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Abstract

The Thurston characterization and rigidity theorem gives a beauti-
ful description of when a postcritically finite topological branched cover
mapping the 2-sphere to itself is Thurston equivalent to a rational func-
tion. Thurston equivalence remains mysterious, but great strides were
taken when Bartholdi and Nekrashevych used iterated monodromy
groups to solve the “Twisted Rabbit Problem” which sought to identify
the Thurston class of the rabbit polynomial composed with an arbi-
trary Dehn twist. Selinger showed that the Thurston pullback map on
Teichmüller space can be extended to the Weil-Petersson boundary.
We compute these boundary values for the pullback map associated to

f(z) = 3z2

2z3+1 and demonstrate how the dynamical properties of this
map on the boundary can be used as an invariant to solve the twisting
problem for f .
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1 Introduction

Broadly speaking, this dissertation deals with the interplay between geome-
try, topology, algebra and complex dynamics; the primary focus of this work
is Teichmüller space and Thurston’s characterization theorem for rational
maps.

In the early 1980’s, John Hubbard and Adrien Douady highlighted a
close relationship between combinatorics and complex dynamics when they
created combinatorial models for the Julia sets of critically finite polyno-
mials using Hubbard trees [7]. Critically finite quadratic polynomials are
highly significant because they could be used to prove the famous conjec-
ture that hyperbolicity is dense—this conjecture was shown by McMullen
to be equivalent to the statement that certain quadratics can be approxi-
mated by a sequence of critically finite quadratics obtained by a procedure
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called renormalization [20]. Douady and Hubbard also present an algorithm
that in principle finds the formula for a polynomial realizing any admissible
Hubbard tree. These results are very illuminating, and there are a number
of other combinatorial invariants that can faithfully encode polynomials, al-
lowing much to be said about the relationship between combinatorics and
Julia sets in the case of polynomials. Complex rational functions are another
matter, however, and it is not known how to extend results for polynomials
to the rational case.

This sets the stage for Thurston’s theorem. Complex rational func-
tions are a very rigid class of functions (e.g. they are conformal outside
of a finite set), and finding explicit formulas for one that realizes partic-
ular combinatorial data can be challenging. Thus, we focus our attention
on a more flexible class of functions. A Thurston map is a critically fi-
nite orientation-preserving branched cover from the two-sphere to itself. To
pursue the agenda of relating combinatorics to dynamics, one can create a
combinatorial model of a dynamical system using Thurston maps, and then
Thurston’s theorem characterizes when the Thurston map is equivalent to a
rational function. Furthermore, the theorem asserts a rigidity result—if the
Thurston map is equivalent to a rational function, this rational function is es-
sentially unique (ignoring a family of well-understood Euclidean examples).
Thurston’s theorem for rational functions is proven in [12] using iteration
of an analytic map on Teichmüller space called Thurston’s pullback map.
The proof parallels the proof of Thurston’s theorem on the hyperbolization
of 3-manifolds, which studies dynamics of the skinning map on Teichmüller
space.

Thurston’s pullback map is very mysterious, and one goal of my research
has been to understand its dynamics on the Weil-Petersson completion of
Teichmüller space using the fact of Selinger that the pullback map extends
to the boundary [30]. I did this for the Thurston pullback map associated to

the rational function f(z) = 3z2

2z3+1
because f was investigated in [8]. This

paper showed that the Thurston pullback map associated to f is surjective,
and up to some nondynamical equivalence it is essentially the only pullback
function where this property has been observed. A second major focus of
my work has been to better understand the notion of equivalence used in
Thurston’s theorem. Pilgrim described the lack of solution to the Twisted
Rabbit Problem a ”humbling reminder” of the lack of suitable invariants
for Thurston equivalence [27], and though the problem has been solved, the
need for invariants remains. The following study of the Thurston pullback
map and Thurston equivalence exploit some rich connections between the
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Thurston pullback map, combinatorics, Weil-Petersson geometry, hyperbolic
geometry, group theory, and arithmetic dynamics.

1.1 Thurston’s Theorem

Let F be an orientation-preserving branched cover which maps the two-
sphere to itself by degree greater than one. Denote by PF the postcritical
set as defined in Section 2.1. If PF is finite, F is called a Thurston map.
There are several valuable sources for producing examples of Thurston maps:
an obvious example would be any post-critically finite rational maps with
degree greater than two. Finite subdivision rules of the two-sphere are a con-
venient way to produce combinatorial models of Thurston maps, and they
have been studied extensively in the recent past [9]. A third way to produce
examples of Thurston maps is by mating two critically finite polynomials of
the same degree [23]. Having shown that a wealth of examples of Thurston
maps exist, we define Thurston equivalence and then state Thurston’s the-
orem:

Definition: Let F and G be Thurston maps with postcritical sets PF and
PG respectively. Then F is Thurston equivalent to G if there are orien-
tation preserving homeomorphisms h0, h1 : (S2, PF ) −→ (S2, PG) with h0

homotopic to h1 rel PF , so that the following commutes:

(S2, PF )
h1 //

F
��

(S2, PG)

G
��

(S2, PF )
h0 // (S2, PG)

Thurston’s Theorem: Let F be a Thurston map which is not a Lattès
example. Then F is Thurston equivalent to a rational map if and only if the
Thurston pullback map has a fixed point. Furthermore, if F is equivalent
to a rational map, this rational map is unique up to Möbius conjugation.

Thurston maps are called obstructed if they are not equivalent to a ra-
tional function. A different formulation of Thurston’s theorem from the
one above gives a better sense for why certain Thurston maps are or are
not obstructed; having a fixed point of the pullback map is equivalent to the
Thurston map not having a special family of simple closed curves in the two-
sphere that behave a certain way under preimage. The mapping properties
of curves under preimage of a Thurston map have deep implications for the
pullback map on Teichmüller space, and we will pursue this theme in both
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of the following sections. It is also worth noting that mapping properties of
simple closed curves play an important role in the three other groundbreak-
ing theorems proved by Thurston relating geometry and topology, as noted
by John Hubbard [15].

Recently there has also been interest in non-dynamical problems involv-
ing branched covers of the sphere by higher genus surfaces. See for example
the discussion of the Birman-Hilden property in [5, 13]. As was the case in
the dynamical setting just described, the preimages of essential curves seem
to be significant actors.

1.2 Boundary Values of the Pullback Map

Thurston’s pullback map is very complicated—it is transcendental, and in
all known examples it is infinite-to-one. It may be surprising, then, that
the pullback map associated to f(z) = 3z2

2z3+1
has boundary values that

can be computed by transforming the even continued fraction expansions
of rational numbers by a prescribed algorithm (see [8] for an image of the
Thurston pullback map studied here).

We call a simple closed curve γ ⊂ Ĉ \ PF essential if both components
bounded by γ contain at least two post-critical points. The collection of
homotopy classes of essential curves in Ĉ \PF can be put in correspondence
with the rational numbers when there are four post-critical points. Further-
more, when |PF | = 4, it is a standard fact that Teichmüller space can be
identified with the upper half-plane in such a way that the Weil-Petersson
completion is obtained by adding the rational points p

q + 0i along with the

point 1
0 to the boundary of the upper half-plane where each point corre-

sponds to collapsing the sphere with four marked points along the curve
corresponding to p

q .
In Nikita Selinger’s 2010 paper [30], the observation was made that

Thurston’s pullback map extends under the Weil-Petersson completion, and
it maps the boundary point corresponding to p

q to the boundary point cor-

responding to the preimage of the curve corresponding to p
q under f , where

only the essential component of the preimage is considered. Thus, if one can
fully understand the essential preimages of curves under f , one can under-
stand the boundary values of the pullback map under the Weil-Petersson
completion. Recently, this sort of curve preimage computation was made
in [27], where Pilgrim analyzed the fate of essential curves under preim-
age for some quadratics. In the spirit of [10], we define the slope function

σf : Q −→ Q by saying that σf (pq ) = p′

q′ if the curve corresponding to p
q has
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an essential component of its preimage that corresponds to p′

q′ . The main
result about the dynamics of this slope function is the following

Theorem Let f(z) = 3z2

2z3+1
, and let p

q be an essential curve. Then under

iteration of σf , p
q lands in the set {0

1 ,
1
0 ,−

1
1}. Furthermore, σf (0

1) = 1
0 ,

σf (1
0) = 0

1 , and σf (−1
1) = −1

1 . Under iteration of σf , p
q lands on −1

1 if and
only if p and q are odd.

We say that a slope function σf has a finite global attractor if there exists
a finite set so that under iteration of σf , every point p

q lands in this finite set
or under iteration corresponds to a peripheral curve. As mentioned before,
this result translates immediately into a fact about the boundary values of
the pullback map, and it was also easy to prove that on the boundary, the
pullback map is infinite-to-one and surjective.

1.3 The Twisting Problem

Despite the intense effort focused on understanding Thurston’s theorem,
Thurston equivalence remained mysterious. One measure of this is the two
decades it took to solve the “Twisted Rabbit Problem” which sought to iden-
tify the Thurston class of the rabbit polynomial composed with an arbitrary
Dehn twist. Finally, however, the solution came in the work of Bartholdi
and Nekrashevych [1], which introduced the permutational biset and the it-
erated monodromy group as invariants of Thurston equivalence for quadratic
polynomials. The machinery introduced in this paper effectively reduced the
topological question of determining Thurston class to the algebraic question
of determining nuclei of iterated monodromy groups. Though these methods
worked well in the setting of quadratic polynomials, it was unclear how to
generalize them to the case of rational functions having higher degree.

This sets the context for the solution to the twisting problem when
f(z) = 3z2

2z3+1
presented in this paper. The solution makes use of the first re-

sult about the boundary values of the pullback map to produce an invariant
not used before to solve twisting problems. Denote by PMCG(Ĉ, Pf ) the set
of homeomorphisms that fix each point in Pf modulo isotopy; since |Pf | = 4,
this groups has two generators α and β which are chosen explicitly. In the
spirit of [1], a function ψ : PMCG(Ĉ, Pf ) −→ PMCG(Ĉ, Pf ) is created so
that g ◦ f is Thurston equivalent to ψ(g) ◦ f . Coupled with the following
theorem, this fact reduces the twisting problem to identifying the Thurston
class of each twist in M applied to f .
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Theorem: For any g ∈ PMCG(Ĉ, Pf ) there is a positive number N so that

ψ
◦n

(g) ∈M for all n > N where

M = {e, β, α−1, α2β−1, α−1βα−1, αβ−1, β2} ∪ {α(βα)k : k ∈ Z}

It was possible to show that composing each element of {α(βα)k : k ∈ Z}
with f produces a one-parameter family of obstructed and pairwise inequiva-
lent maps. However, in the case where h ∈ {e, β, α−1, α2β−1, α−1βα−1, αβ−1, β2},
it was not immediately clear what the Thurston class of h◦f was, though it
was easy to show that h ◦ f is unobstructed and that it must by Thurston’s
characterization theorem be equivalent to f itself or to a second rational
function g. After repeated attempts to apply known methods, it was still
unclear whether h ◦ f was equivalent to f or g. Fortunately, a nice finite
subdivision rule description of g exists, and this model allows one to exhibit
two distinct two-cycles in the pullback of essential curves. Therefore, if the
pullback of h ◦ f on curves has two two-cycles, it must be equivalent to g.
This fact allowed for a complete solution to the “twisted f” problem as well
as highlighting a potentially valuable invariant of Thurston equivalence.

1.4 Outline

Section 2 begins with a discussion of Thurston theory for the sphere with an
arbitrary finite number of marked points. Point pushing is used to show the
equivalence of two standard definitions of Teichmüller space, and a general
discussion of virtual endomorphisms is presented. Practically speaking, one
can compute virtual endomorphisms using the Reidemeister-Schreier algo-
rithm. The section concludes with a brief summary of known results about
the pullback on curves and solutions to twisted polynomial problems.

Section 3 specializes the previous discussion to the case of four marked
points. An explicit procedure is described to create an indentification be-
tween parabolic elements of PΓ(2), parabolic elements of the fundamental
group of the thrice-punctured sphere, points in the Weil-Petersson bound-
ary, essential curves in the sphere with four punctures, right Dehn twists,
and the extended rational numbers Q ∪ {1

0}.
Section 4 presents a study of the critically finite rational function f(z) =

3z2

2z3+1
studied in [8]. A convenient combinatorial model for this f is pre-

sented, and the virtual endomorphisms on the dynamical plane and moduli
space are computed. Finally an enumeration is made of the covering and
Hurwitz classes of the branched coverings having the same branch data as
f . Section 5 proves that the boundary values of the Thurston pullback map
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have a finite global attractor. Section 6 presents further dynamical and
non-dynamical properties of this boundary map.

Section 7 defines the notion of slope for essential curves in the four-
punctured sphere by lifting to the torus double cover. This method of as-
signing slope is related to the assignment of extended rationals to essential
curves discussed in Section 3.

Section 8 closes the study of f(z) = 3z2

2z3+1
with an outline of the solution

to the twisting problem for this particular rational function. The pullback
on curves is effectively used as an invariant for Thurston maps. A series of
future research directions are presented in Section 9.

2 Thurston Maps with n Postcritical Points

Though later sections will only require the case of four postcritical points,
we present Thurston theory in the more general case.

2.1 Notation, Definitions, and Examples

We denote the standard oriented two-sphere by S2 and the Riemann sphere
by Ĉ. Recall that a branched covering F : S2 −→ S2 is a continuous,
surjective map so that outside of a finite set VF (chosen to be minimal), the
restricted map F : S2 \ F−1(VF ) −→ S2 \ VF is a degree d covering map.
Denote by deg(F, x) the local degree of F at the point x ∈ S2. The set
CF will denote the set of points x with deg(F, x) > 1, and is called the set
of branched or critical points, and the set VF is called the set of branched
values. The postcritical set of a degree d branched cover F : S2 −→ S2 is
denoted as follows:

PF =
⋃
i>0

F i(CF )

If |PF | is finite, we say F is critically finite. A Thurston map is a critically
finite orientation-preserving branched cover F : S2 −→ S2 where deg(F ) ≥
2.

To state Thurston’s theorem in full generality, we must also define the
notion of a Thurston obstruction, but to define this, we need a series of
other definitions. A simple closed curve γ in S2 \ PF is essential if each
component of S2 \ γ intersects PF in at least two points. In other words γ
fails to be essential if it is nullhomotopic or peripheral (this second condition
is equivalent to saying γ bounds a disk containing a single point of PF ). A
multicurve is a collection Γ = {γ1, ...γk} of disjoint essential, simple closed
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curves where the elements of the collection are pairwise non-homotopic. We
use CF to denote the set of homotopy classes of simple closed curves in
S2 \ PF . Denote by R[CF ] the free R-module over CF . The Thurston linear
map λF : R[CF ] −→ R[CF ] is defined by

λF (γ) =
∑
γ′

∑
γ′'δ⊂F−1(γ)

1

deg(F : δ → γ)
· γ′

where γ and γ′ are single components of multicurves and the outer sum
is over all γ′ homotopic to preimages of γ. A Thurston obstruction is a
nonempty multicurve Γ so that

• R[Γ] is invariant under λF

• the spectral radius of λF is greater than or equal to 1

We are finally in a position to state Thurston’s theorem, referring the
reader to [24] for a thorough treatment of Lattès maps and [12] for a proof
of Thurston’s theorem.

Theorem 2.1 Let F be a Thurston map not equivalent to a Lattès map.
Then F is Thurston equivalent to a rational function if and only if there are
no obstructions. If this rational function exists, it is unique up to Möbius
conjugation.

A crucial tool in the proof of Thurston’s theorem is the Thurston pull-
back map on Teichmüller space. It can be shown that a Thurston map is
equivalent to a rational function if and only if its associated pullback map
has a fixed point.

Definition The Teichmüller space for a Thurston map F is defined to be

TF = {φ : (S2, PF ) −→ Ĉ}/ ∼

where φ1 ∼ φ2 if and only if there is a Möbius transformation M so that φ2

is isotopic to M ◦ φ1 rel PF .

It is not uncommon to define TF as the universal cover of the moduli
space MF , which is defined as follows:

MF = {ι : PF ↪→ Ĉ}/ ≈

where each ι is an injection and ι1 ≈ ι2 if there is a Möbius transformation
M so that M ◦ ι1 = ι2. There is an obvious projection πF : TF −→ MF
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defined by π([φ]) = [φ|PF ]. We will see later that this second definition is
equivalent to the original.

We describe here the deck group of the universal cover πF , namely the
pure mapping class group acting by precomposition on representing homeo-
morphisms of points in TF . Denote by Homeo(S2) the group of orientation-
preserving homeomorphisms from S2 to itself (by convention, all homeomor-
phisms discussed from here on will be orientation preserving). Denote by
Homeo(S2, PF ) the subgroup of Homeo(S2) that fixes PF pointwise, and let
Homeo0(S2, PF ) be the path component of the identity in Homeo(S2, PF ).
We define the pure mapping class group of S2 with respect to PF to be

PMCG(S2, PF ) = Homeo(S2, PF )/Homeo0(S2, PF )

where Homeo0(S2, PF ) acts on the right by post-composition.
To define the Thurston pullback map for a Thurston map F, choose a

representative φ of τ ∈ TF . Pull back the complex structure on Ĉ by the
Thurston map F ◦ φ : (S2, PF ) → (Ĉ, φ(PF )), and use the uniformization
theorem to conclude that S2 with this new complex structure is holomorphi-
cally isomorphic to Ĉ by some φ̃, unique up to postcomposition by elements
of Aut(Ĉ). We then have the following commutative diagram where Fτ
is defined to be the holomorphic composition φ ◦ F ◦ φ̃−1 where some ele-
mentary topological considerations show that Fτ is a rational function with
degF = degFτ .

(S2, PF )
φ̃
//

F
��

(Ĉ, φ̃(PF ))

Fτ
��

(S2, PF )
φ
// (Ĉ, φ(PF ))

Definition The Thurston pullback map σF : TF −→ TF is defined by
σF (τ) = [φ̃]. This is well-defined by homotopy-lifting.

An exciting development over the past decade has been the use of corre-
spondences on moduli space to better understand Thurston’s pullback map
[1, 27, 8, 17]. In many of these sources, one of the functions in the cor-
respondence is an inclusion, which means that the correspondence can be
thought of as a function. Bartholdi and Nekrashevych exploit properties of
such a function repeatedly in [1]. It is our goal here to catalog a number
of results related to correspondences on moduli space. Also included is a
brief discussion of two known examples with four postcritical points where
images of the Thurston pullback map have been produced.
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In Section 5.1 of [1], one finds a discussion of the Thurston map F with
the same critical portrait as the rabbit:

0
×27−→ 1 7−→ p4 7−→ 0;∞ 7−→ ∞

Local degree considerations and a little algebra produce a map g(z) = 1− 1
z2

so that the following commutes (MF has been identified with Ĉ \ {0, 1,∞}
in the obvious way).

TF
σF //

π

��

TF \ {π−1(−1)}

π

��

MF MF \ {−1}g
oo

This commutative diagram can be used to calculate the image of σF :
TF −→ TF in the following way: let z0 be a fixed point of g which we choose
to be the basepoint, and consider the lifts under g of paths in MF that start
at z0. Since the universal cover is defined to be the space of homotopy classes
of paths in MF that begin at z0, one only needs to identify TF with D to
generate the image of σF : D −→ D. Bartholdi and Nekrashevych [1, p.29]
also indicate a second use of the map on moduli space when they determine
the combinatorial equivalence class of the rabbit twisted by T and T−1.
This is done by drawing paths in moduli space that correspond to these
twists using the ideas from Section 3, and examining longterm behavior of
successive lifts of this path.

