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Abstract

A classification of postcritically finite Newton maps

by

Yauhen Mikulich

Doctoral Candidate of Philosophy in Mathematics

Jacobs University Bremen

Professor Dierk Schleicher, Chair

One of the most important open problems in rational dynamics is understanding

the structure of the space of rational functions. Newton maps of polynomials form an

interesting subset of the space of rational maps that is more accessible for studying

than the full space of rational maps.

For every postcritically finite Newton map Np of a polynomial p we construct a

finite connected graph that contains the postcritical set of Np. We show that such

graphs characterize Newton maps uniquely up to Möbius conjugation. Conversely,

we show that every graph with an associated map that satisfies particular conditions

is realized by a unique postcritically finite Newton map.

We show that there is a mapping from the set of postcritically finite Newton

maps up to Möbius equivalence to the set of abstract extended Newton graphs with

the corresponding equivalence relation on them. We show that this mapping is one

to one, giving thereby a combinatorial classification of postcritically finite Newton

maps in terms of finite connected graphs.
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Notations

C — the set of complex numbers

Cf — the set of critical points of a topological branched covering f

D — the complex unit disk, {z ∈ C : |z| < 1}

H(M) — the tree generated by the set M , i.e. the allowable hull [M ]K (see page 20)

H∗ — the extended Hubbard tree (see page 20)

∆ — the channel diagram (see page 26)

∆n — the Newton graph at level n (see page 26)

K(f) — the filled Julia set of a polynomial f

J(f) — the Julia set of a polynomial f, J(f) = ∂K(f)

Np — the Newton map of a polynomial p, i.e. Np(z) = z − p(z)/p′(z)

Pf — the postcritical set of a topological branched covering f

Pf (D) — the set of postcritical points of f in D, i.e. Pf (D) = Pf ∩D

S1 — the unit circe, S1 = ∂D

[X]K — the allowable hull of X ⊂ K(f) (see page 20)

'X — the isotopy relation relative to the set X (see page 15)

[1, n] — the set of integers 1, 2, . . . , n

1
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Chapter 1

Introduction

1.1 Overview

A rational function of one complex variable (i.e. a ratio of two polynomials) is among

the simplest and most basic objects in algebra. However, an extremely rich and

complicated structure is revealed when one starts to iterate a rational function, i.e.

consider it from the point of view of dynamical systems. A general dynamical theory

of rational functions is currently at a very early stage of development. However, some

particular parameter families are rather well understood. A well-known example is

the family of polynomials. The combinatorial structure of it is much simpler than

for general rational functions, although there are still many open questions. Much

less is known however about dynamics of rational functions.

At this point, a general combinatorial theory of all rational functions is beyond

immediate reach. In this thesis we will confine our study of the parameter space

of Newton maps. The study of Newton maps is very naturally motivated and has

practical impact; Newton maps have thus become some of the most important classes

of iterated rational maps. There are many long-standing open questions regarding

this particular family, notably the question of Smale on a classification of periodic

basins posed some 25 years ago [Sm85]. Newton maps form a large family of rational

functions. They have some rather specific combinatorial and dynamical properties

that are of substantial help in the study. The parameter space we consider has long

served as motivations and driving force but continue to be mysteries.

In this thesis we construct a mapping from the set of postcritically finite Newton

maps of a given degree up to Möbius equivalence to the set of abstract extended

Newton graphs with a corresponding equivalence relation on them. We show that

3
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this map is one to one, giving thereby a classification of postcritically finite Newton

maps in terms of finite graphs.

Newton maps of degree 1 and 2 are trivial, and we exclude these cases from our

investigation. Let us make precise what we mean by a Newton map.

A rational function f : Ĉ → Ĉ of degree d ≥ 3 is called a Newton map if ∞ is

a repelling fixed point of f and for each fixed point ξ ∈ C, there exists an integer

m ≥ 1 such that f ′(ξ) = (m− 1)/m.

This definition is motivated by the observation which goes back to [He, Propo-

sition 2.1.2]), which is a special case of [RS, Proposition 2.8] (the case of super-

attracting fixed points, i.e. every m = 1): a rational map f of degree d ≥ 3 is a

Newton map if and only if there exists a polynomial p : C→ C such that for z ∈ C,

f(z) = z − p(z)/p′(z).

Observe that f and p have the same degree d if and only if p has d distinct

roots. Note also that some rational maps arise as Newton maps of entire functions,

for example for h = peq where p, q are complex polynomials, the map Nh is a rational

function. For an overview of the dynamics of Newton maps for entire transcendental

functions see, for example, [BR, MS, RS].

In [MR] the classification of all postcritically fixed Newton maps was given. A

Newton map is called postcritically fixed if all its critical points are mapped onto

fixed points after finitely many iterations. In this thesis we extend the results in

[MR] beyond the postcritically fixed case and allow critical points have just finite

orbits, not necessarily landing at one of the fixed points eventually. Such Newton

maps are called postcritically finite.

If f is a postcritically finite Newton map, then, similarly to [MR], we con-

struct the channel diagram ∆ of f , which is the union of the accesses from finite

fixed points of f to ∞ (see Section 2.6) and ∆n the Newton graph of f which is

a connected preimage component of f−n(∆) containing ∞. For each free critical

point of f which never lands on the Newton graph we construct extended Hubbard

trees containing the forward orbit of the free critical point. The extended Hubbard

trees are connected to the Newton graph via Newton rays (see Section 2.6) that are

preimages of edges of the Newton graph landing at repelling periodic points on the

Hubbard trees. The extended Newton graph (see Section 2.6) is a Newton graph

together with the union of extended Hubbard trees constructed for each free critical

point of f and Newton rays connecting the Newton graph with extended Hubbard

trees.



1.1. OVERVIEW 5

In this way for every postcritically finite Newton map f we construct a finite

graph containing the whole postcritical set, similarly to the Hubbard tree of a post-

critically finite polynomial.

We introduce the notion of an abstract extended Newton graph, which is a pair

(Σ, f) of a map f acting on a graph Σ that satisfies certain conditions (see Definition

4.0.8). In particular, the conditions on (Σ, f) allow f to be extended to the branched

covering f of the whole sphere S2, such that f is injective when restricted to each

component of S2 \ Σ.

We show that for every abstract extended Newton graph there exists a postcrit-

ically finite Newton map realizing it. Moreover, this Newton map is unique up to

affine conjugacy.

The assignments of a Newton map to an abstract extended Newton graph and

vice versa are injective and inverse to each other on equivalence classes of Newton

maps and abstract extended Newton graphs, so we give a combinatorial classifi-

cation of postcritically finite Newton maps by way of abstract extended Newton

graphs. Our main results are the following (see Chapters 4 and 5 and for the precise

definitions).

Theorem 1.1.1 (Newton Maps Generate Extended Newton Graphs). For every

postcritically finite Newton map Np there exists an extended Newton graph ∆∗N so

that (∆∗N , Np) is an abstract extended Newton graph.

Such graphs distinguish postcritically finite Newton maps, i.e. if (∆∗1N , Np1) and

(∆∗2N , Np2) are Thurston equivalent abstract extended Newton graphs associated to

Newton maps Np1 and Np2, then the Newton maps Np1 and Np2 are affine conjugate.

Theorem 1.1.2 (Abstract Extended Newton Graphs Are Realised). Every abstract

extended Newton graph is realized by a postcritically finite Newton map. This Newton

map is unique up to affine conjugacy. More precisely, let (Σ, f) be an abstract

extended Newton graph. Then, there exists a postcritically finite Newton map Np

with extended Newton graph ∆∗N such that (f,Σ′) and (Np, (∆
∗
N)′) are Thurston

equivalent as marked branched coverings.

Moreover, if Np realizes two abstract extended Newton graphs (Σ1, f1) and (Σ2, f2),

then the two abstract extended Newton graphs are Thurston equivalent.

Denote by N the set of postcritically finite Newton maps with the equivalence

relation ∼N defined by the affine conjugacy. In other words, Np1 ∼N Np2 if Np1

and Np2 are affine conjugate. By G we denote the set of abstract extended Newton

graphs with the equivalence relation ∼G defined by Thurston equivalence (the precise
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Definition 4.0.9 is given in Chapter 4). We say that (Σ1, f1) ∼G (Σ2, f2) if (Σ1, f1)

and (Σ2, f2) are Thurston equivalent. It follows from Theorem 1.1.1 and Theorem

1.1.2 that there exist well defined injective mappings F : N → G and F ′ : G → N .

Theorem 1.1.3 (Bijective Correspondence). The mappings F and F ′ are bijective

and inverse to each other, i.e. F ◦ F ′ = Id and F ′ ◦ F = Id.

This thesis is structured as follows. The introduction to the thesis is given in

Chapter 1. In Chapter 2, we introduce the necessary terminology and notations. The

dynamical properties of Newton maps are discussed in Section 2.1. In Sections 2.2

and 2.3 we review some aspects of Thurston’s theory and give an introduction to the

combinatorics of arc systems and possibilities of their intersections with Thurston

obstructions. The notions of a Hubbard tree, extended Hubbard tree, their abstract

analogs and other related results are given in Section 2.4. In Section 2.5 we review

the results on extending maps on finite graphs to spheres that will be used later.

We introduce the notions of a channel diagram, Newton graph and their abstract

counterparts in Section 2.6. Chapter 2 ends with the review of the polynomial-like

theory in Section 2.7.

Chapter 3 deals with the construction of an extended Newton graph for a given

postcritically finite Newton map. First, in Section 3.1 the renormalization domains

for Newton maps are constructed. Newton rays connecting Newton graph with fixed

points of the polynomial-like mappings arising from renormalization domains are

defined in Section 3.2. In Section 3.3 two examples with the detailed construction of

periodic Newton rays are given. Chapter 3 ends with the construction of extended

Newton graphs in Section 3.4.

In Chapter 4 the abstract analog of extended Newton graphs is given.

The main results of the thesis (Theorems 1.1.1, 1.1.2 and 1.1.3) are proven in

Chapter 5.

Chapter 6 is devoted to the overview of possible extensions of results presented

in the thesis.

1.2 Newton’s method: root finding method and a dynamical

system

Newton’s method is perhaps the best known iterative method used to locate the roots

of polynomials. If p is a polynomial and Np(z) = z−p(z)/p′(z) its Newton map, then
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starting with an initial guess x1, one calculates the root x2 = Np(x1) = x1− p(x1)
p′(x1)

of

the linear map tangent to f at x1. This tangent linear function approximates p well

near x1, and it is reasonable to assume that x2 will be a better approximation of a

root ξ than x1. Indeed, it is a well know fact that if x1 was sufficiently close to some

root ξ of p, then the sequence obtained iteratively by xn+1 = Np(xn) = xn − p(xn)
p′(xn)

converges to ξ. If it happens, we say that the starting value x1 finds the root ξ.

Newton’s method is an extremely powerful technique — in general the convergence

is quadratic: if ξ is a simple root, then |xn+1− ξ| = O (|xn − α|)2. Thus near a root,

the Newton’s method is a very efficient way to obtain approximations to the root.

While the local dynamical properties of Newton’s method are well understood,

the global dynamical properties is rather a difficult question. An example of possible

difficulties is the following: in many cases there exist open sets of starting values for

Newton’s method that do not find any roots. Consider p(x) = x3 − 2x2 + 2. The

Newton map Np(x) = x− (x3 − 2x2 + 2)/(3x2 − 2) has a periodic cycle 0→ 1→ 0

so that the sequence {(xn)}n∈N with x1 = 0 and xn+1 = Np(xn) will not converge.

This example of a Newton’s method has a periodic critical point that doesn’t find

a root of p (Figure 1.1).

Figure 1.1: Newton map of the polynomial p(z) = z3−2z+ 2 has a superattracting cycle of period
2: 0→ 1→ 0.
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In the following we review known results on Newton’s method in both directions:

numerical aspects of the Newton’s method as a root finding method and properties

of Newton’s method as a dynamical system.

The properties of a Newton’s method as a root finding algorithm were investi-

gated by Smale in [Sm85]. He studied local properties of Newton maps and asked for

a classification of all polynomial Newton maps that have periodic attracting cycles.

In 1992 Manning has shown how to find at least one root of a polynomial using

Newton’s method: he constructed an explicit set Sd, d ≥ 10, of starting points that

would find at least one root of any properly normalized polynomial of degree d.

This result was extended in 2001 by Hubbard, Schleicher and Sutherland [HSS].

They showed that, given a degree d, there exists an explicit set Sd, d ≥ 2, of starting

points so that each complex polynomial p, normalized so that all its roots are con-

tained in the unit disk, satisfies the property that for every root of p there exists at

least one point in Sd that converges to this root under the Newton iteration. This

set Sd consists of 1.1d(log d)2 points.

In 2002, Schleicher [Sch02] gave an upper bound on the number of Newton

iterations necessary for points in Sd to approach roots within a distance of ε > 0.

The upper bound in terms of d and ε, given in [Sch02], grows exponentially in d.

The imporvement for this upper bound from exponential in d to polynomial of low

degree was announced by Schleicher [Sch08].

A number of people have studied Newton maps and used combinatorial models

to structure the parameter spaces of Newton maps. Let d be the degree of a Newton

map f . If d = 2, the dynamics of Newton maps is very easy: there is only one

quadratic Newton map up to Möbius conjugation and the space of such maps reduces

to a point (this was mentioned in perhaps one of the first papers on Newton’s method

as a dynamical system by Cayley in 1876, see [PSH]). For d = 3 the dynamics of

the Newton maps is already very complicated. In 1987 Janet Head [He] introduced

the Newton tree to characterize postcritically finite cubic Newton maps. Tan Lei

[TL] built in 1997 upon the thesis of Janet Head’s work and gave a classification

of postcritically finite cubic Newton maps in terms of matings and captures. She

constructed an isomorphism between the space of cubic Newton maps and C. The

parameter plane of cubic Newton maps is shown on Figure 1.2. Tan Lei gave also

another combinatorial classification of the Newton cubic family by abstract graphs.

More presicely, every postcritically finite cubic Newton map gives rise to a forward

invariant finite connected graph, which contains the orbit of the critical points.

And converesely, every abstract graph which satisfies certain properties is realized,
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i.e. there exists a unique postcritically finite cubic Newton map whose graph is

homeomorphic to the given one. In [TL] Tan Lei describes exactly when two graphs

are realized by the same Newton map.

Figure 1.2: The parameter space of cubic Newton maps up to Möbius conjugation. The points
are colored depending on the fixed point the free critical value converges to. Every component
of the red, green, blue color is a hyperbolic component which contains the unique post-critically
fixed cubic Newton map. The black regions are little Mandelbrot set where the free critical value
converges to a non-trivial attracting cycle.

For the case d > 3 not much is currently known. Jiaqi Luo [Lu] in his thesis

extended some of the results of in [TL] to “unicritical” Newton maps, i.e. Newton

maps of arbitrary degree with only one free (non-fixed) critical value. For such maps,

Luo constructs a forward-invariant, finite topological graph, the so-called Newton

graph that contains the orbit of critical values of the Netwon map under considera-

tion. Following the work of Tan Lei [TL], Luo studies the branched covers which are

topological models of ”unicritical” Newton maps and calles them topological Newton

maps. Luo proves that if the unique free critical value is either periodic or eventu-

ally lands on a fixed critical point, then the topological Newton map is Thurston

equivalent to a Newton map.

In 2006 Johannes Rückert [Rü] gave the classification of all postcritically fixed

Newton maps for arbitrary values of degree d (see also the paper [MR] reworked by

the author). A Newton map is called postcritically fixed if all its critical points are

mapped onto fixed points after finitely many iterations. The work in [MR] can be

seen as an extension of the results of Luo [Lu] beyond the setting of a single free
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critical value. The main differences to this setting are that the channel diagram is

in general not a tree anymore and that in the presence of more than one non-fixed

critical value, the iterated preimages of the channel diagram may be disconnected. In

[MR] for every postcritically fixed Newton map a connected forward-invariant finite

graph that contains the whole postcritical set of the Newton map is constructed.

The notion of an abstract Newton graph is introduced afterwards. Finally it is

shown that abstract Newton graphs materialize and can be realized uniquely by

postcritically fixed Newton maps.

In this thesis we extend the results of [MR] beyond the postcritically fixed case

and allow critical points have just finite orbits, not necessarily landing at one of the

fixed points eventually. The purpose of this thesis is to construct a map from the

set of postcritically finite Newton maps of a given degree up to Möbius equivalence

to the set of abstract extended Newton graphs with a corresponding equivalence

relation. We show that this map is one to one, giving thereby a classification of

postcritically finite Newton maps in terms of finite connected graphs.



Chapter 2

Preliminaries

2.1 Dynamics of Newton maps

Besides their application to root-finding, Newton maps form a class of functions that

is interesting to study in its own right. From one hand, the space of Newton maps of

polynomials forms a large enough and interesting sub-class of rational functions. On

the other hand, it seems to have enough structure to make a classification possible.

A classification of all Newton maps will suggest general methods and conjectures

covering larger classes of rational functions. Hence a classification of Newton maps

might provide an important intermediate step towards the major goal of the whole

complex dynamics: a classification of all rational functions.

Let us remind the definition of a Newton map from Section 1.1.

Definition 2.1.1 (Newton Map). A rational function f : Ĉ → Ĉ of degree d ≥ 3

is called a Newton map if ∞ is a repelling fixed point of f and for each fixed point

ξ ∈ C, there exists an integer m ≥ 1 such that f ′(ξ) = (m− 1)/m.

This definition is motivated by the following observation, which is a special case

of [RS, Proposition 2.8] (the case of superattracting fixed points, i.e. every m = 1,

goes back to [He, Proposition 2.1.2]).

Proposition 2.1.2 (Head’s Theorem). A rational map f of degree d ≥ 3 is a

Newton map if and only if there exists a polynomial p : C → C such that for every

z ∈ C, f(z) = z − p(z)/p′(z).

