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Abstract

Let f : C → Ĉ = C
⋃{∞} be a non-constant transcendental entire or meromor-

phic function. The function fn, the n-times composition of f is called the n-th it-

erate of f . The Fatou set of the function f , denoted by F(f), is defined as {z ∈

Ĉ : fn(z) is defined for each n = 0, 1, 2, · · · and {fn}∞n=0 forms a normal family

(in the sense of Montel) at z}. The Julia set of f , denoted by J(f), is the complement of

the Fatou set of f in the extended complex plane Ĉ. Thus, the complex plane is divided

into two disjoint subsets based on the long term behaviour of the sequences of iterates. For

a given function f , the main problem in complex dynamics is to determine the Fatou set

and the Julia set of f . In the present work, we have investigated the change of dynamics of

transcendental entire and meromorphic functions mainly in one parameter families. The

functions we consider are of the following kinds: (i) transcendental meromorphic functions

with non-rational Schwarzian derivative and infinite order, (ii) transcendental entire func-

tions of bounded type, (iii) transcendental meromorphic functions of bounded type, (iv)

meromorphic functions which are not of bounded type and (v) real meromorphic functions.

The present work is organized into six chapters. The preliminaries along with a brief survey

are given in Chapter 1. The descriptions of other chapters of the thesis are as follows.

In Chapter 2, the dynamics of functions in the one parameter family M = {fλ(z) ≡

λ tanh(ez) : λ ∈ R \ {0}} is investigated. The function λ tanh(ez) differs in many ways

from its constituent functions ez and λ tanh z. The dynamics of λ tanh(ez) for z ∈ C

is explored and bifurcation in the dynamics of functions fλ ∈ M at a critical parameter

λ∗ ≈ −3.2946 is observed as follows. For λ > λ∗, the Fatou set F(fλ) is the basin of

attraction of a real attracting fixed point of fλ. The Fatou set F(fλ∗) is the parabolic basin

corresponding to a real rationally indifferent fixed point of fλ∗ and the Fatou set F(fλ)

is equal to the basin of attraction or the parabolic basin corresponding to an attracting

or a rationally indifferent cycle of real 2-periodic points of fλ for λ < λ∗. The topology
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of the Fatou components is also determined as follows. For λ > λ∗, the Fatou set F(fλ)

is infinitely connected whereas the Fatou set F(fλ) for λ ≤ λ∗, contains infinitely many

strictly pre-periodic (pre-periodic but not periodic) components. Further, we have proved

that, every component of the Fatou set of fλ is simply connected for λ ≤ λ∗. Finally, the

Lebesgue measure of the Julia set of fλ is found to be zero for each non-zero real λ.

Chapter 3 is devoted to the study of dynamics of a class of entire transcendental

functions of bounded type. We define a class E of transcendental entire functions f(z) =
∑∞

n=0 anz
n for which an ≥ 0 for all n, f(x) > 0 for x < 0 and the set of all singular values

of f is a bounded subset of R. Letting E0 ≡ {f ∈ E : f(0) = 0} and E1 ≡ {f ∈ E :

f(0) 6= 0} , it is shown that, both the classes E0 and E1 are closed under composition. It

is also shown that, for P (z) = (z + a1)
m1(z + a2)

m2 · · · (z + an)mn where a1, a2, · · · , an

are positive real numbers and m1, m2, · · · , mn are non-negative integers, the functions

Φ = P ◦f and Ψ = h◦P belong to E1 when f ∈ E and h ∈ E1. It is shown for f ∈ E1 that

there exists a positive real number λ∗ (depending on f) such that the chaotic burst in the

dynamics of functions in the one parameter family {fλ ≡ λf : λ > 0} occurs at λ = λ∗.

More precisely, if f ∈ E1 then, (i) for 0 < λ < λ∗, the Fatou set of fλ is the union of the

basin of attraction of a real attracting fixed point and possibly wandering domains, (ii)

for λ = λ∗, the Fatou set of fλ is the union of the parabolic basin corresponding to a real

rationally indifferent fixed point and possibly wandering domains and (iii) for λ > λ∗, the

Fatou set of fλ is empty or possibly contains wandering domains. For f ∈ E0, we show

that the Fatou set of fλ ≡ λf is the union of the basin of attraction of the superattracting

fixed point 0 and possibly wandering domains for each λ > 0. A sufficient condition is

provided for the Fatou set of fλ to be connected. Lastly, the dynamics of the functions

sinhm z
zn , m > n > 0, both of m and n are either odd or even, and I2n(z) are discussed as

examples in the class E0 where In(z) denotes the modified Bessel function of first kind and

order n. It is found that the class E1 contains interesting functions like z−nIn(z) and sinhn z
zn
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for n ∈ N. The dynamics of all these functions are discussed in detail and the pictures of

the Julia sets are generated in some cases.

Chapter 4 deals with the chaotic burst in a class of meromorphic functions of bounded

type. First, we define a class E of entire functions h such that (i) h(z) =
∑∞

n=0 anz
n for z ∈

C where an ≥ 0 for all n > 0, (ii) a0 = h(0) ≥ 1, (iii) h(x) > 0 for all x < 0 and (iv) the

closure of all the singular values of h is a bounded subset of {x ∈ R : x 6= 0}⋃{z ∈ C :

|z| = 1 and z 6= ±i}. Then, the class M ≡ {f(z) = Jn(h(z)) for z ∈ C : n ∈ N and h ∈

E} is considered where Jn denotes the n-times composition of the Joukowski function

J(z) = z + 1
z
. It is interesting to find that, for each natural number m, there is a function

f ∈ M such that f has exactly m singular values. For f ∈ M, the dynamics of functions

in the one parameter family {fλ = λf : λ > 0} is investigated and the chaotic burst at a

critical parameter λ∗ is observed. The Fatou set F(fλ) for 0 < λ < λ∗, is the union of the

basin of attraction of a real attracting fixed point and possibly wandering domains whereas

the Fatou set F(fλ∗) is the union of the parabolic basin corresponding to a real rationally

indifferent fixed point and possibly wandering domains and the Fatou set F(fλ) is empty

or possibly contains wandering domains for λ > λ∗. The function f(z) = ez + 1 + 1
ez+1

is shown to be in the class M and the dynamics of fλ(z) = λ(ez + 1 + 1
ez+1

), λ > 0 is

discussed in detail where a number of interesting results are proved. For 0 < λ < λ∗, the

Fatou set F(fλ) is shown to be connected and consequently, the Julia set J(fλ) does not

contain any continuum which disconnects Ĉ. It is also proved that for 0 < λ < λ∗, the

Julia set of λJ(ez + 1) contains infinitely many bounded but not singleton components

along with unbounded components. Further, each component of J(fλ) containing a pole is

bounded and no component of J(fλ) contains more than one pole. We show that the Julia

set of fλ, 0 < λ < λ∗ consists of two completely invariant subsets one of which is totally

disconnected.

A class of meromorphic functions which are not of bounded type is investigated in
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Chapter 5. Define N =
{
f(z) = zm

sinhm z
for z ∈ C : m ∈ N

}
. For each f ∈ N, consider

the one parameter family {fλ(z) = λf(z) : λ ∈ R \ {0} }. It is proved that the functions

in this family are not of bounded type and the Fatou sets of these functions do not contain

any Baker domain or wandering domain. For each fixed m, there is a critical parameter

λ∗ depending upon m such that the dynamics of fλ(z) = λ zm

sinhm
z

undergoes a sudden

change when the parameter λ passes through λ∗ > 0. For 0 < |λ| < λ∗, the Fatou set

F(fλ) is the basin of attraction of a real attracting fixed point of fλ, the Fatou set F(fλ∗)

is the parabolic basin corresponding to a real rationally indifferent fixed point of fλ and,

for |λ| > λ∗, the Fatou set F(fλ) is the basin of attraction or parabolic basin corresponding

to a cycle of real 2-periodic points of fλ. The topology of the Fatou components is also

investigated and it is found that, the Fatou set F(fλ), 0 < |λ| ≤ λ∗ is infinitely connected.

For |λ| > λ∗, the Fatou set F(fλ) contains infinitely many strictly pre-periodic components

and each component of F(fλ) is simply connected.

The meromorphic function that takes real values on the real line is known as real

meromorphic. In Chapter 6, we consider the class R of real meromorphic functions

f satisfying (i) f(z) =
∑∞

k=−∞Ak

(
1

ak−z
− 1

ak

)
, (ii) Ak > 0, ak 6= 0 for k ∈ Z and

(iii)
∑∞

k=−∞
Ak

a2
k

converges. Then a subclass R∗ of R is defined to contain those functions f

for which (i) f(z) =
∑∞

k=1
Akz

a2
k
−z2 , (ii) Ak > 0, ak 6= 0 for k ∈ N and (iii)

∑∞
k=1

Ak

a2
k

converges.

The class R∗ contains the functions tan z =
∑∞

k=1
z

(
(2k−1)π

2
)2−z2

, 3
z
− z sin z

sin z−z cos z
=

∑∞
k=1

2z
a2

k
−z2

where ak’s are positive roots of tan z = z and 1
2i

+ 1
z

+ 1
i(eiz−1)

=
∑∞

k=1
2z

4k2π2−z2 . In the

present chapter, the change in the nature of the Fatou set of functions in the family

S ≡ {ha,b,c(z) ≡ a + bz − c
z

+ f(z) : a, b, c ∈ R, b, c ≥ 0 and f ∈ R} is investigated.

The change in dynamics of ha(z) = a + f(z) for f ∈ R and a ∈ R is found as follows.

Let J = {x ∈ R : 0 < f ′(x) < 1}, J∗ = {x ∈ R : f ′(x) = 1} and ϕ(x) = x − f(x)

for x ∈ R. For J = ∅ and either J∗ = ∅ or a /∈ ϕ(J∗), the Fatou set F(ha) is either

the union of upper and lower half-planes or, a completely invariant Baker domain. The
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Fatou set F(ha) is a parabolic domain corresponding to a real rationally indifferent fixed

point for J = ∅, J∗ 6= ∅ and a ∈ ϕ(J∗). If the set J is non-empty then J can be written

as a union of countably many intervals i.e., J =
⋃

n∈K Jn where K ⊂ Z is some index

set. Define In = ϕ(Jn) and I =
⋃

n∈K In. Let I0
n and ∂In denote the interior and the

boundary of In respectively. For a ∈ ⋃
n∈K I0

n, the Fatou set F(ha) is the attracting basin

of a real attracting fixed point of ha(z) and the Fatou set is the parabolic basin corre-

sponding to a real rationally indifferent fixed point of ha(z) when a ∈ ⋃
n∈K ∂In. For

a ∈ R\⋃
n∈K In, the Fatou set F(ha) is either the union of the lower and upper half-planes

or a completely invariant Baker domain. Let hb,c ≡ ha,b,c ∈ S where a = 0, b ≥ 0, c > 0

and f ∈ R∗ be bounded on the imaginary axis. Then the Fatou set F(hb,c), b ∈ [0, 1)

is H+
⋃
H−, where H+ = {z ∈ C : =(z) > 0} and H− = {z ∈ C : =(z) < 0} are

the basins of attractions of a conjugate pair of attracting fixed points. For b ≥ 1, the

Fatou set F(hb,c) consists of Baker domains. Suppose gj, fj ∈ R∗, limy→+∞
gj(iy)

i
= lj 6= 0

and limy→+∞
fj(iy)

i
= mj 6= 0 for j = 1, 2, ..., n. Let h(z) =

∑n
j=1{αjgj(z) − βj

fj(z)
}

where αj > 0 and βj ≥ 0. Assume that at least one βj is not zero. Then, it is shown

that, the Fatou set of h is the union of two completely invariant attracting basins. For

hb ≡ ha,b,c ∈ S where a = c = 0, b ≥ 0 and f ∈ R∗ is bounded on the imaginary axis, the

Fatou set F(hb) is shown to be the basin of attraction of 0 and F(hb) is infinitely connected

when h′b(0) < 1. For h′b(0) = 1, the Fatou set F(hb) is the parabolic basin corresponding to

the rationally indifferent fixed point 0 and is the disjoint union of simply connected petals,

namely H+ and H−. The Fatou set F(hb) = H+
⋃
H− for h′b(0) > 1. In this case, H+

and H− are invariant attracting basins if 0 ≤ b < 1 and are invariant Baker domains if

b ≥ 1. Finally, the dynamics of Ta(z) = a + tan z is studied for a ∈ C \ R. Since Ta and

T−a are conformally conjugate, we investigate the dynamics of Ta for =(a) > 0 and found

that the Fatou set F(Ta) contains a completely invariant component Ua containing a + i

and H+. For a− i ∈ Ua, we prove that F(Ta) = Ua which is the case for a ∈ P1

⋃
P2 where
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P1 = {x + iy ∈ C : x ∈ R and y > 1}⋃{x + i ∈ C : x 6= 2k+1
2
π for any k ∈ Z} and

P2 = {πk + iy ∈ C : k ∈ Z and y > 0}. If a − i /∈ Ua then each Fatou component of Ta

different from Ua is simply connected. It follows that Ta has no Herman rings for a ∈ C.
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Chapter 1

Introduction

A dynamical system is one which evolves with time. Mathematically, it consists of the

space of states of the system together with a rule for determining the state at a future

point of time when present state is given. The basic goal of the mathematical theory of

dynamical systems is to determine or characterize the long term behaviour of the system.

A repeated application or iteration is the essence of the mathematical theory of discrete

dynamical systems where the evolution takes place in a discrete manner. Complex analytic

dynamics is the study of iteration of analytic functions defined on the complex plane.

Iteration theory of rational functions traces its origin in the works of two French mathe-

maticians Pierre Fatou [65,66] and Gaston Julia [74,75] in early twentieth century. During

the same time, Ritt [112] also studied rational iteration. After a long period of inactivity, in

1980, Mandelbrot used computer graphics successfully to explore complex dynamics [92,93].

His discovery of Mandelbrot set which is a fractal set inspired many researchers to rein-

vestigate this field. Many beautiful pictures of similar kind are also due to Peitgen and

Richter [104]. Afterwards, new mathematical tools are introduced into the field answering

old questions and opening new vistas of investigation. For instance, Sullivan proved the

non-existence of wandering domains for rational functions using quasi-conformal mappings

[131, 132] and Douady and Hubbard investigated the dynamics of polynomials [33, 52, 53]

from a larger perspective. Other important works on rational functions include Sullivan

1



CHAPTER 1 Introduction

and McMullen [95, 133], Branner and Hubbard [34, 35], Lyubich [86–88] and Epstein [56].

Due to the presence of an essential singularity at infinity, the behaviour of transcen-

dental entire and meromorphic functions are very much complicated in the neighbourhood

of infinity. This fact very often calls for different techniques in the study of the iteration

of transcendental functions. Though a number of basic results on the dynamics of rational

functions get generalized to transcendental case, more subtle techniques are required for

the proofs and new features arise in the later case. Unlike rational functions and transcen-

dental entire functions, iteration of transcendental meromorphic functions does not lead to

a dynamical system since forward orbit of any pre-image of ∞ terminates. Of course, all

other points have well defined forward orbits. Fatou [67] generalized many of his results on

the dynamics of rational functions to that of transcendental entire functions. In a series

of papers [2, 3, 5–14], Baker et al. generalized many basic results on dynamics of ratio-

nal functions to transcendental entire and meromorphic functions. Further, they found

certain new features including Baker domains and wandering domains in the iteration of

transcendental entire and meromorphic functions. Other important contributions in these

lines are due to Siegel [117], Devaney et al. [27, 39–41, 43–48], Rippon et al. [108, 110, 111],

Stallard [119–121, 123–129] , Eremenko and Lyubich [59, 61], Bergweiler et al. [20–26],

Domı́nguez [49,50], Fagella et al. [51,62], Zheng et al. [137–144], Keen et al. [68,78–82] and

Herring [69, 70]. A good exposition of iteration of transcendental entire and meromorphic

functions can be found in [18, 19, 29, 37, 58, 60, 96, 99, 130].

1.1 Basic Theory

A discrete dynamical system supposes that (n+1)-th state of the system, zn+1 is determined

solely from a knowledge of the previous state zn, that is zn+1 = f(zn) where f is a function.

Let z0 = f 0(z0). Set zn = f(zn−1) = fn(z0) for n = 1, 2, 3, · · · . Then, the sequence

{fn(z0)}∞n=0 is called the sequence of iterates or the (forward) orbit of the point z0. In

2



CHAPTER 1 Introduction

complex dynamics, the behaviour of the sequence of iterates of z0 is mainly investigated

for various initial points z0 ∈ Ĉ where f is a complex function. A function f : C → Ĉ

is called meromorphic in C if it is analytic everywhere in C except possibly at poles. A

meromorphic function which is not rational is called transcendental.

1.1.1 The dynamical dichotomy: The Fatou and Julia set

Let f : C → Ĉ be a non-constant transcendental meromorphic function and fn denote

n-times composition of f .

Definition 1.1.1. The (forward) orbit of a point z0 ∈ Ĉ, denoted by O+(z0) is defined as
∞⋃

n=0

fn(z0), the union being taken over all n for which fn(z0) is defined.

While studying the long term behaviour of the orbits of various points, it is observed

that for certain initial points z0, the orbits of all points z in some neighbourhood of z0

exhibit similar behaviour. However, for other initial points z0, the orbits of all points z

in every neighbourhood of z0 differ drastically. In other words, the forward orbits of some

points remain stable under small perturbation which is not the case for other points. For

a given transcendental meromorphic function f , the set of all points having stable forward

orbits is known as the Fatou set or stable set of f and its complement in the extended

complex plane is known as the Julia set or unstable set or chaotic set of f . Thus, the

complex plane is divided into two disjoint subsets based on the behaviour of orbits of

points. In order to assign a precise mathematical meaning to these ideas, we need to define

the important concept of normality introduced by Montel [98] in 1927. If z1 = x1 + iy1

and z2 = x2 + iy2 are in C, then the Euclidean distance between z1 and z2 is defined as

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2. The chordal distance χ(z1, z2) between two points z1

and z2 in C is defined as |z1−z2|√
1+|z1|2

√
1+|z2|2

and χ(z1,∞) is defined as 1√
1+|z1|2

.

