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Abstract of the Dissertation

A monotonicity conjecture for the entropy of
Hubbard trees

by

Tao Li

Doctor of Philosophy

in

Mathematics

Stony Brook University

2007

This thesis is composed of two parts. In the first part, we extend

Douady’s result about the monotonicity of the entropy of the real

quadratic map along the real axis. In fact, we prove the mono-

tonicity of topological entropy of post-critically finite quadratic

polynomials acting on Hubbard trees. In the second part, we study

the parameter space of cubic polynomials with one critical point

fixed. In particular, there is a similar result on the entropy of

post-critically finite maps restricted on the Hubbard tree as in the

quadratic case.
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Chapter 1

Introduction

In this thesis, we study the combinatorial properties of two families of complex

polynomials: the quadratic family and the cubic family with one critical point

fixed. As a measurement of complexity of dynamical systems, topological

entropy is our main object. Our goal is to prove the monotonicity property of

topological entropy restricted to the Hubbard trees for these two families.

In this chapter, we first give some review of topological entropy for real

quadratic polynomials acting on the real line. Afterwards, we state the main

results and discuss some directions of further study.

1.1 The context

Complex Polynomials is a main subject for the study of complex dynamics.

There is a well-known result which states that topological entropy for complex

polynomials of degree d is log d. Let f be a complex polynomial of degree d

and X ⊂ Ĉ = C∪{∞} compact and invariant under f , denote the topological

entropy of f acting on X by h(X, f). (see §2.4 for the definition of topological
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entropy.) Then on the complex plane or restricted to the Julia Set of f , we

have the following result:

h(Ĉ, f) = h(K(f), f) = h(J(f), f) = log d.

where K(f) stands for the filled Julia set of f (See §2.1.1).

But how does the entropy vary when we restrict the polynomials to other

invariant subsets? For c ∈ R, let us consider the real quadratic polynomials

fc : x 7→ x2+c. Denote h(c) the entropy of fc acting on R, where R = R∪{∞}

is the closure of R in Ĉ. Douady showed in [D2] that the entropy function

h : R 7→ [0, log 2] is (weakly) decreasing and continuous. He also gives the

necessary and sufficient conditions on when entropy is greater than zero or

when two entropies are equal.

Douady’s main tool is an external ray argument. Douady pointed out in

[D2] that the entropy of a quadratic polynomial acting on R, which is identical

to the entropy on J(f) ∩ R, equals to the entropy of the doubling map of T

acting on the set of external arguments of points in J(f) ∩ R. The external

arguments, closely connecting dynamical plane and parameter plane, can then

be used to determine and compare topological entropies.

It is worthwhile to mention that to use the external ray argument, we need

to make sure that the Julia set of the polynomial is locally connected. To

overcome this difficulties on infinitely renormalizable maps and calculate the

entropy on all real quadratic polynomials, Douady used kneading sequence and

kneading angle. After Douady’s paper [D2], Levin and Strien published their

well-known paper [LS2] which states that the Julia set for all real quadratic
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polynomials is either locally connected or totally disconnected. With the aid of

local connectivity for real quadratic polynomials with connected Julia set, we

can get the monotonicity result for topological entropy by using the external

ray argument only.

1.2 Results

There are two parts in this thesis. The first part deals with quadratic post-

critically finite maps acting on their Hubbard trees. The second part deals

with cubic cases.

Given a post-critically finite polynomial map f , the (minimal) Hubbard

tree is defined as the smallest regulated tree in the filled Julia set K(f) con-

taining the critical orbits. The Hubbard tree is compact and invariant, so we

can talk about the topological entropy of maps acting on the Hubbard tree.

Given any map fc with parameter c, denote the (minimal) Hubbard tree by

T0(c) or T0(fc). The end-number N(c) of the Hubbard tree T0(c) is defined as

the cardinality of the set of end points of T0(c).

Given a real post-critically finite quadratic polynomial fc, the topological

entropy of fc acting on the real axis is equal to the entropy of fc acting on the

Hubbard tree:

h(R, fc) = h(K(fd) ∩ R, fc) = h(T0(fc), fc).

So it is a natural question to study the topological entropy of general post-

critically finite polynomials acting on their Hubbard trees. The Mandelbrot
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Set M is defined as the set of parameters c such that fc is connected. Our

main goal is to prove the monotonicity of topological entropy of post-critically

finite polynomials with parameters in M acting on Hubbard trees.

Given the Mandelbrot Set M, define M0 ⊂M as the set of all parameters

in M such that the corresponding maps are post-critically finite. And then we

can define partial order ”≺” on M0 as follows: given two different parameters

c1 and c2 in M0, we say that c2 ≺ c1 if c2 (or the root point of the hyperbolic

component which contains c2) separates c1 from 0 on M. It’s easy to check

that ”≺” is transitive: Given three different parameters ci for i = 1, 2, 3 such

that c3 ≺ c2 and c2 ≺ c1, then c3 ≺ c1.

We will prove:

Theorem 3.1 Given any two parameters c2 and c1 on M0. If c2 ≺ c1, then

h(T0(c2), fc2) ≤ h(T0(c1), fc1).

J. Milnor first studied the cubic polynomials with one critical point fixed

in 1991.([M4]). Following [M4], the cubic polynomial with critical fixed point

a ∈ C can be normalized as fa(z) = z3−3a2z +2a3 +a. Denote the associated

connectedness locus by C. It has many interesting properties and been studied

by many authors in later years.

The second part of this thesis still deals with post-critically finite maps.

We define C0 ⊂ C as all parameters in C such that the corresponding maps

are post-critically finite. Again we can define partial order ”≺” on C0 in the

following sense: given two different parameters a1 and a2 in C0, we say that

a2 ≺ a1 if a2 (or the root point of the hyperbolic component which contains a2)

separates a1 from 0 on C. Again it is easy to check that ”≺” is transitive: Given
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three different parameters ai for i = 1, 2, 3 such that a3 ≺ a2 and a2 ≺ a1,

then a3 ≺ a1.

Our result is the following, where N(ai) again denotes the end-number of

the Hubbard trees T0(ai) for i = 1, 2.

Theorem 4.3 Given any two parameters a2 ≺ a1 in C0. If N(a1) = N(a2),

then h(T0(a2), fa2) ≤ h(T0(a1), fa1).

The imaginary axis on C corresponds to the real axis on M. Given a ∈

C ∩ iR, the closure of imaginary axis iR = iR∪{∞} is fa-invariant. So we can

talk about the entropy acting on iR. Since fa conjugate to f−a via involution

I : z 7→ −z, we will only consider the maps fa with a ∈ C ∩ iR+. Our next

result is the following.

Theorem 4.21 The topological entropy for the maps fa with a ∈ C ∩ iR+

acting on iR is monotone.

The main tool to prove these theorems is an external ray argument. To

apply this idea, we need to make sure that the end-numbers of the two Hubbard

trees are the same (it turns out that if c2 ≺ c1 and N(c2) = N(c1), then T0(c1)

is topologically homeomorphic to T0(c2)). When the end-number are different,

we can still prove the monotonicity in the quadratic cases using some other

combinatorial tools (over-Markov packing, see §2.18).

1.3 Further study

Our main goal is to prove the monotonicity of entropy on any limb either on

M0 or on C0. We have done this completely in the quadratics cases. We have
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did some experimental calculation, it is rather reasonable that the conditions

on the end-number of Hubbard trees in Theorem 4.3 can be removed. Thus

our conjecture is the following:

Conjecture 1.1. Given any two parameters a1 and a2 on C0. If a2 ≺ a1, then

h(T0(a2), fa2) ≤ h(T0(a1), fa1).
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Chapter 2

Background

2.1 Dynamics of Complex Polynomials

2.1.1 The Julia set

Let f : C → C be a monic polynomial of degree d ≥ 2, f(z) = zd + a1z
d−1 +

· · ·+ ad−1z + ad.

A point z is a periodic point of f if fp(z) = z for some p ≥ 1 . The smallest

such p is called the period of z.

A periodic point z with period p is repelling if |(fp)′(z)| > 1, indifferent if

|(fp)′(z)| = 1, attracting if |(fp)′(z)| < 1 and super-attracting if |(fp)′(z)| = 0.

The filled Julia set Kf is defined as the set of points with bounded orbit

under f

Kf = {z ∈ C | f ◦n(z) 9 ∞}.

Define the attracting basin of ∞, Af (∞), as the set of points with un-
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bounded orbit

Af (∞) = C\Kf = {z ∈ C | f ◦n(z) →∞}.

The common boundary ∂Kf = ∂Af (∞) = Jf is called the Julia set. Define

the interior of Kf by int(Kf ) = Kf \ Jf . The Fatou set is defined as

the complement of the Julia set F (f) = C\Jf . Note that the critical orbit is

bounded if the critical point belongs to Kf and unbounded if the critical point

belongs to Af (∞). When f = fc, denote the filled Julia set and the Julia set

of fc by Kc and Jc respectively.

Define the Green function Gf : C −→ R+ ∪ {0} by

Gf (z) = lim
n→∞

1

dn
log+(|f ◦n(z)|)

where log+(|z|) =max{0,log(|z|)}. The map Gf is continuous on C, harmonic

on C\Kf and equal to 0 on Kf . Moreover, Gf (z) =log(|z|) + O(1) when

|z| → ∞, and Gf (f(z)) = dGf (z).

For any η > 0. The set G−1
f (η) is called the equipotential of value η.

Note that f maps each equipotential G−1
f (η) to the equipotential G−1

f (dη) by

a d-to-one fold covering map.
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2.1.2 The Böttcher Theorem

Consider the dynamics of a holomorphic map in some small neighborhood of

a super-attracting fixed point 0. The map has the form

f(z) = anz
n + an+1z

n+1 + · · · ,

with n ≥ 2 and an 6= 0.

Theorem 2.1 (Böttcher). With f as above, there exists a local holomorphic

change of coordinate w = φ(z), with φ(0) = 0, which conjugates f to the n-th

power map w 7→ wn throughout some neighborhood of zero. Furthermore, φ is

unique up to multiplication by an (n− 1)-st root of unity.

Thus, near any critical fixed point, f is conjugate to a map of the form

φ ◦ f ◦ φ−1 : w 7→ wn, with n ≥ 2. We can apply this theorem to polynomials

of degree d ≥ 2 acting on the Riemann sphere Ĉ = C ∪ {∞} for which ∞ is a

super-attracting fixed point.

For a monic polynomial f of degree d, set Uf = {z ∈ C : Gf (z) > Gf (c)}.

Then, there exists a unique analytic isomorphism

ϕf : Uf −→ C\D̄exp Gf(c)

satisfying ϕf (z)/z −→ 1 as |z| → ∞ and conjugating f to the polynomial

f0(z) = zd, i.e. ϕf ◦ f = f0 ◦ ϕf . If all the critical points of f are contained in

Kf then Uf = C\Kf and Kf are connected.

Theorem 2.2. Let f be a polynomial of degree d ≥ 2. If the filled Julia set Kf

9



contains all the finite critical points of f , then both Kf and Jf are connected,

and the complement of Kf is conformally isomorphic to the exterior of the

closed unit disk D under an isomorphism

ϕf : C\Kf −→ C\D

which conjugate f on C\Kf to the d-th power map w 7→ wd. Furthermore, ϕ−1
f

extends continuously to a map ϕ−1
f : C\D −→ C\Kf ∪ Jf , and restriction on

the boundary gives a continuous surjection ϕ−1
f : T −→ Jf (the Carathédory

loop).

On the other hand, if at least one critical point of f belongs to C\Kf , then

both Kf and Jf have uncountably many connected components.

2.1.3 External Rays

Suppose that the set Kf is connected. Let ϕf : Ĉ\Kf −→ Ĉ\D be the iso-

morphism as above. The orthogonal trajectories {z : arg(ϕf (z)) = constant}

to the family of equipotentials curves are called external rays for Kf . The

ray of external argument θ ∈ T = R/Z, where θ ∈ R/Z, is defined by

Rf (θ) = ϕ−1
f ({re2πiθ|r > 1}).