Let p(z) = (z − a1)m1(z − a2)m2 . . . (z − ak)mk be a monic polynomial of degree

11
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d with complex coefficients. It is easy to check that the map

Np(z) = z − p(z)

p′(z)
(2.1)

satisfies the conditions of Definition 2.1.1 and Np is a Newton map. Simple calcula-

tions show that ai is an attracting fixed point of Np with the multiplier mi−1
mi

and∞
is the only non-attracting fixed point of Np. Therefore, each fixed point ξ ∈ C of Np

has a neighborhood Uξ such that for every z ∈ Uξ, the sequence N◦kp (z) converges to

ξ as k →∞. If ξ is a simple root of p, i.e. if mi = 1, where ξ = ai, then Böttcher’s

theorem [Mi2, Theorem 9.1] implies that this convergence is at least quadratic. If

ξ = ai is a multiple root, i.e. if mi > 1, then Koenig’s theorem [Mi2, Theorem 8.2]

implies the linear convergence. If Np has an attracting cycle of period higher than

one, the basin of attraction of this cycle is an open set of starting values for Newton’s

method that do not find any roots of p. The existence of such cycles explains the

nature of black regions on Figure 2.1.

Shishikura [Sh] proved that the Julia set of a rational map is connected if there

is only one repelling fixed point. Hence the result of Shishikura implies the following

important dynamical property.

Proposition 2.1.3 (Julia sets of Newton maps are connected). The Julia set J(Np)

of a Newton map Np is connected.

We summarize now a few basic facts about Newton maps:

• It follows from (2.1) that the roots of p(z) correspond to the finite superat-

tracting fixed points of Np(z).

• The point at infinity is a fixed point of Np and N ′p(∞) = d/(d− 1), hence ∞ is

a repelling fixed point of Np.

• The derivative of Np is

N ′p(z) =
p(z)p′′(z)

(p′(z))2
.

Therefore the simple roots of p are superattracting fixed points of Np. The rate

of attraction of the Newton method in a neighborhood of simple roots of p is

at least quadratic.

• Multiple roots of p are attracting fixed points of Np. If ai has the multiplicity

mi as a root of p, then N ′p(ai) = (mi − 1)/mi. The rate of attraction in a

neighborhood of multiple roots is linear.
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• If p is a polynomial of degree d, then Np is a rational function of degree at most

d. When p has multiple roots, the degree of Np is strictly less than d.

Let f : S2 → S2 be an orientation-preserving branched covering. A critical

point of f is a point z, where the local degree degz f is greater than 1. For a

Newton map f it means that z ∈ C and f ′(z) = 0, since ∞ is never a critical point

for a Newton map.

Definition 2.1.4. Set Cf = {critical points of f} = {x| degx f > 1} and

Pf =
⋃
n≥1

fn(Cf ).

The map f is called a postcritically finite branched covering if Pf is finite. We say

that f is postcritically fixed if there exists N ∈ N such that for each x ∈ Cf , f ◦N(x)

is a fixed point of f .

For a domain D ⊂ C denote Pf (D) = Pf ∩D.

Definition 2.1.5 (Immediate Basin). Let Np be a Newton map and ξ ∈ C a fixed

point of Np. Let Bξ = {z ∈ C : lim
n→∞

Nn
p (z) = ξ} be the basin (of attraction) of ξ.

The connected component of Bξ containing ξ is called the immediate basin of ξ and

denoted Uξ.

In 1989 Przytycki [Pr] showed that Uξ is simply connected and unbounded.

This result was strengthened by Shishikura [Sh]: he showed that every component

of the Fatou set is simply connected, not just immediate basins.

Definition 2.1.6 (Invariant access to ∞). Let ξ be an attracting fixed point of Np

and Uξ its immediate basin. An access of ξ to ∞ is a homotopy class of curves

within Uξ that begin at ξ, land at ∞ and are homotopic with fixed endpoints.

Another important dynamical property of Newton maps is that the mutual loca-

tion of immediate basins is determined by the number of critical points in immediate

basins. This will provide us with the first-level combinatorial data for Newton maps.

Proposition 2.1.7 (Accesses to infinity in immediate basins). [HSS]. Let mξ be the

number of critical points of a Newton map Np in the immediate basin Uξ, counted

with multiplicity. Then Np|Uξ is a covering map of degree mξ +1, and Uξ has exactly

mξ accesses to ∞.

Let us consider a disk D which contains all the fixed points of a Newton map

Np. A channel of a fixed point ξ is an unbounded component of Uξ \ D [HSS]. If
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for a Newton map Np there exists an immediate basin Uξ which has at least two

accesses to∞ we say that Np has multiple channels and call such a basin Uξ multiple.

Otherwise we say that Np has no multiple channels.

Figure 2.1: The Newton map of degree 5 for the polynomial p(z) = z5 − 4z + 4 with the super-
attracting 2-cycle 0 7→ 1 7→ 0. Colors indicate to which of the five roots of p(z) a given starting
point converges; black indicate starting points converging to no root but to the superattracting
cycle 0 7→ 1 7→ 0 instead.

Lemma 2.1.8. Let Np be a postcritically finite Newton map, ξ ∈ C a fixed point of

Np and Uξ the immediate basin of ξ. Then ξ is a superattracting fixed point of Np

and there is no critical point in Uξ except ξ.

Proof. Since ξ is a fixed point of Np, ξ is a critical point of Np. Let k be the

multiplicity of ξ as a critical point of Np and suppose there exists a critical point in

Uξ. It follows from [Mi2, Theorem 9.3] that there exists a maximal number 0 < r < 1

so that the local Böttcher map ψε near ξ extends to a conformal isomorphism ψ from

the open disk Dr centered at zero of radius r onto an open subset W = ψ(Dr) ⊂ Uξ

such that W is compactly contained in Uξ and the boundary ∂W ⊂ Uξ contains

at least one critical point c. Since the sequence {N i
p(c)}∞i=0 converges to ξ and

this sequence is by assumption finite, there exists a positive integer n such that
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N◦np (c) = ξ. On the other hand

ψ(Np(z)) = ψ(z)k for every z ∈ W (2.2)

and if we take a sequence zm ∈ W with lim
m→∞

zm = c we get a contradiction taking

limit m→∞ in (2.2).

2.2 Thurston’s theory on branched coverings

Definition 2.2.1. A marked branched covering is a pair (f,X), where f : S2 → S2

is a branched covering and X is a finite set containing Pf such that f(X) ⊂ X.

Definition 2.2.2 (Thurston Equivalence). Let (f,X) and (g, Y ) be two marked

branched coverings. We say that they are Thurston equivalent if there are two

homeomorphisms φ0, φ1 : S2 → S2 such that

φ0 ◦ f = g ◦ φ1

and there exists an isotopy Φ : [0, 1] × S2 → S2 with Φ(0, ·) = φ0 and Φ(1, ·) = φ1

such that Φ(t, ·)|X is constant in t ∈ [0, 1] with Φ(t,X) = Y .

Let γ be a simple closed curve. We will call γ essential if both components of

the complement S2 \ γ contain at least two points of X. We say that γ is a simple

closed curve in (S2, X) if γ ⊂ S2 \X.

Definition 2.2.3 (Isotopic curves). Let γ0, γ1 be two simple closed curves in (S2, X).

We say that γ0 and γ1 are isotopic relative to X, written γ0 'X γ1, if there exists

a continuous, one-parameter family γt, t ∈ [0, 1], of simple closed curves joining γ1

and γ2. We denote the isotopy class of a simple closed curve γ by [γ].

Definition 2.2.4 (Multicurve). By a multicurve Π = {γ1, . . . , γn} we denote a col-

lection of mutually disjoint and pairwise non-isotopic essential simple closed curves

in (S2, X). A multicurve Π is f -stable if for every γ ∈ Π every essential connected

component of f−1(γ) is isotopic relative to X to some element of Π.

We regard elements of Π as the basis vectors of RΠ. For every f -stable mul-

ticurve Π we can consider the corresponding Thurston linear transform (matrix)

fΠ : RΠ → RΠ as follows: define

fΠ(γj) =
∑

γ′⊂f−1(γj)

1

deg(f |γ′ : γ′ → γj)
[γ′]Π,
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where [γ′]Π denotes the element of Π isotopic to γ′, if it exists. If there are no such

elements, the sum is taken to be zero. It is easy to see that the transformation fΠ

depends only on the isotopy classes of curves relative to X and the transformation

fΠ can be iterated.

Since any Thurston matrix has real non-negative elements, its largest eigenvalue

is real non-negative, and there exists an eigenvector with real non-negative entries

corresponding to this eigenvalue by the Perron-Frobenius theorem [Gan, Chapter

XIII]. Denote the largest eigenvalue of Π by λΠ.

From now on we assume that Π is a stable multicurve. A multicurve Π is called

a (Thurston) obstruction if λΠ ≥ 1. A square matrix A ∈Mn(R) is called irreducible

if for every pair (i, j), i, j ∈ [1, n] there exists an integer k > 0 such that (Ak)i,j > 0.

A multicurve Π is said to be irreducible if the matrix representing the linear

transform fΠ is irreducible. In other words for any (i, j) there is an integer k and a

component γ′ in f−k(γj) isotopic to γi relative to X.

An irreducible multicurve Π is called an irreducible (Thurston) obstruction if

λΠ ≥ 1.

Definition 2.2.5 (Hyperbolic Orbifold). Let f : S2 → S2 be a marked branched

covering of degree d > 1 with the postcritical set Pf . The orbifold Of is a pair (f, vf ),

where vf : Pf → N ∪ {∞} is the smallest function such that vf (x) is a multiple of

vf (y) degy f for each y ∈ f−1({x}).

The orbifold Of is called hyperbolic if the Euler charactersitic

χ(Of ) = 2−
∑
x∈Pf

(
1− 1

vf (x)

)

is negative.

Remark 2.2.6. In most cases Of is hyperbolic. There are few exceptions which can

be easily studied [DH]. If f has at least three fixed branched points, then it will

have hyperbolic orbifold. For Newton maps we consider in this thesis it is always

the case. In general, #Pf ≥ 5 suffices to make the orbifold of f hyperbolic.

Theorem 2.2.7 (Thurston’s theorem). A marked branched covering (f,X) with

hyperbolic orbifold is Thurston equivalent to a marked rational map (R, Y ) if and

only if (f,X) has no Thurston obstruction, i.e. if λΠ < 1 for every f -stable multic-

urve Π. In this case the rational map R is unique up to a conjugation by a Möbius

transformation.
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A typical application of Thurston’s theorem works as follows: one gives a combi-

natorial classification of all maps under consideration (for example, all postcritically

finite polynomials of a given degree), uses the combinatorial data to build a topolog-

ical branched cover which is specified by the combinatorics uniquely up to Thurston

equivalence, then proves that there is no Thurston obstruction so there is a unique

rational map (up to conformal conjugation) realizing this combinatorics. Conversely,

every such rational map is associated to some set of combinatorial data.

Since we are interested in a combinatorial classification of a particular set of

rational maps, namely Newton maps, Thurston’s theorem is a very useful and pow-

erful tool for us. There is a particular type of Thurston obstructions called Levy

cycles that is usually much easier to detect combinatorially.

Definition 2.2.8 (Levy cycle). A multicurve Π = {γ1, . . . , γn} is a Levy cycle if for

i = 1, 2, . . . , n the curve γi−1 'X γ′i (γ0 = γn), where γ′i is a component of f−1(γi),

and f : γ′i → γi is a homeomorphism.

One important method which often helps to analyse a Thurston obstruction or

a Levy cycle is to look at dynamics of connected components of S2 \ Π under f−1.

An important specific case is given in the following.

Definition 2.2.9 (Degenerate Levy cycles). Let Π = {γ1, . . . , γn} be a Levy cycle of

a marked branched covering (f,X). We say that Π is a degenerate Levy cycle if for

every i = 1, 2 . . . , n there exists one of the disk components Bi of S2 \ γi such that

each f−1(Bi+1) has a component B′i isotopic to Bi relative to X and f : B′i → Bi+1

is of degree one for i = 1, 2, . . . , n with Bn+1 = B1.

2.3 Arcs intersecting obstructions

We present a theorem of Kevin Pilgrim and Tan Lei [PT] that is useful to show that

certain marked branched coverings are equivalent to rational maps. Again, we first

need to introduce some notation.

Let (f,X) be a marked branched covering of degree d ≥ 3.

Definition 2.3.1 (Arc System). An arc in (S2, X) is a map α : [0, 1] → S2 such

that α({0, 1}) ⊂ X, α((0, 1)) ∩ X = ∅, α is a continuous mapping, injective on

(0, 1). The notion of isotopy relative to X extends to arcs and is also denoted by '.

A set of pairwise non-isotopic arcs in (S2, X) is called an arc system. Two arc

systems Λ,Λ′ are isotopic if each curve in Λ is isotopic relative to X to a unique

element of Λ′ and vice versa.
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Unless otherwise stated, by ' we always assume the isotopy relative to X and

omit the sub-index X in 'X .

Note that arcs connect marked points (the endpoints of an arc need not be

distinct) while simple closed curves run around them. We will see that this leads to

intersection properties that will give us some control over the location of possible

Thurston obstructions. Since arcs and curves are only defined up to isotopy, we

make precise what we mean by arcs and curves intersecting.

Definition 2.3.2 (Intersection Number). Let α and β each be an arc or a simple

closed curve in (S2, X). Their intersection number is

α · β := min
α′'α, β′'β

#{(α′ ∩ β′) \X} .

The intersection number extends bilinearly to arc systems and multicurves.

If λ is an arc in (S2, X), then the closure of a component of f−1(λ\X) is called

a lift of λ. Each arc clearly has d distinct lifts. If Λ is an arc system, an arc system

Λ̃ is called a lift of Λ if each λ̃ ∈ Λ̃ is a lift of some λ ∈ Λ.

If Λ is an arc system, we introduce a linear map fΛ on the real vector space RΛ

similar as for multicurves: for λ ∈ Λ, set

fΛ(λ) :=
∑

λ′⊂f−1(λ)

[λ′] ,

where [λ′] denotes the isotopy class of λ′ relative X. Again, the sum is taken to be

zero if λ has no preimages in the isotopy class of λ′. We say that Λ is irreducible if

the matrix representing fΛ is.

Denote by Λ̃(f ◦n) the union of those components of f−n(Λ) that are isotopic to

elements of Λ relative X, and define Π̃(f ◦n) in an analogous way. Note that if Λ is

irreducible, each element of Λ is isotopic to an element of Λ̃(f ◦n).

The following theorem is Theorem 3.2 of [PT]. It shows that up to isotopy,

irreducible Thurston obstructions cannot intersect the preimages of irreducible arc

systems (except possibly the arc systems themselves). We will use this theorem to

show that the extended map of an abstract extended Newton graph is Thurston

equivalent to a rational map.

Theorem 2.3.3 (Arcs Intersecting Obstructions). [PT] Let (f,X) be a marked

branched covering, Π an irreducible Thurston obstruction and Λ an irreducible arc

system. Suppose furthermore that #(Π ∩ Λ) = Π · Λ. Then, exactly one of the
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following is true:

1. Π · Λ = 0 and Π · f−n(Λ) = 0 for all n ≥ 1.

2. Π ·Λ 6= 0 and for n ≥ 1, each component of Π is isotopic to a unique component

of Π̃(f ◦n). The mapping f ◦n : Π̃(f ◦n)→ Π is a homeomorphism and Π̃(f ◦n) ∩
(f−n(Λ)\ Λ̃(f ◦n)) = ∅. The same is true when interchanging the roles of Π and

Λ.

2.4 Hubbard trees

It is a frequent observation in complex dynamics that many dynamical properties

can be encoded in symbolic terms. Douady and Hubbard [DH84/85] introduced a

combinatorial description of the dynamics of postcritically finite polynomials using

the association to each filled Julia set a tree, called Hubbard tree. In particular

they showed that for polynomials whose critical points are all (pre-)periodic the

dynamical behavior is completely encoded in the so called Hubbard tree.

Let f be a complex polynomial. The point at infinity is a superattracting fixed

point for f . This allows one to define the filled Julia set K(f) as the complement

of the basin of attraction of infinity. In other words, K(f) consists of those z ∈ C
such that the forward orbit fn(z) is bounded for all positive integers n. The Julia

set J(f) is equal to the boundary of K(f).

Recall that a tree is a topological space which is uniquely arcwise connected

and homeomorphic to a union of finitely many copies of the closed unit interval. We

assume here that all trees are embedded into S2.

The interest of Hubbard trees is that they contain all the combinatorial in-

formation about the dynamics of the polynomials. Indeed, Douady and Hubbard

showed that if we retain the dynamics of a polynomial and the local degree of f

on the set of vertices, the embedding of the tree in the complex plane and a little

bit of extra information, then different postcritically finite polynomials give rise to

different Hubbard trees. A variation of the converse is also true and was proved in

a general version by A. Poirier [Po].

We recall some facts about the dynamics of postcritically finite polynomials

from [Mi2]. If f is a postcritically finite polynomial, then the filled Julia set

K(f) is a connected and locally connected compact set [DH84/85]. For each Fa-

tou component Ui, there is exactly one point x ∈ Ui such that fn(x) ∈ Pf for

some non-negative integer n. Denote by Uj the Fatou component containing f(x).
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A classical theorem of Böttcher implies that there are holomorphic isomorphisms

φi : (D, 0)→ (Ui, x), φj : (D, 0)→ (Uj, f(x)) such that for all z ∈ D:

φj(z
ki) = f(φi(z)),

where ki is the local degree degree of f near x. Since J(f) is locally connected, each

Fatou component has locally connected boundary, and by Caratheodory’s theorem

the map φi extends continuously to S1. Let R(t) = {r exp(2πit)|0 ≤ r ≤ 1}. The

image Ri(t) = φi(R(t)) is called the ray of angle t in Ui. If x = ∞, the ray Ri(t)

is called an external ray, otherwise it is called internal ray. Each periodic point

x ∈ J(f) is the landing point of at least one and at most finitely many external rays

(see [Mi2]).

Definition 2.4.1. An arc γ ⊂ K(f) is called allowable if for every Fatou component

Ui, φi(γ ∩ Ui) is contained in the union of two rays of D.

For every z, z′ in K(f) there is a unique allowable arc joining them. We denote

this arc by [z, z′]K(f). We say that a subset X ⊂ K(f) is allowably connected if for

every z1, z2 ∈ X we have [z1, z2]K(f) ⊂ X. Note that a union of a family of allowably

connected subsets having a common point is allowably connected. The intersection

of a family of allowably connected subsets is allowably connected. We define the

allowable hull [X]K of X ⊂ K(f) as the intersection of all the allowably connected

subsets of K(f) containing X.

Definition 2.4.2. For a finite invariant set M , containing the set Cf of critical

points of f , we denote by H(M) the tree generated by M , i.e. the allowable hull

[M ]K. The minimal tree H(M0), is the tree generated by M0 = Pf , the postcritical

set. This last tree H = H(M0) is usually called in the literature the Hubbard Tree

of f .