Definition 1.1.2. A sequence of functions {fn} converges spherically uniformly on com-

pact subsets of a domain D to a function f if, for any compact subset K ⊆ D and ε > 0,
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there exists a number n0 = n0(K, ε) such that n ≥ n0 implies χ(fn(z), f(z)) < ε for all

z ∈ K.

If a sequence of functions converges uniformly with respect to the Euclidean metric on

compact subsets of a domain, then it converges spherically uniformly on compact subsets

of the domain. The converse is true when the limit function is bounded.

Definition 1.1.3. A family F of functions meromorphic in a common domain D ⊂ Ĉ

is said to be normal in D if every sequence {fn}n>0 ⊆ F contains a subsequence which

converges spherically uniformly on compact subsets of D. The limit function of {fn} is

allowed to be ∞ in this case. The family F is said to be normal at a point z0 ∈ D if it is

normal in some neighbourhood of z0.

The concept of equicontinuity can be used to characterize normality of a family of

analytic functions [18, 114, 130]. The following result is due to Montel and is called the

fundamental normality test that is used to check the normality of a family of meromorphic

functions.

Theorem 1.1.1. Let a1, a2, a3 ∈ C be distinct and F be a family of meromorphic functions

defined on a common domain Ω ⊂ C such that f(z) 6= aj for all j ∈ {1, 2, 3}, all f ∈ F,

and all z ∈ Ω. Then F is normal in Ω.

The fundamental normality test assumes the following form for analytic functions.

Theorem 1.1.2. Let a1, a2 ∈ C be distinct and F be a family of analytic functions defined

on a common domain Ω ⊂ C such that f(z) 6= aj for all j ∈ {1, 2}, all f ∈ F, and all

z ∈ Ω. Then F is normal in Ω.

Now, we define two basic objects of complex dynamics.
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Definition 1.1.4. The Fatou set of a meromorphic function f , denoted by F(f), is

defined as

{
z ∈ Ĉ : fn(z) is defined for each n = 0, 1, 2, · · · and {fn}∞n=0 forms

a normal family at the point z

}
.

Definition 1.1.5. The Julia set of f , denoted by J(f), is the complement of the Fatou

set of f in the extended complex plane Ĉ.

If f is a transcendental function, f(∞) is undefined and the point at infinity is in the

Julia set of f . By definition, the Fatou set is open and the Julia set is closed. Further, the

Julia set is a nowhere dense subset of Ĉ unless it is equal to Ĉ. Fatou conjectured that

the Julia set may be equal to Ĉ for some function. Later, Baker proved this property for

a function of the form f(z) = kzez [4]. Misiurewicz [97] also established that J(ez) = Ĉ.

The Julia set of the meromorphic function iπ tan z is also known to be Ĉ [19]. Other

fundamental properties of the Fatou and Julia sets of meromorphic functions are provided

in the next few propositions.

Definition 1.1.6. Given a function f , a set S is called forward invariant if, for all z ∈ S,

f(z) ∈ S, unless f(z) is undefined. A set S is called backward invariant if w ∈ S implies

that z ∈ S for all z satisfying f(z) = w. A set S is said to be completely invariant if it is

both forward and backward invariant.

Proposition 1.1.1. For a meromorphic function f , the Fatou set F(f) and the Julia set

J(f) are completely invariant.

Unlike the Julia set, the Fatou set can never be equal to the extended complex plane.

Therefore, the Julia set is always non-empty.

Proposition 1.1.2. The Julia set of a meromorphic function is a perfect set.

It is an easy consequence of the above proposition that the Julia set of a meromorphic

function is uncountable.
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Definition 1.1.7. The backward orbit of z0, denoted by O−(z0) is defined as
∞⋃

n=0

f−n(z0)

where f−n(z0) = {z ∈ C : fn(z) = z0}. A point z0 ∈ C is said to be an exceptional value

for a function f if the set O−(z0) is finite. If the set O−(z0) is empty, the point z0 is called

an omitted value of f .

The following proposition provides a characterization of the Julia set in terms of a

non-exceptional value.

Proposition 1.1.3. If z0 ∈ J(f) is not an exceptional value of f , then J(f) = O−(z0), the

closure of the backward orbit of z0.

All transcendental meromorphic functions are classified into three classes by Bergweiler

as follows.

• E = {f : f is transcendental entire}.

• P = {f : f is transcendental meromorphic, has exactly one pole, and this pole is

an omitted value}.

• M = {f : f is transcendental meromorphic and has either at least two poles or exac-

tly one pole which is not an omitted value}.

There are major differences in the dynamics of functions belonging to the above three

classes. The dynamics of functions in the class P were studied in [9, 22, 54, 63, 64, 78, 79, 83,

90, 91, 100]. The present work deals with the dynamics of functions belonging to E and M

only.

For f ∈ E, the iterates fn(z) are defined for all z ∈ C and the point at ∞ is the only

exceptional (omitted) value. The point at ∞ is not an exceptional value of f for f ∈ M .

Therefore, the backward orbit O−(∞) of ∞ is an infinite set where fn fails to be defined for

some n. According to Bergweiler [19], the function f in M is called a general meromorphic
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function. For general meromorphic functions, we have yet another characterization of the

Julia set.

Proposition 1.1.4. If f ∈M , then J(f) = O−(∞).

For a meromorphic function f , let I(f) = {z ∈ C : fn(z) → ∞ as n→ ∞ and fn(z) 6=

∞}. The points of the set I(f) are known as escaping points of f . The following theorem

gives a characterization of the Julia set in terms of escaping points.

Theorem 1.1.3. If f is a transcendental entire or meromorphic function, then J(f) is

equal to the boundary of I(f) and I(f)
⋂

J(f) 6= ∅.

The above theorem is proved by Eremenko [57] for entire functions. Domı́nguez [50]

proved it for meromorphic functions treating the cases of finitely many and infinitely many

poles separately.

1.1.2 Periodic points

The forward orbits of certain points are finite sets and play a central role in the study

of the dynamics of a function. The periodic points of a function are such points. The

following is a brief review of the definitions and results concerning periodic points.

Definition 1.1.8. A point z0 ∈ C is said to be a periodic point of period p of the function

f(z) if p is a natural number such that fp(z0) = z0. If p is the smallest natural number

satisfying fp(z0) = z0, then the point z0 is called a periodic point of f of minimal or prime

period p. The set {z0, z1 = f(z0), z2 = f 2(z0), ..., zp−1 = fp−1(z0)} is called a cycle of

periodic points. The value λ = (fp)′(z0) is called the multiplier or eigenvalue of the

periodic point z0 with minimal period p.

For brevity, we write a periodic point of minimal period p as a p-periodic point. If for

a point z0, there is a natural number n0 such that fn0(z0) is periodic, then z0 is called a
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pre-periodic point. A periodic point of period one is called a fixed point. The periodic

points are classified into three categories depending on the values of their multipliers.

• If |λ| < 1, then the periodic point z0 is called attracting. An attracting periodic

point is called superattracting if λ = 0.

• If |λ| = 1, then the periodic point z0 is called indifferent or neutral. In this case,

λ = e2πiα for a real number α. The indifferent periodic point z0 is called rationally

indifferent if α is rational and is called irrationally indifferent otherwise. A rationally

indifferent periodic point is also known as a parabolic periodic point.

• If |λ| > 1, then the periodic point z0 is called repelling.

The local dynamics of the function f(z) around a periodic point is completely dependent

on whether the periodic point is attracting, indifferent or repelling and it also affects the

global dynamics of the function f significantly. If fp(z0) = z0 and |λ| 6= 0, 1, then there

is a neighbourhood N(z0) of z0 and an analytic homeomorphism φ : N(z0) → D such

that φ(z0) = 0, φ′(z0) = 1 and φ(fp(φ−1(z))) = λz for all z ∈ D = {z ∈ C : |z| < 1}.

This important result, known as Kœnigs Linearization Theorem is proved by G. Kœnigs

in 1884. If λ = 0, then the above result holds with z 7→ λz replaced by z 7→ zk for some

k ∈ N. If z0 is an attracting p-periodic point of f , then all the points of N(z0) tend to z0

under iteration of fp. In other words, the nearby points of an attracting periodic point are

attracted towards z0 under iteration of fp. If z0 is a repelling p-periodic point, then there

exists a neighbourhood N(z0) such that the following holds. For each z ∈ N(z0) \ {z0},

there is some n ≥ 1 so that fpn(z) /∈ N(z0). However, the iterates of z may return to

this neighbourhood later and may even land on z0. When |λ| = 1 and z0 is rationally

indifferent, there are domains, all the points of which tend to z0 under the iteration of fp

and z0 lies on the boundary of the domains. These domains are called petals associated

with z0. It is worth noting that attracting periodic points lie in the Fatou set whereas

8
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rationally indifferent and repelling periodic points lie in the Julia set, and nothing can be

said about irrationally indifferent periodic points in general. The behaviour of iterates of

f in the neighbourhood of an irrationally indifferent periodic point is more intricate and

the details can be found in [29, 96].

If f is a transcendental meromorphic function and n ≥ 2, then f has infinitely many

repelling periodic points of minimal period n [19]. A characterization of the Julia set of a

transcendental meromorphic function in terms of repelling periodic points [12] is as follows.

Theorem 1.1.4. Let f be a transcendental meromorphic function. Then J(f) is the closure

of the set of repelling periodic points of f .

1.1.3 Singular values

Like periodic points, there are certain points in the plane that are equally decisive in the

study of dynamics of a function. These points pertain to the mapping pattern of f−1

and they are known as singular values. The following is a brief review of the definitions

concerning the singular values.

Definition 1.1.9. A point zc is said to be a critical point of the meromorphic function

f if f ′(zc) = 0. The value f(zc) is called a critical value of f . A point a is called an

asymptotic value of the function f if there exists a continuous curve γ : [0, ∞) → Ĉ

satisfying lim
t→∞

γ(t) = ∞ and lim
t→∞

f(γ(t)) = a. The curve γ is called an asymptotic path.

All the critical and finite asymptotic values of a function are known as singular values.

The set of all singular values of f is denoted by Sf .

Definition 1.1.10. A function f is called critically bounded or functions of bounded type if

the set Sf is bounded. The class of all such functions is usually denoted by B. In particular,

the function f is called critically finite or functions of finite type if the set Sf is finite. The

class of all functions of finite type is denoted by S.

9
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A more general and often useful way of defining singular values of a function appears

in [23] and is as follows.

Definition 1.1.11. Let a ∈ Ĉ and Dr(a) be a disc with center at a and radius r (in

spherical metric). Let a component Ur of f−1(Dr(a)) be chosen for r > 0 in such a way

that Ur1 ⊂ Ur2 for r1 < r2. Then, one of the following two possibilities occur.

1.
⋂

r>0 Ur = {z} for z ∈ C: In this case f(z) = a. The point z is called an ordinary

point if a ∈ C and f ′(z) 6= 0, or if a = ∞ and z is a simple pole of f . If a ∈ C and

f ′(z) = 0, or if a = ∞ and z is a multiple pole of f , then z is called a critical point

and the point a is called a critical value.

2.
⋂

r>0 Ur = ∅: In this case, it is said that the choice r → Ur defines a (transcen-

dental) singularity of f−1. It is also said that the singularity U lies over a and

for every r > 0, the open set Ur ⊂ C is called a neighbourhood of the singularity of

U . It can be seen that a point a is an asymptotic value of f if and only if there is a

singularity lying over a.

Note that a singularity may lie over a critical value which means that a point can be

an asymptotic value and a critical value simultaneously. For example, the point z = 1 is a

critical value as well as an asymptotic value for the function sin(ez + π
2
). More generally,

there can be many different singularities as well as critical and ordinary points lying over the

same point a. For Ω1, Ω2 ⊆ Ĉ, a meromorphic function f : Ω1 → Ω2 is called a covering

map if for every w ∈ Ω2, there is a neighbourhood N of w such that each component of

f−1(N) is mapped homeomorphically onto N by f . If a disc D ⊆ Ĉ does not contain any

critical value or asymptotic value of a meromorphic function f , then f : f−1(D) → D is

a covering. It is this fact that justifies the name singularities of f−1. The singular values

of a transcendental meromorphic function are precisely the points where some branch of

f−1 fails to be defined. Iversen [72] classified the singularities as follows.
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Definition 1.1.12. Let Dr(a) and Ur be as defined in Definition 1.1.11. A singularity U

over a is called direct if there exists r > 0 such that f(z) 6= a for z ∈ Ur. Then this is

also true for all smaller r. We say that U is a logarithmic branch point or logarithmic

singularity over a if f : Ur → Dr(a) \ {a} is a universal covering for some r > 0. The

simplest kind of direct singularity is logarithmic branch point. A singularity U over a is

called indirect if it is not direct.

1.1.4 Components of the Fatou set

A maximally connected open subset of the Fatou set is called a component of the Fatou set

or a Fatou component. Since the Fatou set is completely invariant, any Fatou component

U is mapped into a Fatou component, of course not necessarily U .

Definition 1.1.13. A component U of the Fatou set F(f) of a meromorphic function f

is called p-periodic if p is the smallest natural number satisfying fp(U) ⊆ U . The set

{U, f(U), f 2(U), ..., fp−1(U)} is called a periodic cycle of Fatou components. The Fatou

component U is said to be invariant if p = 1.

Remark 1.1.1. Let U be a backward invariant Fatou component of a meromorphic function

f . If w ∈ U and z is a point satisfying f(z) = w, then z ∈ U . This means that w ∈

U
⋂
f(U). By continuity of f , f(U) is connected and consequently, the Fatou component

containing f(U) and U is same. Therefore U is forward invariant. Thus, it is concluded

that a Fatou component of a meromorphic function is backward invariant if and only if it

is completely invariant.

Definition 1.1.14. A component U of the Fatou set F(f) is said to be pre-periodic if there

exists a natural number k such that fk(U) is periodic. A pre-periodic Fatou component

which is not periodic is called strictly pre-periodic.

Note that the periodic Fatou components are also pre-periodic.

11
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Definition 1.1.15. If for some component W of the Fatou set F(f), f l(W )
⋂
fm(W ) = ∅

for all l,m ∈ N with l 6= m, then W is called a wandering domain.

Sullivan proved that wandering domains do not exist in the Fatou set of rational func-

tions [132]. But this may occur in the Fatou set of transcendental meromorphic func-

tions [11].

The classification of periodic Fatou components are done on the basis of the behaviour

of the sequence {fn} on the components [19] as given below.

Theorem 1.1.5. Let U be a p-periodic Fatou component of f . Then we have one of the

following possibilities.

1. U is an attracting domain: In this case, U contains an attracting periodic point

z0 of minimal period p and lim
n→∞

fnp(z) = z0 for all z ∈ U . The component U is

also known as immediate basin of attraction or immediate attracting basin. If z0 is

a superattracting periodic point, then U is called superattracting domain or Böttcher

domain. The set {z ∈ Ĉ : limn→∞ fnp(z) = zi} for some zi = f i(z0), i =

0, 1, 2, ..., p − 1 is called the basin of attraction of the attracting periodic cycle

{z0, z1, z2, ..., zp−1}.

2. U is a parabolic domain: In this case, the boundary ∂U of U contains a rationally

indifferent periodic point z∗ of minimal period p and lim
n→∞

fnp(z) = z∗ for all z ∈ U .

The component U is also called a Leau domain. The set {z ∈ Ĉ : limn→∞ fnp(z) =

zi} for some zi = f i(z0), i = 0, 1, 2, ..., p − 1 is called the parabolic basin of the

parabolic periodic cycle {z0, z1, z2, ..., zp−1}.

3. U is a Siegel disc: In this case, there exists an analytic homeomorphism ϕ : U → D

where D = {z : |z| < 1 }, such that ϕ(fp(ϕ−1(z))) = ei2παz for some irrational

number α.

12
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4. U is a Herman ring: In this case, there exists an analytic homeomorphism ϕ : U →

A where A is the annulus {z : 1 < |z| < r}, r > 1, such that ϕ(fp(ϕ−1(z))) = ei2παz

for some irrational number α. Herman rings are also called Arnold rings.

5. U is a Baker domain: In this case, there exists a point z∗ on the boundary ∂U of

U such that lim
n→∞

fnp(z) = z∗ for all z ∈ U and fp(z∗) is not defined. Baker domains

are also known as essentially parabolic domains or domains at infinity.

Remark 1.1.2. 1. If U is an attracting or parabolic domain, then all the limit functions

of {fn(z)}n>0 for z ∈ U are constants which are nothing but attracting or rationally

indifferent periodic points. However, all the limit functions of {fn(z)}n>0 for z in a

Siegel disc or a Herman ring are non-constants. In fact, Cremer [38] proved that if

fn|U has non-constant limit functions, then U is a Siegel disc or a Herman ring.

2. Let U be a p-periodic Siegel disc or a Herman ring. Then U is known as a rota-

tional domain since the function fp|U is conformally conjugate to a rotation on unit

disc or an annulus. This implies that the map fp is one-one on U . By Picard’s

theorem, each complex number except possibly two, has infinitely many pre-images

under a transcendental meromorphic function. Therefore, a rotational domain U

cannot be completely invariant. Further, there are infinitely many pre-periodic Fatou

components that are mapped into U by some iterate of f .

3. Fatou discussed a Baker domain in [67]. Baker domains are so-called because Baker

established fundamental properties about the growth of iterates in these domains.

Since z = ∞ is the only point in Ĉ where a transcendental entire f(z) is unde-

fined, any limit function of {fn}n>0 on a Baker domain of a transcendental entire

function f is ∞. For a Baker domain U of a function f ∈ M , a limit function of

{fn}n>0 is either ∞ or belongs to the backward orbit O−(∞) of ∞. Note that Baker

domains do not exist for rational functions.
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The following theorem on Fatou components is proved by Herring [70].

Theorem 1.1.6. Let f be a meromorphic function and f : U → V where U and V are

two Fatou components of f . Then the set V \ f(U) contains at most two points.