In general, one should not expect the correspondence on moduli space to
be a function on moduli space: for example, the Thurston map for f(z) =

3z2

2z3+1
in [8] covers a correspondence, not a function. Following the discussion

of [8], we produce this correspondence and then describe how to generate
the image of σf using ideas similar to those just discussed for g. This
correspondence will be the central object of our study in future sections.

Let ω = −1
2 +

√
3

2 i. Denote by F0 = P0
Q0

and F∞ = P∞
Q∞

two degree 3 rational
functions with three simple critical points at 1, ω, ω̄, where P0, Q0, P∞, and
Q∞ are polynomials and both F0 and F∞ have the same mapping properties
as f on 1, ω, ω̄. Also assume that F0 has its fourth critical point at 0, and F∞
has its fourth critical point at∞. Let F = P

Q be a degree three rational map
with simple critical points 1, ω, ω̄ where F has the same mapping properties
as f . Since the numerators of F −F0 = PQ0−QP0

QQ0
and F −F∞ = PQ∞−QP∞

QQ∞

are both scalar multiples of (z3 − 1)2, there exist [a, b] ∈ P1 so that

a · (PQ∞ −QP∞) + b · (PQ0 −QP0) = 0.

11



One can solve this equation for P
Q , yielding

Fα =
aP∞ + bP0

aQ∞ + bQ0
.

Finding the fourth critical point and critical value of this function allows
one to produce the following commutative diagram where

X(z) = z2, Y (z) =
z(z3 + 2)

2z3 + 1
, A(τ) =

x2 − y
2xy − 2

where
y = π(τ), x = π ◦ σf (τ)

and Θ is the set of cube roots of unity, Θ′ is the set of sixth roots of unity.

Tf

π

��

σf
//

A

$$

Tf

π

��

Ĉ−Θ′

Y

zz

X

$$

Ĉ−Θ Ĉ−Θ.

To produce a picture of σf : D −→ D similar to the one exhibited in [8],
follow the procedure described above for g, except do the path lifting step
in the following way: take a path based at 0 in Ĉ \Θ, chose the unique lift
under Y based at 0, and push down to Ĉ \Θ using X.

2.2 Two definitions of Teichmüller space; Virtual Endomor-
phisms

We prove that point-pushing establishes an equivalence between two com-
mon formulations of Teichmüller space. Though this equivalence can be
shown non-constructively using some deep results from Teichmüller theory,
we prefer to construct an explicit bijective correspondence between the sets
described in the two formulations. Having done this, we use these tools to
establish a foundational fact about virtual endomorphisms that is used in
later sections, namely that the virtual endomorphism on the fundamental
group of moduli space and the virtual endomorphism on the pure mapping
class of the dynamical plane respect the equivalence just described.
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First we establish some conventions and notation. Use the stereographic
projection to fix an identification between S2 and Ĉ. This allows us to view
the group of Möbius transformations Möb as a subgroup of Homeo(S2).
Let P := {p1, p2, p3, ..., pn} ⊂ S2 be a set of n > 3 distinct points with
Θ := {p1, p2, p3} ⊂ P . In the following definition, Möb acts on the left by
postcomposition, and Homeo0(S2, P ) acts on the right by precomposition.

Definition 1: T (S2, P ) :=Möb\Homeo(S2)/Homeo0(S2, P ) with basepoint
given by the class of the identity map id.

Since |P | > 3, we can make a choice of double coset representative that
lies in Homeo(S2,Θ) by triple transitivity of Möbius transformations. Then
such φ1 and φ2 are in the same double coset if φ1 and φ2 are isotopic rel P .
We denote such an equivalence by φ1 ∼ φ2. There is an obvious identification
between T (S2, P ) and Homeo(S2,Θ)/Homeo0(S2, P ), a fact frequently used
in the proof of Theorem 2.4.

The second definition will require some more notation. Define moduli
space with the obvious topology by M(S2, P ) = {ι : P ↪→ S2}/ ≈ where
ι1 ≈ ι2 if there is a Möbius transformation M so that M ◦ ι1 = ι2. We fix
id : P ↪→ S2 to be the basepoint of M(S2, P ), and fix the constant path
const to be the basepoint of Teichmüller space in our second definition.

Definition 2: (T (S2, P ), const) is defined to be the universal cover of the
space (M(S2, P ), id).

The usual construction of the universal cover comes from taking the set
of paths from the prescribed basepoint id : P ↪→ S2 inM(S2, P ) modulo ho-
motopy rel endpoints. More explicitly, define T (S2, P ) := {τ : ([0, 1], 0) →
(M(S2, P ), id)}/ ≈ where τ0 ≈ τ1 if τ0(1) = τ1(1) and τ0 is homotopic to τ1

rel endpoints. The important connection between moduli and configuration
space described in the lemma below will be exploited in our proof of Theorem
2.4 since it will allow us to make a substantial reduction from the very start.
Define the configuration space on n points to be C(S2, P ) := (S2)n \ ∆
where ∆ = {(x1, ...xn)| xi 6= xj when i 6= j}. The configuration space
is homeomorphic in an obvious way to {(ι : P ↪→ S2)}. We also use a
second configuration space C(S2 \ Θ, P \ Θ) := (S2 \ Θ)n−3 \ ∆′ where
∆′ = {(x1, ...xn−3)| xi 6= xj when i 6= j}

Lemma 2.2 There is a homeomorphism:

C(S2 \Θ, P \Θ)
h−→M(S2, P )
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Proof In order to produce h in the theorem statement, we produce a func-
tion

Möb× C(S2 \Θ, P \Θ)
h−→ C(S2, P )

defined by the formula

h(M, (x4, ...xn)) = (M(p1),M(p2),M(p3),M(x4), ...,M(xn)).

We first prove that h is a homeomorphism, and then we will quotient by an
action of the Möbius group to produce h.

Injectivity of h follows from triple transitivity of Möb, and surjectivity of
h is also obvious. Since both the domain and range are manifolds, we only
need to show h is continuous and then the classical theorem on invariance
of domain allows us to conclude that h is a homeomorphism. We use the
spherical metric ρ on S2 and the sup metric σ on Möb where

σ(M,M ′) = sup
x∈S2

[ρ(M(x),M ′(x))].

In order to show that h is continuous, we work directly from the sequential
formulation of continuity. Suppose that in the product metric,

{(Mi, (y4,i, ..., yn,i))}∞i=1 → (M, (y4, ..., yn)).

We must show {(Mi(p1),Mi(p2),Mi(p3),Mi(y4,i), ...,Mi(yn,i))}∞i=1 converges
to (M(p1),M(p2),M(p3),M(y4), ...,M(yn)) in the product metric to estab-
lish continuity of h.

First we just prove the jth component converges for 4 ≤ j ≤ n, and
observe that convergence is trivial if j < 4. By assumption, Mi → M ∈
Möb and yj,i → yj ∈ S2. Then we immediately see that Mi(yj,i) → M(yj)
since

ρ(Mi(yj,i),M(yj)) ≤ ρ(Mi(yj,i),M(yj,i)) + ρ(M(yj,i),M(yj))

≤ σ(Mi,M) + ρ(M(yj,i),M(yj)) −→ 0

Having dealt with a single component, we conclude that h is continuous by
observing that Möb acting on S2 is continuous as an action, implying that
the diagonal action of Möb on (S2)n is continuous as well.

The second step in proving the lemma is to note that h is equivariant
with respect to two actions of Möb on the domain and range of the home-
omorphism h. The action · of Möb on Möb × C(S2 \ Θ, P \ Θ) is defined
by:

M · (M̂, (x4, ..., xn)) = (M ◦ M̂, (x4, ..., xn))

14



and the action ∗ of Möb on C(S2, P ) is defined by:

M ∗ (x1, ..., xn) = (M(x1), ...,M(xn))

We show equivariance by a straightforward computation:

h(M · (M̂, (x4, ...xn))) = h((M ◦ M̂, (x4, ..., xn)))

= (MM̂(p1), ...,MM̂(p3),MM̂(x4), ...,MM̂(xn))

= M ∗ (M̂(p1), ...M̂(p3), M̂(x4), ..., M̂(xn))

= M ∗ h(M̂, (x4, ..., xn))

Then taking the quotient on the domain and range of h by the action of
Möb, we have:

Möb \ (Möb× C(S2 \Θ, P \Θ)) ∼= Möb \ C(S2, P )

Since the left side is clearly homeomorphic to C(S2 \Θ, P \Θ) and the right
side can be identified with M(S2, P ), the result is proven. �

We present another lemma to be used in the proof of Theorem 2.4, where
this one is necessary for an injectivity result.

Lemma 2.3 The evaluation map

Homeo(S2,Θ)
ε−→ C(S2 \Θ, P \Θ)

defined by ε(φ) = (φ(p4), ..., φ(pn)) is a fibration.

Proof To establish the homotopy lifting property for ε, we need to produce
H̃ in the following diagram for any Y, h̃,H:

Y × {0} h̃ //

��

Homeo(S2,Θ)

ε
��

Y × I H//

H̃
66

C(S2 \Θ, P \Θ)

It is a well-known fact that the following is a fibration [4]:

Homeo(S2, P ) // Homeo(S2)

εn
��

C(S2, P )

where εn is the evaluation map at all n points in P . There is an obvious
inclusion of our given homotopy H into C(S2, P ) which comes from tacking
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on appropriate constant coordinates. As a point of notation, we call this
new homotopy Hn because it corresponds to the fibration εn and it has n
space variables. Explicitly, Hn : Y × I → C(S2, P ) is defined by Hn(y, t) =
(p1, p2, p3, π1(H(y, t)), ..., πn−3(H(y, t))) where πi is the projection to the
ith coordinate. The homotopy lifting property for the fibration map εn
guarantees the we can find some H̃n : Y ×I → Homeo(S2) with Hn = εn◦H̃n

and H̃n(y, 0) = h̃(y). Note that for all t, εn ◦ H̃n|Θ fixes Θ, which means
that the range of H̃n is actually contained in the subspace Homeo(S2, P ) ⊂
Homeo(S2). We then note that H̃(y, t) := H̃n(y, t) solves the homotopy
lifting problem for our fibration. �

We are now ready to begin the discussion of the main theorem about
the equivalence between the two definitions of Teichmüller space. Recall
that the pure mapping class group of the sphere with three marked points
is trivial, which is a simple consequence of the statement on mapping class
group given in [13, p.63]. Thus given any φ ∈ Homeo(S2,Θ), we can produce
a one parameter family φt with φ0 = id, φ1 = φ, and φt ∈ Homeo(S2,Θ) for
all t. This will be an essential ingredient in the theorem which claims that
the two definitions of Teichmüller space coincide.

Theorem 2.4 There is a bijection{
φ ∈ Homeo(S2,Θ)

}
/∼

Φ−→ {τ : ([0, 1], 0)→ (M(S2, P ), id|P )}/≈

using the equivalence relations from Definitions 1 and 2.

Proof We prove the theorem by showing that there are bijections from
both of the sets in the theorem to the set {τ : ([0, 1], 0) → (C(S2 \ Θ, P \
Θ), (p4, ..., pn))}/≈

One of the bijections is easy; since Lemma 2.2 proved that M(S2, P )
and C(S2 \ Θ, P \ Θ) are homeomorphic, they must have bijective path
spaces. Thus, there is a bijection between the right hand side in the the-
orem {τ : ([0, 1], 0) → (M(S2, P ), id|P )}/≈ and {τ : ([0, 1], 0) → (C(S2 \
Θ, P \Θ), (p4, ..., pn))}/≈ where the equivalence relation ≈ is homotopy rel
endpoint.

A second bijection comes from taking the quotient of the map

Φ :

{
φ ∈ Homeo(S2,Θ)
φt chosen as above

}
−→ {τ : ([0, 1], 0)→ (C(S2\Θ, P\Θ), (p4, ..., pn))}

defined by Φ(φ) = (t 7→ (φt(p4), ..., φt(pn))) = (t 7→ ε(φt)) where we quo-
tient by ∼ on the left and ≈ on the right. We must show that the quotient
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map Φ is well-defined, surjective, and injective. Our convention for path
multiplication is that α∗β means follow α in the positive direction and then
follow β in the positive direction. Denote by α the reverse of the path α.

Proof that Φ is well-defined: Fix φ ∈ Homeo(S2,Θ) and an isotopy φt to the
identity that fixes Θ for all t. If we choose a different isotopy φ′t from φ to
the identity, we need to show that ε(φt) is homotopic to ε(φ′t) with respect
to endpoints (p4, ..., pn) and (φ(p4), ..., φ(pn)). This is the case because the
path in Homeo(S2,Θ) given by φt ∗φ′t is an element of the homeotopy group
π1(Homeo(S2,Θ), id) which has been shown to be the trivial group [21, 28].
Thus, there is a nullhomotopy for φt ∗φ′t which can be pushed down by ε to
a nullhomotopy of (φt(p4), ...φt(pn))∗ (φ′t(p4), ..., φ′t(pn)) in C(S2 \Θ, P \Θ).
Clearly ε(φt) is homotopic to ε(φ′t) rel endpoints.

Now suppose that ψ ∼ φ. By what we just proved, we can fix a specific
ψt and φt as our isotopies to id. Since φ ∼ ψ, there exists an isotopy αt
between ψ and φ where α0 = ψ, α1 = φ, and for all t, the homeomorphism
αt fixes Θ. Then ψt ∗αt ∗ φt is a loop in Homeo(S2,Θ), and triviality of the
homeotopy group allows us again to push down a nullhomotopy via ε.

Proof that Φ is surjective: Let τ = (τ4, ...τn) be a path in C(S2 \Θ, P \Θ)
starting at (p4, ..., pn) and ending at (x4, ..., xn). We use τ to produce a
motion of n points in S2, namely:

t 7→ (p1, p2, p3, τ4(t), ..., τn(t))

The isotopy extension theorem on p.181 in [14] guarantees existence of an
ambient isotopy

φ : S2 × I −→ S2

where φ fixes small neighborhoods of Θ for all t, and φ(τi(t), t) = τi(t), 4 <
i < n. Then φ(·, 1) ∈ Homeo(S2,Θ) is a homeomorphism with a choice φ of
isotopy to the identity that evaluates to τ under ε. This homeomorphism is
called the point push of (p4, ..., pn) along τ .

Proof that Φ is injective: Let φ, ψ ∈ Homeo(S2,Θ). Define φt, ψt to be
paths in Homeo(S2,Θ) to the identity. Assume that τ0(t) := ε(φt) and
τ1(t) := ε(ψt) are two paths in C(S2 \Θ, P \Θ) that are homotopic relative
to their two endpoints (p4, ..., pn) and (φ(p4), ...., φ(pn)). Using homotopy
lifting, we will show that without loss of generality, we may assume τ0 and
τ1 are equal. By assumption we have H : I × I → C(S2 \ Θ, P \ Θ) where
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for all t, s ∈ [0, 1],

H(t, 0) = τ0(t)
H(t, 1) = τ1(t)
H(0, s) = (p4, ..., pn)
H(1, s) = (φ(p4), ...., φ(pn))

and then using the fibration in Lemma 2.3, we lift to a homotopy H̃ :
I × I −→ Homeo(S2,Θ) defined as follows:

H̃(t, 0) = φt
H̃(t, 1) = αt
H̃(0, s) ⊂ ε−1(p4, ..., pn)
H̃(1, s) ⊂ ε−1(φ(p4), ...., φ(pn))

where αt is some path in Homeo(S2,Θ) with the property that ε(αt) = τ1(t).
The following chain of isotopies rel P demonstrate that ψ ' φ rel P . First
follow φ ' α1 rel P , observing that the path H̃(1, s) lies in a single fiber of
ε. Next follow α1 ' ψ ◦ α0 rel P : the isotopy α1 ◦ α1 ◦ ψt ◦ α0 is constant
on P (recall that αt and ψt evaluate to τ1). Finally follow ψ ◦α0 ' ψ rel P :
the map H̃(0, s) is a path from α0 to the identity that remains in a single
fiber of ε. �

Now our goal is to understand the relationship between two virtual en-
domorphisms, one defined on the fundamental group of moduli space, and
the other on the pure mapping class group of the dynamical plane. In gen-
eral, a virtual endomorphism is a homomorphism φ : H → G where H is
a finite index subgroup of G. We define two virtual endomorphisms that
will be relevant to our future study, and use the construction of Φ to show
that they are conjugate. Suppose that the following diagram commutes for
some rational Thurston map f where ~ is the unique fixed point of σf , and
z0 := π(~), w0 = A(~), and the maps X,Y, and A are defined according to
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the discussion in [17]:

(Tf ,~)

π

��

σf
//

A

&&

(Tf ,~)

π

��

(Wf , w0)

Y

xx

X

&&

(Mf , z0) (Mf , z0).

Example 1: LetH = {[γ] ∈ π1(Mf , z0)| γ lifts to a loop γ̃ based at w0 under Y }
where H is evidently a subgroup of π1(Mf , z0). It is further apparent
that this subgroup has finite index since it is the stabilizer of the action
of π1(Mf , z0) on Y −1(z0). Define the virtual endomorphism φf : H →
π1(Mf , z0) by φf ([γ]) = X∗([γ̃]).

Example 2: Let Hf = {[h] ∈ PMCG(Ĉ, Pf )| there exists h̃} where h̃ is a
homeomorphism that fixes Pf and makes the following diagram commute:

(Ĉ, Pf )
h̃ //

f
��

(Ĉ, Pf )

f
��

(Ĉ, Pf )
h // (Ĉ, Pf )

The virtual endomorphism ψ : Hf → PMCG(Ĉ, Pf ) is defined by ψ(h) =
h̃. To see that Hf is a finite index subgroup, we first define an action of

Homeo(Ĉ, Pf ) on a certain kind of covering class. Let p : Ĉ → Ĉ be a
branched cover that preserves its critical locus P setwise. Two such covers
p1 and p2 are said to be isomorphic if there exists a homeomorphism g so
that g◦p1 = p2 where g restricts to the identity on P . Using postcomposition
on the level of representatives, the group Homeo(Ĉ, Pf ) acts on the set of

isomorphism classes of branched covering maps from Ĉ to Ĉ that preserve
Pf setwise. This induces a left action of the pure mapping class group on

covering classes as follows, where [φ] ∈ PMCG(Ĉ, Pf ):

[φ].[p] = [φ ◦ p]

This action induces an action of the group of outer automorphisms Out(π1(Ĉ\
Pf )) on the set of conjugacy classes of finite index subgroups of π1(Ĉ \ Pf )
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where the index is equal to the degree of the cover p which we denote by d.
The action is as follows where [φ] ∈ Out(G) and [H] is the conjugacy class
of an index d subgroup:

[φ] · [H] = [φ(H)]

In [19] we find that ad(G), the number of subgroups of index d of any
finitely generated group G with r generators, has the following bound where
hd(G) = #{homomorphisms φ : G→ Sd, φ transitive} :

ad(G) ≤ 1

(d− 1)!
· hd(G)

≤ 1

(d− 1)!
· d!r

= d · d!r−1

Thus, there is a finite number of conjugacy classes of index d subgroups
contained in π1(Ĉ \ Pf ). There is a natural homomorphism:

PMCG(Ĉ, Pf )→ Out(π1(Ĉ \ Pf ))

and this induces an action of the pure mapping class group on the set of
conjugacy classes of index d subgroups of π1(Ĉ \ Pf ). The stabilizer of the
subgroup corresponding to f is the set of all pure mapping classes that lift as
in the definition of Hf , and this stabilizer has finite index in PMCG(Ĉ, Pf ).
Not everything in this stabilizer lifts to a pure mapping class, but Hf has
finite index in this stabilizer, and so Hf has finite index in the pure mapping
class group.