Let H∗ = H(M), where M = Pf ∪ {z ∈ C : f(z) = z}, the set containing the

postcritical set of f . This tree H∗ we call an extended Hubbard tree which will be

used in our construction of an extended Newton graph.

Remark 2.4.3. If f is a polynomial of degree 1, then the tree H∗ = H(M) consists

of only one point, we call it degenerate.

Definition 2.4.4 (Valency). Given a point z ∈ H(M), the valency νH(M)(z) of

H(M) at the point z is the number of connected components of H(M) − {z}. In

other words νH(M)(z) is equal to the number of branches of H(M) that are incident

at z.
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A point z ∈ H(M) for which νH(M)(z) > 2 is called a branched point of H(M),

a point z ∈ H(M) for which νH(M)(z) = 1 is called an endpoint.

Similar definitions are valid for points in the Julia sets of polynomials. Namely,

for a postcritically finite polynomial p a point z ∈ J(p) is called biaccessible if

there are at least two external rays landing at z. The relation between the number

of external rays landing at points from the Julia set and valency at points from

Hubbard trees is the following.

Proposition 2.4.5. [Po] Let p be a postcritically finite polynomial and z ∈ J(p) is

a periodic branched point of J(p). Then z ∈ H(M) for any finite invariant set M

that contains the postcritical set of p. Furthemore, vH(M)(z) is independent of M

and equals the number of components of J(p)− {z}. In particular there are exactly

vH(M)(z) external rays landing at z.

For the proof of Proposition 2.4.5 see [Po, Proposition 3.3].

In the sequel we will need to axiomatize the notions of a Hubbard tree and an

extended Hubbard tree. Here we present the necessary background from [Po].

Definition 2.4.6 (Angled Tree). Angled tree H is a finite connected tree together

with an angle function l, l′ 7→ ∠(l, l′) = ∠v(l, l
′) ∈ Q/Z which for each pair of edges

l, l′ meeting at the vertex v assignes a rational modulo 1. The angle function is skew-

symmetric with ∠(l, l′) = 0 if and only if l = l′ and ∠v(l, l
′′
) = ∠v(l, l

′) + ∠v(l, l
′′
)

for every triple of edges l, l′, l
′′

meeting at the vertex v. Such an angle function

determines an isotopy class of embeddings of the tree H into C.

Now we introduce the dynamics on H: let τ : H → H be a continuous map

sending V to V and injective on the closures of edges, where V is the vertex set

of H. We also specify a local degree function δ : V → Z which assigns a positive

integer δ(v) to each vertex v ∈ V . The number

deg(δ) = 1 +
∑
v∈V

(δ(v)− 1)

is called the degree of H. We require that deg(δ) > 1. A vertex v ∈ V is called

critical if δ(v) > 1 and non-critical otherwise. By Cδ = {v ∈ V : v is critical} we

denote the critical set which by our assumptions is always non empty.

Remark 2.4.7. In fact it is enough to know the dynamics of τ only on the vertex

set V . One can extend the vertex map τ |V from the set of vertices V to the whole

tree in the following way: each edge of H maps homeomorphically onto the shortest

path joining the images under τ of the endpoints of this edge. This way one obtains
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the extended map τ ′ : H → H. The map τ ′ turns out to be equivalent to τ with

the equivalence relation defined later in Definition 2.4.12.

For a vertex v denote by Ev the set of edges of H incident at v. The maps τ

and δ must be related in the following way: for every pair of edges l, l′ ∈ Ev:

∠τ(v)(τ(l), τ(l′)) = δ(v)∠v(l, l
′).

A vertex v ∈ V is periodic if for some positive integer n we have τ ◦n(v) = v.

The orbit of a periodic critical point is called a critical cycle. We say that a vertex

v ∈ V is a Fatou vertex if it eventually maps into a critical cycle. Otherwise, if it

eventually maps to a non-critical cycle it is called a Julia vertex.

One can also define a distance function dH on the tree H. For a pair of vertices

v, v′ denote by dH(v, v′) the number of the edges in the shortest path in H between

v and v′.

We say that (H,V, τ, δ) is expanding if for any edge l with endpoints v, v′ which

are Julia vertices there is an integer n ≥ 1 such that dH(τ ◦n(v), τ ◦n(v′)) > 1.

Definition 2.4.8 (Abstract Hubbard Tree). An abstract Hubbard tree is an ex-

panding angled tree H = ((H,V, τ, δ),∠). An abstract extended Hubbard tree is an

expanding angled tree H∗ = ((H∗, V, τ, δ),∠) such that among vertices of H∗ there

are deg(δ) points that are fixed under the map τ : H∗ → H∗.

Remark 2.4.9. A postcritically finite polynomial f and a finite invariant set M ⊃ Cf

naturally define an abstract Hubbard tree (H(M),∠). The angle function is defined

as follows. For a periodic Fatou vertex v the edges of H(M) having v as their

common endpoint are segments of constant arguments in Böttcher coordinates in a

neighborhood of v and the angle between two such edges is defined as the difference

of their coordinates. For other Fatou points the angle function can be defined by

appropriate pullbacks of the coordinates at τ(v). If v is a Julia vertex, then J(f)\{v}
consists of finitely many components, denote the number of them by m. The “angle”

between these components is defined to be a multiple of 1/m. Since the edges of

the tree locally correspond to the components of J(f) \ {v}, the angle between the

components defines the angle between the edges at v.

Similarly, if we set M = Pf ∪ {z ∈ C : f(z) = z}, then the tree (H∗,∠) =

(H(M),∠) generated by M is an abstract extended Hubbard tree.

Definition 2.4.10. Let f be a postcritically finite polynomial and H∗ its extended

Hubbard tree. A fixed point ω ∈ C of f is said to be a β-fixed point of f if H∗ \ {ω}
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is connected.

Definition 2.4.11 (Hubbard Tree Extension). Given two abstract (extended) Hub-

bard trees H, H ′ of the same degree n = deg(H) = deg(H ′) > 1, we say that H ′

is an extension of H (in symbols H � H ′), if there is a dynamically compatible

orientation-preserving embedding φ : H → H ′ such that the following conditions are

satisfied:

1. φ(V ) ⊂ V ′;

2. τ ′(φ(v)) = φ(τ(v)) for all v ∈ V ;

3. δ(v) = δ′(φ(v)) for all v ∈ V ;

4. ∠v(l, l
′) = ∠′φ(v)(φ(l), φ(l′)) for all l, l′ ∈ Ev.

Definition 2.4.12 (Equivalence Relation). Two abstract (extended) Hubbard trees

H and H ′ are equivalent if H � H ′ and H ′ � H. Or, two abstract (extended)

Hubbard trees are equivalent if there is an orientation-preserving homeomorphism of

the plane to itself carrying (H,V, τ, δ) to (H ′, V ′, τ ′, δ′), conjugating the dynamics of

vertices, and preserving the local degree functions.

This determines an equivalence relation between abstract (extended) Hubbard

trees. The set of abstract (extended) Hubbard trees equivalent to H is denoted by

[H]. In [Po, Proposition 2.9] the following statement if proven.

Proposition 2.4.13. [Po, Proposition 2.9] Every abstract Hubbard tree H contains

a unique minimal tree min([H]). This unique minimal tree is the tree generated

by the orbit of the critical set. Every abstract extended Hubbard tree H∗ contains a

unique minimal abstract extended Hubbard tree min([H∗]). This unique minimal tree

is the tree generated by the orbit of the critical set and the fixed points of τ : H → H.

We present the basic existence and uniqueness theorem for abstract Hubbard

trees.

Theorem 2.4.14 (Realization of Abstract Hubbard Trees). [Po, Theorem 4.7] Any

abstract Hubbard tree H∗ can be realized as a tree associated with a postcritically finite

polynomial f . Equivalently, there exists a unique postcritically finite polynomial f ,

and an invariant set M ⊃ Cf such that H(M) ∈ [H]. The polynomial f is unique

up to affine conjugacy.

Now follows the analog of Theorem 2.4.14 for abstract extended Hubbard trees.
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Theorem 2.4.15 (Realization of Abstract Extended Hubbard Trees). Any abstract

extended Hubbard tree H∗ can be realized as a tree associated with a postcritically

finite polynomial f . Equivalently, there exists a unique postcritically finite polyno-

mial f , and an invariant set M ⊃ Cf such that H(M) ∈ [H∗]. The polynomial f is

unique up to affine conjugacy.

In Remark 2.4.9 the Hubbard trees H and H∗ were constructed for a postcriti-

cally finite polynomial f such that H satisfies the properties of an abstract Hubbard

tree and H∗ — the properties of an abstract extended Hubbard tree. In fact the

following theorem holds.

Theorem 2.4.16 (Bijective Correspondence). [Po, Theorem 4.8] The set of affine

conjugacy classes of postcritically finite polynomials of degree at least two is in bijec-

tive correspondence with the set of equivalence classes of minimal abstract Hubbard

trees of degree at least two.

Similarly, the result on the bijective correspondence between postcritically finite

polynomials and abstract extended Hubbard trees applies.

Theorem 2.4.17. The set of affine conjugacy classes of postcritically finite polyno-

mials of degree at least two is in bijective correspondence with the set of equivalence

classes of minimal abstract extended Hubbard trees of degree at least two.

2.5 Extending maps on finite graphs

Here we discuss a way to extend maps on finite graphs to maps on the whole sphere,

giving a criterion of extendibility. For this, we first need to introduce some notation

regarding maps on embedded graphs and their extensions to S2, compare [BFH,

Chapter 6]. We assume in the following without explicit mention that all graphs are

embedded into S2.

The main idea for such an extension lies in the following lemma [BFH, Chapter

6] (the so-called “Alexander trick”).

Lemma 2.5.1. Let h : S1 → S1 be an orientation-preserving homeomorphism.

Then there exists an orientation preserving homeomorphism h : D → D such that

h|S = h. The map h is unique up to isotopy relative S.

Definition 2.5.2 (Finite Graph). An edge of a graph is an arc homeomorphic to a

closed interval. A finite graph Γ is the quotient of a finite disjoint union of edges

of the graph, by an equivalence relation on the set of endpoints of these arcs. The
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images of the endpoints under the equivalence relation are called vertices of the

graph. A finite embedded graph is a homeomorphic image of a finite graph into S2.

Definition 2.5.3 (Graph Map). Let Γ1,Γ2 be connected finite embedded graphs. A

map f : Γ1 → Γ2 is called a graph map if it is continuous and injective on each edge

of the graph Γ1 so that forward images of vertices are vertices .

Definition 2.5.4 (Regular Extension). Let f : Γ1 → Γ2 be a graph map. An

orientation-preserving branched covering map f : S2 → S2 is called a regular exten-

sion of f if f |Γ1 = f and f is injective on each component of S2 \ Γ1.

It follows from Definition 2.5.4 that every regular extension f may have critical

points only at the vertices of Γ1.

Lemma 2.5.5 (Isotopic Graph Maps). [BFH, Corollary 6.3] Let f, g : Γ1 → Γ2 be

two graph maps that coincide on the vertices of Γ1 such that for each edge e ⊂ Γ1

we have f(e) = g(e) as a set. Suppose that f and g have regular extensions f, g :

S2 → S2. Then there exists a homeomorphism ψ : S2 → S2, isotopic to the identity

relative the vertices of Γ1, such that f = g ◦ ψ.

Let f : Γ1 → Γ2 be a graph map. For the next proposition, for each vertex

v of Γ1 choose a neighborhood Uv ⊂ S2 such that all edges of Γ1 that enter Uv

terminate at v; we may assume without loss of generality that in local cordinates,

Uv is a round disk of radius 1 that is centered at v, that all edges entering Uv are

radial lines and that f |Uv is length-preserving. We make analogous assumptions for

Γ2. Then, we can extend f to each Uv as in [BFH]: for a vertex v ∈ Γ1, let γ1 and

γ2 be two adjacent edges ending there. In local coordinates, these are radial lines

at angles, say, ϑ1, ϑ2 such that 0 < ϑ2 − ϑ1 ≤ 2π (if v is an endpoint of Γ1, then set

ϑ1 = 0, ϑ2 = 2π). In the same way, choose arguments ϑ′1, ϑ
′
2 for the image edges in

Uf(v) and extend f to a map f̃ on Γ1 ∪
⋃
v Uv by setting

(ρ, ϑ) 7→
(
ρ,
ϑ′2 − ϑ′1
ϑ2 − ϑ1

· ϑ
)
,

where (ρ, ϑ) are polar coordinates in the sector bounded by the rays at angles ϑ1

and ϑ2. In particular, sectors are mapped onto sectors in an orientation-preserving

way. Then, the following holds.

Proposition 2.5.6 (Regular Extension). [BFH, Proposition 6.4] A graph map f :

Γ1 → Γ2 has a regular extension if and only if for every vertex y ∈ Γ2 and every
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component U of S2 \ Γ1, the extension f̃ is injective on⋃
v∈f−1({y})

Uv ∩ U .

2.6 The Newton graph

The combinatorial classification of postcritically fixed Newton maps was given in

[MR] in terms of Newton graphs. Newton graphs are defined as follows. Consider a

postcritically finite Newton map Np with attracting fixed points a1, a2, . . . , ad. For

such Np the points a1, a2, . . . , ad must in fact be superattracting (see Lemma 2.1.8).

Let Ui denote the immediate basin of ai. Each Ui has a global Böttcher coordinate

φi : (D, 0)→ (Ui, ai) with the property that Np(φi(z)) = φi(z
ki) for each z ∈ D (the

complex unit disk), where ki − 1 ≥ 1 is the multiplicity of ai as a critical point of

Np. The map z → zki fixes ki − 1 internal rays in D. Under φi, these map to ki − 1

pairwise disjoint injective curves Γ1
i ,Γ

2
i , . . . ,Γ

ki−1
i ⊂ Ui that connect ai to ∞, are

pairwise non-homotopic (with homotopies fixing the endpoints) and are invariant

under Np. They represent all accesses to∞ of Ui (see Proposition 2.1.7). The union

∆ =
⋃
i

ki−1⋃
j=1

Γji

forms a connected graph in Ĉ that is called the channel diagram. It follows from the

definition that Np(∆) = ∆. The channel diagram records the mutual locations of the

immediate basins of Np and provides a first-level combinatorial information about

the dynamics of the Newton map. For any n ≥ 0, denote by ∆n the connected

component of N−np (∆) that contains ∆. The pair (∆n, Np) of a graph ∆n and a

Newton map Np acting on it is called the Newton graph of Np at level n. Newton

graphs give more precise combinatorial data than channel diagrams, and by results

from [MR] they are very useful as combinatorial models for Newton maps. For

postcritically fixed Newton maps all critical points are eventually fixed and contained

in the Newton graph at sufficiently high level. Moreover, the following result is

proven in [MR].

Theorem 2.6.1. [MR, Theorem 3.4] There exists a positive integer N so that ∆N

contains all poles of Np.

It follows from Theorem 2.6.1 that for any prepole there exists sufficiently large

m such that this prepole is in ∆m. The following theorem proven in [MR] allows to
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structure the basins of attraction of finite fixed points of Np.

Theorem 2.6.2. [MR, Theorem 1.4] Let f : Ĉ→ Ĉ be a Newton map with attracting

fixed points a1, . . . , ad ∈ C, and let U ′0 be a component of some Bi, the basin of

attraction of ai. Then, U ′0 can be connected to ∞ by the closures of finitely many

components U ′1, . . . , U
′
k of

⋃d
i=1Bi.

More precisely, there exists a curve γ : [0, 1]→ Ĉ such that γ(0) =∞, γ(1) ∈ U ′0
and for every t ∈ [0, 1], there exists m ∈ {0, 1, . . . , k} such that γ(t) ∈ U ′m.

One of the main results in [MR] states that to a postcritically fixed Newton

map Np (see Definition 2.1.4) one can associate a Newton graph that is unique

up to specific equivalence relation and different Newton graphs (with respect to

equivalence relation) distinguish different Newton maps (up to affine conjugacy)

they are associated to.

Since we are talking here about postcritically fixed and postcritically finite New-

ton maps we distinguish between the two different abstract combinatorial objects

modelling the Newton graphs constructed for postcritically fixed and postcritically

finite Newton maps. In the terminology of [MR] the abstract Newton graphs associ-

ated to postcritically fixed Newton maps are called here abstract postcritically fixed

Newton graphs. The following theorem is proved in [MR].

Theorem 2.6.3. [MR, Theorem 1.5]. Every postcritically fixed Newton map f gives

rise to an abstract postcritically fixed Newton graph. There exists a unique N ∈ N
such that (∆N , f) is an abstract postcritically fixed Newton graph.

If f1 and f2 are Newton maps with channel diagrams ∆1 and ∆2 such that

(∆1,N , f1) and (∆2,N , f2) are equivalent as abstract postcritically fixed Newton graphs,

then f1 and f2 are affinely conjugate. Hence there exists a well defined injective

mapping F from the set of postcritically fixed Newton maps up to affine conjugacy

to the set of abstract postcritically fixed Newton graphs up to Thurston equivalence.

In fact, the results in [MR], in particular Theorem 2.6.2, imply that the Newton

graph can be constructed for any Newton map, not necessarily postcritically fixed.

The abstract counterparts of such Newton graphs we call abstract Newton graphs.

We will need the following theorem for the future purpose.

Theorem 2.6.4. Every postcritically finite Newton map f gives rise to an abstract

Newton graph. This graph is unique up to Thurston equivalence. More precisely,

there exists a unique N ∈ N such that (∆N , f) is an abstract Newton graph.
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In order to axiomatize the graphs that are extracted for Newton maps, in [MR]

there were developped the notions of an abstract channel diagram and an abstract

postcritically fixed Newton graph which classify postcritically fixed Newton maps

(note that the latter is called abstract Newton graph in [MR], since the Newton

graph construction was done in [MR] only for postcritically fixed Newton maps).

Figure 2.2: A Newton map of degree 6 with its channel diagram: the solid lines represent accesses
to∞ of the immediate basins, the black dots correspond to the fixed points (the vertex at∞ is not
visible). The dashed lines show the first preimage of the channel diagram: white circles represent
poles, a cross is a free critical point.