It is interesting to note in the above theorem that, the set V \ f(U) may not always

contain the exceptional values of f .

The singular values are important due to their close connections with periodic and

wandering Fatou components. One of the most useful theorems describing the relation

between attracting domains, parabolic domains and rotational domains with the singular

values of a meromorphic function is now presented [19].

Theorem 1.1.7. Let f be a meromorphic function, and let C = {U0, U1, ..., Up−1} be a

periodic cycle of components of F(f). Let sing(f−1) denote the set of all critical values

and finite asymptotic values and finite limit points of these values of f .

1. If C is a cycle of immediate attracting basins or Leau domains, then Uj

⋂
sing(f−1) 6=

∅ for some j ∈ {0, 1, ..., p − 1}. More precisely, there exists j ∈ {0, 1, ..., p − 1}

such that Uj

⋂
sing(f−1) contains a point which is not pre-periodic or such that Uj

contains a periodic critical point (in which case C is called a cycle of superattracting

domains).

2. If C is a cycle of rotational domains, then ∂U ⊂ O+(sing(f−1)) for all j ∈ {0, 1, ..., p−

1}.

The relation between singular values and Baker domains are given in the next two

theorems [19].

Theorem 1.1.8. Let f be a meromorphic function, and let C = {U0, U1, ..., Up−1} be a

periodic cycle of Baker domains of f . Let zj denote the limit of {fnp(z)}n>0 for z ∈ Uj
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and define z0 = zp. Then zj ∈
p−1⋃

n=0

f−n(∞) for all j ∈ {0, 1, ..., p− 1}, and zj = ∞ for at

least one j ∈ {0, 1, ..., p− 1}. If zj = ∞, then zj+1 is an asymptotic value of f .

Theorem 1.1.9. Let f be a meromorphic function, and let C = {U0, U1, ..., Up−1} be a

periodic cycle of Baker domains of f . Then ∞ is in the derived set of

p−1⋃

j=0

f j(sing(f−1))

where sing(f−1) is as given in Theorem 1.1.7.

Using Logarithmic change of variables, Eremenko and Lyubich [61] proved a remarkable

result on non-existence of Baker domains for a certain class of entire functions.

Theorem 1.1.10. If f ∈ B is an entire function, then the Fatou set of f does not contain

any Baker domain.

Let Ak(f) = {z ∈ C : fk is not analytic at z} and define

Sn(f) =
n−1⋃

k=0

fk(Sf \ Ak(f)) (1.1)

Let P (f) = {z ∈ C : for some n ∈ N, some branch of f−n has a singularity at z}.

Then, Herring [69] showed that

P (f) =
∞⋃

n=1

Sn(f). (1.2)

The set P (f) is the forward orbits of all singular values of f as long as they are defined and

note that S1(f) = Sf . If f is entire, then the sets Ak are empty for each k and P (f) is the

forward orbit of all singular values. Theorem 1.1.10 has been extended to meromorphic

functions by Rippon and Stallard [108].

Theorem 1.1.11. If f is a transcendental meromorphic function for which Sn(f) is

bounded, then f has no Baker domains of period n.

The wandering domains are also related to singular values. A number of classes of

transcendental meromorphic functions not having wandering domains are known [19]. In
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particular, Baker et al. [14] proved non-existence of wandering domains for transcenden-

tal meromorphic functions in the class S. Bergweiler et al. [26] explored the connection

between connectivity of wandering domains and weakly repelling (a fixed point z0 of f is

called weakly repelling if it is either repelling or parabolic with multiplier 1) fixed points.

Using hyperbolic metric, Zheng investigated the relations between forward orbits of

singular values (wherever defined) and limit functions of iterates {fn}n>0 in a Fatou com-

ponent. The following four theorems are due to Zheng [139].

Theorem 1.1.12. Let f be a transcendental meromorphic function and let U be a wan-

dering domain of f . Then all the limit points (including ∞ if it is a limit point) of {fn|U}

lie in the derived set of P (f).

Theorem 1.1.12 was proved by Bergweiler et al. [25] for entire functions.

Theorem 1.1.13. Let f be a transcendental meromorphic function and let U be a compo-

nent of F(f). If fnp|U → q as n → ∞, then either q lies in the derived set of Sp(f) or is

a periodic point of f of period k ≤ p and p is a multiple of k.

As applications of above two theorems, Zheng proved non-existence of Baker domains

and wandering domains for certain functions in a sub-class of B. The derived set of a set

A ⊆ Ĉ is denoted by A′.

Theorem 1.1.14. Let f be a transcendental meromorphic function and f ∈ B. If the set

J(f)
⋂
P (f)′ is finite and P (f)′

⋂
O−(∞) \ {∞} = ∅, then f has no wandering domains.

Theorem 1.1.15. Let f be a transcendental meromorphic function and f ∈ B. If the set

Sp(f)′
⋂
Jp(∞) \ {∞} is empty where Jp(∞) =

p−1⋃

n=0

f−n(∞), then f has no Baker domains

of period k ≤ p. Therefore, if P (f)′
⋂
O−(∞) \ {∞} = ∅, then f has no Baker domains.
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1.1.5 Topology of the Fatou components

The mapping property of a function on a Fatou component is pivotal in determining the

topology of the Fatou components and other important aspects of the dynamics. The

topology of the Fatou components is discussed in this subsection.

Definition 1.1.16. The connectivity of a domain Ω ⊆ Ĉ is defined as the number of

components of Ĉ \ Ω. Domains having connectivity one are known as simply connected

whereas domains having connectivity more than one are called multiply connected. In

particular, domains of connectivity 2 are called doubly connected and domains having

connectivity ∞ are called infinitely connected.

By definition, a Siegel disc is homeomorphic to the unit disc and hence is simply con-

nected. Similarly, being homeomorphic to an annulus, Herman rings are doubly connected.

Baker proved that a multiply connected Fatou component of an entire function is bounded

and wandering [2]. This implies the following theorem [19].

Theorem 1.1.16. If f ∈ E, then any pre-periodic Fatou component is simply connected.

Consequently, the Fatou set of f does not contain Herman rings.

The connectivity question of periodic Fatou components of meromorphic functions is

settled by Bolsch [30, 31].

Theorem 1.1.17. Let f be a meromorphic function, and let U be a periodic Fatou com-

ponent. Then the connectivity of U is 1, 2 or ∞.

Theorem 1.1.17 was earlier proved by Baker et al. [13] when U is an invariant Fatou

component of a general meromorphic function. For completely invariant Fatou components,

we have the following theorem [13].

Theorem 1.1.18. Let f be a meromorphic function, and let U be a completely invariant

Fatou component. Then the connectivity of U is 1 or ∞.
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Meromorphic functions having wandering domains of any connectivity including ∞ are

constructed by Baker et al. in [11]. The same authors also proved that the connectivity of a

pre-periodic Fatou component of a meromorphic function can be any natural number [13].

The number of completely invariant Fatou components of a rational function is at most

two [18]. Baker proved that the Fatou set of a transcendental entire function contains at

most one completely invariant domain [3]. Baker et al. also found that the number of

completely invariant Fatou components of a transcendental meromorphic function belong-

ing to the class S is at most two [13]. Two is best possible as shown for the function

λ tan z for λ ≥ 1 [42]. In this direction, Domı́nguez showed that, if f(z) is a meromorphic

function with at most finitely many poles, then there is at most one completely invariant

Fatou component. The question of number of completely invariant Fatou components for

a general meromorphic function, not necessarily belonging to the class S remains open.

Further, Bergweiler put forward the following question: If the Fatou set F(f) of a mero-

morphic function f has two completely invariant components V1 and V2, is it true that

F(f) = V1

⋃
V2 ? Cao and Wang [36] answered it as

Theorem 1.1.19. Let f be a meromorphic function and f ∈ S. If F(f) contains two

completely invariant components V1 and V2, then F(f) = V1

⋃
V2.

Cao and Wang also answered the question for a special class of functions F defined by

F = {f : f(z) = z + r(z) exp(p(z)),where r is rational and p is polynomial}.

Theorem 1.1.20. Let f be a function in F
⋂
E. If F(f) has a completely invariant

component U , then F(f) = U .

Bergweiler and Eremenko investigated completely invariant Fatou components and

proved the following [24].

Theorem 1.1.21. Let f be a meromorphic function belonging to the class S, having two

completely invariant domains Dj, j = 1, 2. Then
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1. each Dj is the basin of attraction of an attracting or superattracting fixed point, or

of a petal of a rationally indifferent fixed point with multiplier 1,

2. Sf ⊂ D1

⋃
D2,

3. each Dj contains at most one asymptotic value, and if a is an asymptotic value and

0 < ε < dist(a, Sf \ {a}), then the set {z : |f(z) − a| < ε} has only one unbounded

component,

4. J(f)
⋃{∞} is a Jordan curve in Ĉ.

1.1.6 Structure and measure of the Julia sets

The Julia set of a transcendental meromorphic function is usually a very complicated set.

In this subsection, some results relevant to our work on the structure and measure of the

Julia set are presented.

Definition 1.1.17. A maximally connected subset of J(f) is said to be a component of the

Julia set. A subset of Ĉ is said to be totally disconnected if each of its maximally connected

subset is singleton.

It is easy to see that the part of the Julia set of a transcendental meromorphic function

lying in C is always unbounded. However, some or all components of J(f)
⋂

C can be

bounded. The existence of bounded, in particular singleton components of the Julia set is

investigated by Domı́nguez and the following four theorems are proved [50].

Theorem 1.1.22. Let f(z) be a transcendental meromorphic function. Suppose that F(f)

has a component U of connectivity at least three. Then singleton components of J(f) are

dense in J(f).

Theorem 1.1.23. Let f(z) be a transcendental meromorphic function. Suppose that F(f)

has three doubly connected components Ui, i = 1, 2, 3 such that either each component lies
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in the unbounded component of the complement of the other two or two of the components

U1, U2 lie in the bounded component of Ĉ \ U3 but U1 lies in the unbounded component of

Ĉ \ U2 and U2 lies in the unbounded component of Ĉ \ U1. Then singleton components of

J(f) are dense in J(f).

Theorem 1.1.24. Let f(z) be a transcendental meromorphic function. Suppose that F(f)

has multiply connected components Ai, i ∈ N, all different, such that each Ai separates 0

and ∞ and f(Ai) ⊂ Ai+1 for i ∈ N. Then J(f) has a dense set of singleton components.

The Julia set of a meromorphic function with infinitely many poles can be totally

disconnected as shown for λ tan z, 0 < |λ| < 1. However, it is not true for meromorphic

functions with finitely many poles.

Theorem 1.1.25. If f(z) is a transcendental meromorphic function with finitely many

poles, then J(f) cannot be totally disconnected.

A Jordan arc γ in Ĉ is defined to be an homeomorphic image of the interval [0, 1].

Following Stallard [123], γ is said to be an analytic arc if the homeomorphism ϕ has a

meromorphic extension in a neighbourhood of [0, 1]. If the extended ϕ is univalent at each

point of [0, 1], then γ is said to be a regular arc. If the interval [0, 1] is replaced by the

unit circle, then γ is called a Jordan curve.

Definition 1.1.18. For a meromorphic function f , γ is said to be a free Jordan arc in

J(f) if there exists an homeomorphism ψ of the open unit disc onto a domain D in Ĉ such

that J(f)
⋂
D is the image of (−1, 1) under ψ and γ is the image of some real interval

[a, b] where −1 < a < b < 1.

The existence of free Jordan arcs in the Julia sets of meromorphic functions and related

results are established by Stallard [123].

20



CHAPTER 1 Introduction

Theorem 1.1.26. If f is a meromorphic function and J(f) contains a free Jordan arc γ,

then J(f) is a Jordan arc or a Jordan curve. Further, if γ is analytic, then J(f) is also an

analytic curve.

Theorem 1.1.27. If f is a meromorphic function and J(f) contains a free analytic Jordan

arc, then J(f) is a straight line, circle, segment of a straight line or an arc of a circle.

Theorem 1.1.28. There exist meromorphic functions g0, g1 and g2 such that J(g0) =

R
⋃{∞}, J(g1) = [0, ∞] and J(g2) = [−∞, − 1]

⋃
[1, ∞].

Theorem 1.1.29. Let f(z) be a transcendental meromorphic function. Suppose that J(f)

is a Jordan arc or a Jordan curve. If J(f) is not a straight line, circle, segment of a straight

line or an arc of a circle, then J(f) has no differentiable arc.

Rippon and Stallard [109] proved that a transcendental meromorphic function with

finitely many poles cannot have a free Jordan arc.

Even though the Julia set of a function has empty interior, it is not necessary that

its Lebesgue measure is zero. McMullen [94] showed that the Julia set of sin(αz + δ) for

α, δ 6= 0 has positive area. In a series of papers, Stallard [119–121, 124–129] investigated

the Hausdorff dimension and measure of the Julia sets of entire and meromorphic functions.

We briefly state the definition and the result related to the measure of the Julia set that

are needed for our study.

Definition 1.1.19. Let m(A) denote the measure of A ⊂ Ĉ and Dr(z) denote the disc of

radius r with center at z. A subset E of Ĉ is said to be thin at ∞ if its density is bounded

away from 1 in all sufficiently large discs, that is, if there exist positive R0 and ε such that,

for all complex z and every disc Dr(z) = {w : |w − z| < r}, r > R0,

density(E,Dr(z)) =
m(E

⋂
Dr(z))

m(Dr(z))
< 1 − ε.
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Recall that P (f) = {z : For some n ∈ N, some branch of f−n has a singularity at z}

and set P ∗(f) = P (f) \ {∞}. Stallard [122] found a sufficient condition for the Julia sets

to have zero Lebesgue measure.

Theorem 1.1.30. Let f be a meromorphic function and d(P ∗(f), J(f)) > 0 where P ∗(f)

is the closure of P ∗(f) in C. If E is a measurable completely invariant subset of J(f) such

that E is thin at ∞, then m(E) = 0. In particular, the Julia set has measure zero if it is

thin at ∞.

1.1.7 Order and Schwarzian derivative

The order of an entire/meromorphic function plays an important role in determining the

number of finite asymptotic values and hence in the study of its dynamics. Similarly,

the Schwarzian derivative of a meromorphic function is very relevant in the study of its

dynamics. The main property of the functions with polynomial Schwarzian derivatives is

that these functions have finitely many asymptotic values and no critical values. In this

subsection, the definitions and the results related to the order and Schwarzian derivative

of a function are reviewed.

The Schwarzian derivative [55] SD(f) of f(z) is defined as

SD(f) =

(
f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

.

Meromorphic functions with polynomial or constant Schwarzian derivative are studied by

Devaney and Keen [43, 44].

For a meromorphic function f , let m(r,∞) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ where log+ α =

max(logα, 0) and N(r,∞) =

∫ r

0

n(t,∞) − n(0,∞)

t
dt+ n(0,∞) log r where n(r,∞) is the

number of poles of f(z) in the disc {z : |z| ≤ r}, counted according to their multiplicities.

Define T (r) = m(r,∞) + N(r,∞). The function T (r) is known as the characteristic

function of f(z). Other equivalent definitions of T (r) can be found in [134].
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Definition 1.1.20. Let T (r) denote the characteristic function of a meromorphic function

f(z). Then f(z) is said to be of order ρ if ρ = lim sup
r→∞

log T (r)

log r
so that T (r) = O(rρ+ε) as

r → ∞ for every positive ε but not for ε < 0.

Above definition agrees with the order of entire functions as defined below [134].

Definition 1.1.21. An entire function f is said to be of finite order if there is a positive

number A such that, as |z| = r → ∞, |f(z)| < KerA

for some constant K. The lower

bound ρ of numbers A for which this is true is called the order of the function.

The following three theorems [71] are useful to calculate the order of an entire function.

Theorem 1.1.31. A necessary and sufficient condition that an entire function f(z) =
∞∑

n=0

anz
n should be of order ρ, is that lim inf

n→∞

log 1
|an|

n log n
=

1

ρ
. If for certain n, an = 0, the

terms in the above limit are to be taken as zero.

Theorem 1.1.32. The order of an entire function f(z) and the order of f ′(z) are same.

Theorem 1.1.33. If f1 and f2 are two entire functions having orders ρ1 and ρ2 respectively,

then orders of f1

f2
and f1 + f2 are at most max{ρ1, ρ2}.

There is a close correlation between the order of an entire function and the number of

finite asymptotic values of a function. In 1907, Denjoy conjectured that an entire function

of order ρ can have at most 2ρ asymptotic values. The conjecture was proved in affirmative

by Ahlfors [1]. Thus, we have the following Denjoy-Ahlfors theorem.

Theorem 1.1.34. If an entire function is of finite order ρ, then it has at most 2ρ finite

asymptotic values.

Other results connecting the order of a function and the type of singular values are

given in the next two theorems [23, 101].
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Theorem 1.1.35. Let f be an entire function with finite order ρ. If f has 2ρ finite

asymptotic values, then none of them is a direct singularity of f−1.

Theorem 1.1.36. If f is a meromorphic function of finite order and a is an asymptotic

value of f , then a is a limit point of critical values ak 6= a or all singularities of f−1 over

a are logarithmic.

1.2 Motivation

A transcendental entire or meromorphic function has an essential singularity at ∞ and the

pre-images of all the points in Ĉ except possibly two accumulate at ∞. For this reason,

the transcendental entire or meromorphic functions cannot be defined at ∞ which ulti-

mately results in a high degree of complexity in the study of their dynamics. A number

of instruments for investigation of the dynamics of rational functions are no longer appli-

cable for transcendental functions. Certain new features arise and more are expected in

the dynamics of transcendental entire and meromorphic functions. The dynamical study

of individual functions is very often useful and sometimes gives intuitions to prove more

general results. The present work is an attempt to investigate the dynamics of certain kind

of transcendental entire and meromorphic functions. If a small perturbation is applied to a

function f in a family of functions, then the dynamics of the perturbed function may have

essentially different features from that of f . The simplest kind of perturbation associated

with a function f is the one parameter family {λf : λ is a parameter }. We are mainly

interested in studying the changes in the dynamics of functions in the one parameter family

{λf : λ is a parameter } as the parameter λ changes.