Lemma 2.5 The map Ψ is a bijection where we have suppressed the bracket
notation for the equivalence on Teichmüller space

{φ′|σf (φ) = φ′} Ψ−→
{

[t 7→ X(α̃(t))] where α : [0, 1]→Mf , α(0) = z0

and α̃ is the unique lift under Y with α̃(0) = w0

}

Proof Define Ψ as follows, where α̃(t) = ε̃(φt) is the unique lift under Y of
the path class ε(φt) and the square brackets represent the homotopy class
of paths rel endpoint:

Ψ(φ′) := [X(ε̃(φt))]
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Proof that Ψ is well-defined: Suppose we choose ψ in the same class as φ.

Then since A maps the basepoint of TF to z0, we know that [A(φt)] = [ε̃(φt)].
Then since ε ◦ σf = X ◦A and by assumption [σf (φt)] = [σf (ψt)] we get the
following chain of inequalities that demonstrate Ψ is well-defined:

[X(ε̃(φt))] = [X ◦A(φt)]

= [ε(σf (φt))]

= [ε(σf (ψt))]

= [X ◦A(ψt)]

= [X(ε̃(ψt))]

Proof that Ψ is injective: Suppose Ψ(φ′) = Ψ(ψ′) where φ′ = σf (φ), ψ′ =
σf (ψ). Again, since ε ◦ σf = X ◦A, we know

Ψ(φ′) = [X(ε̃(φt))] = [X ◦A(φt)] = [ε(σf (φt))] = [ε(φ′t)]

and similarly
Ψ(ψ′) = [ε(ψ′t)]

Thus [ε(φ′t)] = [ε(ψ′t)] and so Φ
−1

(ε([φ′t)]) = Φ
−1

(ε([ψ′t)]) which immediately
implies that φ′ = ψ′.

Proof that Ψ is surjective: Consider [t 7→ X((̃α(t)))]. Then Φ
−1

([Y (α̃(t))]) =
φ for some φ ∈ Tf . Now it is apparent that Ψ(σf (φ)) = [X(α̃(t))].

�

Theorem 2.6 The following equality holds, where Hf is the domain of the
virtual endomorphism defined on the mapping class group defined earlier:

Φ(Hf ) = H =

{
[α] ∈ π1(Mf , z0) so that α lifts
to a loop under Y based at w0

}
Furthermore, on the domain where the virtual endomorphism φf is defined,

Φ ◦ φf = ψ ◦ Φ.

Proof Suppose α lifts to a loop under Y based at w0. From Lemma 2.5, we
know that by point pushing, [α] corresponds to [h′] ∈ Tf which is the image
of some [h] ∈ Tf under σf . From the fact that α lifts to a loop, it is evident
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that [h], [h′] ∈ PMCG(Ĉ, Pf ) since π([h]) = Y ◦ A([h]) = Y (w0) = z0 and
π([h′]) = π ◦ σf ([h]) = X ◦ A([h]) = X(w0) = z0. By definition of σf , there
is a unique representative of [h′] which we suggestively call φf (h) so that
the following commutes for some rational function F :

(Ĉ, Pf )
φf (h)

//

f
��

(Ĉ, Pf )

F
��

(Ĉ, Pf )
h // (Ĉ, Pf )

By the uniqueness of f , we immediately have that in fact F = f , and so by
examination of the diagram, we have that [h] ∈ Hf .

Next suppose that [h] ∈ Hf . By Lemma 2.5, h corresponds to a class
[t 7→ X(α̃(t))] where α̃ is the unique lift of α : ([0, 1], 0) → (Mf , z0) with
α̃(0) = w0. Furthermore [h] ∈ Hf implies that σf ([h]) = [φf (h)]. Then

z0 = π([φf (h)]) = π ◦ σf ([h]) = X ◦A([h])

but X ◦ A([h]) = w0 implies that A([h]) = w0, and so α̃ is actually a loop
which means α ∈ H.

�

2.3 Schreier Graphs and the Reidemeister-Schreier Algorithm

Our discussion of the Reidemeister-Schreier algorithm follows the more gen-
eral presentation of [6]. Let f : Ĉ → Ĉ be a degree d connected branched
cover with critical values Vf . Choose a basepoint z0 ∈ Ĉ\f−1(Vf ), and note
that the branched cover can be restricted to the complement of f−1(Vf ) to

produce a cover, which by abuse of notation we call f : (Ĉ \ f−1(Vf ), z0)→
(Ĉ\Vf , f(z0)). It is evident that G := π1(Ĉ\Vf , f(z0)) is a finitely generated
free group on |Vf | − 1 generators; choose the basis set S of the group to be
a bouquet of |Vf | − 1 disjoint oriented loops based at f(z0), each of which
bounds a unique point of Vf . It is known that every subgroup of a free group
is free [6, p.66], and so for the induced map f∗ on the fundamental group,
the subgroup H := f∗(π1(Ĉ \ f−1(Vf ), z0)) < G must be free. Schreier’s
formula [6, p.66] determines the rank of H:

rank(H)− 1 = d · (|S| − 1).

Finding explicitly the generators of H requires a little more work, and
an important tool for determining this is a labeled directed graph called the
Schreier graph. The vertices are simply points in f−1(z0), and for a vertex
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v0 denote by f−1(s)[v0] the endpoint of the unique lift of s starting at v0.
Two vertices v0 and v1 are joined by a directed edge e if there is an element
s ∈ S so that f−1(s)[v0] = v1. Call v0 the initial vertex of edge e denoted by
i(e) and call v1 the terminal vertex of e denoted by t(e). If e is an edge in the
Schreier graph, the label of e is defined to be `(e) = s where s is the unique
element so that f−1(s)[i(e)] = t(e). Denote by the formal symbol e−1 the
reverse of the edge e, and extend to reverse edges the notion of initial and
terminal vertex by the following: i(e−1) := t(e) and t(e−1) := i(e). Define a
finite path in the Schreier graph to be a finite list of edges or reversed edges
e1e2...en, where for all j, t(ej) = i(ej+1), 1 ≤ j < n. The notion of label can
easily be extended to finite paths in the Schreier graph by declaring that
`(empty path) = 1, `(e−1) = `(e)−1 for any edge e, and for any paths p, q
in the Schreier graph with t(p) = i(q), we define `(pq) := `(p)`(q). Choose
a maximal subtree ∆ of the Schreier graph, and for some vertex v in the
Schreier graph, denote by pv the unique shortest path from z0 to v contained
in ∆. Then for every edge e so that neither e nor e−1 is contained in ∆,
define the path pe = pi(e)ept(e) which clearly forms a loop in the Schreier
graph based at z0. A classical theorem [6, p.67] asserts that H is generated
by the following:

{`(pe)|e is an edge where neither e nor e−1 are contained in ∆}.

Having discussed how to find generators forH, we describe the Reidemeister-
Schreier algorithm which rewrites an element ofH written in terms of S∪S−1

as a product of the basis elements `(pe) for H (and their inverses). Define the
Schreier transversal of the Schreier graph with specified maximal subtree ∆
to be the finite set of d elements:

T = {`(p−1
v )|v is a vertex in the Schreier graph}.

Let g be a word in the generators α, β and their inverses. Let p be the
corresponding path in the Schreier graph starting at z0 with `(p) = g; define
g = `(t) where t is the unique element of T having the same endpoint as
p. If t ∈ T and s ∈ S, define γ(t, s) = ts(ts)−1 which is clearly an element
in H. Suppose we wish to rewrite h ∈ H in terms of the basis of H where
h = s1s2...sk, sj ∈ S ∪ S−1. Then the rewriting of h is given by

h = γ(1, s1)γ(s1, s2)...γ(s1s2...sk−2, sk−1)γ(s1s2...sk−1, sk).

2.4 Iterated Monodromy Groups and Wreath Recursions

We now turn to the machinery that solved the twisted rabbit problem. In [1]
these tools are developed in the more general setting of partial self-coverings,
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but we restrict our attention to the case where f : Ĉ→ Ĉ is a finite branched
cover.

First, fix a basepoint z0 ∈ Ĉ\Pf , and note that for a fixed n, π1(Ĉ\Pf , z0)

acts on the set f−n(z0) in the following way: if z ∈ f−n(z0) and [γ] ∈ π1(Ĉ\
Pf , z0), then z·γ is the endpoint of the unique lift of γ under fn that begins at
z. Denote the lift of γ under fn beginning at z by f−n(γ)[z]. The action on
the disjoint union

∐
n≥0 f

−n(z0) is called the iterated monodromy action. We
now construct the tree of preimages and describe the iterated monodromy
action on this tree. Let z0 be the root of the tree and each element of∐
n>0 f

−n(z0) a vertex. Join each vertex z ∈ f−n(z0) to each of the vertices
in f−1(z) ⊂ f−n−1(z0). It is easily shown that the iterated monodromy
action (extended to the edges in the obvious way) acts by automorphisms
of this tree, but this action is not necessarily faithful. Thus we define the
iterated monodromy group IMG(f) as follows:

IMG(f) = π1(Ĉ \ Pf , z0)/ker

where ker is the kernel of the iterated monodromy action.
We now present a convenient way to index these trees along with their

automorphisms. Let X = {1, ..., d} and denote the set of strings of length n
in the letters 1, ..., d by Xn, and the set of infinite strings in these d letters
by X∗. Identify the tree of preimages of z0 with the set X∗ as follows:

• Identify z0 with the empty word

• Choose a bijection between z ∈ f−1(z0) and x ∈ X. For each x ∈ X,
choose paths `x between z0 and the point in f−1(z0) corresponding to
x ∈ X.

• If v is a word in X and x ∈ X, we identify vx with the endpoint of
the path f−n(`x)[z] where z is the nth preimage corresponding to v.

The iterated monodromy action can be conjugated by this bijection to yield
an action of π1(Ĉ \ Pf , z0) on X∗. See the next section for a discussion of
how the iterated monodromy group solved the twisted rabbit problem.

Another important tool in [1] for understanding the action of the fun-
damental group on X∗ are wreath recursions. Denote by Sd the symmetric
group on d letters. We multiply elements of Sd in the following way:

( 1 4 2 )( 1 3 4 ) = ( 2 3 4 ).

Define the wreath product G o Sd for some group G to be Gd o Sd where
Sd acts on the d-fold product Gd by permutation of coordinates. Thus,
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if 〈〈g1, ..., gd〉〉σ and 〈〈h1, ..., hd〉〉τ are elements of G o Sd, multiplication is
defined by:

〈〈g1, ..., gd〉〉σ〈〈h1, ..., hd〉〉τ = 〈〈g1hσ(1), ..., gdhσ(d)〉〉στ

For example, if G is the free group of rank 2 on generators α and β,

〈〈1, βα, α, β−1〉〉( 1 4 2 )〈〈βα, α−1, 1, β〉〉( 1 3 4 )

= 〈〈β, βαβα, α, β−1α−1〉〉( 2 3 4 )

A wreath recursion is a homomorphism Φ : G → G o Sd. We denote the
restriction to the xth coordinate of Φ(g) by g|x, and if v ∈ X∗, we define
g|xv = (g|x)|v, x ∈ X. We let G act on X by projecting to the second
factor G o Sd → Sd and this extends to the associated action of G on X∗ by
the formula (vx)g = vgxg|v. We then have the following proposition coming
from [1, p.7]where as always in this paper, path multiplication is defined
by following the leftmost path in the positive direction and ending with the
rightmost. The bar denotes the reverse path.

Theorem 2.7 The action of π1(Ĉ \ Pf , z0) on X∗ is the action associated

with Φ : π1(Ĉ \ Pf , z0)→ π1(Ĉ \ Pf , z0) o Sd given by

Φ(γ) = 〈〈`1γ1`k1 , `2γ2`k2 , ...`dγd`kd〉〉ρ

where γi = f−1(γ)[zi], zi is the endpoint of `i, ki is the element of X corre-
sponding to zi, and ρ is the permutation defined by i 7→ ki for all i ∈ X.

We are interested in producing a virtual endomorphism given a wreath
recursion ([1] discusses how one might produce a wreath recursion given a
virtual endomorphism). Define the domain of the virtual endomorphism
φi : Hi → G to be the subgroup Hi < G where h ∈ Hi if the permutation
factor of Φ(h) fixes i. Then φi(h) is defined to be the projection to the ith
component of Φ(h) ∈ G o Sd.

The contracting properties of wreath recursions are important for reduc-
ing infinite problems to finite problems. A wreath recursion Φ : G→ G o Sd
is contracting if there is a finite N ⊂ G so that for every g ∈ G, there is a
positive number n0 so that g|v ∈ N for all words v of length greater than
n0. The smallest such N is called the nucleus of the action. A useful char-
acterization of the contracting property in [25, p.57] is the following: A
wreath recursion defined on a group G with generating set S = S−1, 1 ∈ S
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is contracting if and only if there exists a finite set N and a number k ∈ N
so that

((S ∪N )2)|Xk ⊂ N

There is also a notion of contraction for virtual endomorphisms. Let φ :
domφ→ G be a virtual endomorphism. Then the spectral radius ρφ of the
virtual endomorphism is

ρφ = lim sup
n→∞

n

√
lim sup

g∈domφn,|g|→∞

|φn(g)|
|g|

where | · | denotes word length with respect to some fixed generating set of
G. In [1, p.9] we find the following proposition:

Proposition 2.8 Let Φ : G → G o Sd be a wreath recursion, and let φ be
an associated virtual endomorphism. If Φ is contracting, then ρφ < 1. If
the action of G is transitive on every level Xn and ρφ < 1, then the wreath
recursion Φ is contracting.

We now present two important types of problem that have been studied
in the past, and will be dealt with in the present work. First we discuss
twisting problems, and it is appropriate to begin by discussing the only
known solution to such a problem which is found in [1].

Thurston’s theorem has a valuable refinement when the Thurston-map
exhibits behavior like that of a polynomial. More precisely, we define a
Thurston map F to be a topological polynomial if there is some point ∞ so
that F−1(∞) =∞, or in other words, F has a fixed critical point with local
degree equal to the degree of the cover. If F is a topological polynomial,
every obstruction contains a Levy cycle which is defined to be a multicurve
{γ0, γ1, ..., γn−1} so that the single nonperipheral component of the preimage
of each γi under F is homotopic to γi−1, and F maps each γi−1 to γi by
degree 1 for each i (indices are considered mod n).

Let f be a quadratic polynomial with three finite post-critical points
that are cyclically permuted. To find all such polynomials up to conjugacy,
we let fc(z) = z2 + c and solve the equation f◦3c (0) = 0 for c, where the
root c = 0 can be ignored because it doesn’t have three distinct finite post-
critical points, leaving c = −1.7549,−0.1226 + 0.7449i,−0.1226 + 0.7449i
which correspond to the airplane polynomial fA, rabbit polynomial fR, and
corabbit polynomial fC respectively. In each case, applying a Dehn twist
along a curve that avoids the postcritical set does not change the critical
portrait (i.e. the twisted polynomial is still a topological polynomial of
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degree three where the three finite post-critical points are cyclically per-
muted). Obstructions must contain Levy cycles, but a direct application of
the Riemann-Hurwitz formula shows that such a cycle cannot exist because
of the periodic critical point. Thus, a twist of any of these three polyno-
mials must be equivalent to one of fA, fR, or fC . Crucial to the work of
Bartholdi and Nekrashevych is their Corollary 3.3, which asserts that two
Thurston equivalent quadratic topological polynomials with identical post-
critical set will have identical iterated monodromy groups. After identifying
the marked spheres for fA, fR, and fC , the iterated monodromy groups of all
three polynomials are shown to be Thurston inequivalent because they have
different nuclei. Thus, a twisted rabbit will lie in one of three nonobstructed
combinatorial classes, and all that remains is to decide which one.

Bartholdi and Nekrashevych fix two generators of the pure mapping
class group of the plane for fR which they denote S and T . Denote by
ψ : dom(ψ) < PMCG(Ĉ, Pf ) → PMCG(Ĉ, Pf ) the virtual endomorphism
on the pure mapping class group. This can be extended to a function (no
longer a homomorphism on all of PMCG(Ĉ, Pf ) using the following:

ψ(h) =

{
ψ(h) h ∈ domψ

Tψ(hT−1) otherwise

It is shown that h◦fR is Thurston equivalent to ψ(h)◦fR and so it could
be valuable to understand what happens to h under iteration of ψ. Bartholdi
and Nekrashevych show in Proposition 4.2 that in fact ψ is contracting, and
any h lands in the set {id, T, T−1} after finitely many iterations. Then in
Theorem 4.8, they show that if the orbit of h under iteration of ψ lands on
id, T, or T−1, then fR ◦ h is equivalent to the rabbit, airplane, or corabbit
respectively.

The next case of the twisted z2 + i is dealt with by [1] in a similar way.
The virtual endomorphism is extended to the pure mapping class group,
but this time, the twisted z2 + i is equivalent to either z2 + i, z2 − i, or
a Z-parameter family of obstructed examples that are inequivalent to each
other. As before, the class of a twisted z2 + i is determined by computing
the iterative behavior of ψ, and then using explicit computations of iterated
monodromy groups to distinguish between the nonobstructed limiting maps.
The obstructed maps must be distinguished using another method since
there are infinitely many of them.

The final kind of quadratic with three finite postcritical points is the
preperiod 2, period 1 case. They extend the virtual endomorphism as before,
and note that under iteration the extended virtual endomorphism lands
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in one of three attractors, each of which corresponds to a Thurston map
with distinct nuclei. As with the twisted rabbit, it is impossible to have
obstructed twistings.

Bartholdi and Nekrashevych partially verify their twisted rabbit results
by studying the iterative properties of the moduli space map. This procedure
would work for correspondences as well. Suppose f is a Thurston map and
that the following diagram defined in [17] commutes:

(Tf ,~)

π

��

σf
//

A

&&

(Tf ,~)

π

��

(Wf , w0)

Y

xx

X

&&

(Mf , z0) (Mf , z0).

The following is an iterative procedure that determines the combinatorial
equivalence class of f ◦ h. The orbit of ~ ∈ Tf under iteration of σh·f
either converges to some τ ∈ Tf or it escapes to the boundary. In the
first case, h · f is equivalent to a rational map, and in the latter case, h · f
is equivalent to an obstructed map. In order to find the orbit of τ under
σh·f projected by π, one uses the easily proven fact that σh·f (τ) = h ·
σf (τ). Thus σh·f (~) is represented by the path γh which corresponds to
h in Mf based at z0. The following formula shows how one might find
the path corresponding to limn→∞ σ

◦n
h·f (~). Let `h represent σ◦nh·f (~). The

path representing σ◦n+1
h·f (~) is γh ·X(Y −1(`h)[A(~)]), and thus we need only

understand where the endpoints of this path approach as n gets large. The
correspondence has fixed points that correspond to all possible combinatorial
equivalence classes, and if the path converges to one of these points as n→
∞, then then h·f is combinatorially equivalent to the corresponding rational
map. This is demonstrated in Figure 6 of [1].