An external ray Rf (θ) is called rational if its angle θ ∈ R/Z is rational;

and periodic if θ is periodic under multiplication by the degree d so that

dpθ ≡ θ(mod1) for some p ≥ 1.
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2.2 The Quadratic Polynomials

Consider the quadratic polynomials fc(z) = z2 + c, c ∈ C. The dynamical

behavior of c plays a crucial role in determining the dynamics of fc and the

topology of Kc. By Theorem 2.2, if fn
c (0) → ∞ as n → ∞, the Julia set

Jc is totally disconnected. Otherwise, fn
c (0) is bounded and the Julia set is

connected. This dichotomy is reflected in the definition of the Mandelbrot set

M .

2.2.1 The Mandelbrot set

A complex polynomial map f is called hyperbolic if the orbit of every critical

point converges to an attracting cycle. f is said to be post-critically finite

if the critical orbit is finite. Given a family of polynomial maps, the connect-

edness locus is defined as the set of parameters such that the Julia set of the

corresponding map is connected, or equivalently the set of parameters such

that the orbit of every critical point is bounded. For the family of quadratic

polynomials fc : z 7→ z2 + c, c ∈ C, the connectedness locus is known as the

Mandelbrot set M:

M = {c ∈ C | J(fc) is connected }.

The main cardioid is the hyperbolic component in M which contains 0.

Thus, c ∈M if and only if 0 does not belong to the basin of attraction of the

super-attracting fixed point at ∞. If c ∈ C\M, then J(fc) is a Cantor set.

The Mandelbrot set is connected which was proved by Douady and Hub-

11



Figure 2.1: The Mandelbrot set

bard (see [DH1]). In fact, it is proven by constructing explicitly the Riemann

mapping ΦM : C \M −→ C \ D defined as

ΦM(c) = ϕc(c),

where ϕc is the Böttcher function of fc.

2.2.2 Limbs and Wakes of the Mandelbrot set

The boundary of each hyperbolic component H of the Mandelbrot set M is a

Jordan curve and can be parameterized by a map γH : [0, 1) −→ ∂H such that

if c = γH(t), then fc has an indifferent periodic orbit of multiplier e2πit. The

point c = γH(0) is called the root of the hyperbolic component H. Denote the
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main cardioid by H0. At each boundary point γH0(p/q), there is an attached

hyperbolic component Hp/q of period q. We define the p/q-limb of M, Mp/q,

as the union of c = γH0(p/q) and the connected component of M\H0 attached

to the main cardioid at the point c = γH0(p/q).

Using the isomorphism ΦM, we can define the parameter external rays

and equipotentials respectively as the preimages of the straight lines going

to ∞ and round circles centered at 0. Define the parameter external ray of

external argument θ as RM(θ) = Φ−1
M({re2πiθ : 1 < r < ∞}). If RM(θ) has a

limit c ∈ ∂M when r → 1, we say that RM(θ) lands at c. It is known that

all external rays with rational arguments land at either a root of a hyperbolic

component or at a Misiurewicz point, i.e. a parameter value c ∈ ∂M for

which w = 0 is strictly preperiodic under fc.

There are exactly two external rays landing at each root point inM (except

at c = 1/4). Given p/q ∈ (0, 1)∩Q, we denote by θ−p/q and θ+
p/q the arguments of

the two external rays landing at the root point of Hp/q, i.e., at γH0(p/q) ∈ ∂H0.

Then, we define the p/q-wake ofM, Wp/q, as the open subset of C that contains

the p/q-limb of M and is bounded by these two rays.

2.3 Hubbard Tree

Let f : z 7→ z2 + c be a post-critically finite quadratic polynomial and K

be its filled Julia set. An embedded arc in K is any subset of K which is

homeomorphic to the closed interval [0, 1] ⊂ R. Since K is locally connected,

given any two points x, y ∈ K, there exists an embedded arc γ in K which

connects x and y. If c is a Misiurewicz point, then int(K) is empty set and

13



γ is uniquely determined by the two end points. If c is a center of some

hyperbolic component of M, since K has an non-empty interior, γ is not

uniquely determined. We will show in the following how to choose a canonical

embedded arc between any two points in the filled Julia set.

Since c is a center of some hyperbolic component ofM, every component U

of int(K) is a bounded Fatou component whose closure U is homeomorphic to

the closed disk D, and every such component eventually maps to the periodic

component U0 which is the immediate basin of critical point 0. The center

c(U) is defined as the unique backward image of 0 in U . In particular, c(U0) =

0.

Given any bounded Fatou component U , there exists a homeomorphism

φ : U 7→ D which is holomorphic in U with φ(c(U)) = 0. A radial arc means

an arc in U of the form φ−1{reiη : 0 ≤ r ≤ 1}. Since φ is unique up to

post-composition with a rotation of D, radial arcs are well-defined.

Following [DH1], an embedded arc I is regulated if, for every bounded

Fatou component U , the intersection I
⋂

U is either empty, a point or consists

of radial arcs in U .

The following lemma is from [Z1] Lemma 1.

Lemma 2.3. Given any two points x, y ∈ K, there exists a unique regulated

arc I in K with endpoints x, y. Furthermore, if η is any embedded arc in K

which connects x to y, then I
⋂

J ⊂ η
⋂

J .

Denote the regulated arc I in the above lemma by [x, y]. The open arc

(x, y) is defined as [x, y] \ {x, y}. Similarly we can define a semi-open arc

[x, y), etc.

14



More generally, given finitely many points x1, x2, · · · , xn in K, there is

a unique smallest connected set [x1, x2, · · · , xn] ⊂ K which consists of reg-

ulated arcs and contains all these points. It is always a finite topological

tree. (see [DH1]). We call [x1, x2, · · · , xn] the regulated tree generated by

{x1, x2, · · · , xn}.

Given a regulated tree T , a point x ∈ T is called an end point if T \ {x}

is connected. The set of end points is denoted by ∂T and the cardinality of

∂T is called end-number of the tree. A point x ∈ T is called a branch

point if T0(c) \ {x} has more than two components. The set of branch points

is denoted by Br(T ).

Lemma 2.4. Let η be a regulated arc containing no critical points, except for

it’s end points. Then f |η is injective and f(η) is a regulated arc.

See [P] Lemma 1.8 for the proof.

Given a post critically finite quadratic polynomial fc : z → z2 + c, the

(minimal) Hubbard tree is defined as the smallest regulated tree containing

the critical orbit Orb(0). A point x ∈ T0(c) is a vertex of T0(c) if x ∈ Orb(0)

or x ∈ Br(T0(c)). Denote the set of vertices by V (T0(c)). Then V (T0(c)) =

Orb(0)
⋃

Br(T0(c)). The set of vertices V (T0(c)) cut the Hubbard tree T0(c)

up into a number of open topological intervals. The closure Ij of these open

intervals are called the edges of the Hubbard tree T0c. Finally denote the

end-number of T0(c) by N(c).

Proposition 2.5. T0(f) is invariant under f , that is f(T0(f) = T0(f).

Proof. T0(f) is the union of regulated arcs of the form [x1, x2] not containing

critical points except possibly for their end points. By lemma 2.4, f(T0(f))

15



is the union of regulated arcs [f(x1), f(x2)]. Since f(T0(f)) is connected and

contains all points of Orb(0), by definition it equals T0(f). �

Proposition 2.6 (Expansivity). Given a post-critically finite quadratic poly-

nomial fc. For any x 6= y ∈ V (T0(c)), there exists a integer n ≥ 0 such that

0 ∈ fn([x, y]).

Proof. For the proof, see [BS] §3. �

Lemma 2.7. Suppose that f = z2 + c is a post-critically finite map. Let N(c)

be the end-number of T0(f). Then {c, f(c), · · · , fN(c)−1(c)} are exactly the only

end points of the Hubbard tree T0(f).

Proof. First suppose that the critical point 0 is an end point of T0(f). Then

f restricted on T0(f) is a homeomorphism onto itself. Then the critical orbit

are exactly the set of end points. Then the statement was proved.

Next we suppose that 0 is not end point of T0(f). Since f is locally one

to one except at critical point, thus the critical point {0} is the only non-end

point which maps to an end point of the Hubbard tree. �

2.4 Topological Entropy

In this section, we go over the definition and some properties of topological

entropy. See [D2] for more details.

Let X be a compact metric space, U an open cover of X and f a continuous

map on X. Define the efficient cardinality ]∗U as the minimum cardinality

of possible finite subcovers of U . Set f ∗U = {f−1(U)}U∈U . Given any two
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open covers U and V of X, set U ∨ V = {U ∩ V }U∈U ,V ∈V and
∨n U =

U ∨f ∗U ∨· · ·∨(fn−1)∗U . Note that a non empty element of
∨n U corresponds

to a given n-itinerary in U . Now we can define the entropy of f on X

with respect to U as h(X, U , f) = lim 1
n

log(]∗
∨n U ). Note that the limit

always exists. Finally we can define the topological entropy as h(X, f) =

supU h(X, U , f). Sometimes we write simply h(f) when the choice of X is

clear.

We have the following properties.

Proposition 2.8. h(fk) = k · h(f)

Proposition 2.9. If X = X1

⋃
X2, with Xi compact and f -invariant for

i = 1, 2, then h(X, f) = sup(h(X1, f), h(X2, f)).

Proposition 2.10. Let Y be a closed f-invariant subset of X. If

lim
n→∞

d(fn(x), Y ) = 0,∀x ∈ X,

then h(X, f) = h(Y, f), where d(·, ·) stands for the metric.

We will not give proofs of the above three properties. The first two are

easy to prove. You can find a proof of the third property in Douady’s paper

[D2].

Proposition 2.11. Consider the following semi-conjugacy diagram where f, g

are continuous maps respectively on compact metric spaces X and Y , and

π : Y −→ X is surjective. Then h(f) ≤ h(g). Furthermore, suppose that

the cardinality for any fiber π−1(x) is bounded by a finite number m, then
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h(g) = h(f).

Y
g−−−→ Yyπ

yπ

X
f−−−→ X

Proof. The first part is easy. Let’s prove the second part.

First we claim that h(g) ≤ h(f) + log m

Proof of the claim: For each open covering V of Y , we can find an open

covering U = (Ui)i∈I of X, and an open covering W = (Wi,j)i∈I,j∈{1,2,··· ,mi}

finer than V , with mi ≤ m and Wi,j ⊂ π−1(Ui). Then for each integer n, we

have ]∗
∨n W ≤ mn · ]∗

∨n U . By taking the logarithm, the claim is proved.

To finish the proof the property, we only need to know that for each integer

n, we have a similar inequality h(gn) ≤ h(fn) + log m, and then h(g) ≤

h(f) + 1
n

log m. �

Proposition 2.12. Let c ∈ M such that fc is post-critically finite, then

h(Ĉ, fc) = h(Kc, fc) = h(Jc, fc) = log 2.

Proof.

1. First let us prove h(Ĉ, fc) = h(Kc, fc). Since all the points of Ĉ \ Kc

are attracted by ∞, by proposition 2.10, h(Ĉ, fc) = h(Kc ∪ ∞, fc) =

h(Kc, fc).

2. Next we will show that h(Kc, fc) = h(Jc, fc). If int(Kc) = ∅, then
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Kc = Jc. If int(Kc) 6= ∅, then there is an attracting or parabolic cycle ξ

attracting int(Kc). Again h(Kc, fc) = h(Jc ∪ ξ, fc) = h(Jc, fc).

3. Finally we will prove that h(Jc, fc) = log 2. Let γc : T → Jc be the

Carathédory loop and q the doubling map t 7→ 2t on the unit circle T.

Then we have the following commutative diagram:

T q−−−→ Tyγc

yγc

J(fc)
fc−−−→ J(fc)

Since Kc is locally connected, γc is surjective. Also for all x ∈ Jc, the

cardinality of γ−1
c (x) is bounded by a finite integer m which is determined

by fc. Then by proposition 2.11, h(Jc, fc) = h(T, q) = log 2.