Definition 2.6.5 (Abstract Channel Diagram). An abstract channel diagram of

degree d ≥ 3 is a graph ∆ ⊂ S2 with vertices v0, . . . , vd and edges e1, . . . , el that

satisfies the following properties:

(1) l ≤ 2d− 2;

(2) each edge joins v0 to a vi, i > 0;

(3) each vi is connected to v0 by at least one edge;

(4) if ei and ej both join v0 to vk, then each connected component of S2 \ ei ∪ ej
contains at least one vertex of ∆.
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It is not difficult to check that the channel diagram ∆ constructed for a Newton

map Np above satisfies conditions of Definition 2.6.5. Indeed by construction, ∆ has

at most 2d − 2 edges and it satisfies (2) and (3). Finally, ∆ satisfies (4), because

for any immediate basin Uξ of Np, every component of C \ Uξ contains at least one

fixed point of Np [RS, Corollary 5.2].

Definition 2.6.6 (Abstract Postcritically Fixed Newton Graph). Let Γ ⊂ S2 be a

connected finite graph, Γ′ the set of its vertices and f : Γ → Γ a graph map. The

pair (Γ, f) is called an abstract postcritically fixed Newton graph if it satisfies the

following conditions:

(1) There exists dΓ ≥ 3 and an abstract channel diagram ∆ ( Γ of degree dΓ such

that f fixes each vertex and each edge of ∆.

(2) For every vertex y ∈ Γ′ and every component U of S2 \ Γ, the extension f̃ is

injective on ⋃
v∈f−1({y})

Uv ∩ U .

Hence by Proposition 2.5.6, f can be extended to a branched covering f : S2 →
S2.

(3) If v0, . . . , vdΓ
are the vertices of ∆, then vi ∈ Γ \∆ if and only if i 6= 0.

Moreover, there are exactly degvi(f) − 1 ≥ 1 edges in ∆ that connect vi to v0

for i 6= 0, where degx(f) denotes the local degree of f at x ∈ Γ′.

(4)
∑

x∈Γ′

(
degx(f)− 1

)
= 2dΓ − 2.

(5) There exists NΓ such that f ◦(NΓ−1)(x) ∈ ∆ for all x ∈ Γ′ with degx(f) > 1.

And if NΓ is minimal with this property, then f ◦NΓ(Γ) ⊂ ∆.

(6) The graph Γ \∆ is connected.

(7) Γ equals the component of f
−NΓ

(∆) that contains ∆.

If (Γ, f) is an abstract Newton graph, f can be extended to a branched covering

map f : S2 → S2 by Condition (2) and Proposition 2.5.6. It is used implicitly in

(7). Condition (4) and the Riemann-Hurwitz formula ensure that f has degree

dΓ. An immediate consequence of Lemma 2.5.5 is that f is unique up to Thurston

equivalence.

Definition 2.6.7 (Abstract Newton Graph). Let Γ ⊂ S2 be a connected finite graph,

Γ′ the set of its vertices and f : Γ → Γ a graph map. The pair (Γ, f) is called an

abstract Newton graph if it satisfies the following conditions:
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(1) There exists dΓ ≥ 3 and an abstract channel diagram ∆ ( Γ of degree dΓ such

that f fixes each vertex and each edge of ∆.

(2) The graph map f can be extended to a branched covering f : S2 → S2 such that

the following conditions (3) – (6) are satisfied.

(3) If v0, . . . , vdΓ
are the vertices of ∆, then vi ∈ Γ \∆ if and only if i 6= 0.

Moreover, there are exactly degvi(f) − 1 ≥ 1 edges in ∆ that connect vi to v0

for i 6= 0, where degx(f) denotes the local degree of f at x ∈ Γ′.

(4)
∑

x∈Γ′

(
degx(f)− 1

)
≤ 2dΓ − 2.

(5) The graph Γ \∆ is connected.

(6) Γ equals the component of f
−NΓ

(∆) that contains ∆.

It follows from [MR] that, if Np is a postcritically finite Newton map, then the

pair (∆NΓ
, Np) satisfies all conditions of Definition 2.6.7, where NΓ is the minimal

positive integer n such that all critical points of Np that are eventually fixed (under

some iterate of Np) are mapped onto its channel diagram ∆ under n’th iterate of Np.

Therefore each postcritially finite Newton map Np gives rise to an abstract Newton

graph.

Two abstract (postcritically fixed) Newton graphs (Γ1, f1) and (Γ2, f2) are said

to be equivalent if there exists a graph homeomorphism g : Γ1 → Γ2 that preserves

the cyclic order of edges at each vertex of Γ1 and conjugates f1 to f2.

It is proved in [MR] that every abstract postcritically fixed Newton graph is

realized by a postcritically fixed Newton map.

Theorem 2.6.8. [MR, Theorem 1.6] Every abstract postcritically fixed Newton

graph is realized by a postcritically fixed Newton map. This Newton map is unique

up to affine conjugacy. More precisely, let (Γ, g) be an abstract postcritically fixed

Newton graph. Then, there exists a postcritically fixed Newton map f with chan-

nel diagram ∆̂ such that (g,Γ′) and (f, ∆̂′NΓ
) are Thurston equivalent as marked

branched coverings (here Γ′ denotes the set of vertices of the graph Γ).

If f realizes two abstract postcritically fixed Newton graphs (Γ1, g1) and (Γ2, g2),

then the two abstract postcritically fixed Newton graphs are equivalent. Hence there

exists a well defined injective mapping F ′ from the set of abstract Newton graphs up

to Thurston equivalence to the set of postcritically fixed Newton maps up to affine

conjugacy.
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Moreover, it follows from [MR] that the maps F and F ′ from Theorem 2.6.3

and Theorem 2.6.8 are bijective and inverse to each other, i.e. F ◦ F ′ = Id and

F ′ ◦ F = Id.

The main result of this thesis is the construction of analogous mappings F and

F ′ between the postcritically finite Newton maps and abstract extended Newton

graphs, and proving that they are inverse to each other.

2.7 Polynomial-like mappings and renormalization

Polynomial-like mappings play an important role in complex dynamics. They were

introduced by Douady and Hubbard [DH3] among other things to explain the partial

self-similarity of the Mandelbrot set. Later polynomial-like mappings were used

to study the local connectivity of Julia sets and the Mandelbrot set, rigidity of

polynomials, etc.

Definition 2.7.1. A polynomial-like map of degree d is a triple (f, U, V ) where

U, V are topological disks in C such that U is a compact subset of V and f : U → V

is a proper holomorphic map such that every point in V has d preimages in U when

counted with multiplicities.

Definition 2.7.2. Let f : U → V be a polynomial-like map. The filled Julia set of

f is defined as the set of points in U that never leave V under iteration by f , i.e.

K(f) =
∞⋂
n=1

f−n(V ).

As for polynomials we define the Julia set as J(f) = ∂K(f).

Remark 2.7.3. If d = 1 in Definition 2.7.1, then we call the map f a degenerate

polynomial-like map.

The simplest example of polynomial-like mappings is a restriction of any poly-

nomial: for a polynomial p of degree d ≥ 2 let V = {z ∈ C : |z| < R} for sufficiently

large R and U = f−1(V ). Then p : U → V is a polynomial-like mapping of degree

d.

Remark 2.7.4. In general, for a triple (f, U, V ) with U ⊂ V and f : U → V a proper

holomorphic map we denote by

K(f, U, V ) =
∞⋂
n=1

f−n(V )



32 CHAPTER 2. PRELIMINARIES

the set of points in U that never leave V under iteration by f .

Two polynomial-like maps f and g are hybrid equivalent if there is a quasicon-

formal conjugacy ψ between f and g, defined on a neighborhood of their respective

filled Julia sets, such that ∂̄ψ = 0 on K(f).

The crucial relation between polynomial-like maps and polynomials is explained

in the following theorem, due to Douady and Hubbard [DH3]. They showed that a

polynomial-like map behaves dynamically like a polynomial.

Theorem 2.7.5 (The Straightening Theorem). Let f : U ′ → U be a polynomial-

like map of degree d. Then f is hybrid equivalent to a polynomial P of degree d.

Moreover, if K(f) is connected, then P is unique up to affine conjugation.

Now we define the notion of renormalization of rational functions. Let R be a

rational function of degree d and z0 a critical point of R, i.e. z0 ∈ CR.

Definition 2.7.6. Rn is called renormalizable about z0 if there exist open disks

U, V ⊂ C satisfying the following conditions:

1. z0 lies in U .

2. (Rn, U, V ) is a polynomial-like map of degree at least two with connected filled

Julia set.

3. n ≥ 2 or CR is not a subset of U .

A renormalization is a polynomial-like restriction ρ = (Rn, U, V ) as above. We

call n the period of the renormalization ρ.

For a renormalization ρ, its period n and i = 1, 2, . . . , n denote n(ρ) = n, U(ρ) =

U, V (ρ) = V . The filled Julia set of ρ is denoted by K(ρ), the Julia set J(ρ), and

the critical and postcritical sets by C(ρ) and P (ρ) respectively. The i’th small filled

Julia set K(ρ, i) = Ri(K(ρ)) and the i’th Julia set J(ρ, i) = Ri(J(ρ)). The i’th small

critical set C(ρ, i) = K(ρ, i) ∩ C(R). Clearly C(ρ, i) may be empty for 0 < i < n.

However, by definition C(ρ, n) is nonempty.

The filled Julia sets of the renormalization depend only on its period and small

critical sets. Namely the following is true:

Theorem 2.7.7 (Uniqueness of renormalization). Let ρ = (Rn, U, V ) and ρ′ =

(Rn, U ′, V ′) be two renormalizations of the same period. If C(ρ, i) = C(ρ′, i) for all

1 ≤ i ≤ n, then the filled Julia sets K(ρ) = K(ρ′).
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Proof. It follows from [MC, Theorem 6.13] that K = K(ρ)∩K(ρ′) is connected. Let

U
′′

be the component of U ∩U ′ containing K and V
′′

= Rn(U
′′
). Since by definition

V
′′

contains f(K) = K we have U
′′ ⊂ V

′′
. Using [MC, Theorem 5.11] we obtain

that (Rn, U
′′
, V

′′
) is a polynomial-like map with a filled Julia set K. Since the sets

of critical points of the three maps Rn : U → V,Rn : U ′ → V ′ and Rn : U
′′ → V

′′

are equal we obtain the desired K(ρ) = K(ρ′) = K.

In Section 2.4 the notion of (extended) Hubbard trees for a given postcriti-

cally finite polynomials was introduced. Note that the same construction applies to

polynomial-like mappings f : U ′ → U with connected filled Julia set. In the fol-

lowing we implicitly use (extended) Hubbard trees associated to postcritically finite

polynomial-like mappings.
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Chapter 3

Extended Newton graph

3.1 Renormalization of Newton maps

The Newton graph ∆N of Np defined in Section 2.6 divides the complex plane into

finitely many pieces, and each critical point has an itinerary with respect to this

partition. In this Section for every periodic critical point of Np we construct the

renormalization domain containing the chosen critical point. Then we obtain a

polynomial-like mapping that describes the dynamics of periodic critical points that

never fall onto ∆N in terms of a polynomial. Having polynomial-like map associated

to a free periodic critical point we obtain an extended Hubbard tree associated to

each of them, which will serve for us as a combinatorial model for the dynamical

behavior of free periodic critical points.

Lemma 3.1.1. For a postcritically finite Newton map Np there exists a positive

integer N and finitely many pairs of domains (Uk, Vk), Uk ⊂ Vk, k ∈ [1,M ], for

some non-negative integer M , which satisfy the following properties:

1. ∂Uk, ∂Vk ⊂ ∆N for every k ∈ [1,M ], where ∆N is the Newton graph at level

N .

2. For each pair of domains (Uk, Vk) there exists a positive integer m(k) such that

N
m(k)
p : Uk → Vk is a proper map of degree dk ≥ 1.

3. Different components Ul, Uk, l 6= k, are disjoint.

4. For every periodic point z1 ∈ PNp of period at least two there exists k such

that z1 ∈ Uk. Moreover, PNp ∩ Vk ⊂ K(N
m(k)
p , Uk, Vk) (K(N

m(k)
p , Uk, Vk) being

defined as in Remark 2.7.4).

35
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Proof. Let N be the level of the Newton graph from Theorem 2.6.4. For any periodic

point z1 ∈ PNp of period at least two note that z1 cannot lie on the graph ∆N , since

the only periodic points on ∆N are the fixed points of Np. Hence z1 falls into one of

the complementary components of ∆N , denote it by V ′1 . Let m be the period of z1

that is greater or equal than N (an integer multiple of the minimal period of z1) and

let m(1) = m. We construct a neighborhood V1, whose boundary consists of edges

in the Newton graph, such that V1 contains z1 and every point from the postcritical

set of Np in V1 has a finite orbit under Nm
p which always stays in V1.

Let V
′′

1 be a preimage of V ′1 under Nm
p such that z1 ∈ V

′′
1 . Then V

′′
1 ⊂ V ′1 , since

∆N ⊂ N−mp (∆N) and therefore every preimage of V ′1 under Nm
p is either disjoint

from V ′1 or its subset.

Denote F = Nm
p : V

′′
1 → V ′1 . The map Np is postcritically finite, hence there

exists a positive integer n such that PF (F−n(V ′1)) ⊂ K(F, V
′′

1 , V
′

1). Among such

integers n choose the minimal one and denote it by n(1). Let V1 be the component

of F−n(1)(V ′1) that contains z1. It follows from the construction that V1 satisfies the

property that every point from PNp(V1) has a finite orbit lying in V1 under the map

F . Let U1 = F−1(V1) ∩ V1. The same argument as for V
′′

1 ⊂ V ′1 mentioned above

implies that U1 ⊂ V1. Note that ∂V1 ⊂ ∆N1 with N1 = N + n(1)m(1).

Now considering the graph ∆N1 and any periodic postcritical point z2 of period

at least two which doesn’t lie in V1 we construct the domains (U2, V2) in a similar

way. Again, denote by N2 the minimal level of the Newton graph that contains the

boundary of V2 and so on... We analogously construct the required set of domains

(Uk, Vk)k∈[1,M ], where M is the total number of constructed components numerated

by the corresponding periodic points from PNp .

Let N ′ = N +
M∑
k=1

n(k)m(k) be the level of the Newton graph that contains the

boundaries of all components Vk for k ∈ [1,M ]. Denote Fk = N
m(k)
p : Uk → Vk. In

the following we prove that slightly shrinking and enlarging the boundaries of Uk

and Vk the mapping Fk between the modified components Uk and Vk can be made

to be polynomial-like. Before proving the presice statement let us introduce several

notions.

Definition 3.1.2 (The ε-neighborhood). Let K be a compact subset of Ĉ. The

ε-neighborhood of K is the set of points x ∈ Ĉ such that d(x,K) < ε, where d is

the spherical metric in Ĉ.

Definition 3.1.3 (Fatou and Julia vertices). Let Np be a Newton map and ∆N ′ its
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Newton graph at level N ′. A vertex v ∈ ∆N ′ is called a Fatou-vertex if it belongs to

the Fatou set of Np. Otherwise, it is called a Julia-vertex.

It is easy to see that a vertex v ∈ ∆N ′ is a Fatou-vertex if and only if it is

eventually mapped by Np onto one of the superattracting fixed points of Np.

Before modifying the boundaries of Uk and Vk we first prove that in case ∂Uk ∩
∂Vk 6= ∅ there are no branched vertices on ∂Uk and ∂Vk, i.e. every vertex on ∂Uk, ∂Vk

has exactly two edges starting at it.

Proposition 3.1.4. Let e = [v, v1] be an edge of ∆N ′+m(k) such that e ⊂ ∂Uk ∩ ∂Vk
and v is a Julia-vertex, v1 is a Fatou-vertex. Then v has exactly two edges in ∂Uk

having v as an endpoint.

Proof. Suppose that there exist at least three edges in ∂Uk with v being their com-

mon endpoint, denote them by

[v, v1], [v, v2], [v, v3].

Since e = [v, v1] ⊂ ∂Uk ∩ ∂Vk, we have that

[v, v1] ⊂ ∆N ′ ∩∆N ′+m(k).

Let N be the level of the Newton graph ∆N of Np from Theorem 2.6.4. Since

(∆N ′ , Np) satisfies the conditions of Definition 2.6.7, in particular its Condition (6),

and m(k) ≥ N by the construction, it follows ∆N ′+m(k) \∆N ′ is connected and there

exists a path consisting of edges in ∆N ′+m(k) \ {v} that connects v1 and v2. This

contradicts to the fact that Uk is a complementary component of the Newton graph

∆N ′+m(k) and has edges [v, v1], [v, v2] on its boundary.

In our construction we will constantly be using the following fact from elemen-

tary topology.

Proposition 3.1.5. Let f : Ĉ→ Ĉ be a continuous map and U, V subsets of Ĉ such

that U is compactly contained in V . Then f(U) is compactly contained in f(V ), i.e.

f(U) ⊂ f(V ).

Proof. Since Ĉ is compact, the map f is closed, i.e. it maps closed subsets of Ĉ to

closed subsets of Ĉ. Hence

f
(
U
)

= f
(
U
)
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Therefore, since U ⊂ U ⊂ V and f
(
U
)
⊂ f(V ), we have

f(U) ⊂ f(U) and f(U) ⊂ f(V ).

Lemma 3.1.6. For every proper map Fk : Uk → Vk constructed in Lemma 3.1.1

there exists a polynomial-like map F̂k : Ûk → V̂k, where F̂k = N
m(k)
p |Ûk so that

deg F̂k = degFk and K(F̂k, Ûk, V̂k) = K(Fk, Uk, Vk).

Proof. Fix some k ∈ [1,M ]. It follows from Lemma 3.1.1 that Uk ⊂ Vk. However it

might happen that ∂Uk ∩ ∂Vk 6= ∅. If ∂Uk ∩ ∂Vk = ∅, then let V̂k = Vk and Ûk = Uk.

Otherwise we need to slightly modify Vk to V̂k near the boundary (shrink or enlarge)

so that Ûk is compactly contained in V̂k, where Ûk = N
−m(k)
p (V̂k)∩ V̂k. Note that the

boundary ∂Uk consists of edges in the Newton graph ∆N ′+m(k) joining Fatou and

Julia-vertices. In the following we consider the case ∂Uk ∩ ∂Vk 6= ∅.

Case 1. The boundaries of Uk and Vk intersect over at least one edge. Denote

by e = [v, v1] an edge in the intersection ∂Uk ∩ ∂Vk, where v is a Julia-vertex and v1

is a Fatou-vertex. It follows from Proposition 3.1.4 that v has exactly two edges in

∂Uk having v as an endpoint.

