center at a;, endpoints equal to the z;, and edges in S)% — Py
f~HXu) is Xy together with another star which we shall call ~Xz. Let —a; be

the inverse image of a; not equal to «;. Then
—~XuNXg={zo},

the endpoints of —X g are not in Py, the center of —X g is —ay, and the edges of

—Xpg are in S} — Py. Since by hypothesis,
6&{2"0, |n>1},

we get that —a; & Pr. So —Xpg is contractible (rel Py) to {z¢}.
So if we let K := Xy and let A be a simple closed path parameterizing the

boundary of a sufficiently slight fattening of Xy, then A is an equator of f in
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the complement of K. So by theorem 7.2.1 (Thurston’s mating criterion), fa i
is topologically equivalent some quadratic polynomial h; for ¢ = 0,1 and f is
topologically equivalent to the non-intimate mating of ho with hj.

We have only left to show that hg is the star of L. If we define the embedding
graph H to have topological space Xy, vertices a; and the z;, and edges the e;,
then (H, f,z0) is the quadratic tree of the star of L (see fact 2.4.4). So we are

done by theorem 5.2.1.

§11.3. Proof of complements 11.1.2 and 11.1.3.

Notation. Let hq be the star of L and suppose f is topologically equivalent to
h:S:— S?

which is the non-intimate mating of hg with h;.

Notation. Let g : P* — P! be the rational function topologically equivalent to f

and h. Let ¢4 : Sfc — P! and ¢ : S — P! be the maps given by theorem 6.1.1.

Notation. Let Ko C 5% be Kf,. Let'aso and Sy, be the fixed points a and
respectively of K. Let yfo be the Carathéodory loop of If . Similarly define
Kea, 051, Bras Yr1s Koy &h0s Bros Yhos Kh1s @n1y Broa, and g 1.

Lemma 11.3.1. Let

vLuz,... uN

be N distinct components of K¢;1. Forn=1,2,...,N let

V™= ¢ (b (U™)).
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So

vive,.L vl
are N distinct components of K. Forn=1,2,..., N let r, € T be such that
7f,0(rn) € ﬁn?

let s, € T be the internal angle in U™ of v5,0(r»), and let p,, be the point in 8V™

of internal angle s, in V™. Suppose there exists a point

ae e

i=0
such that y51(—r,) =a forn =1,2,...,N. Then p; = ps = ... = py and the
cyclic permutation of {1,2, ..., N} induced by the clockwise-around-a permutation
of

{Ri(ra) | n=1,2,...,N}

is the same as that induced by the clockwise-around-p; permutation of
{R(V™,sn) |n=1,2,...,N}.

Proof 11.3.1.

By theorem 6.1.1, ¢7(a) is in the closure of ¢ (U'), pp(U?),...,¢(UN),
which are N distinct components of P* — J,. By conjecture 6.6.1 ¢¢(a) is not
in the closure of any other components of P! — J,. So the N distinct components

of K40 having p; in their closure map by @5 to ¢(U?), ¢f(U2),...,¢f(UN). So
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since ¢ and ¢ r preserve internal angles, each V'™ has p; in its boundary at internal
angle s,.

The cyclic permutation of {1,2,..., N} induced by the clockwise-around-
¢ ¢(a) permutation of the set of internal rays at angle s, in ¢ ¢(U™) is the same as
the two mentioned in the statement of the lemma.

End 11.3.1.
Let 8y be the unique element in {65,604} N {-2"8 | n > 0}.

Claim 11.3.2. There is an angle 83 € Q/Z such that

KnoN ¢ (65(Bro)) = {11,0(2705) | j = 0,1,2,...}

and an algorithm to compute 8g which has only 6y and 8 as input.

Proof 11.3.2.

Let 2 — 1 be the dynamic denominator of 8 and 8. Let‘_ to := 2N=19, and
let tg := to + (1/2). Let T be the component of T — {¢q,%)} containing {0}.

Inductively define ¢; and ¢} by

tivr = {2;/2,(4;/2) + (1/2)} 0 (T'U {t0})

and
thy o= {t5/2,(t/2) + (1/2)} N (T U {tx})

(see figure 11.3).
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Claim. There is a kg < N such that

—ty, ¢ {6,26,2%6,...,2V"19}

Proof. Suppose not. Then since 8y = 2¢; is an inverse image of ¢o under
t > 2t,

2to € T'U {to}.

This is only possible if tg = O or tg = 1/2. But ¢ has an odd dynamic denominator.

End.
We let & be the smallest such k¢ and note that
1<k<N.

This is the k& mentioned in the statement of complement 11.1.3.
Let o :=v51(—t;). So a® = af; and f(a’*!) = .

For 7 =0,1,2,..., k-1

v80(=t5) = o, (11.1)
) and for 7 > 0,
Yra(=t5) = vra(=ties) = &7 FHHL (11.2)
Since t; — 0 as j — o0,
al — Bs; as j— oo. (11.3)

For each j, let p; be the clockwise-around-a’ permutation of

{Re(-t) 1t €97}
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f preserves this clockwise ordering. That is, for y =1,2,3,...
PR =R(s) = p5L(R(2t)) = R(2s). (11.4)
So there is a unique my such that

Ry(tiee) = piqa (Rs(t5)) (11.5)

for 7 =0,1,2,.... Let m be the rotation of hy at a (see section 10.2). Note that

fori=0,1,2,....k —1

?

pe T (R (te)) = Ry(ti) (11.6)

(see figure 11.3).