This describes the solution to the twisting problem for polynomials hav-
ing three finite post-critical points. One finds in [26] a description of the com-
binatorial spider algorithm which is known to always converge in the case of
sub-hyperbolic bimodules and thus can be used to solve twisting problems in
that case. In [16, p.39] we find a theorem asserting the sub-hyperbolicity of
the mega-bimodule associated to a topological quadratic polynomial whose
finite critical point has period length four. In [2], Bartholdi and Nekra-
shevych connect the discussion of twisted kneading automata in [26] to the
well-known notion of kneading sequences from complex dynamics.
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Having summarized the known results about twisted polynomials, we
will present a digest of known results about preimages of multicurves under
a Thurston map. This data is useful because the dynamics of the pullback
function on multicurves has been used to produce invariants for Thurston
equivalence, and will be used in this paper to help solve the twisting prob-
lem for a rational function. Let Γ and Γ′ be multicurves in Ĉ \ PF for some
Thurston map F . We say that Γ pulls back to Γ′ if the essential nonpe-
ripheral components of f−1(Γ) form a multicurve homotopic to Γ′, and we

denote this by Γ′
f→ Γ. In [27] it is shown that if the virtual endomor-

phism corresponding to a Thurston map is contracting, then there is a finite
global attractor for the pullback function on multicurves. Corollary 7.2 in
[27] suggests an analytic method for proving that there is a finite global
attractor by looking at contracting properties of the map on moduli space,
though it should be noted that these methods won’t apply to the example
present in this paper because of the mixture of attracting and repelling fixed
points. Furthermore, when there are four points or more points in the post-
critical set, it is shown that there is a finite number of completely invariant
multicurves.

There are relatively few explicit computations identifying the finite global
attractors of the pullback function. It is proven in [27] that the pullback
function of the rabbit polynomial has a finite global attractor which is a
cycle of length 3. The pullback function for z2± i is eventually trivial, as is
the pullback function for z2 − 0.2282± 1.1151.

3 General facts in the case |Pf | = 4

Up to this point, we have dealt with Thuston maps with any number of
points in the postcritical set. The end goal of this thesis is to analyze the
specific Thuston map f(z) = 3z2

2z3+1
having four postcritical points, but in

this section we simply assume that f is a Thuston map with |Pf | = 4. Recall

that a multicurve in Ĉ\Pf is a finite set of nonperipheral non-nullhomotopic
disjoint simple closed curves, and since each component of the multicurve
must bound two points of Pf on either side, every multicurve when Pf
contains four points has only one component. Thus, multicurves in this
context are curves, and this whole section is devoted to showing how these
curves can be conveniently encoded using a variety of familiar objects such
as points in the Weil-Petersson completion of Tf , extended rational numbers
Q := Q ∪ {1/0}, or certain words in the free group on two generators. As
will be shown later, there is a geometrically meaningful way to define the

29



rational slope of a curve in the four-holed sphere; we leave this discussion
for a Section 7 if only to highlight its logical independence from the present
discussion and avoid confusing notation.

Suppose that the postcritical set of a Thurston map f is given by Pf =
{z0, z1, z2, z3} and define the subset Θ ⊂ Pf to be Θ = {z1, z2, z3}. The

standard map H → Ĉ \ {1, ω, ω} on the left side of Figure 1 is produced
by first defining it on an ideal triangle and then extending by reflection.
Specifically, take the Riemann map which sends the ideal triangle in H with
vertices at 0, 1, and∞ to the unit disk in C so that (0, 1,∞) map to (ω, 1, ω)
Extend the domain of this map by reflection to all of H. This defines a cover

Figure 1: Modular map used to define π

H → Ĉ \ {1, ω, ω}, so postcompose this projection with the unique Möbius
transformation that maps (1, ω, ω) to (z1, z2, z3) in an order-preserving way
and call the resulting map π : H → Ĉ \ {z1, z2, z3}. Fix the fundamental
domain of the deck group of π to be the ideal quadrilateral with vertices
at 0, 1, 2 and ∞ where the quadrilateral is half-closed in the sense that it
contains the arcs connecting 0 to 1 and ∞, but it doesn’t contain the arcs
connecting 2 to 1 to∞. The set π−1(z0) intersects this fundamental domain
at precisely one point τ0, and we establish this point to be the basepoint of
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the cover π : (H, τ0)→ (Ĉ \ {z1, z2, z3}, z0).
The deck group of π is a well-known subgroup of the modular group,

and by fixing a common choice of generators of this group, there is a natural
procedure to encode curves in Ĉ \ Pf . The following theory is very classical
and discussed in [18]. Denote by SL2(Z) the special linear group of 2 × 2
matrices with integer coeffecients, and denote by PSL2(Z) the quotient of
SL2(Z) by 〈−I〉 where I denotes the identity matrix. The group PSL2(Z)
acts by orientation-preserving isometry on the upper halfplane if we identify
the group element

[
a b
c d

]
∈ PSL2(Z) with the Möbius transformation z 7→

az+b
cz+d . The level two congruence subgroup Γ(2) < SL2(Z) is defined to be
kernel of the obvious projection SL2(Z)→ SL2(Z/2Z), and the projectivized
level two congruence subgroup is PΓ(2) := Γ(2)/〈-I〉 where I denotes the
identity matrix. From the definition, it is immediately clear that

Γ(2) = {
[
a b
c d

]
: a ≡ d ≡ 1, b ≡ c ≡ 0, ad− bc = 1}.

It is also apparent that PΓ(2) is the deck group for the universal cover π, and
it is known that PΓ(2) = 〈A,B〉 where A =

[
1 0
−2 1

]
, B = [ 1 2

0 1 ]. It should
be noted that PSL2(Z) can act on the unit disk by conjugating elements
with the unique orientation preserving Möbius transformation that maps
the ordered set (0, 1, 2) to (ω, 1, ω).

Since A and B generate the deck group, standard covering space theory
gives a natural way to produce generators of the fundamental group π1(Ĉ \
{z1, z2, z3}, z0). Specifically, choose an arc in the universal cover whose
starting point is τ0 and whose endpoint is A(τ0). In like manner, choose
oriented arcs connecting τ0 to B(τ0) and B−1A−1(τ0) (where A−1 acts first).
Pushing these three arcs down by π yield three loops α, β, and γ respectively
based at z0. Note that α bounds a singly-punctured disk and a doubly-
punctured disk. Orient α by declaring that the single puncture lies on the
left side of α, and carry out the same procedure for β and γ. Note that α, β, γ
generate the fundamental group. Since the three-holed sphere is homotopy
equivalent to the wedge of two circles, we have

π1(Ĉ \ {z1, z2, z3}, z0) = 〈α, β〉 = 〈α, β, γ|βαγ〉

The point push of z0 along a curve was defined in the proof of Theorem
2.4. Fact 4.7 of [13] describes precisely how to write a point push along a
positively-oriented simple loop as a composition of a left and a right Dehn
twist, and in the setting |Pf | = 4, the left Dehn twist is evidently trivial.
One can show that point pushing z0 along the loops α, β, γ in the positive
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direction yield three right Dehn twists Tα, Tβ, Tγ respectively that generate

PMCG(Ĉ, Pf ).
We are finally in a position to identify rational boundary points of H

with curves in Ĉ \Pf . In the special case when |Pf | = 4, the Weil-Petersson
completion is the set H ∪ Q equipped with the horoball topology [31], and
as we will show, the even continued fraction expansions of these rational
numbers can be transformed by some algorithm to compute the extended
Thurston’s pullback map on the boundary. Identify p

q ∈ Q with the element

[ pq ] of the projective line over the vector space Q2 which we denote by PQ2.
Then action of PΓ(2) on Q is simply the induced action of Γ(2) on this
projective line. An orbit transversal of the action is the set {0

1 ,
1
0 ,−

1
1}.

Note that 0
1 ,

1
0 , and −1

1 are fixed by A,B, and B−1A−1 respectively, again
thought of as a left action. The stabilizer of some point p

q is the set of group

elements of the form w−1vnw where w ∈PΓ(2) with w.pq ∈ {
0
1 ,

1
0 ,−

1
1}, n an

integer, and v the unique element of {A,B,B−1A−1} that fixes w.pq . The
union ⋃

p
q
∈Q

StabPΓ(2)(
p

q
)

is defined to be the set of parabolic elements of PΓ(2). Equivalently, an ele-
ment C ∈ PΓ(2) is parabolic if (trace(C))2 = 4. We define the (unoriented)
curve in Ĉ \Pf that corresponds to p

q to be the core curve of the Dehn twist
that comes from point pushing z0 in the positive direction along the loop
in the fundamental group that corresponds to w−1vw. For example, 9

5 is
fixed by the parabolic element BA2(AB)A−2B−1 ∈ PΓ(2) acting from the
left which corresponds to the Dehn twist which arises by pushing z0 along
the path β−1α−2βαα2β in the positive direction. Several matters related to
this procedure will be discussed soon, but first we examine how one might
compute two pieces of data that describe StabPΓ(2)(

p
q ): the element of the

orbit transversal rs that lies in the orbit of pq , and an essentially unique word

w so that w. rs = p
q . It is evident that StabPΓ(2)(

p
q ) = wStabPΓ(2)(

r
s)w−1

where depending on the circumstances, StabPΓ(2)(
r
s) is the infinite cyclic

group generated by A,B, or B−1A−1.
We will use an algorithm for finding an even continued fraction expansion

of a rational number p
q which is closely related to the standard development

in [18]. To demonstrate that the algorithm has a finite number of steps
we define the naive rational height of p

q to be max(|p|, |q|). Each iteration

of the algorithm begins by determining where p
q lies in relation to −1, 0,

and 1. Depending on this location, the algorithm dictates the application
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of the unique element from the list A,A−1, B,B−1 that strictly decreases
the naive rational height p

q (except when p
q = 1

1 in which case the height is
preserved). This element is recorded in a string as output and the whole
procedure is repeated on the fraction with decreased naive rational height
until some iterate lands in {0

1 ,
1
0 ,−

1
1}.

The input for the machine is a rational number p
q and the output is an

element of {0
1 ,

1
0 ,−

1
1} and a string written in the symbols A,A−1, B,B−1.

Let p0 := p, q0 := q and let k = 0 and w be the empty string. Start at the
beginning state of the machine.

Depending on which interval or singleton contains pk
qk

, follow one of the
seven outbound arrows to a new state. If this new state has two concentric
circles, append the expression inside the circles to the right of w and termi-
nate the algorithm. If the new state does not have two concentric circles,
use the following rules to compute the value of

pk+1

qk+1
and determine what

character to append to the right of the output string w:

• If pk
qk
∈ (−∞,−1), set

pk+1

qk+1
:= B.pkqk , and append B−1.

• If pk
qk
∈ (−1, 0), set

pk+1

qk+1
:= A−1.pkqk , and append A.

• If pk
qk
∈ (0, 1], set

pk+1

qk+1
:= A.pkqk , and append A−1.

• If pk
qk
∈ (1,∞), set

pk+1

qk+1
:= B−1.pkqk , and append B.

Increment k and repeat the process as described above in this paragraph
until the process terminates. The algorithm that was just described records
the word w ∈ PΓ(2), but the machine depicted in Figure 2 records the
corresponding continued fraction notation. The continued fraction notation
[a0; a1; a2; ...; an], ai ∈ Z is interpreted differently depending on the value of
an. From an examination of Figure 2, one sees that if an = 0

1 then n 6= 1.
If an = 0

1 and n ≥ 2, then

[a0; a1; a2; ...; an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−2

.

33



Next, if an = 1
0 ,

[a0; a1; a2; ...; an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an−1

.

For all other an, one has

[a0; a1; a2; ...; an] = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

.

For example,

7

12
= A−1.− 7

2
= A−1B−1.− 3

2
= A−1B−1B−1.

1

2
= A−1B−1B−1A−1.

1

0
,

and the machine yields the following continued fraction expansion:

7

12
= [0; 2;−2− 2; 2;

1

0
] = 0 +

1

2 +
1

−4 +
1
1
2

.

For any fixed ∗ ∈ Q there are infinitely many reduced words w ∈ PΓ(2)
so that w.∗ = p

q , e.g. BAn.01 = 2
1 for all integers n. This is problematic

because we would like to uniquely identify an element of Q with an element
of PΓ(2). Fortunately, the algorithm presented above produces a word w
with the property that any other w′ so that w′.∗ = p

q must be less optimal in
the sense that it contains w as a subword (ignoring the trivial differences that
arise from the fact that A.11 = B−1.11). For example, suppose that p

q = w.01
and that p

q = w′.01 as well. Then if w.01 = w′.01 , we know (w′)−1w.01 = 0
1

which means that (w′)−1w lies in the maximal parabolic subgroup which
fixes 0

1 . Thus (w′)−1w = An for some n ∈ Z, and from a quick examination
of the algorithm, one can see that w is a subword of w′.
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Figure 2: Machine to compute continued fraction expansion
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We conclude this section by discussing the actions of PMCG(Ĉ, Pf ) and

π1(Ĉ\Θ, z0) on the set of rational numbers and we also consider some exam-
ples. First we summarize the identifications of the groups mentioned above.
It is assumed that PΓ(2) is a left action, namely, matrix multiplication.
Though one might expect PMCG(Ĉ, Pf ) to act on the left because of the
nature of function composition, we wish to make it a right action because
the Birman isomorphism natural identifies it with the fundamental group
which naturally acts on the right. Some notation is then necessary so that
PMCG(Ĉ, Pf ) can be written as a right action. By the notation f · g we

mean g ◦ f . The Birman isomorphism from π1(Ĉ \ Θ, z0) to PMCG(Ĉ, Pf )
is defined on generators as follows:

α 7→ Tα

β 7→ Tβ.

The relationship between these groups and PΓ(2) involves cumbersome ter-
minology and a little subtlety since these two groups act on the right and
PΓ(2) acts on the left. Let G and H be groups. An antihomomorphism
from G to H is a function φ : G → H so that φ(g1g2) = φ(g2)φ(g1) for all
g1, g2 ∈ G. The opposite of a homomorphism φ : G → H is the function
φ̃ : G → H defined by φ̃(g1g2) = φ(g2)φ(g1). This is evidently an antiho-
momorphism. The composition of two antihomomorphisms is a homomor-
phism. The anti-isomorphism between PΓ(2) and π1(Ĉ \ Θ, z0) is defined
by postcomposing the homomorphism defined below by the opposite of the
identity homomorphism on the fundamental group:

A 7→ α

B 7→ β.

Thus, the deck group PΓ(2) acts on the left, and the fundamental group
and pure mapping class group act on the right. The isomorphisms and anti-
isomorphism described above yield isomorphic group actions on Q in all
three cases. One can see that the element of the deck group B−1A2BA−1 ∈
PΓ(2), the element of the pure mapping class group T−1

α · Tβ · T 2
α · T−1

β ∈
PMCG(Ĉ, Pf ), and the element of the fundamental group α−1βα2β−1 ∈
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π1(Ĉ \Θ, z0) are all identified, and furthermore:

− 41

18
= B−1A2BA−1.

1

0

=
1

0
.T−1
α · Tβ · T 2

α · T−1
β

=
1

0
.α−1βα2β−1

These identifications can be used to produce a very natural right action
of π1(Ĉ \ Θ, z0) on curves in Ĉ \ Pf that makes it far easier to find curves

corresponding to particular p
q . Let [γ] ∈ Cf , [w] ∈ π1(Ĉ \ Θ, z0), and let

[γ].[w] be the free homotopy class of curves found by observing the effect on
γ of pushing the point z0 along w. This action on curves respects all the
identifications, isomorphisms, and anti-isomorphisms defined before. Prac-
tically speaking then, to locate the curve corresponding to p

q , one should

identify the curves in Ĉ \ Pf corresponding to {0
1 ,

1
0 ,−

1
1}, and then observe

the effect on the appropriate curve of pushing z0 along the element of the
fundamental group corresponding to w as found in the continued fraction
expansion algorithm above. We demonstrate below how one would find the
curve corresponding to 2

1 by observing the effect on 0
1 of pushing z0 along

β. In Figure 3, the diagram on the left exhibits the three generators of the
fundamental group, and the diagram on the right exhibits the three curves
corresponding to {0

1 ,
1
0 ,−

1
1}. Figure 3 exhibits the curve corresponding to

2
1 which is found by pushing the curve corresponding to 0

1 by β.

4 Analysis of a specific example: f(z) = 3z2

2z3+1

We now turn our attention to the analysis of a specific Thurston map f(z) =
3z2

2z3+1
. Properties of f on the dynamical plane are first studied, and then

a study is made of the moduli space map. Finally, the wreath recursions
corresponding to both of these maps

4.1 The Dynamical Plane of f

The postcritical set is Pf = {0, 1, ω, ω}, and each one of these four points
is also a critical point, which means f is in the class of nearly Euclidean
Thurston map studied in [10]. Recalling the notation from earlier sections,
let Θ = {1, ω, ω}. The function f has the following critical portrait:
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Figure 3: Generators of fundamental group; three curves corresponding to
points in orbit transversal

Figure 4: The curve corresponding to 2
1 found by pushing the curve corre-

sponding to 0
1 by β
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One useful property of f is that it has a very convenient affine model.
Consider the two equilateral triangles in Figure 5 as subsets of R2 where
both outer equilateral triangles have vertices at (0, 0), (2, 0), and (1,

√
3).

Identify the marked edges in Figure 5 to form tetrahedra on both left and

Figure 5: Affine model of f

right. Define the affine model by first mapping the triangle from the domain
with vertices (1, 0) and (2, 0) and label 1 to the triangle in the range labeled
1 by the unique affine map that respects the labels of adjacent triangles.
Extend this map by reflection over the whole tetrahedron to produce a three
to one map from the tetrahedron to itself with four simple critical points.
To prove that this is actually a model of f , explicitly embed this tetrahedron
into R3 isometrically by mapping:

A 7→ (0, 0,−
√

18

3
).

B 7→ (−1

2
,

√
3

2
, 0)

C 7→ (1, 0, 0)
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D 7→ (−1

2
,−
√

3

2
, 0)

Circumscribe this regular tetrahedron by a sphere of radius
√

9
8 as in Fig-

ure 6. The stereographic projection from this sphere with north pole N at

Figure 6: Circumscribed regular tetrahedron

(0, 0, 1√
2
) onto the plane {(x, y, z) : z = 0} is conformal. Identify this plane

with the complex plane by the mapping (x, y, z) 7→ x + iy. Then one can
conformally map the tetrahedron onto C by first radially projecting onto
the circumsphere and then mapping onto C by the stereographic projection.
Conjugating the affine model for f by this composition will up to homotopy
yield a rational function C → C that is conformal except at Pf where the
map has local degree 2. An argument has already been presented for the
uniqueness of degree 3 rational functions with post-critical set Pf with the
same critical portrait as f . Thus f arises as a finite subdivision rule of the
sphere, though it has unbounded valence.

In [8], it is shown that f is a very important example. The authors
proved that the Thurston pullback map σf is surjective and that it has a
fixed point of local degree 2. Up to some non-dynamical equivalence, this
is the only known example where σf is surjective. Xavier Buff generated
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an image of this function using the method described in Section 2.4, and
from simple observation, it seems that the points on the boundary map to
one of three points under iteration of the extended Thurston pullback map.
Thus, using ideas from Selinger’s work, there is reason to believe that under
iterated preimage of f , all curves eventually land in the homotopy class of
one of three curves. This is actually the case, and we will prove this fact
and demonstrate its usefulness in distinguishing Thurston classes.