The construction of Ûk and V̂k is done in several steps, where we deal with

vertices and edges separately. In order to keep the notation short in the following

we write m instead of m(k).

Step 1. Julia vertices: fix ε > 0 sufficiently small. Since ∞ is a repelling

fixed point of Nm
p , for small enough ε > 0 there exists a disk neighborhood Ω(∞) of

radius ε with the center at ∞ such that Ω(∞) ⊂ Nm
p (Ω(∞)). Let Ω′(∞) = Ω(∞).

For every prepole J1 ∈ N−mp (∞) let Ω1(J1) be the connected component of

N−mp (Ω(∞)) that contains J1. There exists a domain Ω′1(J1) in the ε-neighborhood

(see Definition 3.1.2) of Ω1(J1) that compactly contains Ω1(J1), i.e. Ω1(J1) ⊂
Ω′1(J1). Hence by Proposition 3.1.5

Ω′(∞) ⊂ Nm
p (Ω′1(J1)). (3.1)

For every prepole Jk ∈ N−kmp (∞) for an integer k > 1 one can similarly con-

struct domains Ω′k(J
k) so that

Ω′k−1(Nm
p (Jk)) ⊂ Nm

p (Ω′k(J
k)), k > 1. (3.2)
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In this way we construct domains Ω′(∞) and Ω′k(J
k), k ≥ 1, around infinity and the

prepoles respectively.

Step 2. Edges : first we construct a required neighborhood around a fixed edge

ei of the Newton graph ∆N ′ that connects ai and ∞. As follows from Section 2.6

the dynamics of Nm
p on Ui is conjugate to the dynamics of the map z 7→ zd

m
i on the

unit disk D, where di− 1 ≥ 1 is the multiplicity of ai as a critical point of Np (recall

that by Ui we denote the immediate basin of ai). Since we have already constructed

a neighborhood Ω′(∞) of∞, in the following we construct a neighborhood of ei not

in the whole immediate basin Ui, but in a sufficiently small subset Bi of Ui, which

is properly contained in Ui and contains ẽi = ei \ Ω′(∞). The dynamics of Nm
p on

Bi is conjugate to the dynamics of z 7→ zd
m
i on some proper subset of the unit disk.

Without loss of generality we can assume that this proper subset is itself a disk of

radius 1 − ε. Within such a disk of radius r = 1 − ε the mapping τ : z → zd
m
i

satisfies the property that the image of any disk of radius r′ < r under τ is properly

contained in itself. Hence there exists an ε-neighborhood Ω(ẽi) of ẽi in Bi such that

Nm
p (Ω(ẽi)) ⊂ Ω(ẽi).

Let Ω′(ẽi) = Ω(ẽi).

Now we construct such neighborhoods for the preimages of fixed edges under

the map Nm
p . For every preimage F 1

i of ẽi under Nm
p let Ω1(F 1

i ) be the connected

component of N−mp (Ω′(ẽi)) that contains F 1
i . There exists a domain Ω′1(F 1

i ) in the

ε-neighborhood of F 1
i such that that Ω′1(F 1

i ) is compactly contained in Ω1(F 1
i ), i.e.

Ω′1(F 1
i ) ⊂ Ω1(F 1

i ). Hence

Nm
p (Ω′1(F 1

i )) ⊂ Ω′(ẽi). (3.3)

For every preimage F k
i of ẽi under Nkm

p for an integer k > 1 in the same way

taking pullbacks of already constructed neighborhoods and shrinking them within

the ε-neighborhood of F k
i one can construct domains Ω′k(F

k
i ) such that

Nm
p (Ω′k(F

k
i )) ⊂ Ω′k−1

(
Nm
p

(
F k
i

))
, k > 1. (3.4)

Note that in the construction described above we choose ε sufficiently small so that

the following property holds: for every Julia-vertex Jk and F k
i which is a part of

a Fatou-edge that has Jk as one of its endpoint we have that ∂Ω′k
(
F k
i

)
intersects

∂Ω′(Jk) at precisely two different points.
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It can happen that

Ω′k(F
k
i ) ∩ Ω′p(F

p
i ) 6= ∅ for some k 6= p

in some Fatou component Uk
i (here by Uk

i we denote a preimage component of the

immediate basin Ui under N−kmp (Ui)). If this case we let

Ω′(F k
i ∪ F

p
i ) = Ω′k(F

k
i ) ∪ Ω′p(F

p
i ).

This gives us a set of neighborhoods around the edges (see Figure 3.1).

Figure 3.1: Thickening the domain Uk around edges and Julia vertices. The vertices of the Newton
graph from the Fatou set are denoted by letter F , the ones from the Julia set — by J . The boundary
of the modified domain is indicated by a dashed line.

Step 3. Now we construct the required neighborhood Ûk of Uk. Let Ω′(F )

be the union of all neighborhoods around Fatou-edges in ∂Uk constructed in Step

2 and denote l(F ) = ∂Ω′(F ) ∩ Uk. For every neighborhood Ω′k(J
k) of Julia-vertex

Jk ∈ ∂Uk there exist two connected components of ∂Ω′k(J
k) \ l(F ). Denote by l(Jk)

the connected component such that

l(Jk) ∩ Ĉ \ Uk 6= ∅
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and by l(J) denote the union of l(Jk) for all Julia-vertices Jk ∈ ∂Uk. Let

l(Uk) = l(F ) ∪ l(J).

It follows that l(Uk) is a closed curve surrounding Julia-vertices in ∂Uk. Finally, let

Ûk be the component of Ĉ \ l(Uk) that contains the Julia-vertices of ∂Uk. It follows

from (3.1) – (3.4) that Ûk is compactly contained in V̂k, where V̂k = F̂k

(
Ûk

)
and

F̂k = Nm
p |Ûk . Choosing sufficienly small ε > 0 such that

PNp

(
Ûk

)
= PNp (Uk)

we make sure that

K
(
F̂k, Ûk, V̂k

)
= K (Fk, Uk, Vk) and deg(F̂k) = deg(Fk).

(Since Np is postcritically finite it is always possible to choose sufficiently small ε > 0

so that these properties are satisfied).

Case 2. The boundaries of Uk and Vk intersect only over vertices of ∆N ′ .

Step 4. In this case we only need to modify the boundaries of Uk and Vk

at vertices in ∂Uk and ∂Vk. Similarly as in Case 1, if ∂Uk and ∂Vk intersect at a

Julia-vertex v we thicken Uk slightly in the ε-neighborhood of v and leave the edges

the same as in ∂Uk outside of such neighborhood. If ∂Uk and ∂Vk intersect at a

Fatou-vertex v we replace ∂Uk by an arc in Uk of a sufficiently small disk within the

ε-neighborhood of v. All the edges in ∂Ûk outside such an arc we leave the same.

Similarly to the previous case Ûk is compactly contained in V̂k, where V̂k = F̂k

(
Ûk

)
and F̂k = Nm

p |Ûk . Choosing sufficienly small ε > 0 such that

PNp

(
Ûk

)
= PNp (Uk)

we make sure that

K
(
F̂k, Ûk, V̂k

)
= K (Fk, Uk, Vk) and deg(F̂k) = deg(Fk).

Remark 3.1.7. Note that for each polynomial-like map F̂k : Ûk → V̂k constructed in

Lemma 3.1.6 and associated with a periodic postcritical point zk we can construct

an extended Hubbard tree H∗(Uk, zk) which contains the postcritical set of F̂k in

Ûk and all the fixed points of F̂k in Ûk. It follows from Lemma 3.1.1 and Lemma
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3.1.6 that the trees H∗(Uk, zk) don’t depend on the choice of the renormalization

domains Ûk, V̂k. Trees H∗(Uk, zk) and H∗(Ul, zl) for k 6= l are disjoint except possible

intersection at ∞.

The trees H∗(Uk, zk) and H∗(Ul, zl) lie in domains Ûk and Ûl respectively. The

only possible intersection of Ûk and Ûl could be at vertices of ∂Uk ∪ ∂Vk within(
Ûk \ Uk

)
∪
(
V̂k \ Vk

)
, since Uk ∩ Vk = ∅. The only such vertex could be ∞. Hence

any two trees H∗(Uk, zk) and H∗(Ul, zl) are disjoint except possibly at ∞.

Definition 3.1.8. For a given postcritically finite Newton map Np, let N be the

minimal integer n such that no two different extended Hubbard trees H∗(Uk, zk), k ∈
[1,M ] fall into the same complementary component of ∆n. The graph ∆N is called

the Newton graph of Np. Note that such N exists due to Lemma 3.1.1, Lemma 3.1.6

and Remark 3.1.7.

3.2 Newton rays

In order to construct a graph containing the whole postcritical set of Np we connect

extended Hubbard trees, described in the previous chapter, to the Newton graph

through chains of Fatou components of Np, from which we obtain so-called Newton

rays starting at infinity and landing at repelling periodic points on Hubbard trees.

Such chains of Fatou components are known as bubble rays, which have been used

in the literature in several situations [YZ, Ro, Lu].

Definition 3.2.1. A bubble of K(Np) is a Fatou component A ⊂ K̊(Np) in the

basin of attraction of one of the fixed critical points of Np. The generation of a

bubble A is the smallest non-negative integer n = Gen(A) such that Nn
p (A) = Ai,

where Ai is the immediate basin of ai for some i ∈ [1, d]. The center of a bubble A

is the preimage N
−Gen(A)
p (ai) in A.

Let us now construct a sequence of bubbles growing from infinity. Denote by

A0 =
⋃

1≤i≤d

Ai.

Let A1 ⊃ A0 be the union of bubbles in the preimage N−1
p (A0) that are attached to

A0, in other words a bubble B ∈ A1 if B∩A0 6= ∅ (note that there might be bubbles

B ∈ N−1
p (A0) having (pre-)poles on the boundary that are not on the boundaries of

immediate basins Ai, i ∈ [1, d]).

Similarly, for an integer j > 1 denote by Aj the union of bubbles in the preimage
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N−1
p (Aj−1) that are attached to Aj−1.

Definition 3.2.2. Consider a sequence of bubbles B0 ∈ A0 , B1 ∈ A1, . . . , Bj ∈
Aj, . . . , such that Gen(Bj) > Gen(Bj−1) and Bj ∩ Bj−1 6= ∅ for all j ≥ 1. The

closure of the union

B =
⋃
j≥0

Bj

is called a bubble ray.

A bubble ray consisting of finitely many bubbles B0, B1, . . . , Bm is called a

finite bubble ray. In such case the bubble Bm is called the end of the bubble

ray
⋃

0≤j≤m
Bj. The generation Gen(Bm) is called the generation of the bubble ray⋃

0≤j≤m
Bj.

Subhyperbolicity of Np implies that the diameters of Bj decay exponentially as

j increases and the tail of B converges to a unique point which we denote by t(B).

Hence

B =
⋃
j≥0

Bj ∪ {t(B)}.

For each bubble Bj it follows from the construction that N
Gen(Bj)
p (Bj) = Ai for

some i ∈ [1, d]. As was mentioned in Section 2.6 each immediate basin Ai has a global

Böttcher coordinate φi : (D, 0) → (Ai, ai) such that Np(φi(z)) = φi(z
ki), z ∈ D,

where ki−1 is the multiplicity of ai as a critical point of Np. The map φi allows us to

define the notion of internal rays at angles ϑ in each Ai as images φi(re
iϑ), 0 < r < 1.

Lifting the map φi to Bj we can define internal rays in Bj.

Let ∆N be the Newton graph of Np from Definition 3.1.8.

For a bubble ray

B =
⋃
j≥0

Bj

defined above one can construct a path connecting∞ to t(B) consisting of closures of

internal rays in closures of bubbles of B along the edges of ∆N and their preimages

under Np. Denote by R∗(B) the union of the closures of internal rays in
⋃
j≥0

Bj

joining the centers of bubbles Bj (see Figure 3.2).

Definition 3.2.3. We call R∗(B) the extended Newton ray associated with the

bubble ray B. Then we say that R∗(B) lands at t(B). The part R(B) ⊂ R∗(B) such

that the intersection R(B) ∩∆N is precisely one vertex of ∆N is called the Newton

ray associated with B.
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Figure 3.2: Schematic construction of a bubble ray and the Newton ray associated to it for the
Newton map of degree 5.

Similarly, one can define an extended Newton ray and a Newton ray for a finite

bubble ray as a finite union of closures of internal rays in closures of bubbles.

Definition 3.2.4. An extended Newton ray R∗(B) is said to be periodic if there

exists an integer m ≥ 1 such that Nm
p (R∗(B)) = R∗(B) ∪ E, where E ⊂ ∆N is a

union of edges of ∆N (note here that since ∆N is a finite graph, the union E ⊂ ∆N

is finite). The smallest such m is the period of R∗(B). A Newton ray R(B) is said

to be periodic if there exists an integer m ≥ 1 such that Nm
p (R(B)) = R(B) ∪ E,

where E ⊂ ∆N is a union of edges of ∆N . The smallest such m is the period of

R(B).

Now we show that for each of the repelling fixed points of the map on each

extended Hubbard tree constructed in the previous section, there exists a periodic

(extended) Newton ray that lands at this point. More generally, the following lemma

holds.

Lemma 3.2.5. Let ω be a repelling periodic point of period m > 1 of Np. Then

there exists a periodic (extended) Newton ray R which lands at ω. The period of R
is an integer multiple of m.

Proof. Denote f = Nm
p . Since ω is repelling, there exists a neighborhood Y of ω

such that Y contains a bubble B ⊂
⋃
i≥0

N−ip (A0) and ω is an attracting fixed point
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for some branch h = f−1 with h(Y ) ⊂ Y . Theorem 2.6.2 implies that the bubble B

is the end of some finite union of bubble rays and their preimages, in other words

there exist an integer n, a sequence of integers ki ≥ 0 and bubbles Bi ∈ Ai for

0 ≤ i ≤ n, such that the sequence of bubbles B =
⋃

0≤i≤nN
−ki
p (Bi) ends at B.

Taking the preimages of B under f we obtain a sequence of bubble rays preim-

ages Bk = f−k(B), k ≥ 0. Since ω is an attracting fixed point of h, the ends of

finite bubble rays Bk converge to ω. From any finite bubble ray of generation ≤ G

in B or one of its preimages we obtain a finite bubble ray of generation ≤ G in Bk
for every integer k ≥ 1. Since there are only finitely many of finite bubble rays of

generation ≤ G for every positive integer G, there must be a bubble ray B′0 con-

tained in infinitely many of Bk. Let Bk0 be the Bk containing B′0 that has the lowest

generation and Bk1 — the second lowest. Then f r(Bk1) = Bk0 for some r ≥ 1 and

the preimage of B′0 under f r is a longer bubble ray B′1 ⊃ B′0 with B′1 ⊂ Bk1 . Taking

further preimages under the same branch of g = f−r we get a sequence of nested

finite bubble rays B′n such that B′0 ⊂ B′1 ⊂ . . . ⊂ B′n ⊂ . . . with B′n ⊂ Bkn . For

sufficiently big generation G the postcritial set of f is disjoint from the bubbles in

Bkn \B′n and there exists a neighborhood of all bubbles in Bk0 \B′0 where gn is defined

for all n ≥ 0.

Hence subhyperbolicity of f implies that the bubbles in Bkn \B′n shrink to points

as n increases. On the other hand, the ends of Bkn converge to ω as n increases.

Therefore the bubbles in Bkn \ B′n shrink to ω as n goes to infinity and we conclude

that the union

B′ =
⋃
n≥0

B′n

converges to ω. However it might happen that B′0 ⊂ B′ is not a bubble ray according

to Definition 3.2.3, since it might contain preimages of bubble rays which don’t

belong to Ai for all i ≥ 0. Recall that B is a finite union of bubbles N−kip (Bi), where

Bi ∈ Ai, 0 ≤ i ≤ n. Let K = max{k0, k1, . . . , kn}. Then, the image B′′ = NKm
p (B′)

lands at ω and B′′ is a bubble ray. Moreover, B′′ is periodic of period an integer

multiple of m.

According to the discussion above, the extended Newton ray R∗ = R∗(B′′)
associated with the bubble ray B′′ gives a required periodic extended Newton ray

that lands at ω and has the period that is an integer multiple of m. The part

R(B) ⊂ R∗(B) such that R(B)∩∆N is a vertex of ∆N is the corresponding Newton

ray that lands at ω and has the period that is an integer multiple of m.

In Section 3.1 the polynomial-like mappings F̂k : Ûk → V̂k, k ∈ [1,M ], of periods



46 CHAPTER 3. EXTENDED NEWTON GRAPH

m(k) were constructed. Let us fix k and from now on let ω be a β-fixed point of F̂k.

Since ω is a β-fixed point of F̂k, the extended Hubbard tree H∗(Uk, zk) associated to

F̂k has exactly one edge that has ω as one of its endpoints (otherwise H∗(Uk, zk)\{ω}
would be disconnected), denote this edge by Eω.

Remark 3.2.6. One of the properties of (extended) Newton rays that plays an im-

portant role in the following discussion is that for any (extended) Newton ray R
that lands at t(R) and for any extended Hubbard tree H∗(Uk, zk), k ∈ [1,M ],

R \ {t(R)} ∩H∗(Uk, zk) = ∅.

Indeed, any point x ∈ R \ {t(R)} is eventually mapped onto ∆N after some iterate

of Np. On the other hand, every tree H∗(Uk, zk), k ∈ [1,M ], is invariant under

appropriate iterate of Np and all forward images of H∗(Uk, zk) under Np are disjoint

from ∆N .

In the following we prove that there exists a periodic Newton ray that lands

at ω and has period m = m(k). It follows from Lemma 3.2.5 that there exists an

integer r and a periodic extended Newton ray R1ω of period mr that lands at ω.

Since Nm
p (ω) = ω, the images Riω = N im

p (R1ω), 1 ≤ i ≤ r, form a cycle of periodic

extended Newton rays that all land at ω.

Proposition 3.2.7. Let C = {R1ω,R2ω, . . . ,Rrω} be a cycle of periodic extended

Newton rays of period mr that land at the β-fixed point ω of F̂k. If r > 1, then

any two rays Riω, Rjω, i 6= j, i, j ∈ [1, r], intersect at infinitely many points. The

intersections are locally finite, except at ω, i.e. for every intersection point v of

Riω and Rjω different from ω, there exists a neighborhood of v such that the only

intersection point of Riω and Rjω in this neighborhood is v.