�

Remark 2.13. The proposition still holds even fc is not post-critically fi-

nite. And more general, for complex polynomial f with degree d, we have the

following result: h(Ĉ, f) = h(K(f), f) = h(J(f), f) = log d.

Lemma 2.14. (PERRON-FROBENIUS) Let A be a k × k matrix with

entries 0 or 1. Then there exists a real eigenvalue λ1 such that all other

eigenvalues λi satisfy |λi| ≤ λ1, for i = 2, · · · , k. Moreover, we have the

eigenvalue estimate mini

∑
j aij ≤ λ1 ≤ maxi

∑
j aij.

Proof. For the proof, see [H1] §8. �

Let f be a post-critically finite quadratic polynomial and T0(f) be its

Hubbard tree. For any edge I of T0(f), f is injective on I and f(I) is a union
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of edges of T0(f). Define the Markov matrix M = (Mi,j) of f in the following

way: Let I1, I2, · · · , Ik be the edges of T0(f), set Mi,j = 1 if Ij ⊂ f(Ii) and 0

otherwise. Obviously M is a k × k matrix with entries 0 or 1.

By the Perron-Frobenius Lemma, there exists a leading eigenvalue λ1.

Since for any edge ai, f(ai) is always a union of some edges, and then
∑

j aij ≥

1. Thus λ1 ≥ mini

∑
j aij ≥ 1.

We claim that the topological entropy of f acting on T0(f) is the natural

logarithm of λ1.

To prove the above statement, we have to introduce subdivisions on the

Hubbard Tree. Again let f be a post-critically finite quadratic polynomial and

T0(f) be its Hubbard tree. S = {I1, · · · , Ik} is called a subdivision of T0(f) if

Ii is a closed regulated arc,
⋃k

i=1 Ii = T0(f) and Ii

⋂
Ij is either an empty set

or consists of a single point, for any 1 ≤ i < j ≤ k. Also define the boundary

∂S as the set of all end points of {I1, · · · , Ik}. Define the critical subdivision

Sf be the set of all closed edges of T0(f), then ∂Sf is the set of vertices of

T0(f).

A subdivision S is finer than Sf if each element of S is a subset of some

element in Sf .

For any subdivision S on T0(f) and integer k > 1, define the subdivision

(fk)∗S by ∂(fk)∗S = f−k(∂S)
⋂

T0(f). If S and S ′ are two subdivisions of

T0(f), define S ∨ S ′ by ∂(S ∨ S ′) = ∂S
⋃

∂S ′. Finally we set

∨n
S = S ∨ f ∗S ∨ · · · ∨ (fn−1)∗S.

Note that since the critical point 0 is not a branch point and f is locally
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homeomorphic, the set of branch points in T0(f) is backward invariant under

f |T0(f). Then ∂
∨n Sf is the union of all n-preimage of points in Orb(0) in

T0(f) and all branch points of T0(f). The entropy of f acting on T0(f) defined

via S is

h(T0(f),S, f) = lim
1

n
log ]

∨n
S.

For S finer than Sf , the limit exists and is also the infimum.

We have the following important lemma.

Lemma 2.15. h(T0(f),Sf , f) = h(T0(f), f).

Proof. See Douady [D2] for a proof of the corresponding statement for a

continuous piecewise monotone map of the interval. His proof extends easily

to piecewise monotone maps from a tree to itself. �

Lemma 2.16. Let f be a post-critically finite quadratic polynomial. Also let

M be the corresponding k× k Markov matrix and λ be the leading eigenvalue.

Then h(T0(f), f) = log λ.

Proof. Since f is post-critically finite and the set of branch points is back-

ward invariant under f |T0(f). Then

∂Sf ⊂ ∂(f ∗Sf ) ⊂ · · · ⊂ ∂((fn−1)∗Sf ).

and we have
∨n Sf = (fn−1)∗Sf .

Let Sf = {I1, · · · , Ik}. For any subdivision S finer than Sf , define the

Markov vector υS = (υ1, υ2, · · · , υk) where υi is the number of elements of

S which is in Ii. Apparently, υSf
= (1, 1, · · · , 1).
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By the definition of Markov matrix M , we can check that υf∗S = M∗ · υS

where M∗ stands for the transpose of M . And then it follows that υWnSf
=

(M∗)n−1 · υSf
.

Given any vector υ = (υ1, υ2, · · · , υk) such that υi > 0 for all i, set ‖υ‖ =∑
υi. It is known that there exists positive constants 0 < C1 < C2 such

that C1 · λn ≤ ‖(M∗)n‖ · υ ≤ C2 · λn. Also by definition, ‖υS‖ = ]S, then

C1 · λn ≤ ]
∨nSf ≤ C2 · λn.

Taking the logarithm, dividing by n letting n →∞, it follows that h(h(T0(f),

Sf , f)) = log λ. Together with Lemma 2.15, this proves Lemma 2.16. �

In general, we have the following property.

Let M be a k×k matrix with entries 0 and 1 such that its leading eigenvalue

λ ≥ 1. Let X be a connected compact space and f : X 7→ X a continuous

map. Also let A = (A1, A2, · · · , Ak) be a set of compact subsets of X such that

the interior int(Ai)’s are non-empty and mutually disjoint. We say that A is

an over-markov packing with matrix M if Aj ⊂ f(Ai) whenever Mi,j = 1.

{Ai1 , Ai2 , · · · , Ain} is called n-itinerary in X with respect to A if Aij+1
⊂

f(Aij) for j = 1, 2, · · · , n− 1 where 1 ≤ ij ≤ n for all j.

Proposition 2.17. If A = (A1, A2, · · · , Ak) is an over-markov packing with

matrix M , then h(X, f) ≥ log λ, where M and λ is defined as above.

Proof. [Comparing [D2]] Let υ0 = (1, 1, · · · , 1) and υn = Mn · υ0. The

number of possible n-itineraries in X with respect to A is greater than ‖υn−1‖.

Let Ui = X−(
⋃

j 6=i Aj) and U = {Ui}. If x has n-itinerary (Ai0 , Ai1 , · · · , Ain−1)

with respect to A, then (Ui0 , Ui1 , · · · , Uin−1) is its only n-itinerary with respect

to U . In other words, the number of possible n-itineraries in X with respect
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to U is greater than the number of possible n-itineraries in X with respect to

A. Finally, we can see that the efficient cardinality ]∗
∨nU ≥ ‖υn−1‖. By the

definition of entropy, it then follows that h(X, f) ≥ log λ. �
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Chapter 3

Quadratic Case

In this chapter, we shall always assume that f is a quadratic polynomial.

We will study the topological entropy of the post-critically finite quadratic

maps. The following is the main theorem. It’s an extension of Douady’s result,

as described in §1.1.

Theorem 3.1. Given any two parameters c2 and c1 on M0. If c2 ≺ c1, then

h(T0(c2), fc2) ≤ h(T0(c1), fc1).

3.1 External Rays landing on the Hubbard tree

In this section, we show that the entropy on the Hubbard tree for the given

map is the same as the entropy on some subset of T for the angle doubling

map. It is based on [D2].

Definition 3.2. Given any integer k and angles θi ∈ R�Z for 1 ≤ i ≤ k.

The angles {θ1, θ2, θ3, · · · , θk} are in positive cyclic order if there exists a
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lift θ̂iof θi on R such that

θ̂1 < θ̂2 < · · · < θ̂k < θ̂1 + 1

Definition 3.3. Given 0 ≤ θ 6= θ′ < 1, the open angle interval (θ, θ′)

means the the set of η such that {θ, η, θ′} are in positive cyclic order. We can

define the closed angle interval [θ, θ′] or the half-open angle interval similarly.

Let f be a post-critically finite polynomial. Given x ∈ T0(f), define θ(x)

to be the angle of the external ray which lands on x if x ∈ J(f), or the angle of

the external ray which lands on the root point of the Fatou component which

contains x if x /∈ J(f). We call Rf (θ(x)) the external ray associated to x

in T0(f). If there are more than one external rays landing on x (or the root

point of the Fatou component which contains x), specify them by Rf (θ(x)−),

Rf (θ(x)+) , Rf (θ(x)1), Rf (θ(x)2), etc.

Let f be a post-critically finite polynomial and T0 = T0(f) be the Hubbard

tree. Define trees T0 ⊂ T1 ⊂ T2 ⊂ · · · by Tn+1 = f−1(Tn).

Definition 3.4. Let f = fc be a post-critically finite quadratic map and x 6=

y ∈ T1(f) \ {0}. We say that x ≺ y if x ∈ (0, y) and θ(x) 6= θ(y).

Definition 3.5 (external rays and angle interval associated to regu-

lated arc). Let f = fc be a post-critically finite quadratic polynomial. Suppose

that x ≺ y. Let {θ(x)−, θ(x)+, θ(y)−, θ(y)+} be the angles of the four external

rays such that the angle intervals [θ(x)−, θ(y)−] and [θ(x)+, θ(y)+] are the two

smallest angle intervals which contain all external rays landing on [x, y]. We
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call

{Rf (θ(x)−), Rf (θ(y)−), Rf (θ(y)+), Rf (θ(x)+)}

the external rays associated to (x, y]. Also define the angle interval (θ(x)−,

θ(x)+) to be the angle interval associated to (x, y] (or [x, y]). Note that

when there is only one external ray landing on y, θ(y)− = θ(y)+ = θ(y). In

that case, denote the external rays associated to (x, y] by {Rf (θ(x)−), Rf (θ(y)),

Rf (θ(x)+)}. See the following Figure 3.1 for the illustration of external rays

and angle interval associated to regulated arcs.

0 x y

θ(x)+

θ(x)−

θ(y)+

θ(y)−

Figure 3.1: The illustration of angle interval associated to [x, y].

Lemma 3.6. Let f = fc be a post-critically finite quadratic map. If x ≺ y,

then

{θ(x)−, θ(y)−, θ(y)+, θ(x)+}

is in positive cyclic order. In particular, ”≺” is a partial order.
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Proof. The first statement follows from the definition. And the second part

is from the first statement. �

Definition 3.7 (Characteristic Angle Intervals U (f) associated to the

Hubbard tree T0(f)). Let f be a post-critically finite polynomial and T0 =

T0(f) be the Hubbard tree.

Since we can write T1 \ T0 uniquely as a union of finitely many half open

regulated arcs, denote it by T1 \ T0 =
⋃n

k=1 Ik where Ik = (xk, yk], xk ∈ T0, yk ∈

∂T1.

Let {Rf (θ(xk)
−), Rf (θ(yk)

−), Rf (θ(yk)
+), Rf (θ(xk)

+)} be the external rays

associated to (xk, yk]. Define the angle interval associated to Ik by Uk =

(θ(xk)
−, θ(xk)

+). Finally, we define the characteristic angle intervals U (f)

associated to the Hubbard tree T0 as U (f) =
⋃n

k=1 Uk. If the function f is

parameterized by fc, f = fc, we simply denote the corresponding characteristic

angle intervals by U (c).

Remark 3.8. Two such regulated arcs in T1 \ T0 defined above may have a

non-empty intersection. If Ik

⋂
Il 6= ∅, then either Uk = Ul or Uk

⋂
Ul = ∅.

Example 3.9. The following Figure 3.2 shows the filled Julia set of fc where

c = −0.15652− 1.032245i. The critical orbit and the external rays associated

to it have been marked. The α-fixed point and −α are also been marked. It’s

easy to see that T1(c) \ T0(c) = (f 3
c (c),−f 2

c (c)] ∪ (−α,−c], where −c, −f 2
c (c)

are the co-images of c, −f 2
c (c) respectively.

Since the angle interval associated to (f 3
c (c),−f 2

c (c)] is (4
5
, 1

15
) and the angle
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interval associated to (−α,−c] is ( 9
14

, 11
14

). Then

U (c) = (
4

5
,

1

15
)
⋃

(
9

14
,
11

14
).

Lemma 3.10. Suppose that f is a post-critically finite quadratic map. Then

Rf (θ) lands on T0 if and only if the orbit of θ under the doubling map q never

hits U (f) =
⋃

Uk.