A bifurcation is said to occur at a parameter value λ∗ in the dynamics of a one parameter

family of functions {fλ ≡ λf : λ is a real parameter }, if there exists ε > 0 such that

whenever a and b satisfy λ∗ − ε < a < λ∗ and λ∗ < b < λ∗ + ε, the dynamics of fa is

different from that of fb. In other words, there is an abrupt change in the nature of the
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Fatou set and the Julia set of the functions when the parameter value crosses through the

point λ∗. Bifurcation in the dynamics of functions in a one parameter family is an intricate

and important issue in complex dynamics, and has been observed in a number of families

of transcendental entire and meromorphic functions. The Julia set of λez changes from

a nowhere dense subset of Ĉ to the whole of extended complex plane when λ increases

through the value 1
e
. This phenomena is referred to as explosion in the Julia sets or chaotic

burst in the dynamics of functions in the one parameter family {λez : λ > 0}. An

extensive study of the dynamics of λez is carried out by Devaney et al. [27,39–41,45,47,48]

and others [15–17, 28, 89, 102, 107, 115, 116, 135, 136]. The Julia set of λ tan z is a totally

disconnected subset of R
⋃{∞} for |λ| < 1 whereas it is equal to R

⋃{∞} for |λ| ≥ 1. This

sudden change in dynamics in the tangent family is first reported by Keen and Kotus [42].

Later on, various aspects of dynamics of tangent are explored by Keen et al. [80–82],

Jiang [73], Skorulski [118] and Oliveira [103]. In these lines, Kremer [84] and Peter et

al. [105] studied the functions λzez and λ+z+ez respectively. Kapoor and Prasad [76,77]

and Prasad [106] have furthered it by studying certain entire functions belonging to the

class B \S. Sajid [113] studied certain transcendental meromorphic functions having non-

rational Schwarzian derivatives including z
z+1

e−z, sinh z
z2 and sinh2 z

z4 .

In this work, we investigate the changes in the dynamics of functions in certain one

parameter families of transcendental entire and meromorphic functions. The functions

considered for the dynamical study are mainly (i) meromorphic functions with non-rational

Schwarzian derivative and infinite order, (ii) entire and meromorphic functions of bounded

type, (iii) meromorphic functions which are not of bounded type and (iv) real meromorphic

functions.
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1.3 Organization

The thesis consists of six chapters. Basic definitions and a brief literature survey of the

dynamics of transcendental entire and meromorphic functions are provided in Chapter 1.

The organization of the rest of the chapters is as follows.

In Chapter 2, dynamics of functions in the one parameter family {λ tanh(ez) : λ ∈

R\{0}} is investigated. Certain dynamically relevant properties of λ tanh(ez) are discussed

in Section 2.1. Section 2.2 deals with the existence and nature of all the real periodic points

of λ tanh(ez). In Section 2.3, bifurcation in the dynamics of λ tanh(ez) is proved to occur

at a critical parameter λ∗ ≈ −3.2946. Section 2.4 describes the change in topology of the

Fatou components as a result of above mentioned bifurcation. Finally, it is established in

Section 2.5 that the Lebesgue measure of the Julia set of λ tanh(ez) is zero for all nonzero

λ.

Chapter 3 deals with the dynamics of functions in a class of entire transcendental

functions which are of bounded type. We define a class E of transcendental entire functions

f(z) =
∞∑

n=0

anz
n for which (i) an ≥ 0 for all n, (ii) f(x) > 0 for x < 0 and (iii) the set of

all singular values Sf is a bounded subset of R. For each f ∈ E, the dynamics of functions

in the one parameter family {λf : λ > 0} is investigated. Let E0 ≡ {f ∈ E : f(0) = 0}

and E1 ≡ {f ∈ E : f(0) 6= 0} . We have shown in Section 3.1 that both the classes

E0 and E1 are closed under composition and that the compositions of certain kind of

polynomials with the functions in E yield functions belonging to E. The real dynamics

of λf(z) is determined separately for f ∈ E0 and f ∈ E1 in Section 3.2. It is shown in

Section 3.3 that, for f ∈ E1, there exists a positive real number λ∗ (depending on f) such

that a similar phenomena as chaotic burst occurs in the dynamics of functions in the one

parameter family {λf : λ > 0} at λ = λ∗. For f ∈ E0, it is shown that the Fatou set of

λf is always the union of the attracting basin of the superattracting fixed 0 and possibly
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wandering domains for λ > 0. It is proved that the Fatou set of λf is connected when it is

an attracting basin and all the singular values of λf lie in the immediate attracting basin.

Lastly, some examples of functions are discussed in Section 3.4.

In Chapter 4, the dynamics of functions in certain class of meromorphic functions

of bounded type is investigated. Consider a class E of entire functions h such that

(i) h(z) =
∞∑

n=0

anz
n for z ∈ C where an ≥ 0 for all n > 0, (ii) a0 = h(0) ≥ 1, (iii) h(x) >

0 for all x < 0 and (iv) the closure of all the singular values of h is a bounded subset

of {x ∈ R : x 6= 0}⋃{z ∈ C : |z| = 1 and z 6= ±i}. Then, we consider the class

M ≡ {f(z) = Jn(h(z)) for z ∈ C : n ∈ N and h ∈ E} where Jn denotes the n-times

composition of the Joukowski function J(z) = z+ 1
z
. The change in dynamics of functions

in the one parameter family S ≡ {fλ = λf : λ > 0} for f ∈ M is mainly explored in

this chapter. General properties of fλ are first proved in Section 4.1. For instance, it is

proved that Sp(fλ) is bounded for each p and for each natural number m, there exists a

function in M having exactly m singular values. The dynamics of fλ(x) for x ∈ R is found

in Section 4.2 and a similar phenomena as chaotic burst occurs in the dynamics of func-

tion in S is shown at some critical value λ∗ (depending on f) in Section 4.3. An example

λJ(ez +1) ∈ S is discussed in detail in Section 4.4. Besides chaotic burst, we establish that

the Julia set of λJ(ez +1) contains infinitely many bounded but not singleton components

along with unbounded components whenever it is not equal to Ĉ. Further, the Julia set

can be expressed as a disjoint union of two completely invariant subsets one of which is

totally disconnected.

Chapter 5 is devoted to the study of dynamics of certain meromorphic functions

which are not of bounded type. Define N =
{
f(z) = zm

sinhm
z

for z ∈ C : m ∈ N
}

. The

one parameter family S = {fλ(z) = λf(z) : λ ∈ R \ {0}} for f ∈ N is considered. The

functions fλ ∈ S are proved to be not of bounded type in Section 5.1 along with other

dynamically relevant properties of fλ. Since fλ and f−λ are conformally conjugate and
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hence have same dynamics, we only investigate the dynamics of fλ ∈ S for λ > 0. The real

dynamics of fλ, λ > 0 is investigated in Section 5.2. The bifurcation in the dynamics of

functions fλ ∈ S, λ > 0 at a critical parameter λ∗ is proved in Section 5.3. Finally, the

effect of this bifurcation on the topology of Fatou components is investigated in Section 5.4.

The dynamics of certain real meromorphic functions is studied in Chapter 6. Let R

be a class of real meromorphic functions f satisfying (i) f(z) =
∞∑

k=−∞
Ak

(
1

ak − z
− 1

ak

)
,

(ii) Ak > 0, ak 6= 0 for k ∈ Z and (iii)
∞∑

k=−∞

Ak

a2
k

converges. Then, a subclass R∗ of R

is considered that contains those functions f for which (i) f(z) =
∞∑

k=1

Akz

a2
k − z2

, (ii) Ak >

0, ak 6= 0 for k ∈ N and (iii)
∞∑

k=1

Ak

a2
k

converges. The change in the nature of the Fatou set of

functions in the family S ≡ {ha,b,c(z) ≡ a+bz− c
z
+f(z) : a, b, c ∈ R, b, c ≥ 0 and f ∈ R}

is investigated. Let ha(z) ≡ ha,0,0(z) = a+f(z) where f ∈ R. The dynamics of ha is mainly

investigated in Section 6.1. A sufficient condition for f ∈ R∗ for being bounded on the

imaginary axis is provided and the Fatou sets of hb,c(z) ≡ h0,b,c(z) = bz − c
z

+ f(z) and

hb(z) ≡ h0,b,0(z) = bz + f(z) are explored in Section 6.2 when f ∈ R∗ is bounded on the

imaginary axis. Several examples are discussed in Section 6.3. In Section 6.4, the dynamics

of a+ tan z is explored for a ∈ C \ R though these functions are not real meromorphic.
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Dynamics of fλ(z) = λtanh (ez)

The dynamics of transcendental meromorphic functions in the one parameter family

M = {fλ(z) = λ f(z) : f(z) = tanh(ez) for z ∈ C and λ ∈ R \ {0} }

is studied in the present chapter. The dynamics of the transcendental entire functions

λez, (λ ∈ C \ {0}) have been extensively studied and a number of interesting properties

of the Julia set of λez are proved [15–17, 27, 28, 39–41, 45, 47, 48, 89, 97, 102, 107, 115, 116,

135, 136]. Devaney and Keen [42–44] studied the dynamics of meromorphic functions with

constant/polynomial Schwarzian derivatives and in particular, the dynamics of functions

in the one parameter family {λ tan z : λ ∈ R \ {0} }. Jiang [73], Keen and Kotus

[80] furthered the study of dynamics of the tangent family. It is worth to note that the

dynamics of λ tanh z is essentially same as the dynamics of λ tan z, since tanh z and tan z

are conformally conjugate by the conjugating map ψ(z) = iz.

The real meromorphic function tan z maps the upper half-plane into itself and this

simplifies the determination of the dynamics of λ tanh z, λ ∈ R \ {0}. But, the mapping

properties of the real meromorphic function tanh(ez) are comparatively more complicated.

Further, the function tanh(ez) is a meromorphic function having non-rational Schwarzian

derivative and the order is infinite. However, the functions λez and λ tanh z have constant

Schwarzian derivatives and finite orders. Even though the order of fλ(z) = λ tanh(ez) is
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infinite, it has only 3 finite asymptotic values, namely ±λ and 0. The asymptotic values

of ez and tanh z are logarithmic that are the simplest kind of direct singularities of the

respective inverse functions. However, the asymptotic values ±λ of fλ are logarithmic, and

over the asymptotic value 0 there lie a direct singularity as well as ordinary points of the

inverse function of fλ. Thus, the properties of the function fλ differ in many ways from

those of λez and λ tanh z and this suggests that we explore the dynamics of fλ.

The change in the dynamical behaviour of the functions fλ ∈ M is also investigated in

this chapter. In the dynamics of functions fλ ∈ M, we show that the bifurcation occurs

only at one critical parameter λ∗ ≈ −3.2946. Then, certain topological properties of the

Fatou sets of fλ are proved. Finally, it is shown that the measure of the Julia set of fλ is

zero.

2.1 Properties of fλ

In this section, we prove some basic results about the functions fλ ∈ M that are relevant

in the study of the dynamics of fλ. The function fλ(z) = λ tanh(ez) is periodic of minimal

period 2πi and maps the real line R onto (0, λ) for λ > 0. The poles of fλ(z) are the zeros of

cosh(ez), and hence they satisfy e2ez

= −1 = eiπ(2k+1) for k ∈ Z. Therefore, the set of poles

of fλ(z) is {z = x+iy ∈ C : x = ln
∣∣π
2
(2k + 1)

∣∣ and y = π
2
(2l+1) where k ∈ Z and l ∈ Z}.

Further, all the poles are simple and lie in the right half-plane {z ∈ C : <(z) ≥ ln(π
2
)}.

Observe that fλ(z) = λ tanh(ez) = λ(1+ −2
e2ez

+1
) and order of −2

e2ez
+1

is infinity ( [101], page-

216) and therefore, the order of the function fλ(z) = λ tanh(ez) is infinite.

Lemma 2.1.1. Let g be a meromorphic function, h be a non-constant entire function and

g, h ∈ S. Let F (z) = g(h(z)) be the composition function. If a is a finite asymptotic value

of F (z), then either a is an asymptotic value of g or there exists b ∈ C such that g(b) = a

and b is an asymptotic value of h. Consequently, the number of finite asymptotic values of

the composite function F is at most the sum of the numbers of finite asymptotic values of
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the individual functions g and h.

Proof. Let γ : [0, ∞) → C be an asymptotic path corresponding to an asymptotic value a

for the function F (z). Let M denote the collection of all limit points of the set

{h(γ(tk)) : {tk} is any sequence of positive real numbers which tends to ∞ as k → ∞}.

Observe that g(z) = a for every z ∈ M . Since g is a non-constant meromorphic function,

the set M cannot have any limit point in C. Therefore, M
⋂

C is a discrete subset of C.

Now we claim that M contains only one element in Ĉ. If possible, the set M contains more

than one element in Ĉ. Suppose that m1 and m2 are in M with m1 6= m2. Then, there exist

open discs B1(m1) and B2(m2) such that B1(m1) ∩M = {m1} and B2(m2) ∩M = {m2}.

The curve h(γ(t)) intersects the discs B1(m1) and B2(m2) infinitely many times and also

the boundaries C1 = ∂B1(m1) and C2 = ∂B2(m2) of these discs infinitely many times.

Note that, if {h(γ(t)) : t ≥ 0} ∩ Ci is a finite set S (say), then S
⋂
M 6= ∅ which is a

contradiction to Bi(mi) ∩M = {mi} for i = 1, 2. Suppose that {h(γ(t)) : t ≥ 0} ∩ Ci is

an infinite set. Then, the intersecting points {h(γ(t)) : t ≥ 0}∩Ci will have a limit point,

li (say), since C1 and C2 are compact. This implies that li ∈ M which is a contradiction

to Bi(mi) ∩M = {mi} for i = 1, 2. Therefore, M is a singleton set in Ĉ.

If M = {b} where b ∈ C, then a = g(b) and b is an asymptotic value of h(z). If M =

{∞}, then a is an asymptotic value of g(z). Therefore, in both the cases, a corresponds

either to an asymptotic value of h or to that of g. This completes the proof.

The following proposition determines all the singular values of fλ ∈ M.

Proposition 2.1.1. Let fλ ∈ M. Then fλ(z) has only three (finite) asymptotic values and

no critical values.

Proof. Since f ′
λ(z) = λ ez sech2(ez) 6= 0 for any z ∈ C, it follows that fλ(z) has no critical

points and hence it has no critical values.
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Turning to asymptotic values, by Lemma 2.1.1, it follows that fλ(z) will have at most

3 finite asymptotic values, since ez has only one finite asymptotic value, namely, 0 and

λ tanh(z) has two finite asymptotic values, namely, λ and −λ.

If γ1(t) = −t for t ∈ [0, ∞), then lim
t→∞

fλ(γ1(t)) = 0. If γ2(t) = t for t ∈ [0, ∞), then

lim
t→∞

fλ(γ2(t)) = λ. When γ3(t) = t + iπ for t ∈ [0, ∞), lim
t→∞

fλ(γ3(t)) = −λ. Therefore, 0

and ±λ are the three finite asymptotic values of fλ(z).

Two transcendental meromorphic functions f, g : C → Ĉ are called conformally con-

jugate if there is an analytic homeomorphism ψ on Ĉ such that ψ(f(z)) = g(ψ(z)) for

all z ∈ Ĉ. Since f is transcendental, the function ψ(f(z)) is undefined only at ∞ which

means that g(ψ(z)) is undefined only at ∞. Therefore, any conformal conjugacy ψ exist-

ing between two meromorphic functions satisfies ψ(∞) = ∞ and hence will be of the form

ψ(z) = az + b where a and b are complex constants with a 6= 0. In the following, we show

that no two functions fλ1 and fλ2 in M are conformally conjugate. Suppose that there exists

an analytic homeomorphism ψ(z) = az+ b for all z ∈ Ĉ between two functions fλ1 and fλ2

in M with λ1 6= λ2. In the proof of Proposition 2.1.1, it is shown that the function fλi
has

three finite asymptotic values, namely, 0, λi and −λi for i = 1, 2. Note that ±λi are the

exceptional values of fλi
. Now, the conjugacy map ψ is required to take the set {λ1, −λ1}

to {λ2, −λ2}. That is, either ψ(λ1) = λ2, ψ(−λ1) = −λ2 or ψ(λ1) = −λ2, ψ(−λ1) = λ2.

This implies that b = 0 and consequently, ψ(z) = az. Therefore, afλ1(z) = fλ2(az) for all

z ∈ C. It follows that af ′
λ1

(0) = af ′
λ2

(0) and λ1 = λ2 which is not true.

Define φ : R → R by φ(x) = x
f(x)

+ 1
f ′(x)

. Now, we discuss some properties of φ and

thereby define the critical parameter λ∗ that will be used later in this chapter. Note that,

φ(x) = xf ′(x)+f(x)
f(x)f ′(x)

= 1
tanh(ex)

(
x+ tanh(ex)

exsech2
(ex)

)
= 1

tanh(ex)

(
x+ e2ex−e−2ex

4ex

)
= 1

4ex tanh(ex)

(4xex + e2ex − e−2ex

) . Letting φ1(x) = 4xex + e2ex − e−2ex

, we observe that φ′
1(x) =

2ex(2x + 2 + e2ex

+ e−2ex

) = 2exφ2(x), where φ2(x) = 2x + 2 + e2ex

+ e−2ex

. The function

φ′
2(x) = 2+2ex(e2ex −e−2ex

) > 0 for x < 0. This implies that φ2(x) is strictly increasing for
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x < 0. Since φ2(x) → −∞ as x→ −∞ and φ2(x) → 2+e2 +e−2 > 0 as x→ 0, there exists

a point x2 < 0 such that φ2(x) < 0 for x < x2, φ2(x2) = 0 and φ2(x) > 0 for x2 < x < 0 and

consequently, φ′
1(x) < 0 for x < x2, φ

′
1(x2) = 0 and φ′

1(x) > 0 for x2 < x < 0. Therefore,

φ1(x) is decreasing for x < x2 and, is increasing for x2 < x < 0. This shows that the

function φ1(x) attains the minimum value at the point x2 and the minimum value φ1(x2)

is negative, because φ1(x) → 0 as x → −∞. Since φ1(x) → e2 − e−2 > 0 as x → 0, there

exists a unique point x∗ with x2 < x∗ < 0 such that φ1(x) < 0 for x < x∗, φ1(x) = 0 for

x = x∗ and φ1(x) > 0 for x∗ < x < 0; and consequently,

φ(x)





< 0 for x < x∗ < 0
= 0 for x = x∗

> 0 for x∗ < x < 0
(2.1)

Observe that φ(x) > 0 for x ≥ 0. Define

λ∗ =
x∗

f(x∗)
=

−1

f ′(x∗)
(2.2)

where x∗ is the unique real root of the equation φ(x) = x
f(x)

+ 1
f ′(x)

= 0. Numerically,

it is found that x∗ ≈ −1.0789 and λ∗ ≈ −3.2946. In this chapter, x∗ and λ∗ denote the

numbers as defined by Equation (2.1) and Equation (2.2) respectively.