Proof. Let Y be a small enough neighborhood of ω such ω is an attracting fixed point

for some branch h = N−mp , h(Y ) ⊂ Y and such that there are no postcritical points

of Np in Y . Assume that, on the contrary, there exists a pair of extended Newton

rays Riω, Rjω that have at most finitely many intersection points. Taking possibly

further restriction of Y to its subset we can assume that Riω, Rjω don’t intersect

inside Y . Then any two rays in the cycle C will also be disjoint in Y . Without loss of

generality assume that the cyclic order around ω in Y is R1ω,R2ω, . . . ,Rrω. Let Sr

be the “sector” bounded by Rrω, R1ω and contained in Y . The image S1 = Nm
p (Sr)

is the “sector” bounded by R1ω, R2ω and contained in Nm
p (Y ) ⊃ Y . Since

H∗(Uk, zk) ∩ Sr 6= ∅
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this would imply that

H∗(Uk, zk) ∩ S1 6= ∅,

because

Nm
p (H∗(Uk, zk)) = H∗(Uk, zk).

Note that H∗(Uk, zk) is disjoint from Riω \ {ω}, i ∈ [1, r], and therefore this would

imply that H∗(Uk, zk) \ {ω} is disconnected which is impossible, since ω is a β-fixed

point of F̂k.

Local finiteness of intersections of Riω and Rjω follows from the fact that every

intersection point v of Riω and Rjω is a preimage under Np of a vertex from ∆N

and there exists a sufficiently small neigborhood of v such that the only intersection

point of Riω and Rjω in this neighborhood is v.

Note that any two (extended) Newton rays can intersect only at preimages of

vertices of ∆N , over preimages of edges of ∆N under Np or at their landing point

(in case it is the same for both rays).

Let us fix now for the rest of the thesis the counterclockwise orientation in S2.

Definition 3.2.8 (Newton Rays Order). Let R′, R′′ be (extended) Newton rays

landing at ω and Ew ⊂ H∗(Uk, zk) be the edge of H∗(Uk, zk) with endpoint ω. Assume

that R′ and R′′ don’t cross-intersect, i.e. they satisfy the following property: if l is

a curve disjoint from R′, R′′ and connecting the endpoints of R′′ and Ew different

from ω, then R′ lies in one complementary component of Ĉ \
(
Eω ∪ l ∪R

′′)
. We

say that R′ � R′′ if there exists a neighborhood Y of ω such that for some branch

h = N−mp , h(Y ) ⊂ Y and the cyclic order around ω is

R′(Y ), R′′(Y ), Ew(Y ),

where

R′(Y ) = R′ ∩ Y, R′′(Y ) = R′′ ∩ Y, Ew(Y ) = Ew ∩ Y.

Remark 3.2.9. Note that for any neighborhood Y ′ ⊂ Y of ω the cyclic order of

R′′(Y ′), R′(Y ′), Ew(Y ′) around ω is the same as the cyclic order ofR′′(Y ), R′(Y ), Ew(Y )

around ω. Hence the relation R′ � R′′ is well defined and doesn’t depend on the

choice of the neighborhood Y in Definition 3.2.8.

Now for given two periodic Newton rays R1, R2 landing at a β-fixed point ω of

F̂k we construct a Newton ray R = RE(R1,R2) such that

R � R1, R � R2 and R lands at ω.
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Let Y be a neighborhood of ω such that for some branch h = N−mp , h(Y ) ⊂
Y, Ew(Y ) $ Ew and

∂Y ∩R1 = {v1}, ∂Y ∩R2 = {v2},

where v1, v2 are iterated preimages of vertices of ∆N under Np. Denote by Y1, Y2, . . .

the connected components of

Y \ (R1 ∪R2 ∪ Ew)

(there might be infinitely many of such domains according to Proposition 3.2.7).

Without loss of generality assume that

Ew(Y ) ⊂ ∂Y1 ∩ ∂Y2

and the cyclic order around ω is Y2, Ew, Y1. Denote

REY (R1,R2) = ∂Y1 \ (Ew ∪ ∂Y ) .

It follows from the construction that

REY (R1,R2) ⊂ R1(Y ) ∪R2(Y ).

Let i be the smallest positive integer i such that

N im
p (REY (R1,R2)) ∩∆N 6= ∅.

Denote

R = RE(R1,R2) = N im
p (REY (R1,R2)).

Note that if two Newton rays intersect, then the bubble rays associated to them

must have common bubbles containing the intersection points or edges over which

the Newton rays intersect. Vice versa, every intersection point or a common edge

of two Newton rays is contained in a bubble that is a common part of bubble rays

associated to both of the Newton rays. Therefore, if the condition of decreasing

generations of bubbles containing the edges of Newton rays R1 and R2 is satisfied,

then this condition is also satisfied for the ray R = RE(R1,R2). Hence R is a

periodic Newton ray that lands at ω such that

R � R1, R � R2 and R ⊂ R1 ∪R2.

The ray R = RE(R1,R2) is said to be the right envelope of Newton rays R1,R2 (see
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Figure 3.3: Construction of the right envelope of two Newton rays R1, R2. On the left-hand side
two Newton rays R′ and R′′

such that R′ � R′′
are shown. On the right-hand side for R1 and R2

their right envelope REY (R1,R2) in a neighborhood Y of ω is shown.

Figure 3.3). Analogously the right envelope RE(R1,R2, . . . ,Rn) of finitely many

Newton rays R1,R2, . . . ,Rn is constructed.

Remark 3.2.10. Note that for any neighborhood Y ′ ⊂ Y of ω

REY ′(R1,R2) ⊂ REY (R1,R2)

and ⋃
i≥0

N im
p (REY ′(R1,R2)) =

⋃
i≥0

N im
p (REY (R1,R2)) .

Hence the construction of the Newton ray RE(R1,R2) doesn’t depend on the choice

of Y .

Lemma 3.2.11. For any β-fixed point ω of the polynomial-like mapping F̂k : Ûk →
V̂k of period m there exists a Newton ray of period m that lands ω. There exist only

finitely many Newton rays of period m landing at ω.

Proof. It follows from Lemma 3.2.5 that there exists a positive integer r and a

Newton ray R1ω of period mr that lands at ω. Let Riω = N im
p (R1ω) for i ∈ [1, r]

and

R = RE(R1ω,R2ω, . . . ,Rrω)

be the right envelope of R1ω,R2ω, . . . ,Rrω. Then R is a Newton ray that lands at ω.
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Denote by Y the neighborhood of ω such that for some branch h = N−mp , h(Y ) ⊂ Y

and let Y1 be the connected component of

Y \
r⋃
i=1

Riω

such that

R∩ ∂Y1 6= ∅ and Eω ∩ ∂Y1 6= ∅.

Since the map Np is orientation preserving,

Nm
p (Y1) ∩ Y1 = Y1.

Thus Nm
p (R) = R ∪ E , where E is a union of edges of ∆N . Therefore the right

envelopeR of the rays from the cycle C = {R1ω,R2ω, . . . ,Rrω} is a periodic Newton

ray of period m.

It is left to prove that there exist only finitely many Newton rays of period m

that land at ω. Indeed, for any periodic Newton ray R of period m

Nm
p (R) = R∪ E

and R consists of iterated preimages of E under Nm
p . Hence the union E of edges in

∆N determines the ray R uniquely and the number of such rays R is bounded above

by (#∆N)m, where #∆N is the number of edges of the Newton graph ∆N .

It follows from Lemma 3.2.11 that for every cycle Ci of periodic Newton rays

landing at ω there exists the right envelope Ri of rays in Ci such that Ri is a Newton

ray of period m landing at ω. Moreover, there exist only finitely many of such rays

Ri. Let q be the number of them.

Definition 3.2.12. Denote by Rω = RE (R1,R2, . . . ,Rq) the right envelope of the

rays Ri, i ∈ [1, q]. By R∗ω ⊃ Rω we denote the corresponding extended Newton ray.

3.3 Two examples

Example 1. On Figure 3.4 the dynamical plane of the Newton map Np of degree

5 with p(z) = z5 − 4z + 4 is shown (see also Figure 2.1). It easy to compute that

Np(z) = z − p(z)

p′(z)
=

4(z5 − 1)

5z4 − 4
.
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Figure 3.4: The Newton map Np of degree 5 for the polynomial p(z) = z5 − 4z + 4 with the
superattracting 2-cycle 0 7→ 1 7→ 0 and point ω such that N2

p (ω) = ω with two periodic extended
Newton rays R1, R2 of period 2 landing at ω.

The origin 0 is a superattracting periodic point of period 2 for Np with the super-

attracting 2-cycle

0 7→ 1 7→ 0.

The roots of the polynomial p are denoted by a1, a2, . . . , a5. Each point is colored

according to the root to which iterations of Np converge for this starting value. The

open black regions indicate starting values that do no converge to any root. The big

black open region in the center of Figure 3.4 indicates the immediate basin of the

superattracting periodic point 0. Every point in this basin converges to the cycle

0 7→ 1 7→ 0 under the iterates of Np.

The boundary of the immediate basing of 0 contains a repelling periodic point

ω ∈ R, ω ≈ 0.468 such that

N2
p (ω) = ω.

In the following we explain the construction of two periodic Newton rays R1 and R2

landing at ω. Let B0 be the immediate basin of a1 and B1 be the first preimage of

the immediate basin of a4 such that B0 and B1 touch at the point i 4
√

4/5, one of the

poles of Np. Denote by B2 the second preimage of B0 under Np (i.e. N2
p (B2) = B0)
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such that

N2
p

(
B1 ∩B2

)
=∞.

Similarly, B3 is the bubble touching B2 such that N2
p (B3) = B1 and so on . . . .

As was mentioned in Section 2.6, each immediate basin Ai of ai for i ∈ [1, 5]

has a global Böttcher coordinate φi : (D, 0)→ (Ai, ai) such that

Np(φi(z)) = φi(z
2), z ∈ D.

The map φi allows us to define the notion of internal rays at angles ϑ in each Ai as

images φi(re
iϑ), 0 < r < 1. Denote such internal ray by Ri(ϑ) and its landing point

on ∂Ai by li(ϑ). Let us fix the Böttcher coordinate maps φi such that li(0) =∞ for

i ∈ [1, 5]. Since Np(B1) = A4, the map φ4 can be lifted to B1, because

Np : B1 → A4 is conformal.

This allows us to define internal rays and their landing points in B1. An internal

ray in B1 at angle ϑ defined in this way we denote by R1
4(ϑ) and its landing point

on ∂B1 by l14(ϑ). Similarly we define internal rays in B2, B3, . . . . Let

R1 = R1(0) ∪R1 (1/2) ∪R1
4(0) ∪R1

4 (1/2) ∪R2
1(0) ∪R2

1 (1/2) ∪ . . . .

It follows from the construction that

N2
p (R1) = R1 ∪R4(0),

and R1 is a periodic extended Newton ray of period 2 that lands at ω. Similarly

R2 = R3(0) ∪R3 (1/2) ∪R1
5(0) ∪R1

5 (1/2) ∪R2
3(0) ∪R2

3 (1/2) ∪ . . .

is a periodic extended Newton ray of period 2 landing at ω such that

N2
p (R2) = R2 ∪R5(0).

Example 2. The dynamical plane of the Newton map Np of degree 6 with

p(z) = 17z6 − z5 − 89z + 89

is shown on Figure 3.5. The map Np has two free critical points that are not fixed

under Np: the origin 0 and 2
51

. The origin 0 is a superattracting periodic point of
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Figure 3.5: The Newton map Np of degree 6 for the polynomial p(z) = 17z6 − z5 − 89z + 89 with
the superattracting 3-cycle 0 7→ 1 7→ −1 7→ 0 and point ω such that N3

p (ω) = ω with two periodic
extended Newton rays R1, R2 of period 3 landing at ω.

Figure 3.6: Magnification of Figure 3.5 around ω.
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period 3 for Np with the superattracting 3-cycle

0 7→ 1 7→ −1 7→ 0.

The other free critical point 2
51

is contained in the immediate basin of 0 and its orbit

converges to the cycle 0 7→ 1 7→ −1 7→ 0 under the iterates of Np. The map Np is no

longer postcritically finite as in the previous example, but it is hyperbolic. The roots

of the polynomial p are denoted by a1, a2, . . . , a6 and the corresponding immediate

basins by A1, A2, . . . , A6. Each point is colored according to the root to which

iterations of Np converge for this starting value. The open black regions indicate

starting values that do not converge to any root but converge to the superattracting

3-cycle 0 7→ 1 7→ −1 7→ 0.

The boundary of the immediate basin of 0 contains a repelling periodic point

ω ≈ 0.255 such that

N3
p (ω) = ω.

The images Np(ω) and N2
p (ω) lie on the boundaries of the immediate basins of points

1 and −1 respectively, they are indicated on Figure 3.5.

Now we explain the construction of two periodic extended Newton rays R1 and

R2 landing at ω. Let B0 = A2 be the immediate basin of a2 and B1 be the first

preimage of A5 under Np such that B0 and B1 touch at the pole of Np that belongs

to ∂B0. Denote by B2 the second preimage of A2 under Np (i.e. N2
p (B2) = A2) such

that

N2
p

(
B1 ∩B2

)
=∞.

By B3 denote the bubble such that

N3
p (B3 ∩B2) =∞ and N3

p (B3) = B0

and so on . . . .

Keeping the same notation for internal rays in bubbles as in the previous ex-

ample, let

R1 =
⋃
n≥0

R3n
1 (0) ∪R3n

1 (1/2) ∪R3n+1
5 (0) ∪R3n+1

5 (1/2) ∪R3n+2
2 (0) ∪R3n+2

2 (1/2)

with the convention that R0
1(0) = R1(0) and R0

1(1/2) = R1(1/2). It follows from the

construction that

N3
p (R1) = R1 ∪R5(0) ∪R2(0)
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and R1 is a periodic extended Newton ray of period 3 that lands at ω. Similarly,

the extended Newton ray R2 is constructed

R2 =
⋃
n≥0

R3n
4 (0) ∪R3n

4 (1/2) ∪R3n+1
6 (0) ∪R3n+1

6 (1/2) ∪R3n+2
3 (0) ∪R3n+2

3 (1/2)

and

N3
p (R2) = R2 ∪R6(0) ∪R3(0).

Hence R2 is a periodic extended Newton ray of period 3 landing at ω.

3.4 Construction of extended Newton graphs

In Sections 3.1 and 3.2 for a Newton map Np the Newton graph ∆N at level N ,

extended Hubbard trees H∗(Uk, zk), k ∈ [1,M ], and periodic Newton rays were

constructed. Here we prove that this combinatorial information is enough in order

to capture the behavior of the postcritical set of Np.

Theorem 3.4.1. For a given postcritically finite Newton map Np, let ∆N be the

Newton of Np (see Definition 3.1.8). There exists a finite connected graph ∆∗N that

contains ∆N , is invariant under Np and contains the whole postcritical set of Np

such that every edge of ∆∗N is eventually mapped by Np either onto ∆N , onto an

extended Hubbard tree or onto a periodic Newton ray.

Proof. Let ∆ be the channel diagram of ∆N . The graph ∆N captures the behavior of

postcritical points of Np which eventually fall onto ∆. In the following construction

we take care of postcritical points of Np which never fall onto ∆.

Let zk be a periodic point of period m(k) ≥ 2 from the postcritical set of

Np, k ∈ [1,M ], such that zk belongs to a critical cycle of Np. It follows from Lemma

3.1.1 and Lemma 3.1.6 that there exist domains (Ûk, V̂k), Ûk ⊂ V̂k, such that zk ∈ Ûk
and

Nm(k)
p : Ûk → V̂k

is a polynomial-like mapping. Suppose that the mapping N
m(k)
p has degree at least

two. As was mentioned in Remark 3.1.7 one can associate an extended Hubbard

tree H∗(Uk, zk) to such a pair (Ûk, V̂k). In order to obtain a connected graph we

connect the Newton graph ∆N to each of the extended Hubbard trees H∗(Uk, zk) for

k ∈ [1,M ]. The role of this connection will be played by Newton rays constructed

in the Section 3.2.
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Consider a polynomial-like map F̂k : Ûk → V̂k. It follows from Lemma 3.2.11

that for each β-fixed point ω of F̂k in H∗(Uk, zk) there exists a periodic Newton

ray of period m(k) landing at ω. Let Rω be the right envelope of such Newton

rays landing at ω and R∗ω ⊃ Rω be the corresponding extended Newton ray (see

Definition 3.2.12). Denote by γ(Uk, zk) the union of all R∗ω for all β-fixed points ω

of the polynomial-like mapping F̂k : Ûk → V̂k. It follows from Lemma 3.2.11 that

there are finitely many Newton rays of period m(k) landing at ω, and since there are

finitely many β-fixed points ω of F̂k, γ(Uk, zk) is a finite union of extended Newton

rays. Let

Υ(Uk, zk) = H∗(Uk, zk) ∪ γ(Uk, zk)

and

Υ(zk) =
⋃
i≥1

N i
p(Υ(Uk, zk)).

Since

Υ(Uk, zk) ⊆ Nm(k)
p (Υ(Uk, zk)),

by the construction, we have that

Υ(zk) =

m(k)⋃
i=1

N i
p(Υ(Uk, zk))

and Υ(zk) is a finite connected forward invariant graph.

Assume now that the polynomial-like mapping N
m(k)
p : Ûk → V̂k is degenerate

and has degree one. In this case H∗(Uk, zk) is a degenerate extended Hubbard tree

that consists of only one point zk. It follows from Lemma 3.2.5 that there exists a

Newton ray landing at zk, denote it by γ(Uk, zk). Similarly to the case considered

above, let

Υ(Uk, zk) = H∗(Uk, zk) ∪ γ(Uk, zk)

and

Υ(zk) =
⋃
i≥1

N i
p(Υ(Uk, zk)).

Then Υ(zk) is a finite connected forward invariant graph.

If a postcritical point zl is strictly preperiodic, let k,m be the minimal positive

integers such that

Nk+m
p (zl) = Nk

p (zl).