Another feature of f is that it arises as a mating [23] of the two cubic
polynomials P and Q where P has two finite fixed critical points, and Q
has two finite critical points that are interchanged in a two-cycle. This is a
consequence of the fact from Section 5 that the curve corresponding to −1

1

in Ĉ \Pf pulls back to itself in an orientation preserving way, and since f is
hyperbolic, it is a mating with equator given by this invariant curve. Note
that the polynomials P andQ are unique up to affine conjugacy. This implies
that P and Q commute with the map that interchanges the two critical
points. In general one should expect two ways of identifying the circles at
infinity for two cubic polynomials, but the properties just mentioned imply
that f is the only possible mating.

4.2 The Correspondence on Moduli Space

A feature of f that was introduced and exploited in [8] is the existence of
the correspondence on moduli space mentioned in Section 2.1. Note that Y

has degree 4, and it has the following portrait since Y ′(z) = 2(z3−1)2

(2z3+1)2 . Some

elementary considerations prove that Y is the unique degree 4 rational func-
tion that fixes each of 1, ω, and ω with local degree 3. Suppose that W is
another such degree 4 rational function. Then deg(Y −W ) ≤ 8, but Y −W
has 9 zeros counted with multiplicity and must therefore be identically 0. It
is also worth noting that Y has some remarkable properties as a dynamical
system, though we won’t be studying it as such. The critical portrait of Y
is as follows:

ω ×3ee 1 ×3ee ω ×3ee

It is the map used by McMullen [22] to give a generally convergent iterative
algorithm for solving cubic equations. Also, using the uniqueness property
described above, one can easily prove that the automorphism group of this
function is isomorphic to the symmetric group on three symbols.

We now produce an affine model of Y using triangles, as depicted in
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Figure 7. The upper left object in the diagram is the equilateral triangle with
vertices −2, 1 + 3

2 i, 1−
3
2 i doubled over its boundary. The lower left object

is the equilateral triangle with vertices 1, ω, ω doubled over its boundary.
Thus the domain is the union of eight equilateral triangles with disjoint
interior, where the three outer triangles on the front face are shaded as well
as the central triangle on the back face. The range is the union of two
equilateral triangles with disjoint interior, where the back face is shaded.
The affine model for Y which we denote by Y 4 is constructed by mapping
the unshaded triangle on the front face of the domain to the front face of
the range via the identity. Extend this map by reflection so that it is defined
on all eight triangles in the domain. This produces a degree 4 map that is
conformal except at the vertices 1, ω, ω which all map by degree 3.

Though it certainly exists in theory, the unique Riemann map (4, {1, ω, ω})→
(D, {1, ω, ω}) can be defined explicitly for the Euclidean triangle in C which
has vertices 1, ω, and ω. It is defined as a composition of a series of con-

formal maps. First apply the translation z 7→ z + 1
2 +

√
3

2 i, then rotate by

z 7→ e−
πi
6 , and then scale by z 7→ β( 1

3
, 1
3

)√
3
z where β(1

3 ,
1
3) =

Γ( 1
3

)Γ( 1
3

)

Γ( 2
3

)
. Under

these transformations, the original triangle maps to an equilateral triangle
in the first quadrant of side length β(1

3 ,
1
3) with one vertex at the origin

and a second vertex at β(1
3 ,

1
3) + 0i. Then under preimage of the Schwarz-

Christoffel transformation z 7→
z∫
0

w−2/3(1−w)−2/3dw, this latter triangle is

mapped to the upper half plane with vertices 0, 1 and ∞. Then the Möbius
transformation z 7→ zω+1

zω+1 maps the upper halfplane to the unit disk where 0
maps to 1, 1 maps to ω, and ∞ maps to ω. This Riemann map is evidently
unique, because precomposition by the inverse of any other such Riemann
map yields an isomorphism of D that fixes three points in the boundary.

Now we define the other maps in Figure 7. The map Aran is the unique
isomorphism defined by applying Schwarz reflection to the Riemann map
constructed above, where Aran evidently fixes the points 1, ω, ω. With a
slight adjustment to the work done above, one constructs the unique Rie-
mann map from the front face of the domain of Y 4 to the unit disk in
Ĉ that fixes the points 1, ω, ω. The map Adom is the unique isomorphism
defined by applying Schwarz reflection to this Riemann map. It is clear
that A−1

ran ◦ Y 4 ◦ A−1
dom is a holomorphic map away from the points 1, ω, ω,

and so by application of the removable singularity theorem it is a holomor-
phic map on Ĉ. Since it is evidently a rational function, we conclude that
A−1
ran ◦ Y 4 ◦A−1

dom ≡ Y by the uniqueness of Y .
We now specialize the discussion of Section 3 to the case where Pf =
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Figure 7: Isomorphisms from domain and range of affine model to Ĉ

{0, 1, ω, ω}. The first step in the process as described in Section 3 is to define
a cover of Ĉ\Θ and then postcompose by some Möbius transformation. Since

the standard modular map used in that section was a cover (H, 1+
√

3i
2 ) →

(Ĉ \ Θ, 0), simply use the identity Möbius transformation. Thus we have
the map π exhibited in Figure 8 along with the standard identification with
D from before. The deck group is again PΓ(2) = 〈A,B〉 where A =

[
1 0
−2 1

]
,

B = [ 1 2
0 1 ], and these generators are identified with the generators α and

β respectively of the fundamental group π1(Ĉ \ Θ, 0). These two loops are
depicted in Figure 8. Pushing the point 0 in the positive direction along
α and β yield generators of PMCG(Ĉ, Pf ) which we denote by Tα and Tβ
respectively.

4.3 The Virtual Endomorphism and Wreath Recursion on
Moduli Space

There are two wreath recursions that will be associated to f : the wreath
recursion on the dynamical plane and the wreath recursion on moduli space
given specific choices of connecting paths. This section will present formulas
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Figure 8: Specific choice of the cover π

for the the virtual endomorphism on the fundamental group of moduli space
and the wreath recursion on moduli space, as well as a discussion of algebraic
contracting properties.

We now use the Reidemeister-Schreier algorithm to compute the virtual
endomorphism on moduli space using the methods from Section 2.3. Using
the choice of labeling of Y −1(0) given in Figure 12, one can compute that the
monodromy of Y is isomorphic to the alternating group on four letters. In
Figure 9 we exhibit the preimage of the two generators under Y calculated
using the affine model presented earlier. By adding appropriate labels to the
graph in the domain of Y , we produce the Schreier graph of Y with basepoint
z0 = 0 in the domain and basepoint Y (z0) = 0 in the range. The maximal
subtree we choose will have vertices and edges depicted in Figure 10 by the
solid lines, and the corresponding Schreier transversal is T = {1, α, α−1, β}.
From Figure 10 and the discussion in 2.3 it is evident that

H = 〈βαβ−1, β2α−1, β−1α−1, α3, α−1βα〉.

To define our virtual endomorphism, it is necessary to write an arbitrary w ∈
H as a word in the five generators of H and their inverses; the Reidemeister-
Schreier rewriting process will be used, where S = {α, β}. Table 1 exhibits
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Figure 9: Lift of generators under Y

γ(row, column) α α−1 β β−1

1 1 1 1 β−1α−1

β βαβ−1 βα−1β−1 β2α−1 1

α α3 1 αβ αβ−2

α−1 1 α−3 α−1βα α−1β−1α

Table 1: All values of γ in the Reidemeister-Schreier algorithm

all necessary values of γ, where the left column corresponds to the first
argument of γ, and the right column corresponds to the second. Also, recall
that path multiplication was earlier defined so that for example αβ is the
path obtained by traversing α in the positive direction, and then β. The
following is a sample computation to show how one would write the word
αβ2α−1β−1 ∈ H in terms of the generators of H:

αβ2α−1β−1 = γ(1, α) · γ(α, β) · γ(αβ, β) · γ(αβ2, α−1) · γ(αβ2α−1, β−1)

= γ(1, α) · γ(α, β) · γ(1, β) · γ(β, α−1) · γ(β, β−1)

= 1 · αβ · 1 · βα−1β−1 · 1

This completes the discussion of how to lift elements of the fundamental
group under Y based at 0. We now turn to computing the image of these
elements under X(z) = z2, namely we would like to compute φf : H <

π1(Ĉ \ Θ, 0) → π1(Ĉ \ Θ, 0), where this virtual endomorphism corresponds
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Figure 10: Choice of maximal subtree in the Schreier graph

to the virtual endomorphism on PMCG(Ĉ, Pf ) as described in Section I.
For example, the lift of βαβ−1 under Y is homotopic to the loop on the
left side of Figure 11, and it is actually quite easy to compute the image
under X: Thus X(Y −1(βαβ−1)[0]) = β. In fact it is easy to carry out this

Figure 11: The image of a representative of Y −1(βαβ−1)[0] under X

computation for all generators of H in a similar fashion, and it can be shown
that φf behaves on generators as follows:

βαβ−1 7−→ β

β2α−1 7−→ β−1
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β−1α−1 7−→ α−1β−1

α3 7−→ β

α−1βα 7−→ α.

The whole process of computing φf (w) for some word w = s1s2...sk ∈ H
where si ∈ S ∪ S−1 can be streamlined by the diagram in Figure 12. The
starting state is the one at the center of the diagram. Let j = 1, and let the
output string be the empty string.

If sj ∈ S, the new state is determined by following the arrow with the
group element sj in the first coordinate of the label; append the contents of
the second coordinate to the right of the output string. If sj ∈ S−1, the new
state is determined by following the arrow with s−1

j in the first coordinate;
append the inverse of the second coordinate to the right of the output string.
Repeat the process described in this paragraph until the whole input string
w is consumed. Upon completion, the output string is precisely φf (w). For
example, the diagram gives that

φf (α2β−1α−1β−1α2β−1) = 1 · β · α−1 · β−1 · β · β · β · 1
= βα−1β2.

There is a close relationship between virtual endomorphisms arising from

Figure 12: Machine to compute the virtual endomorphism φf drawn in

Wf = Ĉ \Θ′

rational maps on moduli space and wreath recursions. In the case that a
wreath recursion is contracting, there is a finiteness property that can be
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exploited to help understand the virtual endomorphism, and the following
is devoted to defining a wreath recursion on π1(Ĉ \ Θ) and discussing its
contracting properties. As mentioned in Section 2.4, we must make a choice
of labels for the points in X ◦Y −1(0) as well as a choice of connecting paths
between the basepoints in Ĉ \ Θ. These paths are exhibited in Figure 13.
The three small circles in Figure 13 denote the points in Θ, and the four

Figure 13: Connecting paths for the wreath recursion Φ drawn in Ĉ \Θ

dots correspond to the points in X ◦ Y −1(0) = {0, 3
√

4, 3
√

4ω, 3
√

4ω} which
are labeled 1,3,2, and 4 respectively. The connecting path `1 is the constant
path at 0, and the path `3 is the path that runs from 0 to 3

√
4 along the

positive real axis, except at the omitted point 1 + 0i where the path goes
into the lower half-plane along a small semi-circular arc. The other paths
are defined as follows: `2 = e2πi/3`3 and `4 = e4πi/3`3. Using this choice of
connecting paths, we find that

Φ(β) = 〈〈β−1, βα, 1, α〉〉( 1 2 3 )

Φ(α) = 〈〈βα, β, α−1, 1〉〉( 1 3 4 ).

Recall that ( 1 3 4 ) denotes the cycle 1 7→ 3 7→ 4 7→ 1. We observe that
the wreath recursion Φ on π1(Ĉ \Θ) is not contracting using a straightfor-
ward computation:

Φ(βα) = 〈〈1, β, βα, α〉〉( 1 2 4 )
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Φ((βα)3) = 〈〈βα, βα, (βα)3, αβ〉〉id

from which it is clear that

Φ((βα)3n) = 〈〈(βα)n, (βα)n, (βα)3n, (αβ)n〉〉id.

Lemma 2.11.2 from [25] implies that N must contain (βα)3n for all n since
it must be true in this setting that ((S ∪N )2)|Xk ⊂ N for all k ∈ N.

In addition to the fact that the wreath recursion on π1(Ĉ \ Θ) is not
contracting, it is easy to conclude that the action on the tree of preimages
is not contracting. A proposition in [25, p.60] states that if a level-transitive
action is contracting, then ρφf < 1, where

ρφf = lim sup
n→∞

n

√
lim sup

g∈domφf
n,|g|→∞

|φfn(g)|
|g|

.

We construct a sequence gi ∈ 〈α, β〉 to demonstrate that ρφf = 1. First
define hi for i > 0 as follows: h1 = β, h2 = α3, h3 = β9, h4 = α27, ....
Observe that φf (hi) = hi−1 for i > 1 by inspection of Figure 12. Let

gi = (
∏i
j=1 hj)(βα)i

3
(
∏i
j=1 hj)

−1. Then φif (gi) = (βα)i
3

and

|φnf (gi)|
|gi|

≈ i3

2i2 + i3
→ 1

4.4 The Wreath Recursion on the Dynamical Plane; Cover-
ing and Hurwitz Equivalence

To compute the wreath recursion on the dynamical plane, let the basepoint
be the unique real fixed point of f that lies between 0 and 1. The choice of
four generators α, β, γ, and δ of π1(Ĉ \ Pf ) is presented in Figure 14 where
αγβδ = e. A choice of connecting paths `1, `2, `3 is also made, where `2 is
the constant path at the basepoint. The endpoints of each path `1, `2, `3 is
labeled 1, 2, 3 respectively. With these choices, the wreath recursion on the
dynamical plane is

Φf (α) = 〈〈e, e, β〉〉( 1 3 )

Φf (β) = 〈〈β−1, e, γ−1δ−1〉〉( 1 3 )

Φf (γ) = 〈〈e, γ, e〉〉( 2 3 )

Φf (δ) = 〈〈δ, e, e〉〉( 1 2 )
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Figure 14: Choice of connecting paths and lift of generators under f
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The results of Koch in [17] discuss remarkable connections between the
correspondence on moduli space and facts about the covering class and Hur-
witz class of f . We discuss the latter objects here. Let f1, f2 : S2 → S2

be two connected degree three branched covers with critical points Cf1 , Cf2

and critical values Vf1 , Vf2 where the assumption is made that Vf1 = Vf2 .
The maps f1, f2 are said to be equivalent if there exists a homeomorphism
h : S2 → S2 that satisfies f1 = f2 ◦ h. Note that h(Cf1) = (Cf2) by a local
degree argument. The Hurwitz classification of such branched covers up to
equivalence is given in [3], where the invariant used is the conjugacy class
of monodromy representations from π1(S2 \ Vf1) into the symmetric group
on three letters. These are encoded by an ordered quadruple of transposi-
tions in the symmetric group on three letters where the product of all four
components is the identity and the group generated by the transpositions is
transitive. Also, these quadruples are considered up to simultaneous conju-
gation of all four components. For our work, the consecutive entries of the
quadruple correspond to the monodromy about the elements α, γ, β and δ
respectively using the generators from Figure 14. Thus, one can represent
the branched covering class of the function f(z) = 3z2

2z3+1
by the following

quadruple considered up to simultaneous conjugation of the four compo-
nents:

(( 1 3 ), ( 2 3 ), ( 1 3 ), ( 1 2 )).

One can systematically produce a list of admissible Hurwitz data representa-
tives for all other connected degree three branched covering classes S2 → S2

with four simple critical points and the same critical values as f :

(( 1 3 ), ( 2 3 ), ( 2 3 ), ( 1 3 ))

(( 1 3 ), ( 2 3 ), ( 1 2 ), ( 2 3 ))

(( 2 3 ), ( 2 3 ), ( 1 3 ), ( 1 3 )).

See [11] for formulas that predict the number of covering classes in far more
general settings.

Recall the conventions on the action of pure mapping classes on equiv-
alence classes of covers from Section 2.2. By abuse of notation let A and
B represent the Dehn twist generators of PMCG(Ĉ, Pf ) coming from the
identification with PΓ(2). The effect of A−1 and B−1 on the generators of
π1(Ĉ \ Vf ) can be computed by hand to be

A−1.(α, β, γ, δ) = (α−1δ−1αδα, β, γ, α−1δα)

B−1.(α, β, γ, δ) = (α, δ−1βδ, γ, δ−1β−1δβδ).
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One computes that
ρA◦f = ρf ◦A−1

ρB◦f = ρf ◦B−1

where ρ denotes the monodromy representation of its subscript. Identify
the set of isomorphism classes of coverings determined by the four maps
corresponding to the preimages of the origin under the map Y with the four
quadruples mentioned above respectively where the preimage at the origin
is identified with f . One can verify directly that the monodromy action of
π1(Ĉ\Θ, 0) on the fiber Y −1(0) is isomorphic to the action of PMCG(Ĉ, Pf )
on the four covering classes.

Two branched covers f1, f2 as before are said to be Hurwitz equiva-
lent if there exists homeomorphisms h and g so that g ◦ f1 = f2 ◦ h.

S2 h //

f1
��

S2

f2
��

S2 g
// S2

Since the pure mapping class group acts transitively on the set of covering
classes, it is clear that representatives of the four covering classes mentioned
above all lie in one Hurwitz class.

5 Boundary Values of σf

In this section, we analyze the behavior of the Thurston pullback map σf
on the Weil-Petersson boundary of Teichmüller space for f(z) = 3z2

2z3+1
.

5.1 The Boundary Maps to the Boundary

Denote by T f the Weil-Petersson completion of Teichmüller space, and let
∂Tf denote the Weil-Petersson boundary. We first show that the extended
Thurston pullback map σf : T f → T f has the property that σf (∂Tf ) ⊂
∂Tf . This is accomplished by showing that the preimage under f of an

essential curve in Ĉ \ Pf has an essential component. It will be seen in
the next section that actually σf (∂Tf ) = ∂Tf . In general one should not
expect the boundary of Teichmüller space to map to itself, as the Thurston
pullback map for the rabbit polynomial provides a counterexample.

Recall the definition of the correspondence covered by σf in Section 2

and that H < π1(Ĉ \ Θ, 0) is the subgroup of elements that lift to loops
under Y based at 0. To understand the preimages of essential curves in
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Ĉ \ Pf under f , first identify such a curve with an element of π1(Ĉ \ Θ, 0)
by the point-pushing isomorphism. This element may not lie in H, though,
so an appropriate power must be taken. Then to compute the preimage
of the essential curve under f , Theorem 2.6 indicates that one should lift
elements of H under Y and push them down by X. All results in this section
are devoted to understanding this process. For convenience the notation
γ = α−1β−1 is used.

Lemma 5.1 Let g ∈ {wαnw−1, wβnw−1, wγnw−1} ∩ H where n ∈ Z, w ∈
π1(Ĉ \Θ, 0). Then X∗(Y

−1(g)[0]) 6= 1.

Proof We give a topological proof of this fact. Note that each such g is
in the free homotopy class of a peripheral curve about some point p ∈ Θ.
There exists a simply connected neighborhood D about p so that Y is a
finite-to-one branched cover over D. One can then choose a closed curve s
in the free homotopy class of g with s ⊂ D. As a simple consequence of
the mapping properties of Y on Θ′, any component of Y −1(s) is peripheral
about some p′ ∈ Θ′, and by homotopy lifting it is apparent that Y −1(g)[0]
is peripheral in Ĉ \ Θ′. The function X(z) = z2 maps peripheral curves
in Ĉ \ Θ′ to peripheral curves in Ĉ \ Θ since X maps Θ′ to Θ and X is
a homeomorphism near Θ′. Thus, X∗(Y

−1(g)[0]) 6= 1 since Y −1(g)[0] was
peripheral. �

The fact that σf (∂Tf ) ⊂ ∂Tf is a consequence of this lemma and the
following argument. Selinger showed that σf (Sγ) ⊂ Sf−1(γ) where γ is es-
sential [30, p. 590]. We must then show that every essential simple closed
curve in Ĉ \ Pf has an essential preimage. To compute the preimage of a
curve Γ under f , choose a Dehn twist with core curve Γ that is identified
with a parabolic element of π1(Ĉ \ Θ, 0). The cube of a parabolic element
can be lifted under Y by examination of Figure 9. Lemma 5.1 demonstrates
that the correspondence on moduli space maps this parabolic element to
another parabolic element, and this second parabolic element is equivalent
to a Dehn twist that fixes an essential curve that is precisely f−1(Γ). It is
therefore evident that the Weil-Petersson boundary is mapped to itself by
the extended Thurston pullback map.