Proof. Let us prove that the condition is necessary. Since T0 is invariant,

f(T0) = T0, if Rf (θ) lands on T0, then Rf (q(θ)) still lands on T0. And then

the orbit of θ never hits U (f).

let us prove the condition is sufficient. Suppose Rf (θ) lands on x ∈ J \ T0,

define

α+ = inf{α ≥ θ | Rf (α) lands on T0}

and

α− = sup{α ≤ θ | Rf (α) lands on T0}.

Since J is locally connected and path connected, T0 is a closed set, it is

clear that external rays with angle α+, α− must land on T0, and θ ⊂ (α+, α−).

We will show that there exists an integer k such that qk(α+, α−) ⊂ U (f).

In fact, since T0 ⊂ T1 ⊂ T2 ⊂ · · · and
⋃∞

n=0 Tn is dense in J , the image of

(α+, α−) under the iteration of q must hit γ−1
c (T1), i.e., ∃k ∈ N, such that

qk(α+, α−) ∩ γ−1
c (T1) 6= ∅, qk−1(α+, α−) ∩ γ−1

c (T1) = ∅, where γc : T → Jc is

the Carathédory map.

Since T 1 = f−1(T0) = T 0∪(T1\T0), qk(α+, α−) will hit γ−1
c (T1\T0) before it

hits γ−1
c (T0). Then by the construction of U (f), qk(α+, α−) ⊂ U (f). Finally,
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c

f 2(c)

f 3(c)

−c

−f 2(c)

0

1
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4
5

9
14
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14

Figure 3.2: The filled Julia Set of fc with c = −0.15652− 1.032245i
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since θ ⊂ (α+, α−), this finishes the proof of the lemma. �

Corollary 3.11. h(T0(f), f) = h(T \
⋃∞

k=1 q−k(U (f)), q)

Proof. We have the following commutative diagram, where T = {e2πiα|α ∈

R} is the unit circle, q is the angle doubling map on the circle, and γc : T → Jc

is the Carathédory loop.

T q−−−→ Tyγc

yγc

J(fc)
fc−−−→ J(fc)

By Lemma 3.10, γ−1
c (T0(f)) = T \

⋃∞
k=1 q−k(U (f)), thus we have the

following commutative diagram,

T \
⋃∞

k=1 q−k(U (ci)))
q−−−→ T \

⋃∞
k=1 q−k(U (ci)))yγci

yγci

T0(ci)
fci−−−→ T0(ci)

and we get

h(T0(ci), fci
) = h(T \

∞⋃
k=1

q−k(U (ci)), q)

�

3.2 Entropy on the Hubbard tree, case I

In this section we will prove theorem 3.1 under the condition that the two

Hubbard trees have same end-number. In fact, it states that given two post-

30



critically finite parameters c1 and c2, if c2 ≺ c1 and N(c1) = N(c2), then

h(T0(c2), fc2) ≤ h(T0(c1), fc1).

Definition 3.12. Define M0 to be all parameters on M such that the corre-

sponding maps are post-critically finite:

M0 = {c ∈M | fc is postcritically finite}.

Definition 3.13 (Partial order ≺ on M0). Let c1, c2 be two different param-

eters on M0. We say that c2 ≺ c1 if c2 (or the root point of the hyperbolic

component which contains c2) separates c1 from 0.

From the above definition it is easy to see that ”≺” is transitive: if c2 ≺ c1

and c3 ≺ c2, then c3 ≺ c1.

Lemma 3.14. (Orbit forcing) Given any two parameters c2 and c1 in M0

with c2 ≺ c1. Then there exists a unique x = x(c1, c2) ∈ T0(c1) which has the

same orbit as c2 (or as the root point of the immediate basin which contains

c2). And furthermore, if an external ray Rc2(θ) lands on c2 (or on the root

point of the Fatou component which contains c2) in the dynamical plane of fc2

, then the external ray Rc1(θ) with same argument lands on x in the dynamical

plane of fc1.

Proof. For the proof, see [M2] §7 or [BS] §6. �

Lemma 3.15. Given any two parameters c2 and c1 in M0. If c2 ≺ c1, then

N(c2) ≤ N(c1).
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Proof. First suppose that c2 is a Misiurewicz point, external rays with angles

θi, i = 1, 2, ...k landing on it in the parameter space. Then on the dynamical

plane of fc2 , external rays with same angles θi, i = 1, 2, ...k land on the critical

value c2. Since c2 is preperiodic, the angle set {θ1, · · · , θk} is preperiodic under

the angle doubling map q and external rays with angle 2mθi, i = 1, 2, ...k land

on fm
c2

(c2).

By Lemma 3.14, on the dynamical plane of fc1 , external rays with the

same angles θi, i = 1, 2, ...k land on some point x on the Hubbard tree of fc1 ,

i.e., x ∈ T0(fc1). Then there is a bijection between the orbit of x ∈ J(fc1)

and the orbit of c2 ∈ J(fc2) by the external rays landing on them. And so

the regulated path generated by orbit of x has N(c2) end points, Orb(x) =

[x, fc1(x), · · · , f
N(c2)
c1 (x)]. Finally the fact that this regulated path is a subset

of the Hubbard tree T0(c1) gives us the conclusion that N(c2) ≤ N(c1) in the

first case.

Second, in the case that fc2 has a periodic critical point, the proof is similar.

External rays with angles θi, i = 1, 2 land on the root point of the hyperbolic

component which contains c2 in the parameter space. Then on the dynamical

plane of fc2 , external rays with same angles θi, i = 1, 2 land on the root point

of the Fatou component which contains critical value c2. Since c2 is periodic,

the angle set {θ1, θ2} is periodic under the angle doubling map q. For any

integer m, external rays with angle 2mθi, i = 1, 2 land on root point of Fatou

component which contains fm
c2

(c2).

By Lemma 3.14, on the dynamical plane of fc1 , external rays with the

same angles θi, i = 1, 2 land on some point x on the Hubbard tree of fc1 ,

i.e., x ∈ T0(c1). Then there is a bijection between the orbit of x ∈ T0(c1) and
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the orbit of root point of Fatou component which contain c2 by the external

rays landing on them. And so the regulated path generated by orbit of x has

N(c2) end points, Orb(x) = [x, fc1(x), · · · , f
N(c2)
c1 (x)]. Finally the fact that

this regulated path is a subset of Hubbard tree T0(c1) give us the conclusion

that N(c2) ≤ N(c1) in the second case. �

Lemma 3.16. Let fci
be post-critically finite maps with c2 ≺ c1 and N(c1) =

N(c2). Also let x = x(c1, c2) as defined in Lemma 3.14. Then

T0(c1) ∼= T0(c2) ∼= [x, fc1(x), · · · , fN−1
c1

(x)],

where ”∼=” means ”topologically homeomorphic”.

Proof. For simplicity, denote the end-number number by N(c1) = N(c2) =

N and fc1 = f .

By the definition of x, the external rays landing on x in T0(c1) are exactly

the same as the external rays landing on c2 in T0(c2). Then {x, f(x), · · · ,

fN−1(x)} are exactly the end points of [x, f(x), · · · , fN−1(x)] and

T0(c2) ∼= [x, f(x), · · · , fN−1(x)].

We will prove inductively that there are no branch points and critical points

in (fk(x), fk(c)) for k = 0, 1, · · · , N − 1.

First obviously 0 /∈ (x, c1) and there are no branch points in (x, c1). (Oth-

erwise, it will be easy to see that N(c1) > N(c2).) Suppose now that there are

no branch points and critical points in (fk(x), fk(c1)) for all k ≤ k0 < N − 1.

Since f is injective on a neighborhood of any regulated arc not containing
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the critical point, it follows that (fk0+1(x), fk0+1(c1)) also does not contain

branch points. If 0 ∈ (fk0+1(x), fk0+1(c1)), since N(c1) = N(c2), there exists

k0 + 1 < l < N such that f l(x) ∈ (0, fk0+1(c1)). But then fk0+1(x) is not the

end point of regulated tree [x, f(x), · · · , fN−1(x)]. This is a contradiction.

Since there are no branch points in (fk(x), fk(c)) for k = 0, 1, · · · , N − 1,

then T0(c1) ∼= [x, f(x), · · · , fN−1(x)]. And furthermore, fk(x) is the only point

which separates fk(c1) from 0. �

Lemma 3.17. Let f = fc be a post-critically finite quadratic map. Given

x, y ∈ T0(c) ∩ Jc. Suppose that f i(x) ≺ f i(y) for 0 ≤ i ≤ k, then the following

holds.

1. If fk(y) ≺ −y in T1(c), then fk(x) ≺ −x in T1(c).

2. If −y ≺ fk(y) in T1(c), then −x ≺ fk(x) in T1(c).

Proof. First note that T1(c) is the union of Hubbard tree T0(c) and its 180

degree rotation: T1(c) = T0(c)
⋃
{−T0(c)}.

Since f i(x) ≺ f i(y) for 0 ≤ i ≤ k, then 0 /∈ [f i(x), f i(y)] and f :

[f i(x), f i(y)] → [f i+1(x), f i+1(y)] is a homeomorphism for 0 ≤ i ≤ k − 1.

Then fk : [x, y] → [fk(x), fk(y)] is also a homeomorphism. Also from the

fact x ≺ y, we can get 0 /∈ [−x,−y] and −x ≺ −y. Since [−x,−y] is the

symmetric arc of [x, y] with respect to 0, we still have the homeomorphism

fk : [−x,−y] → [fk(x), fk(y)].

Now let us prove the first statement by contradiction. Suppose that fk(y) ≺

−y and −x ≺ fk(x) in T1(c), then we have

−x ≺ fk(x) ≺ fk(y) ≺ −y.
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It follows that [fk(x), fk(y)] ⊂ [−x,−y]. Then fk restricted on [−x,−y] is

a homeomorphism onto its proper subset. This is a contradiction with the

expansivity of fc on Jc since −x,−y ∈ Jc.

The second statement can be proved similarly. �

Theorem 3.18. Suppose that fc1, fc2 are post-critically finite maps. If c2 ≺ c1

and N(c1) = N(c2), then U (c1) ⊂ U (c2).

Proof. Both U (c1) and U (c2) are a disjoint union of angle intervals each

of which is associated to a regulated arc in T1(c1) and T1(c2). To prove the

theorem, we show in the following that for each such angle interval U ⊂ U (c1),

there exists an angle interval U ′ ⊂ U (c2) such that U ⊂ U ′.

In the following, for simplicity For simplicity denote c1 = c, N(c1) =

N(c2) = N and fc1 = f .

Let T1(c) \T0(c) =
⋃l

k=1 Ik which is a union of finite regulated arcs. Given

any regulated arc Ik,

1. If Ik = (fk1(c),−fk2(c)] for some 1 ≤ k1, k2 < N , then fk1(c) ≺ −fk2(c).

(Obviously k1 6= k2. )

If {Rc(θ(f
k1(c))−), Rc(θ(−fk2(c))−), Rc(θ(−fk2(c))+), Rc(θ(f

k1(c))+)} are

the external rays associated to [fk1(c),−fk2(c)], then

(θ(fk1(c))−, θ(fk1(c))+) ⊂ U (c1)

is an angle interval of U (c1).

Also by Lemma 3.17, fk1(x) ≺ −fk2(x).(Note: If k1 > k2 apply first

statement of lemma 3.17; and If k1 < k2 apply second statement of
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Lemma 3.17) Since external rays landing on fk1(x) in regulated tree

T1(c1) are exactly the same external rays landing on fc2(c2) in regular

tree T1(c2). Then similar to above,

(θ(fk1(x))−, θ(fk1(x))+) ⊂ U (c2)

is an angle interval of U (c2).

But by Lemma 3.16, T0(c1) ∼= [x, fc1(x), · · · , fN−1
c1

(x)], and fk1(x) ≺

fk1(c). And furthermore, fk1(c),−fk2(x) ∈ [fk1(x),−fk2(c)]. Then

(θ(fk1(x))−, θ(fk1(x))+) ⊂ (θ(fk1(c))−, θ(fk1(c))+).