Consider the postcritical point Nk
p (zl), it is periodic of period m and it follows from

Lemma 3.1.1 and Lemma 3.1.6 that there exist domains Ûk, V̂k such that zk ∈ Ûk



3.4. CONSTRUCTION OF EXTENDED NEWTON GRAPHS 57

and

Nm
p : Ûk → V̂k

is a polynomial-like map (here zk = Nk
p (zl)). Denote by H∗(Ul, zl) the connected

component of N−kp (H∗(Uk, zk)) that contains zl. We construct by induction on k

the curves γ(Ul, zl) that connect H∗(Ul, zl) to ∞ such that

Nk
p (γ(Ul, zl)) ⊂ γ(Uk, zk) ∪∆N . (3.4.1)

Figure 3.7: Extended Hubbard trees H∗(Uk, zk), H∗(Ul, zl) constructed for a preperiodic point zl
such that Nk+m

p (zl) = Nk
p (zl) and connected to ∆N via Newton rays γ(Uk, zk) and γ(Ul, zl): the

case with k = 1. The edges from ∆N are indicated by the thick lines and Newton rays outside ∆N

are indicated by dotted lines.

Recall that γ(Uk, zk) is the union of extended Newton rays connecting ∞ with

points from H∗(Uk, zk). For k = 1 let γ′(Ul, zl) be the preimage component of

N−1
p (γ(Uk, zk)) that connects H∗(Ul, zl) to points from the set N−1

p (∞). Note that

N−1
p (∞) ∈ ∆N by construction. The union of γ′(Ul, zl) and all extended Newton

rays that land at points in N−1
p (∞) (denote the set of such extended Newton rays by

∆1) consists of extended Newton rays that land at points in H∗(Ul, zl) (see Figure
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3.7). Let γ(Ul, zl) be the union of the right envelopes of these extended Newton

rays.

For k > 1 denote by γ′(Ul, zl) the preimage component of N−1
p (γ(U1, z1)) that

connects H∗(Ul, zl) to points from the set N−1
p (∞). (Here z1 = Np(zl) and U1 is the

complementary component of ∆N that contains z1. By the induction hypothesis the

curves γ(U1, z1) are constructed). If, similarly to the case k = 1, we let γ(Ul, zl) be

the union of the right envelopes of extended Newton rays in γ′(Ul, zl)∪∆1, then the

property (3.4.1) holds and the required γ(Ul, zl) is constructed.

Let

Υ(Ul, zl) = H∗(Ul, zl) ∪ γ(Ul, zl).

Finally, the graph

∆∗N = ∆N

⋃
zk∈PNp

Υ(Uk, zk)

is finite, connected, forward invariant under Np and contains the whole postcritical

set of Np. Moreover, every edge of ∆∗N is eventually mapped by Np either onto ∆N ,

onto one of the extended Hubbard trees or onto a periodic Newton ray.

Definition 3.4.2. The graph ∆∗N constructed in Theorem 3.4.1 is said to be the

extended Newton graph associated to Np.
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Abstract extended Newton graph

In order to axiomatize the graphs extracted from Newton maps and defined in

Section 3.4 we introduce the notion of an abstract extended Newton graph which

will be shown to be the combinatorial data which distinguishes postcritically finite

Newton maps.

Abstract extended Newton graphs consists of abstract Newton graphs (see Def-

inition 2.6.7), abstract extended Hubbard trees (see Definition 2.4.8) and abstract

Newton rays that play the role of connections between the previous two. First we

define the notion of (pre-)periodic abstract Newton rays.

Let Γ be a finite connected graph embedded in S2 and f : Γ → Γ a graph

map (see Definition 2.5.4) such that f can be extended to a branched covering

f : S2 → S2.

Definition 4.0.3. A periodic abstract Newton ray (with respect to (Γ, f)) R is an

arc in S2 that has one of its endpoints in Γ and the other one outside Γ such that

there exists a positive integer m satisfying the following properties:

• fm(R) = R∪ E, where E ⊂ Γ is a union of edges from Γ;

• R ∩ E = R∩ Γ is a vertex of Γ;

• If R1 is an arc in S2 such that R1 ⊂ R, R1 6= ∅, and f
m

(R1) = R1 ∪ E1,

where E1 ⊂ Γ is a union of edges from Γ, then R1 = R.

The smallest such integer m is said to be the period of R. The endpoint of R outside

Γ we denote by t(R) and say that R lands at t(R).

Note, that since Γ is a finite graph, E is a finite union of edges from Γ.

59
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Definition 4.0.4. A strictly preperiodic abstract Newton ray (with respect to

(Γ, f)) R′ is an arc in S2 that has one of its endpoints that eventually lands in

Γ under iterates of f and the other one outside Γ such that there exists a positive

integer l such that f
l
(R′) = R∪E, where E ⊂ Γ and R is a periodic abstract Newton

ray (with respect to (Γ, f)).

The smallest such positive integer l is the preperiod of R′. The endpoint of R′

outside Γ and never lands in Γ under iterates of f we denote by t(R′) and say that

R′ lands at t(R′).

The following proposition implies that periodic abstract Newton rays consist of

preimages of edges of Γ under f . As a consequence it follows that the same applies

to strictly preperiodic abstract Newton rays.

Proposition 4.0.5. Let R be a periodic abstract Newton ray (with respect to (Γ, f)).

Then for every x ∈ R \ t(R), there exists a positive integer k such that f
k
(x) ∈ Γ.

Proof. It follows from Definition 4.0.3 that there exists a positive integer m such

that

f
m

(R) = R∪ E , where E ⊂ Γ.

Let

P1 = f
(−m)

(E) ∩R, Pi = f
(−m)

(Ri−1) ∩R, i > 1

and R1 =
⋃∞
i=1Pi. If R1 6= R then readily R1 ⊂ R and f

m
(R1) = R1 ∪ E .

We get a contradiction with Definition 4.0.3. Hence R1 = R and for every x ∈
R \ t(R) there exists a positive integer i such that x ∈ Pi and f

mi
(x) ∈ E ⊂ Γ.

Recall that we always assume that the orientation in S2 is counterclockwise as

it was fixed in Section 3.2.

Definition 4.0.6 (Abstract Newton Rays Order). Let R1, R2 be abstract Newton

rays landing at a β-fixed point ω of an abstract extended Hubbard tree H∗ ⊂ S2.

Let Ew ⊂ H∗ be the edge of H∗ with endpoint ω. Assume that R1 and R2 don’t

cross-intersect. We say that R1 � R2 if there exists a neighborhood Y of ω such

that the cyclic order around ω is R1(Y ), R2(Y ), Ew(Y ), where

R1(Y ) = R1 ∩ Y, R2(Y ) = R2 ∩ Y, Ew(Y ) = Ew ∩ Y.

Remark 4.0.7. Note that for any neighborhood Y ′ ⊂ Y of ω the cyclic order of

R1(Y ′), R2(Y ′), Ew(Y ′) around ω is the same as the cyclic order ofR1(Y ), R2(Y ), Ew(Y )
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around ω. Hence the relation R1 � R2
′′ is well defined and doesn’t depend on the

choice of the neighborhood Y in Definition 4.0.6.

Now we are ready to introduce the concept of an abstract extended Newton

graph. Later we prove that this graph carries enough information to characterize

postcritically finite Newton maps.

Definition 4.0.8 (Abstract Extended Newton Graph). Let Σ ⊂ S2 be a finite

connected graph, f : Σ → Σ is a graph map and Σ′ the set of vertices of Σ. A

pair (Σ, f) is called an abstract extended Newton graph if it satisfies the following

conditions:

• Abstract Newton Graph.

(1) There exists a positive integer N and an abstract Newton graph Γ at level

N such that Γ ⊆ Σ.

• Uniquely extendable up to Thurston equivalence. Degree of the ex-

tension.

(2) For every vertex y ∈ Σ′, every component U of S2 \ Σ and every v ∈
f−1({y}) there exists a neighborhood Uv of v such that all edges of Σ that

enter Uv terminate at v and the extension f̃ (as defined in Section 2.5) is

injective on ⋃
v∈f−1({y})

Uv ∩ U.

It follows from Proposition 2.5.6 that f can be extended to a branched

covering f : S2 → S2. An immediate consequence of Lemma 2.5.5 is that

f is unique up to Thurston equivalence.

(3)
∑

x∈Σ′

(
degx(f)− 1

)
= 2dΓ − 2, where dΓ is the degree of the abstract

channel diagram ∆ ⊂ Γ.

• Abstract Extended Hubbard Trees.

(4) There exist a non-negative integer M , abstract extended Hubbard trees

H∗i ⊂ Σ, i ∈ [1,M ], and positive integers mi such that for each i ∈ [1,M ],

H∗i ∩ Γ = ∅, f
mi

(H∗i ) = H∗i and f
k

(H∗i ) = H∗j

for 1 ≤ k < mi and some j ∈ [1,M ]. The smallest such mi is the period

of H∗i and the trees H∗i are said to be periodic of period mi.
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(5) There exist a non-negative integer K and trees H∗
′
i ⊂ Σ, i ∈ [1, K], such

that for each i ∈ [1, K] there exists j(i) ∈ [1,M ] and f
l(i) (

H∗
′
i

)
= H∗j(i) for

some positive integer l(i). The smallest such l(i) is the preperiod of H∗
′
i

and the trees H∗
′
i are said to be preperiodic of preperiod l(i).

(6) Any two different abstract extended Hubbard trees H∗i , H
∗
j , i 6= j, i, j ∈

[1,M ], lie in different complementary components of Γ. Minimality: The

level N of the abstract Newton graph Γ is minimal such that this property

holds.

• Connections between the abstract Newton graph and abstract ex-

tended Hubbard Trees via abstract Newton rays.

We assume in the following that whenever we say (pre-)periodic abstract New-

ton ray we mean (pre-)periodic abstract Newton ray with respect to (Γ, f).

(7) For every periodic abstract extended Hubbard tree H∗i of period mi and

every fixed point ωi of H∗i there exists a periodic abstract Newton ray Ri

such that t(Ri) = ωi (note that it is not required that Ri ⊂ Σ). For every

β-fixed point ωi of H∗i , the graph Σ contains one and only one periodic

abstract Newton ray Ri of period mi such that t (Ri) = ωi. The ray Ri is

the rightmost periodic abstract Newton ray of period mi landing at ωi, i.e.

for any other periodic abstract Newton ray R of period mi landing at ωi,

Ri � R (see Definition 4.0.6). If H∗i is degenerate and consists of only

one point, then any periodic abstract Newton ray landing at ωi is by default

the rightmost.

The set of all periodic abstract Newton rays of period mi landing at different

β-fixed points ωi ∈ H∗i and contained in Σ is denoted by R(H∗i ,mi).

(8) For every preperiodic tree H∗
′
i of preperiod li such that f

li (
H∗

′
i

)
= H∗j ,

where H∗j , j ∈ [1,M ], is a periodic abstract extended Hubbard tree of period

mj, the following condition holds: for every ω′i ∈ H∗
′
i such that ωj = f

li
(ω′i)

is a β-fixed point of H∗j , there exists one and only one preperiodic abstract

Newton ray R′i contained in Σ with t (R′i) = ω′i and f
li
(R′i) ∈ R(H∗j ,mj).

The set of all such abstract Newton rays R′i landing at H∗
′
i is denoted by

R′
(
H∗

′
i , li

)
.

• Types of edges in Σ.

(9) Every edge of Σ is of one of the following types:

– Type N : Newton edges — edges in the abstract Newton graph Γ;
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– Type H: Hubbard edges — edges in trees H∗i , i ∈ [1,M ], or H∗
′
j , j ∈

[1, K];

– Type R: periodic and preperiodic abstract Newton rays (as defined in

Definitions 4.0.3, 4.0.4).

Any two different edges are either disjoint or they intersect at a common

endpoint in Σ′.

If (Σ, f) is an abstract extended Newton graph, f can be extended to a branched

covering map f : S2 → S2 by Condition (2) and Proposition 2.5.6. Condition (3)

and the Riemann-Hurwitz formula ensure that f has degree dΓ.

The abstract extended Hubbard trees H∗i , H
∗′
i from Conditions (4) and (5) of

Definition 4.0.8 could in fact be degenerate and consist of only one point. In such

case this point would correspond either to a non-critical periodic cycle of f or would

eventually be mapped onto such cycle by an iterate of f . Let M ′ ≤M and K ′ ≤ K

be non-negative integers such that the trees H∗i , i ∈ [1,M ′], and H∗
′
j , j ∈ [1, K ′],

are degenerate and consist of only one point.

Denote by

Σd =
M ′⋃
i=1

R (H∗i ,mi)
K′⋃
j=1

R′
(
H∗

′

j , lj

)
the union of degenerate abstract extended Hubbard trees and abstract Newton rays

connecting them to Γ (recall that every abstract Newton ray is an arc by definition

and contains its landing point).

Before giving the following definition we recall that all graphs we consider in

this thesis are embedded into S2.

Definition 4.0.9 (Thurston Equivalence). Let (Σ1, f1) and (Σ2, f2) be two abstract

extended Newton graphs with self-maps fi : Σi → Σi, i = 1, 2. We say that (Σ1, f1)

and (Σ2, f2) are Thurston equivalent if there exist two homeomorphisms φ1, φ2 : Σ1\
Σd

1 → Σ2 \Σd
2 such that they preserve the cyclic order of edges at all the vertices of

Σ1 \ Σd
1, Σ2 \ Σd

2 and so that φ1 ◦ f1 = f2 ◦ φ2 on Σ1 \ Σd
1. Moreover we require that

φ1 is isotopic to φ2 relative to the vertices of Σ1 \ Σd
1.
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Chapter 5

Proof of the main results

5.1 Proof of Theorem 1.1.1

Theorem 1.1.1 (Newton Maps Generate Extended Newton Graphs). For every

postcritically finite Newton map Np there exists an extended Newton graph ∆∗N that

satisfies properties of Definition 4.0.8 so that (∆∗N , Np) is an abstract extended New-

ton graph.

Such graphs distinguish postcritically finite Newton maps, i.e. if (∆∗1N , Np1) and

(∆∗2N , Np2) are Thurston equivalent abstract extended Newton graphs associated to

Newton maps Np1 and Np2, then the Newton maps Np1 and Np2 are affine conjugate.

Proof. For a given Newton map Np consider the extended Newton graph ∆∗N as con-

structed in Theorem 3.4.1. We show that (∆∗N , Np) is an abstract extended Newton

graph.

Let us verify the conditions (1) – (9) of Definition 4.0.8.

(1) Let ∆N be the Newton graph of Np as in Definition 3.1.8. Then (∆N , Np)

satisfies the properties of an abstract Newton graph (see also [MR]).

(2) It follows from Theorem 3.4.1 that the whole postcritical set of Np is con-

tained in the extended Newton graph ∆∗N . Hence Np is injective on every comple-

mentary component of ∆∗N . Condition (2) follows.

(3) Since all critical points of Np are among the vertices of ∆∗N and any vertex

v of ∆∗N with degv (Np) > 1 is a critical point of Np, Condition (3) follows from

Riemann–Hurwitz formula.

(4) The extended Hubbard trees H∗k = H∗(Uk, zk) constructed in Theorem 3.4.1

65
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for periodic postcritical points zk of Np are periodic, disjoint from ∆∗N and satisfy

the properties of abstract extended Hubbard trees as follows from Theorem 2.4.16

(see also [Po, Theorem A]).

(5) According to the construction of ∆∗N , the trees H∗k associated to preperiodic

postcritical points zk of Np are preimages of periodic Hubbard trees under iterates

of Np, hence Condition (5) is satisfied.

(6) This condition follows from the fact that different treesH∗i , H
∗
j lie in domains

Ui, Uj which are separated by an appropriate preimage of ∆N under Np as implied

by Lemma 3.1.6.

(7), (8) Every Newton ray (see Definition 2.6.7) is an abstract Newton ray. The

properties follow now from the construction in Theorem 3.4.1, Lemma 3.2.5 and

Lemma 3.2.11.

(9) It follows from the construction of ∆∗N in Theorem 3.4.1 that every edge of

∆∗N is either

— of type N , if it belongs to the Newton graph ∆N ⊂ ∆∗N ;

— of type H, if it belongs to one of the extended Hubbard trees H∗i , i ∈ [1,M ],

or is eventually mapped onto it by Np;

— of type R, if it belongs to one of the periodic Newton rays R or is eventually

mapped by an iterate of Np onto a periodic Newton ray union finitely many edges

of ∆N .

Every extended Hubbard tree H∗i is invariant under appropriate iterate of Np

and every edge of ∆N is eventually mapped onto ∆ by Np, where ∆ is the channel

diagram of ∆N . Since the interior of any edge from H∗i is disjoint from ∆ as follows

from Lemma 3.1.1, edges of type H can intersect with edges of type N only at their

common endpoints.

It follows from Remark 3.2.6 that the interiors of edges of type H are also

disjoint from edges of type R.

Finally, by Definition 3.2.3, the edges of type N and edges of type R can only

intersect at vertices of ∆N . Such vertices belong to (∆∗N)′.

Let’s prove that equivalent abstract extended Newton graphs can only be pro-

duced by affine conjugate Newton maps. Denote by P d
1N and P d

2N the union of

degenerate Hubbard trees consisting of only one point for Np1 and Np2 . By Rd
1N

and Rd
2N denote the union of Newton rays landing at points from P d

1N and P d
2N
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respectively. Let

∆d
1N = P d

1N ∪Rd
1N and ∆d

1N = P d
1N ∪Rd

1N .

Suppose now that there exist graph homeomorphisms φ1, φ2 : ∆∗1N \∆d
1N → ∆∗2N \

∆d
2N such that

φ1(Np1(z)) = Np2(φ2(z))

for all z ∈ ∆∗1N\∆d
1N and φ1, φ2 preserve the cyclic order of edges at all the vertices of

∆∗1N \∆d
1N . The graph ∆∗1N \∆d

1N is connected, all its complementary components

are disks and using Lemma 2.5.1 and Lemma 2.5.5 one can extend φ1 and φ2 to

homeomorphisms φ1, φ2 : S2 → S2 up to isotopy relative to ∆∗1N \∆d
1N such that

φ1(Np1(z)) = Np2(φ2(z)) (5.1.1)

for all z ∈ S2 and φ1 is isotopic to φ2 relative to vertices of ∆∗1N \∆d
1N . Any point

from P d
1N falls into one of the complementary components of the graph ∆∗1N \∆d

1N .

Moreover, it is the only point of ∆∗1N in such complementary component since the

Condition (6) of Definition 4.0.8 is satisfied as was proven above. We can choose

representatives in isotopy classes of φ1 and φ2 relative to ∆∗1N \∆d
1N such that (5.1.1)

holds and

φ1|P d1N = φ2|P d1N .

Since the mapping class group of a punctured disk is trivial (see, for example,

[FM11]), φ1 and φ2 are isotopic relative to the vertices of ∆∗1N .