For:=0,1,2,...,k — 1 let p; be the point in J,, with address
(——im,l/Q,ml,l/Q,ml,...).

Lemma 11.3.1 together with (11.1), (11.2), (11.5), (11.6), and (11.3) give us

that
pi € Kno Ny (85(Bs0))- (11.7)
Claim 11.3.2.1. ho(p;) = pi—1(mod k) fori=0,1,2,..., k ~ 1.

Proof 11.3.2.1.

By (11.5),

P (R#(to)) = Rs(tr)
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Also,

2ty = 69 and 2 = tr—1.
So by (11.4),

o (R(60)) = Rs(te-1)-
Since 2ty = 8y, by the definition of m,
pa" (R(to)) = R¢(6o).

Equations (11.8) and (11.9) give that

ps (R 5(t0)) = R(ths).

By (11.6),

pe TR ((20)) = Rp(tr—1)-

So by (11.10) and (11.11),

—(k—-1)ym=m+my; (mod N).

Now

address(po) = (0,1/2,m1,1/2,mq,...).

So by claim 10.2.1,

address(ho(po)) = (m +m1,1/2,m1,1/2,m4,...)

=(—(k—-1)m,1/2,my,1/2,m4,...)

= address(pg—1)-
For:=1,2,...,k -1, by claim 10.2.1,

address(ho(p;)) = (—im +m,1/2,m1,1/2,mq,...)

= address(pi-1).
End 11.3.2.1.

(11.8)

(11.9)

(11.10)

(11.11)
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By 1) of Proposition 10.3.1, 7,:%)(;)0) only has one element which we shall call

8. By claim 11.3.2.1, the dynamic denominator of 84 is 2% —1 and

—205 = —}, p(P—i(mod K))-

Claim 11.3.2.2. There is a single point ( in

KniN ¢y (65(Bro0))

and ( has exactly k external angles which are —2'04 for1 =0,1,2,...,k — L.

Proof 11.3.2.2.

Let

Zy = Kpa1 Ny (65(Bro)),

and suppose there were more than one point in Z;. Let

Zo = Kno Ny (65(Br0))-

Since there is more than one point in Z;, by conjecture 6.6.1 at least one point in
Zy would have to have more than one external angle. Since hg is a star, the only
points in J} o having more than one external angle have dynamic denominators of
the form 2!(2¥ —1) (see claim 10.1.1). By claim 11.3.2 and (11.7), there are points
in Z, having external with dynamic denominator 2¥ — 1. By conjecture 6.6.1, all
points in Zy have external angles with the same dynamic denominator. So one
point in Z, has an external angle with dynamic denominator of the form 2/(2% —1)

and of the form 2¥ — 1. But k < N.
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So there is only one point { in Z; and ( is a fixed point of k. Angle doubling
acts transitively on the external angles of a fixed point (Fact 2.4.2) and —f4 is one
of the external angles of (.

End 11.3.2.2.

So

KnoN i (bs(Bro)) = {71,0(2°05) | i =0,1,2,...}.

By Proposition 10.3.1, there is an algorithm to compute 83 having only 6y and 4
as input because that is enough to calculate the address of py.

End 11.3.2.

If k # 1, then { must be the fixed point a of hy, but the sets of angles incident
upon the fixed points « of two polynomials in M are the same if and only if the

two polynomials are in the same limb of M (fact 2.4.2).

We have only left to describe the algorithm to find A;.

Let £ : T — T be given by £(t) = 2¢. Let

—1
b= (g’TU{tO})

-1
fii= (g‘T—(TU{to})> :

Let 2M — 1 be the dynamic denominator of 8;. Let S be the component of

and let

E~M(T U {to})
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containing —;. Fori =0,1,2,...,k—1 let s} be the unique element of ¢ ~M1({¢}})
in S. Since the address of ¥4 ,0(s}) is finite, we can calculate it by calculating the
angles incident upon all the points in

Ni+k

U f(esn):
n=0

This we can do by chapter 9.

If

(M20,iy 81,4, M1 4i5 - -5 Stis M3, 1/2)
is the address of v} o(s}), let ¢; be the point in Jj, o with address
(mO,i> 81,6, T 45+« 5S35 T4,y 1/2) my, 1/27 my, 1/27 my,.. )

By considering appropriate inverse images of the ¢; and ¢}, one can see that

0 € Ko N 65 (6 5(750(61))) (11.12)

and

roMi(qi) = ps (11.13)
By proposition 10.3.1, 7,23(%-) has only one element which we shall call §;.

Claim 11.3.3. There is a single point { in

I{h,l N ¢;1(¢f(7f,1(91)))>

and é has exactly k exterior angles which are ; fori =0,1,2,...
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Proof 11.3.3.

Let

Z = Kni N éy H(d5(v51(60)),

and suppose there were more than one point in Z. Just as in the proof of
claim 11.3.2.2, we would get that the exterior angles of points in Z would have

dynamic denominators of the form 2!(2 —1). By (11.13),

£Y(2) € (). (1L14)

So the dynamic denominator of the exterior angles of points in Z is 2Vt (2F-1).
But & < N. So there is a single point Q: in 7.
By (11.14), ¢ has exactly k exterior angles. By (11.12), they are as claimed.

End 11.3.3.
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