2. Otherwise, we have Ik = (z,−fk1(c)] for some 0 ≤ k1 ≤ N , where z /∈

Orb(0) is not in the orbit of critical point. Since T0(c1) ∼= [x, fc1(x), · · · ,

fN−1
c1

(x)], then [z,−fk1(c)]
⋂

[x, fc1(x), · · · , fN−1
c1

(x)] = {z}. And it fol-

lows that the angle interval Uk associated to Ik is also an angle interval

of U (c2).

The above two cases give the proof of the theorem. �

Corollary 3.19. Suppose that fc1, fc2 are postcritically finite maps. If c2 ≺ c1

and N(c1) = N(c2), then h(T0(c2), fc2) ≤ h(T0(c1), fc1).

Proof. Given the condition, by Theorem 3.18, we know that U (c1) ⊂ U (c2)

and then T \
⋃∞

k=1 q−k(U (c2)) ⊂ T \
⋃∞

k=1 q−k(U (c1)). So we have the follow-

ing inequality on the entropy:
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h(T \
∞⋃

k=1

q−k(U (c2)), q) ≤ h(T \
∞⋃

k=1

q−k(U (c1)), q). (3.1)

Also from Corollary 3.11 we have

h(T0(ci), fci
) = h(T \

∞⋃
k=1

q−k(U (ci)), q)

Thus we get h(T0(c2), fc2) ≤ h(T0(c1), fc1). �

The Corollary 3.19 has proved the main theorem under the condition that

the two parameters have the same end-number. Since the end-number is finite

on every limb of the Mandelbrot Set, this can apply in many cases. But we still

need to consider the case when the two parameters have different end-numbers.

This is done in next section.

3.3 Entropy on the Hubbard tree, case II

In this section we will prove the main theorem 3.1 without the condition that

the two Hubbard tree are homeomorphic (without considering the map). In

fact, it states that given two post-critically finite parameters c1 and c2, if

c2 ≺ c1 and N(c2) < N(c1), then the entropy of fc2 acting on its Hubbard tree

T0(c2) is not bigger than the entropy of fc2 acting on T0(c1). Combining the

result in the last section, we obtain the complete proof of the main theorem.

There are three subsections in this section. The first subsection shows some

examples, the second subsection deals with the entropy of topological tuning

which is very useful to simplify the proof of the main theorem. The theorem

is proved in the last subsection.
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3.3.1 One Example

We can see in the following example that if the two Hubbard tree are not

topologically homeomorphic, then theorem 3.18 may not hold. So we have to

use a new method to prove the main theorem in this case.

By graph theory, it will turn out that if c2 ≺ c1 and T0(c1) has more edges

than T0(c2), then the entropy of fc1 on its Hubbard tree is (weakly) bigger

than the corresponding entropy of fc2.

We first look at one simple case.

0

c2

f(c2)

f 2(c2)

f 3(c2)

f 4(c2)

Figure 3.3: The filled Julia set of fc2

Example 3.20. In the following figures, Figure 3.3 and 3.5 are the Julia

set and Hubbard tree respectively with parameter value c2 = −0.17595297 +

1.08659342i. Figure 3.4 and 3.6 are the Julia set and Hubbard tree respectively
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c1

f(c1)

f 2(c1)f 3(c1)

f 4(c1) = 0

Figure 3.4: The filled Julia set of fc1

with parameter value c1 = −0.16356193+1.09778922i. The marked points are

critical orbits.

The critical orbits are marked with numbers on each Julia set. Although

c2 ≺ c1, it’s clear from the pictures that U (c1) has three open intervals whereas

U (c2) has two open intervals and U (c1) * U (c2). And then we can not apply

the result of last section to compare their entropy.

The following is the markov matrix of Tc2
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Figure 3.5: Hubbard tree of fc2 Figure 3.6: Hubbard tree of fc1

M =



0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

1 1 0 0 1

1 1 0 0 0


and it’s easy to see that there exists A on Hubbard tree T1 which is an

over-Markov packing with M .

3.3.2 Topological tuning

Let f0 be a quadratic map with attracting periodic critical point of period k.

Also let g be any quadratic polynomial.

We define the topological tuning f = f0 ∗ g in the following way.

Let the critical orbit of f0 be {ci}k−1
i=0 , where c0 = 0 is the critical point. The

regulated arcs of ci will mean the intersection of the Hubbard tree with the

immediate basin U(ci) of ci. We can get the Hubbard tree T0(f) of f = f0 ∗ g
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from the Hubbard tree T0(f0) by replacing the regulated arcs of all ci’s with a

copy of T ′
0(g), where T ′

0(g) is an extension of T0(g) such that it can be matched

with the finite set T0(f0) ∩ U(ci) on the boundary of U(ci). f maps the i-th

copy of T0(g) to (i + 1)-th copy of T0(g) and fk conjugates to g restricted to

any of these copies. Finally f conjugates f0 on the remaining of T0(f0).

The following is an example of topological tuning (by modification).

Definition 3.21. Given a hyperbolic component C and one of its iterated

satellites C ′, we say that C ′ has level n if there are total n − 1 hyperbolic

components which separate C ′ from C. By this definition, the satellites which

directly attach to C have level 1.

Lemma 3.22. Let f = f0 ∗ g be a tuned quadratic map where f0 and g are

maps described as above. Then h(T0(f), f) = sup(h(T0(f0), f0),
1
k
h(T0(g), g)).

Proof. We have showed that T0(f) consists of two parts: T0(f) = A
⋃

B

where A is k copies of Hubbard tree T0(f0), and B is the Hubbard tree of f0

removing the k open regular arcs of critical orbit.

First since fk conjugates g on each copy of T0(f0), h(A, fk) = h(T0(g), g),

and then h(A, f) = 1
k
h(T0(g), g) and h(T0(f), f) = sup(h(B, f0),

1
k
h(T0(g), g)).

To prove the lemma, we must show that h(B, f0) = h(T0(f0), f0). In fact,

we can apply similar idea as above to f0 itself: T0(f) = A′ ⋃ B where A′ is

regular paths of critical orbit of f0, and B is Hubbard tree of f0 removing the

k regular paths of critical orbit. Since the k-iterate of f0 restricted on any of

these regular paths conjugates to standard square map on interval and hence

has zero entropy, i.e. h(A′, f0) = 0 , h(B, f0) = h(T0(f0), f0). This finishes the

proof. �
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Lemma 3.23. For the center of any iterated satellite of the main cardioid,

the corresponding map acting on the Hubbard tree has zero entropy.

Proof. We prove this inductively. First we can verify this lemma for any

hyperbolic components which directly attached to the main cardioid. Suppose

C is directly attached to the main cardioid on the p/q limb. Then the Hubbard

tree for the center of C looks like a ”Y” but has q edges: Those edges have

and only have one common end, and the map iterates on those edges in one

cycle. The q iterate of the map f is then a homeomorphism on the Hubbard

tree and then h(T0(f), fk) = 0. Thus h(T0(f), f) = 1
k
h(T0(f), fk) = 0.

Now suppose that for any iterated satellite of the main cardioid with level

at most n, the corresponding Hubbard tree for the it’s center has zero entropy.

Let C be the iterated satellite of the main cardioid with level n+1. Then C is

directly attached to another iterated satellite of the main cardioid with level

n, denote it by C0. We also denote the corresponding map the centers by f

and f0. Then f = f0 ∗ g where g represents a quadratic map with parameter

is the center of some hyperbolic components which directly attached to the

main cardioid. Obviously h(T0(g), g) = 0 by the first paragraph of proof this

lemma.

We have assumed that h(T0(f0), f0) = 0, by Lemma 3.22, h(T0(f), f) =

sup(h(T0(f0), f0),
1
k
h(T0(g), g)) = 0. �

Theorem 3.24. Given any hyperbolic component and any of its iterated satel-

lite, the corresponding Hubbard trees for the centers of the two components have

the same entropy.

Proof. Suppose C is any hyperbolic component and C0 is one of its it-
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erated satellite with level n. Again denote the corresponding maps of the

centers by f and f0. Then f = f0 ∗ g where g represents a quadratic map

with parameter is the center of some level n iterated satellite of the main car-

dioid. By Lemma 3.23, h(T0(g), g) = 0. And then finally by Lemma 3.22,

h(T0(f), f) = h(T0(f0), f0). �

3.3.3 Proof of the main theorem

Proposition 3.25. Given two postcritically finite parameters c1 and c2, if

c2 ≺ c1 and N(c2) < N(c1), then h(T0(c2), fc2) ≤ h(T0(c1), fc1).

Proof. By Lemma 3.15 , the end-number function N is a finite integer

function and non-decreasing on each limb where it is defined. Without loss of

generality, we can always assume that there is no post-critically finite param-

eter c which separates c1 and c2 such that N(c1) > N(c) > N(c2).

First assume that c2 is a Misiurewicz point.

Given Hubbard trees T0(ci) for i = 1, 2, let x = x(c1, c2) as before. Consider

the regulated tree T (x) generated by Orb(x). T (x) is a subtree of T0(c1) which

is not invariant under fc1 . We choose the vertices as the union of critical point,

orbit of x and all other branch points of T (x) Then there is a bijection between

the vertices of T (x) and T0(c2). (Note that Orb(x)
⋂
{0} = ∅.) In particular,

similar to Lemma 3.16, T (x) is topologically homeomorphic to the Hubbard

tree T0(c2).

Suppose that T0(c2) has l edges and label them by a1, a2, · · · , al. Also

denote the corresponding Markov matrix by M(c2) with entries M(i, j). We

known from Chapter 2 that M(c2) has a leading simple eigenvalue λ ≥ 1. By
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Lemma 2.16 we have h(T0(c2), fc2) = log λ.

Since T (x) is topologically homeomorphic to T0(c2), we can also label the

edges of T (x) by b1, b2, · · · , bl. It satisfies the condition that fc1(bi) ⊃ bj (acting

on T0(c1)!) whenever M(i, j) = 1.

Then by the above construction, B = {b1, b2, · · · , bl} is an over-Markov

packing with matrix M(c2). By Proposition 2.17, h(T0(c1), fc1) ≥ log λ. And

then h(T0(c1), fc1) ≥ h(T0(c2), fc2). This finishes the proof of the first case.

Now let c2 be the center of some hyperbolic component C. By Theorem

3.24, for any hyperbolic component and any of its iterated satellite, the entropy

of the maps corresponding to the centers acting on their Hubbard trees are

equal. So we can assume C is not a iterated satellite of any other hyperbolic

component.

Given Hubbard trees T0(ci) for i = 1, 2, let x = x(c1, c2) as before. Consider

the regulated tree T (x) generated by Orb(x). T (x) is a subtree of T0(c1) which

is not invariant under fc1 . We choose the vertices as the union of orbit of x and

all other branch points of T (x). Similarly, T (x) is topologically homeomorphic

to Hubbard tree T0(c2). We can label the edges of T (x) as in the first case.

Note that critical point 0 is not end point of T (x), but we can still get an

over-Markov packing with matrix M(c2). The remaining is same as in the first

case. �

Remark 3.26. When we label the edges of a Hubbard tree, we exclude the

simple cases for which the critical point 0 is an end point of the Hubbard tree.

if the critical point 0 is an end point of the Hubbard tree, the topological

entropy is zero. Any Hubbard tree which is not in the simple case has at least
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N(c) + 2 edges.

Finally we are able to prove the main theorem 3.1.

Theorem 3.1 Given any two parameters c2 and c1 on M0. If c2 ≺ c1, then

h(T0(c2), fc2) ≤ h(T0(c1), fc1).

Proof. By Lemma 3.15, N(c2) ≤ N(c1). The main theorem 3.1 is proved in

two possible cases. Proposition 3.19 proves the case that N(c2) = N(c1) and

Proposition 3.25 proves the case that N(c2) < N(c1). �
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Chapter 4

Cubic Case

We will study the topological entropy of post-critically finite cubic polynomials

with one critical fixed point acting on the Hubbard tree.