5.2 Dynamical behavior of φf

The motivation for the following theorem is that the dynamical behavior of
φf applied to (a power of) parabolic elements describes the iterative behavior
of the extended Thurston pullback map. Though every parabolic element
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can be written in the form wαnw−1, wβnw−1, or wγnw−1, it becames useful
to consider words of the form wδnw−1 with δ = β−1α−1 to simplify many of
the following statements. Note that δβ

−1
= γ. In this section the subscript

on φf will be suppressed. Recall that G denotes π1(Ĉ \ Θ, 0). The word
length of g ∈ G with respect to the generating set S = {α, β} is denoted by
|g|. For any k ∈ Z and g ∈ G, use the standard notation gk·w = w−1gkw
where one should recall that thought of as a path, w−1 is traversed first.
Also recall that γ = α−1β−1.

Theorem 5.2 Let w ∈ G and x ∈ {α, β, γ}. Then there is some k ∈ N and
an appropriate choice of n ∈ N so that:

φ◦k(xn·w) ∈ {xm|m ∈ N}.

Put informally, iteration of φ will always eliminate the conjugator w of
a parabolic element, and under iteration, all parabolics eventually fall into
one of three classes depending on what the base of the element was at the
beginning.

The first step in the proof is to write formulas that describe the effect of
φ on parabolic elements. Define the function φ : π1(Ĉ \Θ, 0)→ π1(Ĉ \Θ, 0)
as follows:

φ(w) =


φ(w) w ∈ H
φ(βw) w ∈ β−1H

φ(α−1w) w ∈ αH
φ(αw) w ∈ α−1H

Lemma 5.3 For any w ∈ G, there exists k ∈ {1, 3} so that for any n ∈ Z:
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φ(α3n·w) = (βk·n)φ(w) (1)

φ(β3n·w) =

{
(αk·n)φ(w) w ∈ H ∪ β−1H ∪ αH
(αn)β

−1φ(w) w ∈ α−1H
(2)

φ(γ3n·w) =

{
(γk·n)φ(w) w ∈ H ∪ α−1H

(δn)φ(w) w ∈ β−1H ∪ αH
(3)

φ(δ3n·w) = (γk·n)φ(w) (4)

Schematically this lemma can be summarized by the following directed and
labeled graph. The vertices of the graph represent the base of the expres-
sions in the lemma. Directed edges indicate how the base changes under
an application of φ, and edges are labeled by ordered pairs to indicate the
change in exponent under application of φ.

α

(w,φ(w))

!!

β
(w,φ(w))

mm

(w,β−1φ(w))

aa γ(w,φ(w)) 99

(w,φ(w))

(( δ

(w,φ(w))

hh

Proof We prove the third equality and the others are proved analogously.
Case w ∈ H:

φ((α−1β−1)3n·w) = φ((α−1β−1)3n)φ(w)

= φ((α−1β−1)3)n·φ(w)

= (α−1β−1)n·φ(w)
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Case w ∈ α−1H: Let w = α−1h, h ∈ H.

φ((α−1β−1)3n·w) = φ((α−1β−1)3n·α−1h)

= φ(α(α−1β−1)3nα−1)φ(h)

= φ(β−1α−1)3n·φ(h)

= (α−1β−1)3n·φ(w)

Case w ∈ β−1H: Let w = β−1h, h ∈ H.

φ((α−1β−1)3n·w) = φ(β(α−1β−1)3β−1)n·φ(h)

= φ(β−1α−1)n·φ(h)

= (α−1β−1)n·φ(w)

Case w ∈ αH: Let w = αh, h ∈ H.

φ((α−1β−1)3n·w) = φ(α−1(α−1β−1)3α)n·φf (h)

= (β−1α−1)n·φ(w)

�

To prove the theorem, it is enough to show that φ has a particular kind
of contracting property on the exponents of parabolic elements. A path in
the graph in Figure 12 which starts and ends at the vertex labeled 1 and
passes through the vertex labeled 3, must immediately continue on to some
vertex beside the one labeled 3. Thus, a new directed labeled graph can be
produced to condense the sequence of labels encountered along such paths.
Such a graph is exhibited in Figure 15, and is obtained from the graph in
Figure 12 in the following way. Delete the vertex labeled 3 and the four
edges incident to it. Add six new edges which correspond to paths e1e2

in the old graph where e1 and e2 are either edges or reverse edges, and
t(e1) is the vertex labelled 3 where i(e1) 6= t(e2). Each such edge connects
i(e1) to t(e2) and is given the label `(e1e2) (the new edges corresponding
to e1e2 and e−1

2 e−1
1 are considered redundant and one of them is omitted).

One shows that for elements of H, this graph yields the same result as the
graph in Figure 12 by computing its effect on the generators of H. In some
situations such as the proof of the following lemma, this new graph is the
preferred perspective.

Lemma 5.4 Let w ∈ H. Then either |φ(w)| ≤ |w| − 2 or |φ(w)| = |w| in
which case w = (αβ)k, k ∈ Z.
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Figure 15: New machine for computing φf
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Proof Recall that elements of H can be regarded as paths in the graph
in Figure 12 that begin and end at the vertex labeled 1. Write w =
(αβ)mh(αβ)n where h ∈ H, m,n ∈ Z so that |m| and |n| are maximal,
and |w| = 2|m|+ |h|+2|n|. If h = 1, then evidently |φ(w)| = |w|. Otherwise
h corresponds to a path in the Schreier graph that begins and ends at the ver-
tex labeled 1 whose first and last edges traversed are not (β−1α−1, α−1β−1)
in Figure 15. Note from Figure 15 that these first and last edges that h
could pass through decrease word length, and all other edges traversed by
h are nonincreasing on word length. �

Define the set of “bad” elements Bφ in H where φ is not length-decreasing
as follows:

Bφ = {(αβ)k : k ∈ Z}.

Lemma 5.5 Let w ∈ G. Then precisely one of the following is true:

• |φ(w)| ≤ |w| − 1.

• |φ(w)| = |w| and w = (αβ)k, k ∈ Z.

• |φ(w)| = |w|+ 1 and w = β(αβ)k, k ≥ 0.

Using suggestive notation, define Bφ by

Bφ = Bφ ∪ {β(αβ)k, k ≥ 0}.

Put differently, the lemma says that φ contracts word length on the com-
plement of Bφ, preserves word length on Bφ, and increases word length by
one on Bφ \ Bφ.

Proof It is immediately evident from the definition of φ and Lemma 5.4
that for any w ∈ G,

0 ≤ |φ(w)| ≤ |w|+ 1.

First suppose that w ∈ Bφ. By direct computation we have

φ((αβ)k) = (βα)k, k ∈ Z (5)

φ(β(αβ)k) = (βα)k+1, k ≥ 0. (6)

which proves that one iteration of φ preserves the length of elements in Bφ
and increases the length of the remaining elements in Bφ by one.
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Next suppose that w /∈ Bφ. There are four subcases depending on the

coset respresentative of w. If w ∈ H, it is clear that |φ(w)| = |φ(w)| ≤
|w|−2 ≤ |w|−1. To deal with the other three subcases, let x ∈ {β, α, α−1} be
the inverse of the coset representative of w, and we must consider two further
cases depending on whether appending the inverse of the coset representative
and reducing lengthens or shortens the word. First suppose that the length
is shortened, i.e. |xw| = |w| − 1. Then

|φ(w)| = |φ(xw)| ≤ |xw| ≤ |w| − 1

When the length increases when x is appended, i.e. |xw| = |w| + 1, there
are two simple cases to consider. If xw /∈ Bφ, then we have

|φ(w)| = |φ(xw)| ≤ |xw| − 2 ≤ |w| − 1

On the other hand, it is impossible for xw ∈ Bφ, because then x = α and so
w = β(αβ)k−1 contrary to the assumption that w /∈ Bφ.

�

Continuing to the proof of Theorem 5.2, it will be helpful to note the
following fact which can easily be verified by examination of the Schreier
graph: if k ≡ 0 mod 3 then (βα)k ∈ H, if k ≡ 1 then (βα)k ∈ β−1H, and if
k ≡ 2 then (βα)k ∈ αH.

Proof of Theorem 5.2 To minimize notation in the following computa-
tions, denote by ∗ the presence of some integer that is necessary for each of
the following expressions to be in H, though the precise values is not signif-
icant for our present concerns. The value of ∗ may even vary within a single
equation. The directed graph from Lemma 5.3 and the contracting property
of Lemma 5.5 make it evident that apart from a single exception, one appli-
cation of φ to a suitable power of a parabolic word with exponent w /∈ Bφ
will decrease the length of the exponent. This single exception occurs when
the base is β and w ∈ α−1H in which case the length of the exponent may be
preserved (but may not increase); but if the new exponent β−1φ(w) lies out-
side of Bφ, the next iterate of φ will decrease its length according to Lemma
5.5. Hence, the single exception causes no problem because the length of
the exponent may decrease, or it may fall into the following situation. We
consider next w ∈ Bφ, which will require four cases depending on the base
to show that under iteration of φ exponent lengths decrease. For x ∈ {α, β},
it is shown that φ◦2(x∗w) = x∗w

′
where w′ is minimal and |w′| < |w|. For

x ∈ {γ, δ}, it is shown that φ(x∗w) = γ∗.
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Case when base is α: First assume that w ∈ Bφ, and consider sepa-
rately the situation when k > 0 and k < 0 where w = (αβ)k. For k < 0,
note that

φ(α∗w)
(1)
= β∗φ((αβ)k) (5)

= β∗(βα)k

and upon taking a second iterate we obtain:

φ2(α∗w) = φ(β∗(βα)k)
(2)
= α∗φ((βα)k)

where |φ((βα)k)| < |w| because (βα)k /∈ Bφ. When k > 0 one observes

that α∗(αβ)k = α∗β(αβ)k−1
, which means that a simple cancellation puts the

exponent in Bφ \ Bφ.
Finally, suppose w ∈ Bφ \ Bφ. Then

φ(α∗w)
(1)
= β∗φ(β(αβ)k) (6)

= β∗(βα)k+1
= β∗α(βα)k

and taking a second iterate,

φ2(α∗w) = α∗φ(α(βα)k)

where |φ(α(βα)k)| < |w| since α(βα)k /∈ Bφ.

Case when base is β: If w ∈ Bφ we can assume that k > 0, for oth-
erwise a cancellation occurs. So assuming w = (αβ)k, k > 0, it follows from

Lemma 5.3 that φ(β∗w)
(5)
= α∗(βα)k and so φ◦2(β∗w)

(2)
= β∗φ((βα)k), where

one sees that |φ((βα)k)| < |w| since (βα)k /∈ Bφ. The second case is when
w ∈ Bφ \ Bφ, but one immediately sees that a cancellation with the base
occurs that puts the exponent in Bφ.

Case when base is γ: If w ∈ Bφ, then from the formulas of Lemma
5.3 and a simple cancellation it is seen that,

φ(γ∗w)
(3)
= γ∗(βα)k = γ∗.

Finally, if w ∈ Bφ \ Bφ, there is the simple cancellation γ∗w = δ∗ and so
φ(γ∗w) = γ∗.

Case when base is δ: For w ∈ Bφ, simple cancellation shows that
δ∗w = δ∗, and since φ(δ∗w) = γ∗ the conclusion immediately follows. If on
the other hand w ∈ Bφ \ Bφ, it is seen that

φ(δ∗w)
(4)
= γ∗φ(w) (6)

= γ∗(βα)k+1
= γ∗.

�
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6 Properties of σf : Q→ Q

In Sections 3 and 4, the Weil-Petersson boundary of Teichmüller space was
identified with the extended rationals Q, and the observation was made that
the Thurston pullback map extends to the boundary which maps to itself.
Denote by σf : Q → Q the effect of this extended pullback map on the
rational numbers associate to points in the Weil-Petersson boundary. The
purpose of this section is to exhibit numerical properties of σf that are a
consequence of earlier sections.

The following functional equation is a crucial computational tool that
appears in [1], where p

q ∈ Q and w ∈ H:

σf (
p

q
.w) = σf (

p

q
).φ(w). (7)

This equation is a consequence of the following commutative diagram and
the fact that σf and the action of PMCG(Ĉ, Pf ) extend continuously to the
Weil-Petersson boundary. Denote by Tp/q the right Dehn twist that fixes
the point p

q in the Weil-Petersson boundary and denote by Tw the mapping
class that comes from pushing 0 along the positive direction of w ∈ H.

(Ĉ, Pf )
Tσf (p/q)

//

f
��

(Ĉ, Pf )

f
��

Tφ(w)
// (Ĉ, Pf )

f
��

(Ĉ, Pf )
Tp/q

// (Ĉ, Pf )
Tw // (Ĉ, Pf )

For future reference it is necessary to state some simple results, the first
being that σf (1

1) = −1
1 . This is demonstrated as follows:

σf (
1

1
) = σf (

1

1
.β−1α−1)

= σf (
1

1
).φ(β−1α−1)

= σf (
1

1
).α−1β−1

where σf (1
1) = −1

1 because it is the fixed point of the action of α−1β−1.
One could similarly prove that

σf (−2

1
) =

1

0

σf (−1

2
) =

0

1
= σf (

1

2
)
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σf (
1

1
) = −1

1
= σf (

1

3
) (8)

The following consequence of Theorem 5.2 gives a surprising description of
the global dynamics of σf : Q→ Q:

Theorem 6.1 Let p
q ∈ Q be reduced. Then there exists N ∈ N so that for

all n ≥ N , σ◦nf (pq ) ∈ {0
1 ,

1
0 ,−

1
1}. If both p and q are odd, then for such n,

σ◦nf (pq ) = −1
1 . If either p or q is odd, then for such n, σ◦nf (pq ) lies in the

two-cycle 0
1 ←→

1
0 .

Proof Recall that points in the Weil-Petersson boundary are encoded by
Dehn twists Tp/q. It is a consequence of Equation 7 that σf (pq ) = p′

q′ if and

only if p′

q′ = Fix(φ(Tnp/q)) for some appropriate value of n ∈ N because

σf (
p

q
) =

p′

q′
⇐⇒ σf (

p

q
.Tnp/q) =

p′

q′
⇐⇒ σf (

p

q
).φ(Tnp/q) =

p′

q′
.

For some choice of power n ∈ N, Theorem 5.2 implies that under iteration
of φ, Tnp/q lands in one of the three maximal parabolic subgroups 〈α〉, 〈β〉,
or 〈γ〉. Then since φ(α3) = β, φ(β3) = α and φ(γ3) = γ, the mapping
properties of σf on the finite global attractor are given below.

0
1

(( 1
0hh −1

1 kk

The continued fraction algorithm presented before gives a way of writing
p
q = ∗.w where ∗ ∈ {0

1 ,
1
0 ,

1
1} and w ∈ G. In the case where ∗ = 1

1 , one can
use Equation 8 to observe that if:

w ∈ H, then σf (
p

q
) = σf (

1

1
.w) = −1

1
.φ(w).

w ∈ αH, then σf (
p

q
) = σf (−1

1
.α−1w) = −1

1
.φ(α−1w).

w ∈ α−1H, then σf (
p

q
) = σf (

1

3
.αw) = −1

1
.φ(αw).

w ∈ β−1H, then σf (
p

q
) = σf (−1

1
.βw) = −1

1
.φ(βw).

This shows that for all possible w ∈ G, it is true that σf (1
1 .w) = −1

1 .φ(w).
Similar computations apply when ∗ = 0

1 and ∗ = 1
0 , and so the following

hold:

σf (
1

0
.w) =

0

1
.φ(w)
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σf (
0

1
.w) =

1

0
.φ(w)

σf (
1

1
.w) = −1

1
.φ(w).

Since the action of PΓ(2) on Q preserves the parity of numerator and de-
nominator, these equations make evident that when p and q are both odd,
then σf (pq ) will have odd numerator and denominator in reduced form. One

can also conclude that when p is odd and q is even, then σf (pq ) will have
even numerator and odd denominator when written in reduced form. An
analogous result holds for p even and q odd. �

The following orbits of several fractions p
q under σf illustrate several

properties mentioned already. They also demonstrate that it is possible
for a fraction with odd numerator and even denominator to land on either
element of the two-cycle:

205

357
7−→ −19

13
7−→ −5

3
7−→ −3

1
7−→ 1

1
7−→ −1

1
203

357
7−→ −23

15
7−→ −7

3
7−→ 3

1
7−→ −1

1
203

356
7−→ −50

33
7−→ −13

6
7−→ 6

1
7−→ −1

2
7−→ 0

1
203

354
7−→ −28

19
7−→ −7

4
7−→ −4

1
7−→ 1

0

Next we show that σf is surjective and that all fibers are infinite. Recall
that α and β generate G. Observe that φ is a surjective virtual endomor-
phism since φ(α−1βα) = α and φ(βαβ−1) = β. Thus, if p

q = 0
1 .w
′ where

w′ ∈ G, then σf (1
0 .w) = p

q where w is chosen so that φ(w) = w′. We show

that σf is infinite-to-one in the case of rational numbers of the form 1
0 .w
′.

Since φ(β2α2) is trivial, one knows from Equation 7 that σf (0
1 .(β

2α2)k) = 1
0

for all k ∈ Z. Since 0
1 .(β

2α2)k are all different rational numbers, the preim-
age of 1

0 is infinite. By surjectivity of φ, there is a w so that φ(w) = w′ and
the infinite set of fractions {0

1 .(β
2α2)kw : k ∈ Z} all map to p

q .
Several useful identities are given below that explain some behavior of

the graph of σf in Figure 7.1. There are numerous other identities which
can be proven similarly.

σf (
p

6np+ q
) = σf (

p

q
)− 2n
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Figure 16: A portion of the plot of the points (pq , σf (pq )) with max(|p|, |q|) <
1000
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Figure 17: Detail of Figure 7.1

σf (
p

q
+ 6n) =

1
1

σf (p/q) − 2n

To derive the first identity, simply note that Equation 7 can be used to
show σf (pq .α

−3n) = σf (pq ).β−n for all n ∈ N. The second is proven similarly.
The next two identities can be proven using Equation 7 and the fact that
φ((αβ)n) = (βα)n as well as a handful of explicit σf computations mentioned
before.

σf (
n+ 1

n
) = − n

n+ 1
, n > 0

σf (
n

n+ 1
) =

{
−n−1
n−2 n > 0 odd

−n+1
n n > 0 even

Another useful identity is the following:

σf ((
p

q
)−1) = (σf (

p

q
))−1. (9)

This is proven by first showing that z 7→ z̄ sends the curve corresponding to
p
q to the curve corresponding to q

p . The map z 7→ z̄ induces an isomorphism
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on π1(Ĉ \Θ, 0) as follows:
α 7−→ β−1

β 7−→ α−1.