2.2 Real periodic points

In this section, the real periodic points of fλ ∈ M are investigated. The existence and

nature of the real fixed points is proved in Theorem 2.2.1. In Theorem 2.2.2, it is proved

that fλ cannot have a real periodic point of prime period more than two. The existence

and nature of the real periodic points of prime period 2 is analyzed in Theorem 2.2.3.

The function f(x) = tanh(ex) is positive for all x ∈ R. Since f ′(x) = ex 1
cosh2 ex >

0 for all x ∈ R, the function f(x) is strictly increasing on R. It is easy to see that

f(x) → 0 as x → −∞ and f(x) → 1 as x → +∞. Now, we find the nature of the

function f ′′(x) = ex 1
cosh2 ex (1 − 2ex tanh(ex)) on R. Observe that the function d

dx
(1 −
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2ex tanh(ex)) = −2ex(ex 1
cosh2 ex + tanh(ex)) < 0 for all x ∈ R. Therefore, the function

ψ(x) = 1 − 2ex tanh(ex) is a strictly decreasing on R. Since lim
x→−∞

1 − 2ex tanh(ex) = 1

and lim
x→0

1 − 2ex tanh(ex) = 1 − 2
e2 − 1

e2 + 1
=

3 − e2

e2 + 1
< 0, it follows that there exists a point

x̂ < 0 such that ψ(x) > 0 for x < x̂, ψ(x) = 0 for x = x̂ and ψ(x) < 0 for x > x̂.

Consequently,

f ′′(x) = ex 1

cosh2 ex
(1 − 2ex tanh(ex))





> 0 for x < x̂
= 0 for x = x̂
< 0 for x > x̂

(2.3)

(See Figure 2.1(b)).
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Figure 2.1: Graphs of (a) f ′(x) and (b) f ′′(x).

This shows that the function f ′(x) increases in the interval (−∞, x̂), decreases in the

interval (x̂, ∞) and attains the maximum value at the point x̂. Also f ′(x) → 0 as |x| → ∞

(See Figure 2.1(a)). Define λ̂ as 1
f ′(x̂)

. It is numerically computed that x̂ ≈ −0.261 and

λ̂ ≈ 2.233.

Theorem 2.2.1. Let fλ ∈ M.

1. If λ > λ∗, then fλ has a unique real fixed point aλ (say) and that is attracting.

2. If λ = λ∗, then fλ has a unique rationally neutral real fixed point at x = x∗, where

x∗ is the unique real root of φ(x) = x
f(x)

+ 1
f ′(x)

= 0.

3. If λ < λ∗, then fλ has a unique real fixed point rλ (say) and that is repelling.
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Proof. Set hλ(x) = fλ(x) − x = λf(x) − x where f(x) = tanh(ex) for x ∈ R and λ is a

nonzero real parameter. Then, h′λ(x) = λf ′(x) − 1 and h′′λ(x) = λf ′′(x).

For all λ,

lim
x→−∞

hλ(x) = +∞ and lim
x→+∞

hλ(x) = −∞ .

Since hλ(x) is a continuous function on R, it has a real zero. Consequently, the function

fλ has a real fixed point xλ (say). Since f(x) > 0 for all x ∈ R, the real fixed point of fλ

has the same sign as that of λ. If λ > 0, the function h′λ(x) is increasing from the value −1

to the value h′λ(x̂) = λf ′(x̂)− 1 in the interval (−∞, x̂] and it is decreasing from the value

h′λ(x̂) to −1 in the interval [x̂, ∞) where x̂ satisfies f ′′(x̂) = 0. If λ < 0, the function h′λ(x)

is decreasing from the value −1 to the value h′λ(x̂) = λf ′(x̂)−1 < 0 in the interval (−∞, x̂]

and it is increasing from the value h′λ(x̂) to −1 in the interval [x̂, ∞). For λ < 0, it follows

that the function hλ(x) is strictly decreasing and consequently, the real fixed point xλ of

fλ is unique.

Case (1): λ > λ∗

Subcase (a): λ ≥ λ̂

In this case, the function h′λ(x) is increasing from the value −1 to the value h′λ(x̂) =

λf ′(x̂) − 1 ≥ λ̂f ′(x̂) − 1 = 0 in the interval (−∞, x̂] and it is decreasing from the value

h′λ(x̂) to −1 in the interval [x̂, ∞). Therefore, there exist two points x1,λ and x2,λ (say)

with x1,λ ≤ x2,λ such that h′λ(x) = 0 for x = x1,λ and x = x2,λ. Further, h′λ(x) < 0

for x ∈ (−∞, x1,λ) ∪ (x2,λ, ∞) and h′λ(x) > 0 for x ∈ (x1,λ, x2,λ). If x2,λ ≤ 0, then

−1 < h′λ(x) < 0 for all x > 0. Therefore, it follows that the real fixed point xλ (which is

positive as λ > 0 in this case) of fλ is unique and attracting. When x2,λ > 0, the function

hλ attains the maximum value at x = x2,λ in (0, ∞). Since 0 < hλ(0) < hλ(x2,λ) and

hλ(x) is decreasing in the interval (x2,λ, ∞), it follows that x2,λ < xλ. Therefore, the real

fixed point xλ of fλ is unique and attracting. Let us rename the fixed point xλ as aλ when

λ ≥ λ̂.
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Subcase (b): 0 < λ < λ̂

If 0 < λ < λ̂, the maximum value of h′λ(x̂) = λf ′(x̂) − 1 < λ̂f ′(x̂) − 1 = 0 for all x ∈ R. It

follows that −1 < h′λ(x) = f ′
λ(x) − 1 < 0 for all x ∈ R. Therefore, the real fixed point xλ

of fλ is unique and attracting. Rename the real fixed point xλ as aλ.

Subcase (c): −λ̂ < λ < 0

If −λ̂ < λ < 0, the minimum value of h′λ(x̂) = λf ′(x̂) − 1 > −λ̂f ′(x̂) − 1 = −2 for all

x ∈ R. It follows that −2 < h′λ(x) = f ′
λ(x) − 1 < −1 for all x ∈ R. Therefore, the real

fixed point xλ of fλ is attracting for fλ. In this case, we rename xλ as aλ.

Subcase (d): λ∗ < λ ≤ −λ̂

The function h′λ(x) is decreasing from the value −1 to the value h′λ(x̂) = λf ′(x̂) − 1 ≤

−λ̂f ′(x̂) − 1 ≤ −2 in the interval (−∞, x̂] and it is increasing from the value h′λ(x̂) to −1

in the interval [x̂, ∞). Since h′λ(x̂) + 2 ≤ 0 for λ∗ < λ ≤ −λ̂, there exist two points y1,λ

and y2,λ (say) with y1,λ ≤ y2,λ such that h′λ(x) + 2 = 0 for x = y1,λ and x = y2,λ. Further,

h′λ(x) + 2 > 0 for x ∈ (−∞, y1,λ) ∪ (y2,λ, ∞) and h′λ(x) + 2 < 0 for x ∈ (y1,λ, y2,λ). Now,

the parameter λ can be realized in two ways as λ = −1
f ′(y1,λ)

and λ = xλ

f(xλ)
where y1,λ is the

smaller root of h′λ(x) + 2 = 0 and xλ is the unique real fixed point of fλ. It is noticed that

x∗ < x̂ < 0 . Now we shall show that the points xλ and y1,λ are in the interval (x∗, x̂] and

xλ < y1,λ. Since λ∗ < λ ≤ −λ̂, we have −1
f ′(x∗)

< −1
f ′(y1,λ)

≤ −1
f ′(x̂)

. Using the fact that −1
f ′

is

strictly increasing in (−∞, x̂), we get

x∗ < y1,λ ≤ x̂ .

For all x < 0, d
dx

(
x

f(x)

)
> 0 implies that x

f(x)
is strictly increasing in R− = {x ∈ R :

x < 0}. The inequality λ∗ < λ ≤ −λ̂ gives x∗

f(x∗)
< xλ

f(xλ)
≤ −1

f ′(x̂)
. Since x̂ > x∗, we have

φ(x̂) > 0 and x̂
f(x̂)

> −1
f ′(x̂)

. Therefore, x∗

f(x∗)
< xλ

f(xλ)
≤ −1

f ′(x̂)
< x̂

f(x̂)
which gives that

x∗ < xλ < x̂ .

Since φ(y1,λ) > 0, it follows that
y1,λ

f(y1,λ)
> −1

f ′(y1,λ)
= xλ

f(xλ)
. Since the function x

f(x)
is
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increasing for x < 0, we get xλ < y1,λ. Now, the function h′λ(x) + 2 > 0 for x < y1,λ. So,

it follows that −1 < f ′
λ(x) < 0 for x < y1,λ and in particular, −1 < f ′

λ(xλ) < 0. Therefore,

the real fixed point xλ is attracting and rename it as aλ.

Case (2): λ = λ∗

By definition λ∗ = x∗

f(x∗)
= −1

f ′(x∗)
. Since the function x

f(x)
is one-to-one in the negative real

axis, it follows that the real fixed point xλ is equal to x∗. The real fixed point x∗ is a

rationally neutral fixed point, because λ∗f ′(x∗) = −1.

Case (3): λ < λ∗

As in Subcase (d), the minimum value of h′λ(x̂) < −2. Therefore, there exist two points y1,λ

and y2,λ (say) with y1,λ < y2,λ such that h′λ(x) + 2 = 0 for x = y1,λ and x = y2,λ. Further,

h′λ(x) + 2 > 0 for x ∈ (−∞, y1,λ) ∪ (y2,λ, ∞) and h′λ(x) + 2 < 0 for x ∈ (y1,λ, y2,λ). Here

our intention is to show that the fixed point xλ lies in (y1,λ, y2,λ) where |f ′
λ(x)| > 1. From

the deliberations made in Subcase (d) of Case (1), it is clear that y1,λ < x̂ < y2,λ. Now

λ < λ∗ gives that xλ

f(xλ)
< x∗

f(x∗)
. Since x

f(x)
is an increasing function in R− and xλ, x

∗ are

in R−, we get xλ < x∗. Therefore, xλ < x∗ < x̂ < y2,λ. Observe that λ < λ∗ implies

−1
f ′(y1,λ)

< −1
f ′(x∗)

. Since the function −1
f ′(x)

is an increasing function in the interval (−∞, x̂)

which contains y1,λ and x∗, it follows that y1,λ < x∗. By Equation (2.1), φ(y1,λ) < 0

and that gives
y1,λ

f(y1,λ)
< −1

f ′(y1,λ)
. But, λ = −1

f ′(y1,λ)
= xλ

f(xλ)
. Therefore,

y1,λ

f(y1,λ)
< xλ

f(xλ)
and

consequently y1,λ < xλ. Therefore, the fixed point xλ is repelling. Let us rename it as

rλ.

Theorem 2.2.2. Let fλ ∈ M. Then, fλ has no real periodic point of prime period more

than two.

Proof. Let gλ(x) = fλ(fλ(x)) for x ∈ R. Then, the function gλ(x) is strictly increasing on

R, since g′λ(x) = λf ′(λf(x))λf ′(x) > 0 for all x ∈ R. Therefore the function gλ(x) can have

only fixed points on R. If possible, let x0 be a real periodic point of fλ of prime period p > 2.

Then, gλ(x0) = f 2
λ(x0) 6= x0 and fp

λ(x0) = x0. If p is even, then fp
λ(x0) = x0 = g

p
2
λ (x0). If p
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is odd, then f 2p
λ (x0) = x0 = gp

λ(x0). This shows that gλ has a real periodic point of prime

period greater than one which is a contradiction. Thus, we conclude that fλ(x) cannot

have a real periodic point of prime period more than two.

The existence and the nature of the real periodic points of prime period 2 is explored

in the following theorem.

Theorem 2.2.3. Let fλ ∈ M.

1. If λ > λ∗, f 2
λ has only one real fixed point aλ which is an attracting fixed point of fλ.

2. If λ = λ∗, f 2
λ has only one real fixed point x∗ which is a rationally neutral fixed point

of fλ.

3. If λ < λ∗, f 2
λ has exactly three real fixed points. One of the fixed points of f 2

λ is rλ

which is a repelling fixed point of fλ. The other two fixed points of f 2
λ are the periodic

points of (prime) period 2 of fλ and form an attracting or a parabolic 2-periodic cycle

{a1λ, a2λ} (say) with a1λ < rλ < a2λ < 0.

Proof. Case 1: λ > λ∗

If λ > λ∗, by Theorem 2.2.1(1), fλ(x) has a unique attracting fixed point aλ on the real

line. The fixed point aλ of fλ is also a fixed point of f 2
λ . Now, we show that f 2

λ has no

other real fixed points.

For λ > 0, fλ is strictly increasing on R. If fλ(x) 6= x for a point x ∈ R, then fn
λ (x) 6= x

for any integer n > 1. To see it, note that fλ(x) > x implies fn
λ (x) > fn−1

λ (x) and fλ(x) < x

implies fn
λ (x) < fn−1

λ (x) for all n ∈ N. Therefore, it follows that fλ (λ > 0) has no real

periodic points of prime period p = 2.

Let λ∗ < λ < 0. Suppose that there is a fixed point of f 2
λ which is different from aλ. As

fλ has only one real fixed point, any fixed point other than aλ of f 2
λ will be a 2-periodic cycle
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for fλ. If fλ has more than one 2-periodic cycles, then the outer most 2-periodic cycle is

chosen for consideration. This is possible, because, if fλ has two different 2-periodic cycles

{a, b} with a < b and {c, d} with c < d, then it follows from the fact fλ is strictly

decreasing for λ < 0 that the two different 2-periodic cycles satisfy c < a < aλ < b < d or

a < c < aλ < d < b. In the first case {c, d} and in the second case {a, b} is called the

outer cycle.

Let {d1λ, d2λ} be the outermost 2-periodic cycle of fλ such that fλ(d1λ) = d2λ and

fλ(d2λ) = d1λ with d1λ < d2λ. Set D1 = (−∞, d1λ) and D2 = (d2λ,∞). Since f 2
λ(x) > x

for each x ∈ D1, the sequence {f 2n
λ (x)} will be a monotonically increasing sequence and

d1λ = sup{f 2n
λ (x) : x ∈ D1 and n ∈ N}. Therefore, f 2n

λ (x) → d1λ as n → ∞. Simi-

larly, {f 2n
λ (x)} is a monotonically decreasing sequence converging to d2λ for each x ∈ D2,

since f 2
λ(x) < x for x ∈ D2 and d2λ = inf{f 2n

λ (x) : x ∈ D2 and n ∈ N}. This shows

that the cycle {d1λ, d2λ} can be either an attracting or a parabolic cycle. Note that

λ < d1λ < aλ < d2λ < 0 < −λ. This implies that f 2n
λ (λ) → d1λ, f

2n
λ (0) → d2λ and

f 2n
λ (−λ) → d2λ as n → ∞. Thus, all the singular values are attracted by the 2-periodic

cycle {d1λ, d2λ}. It is shown in Theorem 2.2.1 that aλ is a real attracting fixed point of fλ

for λ > λ∗. So, the basin of attraction A(aλ) of the attracting fixed point aλ must contain

at least one singular value which is a contradiction to the fact that all three singular values

tend either to d1λ or to d2λ under iterations of f 2
λ . Therefore, f 2

λ cannot have any real fixed

point other than aλ if λ∗ < λ < 0 (See Figure 2.2(a)).

Case 2: λ = λ∗:

If λ = λ∗, by Theorem 2.2.1(2), fλ(x) has a unique rationally neutral fixed point x∗ on the

real line. The fixed point x∗ of fλ∗ is also a fixed point for f 2
λ∗ . Further, it is rationally

indifferent and the corresponding parabolic domain contains at least one singular value of

fλ. By similar arguments as in Case 1, one can show that f 2
λ∗ has no real periodic point of
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prime period 2 (See Figure 2.2(b)).

(i)

(ii)
 0

 1

 0

(i)

(ii)
 0

 1

 0

(i)

(ii)
 0

 1

 0

(a) (b) (c)

Figure 2.2: Graphs of (i) f 2
λ(x) − x and (ii) (f 2

λ)
′
(x) for (a) λ > λ∗, (b) λ = λ∗ and

(c) λ < λ∗.

Case 3: λ < λ∗:

If λ < λ∗, by Theorem 2.2.1(3), fλ(x) has a unique repelling fixed point rλ on the real line.

The fixed point rλ of fλ is also a fixed point for f 2
λ . Now, we show that including rλ, the

function f 2
λ has 3 fixed points on R.

Let x < rλ. Suppose that f 2
λ(x) > x. Since f 2

λ(x) is strictly increasing on R, it follows

that f 2n
λ (x) > f

2(n−1)
λ (x) for all n ∈ N. But, the sequence {f 2n

λ (x)}n>0 is bounded above

by rλ. Therefore, the sequence {f 2n
λ (x)} converges to a point a (say). By the continuity

of fλ, it follows that the limit point a satisfies f 2
λ(a) = a. That means the point a is a

non-repelling (attracting or rationally indifferent) periodic point of fλ of prime period at

most two. As fλ does not have any real fixed point other than rλ, the limit point a must

be a periodic point of prime period 2. Similarly, the other possibility f 2
λ(x) < x also leads

to the same conclusion. Therefore, fλ has a periodic point of prime period 2 on R.