Following [M4], the cubic polynomial with critical fixed point a ∈ C can

be normalized as fa(z) = z3− 3a2z + 2a3 + a. When a 6= 0, fa has two critical

points {±a} and a is also a fixed point: fa(a) = a. The co-critical point of

−a is 2a which satisfies fa(2a) = fa(−a) = 4a3 + a. (Similarly, we can check

that the co-critical point of a is −2a.)

The connectedness locus can be defined as

C = { a ∈ C | J(fa) is connected }.

See figure 4.1. The principal hyperbolic component H0 is the hyperbolic

component which contains the parameter 0.

Definition 4.1. Define C0 as all parameters on C such that the corresponding
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Figure 4.1: The connectedness locus C with blow up in later figures

maps are post-critically finite:

C0 = {a ∈ C | fa is postcritically finite}.

Definition 4.2 (Partial order ≺ on C0). Let a1, a2 be two different parameters

on M0. We say that a2 ≺ a1 if a2 or the root point of the hyperbolic component

which contains a2 separates a1 from 0.

It’s easy to see that the above definition is transitive: if a2 ≺ a1 and

a3 ≺ a2, then a3 ≺ a1.

Our main theorem is the following.

Theorem 4.3. Given any two parameters a2 ≺ a1 on C0. If N(a1) = N(a2),

then h(T0(a2), fa2) ≤ h(T0(a1), fa1).
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4.1 The dynamics of fa

Given a ∈ C, then K(fa) is compact and connected.

We can apply the Böttcher Theorem as in the quadratic case. By Theorem

2.2, there exists a unique analytic isomorphism

ϕa : C\K(fa) −→ C\D

satisfying ϕa(z)/z −→ 1 as |z| → ∞ and conjugating fa to the polynomial

f0(z) = z3, i.e. ϕa ◦ f = f0 ◦ ϕa. And then we can define (dynamical) equipo-

tentials and external rays Ra(θ) as usual.

Following [M4] and [F1], let Va be the basin of attraction of a, that is the

set of points which converge to a under forward iteration of fa. Also let Ua be

the immediate basin of a, which is the connected component of Va containing

a.

It has been shown in [F1] and [R] that for any a ∈ C, the boundary of every

connected component of Va is a Jordan curve.

4.2 The parameter plane

The connectedness locus C is compact and connected. Furthermore, C \ C is

analytically isomorphic to C \ D. In fact, we can define the isomorphism

ΦC(a) : C \ C −→ C \ D
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by ΦC(a) = ϕa(2a), where ϕa is the Böttcher function of fa for a ∈ C \ C. (See

[M4].) Based on this fact, we can define the parameter external ray Ra(θ)

respectively. In particular, if the parameter external ray RC(ξ) lands on a ∈ C

(or on the root point of the hyperbolic component which contains a), then on

the dynamical plane of fa, the external ray Ra(ξ) lands on 2a (or the root

point of the Fatou component which contains 2a).

Milnor describes in [M4] four possible type of bounded hyperbolic compo-

nents in any family of polynomials with two critical points.

Adjacent component (type A) is a hyperbolic component for which the

two critical points are in the same component of the immediate basin of an

attracting periodic orbit. Bi-transitive component(type B) is a hyperbolic

component for which the two critical points are in different components of

the immediate basin of an attracting periodic orbit. Capture component

(type C) 1 is a hyperbolic component for which only one critical point is in the

immediate basin of an attracting periodic orbit, although both critical points

are attracted by it. Finally, Disjoint component (type D) is a hyperbolic

component for which there are two distinct attracting periodic orbits. (Each

of which must attract one critical point!)

In our cases, Bi-transitive components do not occur in C since a is a super

attracting fixed point of fa. Also only the principal hyperbolic component H0

is an Adjacent component. See Figure 4.2 for some examples of hyperbolic

components in C.

There are infinitely many hyperbolic component of type C and D in C. A

1Caution: The term ”capture component” is used with a very different meaning in the
work of Ben Wittner and Mary Rees.
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Type A

Type C

Type D

Figure 4.2: The hyperbolic components in C

type D component always occurs in a small Mandelbrot set copy in C. It is

conjectured in [M4] and has been proved in [F1] and [R] that the boundary of

every bounded hyperbolic component is a Jordan curve.

It has been shown in [M4] that there are countably many small Mandelbrot

set copies directly attached to the boundary of H0 and there is a Capture

component directly attached to any tip of each such copy. It is conjectured

and has been proved by Roesch in [R] that except in the above cases, any two

closure of any Capture components or small Mandelbrot set copies are disjoint.
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4.3 Hubbard tree of fa

Given a ∈ C0, then fa is a post-critically finite cubic map with a super-

attracting fixed point a. We will define the Hubbard tree T0(a) of fa in the

following way.

Since a is a super-attracting fixed point, the interior int(Ka) is non-empty.

Every component U of int(K) is a bounded Fatou component whose closure U

is homeomorphic to the closed disk D, and every such component eventually

maps to the component Ua if −a is pre-periodic (or the periodic component

U−a if −a is periodic where U−a is the immediate basin of critical point −a).

The center c(U) is defined as the unique backward image of a (or −a) in U .

In particular, c(Ua) = a.

It was shown in [M4] or [F1] that given any bounded Fatou component U ,

there exists a homeomorphism φ : U → D which is holomorphic in U with

φ(c(U)) = 0. A radial arc means an arc in U of the form φ−1{reiη : 0 ≤

r ≤ 1}. Since φ is unique up to post-composition with a rotation of D, radial

arcs are well-defined.

Then we can define embedded arc and regulated arc as in the quadratic

case. An embedded arc in Ka is any subset of Ka which is homeomorphic to

the closed interval [0, 1] ⊂ R. An embedded arc I is regulated if, for every

bounded Fatou component U , the intersection I ∩ U is either empty, a point

or consists of radial arcs in U .

Now Lemma 2.3 and Lemma 2.4 still hold for regulated arcs of Ka. Reg-

ulated trees are defined exactly as in the quadratic case. The (minimal)

Hubbard tree T0(a) is defined as the smallest regulated tree generated by
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the critical orbit Orb(−a) and the super-attracting fixed point a.

Similar to the quadratic case, given a regulated tree T constructed from

Ka, the filled Julia set of fa, a point x ∈ T is called an end point if T \{x} is

connected. The set of end points is denoted by ∂T and the cardinality of ∂T

is called end-number of the tree. A point x ∈ T is called a branch point if

T \ {x} has more than two components. The set of branch points is denoted

by Br(T ).

Given a Hubbard tree T0(a), a point x ∈ T0(a) is a vertex of T0(a) if

x = a, x ∈ Orb(−a) or x ∈ Br(T0(a)), where Br(T0(a)) is the set of branch

points of T0(a) . Define the set of vertices as V (T0(a)). Then V (T0(a)) =

{a}
⋃

Orb(−a)
⋃

Br(T0(a)). Finally denote the end-number of T0(a) by N(a).

Just as in proposition 2.5, the tree T0(a) is fa-invariant: fa(T0(a)) = T0(a).

Lemma 4.4. Given cubic polynomial fa as above. Let N(a) be the end-number

of T0(a). Suppose that a /∈ ∂(T0(a)). Then {f(−a), · · · , fN(a)(−a)} are exactly

the only end points of the Hubbard tree T0(f).

Proof. Suppose that a 6= 0 and the critical point −a is an end point of

T0(a). Any non-end point which maps to a end point must be a critical point.

But a is a fixed point, there is no non-end point which can map to −a, then

−a must be periodic and the critical orbit of −a are exactly the set of end

points. Thus the statement was proved.

Now suppose that a 6= 0 and the critical point −a is a non-end point of

T0(a). Since f is locally one to one except at the critical points and since the

critical point a is a fixed point, then the other critical point {−a} is the only

non-endpoint which maps to an end point of the Hubbard tree. �
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4.4 Some simple cases

Suppose fa is post-critically finite as above.

In this section, we will discuss the topological entropy of fa acting on the

Hubbard tree T0(a) for which a is in the small Mandelbrot set copy which

directly attached H′ or in the closure of capture component.

4.4.1 Small Mandelbrot set copy ft ∗M

According to [M4], Starting from the principal componentH0, along any direc-

tion t ∈ T which is rational with odd denominator, there is a small Mandelbrot

set copy directly attached to H0. Denote the center of the small Mandelbrot

set copy by t, then the small Mandelbrot set copy can be described as ft ∗M.

Given ft as above, suppose that t has period n under doubling map. Then

the Hubbard tree T0(t) consists of k edges radiating out from a center vertex

at angles t, 2t, · · · . Thus ft acting on T0(t) conjugates to the rotations on those

edges. Then h(T0(t), ft) = 0.

Any map fa with a ∈ ft ∗M has the form ft ∗fc where fc is some quadratic

polynomial with c ∈M. As in §4.3 of Douady’s paper [D2], the filled Julia set

Ka of fa can be obtained from the filled Julia set Kt of ft in the following way:

for each component U of int(Kt) which eventually maps to the immediate

basin U−a of −a, replace the closure of U by a copy of Kfc .

Lemma 3.22 in Chapter 3 can be modified slightly to apply to this case.

Thus we have

h(T0(a), fa) = sup(h(T0(ft), ft),
1

k
h(T0(c), fc))
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where k is the period of free critical point for ft. Since h(T0(ft), ft) = 0, we

have h(T0(a), fa) = 1
k
h(T0(c), fc).

In particular, starting from H0, along the pure imaginary axis, there is one

small Mandelbrot set copy ft0 ∗M. The Hubbard tree of ft0 only consists of

1 edges with the two vertices are the two critical points of ft0 . Thus given

fa = ft0 ∗ fc, we can get

h(iR, fa) = h(T0(a), fa) = h(T0(c), fc).

4.4.2 The capture component

In [M4], Milnor also showed that for any embedded Mandelbrot set ft ∗ M,

there is a capture component C directly attached to ft ∗M at any of its tip.

Let a be any tip of ft ∗ M, then fa = ft ∗ fc where ft is the center map

of the Mandelbrot set copy and c is the corresponding tip of the Mandelbrot

set. Again we have h(T0(a), fa) = 1
k
h(T0(c), fc) where k is the period of free

critical point for ft.

Proposition 4.5. Let a0 be the center of some capture component C. Let

a ∈ ∂C such that −a is pre-periodic for fa. Then h(T0(a), fa) = h(T0(a0), fa0).

Proof. Given a ∈ ∂C such that −a is pre-periodic for fa, then there exists

a smallest integer n such that fn
a (−a) is periodic and fn

a (−a) ∈ ∂C. (See [R].)

Also let k be the period of fn
a (−a).

Let l ≤ n be the smallest integer such that f l
a(−a) ∈ ∂C. Then Ua∩T0(a) =

{f l
a(−a), f l+1

a (−a), · · · , fn
a (−a), fn+1

a (−a), fn+k−1
a (−a)}. In other words, the

orbit of f l
a(−a) consists of n+k− l points and all of them are on the boundary
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of C.

Let T be the regulated tree generated by the orbit of f l
a(−a). It consists

n+ k− l edges which has the common vertex a. Let bi be the edge connecting

a and f i
a(−a) for l ≤ i ≤ n + k − 1. Then fa(bi) = bi+1 for l ≤ i < n + k − 1

and fa(bn+k−1 = bn. We can check that h(T, fa) = 0.

We can get the Hubbard tree Ta from the Hubbard tree Ta0 by replacing the

critical point a with the regulated tree T described as above. Since h(T, fa) =

0, then h(T0(a), fa) = sup h(T0(a0), fa0), h(T, fa) = h(T0(a0), fa0). �

In particular, by the above proposition, the Hubbard tree for the center of

any capture component has the same entropy as the Hubbard tree for the root

point of the capture component.

4.5 External rays landing on the Hubbard tree

Based on [D2] again, the entropy on the Hubbard tree for the given map fa

is same as the entropy on some subset of T for the angle tripling map. In the

following commutative diagram, T = {e2πiα|α ∈ R} is circle, p is the angle

tripling map on the unit circle and γc : T → J(fa) is the Carathédory loop.