Then since p
q .α = ( qp .β

−1)−1 and p
q .β = ( qp .α

−1)−1, the fact about conjuga-
tion is clear. Equation 9 holds since f commutes with z 7→ z̄.

7 Slopes of Curves in Ĉ \ P when |P | = 4

Section 3 presents a way to assign elements of Q to curves in Ĉ \ P using
the Weil-Petersson boundary of Teichmüller space. Another natural way
to assign an element of Q to such a curve is to compute its “slope.” The
purpose of this section is to describe this latter assignment, and for a fixed
curve, present a formula relating the two different assignments of Q just
mentioned. Usually one employs the term “slope” for lines in R2 and closed
curves in T2, and this section will show how these slopes have a vital con-
nection to slopes in Ĉ \ P . It is possible to define the notion of slope for
the sphere with any four points removed, where note that normalizing by a
Möbius transformation, we may assume that the four points have the form
{z0, 1, ω, ω̄}. First, the case when z0 arbitrary is considered, and then the
highly symmetric case when z0 = 0 will be examined.

7.1 Slopes in Ĉ \ P when |P | = 4

To define slope on Ĉ \ P where P = {z0, 1, ω, ω̄}, it is convenient to first
arbitrarily fix two minimally intersecting curves which we will declare to
have slope 0

1 and 1
0 . Connect z0 and ω by a simple arc that avoids P , and

the curve which is the boundary of a simply connected neighborhood of this
arc is denoted by a. Then connect z0 and ω̄ by a simple arc in Ĉ \ P that
doesn’t cross a. By taking a simply connected neighborhood as before, one
produces b. The curves a and b in Ĉ \ P are declared to have slope 0

1 and 1
0

respectively. One can chose an orientation for these curves by assuming that
the point at infinity lies to the right, but it will be evident in the following
work that the definition of slope is independent of this choice of orientation.

Up to isomorphism, there exists a canonical double cover (T, e0) −→
(Ĉ, 0) of Ĉ branched over the four points in P where e0 ∈ T is the preimage
of 0. To determine the topological type of T , apply the Riemann Hurwitz
formula as follows, where N is the number of critical points:

χ(T ) = 2 · χ(Ĉ)−N = 2(2)− 4 = 0.
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By the topological classification of surfaces, T is homeomorphic to the two-
dimensional torus T, and for the remainder of this section the latter notation
is used to denote the double cover. This cover is unique up to isomorphism
in the branched sense, and since there is a standard definition of slope in
T having fixed a basis for homology, it is natural to lift a and b under this
branched cover to define slope in Ĉ\P . Denote by P̃ the set of preimages of
P = {z0, 1, ω, ω̄} under the double cover where it is clear that |P̃ | = 4. Also,
denote by (C, 0) −→ (T, e0) the universal cover, though an explicit choice
of cover will not be fixed until later. We use the symbol ' to indicate that
two curves in a surface are homotopic in that surface.

Lemma 7.1 The curves a and b in Ĉ\P each lift to pairs of oriented simple
closed curves ã1, ã2 and b̃1, b̃2 in T \ P̃ where ã1 ' ã2 and b̃1 ' b̃2 in T

Proof Let g1, g2, g3, g4 be small positively oriented loops about each point
in P , where the four homology classes [gi] evidently generate H1(Ĉ \ P,Z).
In other words, H1(Ĉ,Z) = {

∑
ci[gi]|ci ∈ Z}. A simple closed curve in Ĉ\P

lifts to the double cover if it lies in the kernel of the homomorphism

ρ : H1(Ĉ,Z) −→ Z/2Z

defined by

ρ(
∑

ci[gi]) =
∑

ci(mod 2).

Since the curves a and b are nonperipheral, they must bound a disc con-
taining two of the loops, so without loss of generality, one can say that a is
homologous to ±(g1 + g2). Since

ρ(a) = ρ(±(g1 + g2)) = ±(1 + 1) ≡ 0

it is clear that a lifts to T. A similar argument applies to b. Since the cover
is two-to-one, a lifts to two disjoint curves ã1, ã2 in T, and b lifts to two
disjoint curves b̃1, b̃2. Note that ã1 and b̃1 intersect minimally in Ĉ \ P in
the sense that

min
a′'ã1,b′'b̃1

|a′ ∩ b′| = 1

because
min

a′'a,b′'b
|a′ ∩ b′| = 2.

So in fact these the curves ãi are not homotopic to the curves b̃i in T.
Finally, we prove that these curves are homotopic in T. By definition,

the nontrivial deck transformation h : T → T must interchange ã1 with
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ã2 and it must interchange b̃1 with b̃2. On the level of the universal cover
(C, 0)→ (T, e0), choose the lift of h that fixes the origin. The only involutive
holomorphic deck transformation of the torus cover that fixes the origin is
the map z 7→ −z. Thus, the induced map on homology is h∗ : H1(T,Z) →
H1(T,Z) given by (x, y) 7→ (−x,−y). But two curves in the torus whose
homology classes agree up to sign must be freely homotopic in the torus.

�

We now define precisely the notion of slope in T. Since ã1 and b̃1 form
an ordered basis of H1(T,Z), the assignment

ã1 7→ (1, 0)

b̃1 7→ (0, 1),

gives a natural identification H1(T,Z) ∼= Z ⊕ Z. Slopes are assigned to
homology classes by the map

(q, p) 7→ p

q

where p and q are relatively prime. Define a curve of slope p
q in T to be

a simple closed curve lying in the homology class corresponding to (q, p).
Recall that the lift of an essential curve in Ĉ \Pf is two essential homotopic
curves in T with opposite orientation by Lemma 7.1. On the level of ho-
mology, we may assume these lifts are (q, p) and (−q,−p) which both have
slope p

q . Define a curve of slope p
q in Ĉ \ P to be the curve that lifts to a

curve of slope p
q in the torus.

It is a standard fact that the cup product yields a signed intersection form
for essential curves in T, and this can be used to give another interpretation
of slope in T. Let a and b be two oriented curves in an oriented surface X.
Apply a homotopy so the curves intersect minimally at N distinct points
x1, ..., xN . Then the signed intersection number of a and b is defined by
ι(a, b) =

∑N
j=1 sgn(xj) where the sign function sgn(xj) is computed using

the conventions below.
A straightforward cup product computation shows that the signed inter-

section number for curves of slope p
q and r

s in T is the determinant of [ p rq s ].

One can then see that for relatively prime p and q, a curve of slope p
q will

have p signed intersections with ã1 and q signed intersections with b̃1.
Next we define slope in C with respect to the lattice Λ. Note that

H1(T,Z) ∼= π1(T, e0), and so the basis formed by ã1 and b̃1 act on the uni-
versal cover (C, 0) → (T, e0) by translation; explicitly choose the universal

68



cover so that the translation corresponding to a is z 7→ z + 1 and the one
corresponding to b is z 7→ z + τ for some nonreal complex number τ . The
torus T can then be thought of as the quotient C/Λ where Λ = 〈1, τ〉. The
following defines the line of slope p

q in (C,Λ) where t ∈ R and c0 ∈ C is
chosen so that the line avoids the lattice Λ:

t 7→ t(p · τ + q) + c0.

Pushing this curve down to C̃\P and forgetting the orientation on the curve
yields a curve of slope p

q in C̃ \ P as defined before.

7.2 Slopes in Ĉ \ P when P = {0, 1, ω, ω̄}

Now apply the methods described above to the highly symmetric case when
P = Pf . The choice of 0

1 and 1
0 curves in Ĉ \ P are exhibited in Figure

18, and following the steps above, the map π : C → Ĉ is produced. Note
that the triangulation of the domain and range of π in the figure provides
a convenient combinatorial model of the map. Moreover, because of the
symmetry of P , one can explicitly find a formula for π in terms of the
Weierstrass function.

The holomorphic map π is produced by describing an explicit map from C
to a tetrahedron using the numbering scheme of the triangulation. Then an
application of the radial projection followed by the stereographic projection
produces the image of π as it is displayed in Figure 18. Specifically, use
an isometry to map the triangle in C labelled by 3 whose vertices include
0, 1/2, and 1/4 +

√
3/4i to the top face of the tetrahedron in Figure 6 by:

0 7→ B

1

4
+

√
3

4
· i 7→ D

1

2
7→ C
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One can then extend the map over C using reflection. Postcomposing this
map to the tetrahedron with the radial projection and then the stereographic
projection with north pole N as in Figure 6 yields the map π which is a
meromorphic function with double zeros at each point in the lattice Λ =
〈1, τ := e2π·i/3〉. Then on C, the function 1

π is doubly periodic with respect
to Λ and has double poles at each point in Λ. According to an elementary
result in the theory of elliptic functions, one might hope to write 1

π as a
linear combination of the Weierstrass ℘-function and its derivative. One
can see from the statement of Theorem 7.2 that it is not even necessary to
use the derivative. Denote by ℘Λ the Weierstrass function with lattice Λ,
i.e.

℘Λ(z) =
1

z2
+
∑
λ∈Λ

1

(z − λ)2
− 1

λ

Theorem 7.2 There exists a number c ∈ C such that 1/π(z) = c℘Λ(z).

Proof The goal is to show that ℘Λ(z) · π(z) is entire, and then the con-
clusion will follow from an application of Liouville’s theorem. First, a brief
examination of power series show that ℘Λ(z) · π(z) has no poles at 0:

℘Λ(z) · π(z) = (1/z2 +O(1/z)) · (z2 · const+O(z3)) = const+O(z)

Next, we use the fact that ℘Λ(z) and π are doubly periodic on Λ to say that
℘Λ(z) · π has no poles on Λ. Furthermore, it is clear that ℘Λ(z) · π(z) has
no poles over a whole fundamental parallelogram in Λ for the reason that
π(z) is analytic and by definition, the only poles of ℘Λ(z) lie on Λ. Using
the periodicity of ℘Λ(z) and π, we conclude that ℘Λ(z) · π has no poles on
all of C. �

To find the explicit value of c, note that π(1/2) = 1 from an examination
of Figure 18. Upon substitution, the equation from Theorem 7.2 becomes

1
π(1/2) = 1 = c · ℘Λ(1/2) and so c = 1

℘Λ(1/2) . Thus we have found an explicit
formula for π:

π(z) =
℘Λ(1/2)

℘Λ(z)
.

It will be important to be able to produce a line of slope p
q in Ĉ \ Pf .

Curves of slope 1
0 and 0

1 in both (C,Λ) and Ĉ \P are depicted in Figure 18,
and the following lines:

t 7→ t+

√
3

8
i, t ∈ R
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t 7→ t · e2π·i/3 +

√
3

4
i, t ∈ R

have slope 0
1 and 1

0 respectively in (C,Λ). Now to draw a line of slope p
q in

(C,Λ), choose a generic point c0 ∈ C and draw the line

t 7→ c0 + t(p · e2π·i/3 + q · t), t ∈ R

Projecting this line to Ĉ \ Pf gives a curve of slope p
q in Ĉ \ Pf . It can be

observed that a curve of slope p
q in Ĉ\P lies in the same homotopy class as a

curve in Ĉ\P corresponding to the point −p
q in the Weil-Petersson boundary.

8 The Twisting Problem for f

Following the notation of [1] and Section 3, it is useful to think of PMCG(Ĉ, Pf ) =

〈Tα, Tβ〉 as a right action on the class of Thurston maps. For f(z) = 3z2

2z3+1

and g ∈ PMCG(Ĉ, Pf ), use the notation f · g := g ◦ f . It will not be
uncommon for the symbol T to be suppressed as well. For example, one has

f · αβ = f · TαTβ = Tβ ◦ Tα ◦ f.

The goal of this section is to solve the twisting problem which is stated as
follows:

What is the Thurston class of f · g where g ∈ PMCG(Ĉ, Pf )?

This question has relevance to the work of Mary Rees on Wittner cap-
tures for quadratic pre-periodic polynomials [29]. Such a polynomial is
post-composed by a homeomorphism that corresponds to the end result
of pushing∞ along a path into some iterated preimage of the critical point.
This creates a new Thurston map, and a different choice of the path corre-
sponds to post-composing the new Thurston map by a Dehn twist.

A discussion of known results about polynomial twisting was made in
Section 2.4. Following Bartholdi and Nekrashevych [1], we begin by extend-
ing the virtual endomorphism φ over the whole mapping class group to a
map φ̄ and then study its dynamical properties.

8.1 Limiting behavior of the Extended Virtual Endomor-
phism

Recall the definition of the virtual endomorphism φf : H → π1(Ĉ\Θ) made
in Section 4 which was extended to a map φ on the whole mapping class
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Figure 18: The map π : (C,Λ) → (Ĉ, 0) used to compute slopes in (Ĉ, Pf ).
Larger dots indicate points in Λ, with the exception of the origin which is
marked by a filled box. The vertices of the small triangles are the half-lattice
points of Λ.
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group to compute the pullback on curves. In a slightly different way, extend
the virtual endomorphism ψ : Hf → PMCG(Ĉ, Pf ) to the whole mapping
class group:

ψ : PMCG(Ĉ, Pf ) −→ PMCG(Ĉ, Pf )

defined as follows:

ψ(g) =


ψ(g) g ∈ H
αψ(gα−1) g ∈ Hα
α−1ψ(gα) g ∈ Hα−1

β−1ψ(gβ) g ∈ Hβ−1.

Lemma 8.1 The Thurston map f · g is Thurston equivalent to f · ψ(g).

Proof The result is proven here when g ∈ H and g ∈ Hα−1, and the others
are proven in an analogous way. First suppose that g ∈ H. Then

g ◦ f = f ◦ ψ(g).

Since (f ◦ ψ(g))ψ(g) = ψ(g) ◦ f , one obtains

g ◦ f ∼ ψ(g) ◦ f

Next suppose that g ∈ Hα−1.

f · g = f · gαα−1

= ψ(gα) · f · α−1

∼ f · α−1ψ(gα)

= f · ψ(g)

�

As was the case in [1], an arbitrary element of PMCG(Ĉ, Pf ) lands in
some more easily understood proper subset under iteration of ψ.

Theorem 8.2 Let g ∈ PMCG(Ĉ, Pf ). Then there is an N so that for all

n > N , ψ
◦n

(g) is contained in the following set:

M = {e, β, α−1, α2β−1, α−1βα−1, αβ−1, β2} ∪ {α(βα)k : k ∈ Z}
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Proof Informally, we will speak of M as the “mystery maps.” It is easy
to use direct computation to show that ψ(M) ⊂ M. It will be shown that
for any g outside of M, some iterate of ψ decreases word length measured
with respect to the basis {α, β}. The argument is divided into four cases,
depending on which coset of H contains g, where the goal of each case is
to show that g lands in M under iteration of ψ. The following proof is not
comprehensive, but aims to present the key points of the argument.

Case 1: g ∈ H: Recall from Lemma 5.4 that |ψ(g)| = |ψ(g)| ≤ |g| − 2
except when g = (αβ)n. Since ψ((αβ)n) = (βα)n, one must consider cases
depending on the residue of n mod 3.

• If n ≡ 0 mod 3, then ψ
2
(g) = (α−1β−1)

n
3 where evidently |g| < |ψ2

(g)|
except when n = 0.

• If n ≡ 1 mod 3, then ψ
2
(g) = α−1(α−1β−1)

n−1
3 α−1 where evidently

|g| < |ψ2
(g)| except when n = 1.

• If n ≡ 2 mod 3, then ψ
2
(g) = β(α−1β−1)

n−2
3 α−1 where evidently

|g| < |ψ2
(g)| except when n = −1.

But direct computation shows that the three exceptional cases just men-
tioned where g = (αβ)n, n = −1, 0, 1 eventually land in M.

Case 2: g ∈ Hα−1: Assume that g is reduced and therefore corresponds
to a path in Figure 12 that starts at vertex 1 and ends at 4 with no back-
tracking. Divide into two subcases defending on the prefix of this word. First
suppose that g is of the form g = hg′ where h 6= (αβ)m with the additional
assumptions that g′ never visits 1 once it leaves initially, and |g| = |h|+ |g′|.
By the triangle inequality and then Lemma 5.4,

|ψ(g)| = |α−1ψ(h)ψ(g′α)|
≤ 1 + |ψ(h)|+ |ψ(g′α)|
≤ 1 + |h| − 2 + |g′α| − 2

≤ |h|+ |g′| − 2

On the other hand, suppose g has the form (αβ)mg′ where g′ never returns
to 1 and |g| = 2m + |g′|. If g′ passes through the edge labeled (βα, e), one
can see immediately from Figure 15 that g has length decreased by at least
two. The following is an exhaustive list of words that start at 1, end at 4,
and do not pass through (βα, e).

• (αβ)mα−1βn
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• (αβ)mα2βn

• (αβ)mβ−1αβn

The images of (αβ)mα−1βn under ψ
2

are tabulated below where ~ denotes
the cases where ψ((αβ)mα−1βn) ∈ H which have already been considered
in full.

m ≡ 0 m ≡ 1 m ≡ 2

n ≡ 0 α−1(αβ)m/3βn/3 ~ (βα)(m+1)/3βn+1

n ≡ 1 ~ α2(βα)(m−1)/3β(n−1)/3 β(αβ)(m+1)/3βn

n ≡ 2 α(αβ)m/3β(n−2)/3 α−1(αβ)(m−1)/3β(n+1)/3 β(αβ)(m+1)/3βn

An examination of this table and some thought about the other possible
values of m and n leads to the conclusion that the only times when the

lengths are not decreased by ψ
2

(assuming they don’t land in the ~ case)
are when m = 0 and n = 0, and when m = 0 and n = −1. But the images
of ψ in both of these cases lie in M. A similar kind of analysis must be
conducted for the other two types of words in the bulleted list, and the
desired conclusion holds.

Case 3: g ∈ Hβ: This case is very similar to the previous case, except
that now the symbol ~ can be used when ψ(g) ∈ H ∪Hα−1. This simplifies
computation significantly. Suppose g has the form (αβ)mg′ where g′ ends
at 2, never returns to 1 or passes through the edge labeled (βα, e), and has
the form |g| = 2m+ |g′|. The following three kinds of group element are the
only ones which meet this criterion, and one can create tables like the ones
in Case 2 to come to the desired conclusion.

• (αβ)mβαn

• (αβ)mβ−2αn

• (αβ)mαβ−1αn

Case 4: g ∈ Hα: This case is more involved than the other three. Words
traversing (βα, e) or (α−1β−1, e) obviously decrease length under application
of ψ. From now on, therefore, we only examine paths that start at 1 and go
to 3 that do not backtrack or pass through the edge labeled (βα, e). Case 4
will be broken into two subcases depending on whether words avoid “small
loops”, namely the two edges in the Schreier graph that have identical initial
and terminal vertices. For h ∈ H, the following is the list of all words that
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start at 1 and end at 3, and do not pass through any small loops or the edge
labeled (βα, e).

• hβ2 where |hβ2| = |h|+ 2

• hα where |hα| = |h|+ 1

• hα−2 where |hα−2| = |h|+ 2

• hβ−1 where |hβ−1| = |h|+ 1

The first three items do not require much attention, but the last involves a
significant amount of computation.

Case hβ2: ψ(hβ2) = αψ(h)β−1 from which one can see that |ψ(hβ2)| ≤
|hβ2| unless h = (αβ)n. However, ψ((αβ)nβ2) = α(βα)nβ−1 ∈ Hβ for all
n. The Hβ case has been fully considered already.

Case hα: ψ(hα) = αψ(h), where as before, ψ is length decreasing except
when h = (αβ)n. But ψ((αβ)nα) = α(βα)n ∈M.