Now, we show that fλ has a unique periodic point of prime period 2 on R. Suppose

that fλ has more than one periodic point of prime period 2 on R. Then, choose the outer

most (in the sense defined earlier in Case 1) 2-periodic cycle of fλ.

Let {o1λ, o2λ} be the outermost 2-periodic cycle of fλ such that fλ(o1λ) = o2λ and

40



CHAPTER 2 λtanh (ez)

fλ(o2λ) = o1λ with o1λ < o2λ. As shown in case of λ ∈ (λ∗, 0), it can be shown that

the 2-periodic cycle {o1λ, o2λ} is either an attracting cycle or a parabolic cycle of fλ and

the singular values 0 and ±λ are attracted by this cycle. Now, let us consider the inner

most 2-periodic cycle {i1λ, i2λ} (say) of fλ with fλ(i1λ) = i2λ and fλ(i2λ) = i1λ with

i1λ < i2λ. Observe that fλ(x) ∈ (rλ, i2λ) for x ∈ (i1λ, rλ) and fλ(x) ∈ (i1λ, rλ) for

x ∈ (rλ, i2λ). This gives that the sequence {f 2n
λ (x)} is bounded for x ∈ (i1λ, i2λ). Since

f 2
λ is strictly increasing on R for λ < λ∗ < 0, the sequence {f 2n

λ (x)} is monotonic. Since

rλ is repelling, {f 2n
λ (x)} → i1λ as n → ∞ for x ∈ (i1λ, rλ) and {f 2n

λ (x)} → i2λ as n → ∞

for x ∈ (rλ, i2λ). This shows that the inner cycle {i1λ, i2λ} is also either attracting or

parabolic( Here the cycle {i1λ, i2λ} cannot be irrationally indifferent as (f 2
λ)′(i1λ) = 1).

But, there is no singular value that can be attracted by the inner cycle {i1λ, i2λ}, since

all the singular values are already attracted by the outer most cycle {o1λ, o2λ}. This rules

out the existence of the inner most cycle {i1λ, i2λ}. Therefore, the function fλ has only

one 2-periodic cycle {a1λ, a2λ} (say) that is either attracting or parabolic on R if λ < λ∗

(See Figure 2.2(c)). This completes the proof.

2.3 Dynamics of fλ(z) for z ∈ C

The dynamics of the function fλ(z) = λ tanh(ez) for z ∈ C is investigated in the present

section. In Theorem 2.3.1, the dynamics of fλ(x) for x ∈ R is determined. The dynamics

of fλ(z) for z ∈ C is studied in Theorem 2.3.2.

Proposition 2.3.1. Let fλ ∈ M. Then, the Fatou set of fλ does not contain wandering

domain or Baker domain.

Proof. For meromorphic functions of finite type, the non-existence of wandering domains is

proved in [14] and the non-existence of Baker domains is proved in [19]. Since the function

fλ is of finite type by Proposition 2.1.1, it follows that the Fatou set of fλ does not contain
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wandering domains or Baker domains.

We determine the dynamics of fλ on the real line in the following theorem.

Theorem 2.3.1. Let fλ ∈ M.

1. If λ > λ∗, then fn
λ (x) → aλ as n → ∞ for all x ∈ R where aλ is the attracting real

fixed point of fλ.

2. If λ = λ∗, then fn
λ (x) → x∗ as n→ ∞ for all x ∈ R where x∗ is the rationally neutral

real fixed point of fλ.

3. If λ < λ∗, then f 2n
λ (x) → a1λ as n→ ∞ for x < rλ and f 2n

λ (x) → a2λ as n→ ∞ for

x > rλ where {a1λ, a2λ} is the attracting or parabolic real 2-periodic cycle and rλ is

the repelling real fixed point of fλ.

Proof. Case 1: λ > λ∗

By Theorem 2.2.1(1) and Theorem 2.2.3(1), the function fλ(z) has a unique real attracting

fixed point aλ and f 2
λ has no fixed point other than aλ on the real line. It is noted that f 2

λ

is strictly increasing and bounded on R. Observe that f 2
λ(x) > x for x < aλ. This implies

that {f 2n
λ (x)} is a monotonically increasing bounded sequence and hence convergent. By

continuity of f 2
λ , it follows that the limit point of {f 2n

λ (x)} is a fixed point of f 2
λ and

therefore it equals to the only such point, namely, aλ. Therefore, f 2n
λ (x) → aλ as n → ∞

for x < aλ. Similarly, the same conclusion follows for x > aλ since f 2
λ(x) < x for x > aλ.

Therefore, lim
n→∞

f 2n
λ (x) = aλ for all x ∈ R. Since aλ is an attracting fixed point of the

continuous function fλ, it is concluded that fn
λ (x) → aλ as n→ ∞ for all x ∈ R.

Case 2: λ = λ∗

By Theorem 2.2.1(2) and Theorem 2.2.3(2), the function fλ(z) has a unique rationally

neutral real fixed point x∗ and f 2
λ has no fixed point other than x∗ on the real line. Since
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f 2
λ is a strictly increasing, bounded function on R with f 2

λ(x) > x for x < x∗ and f 2
λ(x) < x

for x > x∗, it follows by similar arguments as in the previous case that f 2n
λ (x) → x∗ as

n→ ∞ for x ∈ R. Since fλ is continuous and x∗ is a fixed point of fλ, it is concluded that

fn
λ (x) → x∗ as n→ ∞ for all x ∈ R.

Case 3: λ < λ∗

On the real line R, the function fλ has a unique repelling real fixed point rλ by The-

orem 2.2.1(3), and has a unique attracting or parabolic 2-periodic cycle {a1λ, a2λ} with

a1λ < rλ < a2λ < 0 by Theorem 2.2.3(3). Observe that f 2
λ(x) > x for x < a1λ. Since f 2

λ is

strictly increasing on R and f 2
λ(a1λ) = a1λ, it follows that the sequence {f 2n

λ (x)} is a mono-

tonically increasing sequence and sup{f 2n
λ (x) : n ∈ N} = a1λ for x ≤ a1λ. This gives that

lim
n→∞

f 2n
λ (x) = a1λ for x ≤ a1λ. Since f 2

λ(x) < x for a1λ < x < rλ, the sequence {f 2n
λ (x)} is

monotonically decreasing and bounded below by a1λ. Therefore, f 2n
λ (x) → a1λ as n → ∞

for a1λ < x < rλ. For x ∈ (rλ, a2λ), the function f 2
λ satisfies f 2

λ(x) > x. Consequently, the

sequence {f 2n
λ (x)} is monotonically increasing and converges to a2λ. When x ≥ a2λ, the

sequence {f 2n
λ (x)} is decreasing and bounded below by a2λ, since f 2

λ(x) < x for x > a2λ

and f 2
λ(a2λ) = a2λ. Therefore, f 2n

λ (x) → a2λ as n → ∞ for x ≥ a2λ which completes the

proof.

If a function preserves the real line, then the dynamics of the function on the real line

can be indicated by phase portraits. Phase portraits are diagrams that represent possible

beginning positions in a dynamical system and the change in these positions under the

iteration of a function. Phase portraits of fλ(x) = λ tanh(ex) for λ ∈ R \ {0} are given in

Figure 2.3 for various values of λ.
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Figure 2.3: Phase portraits of λ tanh(ex) for (a) λ > λ∗, (b) λ = λ∗ and (c) λ < λ∗.

In the dynamics of fλ in the family M, we show that the bifurcation occurs only at the

critical parameter λ∗. We mainly prove the following result on the dynamics of fλ(z) for

z ∈ C.

Theorem 2.3.2. Let fλ ∈ M.

1. If λ > λ∗, then the Fatou set F(fλ) is equal to the basin of attraction A(aλ) where aλ

is the attracting real fixed point of fλ.

2. If λ = λ∗, then the Fatou set F(fλ) is equal to the parabolic basin P (x∗) where x∗ is

the rationally neutral real fixed point of fλ.
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3. If λ < λ∗, then the Fatou set F(fλ) is equal to the basin of attraction or the parabolic

basin corresponding to the attracting or the parabolic real 2-periodic cycle {a1λ, a2λ}

of fλ.

Proof. Case 1: λ > λ∗

By Theorem 2.2.1(1), the function fλ(z) has a unique real attracting fixed point aλ on the

real line. Let A(aλ) = {z ∈ Ĉ : fn
λ (z) → aλ as n → ∞} be the basin of attraction of

the real attracting fixed point aλ. By Theorem 2.3.1(1), the real line R is in the basin of

attraction A(aλ) and in particular, all the singular values {λ, − λ, 0} and their forward

orbits are in A(aλ).

The Fatou set of fλ(z) has no basin of attraction other than A(aλ). To see this, assume,

if possible, A(zλ) is a basin of attraction of an attracting periodic point zλ 6= aλ. Obviously,

A(zλ)
⋂
A(aλ) = Ø. But, A(zλ) contains at least one singular value and its forward orbit.

It contradicts the fact that all the singular values and their forward orbits are contained

in A(aλ), since A(zλ)
⋂
A(aλ) = Ø for zλ 6= aλ.

The Fatou set of fλ(z) cannot contain a parabolic domain. For, if the Fatou set of fλ(z)

contains a parabolic domain U , then U must contain at least one singular value, which

leads to a contradiction that all singular values are in A(aλ).

Again, the Fatou set of fλ(z) cannot contain a Siegel disc or a Herman ring. For,

if possible, let the Fatou set of fλ(z) contain a Siegel disc or a Herman ring, then the

boundary of Siegel disc / Herman ring is contained in the closure of the forward orbits

of all singular values of fλ(z). But all the singular values and their forward orbits are

contained in A(aλ), giving a contradiction.

By Proposition 2.3.1, the Fatou set of fλ(z) does not contain any Baker domain or

wandering domain. Therefore, the Fatou set of fλ(z) is equal to the basin of attraction

A(aλ) of the attracting real fixed point aλ if λ > λ∗.
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Case 2: λ = λ∗

The function fλ(z) has a unique rationally neutral real fixed point x∗ on the real line by

Theorem 2.2.1(2). Let P (x∗) = {z ∈ Ĉ : fn
λ (z) → x∗ as n → ∞} be the parabolic

basin corresponding to x∗. By Theorem 2.3.1(2), it follows that the real line R and in

particular, all the singular values {λ, −λ, 0} and their forward orbits are in the parabolic

basin P (x∗). Now, the Fatou set of fλ(z) for λ = λ∗ does not contain any other parabolic

domain U other than P (x∗). If the Fatou set of fλ∗(z) contains any other parabolic domain

U (6= P (x∗)), then U must contain at least one singular value which is not possible.

Since all singular values are in P (x∗), the Fatou set of fλ∗(z) cannot contain a basin of

attraction. The proofs of the fact that the Fatou set of fλ(z) for λ = λ∗ does not contain

Siegel disc, Herman ring, Baker domain or wandering domain are similar to that of Case 1.

Thus, all the possible stable domains other than the parabolic basin P (x∗) are ruled out

and hence the Fatou set of fλ∗(z) equals to the parabolic basin P (x∗) corresponding to the

rationally neutral real fixed point x∗.

Case 3: λ < λ∗

By Theorem 2.2.3(3), the function fλ(z) has an attracting or a parabolic real 2-periodic

cycle {a1λ, a2λ} with a1λ < rλ < a2λ < 0 where rλ is the unique repelling real fixed point.

Let us denote the basin of attraction of the attracting real 2-periodic cycle or the parabolic

basin corresponding to the parabolic real 2-periodic cycle by

A = {z ∈ Ĉ : f 2n
λ (z) → a1λ or f 2n

λ (z) → a2λ as n→ ∞} .

By Theorem 2.3.1(3), it follows that the real line R except the point rλ and in particular,

all the singular values {λ, −λ, 0} and their forward orbits are in A. By proceeding in the

same lines of arguments as in Case 1 or Case 2, we get that the Fatou set of fλ(z) does

not contain any Herman ring, Siegel disc, Baker domain, wandering domain or any basin

of attraction or parabolic basin other than A. Therefore, the Fatou set of fλ(z) is equal to
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A for λ < λ∗.

The above theorem gives the following characterization of the Julia set of fλ(z).

Corollary 2.3.1. Let fλ ∈ M.

1. If λ > λ∗, then the Julia set J(fλ) is the complement of the basin of attraction A(aλ)

where aλ is the attracting real fixed point of fλ.

2. If λ = λ∗, then the Julia set J(fλ) is the complement of the parabolic basin P (x∗)

where x∗ is the rationally neutral real fixed point of fλ.

3. If λ < λ∗, then the Julia set J(fλ) is the complement of the basin of attraction or the

parabolic basin corresponding to the attracting or the parabolic real 2-periodic cycle

{a1λ, a2λ}.

2.4 Topology of the Fatou components

In the present section, the topology of the Fatou components and existence of the pre-

periodic Fatou components of fλ are mainly investigated. In Proposition 2.4.1, it is shown

that the Fatou set of fλ contains the left half-plane Hλ = {z ∈ C : <(z) < Mλ}, certain

horizontal lines and horizontal half strips. Proposition 2.4.2 shows that the Julia set of fλ

(λ > λ∗) does not contain any unbounded component. We prove in Theorem 2.4.1 that

the Fatou set of fλ is connected for λ > λ∗ and the Fatou set contains infinitely many

pre-periodic components for λ ≤ λ∗. It is established in Theorem 2.4.2 that the Fatou set

of fλ for λ > λ∗ is infinitely connected. We prove that each component of the Fatou set of

fλ for λ ≤ λ∗ is simply connected in Theorem 2.4.3.

Proposition 2.4.1. Let fλ ∈ M. Then,
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1. The Fatou set of fλ contains the left half-plane Hλ = {z ∈ C : <(z) < Mλ} where

Mλ is a real number depending on λ.

2. The Fatou set of fλ contains the horizontal lines L2k+1 = {x+ i(2k + 1)π : x ∈ R}

for every integer k. Further, there exists a real number δ ∈ (0, π
2
) depending upon

λ such that the strip S2k+1 = {z ∈ C : |=(z) − (2k + 1)π| < δ, <(z) ≥ Mλ} is

contained in the Fatou set.

Proof. 1. For every fλ ∈ M, the point z = 0 is always either in the immediate basin of

attraction or in the parabolic domain by Theorem 2.3.1. Since z = 0 is in the Fatou

set of fλ, there exists a disc Dr(0) = {z ∈ C : |z| < r} for some r > 0 such that

Dr(0) ⊂ F(fλ).

Since ez maps the left half-plane {z ∈ C : <(z) < a} where a ∈ R onto a

punctured disc D∗(0) = {z ∈ C : 0 < |z| < ea} and tanh(0) = 0, we can find a real

number Mλ depending on λ such that the left half-plane Hλ = {z ∈ C : <(z) < Mλ}

is mapped into the open ball Dr(0) ⊂ F(fλ) by the map w = fλ(z). Therefore, the

Fatou set of fλ contains the left half-plane Hλ = {z ∈ C : <(z) < Mλ}.

2. The function ez maps the horizontal lines L2k+1 = {x + i(2k + 1)π : x ∈ R} where

k ∈ Z, onto the negative real axis {x ∈ R : x < 0}. The function λ tanh(x) maps

the negative real axis into a subset of the real axis. By Theorem 2.3.1, if λ > λ∗,

the real line R is contained in the Fatou set of fλ. Therefore, the horizontal lines

L2k+1 = {x+ i(2k+1)π : x ∈ R} where k ∈ Z, are in the Fatou set of fλ for λ > λ∗.

If λ ≤ λ∗ < 0, the function λ tanh(x) maps the negative real axis into a subset of

the positive real axis. By Theorem 2.3.1, if λ ≤ λ∗, the positive real axis is contained

in the Fatou set of fλ. This gives that the horizontal lines L2k+1 = {x+ i(2k+ 1)π :

x ∈ R} where k ∈ Z, are in the Fatou set of fλ for λ ≤ λ∗.

48



CHAPTER 2 λtanh (ez)

It is already shown that −λ lies in the Fatou set of fλ. So, there exists a disc

Dr(−λ) with center at −λ and radius r such that Dr(−λ) is a subset of the Fatou set.

One can find a M̃λ < 0 depending on λ so that λ tanh z maps the half-plane H̃ = {z :

<(z) < M̃λ} into Dr(−λ). Now, we choose δ∗ ∈ (0, π
2
) and M∗

λ > 0 depending on M̃λ

such that the image of the strip {z ∈ C : |=(z)−(2k+1)π| < δ∗, <(z) > M∗
λ} under

ez is an angular region {z ∈ C : | arg(z) − π| < δ∗, |z| > eM∗

λ} lying in the left half-

plane H̃ (See Figure 2.4). Therefore, {z ∈ C : |=(z)− (2k + 1)π| < δ∗, <(z) > M∗
λ}

is in the Fatou set of fλ. As the line segment {z ∈ L2k+1 : Mλ ≤ <(z) ≤ M∗
λ} is in

the Fatou set (here Mλ is as given earlier in this proposition), there exists a δ̂ ∈ (0, π
2
)

such that the rectangular region {z ∈ C : |=(z)−(2k+1)π| < δ̂, Mλ ≤ <(z) ≤M∗
λ}

is in the Fatou set of fλ. Choosing δ to be the minimum of δ∗ and δ̂, it follows that

S2k+1 = {z ∈ C : |=(z) − (2k + 1)π| < δ, <(z) ≥ Mλ} is contained in the Fatou

set.
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Figure 2.4: Mapping property of λ tanh(ez).

Remark 2.4.1. For λ > λ∗, it also follows that the Fatou set of fλ contains the horizontal

lines L2k = {x+ i 2kπ : x ∈ R} for each k ∈ Z because R ⊂ F(fλ) and fλ(L2k) ⊂ R.