T p−−−→ Tyγa

yγa

J(fa)
fa−−−→ J(fa)

Thus h(T0(a), fa) = h(γ−1
a (T0(a), p).

Since a is a super-attracting fixed point, there is a similar but different

55



descriptions of external rays which land on the Hubbard tree.

Let fa be a post-critically finite cubic polynomial with the critical point a

fixed, where a ∈ C. Given x ∈ T0(a), define θ(x) as the angle of the external ray

which lands on x if x ∈ J(fa), or the angle of the external ray which lands on

the root point of the Fatou component which contains x if x /∈ J(fa). We call

Ra(θ(x)) the external ray associated to x in T0(a). If there are more than

one external rays land on x or the root point of the Fatou component which

contains x, we will clarify them by writing Ra(θ(x)−), Ra(θ(x)+) , Ra(θ(x)1),

Ra(θ(x)2), etc.

Let fa be above and T0 = T0(a) be the Hubbard tree. Define trees T0 ⊂

T1 ⊂ T2 ⊂ · · · by Tn+1 = f−1
a (Tn).

Definition 4.6. Given fa as above. Let [x.y] be a regulated arc such that

[x, y] ∩ [a,−a] = ∅. We say that x ≺ y if x ∈ (a, y) and θ(x) 6= θ(y).

Given fa as above. Let [x.y] be a regulated arc such that ±a /∈ [x, y].

Let {θ(x)−, θ(x)+, θ(y)−, θ(y)+} be the angles of the four external rays such

that angle intervals [θ(x)−, θ(y)−] and [θ(x)+, θ(y)+] are the two smallest angle

intervals which contain all external rays landing on [x, y]. We call

{Ra(θ(x)−), Ra(θ(y)−), Ra(θ(y)+), Ra(θ(x)+)}

the external rays associated to [x, y]. Note that when there is only

one external ray landing on y, θ(y)− = θ(y)+ = θ(y). In that case, denote

{Ra(θ(x)−), Ra(θ(y)), Ra(θ(x)+)} the external rays associated to [x, y].

Lemma 4.7. Given post-critically finite cubic polynomial fa as above. if x ≺
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y, then

{θ(x)−, θ(y)−, θ(y)+, θ(x)+}

is in positive cycllic order. In particular, ”≺” is a partial order.

Proof. The first statement follows easily from the definition. And the second

part is from the first statement. �

Definition 4.8 (Characteristic Angle Intervals U (a) associated to

Hubbard tree T0(a)). Let fa be above and T0 = T0(a) be the Hubbard tree.

Assume that −a /∈ ∂T0a.

Since we can write T1\T0 uniquely as a union of finitely many half open reg-

ulated arcs, denote it as T1 \T0 =
⋃n

k=1 Ik where Ik = (xk, yk], xk ∈ V (T1), yk ∈

∂T1.

For xk 6= a, let {Ra(θ(xk)
−), Ra(θ(yk)

−), Ra(θ(yk)
+), Ra(θ(xk)

+)} be the

external rays associated to [xk, yk]. Define Uk = (θ(xk)
−, θ(xk)

+).

On the other hand, let T0(a) ∩ ∂Ua = {z1, z2, · · · , zm} be the set of points

in T0(a) which intersect the boundary of Ua. Denote the external rays landing

on zl by Ra(ξl)
±, for 1 ≤ l ≤ m. Define

V (a) = T \
m⋃

l=1

(ξ−l , ξ+
l ).

Finally, we define the characteristic angle intervals U (a) associated to

Hubbard tree T0 as

U (a) = V (a) ∪ (
n⋃

k=1,xk 6=a

Uk).

Remark 4.9. 1. Any two such regulated arcs in T1 \T0 defined above may
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have non-empty intersection. If Ik

⋂
Il 6= ∅, then either Uk = Ul or

Uk

⋂
Ul = ∅.

2. If a 6= 0 and a ∈ ∂T0(a), then we can check that a ∈ ft0 ∗M or a is the

center of some capture component which directly attached to ft0 ∗ M.

Where ft0 ∗M is the small Mandelbrot set copy which attaches to H0

along the pure imaginary axis direction.

Example 4.10. The following Figure 4.3 shows the filled Julia set of fa with

a = 0.5313 + 0.2625i.

T0(a)∩Ua is a period 2 orbit on which the external rays {1
8
, 1

4
} and {3

8
, 3

4
}

land. So V (fa) = (1
4
, 3

8
) ∪ (3

4
, 1

8
)

On the other hand, there is only one regulated arc in T1 \ T0 which is

disjoint from Ua and is bounded by external rays with arguments 10
24

and 17
24

.

So

U (f) = V (f) ∪ U1 = (
1

4
,
3

8
) ∪ (

3

4
,
1

8
) ∪ (

10

24
,
17

24
)

Lemma 4.11. Given fa as above. Then a dynamical external ray Ra(θ) lands

on T0(a) if and only if the orbit of θ under tripling never hits U (a).

Proof. Let T0(a) = T0. We first prove that the condition is necessary. Since

T0 is invariant, f(T0) = T0, if Ra(θ) lands on T0, then Ra(q(θ)) still lands on

T0. And then the orbit of θ never hit U (a).

Next let’s prove the condition is sufficient. Suppose Ra(θ) lands on x ∈

J \ T0, define

α+ = inf{α ≥ θ | Ra(α) with angle α lands on T0} and

α− = sup{α ≤ θ | Ra(α) with angle α lands on T0}.
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a = f 3
a (−a)

fa(−a)

−a

f 2
a (−a)

1
8

1
4

3
8

3
4

10
24

17
24

Figure 4.3: The filled Julia Set of fa with a = 0.5313 + 0.2625i

Since J(fa) is locally connected and path connected, T0 is a closed set, it’s

clear that external rays with angle α+, α− must land on T0, and θ ⊂ (α+, α−).

We will show that there exists an integer k ≥ 0 such that qk(α+, α−) ⊂

U (a). In fact, since T0 ⊂ T1 ⊂ T2 ⊂ · · · and
⋃∞

n=0 Tn is dense on J , so the

image of (α+, α−) under the iteration of q must hit γ−1
a (T1), i.e., ∃k ∈ N,

such that qk(α+, α−) ∩ γ−1
a (T1) 6= ∅, qk−1(α+, α−) ∩ γ−1

a (T1) = ∅. Where

γa : T → Jfa is the Carathédory map.

Since T 1 = f−1(T0) = T 0∪ (T1 \T0), qk(α+, α−) will hit γ−1
a (T1 \T0) before

it hit γ−1
a (T0). Then by the construction of U (a),pk(α+, α−) ⊂ U (a). Finally,
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since θ ⊂ (α+, α−), this finishes the proof of the lemma. �

4.6 Entropy on the Hubbard tree

In this section we will prove the theorem 4.3 under the condition that the two

Hubbard trees have the same end-number. In fact, it states that given two

post-critically finite parameters a1 and a2, if a2 ≺ a1 and N(a1) = N(a2), then

h(T0(a2), fa2) ≤ h(T0(a1), fa1).

Lemma 4.12. (Orbit forcing) Given any two parameters a2 and a1 in C0

with a2 ≺ a1. Then there exists a unique x = x(a1, a2) ∈ T1(c1) which has the

same orbit as 2a2 (or as the root point of the immediate basin which contains

2a2). And furthermore, if an external ray Ra2(θ) lands on 2a2 (or on the root

point of the Fatou component which contains 2a2) in the dynamical plane of fa2

, then the external ray Ra1(θ) with same argument lands on x in the dynamical

plane of fa1.

Proof. For the proof, see [K] §5. �

Lemma 4.13. Given any two parameters a2 and a1 in C0. If a2 ≺ a1, then

N(a2) ≤ N(a1).

Proof. The proof is similar to the quadratic case.

First suppose that −a2 is pre-periodic , and that external rays with angles

θi, i = 1, 2, ...k land on a2 in the parameter space. Then on the dynamical

plane of fa2 , external rays with same angles θi, i = 1, 2, ...k landing on the

co-critical point 2a2. Since −a2 is preperiodic, the angle set {θ1, · · · , θk} is
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preperiodic under angle doubling map q and external rays with angle 2mθi, i =

1, 2, ...k land on fm
a2

(2a2).

By Lemma 4.12, on the dynamical plane of fa1 , external rays with the same

angles θi, i = 1, 2, ...k land on some point x on the Julia set of fa1 . Then there

is a bijection between the orbit of x ∈ J(fa1) and the orbit of a2 ∈ J(fa2) by

the external rays landing on them. And so the regulated path generated by

orbit of fa1(x) has N(a2) end points, Orb(x) = [fa1(x), · · · , f
N(a2)
a1 (x)]. Finally

the fact that this regulated path is a subset of Hubbard tree T0(a1) give us the

conclusion that N(a2) ≤ N(a1) in the first case.

In the case that fa2 has periodic critical point, the proof is similar. exter-

nal rays with angles θi, i = 1, 2 landing on the root point of the hyperbolic

component which contains c2 in the parameter space. Then on the dynamical

plane of fa2 , external rays with same angles θi, i = 1, 2 landing on the root

point of the Fatou component which contains critical value a2. Since a2 is

periodic, the angle set {θ1, θ2} is periodic under angle doubling map q. For

any integer m, external rays with angle 2mθi, i = 1, 2 land on root point of

Fatou component which contains fm
a2

(a2).

By Lemma 4.12, on the dynamical plane of fa1 , external rays with the

same angles θi, i = 1, 2 land on some point x on the Hubbard tree of fa1 ,

i.e., x ∈ T0(c1). Then there is a bijection between the orbit of x ∈ T0(c1) and

the orbit of root point of Fatou component which contain a2 by the external

rays landing on them. And so the regulated path generated by orbit of x has

N(a2) end points, Orb(x) = [x, fa1(x), · · · , f
N(a2)
a1 (x)]. Finally the fact that

this regulated path is a subset of Hubbard tree T0(a1) give us the conclusion

that N(a2) ≤ N(a1) in the second case. �
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Lemma 4.14. Let fai
be a post-critically finite maps with a2 ≺ a1 and N(a1) =

N(a2). Also let x = x(a1, a2) as in Lemma 4.12. Then

T0(a1) ∼= T0(a2) ∼= [fa1(x), · · · , fN
a1

(x)].

where ”∼=” means ”topologically homeomorphic”.

Proof. The proof is similar to Lemma 3.16.

For simplicity, denote the end-number number by N(a1) = N(a2) = N and

fa1 = f .

By definition of x, the external rays landing on x in T0(a1) are exactly the

same external rays landing on −a2 in T0(a2). Then {x, f(x), · · · , fN−1(x)} are

exactly the end pints of [x, f(x), · · · , fN−1(x)] and

T0(a2) ∼= [x, f(x), · · · , fN−1(x)].

We will prove inductively that there are no branch points and critical points

in (fk(x), fk(a1)) for k = 0, 1, · · · , N − 1.

First obviously 0 /∈ (x, a1) and there are no branch points in (x, a1). (Oth-

erwise, it will be easy to see that N(a1) > N(a2).) Suppose now that there

are no branch points and critical point in (fk(x), fk(a1)) for all k ≤ k0 <

N − 1. Since f is injective on regular arcs not containing critical point,

it follows that (fk0+1(x), fk0+1(a1)) also doesn’t contain branch points. If

0 ∈ (fk0+1(x), fk0+1(a1)), since N(a1) = N(a2), there exists k0 + 1 < l < N

such that f l(x) ∈ (0, fk0+1(a1). But then fk0+1(x) is not the end point of

regulated tree [fa1(x), · · · , fN
a1

(x)]. This is a contradiction.
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Since there are no branch points in (fk(x), fk(−a)) for k = 1, 2, · · · , N ,

then T0(a1) ∼= [fa1(x), · · · , fN
a1

(x)]. And furthermore, fk
a1

(x) are the only point

which separates fk
a (−a) from 0. �

Lemma 4.15. Given f = fa as above. Let x, y ∈ T0(a) ∩ Ja. Suppose that

f i(x) ≺ f i(y) for 0 ≤ i ≤ k, then the following holds.