Case hα−2: ψ(hα−2) = αψ(h)β−1, which is exactly the output we had
in the hβ2 case. A similar analysis yields the same conclusion.

Case hβ−1: ψ(hβ−1) = αψ(h)α−1β−1, which is different from before,
because now we must not only understand the situation when h = (αβ)n,
but also the case when |ψ(h)| = |h| − 2. When h = (αβ)n,

ψ((β−1α−1)mβ−1) = α(α−1β−1)mα−1β−1

= β−1(α−1β−1)m

which evidently lies in M.
Now suppose that |ψ(h)| = |h| − 2. We list all such h, which are sim-

ply paths that start and end at vertex 1, pass through the edges labeled
(α, β), (β, α), and (β−1α−1, α−1β−1) arbitrarily many times, but only pass
through two other edges. The left column of the following table is an ex-
haustive list of all possible hβ−1 where |ψ(h)| = |h| − 2. The right column
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is ψ(hβ−1).

(αβ)kβαnβ−1(αβ)mβ−1 α(βα)kβn(βα)mα−1β−1

(αβ)kβαnβ2(αβ)mβ−1 α(βα)kβnα(βα)mα−1β−1

(αβ)kβαnβα−1(αβ)mβ−1 α(βα)kβnβ−1(βα)mα−1β−1

(αβ)kβ−2αnβα−1(αβ)mβ−1 α(βα)kα−1βnβ−1(βα)mα−1β−1

(αβ)kβ−2αnβ2(αβ)mβ−1 α(βα)kα−1βnα(βα)mα−1β−1

(αβ)kβ−2αnβ−1(αβ)mβ−1 α(βα)kα−1βn(βα)mα−1β−1

(αβ)kαβ−1αnβα−1(αβ)mβ−1 α(βα)kβn(βα)mα−1β−1

(αβ)kαβ−1αnβ2(αβ)mβ−1 α(βα)kββnα(βα)mα−1β−1

(αβ)kαβ−1αnβ−1(αβ)mβ−1 α(βα)kββn(βα)mα−1β−1

(αβ)kα−1βnα(αβ)mβ−1 α(βα)kαn(βα)mα−1β−1

(αβ)kα−1βnα−2(αβ)mβ−1 α(βα)kαnβ−1(βα)mα−1β−1

(αβ)kα−1βnα−1β(αβ)mβ−1 α(βα)kαnα(βα)mα−1β−1

(αβ)kα2βnα(αβ)mβ−1 α(βα)kβαn(βα)mα−1β−1

(αβ)kα2βnα−2(αβ)mβ−1 α(βα)kβαnβ−1(βα)mα−1β−1

(αβ)kα2βnα−1β(αβ)mβ−1 α(βα)kβαnα(βα)mα−1β−1

(αβ)kβ−1αβnα(αβ)mβ−1 α(βα)kα−1αn(βα)mα−1β−1

(αβ)kβ−1αβnα−2(αβ)mβ−1 α(βα)kα−1αnβ−1(βα)mα−1β−1

(αβ)kβ−1αβnα−1β(αβ)mβ−1 α(βα)kαn(βα)mα−1β−1

In many of the cases above, ψ is not length decreasing so as usual we pass to a
second iterate. In ever single case, however, the coset containing ψ(hβ−1) is
dependent on the value of n modulo 3, which vastly simplifies computation.
Furthermore, for two of the three possible residues of n mod 3, ψ(hβ−1) falls
into a previously analyzed coset on the second iterate. For the remaining

values of n mod 3 explicit computation is required, but ψ
2
(hβ−1) either falls

into a previously considered case, obviously has decreased length, or lands
in M. This completes the four kinds of path in the bulleted list above, and
we move on to the second subcase.

The following is an exhaustive list of all words that begin at 1, end at 3,
never return to 1, and pass through the “small loops” described before.

77



• hβαnβ where |hβαnβ| = |h|+ 2 + |n|

• hβ−2αnβ where |hβ−2αnβ| = |h|+ 3 + |n|

• hαβ−1αnβ where |hαβ−1αnβ| = |h|+ 3 + |n|

• hα−1βnα−1 where |hα−1βnα−1| = |h|+ 2 + |n|

• hα2βnα−1 where |hα2βnα−1| = |h|+ 3 + |n|

• hβ−1αβnα−1 where |hβ−1αβnα−1| = |h|+ 3 + |n|

where it is assumed that n 6= 0 because the case n = 0 has already been
considered. Only three cases are presented below, but the other ones can be
analyzed similarly.

Case hβαnβ: One computes that ψ(hβαnβ) = αψ(h)βnβ−1, and for
any h this evidently has decreased length unless h = (αβ)k. We pass to

the second iterate: ψ
2
((αβ)kβαnβ = (αβ)kαβαβ(n−1)/3. This has decreased

length except in the cases when n = −2 and n = 1 which both fall into M.
Case hβαnβ: Since ψ(hβ−2αnβ) = αψ(h)α−1βnβ−1, only consider the

case when h = (αβ)k. Then ψ
2
(hβ−2αnβ) = α(βα)kα−1βnβ−1 from which

it is clear that if k > 0 and if k < 0, there is cancellation that makes the
result clear.

Case hαβ−1αnβ: Since ψ(hαβ−1αnβ) = αψ(h)βn, it is obvious that ψ
decreases length after only one iterate.

�

8.2 Solution to the Twisting Problem

To solve the twisting problem for f , we must analyze the “mystery maps”
contained in M. First we deal with the one parameter family contained in
M with the following claim.

Lemma 8.3 Each Thurston map in {f ·α(βα)k : k ∈ Z} is obstructed, and
they are all pairwise Thurston inequivalent

Proof Let F = f ·α, and we will first show that F is obstructed. Recall that
ψ(αβ) = βα and so f ·αβ = βα ·f by definition of the virtual endomorphism
ψ. Recall that γ−1 = βα, and so

γ−1 · F = βα · f · α
= f · αβ · α
= f · α · βα
= F · γ−1.
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The fact that these two maps commute means that F is obstructed because
the core curve of the Dehn twist γ−1 is fixed by degree 1 under pullback of
F . Using a similar computation, one can see that γ−1 · (Fγk) = (Fγk) · γ−1

for all k which shows that each Fγk is obstructed as required.
Now we show that the elements of the one-parameter family are pairwise

inequivalent. Let Fn = F ·γ−n and Fm = F ·γ−m be two equivalent elements
of this one-parameter family. Then there is a homeomorphism h so that

Fm · h = h · Fn. (10)

Let Cγ denote the core curve of γ−1, and note that since Cγ is an obstruc-
tion for F , it is evident that h(Cγ) is an obstruction for G. The previ-
ous paragraph showed that Cγ is an obstruction for G as well; since the
components of an obstruction must be non-intersecting, it must be that
Cγ = h(Cγ). Since h is a pure mapping class element that fixes Cγ , it
follows that h ∈ StabPMCG(Cγ) = 〈γ〉 and so h = γk for some integer k.
Substituting into (10) one sees that

F · γ−m · γk = γk · F · γ−n,

and then using the fact that γ commutes with F ,

γk−m · F = γk−n · F.

The action of the mapping class group on the left is free [1], and so we see
that m = n. �

This leaves us with a finite number of elements in M to analyze. The
fixed points of the correspondence can be found by solving the equation

X(α) = Y (α) to obtain α = 1,−1, 0, 1±
√

15i
4 , and∞. The first two points lie

in the forbidden locus and can be disregarded. The Möbius map M(z) = 1
z

can be used to show that the rational functions Fα with α = 0,∞ are
conjugate to each other, as are the rational functions corresponding to α =
1+
√

15i
4 , 1−

√
15i

4 . Recall that for α = [a, b] ∈ P1,

Fα(z) =
az3 + 3bz2 + 2a

2bz3 + 3az + b
.

When α = 0, Fα = f and has been analyzed extensively already. When

α = 1+
√

15i
4 , Fα is a rational map with simple critical points at 1, ω, ω,

and −7+
√

15i
8 , all of which lie on the unit circle. The points ω and ω are

interchanged by Fα, and the other two critical points are fixed. Let M be

79



the unique Möbius transformation which sends (−7+
√

15i
8 , ω, 1) to (0, 1,∞).

Then define the rational function g to be M ◦Fα ◦M−1 where one computes
directly that

g(z) =
(
√

5− 1)(3 + 3
√

5 + 2z)z2

2(1− 6z +
√

5)
.

All the critical points of g lie on the real axis, and it is described by the
finite subdivision rule in Figure 19 where the two critical points 0 and ∞
are fixed and the other two are exchanged. The map g respects shading.

Figure 19: The finite subdivision rule corresponding to g

The map g has a fixed point lying on the real axis between 0 and 1. This
fixed point and its two other preimages are denoted by solid boxes in Figure
20. The paths `1 and `2 connect this basepoint to the two other preimages,

80



and `3 denotes the constant path at the fixed basepoint. This data along
with the lifts of generators in Figure 20 define the wreath recursion.

Φg(α) = 〈〈e, β−1δ−1γ−1, e〉〉( 1 2 )

Φg(β) = 〈〈γ, e, e〉〉( 1 2 )

Φg(γ) = 〈〈e, δβ, δ−1〉〉( 2 3 )

Φg(δ) = 〈〈e, δ, e〉〉( 2 3 )

Figure 20: The four generators of π1(Ĉ \ Pg) and their lifts under g

Lemma 8.4 For any h ∈ {e, β, α−1, α2β−1, α−1βα−1, αβ−1, β2}, the Thurston
map f · h is unobstructed, and is therefore equivalent to f or g.

Proof Note that the two maps α2β−1 and α−1βα−1 form a 2-cycle under
iteration of ψ, as do αβ−1 and β2 (the elements β, α−1, and e are all fixed
points for ψ). It is our goal to show that one map in each of these cycles is
not obstructed and so we assume that h is one of the four maps β, α−1, β2,
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and α2β−1. If f · h is obstructed, there must be a curve that pulls back to
itself by degree 1. This is a Levy cycle, which is an obstruction to the wreath
recursion on the dynamical plane fundamental group being contracting. The
four wreath recursions are recorded below, and GAP was used to show that
each one is contracting.

Φf ·β(α) = 〈〈e, e, β〉〉( 1 3 ) Φf ·α−1(α) = 〈〈e, e, β〉〉( 2 3 )

Φf ·β(β) = 〈〈e, δ−1β−1, γ−1〉〉( 2 3 ) Φf ·α−1(β) = 〈〈β−1, e, γ−1δ−1〉〉( 1 3 )

Φf ·β(γ) = 〈〈e, γ, e〉〉( 2 3 ) Φf ·α−1(γ) = 〈〈e, γ, e〉〉( 2 3 )

Φf ·β(δ) = 〈〈β−1, e, βδ〉〉( 1 3 ) Φf ·α−1(δ) = 〈〈δβ−1, e, β〉〉( 1 3 )

Φf ·α2β−1(α) = 〈〈e, e, δ−1βδ〉〉( 2 3 )

Φf ·α2β−1(β) = 〈〈β−1δ−1βδγ, e, γ−1δ−1β−1δγ−1δ−1〉〉( 1 3 )

Φf ·α2β−1(γ) = 〈〈e, γ, e〉〉( 2 3 )

Φf ·α2β−1(δ) = 〈〈δγ, e, γ−1δ−1β−1δβ〉〉( 1 3 )

Φf ·β2(α) = 〈〈e, e, β〉〉( 1 3 )

Φf ·β2(β) = 〈〈α, e, e〉〉( 1 2 )

Φf ·β2(γ) = 〈〈e, γ, e〉〉( 2 3 )

Φf ·β2(δ) = 〈〈e, γ, α−1β−1〉〉( 2 3 )

�

The last step in solving the twisting problem is then to determine which
of f ·β, f ·α−1, f ·β2, and f ·α2β−1 are equivalent to f or g. Using Thurston
rigidity, it is evident that f and g are not Thurston equivalent, but combi-
natorial invariants are needed. For example, one could compute the order
of the permutation group acting on a fixed level of the tree of preimages.
However, the maps f and g both have the same number of elements in their
permutation group up to level five, where the permutation groups have an
order of approximately 1080. A second attempt was made to distinguish f
and g using the fact that f is a mating of two polynomials, and hence must
have an element of order 3n in the level n permutation group due to the
existence of an equator. However, g also has such elements when n ≤ 3.

The stage is set for another invariant that has never before been used to
solve a twisting problem: the dynamical properties of the pullback relation
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of f and g on curves. Theorem 6.1 states that f has three elements in its
finite global attractor. We use this new invariant to determine the Thurston
class of the maps f · h. Let p

q denote the curve corresponding to the point
p
q in the Weil-Petersson boundary. Then

σf ·β(
p

q
) = σf (B−1.

p

q
)

since (Tβ ◦ f)−1 = f−1 ◦Tβ−1 , and so one computes that σf ·β has dynamical
behavior

0
1

(( 1
0hh −1

1
(( 1
1jj

and so f ·β must be equivalent to g. Using a similar procedure, one can show
that the pullback on curves for f · α−1 and f · α2β−1 contain two distinct
two-cycles.

The final map f · β2 has the property that 1
1 pulls back to the curve 1

1 .
The only possible degree for the pullback of any curve under f (and hence
f · β2) is 1 or 3 by Lemma 5.3, and it is clear that the degree in this case
cannot be 1 since the map f · β2 is not obstructed. Also note that 1

1 is
mapped to itself in an orientation preserving way because it bounds a disk
containing the fixed points 0 and 1. Thus the curve 1

1 is an equator for f ·β2,
and since there was a unique way to mate the cubic polynomials described
in Section 4, f · β2 must be Thurston equivalent to f .

9 Future Work

Though this work has led to greater understanding of the boundary values
of Thurston’s pullback map and a promising new invariant for Thurston
equivalence, there are many questions that go unanswered:

Does the pullback relation on curves for every rational Thurston map
(not a Lattès map) have a finite global attractor? Such a finiteness re-
sult would be invaluable for computing the pullback relation for rational
Thurston maps for arbitrary curves. It would make the finite global at-
tractor of the pullback relation a far more feasible invariant for Thurston
equivalence, and the implications for the boundary values of the Thurston
pullback map would be interesting as well. It could also further the study
of mating–a hyperbolic rational Thurston map F is a mating if and only if
there is an equator. Thus, if there are no fixed curves in the finite global
attractor, one is assured that F is not a mating.
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In [27], the pullback relation of three quadratics is analyzed–for the rab-
bit every curve is eventually trivial or lands in a 3-cycle, and for the other two
quadratics every curve is eventually trivial. The analytic properties of maps
on moduli space in the spirit of Sarah Koch’s work [17] have implications
for this problem, as do algebraic properties such as contraction of virtual
endomorphisms on word length [1]. The former has been used to show the
existence of a finite global attractor, whereas the latter can compute the
elements of this attractor explicitly. What made f particularly interest-
ing was that its virtual endomorphism was not contracting, and the known
methods for understanding the analytic properties of the map on moduli
space seemed to be inconclusive, yet the finite global attractor was able to
be computed using some ad hoc algebra. This suggests that there might
be a weaker contraction property for virtual endomorphisms that may be
useful, or there may be some analytic properties that need to be discovered.

For a rational Thurston map F not equivalent to the Lattès map, is
there a bound for the number of elements in the finite global attractor of the
pullback on curves in terms of |PF | and deg(F )? A further refinement of
this question could be to ask if there is a relationship between the mapping
properties of the finite global attractor and the mapping properties of PF .
In every known case, the size of the finite global attractor is less than |PF |.
Also, the number of cycles of the pullback on curves is always less than the
number of cycles in PF .

Can checking the hypothesis of Thurston’s characterization theorem be
reduced to understanding where the pre-images of a finite number of curves
lie, and the degree by which they map? In work by Cannon, Floyd, Pil-
grim, and Parry [10] in the case of four post-critical points, it is proven that
a Euclidean horoball tangent to p

q in Teichmüller space is mapped by the
Thurston’s pullback map associated to a Thurston map F into a horoball of
computable radius tangent to σF (pq ). The authors are able to use this result
to show that a certain finite subdvision rule is not obstructed, and that its
fixed point must lie in the region bounded by some hyperbolic polygon in
Teichmüller space. When there are more than four postcritical points, sim-
ilar results about the mapping properties of horoballs hold, but no explicit
examples have been studied. The appeal of these types of result is that from
the boundary behavior of the Thurston pullback map allows conclusions to
be drawn about the behavior of the Thurston pullback map on large regions
of Teichmüller space. Arturo Saens, a student of William Floyd, is currently
studying this kind of question when Teichmüller space has dimension one.

If some twist of a rational Thurston map is obstructed, does this imply
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that there is a Z-parameter family of pairwise inequivalent obstructed maps
that can be obtained by twisting? This was the case for z2 + i in [1], f(z) =

3z2

2z3+1
in the work above, and a third example that Jim Belk shared with me.

These one-parameter families seem to arise when the map or correspondence
on moduli space satisfies certain properties.
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[25] V. Nekrashevych. Self-Similar Groups, volume 117 of Mathematical
Surveys and Monographs. American Mathematical Society, 2005.

[26] V. Nekrashevych. Combinatorics of polynomial iterations. In Complex
Dynamics–Families and Friends, pages 169–214. A K Peters, Wellesley,
MA, 2009.

86

http://www.math.uiuc.edu/~gkelsey2/files/Papers/GAKThesis.pdf
http://www.math.uiuc.edu/~gkelsey2/files/Papers/GAKThesis.pdf


[27] K. Pilgrim. An algebraic formulation of Thurston’s characterization of
rational functions. To appear, special issue of Annales de la Faculte des
Sciences de Toulouse, 2010.

[28] L. Quintas. The homotopy groups of the space of homeomorphisms of
a multiply punctured surface. Illinois J. Math., 9(4):721–725, 1965.

[29] M. Rees. A partial description of parameter space of rational maps of
degree two: Part i. Acta mathematica, 168, 1992.

[30] N. Selinger. Thurston’s pullback map on the augmented Teichmüller
space and applications. Inventiones mathematicae, pages 1–32, 2011.

[31] S. Wolpert. The Weil-Petersson metric geometry. In Handbook of Te-
ichmueller theory, Vol. II. European Math. Soc., 2009.

Department of Mathematics
Indiana University
Bloomington, IN 47405, U.S.A.
E-mail: rlodge@indiana.edu

87


	Introduction
	Thurston's Theorem
	Boundary Values of the Pullback Map
	The Twisting Problem
	Outline

	Thurston Maps with n Postcritical Points
	Notation, Definitions, and Examples
	Two definitions of Teichmüller space; Virtual Endomorphisms
	Schreier Graphs and the Reidemeister-Schreier Algorithm
	Iterated Monodromy Groups and Wreath Recursions

	General facts in the case |Pf|=4
	Analysis of a specific example: f(z)=3z22z3+1
	The Dynamical Plane of f
	The Correspondence on Moduli Space
	The Virtual Endomorphism and Wreath Recursion on Moduli Space
	The Wreath Recursion on the Dynamical Plane; Covering and Hurwitz Equivalence

	Boundary Values of f
	The Boundary Maps to the Boundary
	Dynamical behavior of f

	Properties of f:QQ
	Slopes of Curves in C"0362CP when |P|=4
	Slopes in C"0362CP when |P|=4
	Slopes in C"0362CP when P={0,1,,}

	The Twisting Problem for f
	Limiting behavior of the Extended Virtual Endomorphism
	Solution to the Twisting Problem

	Future Work