We prove in the following proposition that the Julia set of fλ for λ > λ∗ cannot contain
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an unbounded component in C.

Proposition 2.4.2. Let fλ ∈ M. If λ > λ∗, then every component of J(fλ)
⋂

C is bounded.

Proof. Let, on the contrary, γ be an unbounded component of J(fλ)
⋂

C. Then a sequence

tn can be found in γ such that limn→∞ tn = ∞. It follows from Proposition 2.4.1 and

Remark 2.4.1 that γ lies in a horizontal strip whose boundary is Lk

⋃
Lk+1

⋃{∞} for some

k ∈ Z and the set {<(tn) : n ∈ N}⋂{x ∈ R : x > 0} is unbounded. Now, observe that

the image γ1 = eγ of γ under the mapping w = ez is unbounded .

If γ1 intersects Lk for some k ∈ Z, then the map λ tanh(z) takes each such intersecting

point to a real number which is in the Fatou set. In this way, there is a point common to

γ and the Fatou set of fλ which is not possible. Therefore, γ1 lies in some horizontal strip

bounded by two consecutive Lk’s. Since γ1 is unbounded, there exists a sequence sn on γ1

such that limn→∞<(sn) = ∞ or limn→∞<(sn) = −∞. But, in both the cases, λ tanh(sn)

tends to an asymptotic value of fλ as n→ ∞. Since all the three asymptotic values lie in

the Fatou set, there is a sequence {zn}n>0 on γ such that ezn = sn and fλ(zn) is a subset

of the Fatou set of fλ for sufficiently large n. By the complete invariance of the Fatou set,

there are points zn on γ which are in the Fatou set. It gives a contradiction. Therefore,

any component of J(fλ)
⋂

C is bounded.

The following theorem shows the existence of pre-periodic components in the Fatou set

of fλ for certain range of values of λ.

Theorem 2.4.1. Let fλ ∈ M.

1. For λ > λ∗, the Fatou set of fλ is connected.

2. For λ ≤ λ∗, the Fatou set of fλ contains infinitely many strictly pre-periodic (pre-

periodic but not periodic) components.
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Proof. 1. Let V be a component of the Fatou set of fλ different from the immediate

basin of attraction IM(aλ) of the attracting fixed point aλ. Then, there exists a

natural number k such that fk
λ (V ) ⊆ IM(aλ). Let W be the Fatou component

containing fk−1
λ (V ). If U1 and U2 are two Fatou components of a meromorphic

function f such that f : U1 → U2, then U2 \ f(U1) contains at most two points [70].

The two exceptional values λ and −λ of fλ are in IM(aλ). Therefore, it follows

that fλ(W ) ⊆ IM(aλ) \ {λ, − λ}. Let Dr(λ) be a disc of radius r > 0 with

center λ such that Dr(λ) is contained in IM(aλ). Let U(r) be a component of

f−1
λ (Dr(λ)) in W . If r2 < r1 < r, then there are components U(r2) of f−1

λ (Dr2(λ))

and U(r1) of f−1
λ (Dr1(λ)) in U(r) ⊂ W such that U(r2) ⊂ U(r1). Since there is

only one singularity of f−1
λ lying over λ and that is logarithmic,

⋂
r>0 U(r) = ∅ and

U(r) is unbounded [23]. Thus the component W is unbounded. Also, observe that

R ⊂ IM(aλ) and IM(aλ) is unbounded. Thus, there are at least two unbounded

components, namely, W and IM(aλ) of the Fatou set. Consequently, there is an

unbounded component of J(fλ)
⋂

C contained in the boundary of W or IM(aλ).

But, it is not possible by Proposition 2.4.2. Therefore, the Fatou set of fλ for λ > λ∗

contains only one component and hence the Fatou set is connected.

2. By Theorem 2.3.2, it follows that the Fatou set F(fλ) for λ < λ∗ is equal to the

basin of attraction or the parabolic basin corresponding to the attracting or the

parabolic real 2-periodic cycle {a1λ, a2λ} of fλ. Let {a1λ, a2λ} be an attracting

cycle. Let IM(a1λ) be the component of the Fatou set containing the point a1λ

and IM(a2λ) be the component of the Fatou set containing the point a2λ. Then,

(−∞, rλ) ⊂ IM(a1λ) and (rλ, ∞) ⊂ IM(a2λ). Let L2k = {x + i 2kπ : x ∈ R}

where k ∈ Z and k 6= 0. Then, fλ : L2k → (λ, 0) is a bijection and it maps

L−
2k = {x + i 2kπ : −∞ < x < rλ = f−1

λ (rλ)} and L+
2k = {x + i 2kπ : rλ =

f−1
λ (rλ) < x < ∞} to (rλ, 0) and (λ, rλ) respectively. This gives that L+

2k and
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L−
2k lie in two different components of the Fatou set. It is clear that some left half-

plane Hλ, all horizontal lines L2k+1 = {x + i (2k + 1)π : x ∈ R} for k ∈ Z and

L−
2k = {x+ i 2kπ : −∞ < x < rλ} are in IM(a1λ). Further, L+

2k lies in a component,

Wk (say) of the Fatou set which is different from IM(a1λ) and IM(a2λ). For each

nonzero integer k, we can find such component Wk which contains the line L+
2k and

Wk

⋂
Wl = ∅ for k 6= l. These components Wk’s are pre-periodic but not periodic.

If {a1λ, a2λ} is a parabolic cycle, then there will be two different components of

the Fatou set containing (−∞, a1λ) and (a2λ,∞). Considering them as IM(a1λ)

and IM(a2λ), it can be observed that IM(a1λ) contains some half-plane Hλ and

horizontal lines L2k+1. Similar arguments as in previous paragraph gives the existence

of infinitely many Fatou components Wk containing L+
2k = {x+ i 2kπ : f−1

λ (a1λ) <

x <∞} for nonzero integer k which are different from IM(a1λ) and IM(a2λ). These

components are pre-periodic but not periodic.

For λ = λ∗, there are two petals P1 and P2 containing (−∞, x∗) and (x∗, + ∞)

respectively. The Fatou component P1 contains a left half-plane and horizontal lines

L2k+1. The rest of the proof is similar to the case λ < λ∗ and it is concluded that

the Fatou set of fλ∗ contains infinitely many strictly pre-periodic Fatou components.

Remark 2.4.2. For λ ≤ λ∗, all the singular values of fλ are in the immediate basin of

attraction or in the petals corresponding to the parabolic fixed point which are not completely

invariant.

Given a domain E ⊂ Ĉ, the connectivity c(E) of E is the number of components of

Ĉ \ E. The topology of the Fatou set of fλ for λ > λ∗ is determined in the following

theorem.

Theorem 2.4.2. Let fλ ∈ M. If λ > λ∗, then the Fatou set of fλ is infinitely connected.
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Proof. It is shown in [13] that the connectivity of an invariant Fatou component is either 1,

2 or ∞, 2 being the case for Herman rings. For λ > λ∗, the Fatou set of fλ is equal to the

basin of attraction of the attracting fixed point aλ and the connectivity of the Fatou set

is either 1 or ∞. If the connectivity of the Fatou set is 1, then the Julia set is connected.

Since ∞ is in the Julia set, there is an unbounded component of J(fλ)
⋂

C. But this is

impossible by Proposition 2.4.2. Therefore, the Fatou set of fλ for λ > λ∗ is infinitely

connected.

As a consequence of the infinite connectivity of F(fλ) for λ > λ∗, we make the following

remark on the Julia set of fλ for λ > λ∗.

Remark 2.4.3. Let w be a pre-pole of fλ. If it is not a singleton component of the Julia

set, then there will be a component γ in the Julia set that contains w and fk
λ (γ) ⊂ J(fλ)

is a component containing the point z = ∞ for some natural number k. But, it is not

possible for λ > λ∗ by Proposition 2.4.2. Thus, every pre-pole is a singleton component of

the Julia set for λ > λ∗. Since pre-poles are dense in J(fλ), we conclude that the singleton

components of the Julia set are dense in the Julia set of fλ for λ > λ∗. This can also be

concluded from the previous theorem and using Theorem 1.1.22.

Let I1 be the component of the Fatou set containing the interval (−∞, a1λ) when λ < λ∗.

When λ = λ∗, let I1 denote the Fatou component containing the interval (−∞, x∗). Let I2

denote the Fatou component containing fλ(I1).

Lemma 2.4.1. Let fλ ∈ M with λ ≤ λ∗. Let V be a component of the Fatou set F(fλ) of

fλ. If γ is a Jordan curve in V and the bounded component B of Ĉ \ γ intersects the Julia

set, then B does not contain any pole of fλ.

Proof. Since V is a Fatou component, fλ(V ) is contained in a Fatou component, say V1.

Let γ be a Jordan curve in V and the bounded component B of Ĉ \ γ intersects the Julia

set.
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Suppose that V1 is different from I1. Let us assume that B contains a pole. Then,

B1 = fλ(B) contains {z : |z| > M} for some M > 0. Since I1 is unbounded, B1 intersects

I1. This means that there are points in B whose fλ-images belong to I1. Consequently,

there is a Fatou component, say W in B such that fλ(W ) ⊆ I1. The assumption that

V1 is different from I1 guarantees W
⋂
V = ∅. In [70], it has been proved that for any

meromorphic function f : A1 → A2, the cardinality of the set A2 \ f(A1) is at most

two where A1 and A2 are two Fatou components of f . Using this result, it follows that

E = I1 \ fλ(W ) contains at most two points. Since λ ∈ I1, there exists a neighbourhood

Nλ of the point λ which is completely contained in I1 and Nλ

⋂
E = {λ}. Therefore,

there is a component of f−1
λ (Nλ) in W . As there is only one singularity lying over −λ

and it is logarithmic, every component of f−1
λ (Nλ) is unbounded [23]. Consequently, W

is unbounded and B is also unbounded which is not true. Therefore, it follows that B

contains no pole of fλ.

Suppose that V is a Fatou component such that fλ(V ) ⊆ I1. Since I2 is unbounded

and, there is only one singularity lying over −λ and it is logarithmic, the same arguments

given in the previous paragraph with I1 replaced by I2 are applied to conclude that B

contains no pole of fλ. The proof is complete.

The following theorem gives information about the topology of the Fatou components

of fλ for λ ≤ λ∗.

Theorem 2.4.3. Let fλ ∈ M. If λ ≤ λ∗, then every component of the Fatou set of fλ is

simply connected.

Proof. Let V be any component of the Fatou set of fλ for λ ≤ λ∗. Suppose that V is

not simply connected. Let γ be a Jordan curve in V for which the bounded component

U of Ĉ \ γ contains at least one component of Ĉ \ V . Set Un = fn
λ (U) for n = 0, 1, 2,

· · · . By Lemma 2.4.1, it follows that U does not contain any pole. Since the boundary
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of U also does not contain any pole, the component U1 = fλ(U) is a bounded domain.

Also, the boundary of U1 is a subset of fλ(∂U). Since the boundary ∂U of U is the Jordan

curve γ which is in the Fatou set, the image fλ(∂U) is in a Fatou component, and hence

∂U1 is in a Fatou component. If U1 does not contain a pole, the boundary of U2 lies in

a Fatou component by repeating the above arguments. As U
⋂

J(fλ) 6= ∅, after finite

number of steps, we can find a natural number n0 for which Un0 contains a pole which

gives a contradiction to Lemma 2.4.1. Therefore, it is concluded that the component V of

the Fatou set of fλ for λ ≤ λ∗ is simply connected.

2.5 Measure of the Julia set

In this section, the (Lebesgue) measure of the Julia set of fλ ∈ M is determined.

Theorem 2.5.1. Let fλ ∈ M. Then, the Julia set of fλ has measure zero.

Proof. It is already shown that each singular value of fλ is in an attracting basin or a

parabolic basin. This implies that d(Pfλ
, J(fλ)) > 0. In view of Theorem 1.1.30, it is

enough to show that J(fλ) is thin at ∞ in order to show that the measure of J(fλ) is zero.

Let M ≡M(λ) and δ ≡ δ(λ) be two real numbers such that Hλ = {z ∈ C : <(z) < M}

and S2k+1 = {z ∈ C : |=(z)− (2k+ 1)π| < δ, <(z) ≥M} are in the Fatou set of fλ which

is possible by Proposition 2.4.1.

Now, consider the square S(z, r) = {w : |<(w) − <(z)| < r
√

2
2
, |=(w) − =(z)| < r

√
2

2
}

having its sides parallel to the co-ordinate axes and it is contained in the disc D(z, r) with

center at z and radius r. For a rectangle R having its sides parallel to co-ordinate axes

with vertical side length 2π and horizontal side length h, R
⋂

F(fλ) ⊃ R
⋂

(
⋃

k∈Z
S2k+1).

This implies that m(R
⋂

F(fλ)) > m(R
⋂

(
⋃

k∈Z
S2k+1)) > 2δh. If j = [ r

√
2

2π
] is the greatest

integer not exceeding r
√

2
2π

, then S(z, r) will contain j different rectangles each having its

sides parallel to co-ordinate axes with vertical side length 2π and horizontal side length
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r
√

2. This gives that m(F(fλ)
⋂
S(z, r)) > j2δr

√
2 ≥ ( r

√
2

2π
− 1)(2δr

√
2) = 2δr2

π
− 2δr

√
2.

Consequently, m(F(fλ)
⋂
Dr(z)) >

2δr2

π
− 2δr

√
2 = 2δ( r2

π
− r

√
2) and

density(F(fλ), Dr(z)) =
m(F(fλ)

⋂
Dr(z))

m(Dr(z))
>

2δ

πr2

(
r2

π
− r

√
2

)
.

Now, density(F(fλ), Dr(z)) >
2δ
π

( 1
π
−

√
2

r
) > δ

π2 for r > 2
√

2π.

Letting ε = δ
π2 and R0 = 2

√
2π, it is concluded that density(F(fλ), Dr(z)) > ε for all

z ∈ C and all r > R0. Since density(F(fλ), Dr(z)) + density(J(fλ), Dr(z)) = 1, it follows

that density(J(fλ), Dr(z)) < 1 − ε for all z ∈ C and all r > R0. Therefore, the Julia set

of fλ is thin at ∞ which completes the proof.

A comparison between the dynamics of λ tanh(ez), λ tanh z and λez is given in the

Table 2.1.
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Dynamics of
fλ(z) = λ tanh(ez), λ 6= 0

Dynamics of
Eλ(z) = λez, λ 6= 0

Dynamics of
Tλ(z) = λ tanh z, λ 6= 0

The order of fλ is ∞. The order of Eλ is 1. The order of Tλ is 1.

The Schwarzian derivative
of fλ is a transcendental
function.

The Schwarzian derivative
of Eλ is constant.

The Schwarzian derivative
of Tλ is constant.

fλ has no critical values. Eλ has no critical values. Tλ has no critical values.

fλ has three asymptotic val-
ues 0, λ and −λ.The point
0 is an indirect and, each of
{λ, − λ} is a direct singu-
larity of f−1

λ .

Eλ has one asymptotic
value 0. The point 0 is a
direct singularity of E−1

λ .

Tλ has two asymptotic
values −λ and λ. Each
of −λ and λ is a direct
singularity of T−1

λ .

fλ is periodic with period
2πi.

Eλ is periodic with period
2πi.

Tλ is periodic with period
πi.

fλ is neither even nor odd. Eλ is neither even nor odd. Tλ is even.

Bifurcation in the dynamics
of fλ occurs at one critical
parameter λ∗ ≈ −3.2946.

Bifurcation in the dynamics
of Eλ occurs at two critical
parameters −e and 1

e
.

Bifurcation in the dynamics
of Tλ occurs at two critical
parameters −1 and 1.

The Fatou set of fλ has
infinitely many components
and each component is sim-
ply connected for λ < λ∗.

The Fatou set of Eλ has
only one component and
it is simply connected for
−e < λ < 1

e
.

The Fatou set of Tλ has only
one component and it is in-
finitely connected for −1 <
λ < 1.

The Julia set of fλ is con-
nected for λ < λ∗.

The Julia set of Eλ is con-
nected for −e < λ < 1

e
.

The Julia set of Tλ is totally
disconnected for −1 < λ <
1.

The Fatou set of fλ is
infinitely connected for
λ > λ∗.

The Fatou set of Eλ is
empty for λ > 1

e
.

The Fatou set of Tλ has two
components and each is sim-
ply connected for λ ≤ −1
and λ ≥ 1.

The Julia set J(fλ) has a
totally disconnected subset
for λ > λ∗.

The Julia set J(Eλ) is Ĉ

and hence connected for
λ > 1

e
.

The Julia set J(Tλ) is
iR

⋃{∞} for λ ≤ −1 and
λ ≥ 1.

Table 2.1: Comparison between the dynamics of λ tanh(ez), λez and λ tanh z.
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Dynamics of certain entire functions
of bounded type

In the present chapter, we define a class of entire transcendental functions and investigate

the occurrence of bifurcation and chaotic burst in the dynamics of functions in the one

parameter family {λf : λ > 0} for each f belonging to the class.

Define

E ≡




f :

(i) f(z) =
∞∑

n=0

anz
n for z ∈ C where an ≥ 0 for all n ≥ 0

(ii) f(x) > 0 for all x < 0
(iii) The set Sf is a bounded subset of R




.

Let

E0 ≡ {f ∈ E : f(0) = 0} and E1 ≡ {f ∈ E : f(0) 6= 0} .

For each f ∈ E, consider the one parameter family S = {fλ ≡ λf : λ > 0}. It is worth

noting that the class E contains the interesting functions such as I2n(z) and z−nIn(z) for

n ∈ N where In(z) is the modified Bessel function of first kind and order n. The class

E1 includes the functions
sinh z

z
, I0(z) and ez whose dynamics have already been studied.

The change in the dynamics of functions in the one parameter family S is the main subject

of investigation of this chapter. For each f ∈ E0, it is shown that the Julia set of fλ is

the complement of the basin of attraction of the superattracting fixed point 0 for each

λ > 0. When f ∈ E1, the Julia set of fλ is shown to change from a nowhere dense subset
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of the complex plane to the whole plane as the parameter λ crosses a critical parameter

λ∗ (its value depending on f). We find a necessary condition for the Fatou set of fλ to be

connected for f ∈ E and λ > 0. A number of interesting examples are discussed at the end

of the chapter.