1. If fk(y) ≺ y′ in T1(a), then fk(x) ≺ x′ in T1(a).

2. If y′ ≺ fk(y) in T1(a), then x′ ≺ fk(x) in T1(a).

Where y′ is any preimage of fa(y) which is different from y. x′ is the preimage

of fa(x) such that a,−a /∈ [x′, y′].

Proof. First note that T1(a) is the union of Hubbard tree T0(a) and its

preimage: T1(a) = T0(a)
⋃

f−1(T0(a)).

Since f i(x) ≺ f i(y) for 0 ≤ i ≤ k, then a,−a /∈ [f i(x), f i(y)] and f :

[f i(x), f i(y)] → [f i+1(x), f i+1(y)] is a homeomorphism for 0 ≤ i ≤ k − 1.

Then fk : [x, y] → [fk(x), fk(y)] is also a homeomorphism. Also from the fact

x ≺ y, we can get 0 /∈ [x′, y′] and x′ ≺ y′. By definitions of x′ and y′, we still

have the homeomorphism fk : [x′, y′] → [fk(x), fk(y)].

Now let us prove the first statement by contradiction. Suppose that fk(y) ≺

y′ and x′ ≺ fk(x) in T1(a), then we have

x′ ≺ fk(x) ≺ fk(y) ≺ y′.

It follows that [fk(x), fk(y)] ⊂ [x′, y′]. Then fk restricted on [x′, y′] is a home-

omorphism onto its proper subset. This is a contradiction with the expansivity

of f on Ja since x′, y′ ∈ Ja.
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The second statement can be proved similarly. �

Theorem 4.16. Suppose that fa1, fa2 are post-critically finite maps. If a2 ≺ a1

and N(a1) = N(a2), then U (a1) ⊂ U (a2).

Proof. First we can see that V (a1) = V (a2).

Both U (a1) and U (a2) are a disjoint union of angle intervals each of which

is associated to an regulated arc in T1(a1) and T1(a2). To prove the theorem,

we will show in the following that for each such angle interval U ⊂ U (a1)

with bounding external rays not landing on ∂Ua, there exists an angle interval

U ′ ⊂ U (a2) such that U ⊂ U ′.

In the following, for simplicity denote a1 = a, N(a1) = N(a2) = N and

fa1 = f .

Let T1(a)\T0(a) =
⋃l

k=1 Ik which is a union of finite regulated arcs. Given

any regulated arc Ik such that Ik ∩ ∂Ua = ∅,

1. If Ik is in the form (fk1(−a),−fk2(−a)] for some 1 ≤ k1, k2 < N , then

fk1(−a) ≺ −fk2(−a). (Obviously k1 6= k2. )

If {Ra(θ(f
k1(−a))−), Ra(θ(−fk2(−a))−), Ra(θ(−fk2(−a))+),

Ra(θ(f
k1(−a))+)} are the external rays associated to [fk1(−a),−fk2(−a)],

then

(θ(fk1(−a))−, θ(fk1(−a))+) ⊂ U (a1)

is an angle interval of U (a).

Also by lemma 4.15, fk1(x) ≺ −fk2(x).(Note: If k1 > k2 apply first case

of lemma 4.15; and If k1 < k2 apply second case of lemma 4.15) Since

external rays landing on fk1(x) in regulated tree T1(a1) are exactly the
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same external rays landing on fk1
a2

(−a2) in regular tree T1(a2). Then

similar to above,

(θ(fk1(x))−, θ(fk1(x))+) ⊂ U (a2)

is an angle interval of U (a2).

But by lemma 4.14, T0(a1) ∼= [fa1(x), · · · , fN
a1

(x)], and fk1(x) ≺ fk1(−a).

and furthermore, fk1(−a),−fk2(x) ∈ [fk1(x),−fk2(−a)]. Then

(θ(fk1(x))−, θ(fk1(x))+) ⊂ (θ(fk1(−a))−, θ(fk1(−a))+).

2. Otherwise, Ik must be in the form (z,−fk1(−a)] for some 0 ≤ k1 ≤

N , where z /∈ Orb(−a) is not in the orbit of critical point. Since

T0(a1) ∼= [fa1(x), · · · , fN
a1

(x)], then [z,−fk1(−a)]
⋂

[fa1(x), · · · , fN
a1

(x)] =

{z}. And it follows that the angle interval Uk associated to Ik is also an

angle interval of U (a2).

The above two cases gives the proof of the theorem. �

Now we can give the proof of the main theorem.

Theorem 4.3 Suppose that fa1, fa2 are post-critically finite maps. If a2 ≺ a1

and N(a1) = N(a2), then h(T0(a1), fa1) ≥ h(T0(a2), fa2).

Proof. Given the condition, by theorem 4.16, we know that U (a1) ⊂ U (a2)

and then T \
⋃∞

k=1 p−k(U (a2)) ⊂ T \
⋃∞

k=1 p−k(U (a2)). so we have the follow-

ing inequality on the entropy:
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h(T \
∞⋃

k=1

p−k(U (a2)), p) ≤ h(T \
∞⋃

k=1

p−k(U (a1)), p) (4.1)

But by the following diagram,

T \
⋃∞

k=1 p−k(U (ci)))
p−−−→ T \

⋃∞
k=1 p−k(U (ai)))yγai

yγai

T0(ai)
fai−−−→ T0(ai)

we can get

h(T0(ai), fai
) = h(T \

∞⋃
k=1

a−k(U (ai)), p) (4.2)

From the above (4.1) and (4.2), we can see that h(T0(a2), fa2) ≤ h(T0(a1),

fa1). �

4.7 Entropy of cubic maps with pure imagi-

nary parameter

In this section, we will prove that for a ∈ iR, the topological entropy of fa

acting on the pure imaginary axis iR is monotone. The idea is based on [D2].

Let e0 be the top tip of ft0 ∗ M along the imaginary direction. e0 ≈

0.852687i. Let e1 be the top tip of C along the imaginary axis. e1 ≈ 0.884646i

Definition 4.17. Given a ∈ [e0, e1], according to [F1], the filled Julia set

Ka is connected and locally connected. Denote Ya = γ−1
a (iR ∩ Ja) and Xa =

γ−1
a (T0(a) ∩ Ja). For 1/2 < θ < 3/4, Set Θθ and Xθ as subsets of T in the
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following way:

Θθ = (θ,
3

2
− θ) ∪ (0,

1

6
) ∪ (

1

3
,
1

2
) (4.3)

and

Xθ = {t ∈ T| (∀n ≥ 0) pn(t) /∈ Θθ} (4.4)

The set Xθ is closed and has no interior points. Indeed it is invariant under

tripling map p.

Definition 4.18. Given a ∈ [e0, e1] \ H0, then we can define 1/6 < ξ = ξa <

1/4 and 1/2 < θ = θa < 3/4 in the following way:

1. If −a ∈ Ja, let ξ < 1/4 be the argument of one of the external rays which

land on 2a, then 1/4− ξ is the argument of the other external ray which

lands on 2a and θ = 3ξ, 3/4 − θ are the arguments of the two external

rays which land on fa(2a) = fa(−a).

2. If −a ∈ intKa, let ξ be the argument of one of the external rays which

land on root point x of Fatou component which contains 2a, then again

1/4 − ξ is the argument of the other external ray which lands on x and

θ = 3ξ, 3/4 − ξ are the arguments of the two external rays which land

on the root point fa(x) which contain fa(2a) = fa(−a).

Example 4.19. Let a = 0.8809411i, it’s the center of a capture component

and f 4
a (−a) = a. On parameter plane, RC(

40
162

), RC(
41
162

) land on root point of

capture component with center a.

Fifure 4.4 is the filled Julia set of fa. The critical orbits and co-critical point

was marked. We can see that Ra(
40
162

), Ra(
41
162

) land on root point of Fatou

component which contains 2a. Ra(
40
54

), Ra(
41
54

) land on root point of Fatou
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component which contains fa(−a). The external rays land on −a, f 2
a (−a) and

f 3
a (−a) are also been specified.

In this example, ξa = 40
162

, θa = 40
54

and

Θθ = (
40

54
,
41

54
)
⋃

(0,
1

6
)
⋃

(
1

3
,
1

2
).

a = f 4
a (−a)

fa(−a)

−a

f 2
a (−a)

2a

f 3
a (−a)

01
2

1
6

1
3

2
9

5
18

40
162

41
162

149
162

94
162

148
162

95
162

5
6

2
3

41
54

40
54

Figure 4.4: The filled Julia Set of fa with a = 0.8809411i

Theorem 4.20. Given a ∈ [e0, e1] \ H0, let ξ = ξa and θ = θa be as in

definition 4.18. then

1. Xa ⊂ Xθ ⊂ Ya
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2. h(iR, fa) = h(Ja ∩ iR, fa) = h(Ya, p) = h(Xθ, p) = h(Xa, p)

Proof.

1. Since T0(a) is invariant set under fa, and γ−1
a (T0(a))∩Θθ = γ−1

a (T0(a)∩

Ja) ∩Θθ = ∅, then it’s clearly that Xa ⊂ Xθ.

On the other hand, we must show that all external ray in Xθ will land

on the imaginary axis. First by definition of Xθ, open arcs (0, 1/6),

(1/3, 1/2) which bound external rays landing on Fatou component U(a)

and open arc (θ, 3/2− θ) which bound all external rays landing on and

below Fatou component U(fa(−a)) are excluded from Xθ. Since Ja is

locally connected, given any external ray Ra(ξ) which doesn’t land on

imaginary axis, there exists a Fatou component U which intersect the

imaginary axis, let Ra(ξ1) < Ra(ξ2) be the two external rays land on

U ∩ iR, i.e., any external ray bounded by Ra(ξ1) and Ra(ξ2) will not

land on imaginary axis. Now by no wandering domain theorem, there

exists k > 0, such that fk(U) = U(a) or fk(U) = U(fa(−a)). then The

whole arc ξ1, ξ2 under pk either goes to (0, 1
6
)
⋃

(1
3
, 1

2
) in the first case or

goes to (θ, 3
2
− θ) in the second case.

2. This is straightforward.

�

Now we can prove the monotonicity result.

Theorem 4.21. The topological entropy for all maps fa with a ∈ C ∩ iR+

acting on iR are monotone.
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Proof. Given a, b ∈ iR+ such that |a| < |b|. Let RC(ξa) and RC(
1
2
− ξa)

be the two external rays landing on a (if a ∈ ∂C) or root point of hyperbolic

component which contains a (if a ∈ int(C)). Similarly we can define RC(ξb)

and RC(
1
2
− ξb).

Since |a| < |b|, it’s easy to see that

ξa < ξb <
1

2
− ξb <

1

2
− ξa. (4.5)

Also by the relations of parameter external ray and dynamical ray, on the

dynamical plane of fa, Ra(ξa) and Ra(
1
2
− ξa) land on 2a (or the root point of

Fatou component which contain 2a) and then Ra(θa) and Ra(
1
2
− θa) land on

fa(2a) (or the root point of Fatou component which contain fa(2a)). Where

θa = 3ξa.

Similarly, on the dynamical plane of fb, Rb(ξb) and Rb(
1
2
− ξb) land on 2b

(or the root point of Fatou component which contain 2b) and then Rb(θb) and

Rb(
1
2
−θb) land on fb(2b) (or the root point of Fatou component which contain

fb(2b)). Where θb = 3ξa.

Now by inequality (4.5), (ξa,
1
2
−ξa) ⊃ (ξb,

1
2
−ξb), then we have (θa,

1
2
−θa) ⊃

(θb,
1
2
− θb) and Xθa ⊂ Xθb

. Finally we get h(Xθa , p) ≤ h(Xθb
, p) and then by

theorem 4.20, h(iR, fa) ≤ h(iR, fb). �

Remark 4.22. Since fa conjugate to f−a via involution I : z 7→ −z, we can

see that for the parameter on the negative imaginary axis iR−, the entropy of

fa acting on iR is still monotone.
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