By Theorem 2.2.7, Np1 and Np2 are conjugate by a Möbius transformation that

fixes ∞, i.e. they are affine conjugate and we are done.

5.2 Proof of Theorem 1.1.2

Theorem 1.1.2 (Abstract Extended Newton Graphs Are Realised) Every abstract

extended Newton graph is realized by a postcritically finite Newton map which is

unique up to affine conjugacy. More precisely, let (Σ, f) be an abstract extended

Newton graph. Then, there exists a postcritically finite Newton map Np with an ex-

tended Newton graph ∆∗N such that
(
f,Σ′

)
and

(
Np, (∆

∗
N)′
)

are Thurston equivalent

as marked branched coverings, where (∆∗N)′ is the set of vertices of ∆∗N .

Moreover, if Np realizes two abstract extended Newton graphs (Σ1, f1) and (Σ2, f2),

then the two abstract extended Newton graphs are equivalent.
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Proof. Here we will be using Theorem 2.3.3 due to [PT], which was discussed in

Chapter 2.3.

Let (Σ, f) be an abstract extended Newton graph. It follows from Condition

(1) of Definition 4.0.8 that there exists an abstract Newton graph Γ ⊆ Σ. Denote

by ∆ the abstract channel diagram of Γ (see Definition 2.6.7).

In order to prove Theorem 1.1.2 it suffices to show that the marked branched

covering (f,Σ′) doesn’t have Thurston obstructions. Let Π be its Thurston obstruc-

tion on the contrary and γ ∈ Π. It is easy to see that any edge λ ∈ ∆ forms an

irreducible arc system (see Definition 2.3.1). Therefore, using Theorem 2.3.3 we

have that

γ · (f−n(λ) \ λ) = 0.

This is true for any edge λ ∈ ∆, hence

γ · (Γ \∆) = 0 for any γ ∈ Π.

There are two cases: either Π ·∆ 6= 0 or Π ·∆ = 0.

Case 1. Suppose that Π · ∆ 6= 0. Note that any edge e ⊂ Σ of type R is

either a periodic abstract Newton ray or a preperiodic abstract Newton ray that

consists of preimages of ∆ under f as follows from Proposition 4.0.5 and Condition

(7) of Definition 2.6.7. Moreover, by Definiton 4.0.3 and Definition 4.0.4, any (pre-

)periodic abstract Newton ray is disjoint from ∆. Hence γ ·e = 0 for any edge e ⊂ Σ

of type R and γ ∈ Π. It follows from Theorem 2.3.3 that Π is a Levy cycle,

Π · (Γ \∆) = 0

and since Π ·∆ = 0, there exist γ ∈ Π and λ ∈ ∆ such that γ ·λ ≥ 1, hence γ∩λ 6= ∅.
Let Π = {γ1, . . . , γk} and γ′j be the component of f

−1
(γj) that is isotopic to γj−1

relative to Pf (with the convention that γ0 = γk and γk+1 = γ1).

Note that, according to Definition 2.6.7 and Definition 2.6.5, the graph Σ con-

tains the distinguished vertex v0 fixed under f and the only edges of Σ starting from

v0 are the fixed edges [v0, vi], connecting v0 through arcs in ∆ to fixed branched

points vi, i ∈ [1, d], of f .

For a simple closed curve ν that doesn’t pass through v0 denote by D(ν) the

complementary component of ν that doesn’t contain v0 and by Dv0(ν) the one that

contains v0.

Proposition 5.2.1. Every γ ∈ Π separates the endpoints v0 and vi of the edge
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[v0, vi] for each i ∈ [1, d].

Proof. It follows from Definition 2.6.7 that the graph Γ \ ∆ is connected. Since Π

doesn’t intersect Γ \∆, the graph Γ \∆ is contained in one of the complementary

components of γ in S2 for every γ ∈ Π. On the other hand, in the case under

consideration, Π · ∆ 6= 0. Suppose, on the contrary, that there exist j ∈ [1, k]

and i ∈ [1, d] such that vi ∈ Dv0(γj). Then the whole abstract Newton graph

Γ ∈ Dv0(γj), since otherwise γj would intersect Γ \ ∆, because Γ \ ∆ is connected

and all the vertices of Γ except v0 are contained in Γ \ ∆. All d preimages of v0

under f are thus contained in Dv0(γ′j+1), therefore

Γ \∆ ⊂ Dv0(γ′j) for every j ∈ [1, k]

and

f : D(γ′j+1)→ D(γj+1), j ∈ [1, k],

is a homeomorphism. In particular D(γ′j+1), j ∈ [1, k], cannot contain any critical

points of f . Note that since γj is essential, there must be x ∈ Pf such that x ∈ D(γj)

(see Figure 5.1). Moreover, x ∈ D(γ′j+1) because γ′j+1 is isotopic to γj relative to

Pf . On the other hand, if any x ∈ Pf is contained in D(γj) then f(x) is contained

in D(γj+1). Therefore
k⋃
j=1

D(γj) will contain all the iterates of x under f . Since

the orbit of x is finite, it must eventually iterate onto a periodic cycle which cannot

contain critical points because

f : D(γ′j+1)→ D(γj+1)

is a homeomorphism for every j ∈ [1, k]. It follows now from Condition (7) of

Definition 4.0.8 that there must be an edge R of type R that connects x to Γ. This

edge R intersects γj. This is impossible since γj · (∆N \∆) = 0.

It follows from Proposition 5.2.1 that every γ ∈ Π separates v0 and fixed

branched points vi, i ∈ [1, d], and intersects all the fixed edges [v0, vi], i ∈ [1, d].

Proposition 5.2.2. Π is a degenerate period one Levy cycle (consists of only one

curve).

Proof. As was shown in Proposition 5.2.1 the map

f : Dv0(γ′j)→ Dv0(γj+1), j ∈ [1, k],
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Figure 5.1: The abstract channel diagram of Σ, a curve γj ∈ Π with vi ∈ Dv0(γj) and a postcritical
point x ∈ D(γj).

is a homeomorphism and for every curve γj ∈ Π there exists a component Dv0(γj)

of S2 \ γj that has a disk preimage under f that is mapped one-to-one to Dv0(γj+1).

Therefore Π is a degenerate Levy cycle.

Let’s prove now that Π consists in fact of only one curve. Suppose, on the

contrary, k > 1. Remember that for every j

Σ \∆ ⊂ D(γj)

and the curves γj in the Thurston obstruction Π don’t intersect each other by the

very definition. Hence the disks D(γj), j ∈ [1, k], and therefore Dv0(γj), j ∈ [1, k]

can be ordered by inclusion.

Without loss of generality assume that Dv0(γ1) is the largest among Dv0(γj), j ∈
[1, k] with respect to this order. Note that

f(Dv0(γ′1)) = Dv0(γ2)

and

f(Dv0(γ′k)) = Dv0(γ1).
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On the other hand,

Dv0(γ2) ⊂ Dv0(γ1),

therefore there exists a curve γ
′′
1 ⊂ Dv0(γ′k) such that

f(Dv0(γ
′′

1 )) = Dv0(γ2).

Note also that the curves γ′1 and γ′k are disjoint, since the images γ2 and γ1 are

disjoint and thus

Dv0(γ′k) ⊂ Dv0(γ′1).

Hence we obtain two nested disks Dv0(γ
′′
1 ) ⊂ Dv0(γ′1) which are both mapped

one-to-one by the map f onto the disk Dv0(γ2). Contradiction with the fact that Π

is degenerate.

Now, we can assume that Π = {γ} and γ has a preimage component γ′ isotopic

to itself relative to Pf .

Each abstract extended Hubbard tree either belongs to D(γ), Dv0(γ) or inter-

sects γ. No abstract extended Hubbard tree H is in Dv0(γ), because otherwise there

would be an edge of type R connecting H to Γ \∆ which intersects γ. On the other

hand, not all abstract extended Hubbard trees lie in D(γ), because otherwise the

curve γ would be non-essential (one of its complementary components Dv0(γ) would

contain the only marked point v0). Hence there exists at least one abstract extended

Hubbard tree H which intersects γ (see Figure 5.2). Suppose H is periodic of period

m > 1 and f
m

(H) = H. The edges [v0, vi], i ∈ [1, d], divide Dv0(γ′) into d “sectors”.

Denote by S ′i the “sector” bounded by

[v0, vi], [v0, vi+1], i ∈ [1, d] and γ′

(with the convention vd+1 = v0). Similarly, denote by Si the sector bounded by

[v0, vi], [v0, vi+1], i ∈ [1, d], and γ.

It follows that f(S ′i) = Si. Since H intersects γ and γ′, it has common points with

one of the sectors S ′i and

f(H ∩ S ′i) ⊂ Si.

The image f(H) is one of the abstract extended Hubbard trees in Σ (Condition

(4) of Definition 4.0.8) distinct from H (because m > 1). Therefore f(H) can be

separated from H via edges of type R according to Condition (6) of Definition 4.0.8.
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The edges of type R that separate H and f(H) must then intersect γ. Contradiction

with the fact that

γ · (Γ \∆) = 0.

Figure 5.2: The edges [v0, vi] of Σ and an abstract extended Hubbard tree H ⊂ Σ. On the left-hand
side the case when H is completely contained in Dv0(γ) is shown. In this case there exists an edge
R of type R connecting H to Γ. On the right-hand side the case when H intersects γ is shown.

Case 2. Suppose Π ·∆ = 0.

In this case due to Theorem 2.3.3 we obtain that Π ∩ Γ = ∅. It follows from

Condition (6) of Definition 4.0.8 that every complementary component of Γ contains

at most one abstract extended Hubbard tree.

This implies that every curve γ ∈ Π lies in one of the complementary compo-

nents of Γ. For every such component U denote

ΠU = {γ ∈ Π : γ ∈ U}.

Choose U such that ΠU 6= ∅. Without loss of generality we may assume that U

contains exactly one periodic abstract Hubbard tree Hi of period mi.

Consider the maps FU = (fU)mi and F = f
mi

(by fU we denote the restriction

of f to U). Since Π is a Thurston obstruction for f the multicurve Π is also a
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Thurston obstruction for F and λ(FΠ) ≥ 1. We want to show that FΠ = (FU)Π

which would contradict to the fact that the abstract Hubbard tree Hi associated to

U can be realized by a polynomial [Po].

Indeed, one can extract an irreducible Thurston obstruction for F from Π. Let

us still denote it by Π and assume that U still has the property that ΠU 6= ∅. Now

we show that Π ⊂ U . Suppose there exists a complementary component W 6= U

of Γ with some γ′ ∈ W ∩ Π. Then due to the irreducibility of Π there exists a

non-negative integer n, a component γ
′′

of F−n(γ′) and γ
′′

is homotopic to γ. Since

γ
′′ ∩ Γ = ∅ we conclude that γ

′′ ∈ U is homotopic to γ and F n(γ
′′
) = γ′ ∈ W . The

curve γ
′′

surrounds points from Σ′ contained in U . By the construction those are

contained in the abstract extended Hubbard tree Hi ⊂ U and moreover F (Hi) = Hi

by Condition (4) of Definiton 4.0.8. If γ
′′

doesn’t intersect the Hubbard tree Hi, then

Hi must be contained in the complementary component of γ
′′

which is contained in

U . On the other hand, the tree Hi is connected to the abstract Newton graph Γ via

at least one edge γi ∈ Σ of type R due to Condition (7) of Definition 4.0.8, the edge

γi must intersect γ
′′
. This is impossible by Theorem 2.3.3.

Therefore we conclude that γ
′′ ∩Hi 6= ∅. Hence

F n(γ
′′
) ∩ F n(Hi) 6= ∅.

Since F (Hi) = Hi we obtain a contradiction with γ′∩Hi 6= ∅ because γ′ ∈ W which

is disjoint from U and γ′ cannot intersect Hi. Contradiction with W 6= U .

The obtained contradictions in both cases prove the first claim of Theorem

1.1.2.

Let us now prove the last claim of Theorem 1.1.2. Suppose that the post-

critically finite Newton map Np realizes two abstract Newton graphs (Σ1, f1) and

(Σ2, f2). Then (f 1,Σ
′
1), (f 2,Σ

′
2) and (Np, (∆

∗
N)′) are all Thurston equivalent as

marked branched coverings. In particular, (f 1,Σ
′
1) and (f 2,Σ

′
2) are Thurston equiva-

lent as marked branched coverings. Let g : (S2,Σ′1)→ (S2,Σ′2) be a homeomorphism

that conjugates f 1 to f 2 on Σ′1. If e is an edge of Σ1 with endpoints x1, x2 ∈ Σ′1,

then g(e) connects g(x1) with g(x2). Moreover, g preserves the cyclic order at each

vertex of Σ1, because it is a homeomorphism of S2. So if g′ : g(Σ1) → Σ2 is a

homeomorphism that maps each g(e) to the edge of Σ2 that connectes g(x1) and

g(x2), then g′ ◦ g realizes an equivalence between the two abstract extended Newton

graphs (we put φ1 = φ2 = g′ ◦ g in Definition 4.0.9).
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5.3 Proof of Theorem 1.1.3

First let us denote by N the set of postcritically finite Newton maps with the

equivalence relation ∼N defined by the affine conjugacy. In other words, Np1 ∼N Np2

if Np1 and Np2 are affine conjugate. The equivalence class of Np we denote by [Np].

Let G be the set of abstract extended Newton graphs with the equivalence

relation ∼G defined by Thurston equivalence (see Definition 4.0.9). We say that

(Σ1, f1) ∼G (Σ2, f2) if (Σ1, f1) and (Σ2, f2) are Thurston equivalent. The equivalence

class of an abstract extended Newton graph (Σ, f) we denote by [(Σ, f)].

It follows from Theorem 1.1.1 and Theorem 1.1.2 that there exist well defined

injective mappings F : N → G and F ′ : G → N .

In this section we prove the following theorem.

Theorem 1.1.3 (Bijective Correspondence) The mappings F and F ′ are bijec-

tive and inverse to each other, i.e. F ◦ F ′ = Id and F ′ ◦ F = Id.

Proof. Let (Σ, f) ∈ G be an abstract extended Newton graph. It follows from

Theorem 1.1.2 that (Σ, f) is realized by a postcritically finite Newton map from N ,

denote it by Np. Thus

F ′([Σ, f ]) = [Np].

Denote by ∆∗N the extended Newton graph from Theorem 1.1.1 so that

F([Np]) = [(∆∗N , Np)] .

Theorem 1.1.3 implies that (f,Σ′) and
(
Np, (∆

∗
N)′
)

are Thurston equivalent as

marked branched coverings. Let

g : (S2,Σ′)→
(
S2, (∆∗N)′

)
be a homeomorphism that conjugates f to Np on Σ′. If e is an edge of Σ with

endpoints x1, x2 ∈ Σ′, then g(e) connects g(x1) with g(x2). Moreover, g preserves

the cyclic order at each vertex of Σ, because it is a homeomorphism of S2. So if

g′ : g(Σ) → ∆∗N is a homeomorphism that maps each g(e) to the edge of ∆∗N that

connectes g(x1) and g(x2), then g′◦g realizes a Thurston equivalence between the two

abstract extended Newton graphs (Σ, f) and (∆∗N , Np) (we can put φ1 = φ2 = g′ ◦ g
in Definition 4.0.9). Hence, by Definition 4.0.9

[(Σ, f)] = [(∆∗N , Np)]
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and

F ◦ F ′ = Id.

Therefore the mapping F : N → G is bijective and F ′ ◦ F = Id.
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Chapter 6

Possible extensions of results

The extended Newton graph constructed in Subsection 3.4 partitions the Riemann

sphere in a dynamically meaningful way, so that we can associate to each critical

point its itinerary with respect to this partition. If all free critical points of Np have

periodic or preperiodic itineraries, they would eventually be caught in the domains

of the polynomial-like maps, so the corresponding dynamical possibilities are still

described in terms of products of polynomial parameter spaces (no longer necessarily

postcritically finite). The principal difference to the postcritically finite case is that

the polynomials themselves are no longer completely described by their Hubbard

trees, while the Newton maps can presumably still be classified in terms of these

polynomials.

Question 1. Is it possible to extend the classification results in terms of abstract

extended Newton graphs to the case of Newton maps for which all the free critical

points have either periodic or preperiodic itineraries?

Another direction of extensions of the results in this thesis could concern the

possibility of classification of Newton maps as matings of two polynomials. Matings

are a method to describe the (usually complicated) dynamics of a rational map in

terms of the dynamics of two polynomials of equal degree (which is often viewed as

something simpler; moreover, for polynomial maps there usually is good combina-

torics available). Matings were first introduced by Douady and Hubbard [DH84/85].

Informally, a mating is a way to glue two polynomial Julia sets together. The result

is a topological space (in many cases, homeomorphic to the 2-sphere) and a contin-

uous self-map of this space, which may or may not be topologically conjugate to a

rational map. The question is when this topological conjugacy exists. This question

is usually decided using Thurston’s Theorem (see Theorem 2.2.7).

77
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The only classification results on Newton maps before introducing Newton

graph first in [MR, Rü] were on cubic Newton maps [TL], and they were in terms of

matings. It is thus natural to ask to which extent this previous work goes through

for higher degree maps. John Hubbard raised the question whether Newton maps

in all degrees are matings of particular polynomials.

Question 2. Given two polynomials, is it possible to decide in combinatorial

terms whether their formal mating is equivalent to a Newton map? Conversely, is

it possible to develop a criterion on extended Newton graphs to decide whether the

corresponding Newton maps are matings?

Suppose a Newton map is a mating of two polynomials, specified in terms of

their Hubbard trees. Both Hubbard trees, glued appropriately, can be embedded

into the dynamical plane of the Newton map, so that there exists a finite graph in the

dynamical plane of a Newton map containing the whole postcritical set (note that

both polynomials must be hyperbolic, so we cannot have the notorious situation that

two dendrite Julia sets glued together yield the sphere with its complex structure).

Conversely, one could expect that if an extended Newton graph ∆∗N of a Newton

map Np contains two trees that are invariant under Np and satisfy natural properties

of Hubbard trees, then Np is the mating of two polynomials.

We expect that the set of Newton maps that are matings forms a rather small

portion of all postcritically finite Newton maps.

Question 3. Is it true, that if the mating of two polynomials f and g is a

postcritically finite Newton map of degree d, then one of the two polynomials has

d− 1 superattracting fixed points and the other polynomial has one?
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