3.1 Properties of E

It is easy to observe that, if λ > 0, then λ+ f ∈ E1 whenever f ∈ E and fλ ≡ λf ∈ Ej for

f ∈ Ej, j = 0, 1. Besides this, certain compositions of functions also yield functions in the

class E as is shown in Proposition 3.1.1.

Remark 3.1.1. Let g and h be two entire functions and g ◦h be their composition. Let Sg

and Sh denote the set of singular values of g and h respectively. From the arguments used in

Lemma 2.1.1, it follows that Sg◦h ⊆ Sg

⋃{g(z) : z ∈ Sh}. If Sg and Sh are bounded subsets

of R and g is an entire function preserving the real axis, then g(Sh) = {g(z) : z ∈ Sh} is

a bounded subset of R. Therefore, Sg◦h is a bounded subset of R.

Proposition 3.1.1. Let f ∈ E, g ∈ E0 and h ∈ E1. Let P (z) = (z+a1)
m1(z+a2)

m2 ...(z+

an)mn be a non-constant polynomial where a1, a2, · · · , an are positive real numbers and

m1, m2, · · · , mn are non-negative integers. Then,

1. φ = h ◦ f ∈ E1 and ψ = g ◦ h ∈ E1. In particular, the class E1 is closed under

composition.

2. The class E0 is closed under composition.

3. Φ = P ◦ f ∈ E1 and Ψ = h ◦ P ∈ E1.

Proof. 1. Let φ(z) = h(f(z)) for z ∈ C where h ∈ E1 and f ∈ E. If h(z) =
∑∞

n=0 anz
n

for z ∈ C, then h(f(z)) =
∑∞

n=0 an(f(z))n =
∑∞

n=0 bnz
n for z ∈ C (say). All
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the coefficients in the Taylor series of (f(z))n about the origin are non-negative, so

all bn’s are non-negative. It is obvious that φ(x) = h(f(x)) > 0 for x < 0 and

φ(0) = h(f(0)) > 0. As f and h are in E, Sf and Sh are bounded subsets of R and

h is an entire function that preserves the real axis. The set Sh◦f is a bounded subset

of R by Remark 3.1.1. Thus, φ = h ◦ f ∈ E1 for h ∈ E1 and f ∈ E. Taking f in E1,

it is seen that the class E1 is closed under composition.

It can be shown similarly that all the coefficients of the Taylor series of ψ = g ◦ h

about the origin are non-negative and Sg◦h is a bounded subset of R for all g ∈ E0.

Since g(h(x)) > 0 for all x ≤ 0, it follows that ψ = g ◦ h ∈ E1.

2. Let g and g̃ be in E0. It follows by similar arguments used in the first paragraph of

this proposition that, all the coefficients of the Taylor series of g ◦ g̃ about the origin

are non-negative and Sg◦g̃ is a bounded subset of R. Clearly, g(g̃(0)) = 0. Since

g̃(x) > 0 for x < 0, g(g̃(x)) > 0 for all x < 0. Therefore, g ◦ g̃ belongs to E0.

3. Observe that all the coefficients in the Taylor series of Φ = P ◦ f and Ψ = h ◦ P

about the origin are non-negative. Since all zeros of P (z) are real, the zeros of P ′(z)

are real by Lucas Theorem. Further, P (x) ∈ R for all x ∈ R which gives that the

critical values of P are real. As P has no finite asymptotic value, SP is a finite subset

of R. For any function f in E, the set of all singular values Sf is a bounded subset

of R and, P and f preserve the real axis. So SΦ and SΨ are bounded subsets of R

by Remark 3.1.1. Clearly, P (f(x)) > 0 for x ≤ 0 and h(P (x)) > 0 for x ≤ 0. Thus,

Φ = P ◦ f and Ψ = h ◦ P belong to E1 for all f ∈ E and h ∈ E1.
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3.2 Dynamics of fλ(x) for x ∈ R

In this section, the dynamics of fλ(x) for x ∈ R where fλ ∈ S is studied. For the functions

f in the class E0, the dynamics of fλ ≡ λf on R+ = {x ∈ R : x > 0} is described in

Theorem 3.2.1. For the functions f in the class E1, the dynamics of fλ ≡ λf on R+ is

described in Theorem 3.2.2.

Theorem 3.2.1. Let fλ ≡ λf where f ∈ E0 and λ > 0. Then, fλ has only two real periodic

points 0 and rλ with 0 < rλ where 0 is a superattracting fixed point and rλ is a repelling

fixed point. Further, limn→∞ fn
λ (x) = 0 for 0 ≤ x < rλ and limn→∞ fn

λ (x) = ∞ for x > rλ.

Proof. Let fλ(x) = λ
∞∑

n=0

anx
n for x ∈ R where an ≥ 0 for all n ≥ 0. Observe that fλ(x) > 0

for x ∈ R with x 6= 0 and f ′
λ(x) > 0 for x > 0. Therefore, any nonzero real periodic point

of fλ lies only in R+ and it must be a fixed point. Since f ∈ E0, fλ(0) = λf(0) = 0.

Therefore, the point x = 0 is a fixed point of fλ. Since fλ(x) > 0 for x < 0, fλ(0) = 0 and

fλ(x) > 0 for x > 0, it follows that f ′
λ(0) = 0 and hence the point x = 0 is a superattracting

fixed point of fλ. Thus, fλ(x) = λ
∞∑

n=2

anx
n for x ∈ R and an ≥ 0 for all n ≥ 2.

Let gλ(x) = fλ(x)−x for x ∈ R. Then, g′λ(x) = f ′
λ(x)−1 = λ (

∑∞
n=2 n an x

n−1)−1 and

g′′λ(x) = f ′′
λ (x) = λ

∞∑

n=2

n(n− 1) an x
n−2. It shows that g′′λ(x) > 0 for x > 0 and g′λ(x) → +∞

as x → +∞. Since g′λ(0) = −1 and g′λ is increasing in R+, there is a unique xλ > 0 such

that g′λ(x) < 0 for x ∈ (0, xλ), g
′
λ(xλ) = 0 and g′λ(x) > 0 for x > xλ. It shows that gλ

decreases in (0, xλ) and increases thereafter. Since gλ(0) = 0 and limx→+∞ gλ(x) = +∞,

there exists a unique point rλ in (xλ, ∞) such that gλ(x) < 0 for x ∈ (0, rλ), gλ(rλ) = 0

and gλ(x) > 0 for x ∈ (rλ, ∞). Therefore, the point rλ is a unique real fixed point of fλ

and is repelling as f ′
λ(x) > 1 in (xλ, ∞).

For 0 < x < rλ, fλ(x) < x. This gives that the sequence {fn
λ (x)}n>0 is decreasing

and bounded below by 0. Therefore, limn→∞ fn
λ (x) = 0 for 0 < x < rλ. The sequence
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{fn
λ (x)}n>0 is increasing and unbounded for x > rλ. So limn→∞ fn

λ (x) = ∞ when x >

rλ.

Remark 3.2.1. Let A = {x ∈ R : x < 0 and fλ(x) ∈ [0, rλ)} and B = {x ∈ R :

x < 0 and fλ(x) ∈ (rλ, ∞)} where f ∈ E0 and λ > 0. It follows by Theorem 3.2.1 that

fn
λ (x) → 0 as n→ ∞ for x ∈ A and fn

λ (x) → ∞ as n→ ∞ for x ∈ B.

Theorem 3.2.2. Let fλ ≡ λf where f ∈ E1 and λ > 0. Then, there exists a unique

positive real number λ∗ such that

1. For 0 < λ < λ∗, fλ has only two real fixed points aλ and rλ with aλ < rλ where aλ

is attracting and rλ is repelling. Further, limn→∞ fn
λ (x) = aλ for 0 ≤ x < rλ and

limn→∞ fn
λ (x) = ∞ for x > rλ.

2. For λ = λ∗, fλ has only one real fixed point x∗ where x∗ is the unique real solution of

f(x) − xf ′(x) = 0 and x∗ is rationally indifferent. Further, limn→∞ fn
λ (x) = x∗ for

0 ≤ x < x∗ and limn→∞ fn
λ (x) = ∞ for x > x∗.

3. For λ > λ∗, fλ has no real fixed point. Further, limn→∞ fn
λ (x) = ∞ for all x ≥ 0.

Proof. As f ∈ E1, f(x) =
∑∞

n=0 anx
n for x ∈ R where an ≥ 0 for all n ≥ 0. It is easy

to see that f(x) > 0 for all x ∈ R. Observe that f ′(x) > 0 and f ′′(x) > 0 for x > 0.

Therefore, f ′(x) is increasing and tends to +∞ as x → +∞. Further, we conclude that

limx→+∞ f(x) − x = +∞ and limx→+∞ f(x) − xf ′(x) = −∞.

For λ > 0, fλ(x) is positive for any real number x and f ′
λ(x) is positive for x > 0.

Therefore, any real periodic point of fλ must be a fixed point.

Let gλ(x) = fλ(x)− x for x ∈ R. Observe that g′′λ(x) = f ′′
λ (x) > 0 for x > 0. Therefore,

g′λ(x) is increasing in R+ and g′λ(x) → +∞ as x → +∞. Suppose that f ′(0) 6= 0. Then,

f ′(0) > 0 since f ′(x) > 0 for x > 0. If λ ≥ 1
f ′(0)

, then g′λ(0) = f ′
λ(0)−1 ≥ 0. This gives that
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g′λ(x) > g′λ(0) ≥ 0 for all x > 0. Therefore, gλ is strictly increasing in R+. As gλ(0) > 0,

gλ(x) has no zero in R+. In other words, fλ(x) has no fixed point in R when λ ≥ 1
f ′(0)

.

If 0 < λ < 1
f ′(0)

, then g′λ(0) < 0. Also, if f ′(0) = 0, then g′λ(0) < 0 for all λ. As g′λ(x) is

increasing and tends to +∞ in R+, there exists a real number xλ > 0 such that g′λ(x) < 0

for x ∈ (0, xλ), g
′
λ(x) = 0 for x = xλ and g′λ(x) > 0 for x > xλ. It shows that gλ(x)

decreases in (0, xλ) and attains the minimum value at x = xλ, and then increases to +∞

in (xλ, ∞). This gives that λ =
1

f ′(xλ)
.

Consider φ(x) = f(x) − xf ′(x) for x ∈ R+. Since φ′(x) = −xf ′′(x) < 0 for all x > 0,

the function φ(x) is decreasing in (0, ∞). Using the facts that φ(0) = f(0) > 0 and

limx→+∞ φ(x) = −∞, by the continuity of φ, it follows that there exists unique x∗ > 0

such that

φ(x)





> 0 for x < x∗

= 0 for x = x∗

< 0 for x > x∗
(3.1)

In the sequel, let

λ∗ =
1

f ′(x∗)
(3.2)

where x∗ is the positive real root of φ(x) = f(x) − xf ′(x) for f ∈ E1.

Since 1
f ′(x)

is decreasing in R+ and x∗ > 0, it follows that λ∗ < 1
f ′(0)

if f ′(0) 6= 0.

1. If 0 < λ < λ∗, then 1
f ′(xλ)

< 1
f ′(x∗)

and xλ > x∗. It follows from Equation (3.1) that

φ(xλ) < 0. Consequently, gλ(xλ) = fλ(xλ) − xλ < 0. Therefore, there exists two

real numbers aλ and rλ (say) with 0 < aλ < xλ < rλ such that gλ(aλ) = 0 = gλ(rλ).

Hence, fλ has exactly two real fixed points aλ and rλ. Observe that 0 < f ′
λ(aλ) <

f ′
λ(xλ) = 1 < f ′

λ(rλ), since 0 < aλ < xλ < rλ. Therefore, aλ is attracting and rλ is

repelling fixed points of fλ. Note that fλ(x) > x for 0 < x < aλ and fλ(x) < x for

aλ < x < rλ. Since fλ(x) is increasing in R+, the sequence {fn
λ (x)}n>0 is increasing

and bounded above by aλ for 0 ≤ x < aλ. Similarly, the sequence {fn
λ (x)}n>0 is

decreasing and bounded below by aλ for aλ < x < rλ. Hence, limn→∞ fn
λ (x) = aλ for
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0 ≤ x < rλ by monotone convergence theorem. Now, fλ(x) > x and f ′
λ(x) > 1 for

x > rλ. This implies that the sequence {fn
λ (x)}n≥0 is increasing and not bounded

above. Consequently, limn→∞ fn
λ (x) = ∞.

2. When λ = λ∗, it can be shown that gλ(xλ) = 0 and xλ = x∗ by similar arguments as

used in the case 0 < λ < λ∗. As gλ∗(x∗) is the minimum value of gλ∗(x), the point x∗ is

the only zero of gλ∗(x). Hence, fλ∗(x) has only one fixed point x∗ and it is rationally

indifferent. The sequence {fn
λ∗(x)}n>0 is increasing and bounded above by x∗ for

0 ≤ x < x∗. By monotone convergence theorem, it follows that limn→∞ fn
λ∗(x) = x∗

for 0 ≤ x < x∗. For x > x∗, the sequence {fn
λ∗(x)}n>0 is increasing and not bounded

above. Therefore, fn
λ∗(x) tends to +∞ as n→ ∞.

3. Let λ > λ∗. If f ′(0) = 0, then there exists a xλ such that f ′
λ(xλ) = 1 and 1

f ′(xλ)
>

1
f ′(x∗)

. Similarly, if f ′(0) 6= 0 and λ∗ < λ < 1
f ′(0)

, then there exists a xλ such that

f ′
λ(xλ) = 1 and 1

f ′(xλ)
> 1

f ′(x∗)
. This implies that xλ < x∗ and φ(xλ) > 0. Therefore,

gλ(x) > gλ(xλ) > 0 for all x > 0 showing that fλ(x) has no fixed point for λ > λ∗.

If f ′(0) 6= 0 and λ ≥ 1
f ′(0)

, then it is already shown in the beginning that fλ has

no fixed point. In all the cases, observe that fλ(x) > x for all x ≥ 0. Therefore,

the sequence {fn
λ (x)}n≥0 is strictly increasing and not bounded above for x ≥ 0 and

hence limn→∞ fn
λ (x) = ∞ for all x ≥ 0, if λ > λ∗.

Remark 3.2.2. 1. Let A = {x ∈ R : x < 0 and fλ(x) ∈ [0, rλ)} and B = {x ∈

R : x < 0 and fλ(x) ∈ (rλ, ∞)} where f ∈ E1 and 0 < λ < λ∗. Then, it follows

by Theorem 3.2.2(1) that fn
λ (x) → aλ as n → ∞ for x ∈ A and fn

λ (x) → +∞ as

n→ ∞ for x ∈ B.

2. Let A = {x ∈ R : x < 0 and fλ∗(x) ∈ [0, x∗)} and B = {x ∈ R : x <

0 and fλ∗(x) ∈ (x∗, ∞)} where f ∈ E1. Then, it follows by Theorem 3.2.2(2) that
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fn
λ∗(x) → x∗ as n→ ∞ for x ∈ A and fn

λ∗(x) → +∞ as n→ ∞ for x ∈ B.

3. If f ∈ E1 and λ > λ∗, then fλ(x) > 0 for x < 0. Since fn
λ (x) → +∞ as n → ∞ for

x ≥ 0 by Theorem 3.2.2(3), it also happens that fn
λ (x) → +∞ as n → ∞ for x < 0.

Therefore, fn
λ (x) → +∞ as n→ ∞ for all x ∈ R, if f ∈ E1 and λ > λ∗.

From Theorem 3.2.2 and Remark 3.2.2, it follows that the dynamics of fλ for λ ∈ (0, λ∗)

is different from the dynamics of fµ for µ ∈ (λ∗,∞). That is, the dynamics of the function

fλ in S = {fλ ≡ λf : λ > 0} where f ∈ E1 changes suddenly when the parameter λ

crosses the value λ∗. Thus, a bifurcation occurs in the dynamics of functions in the one

parameter family S where f ∈ E1 at the parameter value λ∗.

3.3 Dynamics of fλ(z) for z ∈ C

In this section, it is shown that rotational domains, wandering domains and Baker domains

are non-existent in the Fatou set of functions in E. Then an investigation of dynamics of

functions fλ is made separately for f ∈ E0 and f ∈ E1.

It is well known that the Fatou set of an entire transcendental function does not contain

Herman ring [19]. If f ∈ E, we prove that the Siegel discs, Baker domains and wandering

domains also do not exist in the Fatou set of f in Theorem 3.3.1 and Theorem 3.3.2.

Theorem 3.3.1. Let f ∈ E. Then, F(f) does not contain a Siegel disc.

Proof. Suppose that the Fatou set of f contains a Siegel disc D (say). For f ∈ E, it

follows from the facts f(x) ≥ 0 for x ∈ R and Sf is a bounded subset of R that the

closure of the forward orbits of all singular values of f is properly contained in R. It

is known that the boundary ∂D of the Siegel disc D lies in the closure of the set of

forward orbits of all singular values of f . Therefore, ∂D ( R and the set (∂D)c (=the

complement of ∂D) is path connected and D ⊆ (∂D)c. Now, we claim that the complement
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of the closure of D, denoted by (D)c, is empty. If possible, let there be a point z∗ in

(D)c = (D
⋃
∂D)c = Dc

⋂
(∂D)c. Then, {z∗}⋃

D is a subset of (∂D)c and a path γ can

be found in (∂D)c joining the point z∗ and a point of D. Since z∗ ∈ Dc, the path γ must

intersect ∂D which is not possible. Therefore, (D)c is an empty set. As any component

of the Fatou set other than D must be in (D)c, the Fatou set of f cannot contain any

component other than D. Since the Fatou set of f is completely invariant, it follows that

D is completely invariant. By Picard’s theorem, all points of D, except at most one have

infinitely many pre-images. Since D is completely invariant, f is not one-to-one on D

which is a contradiction to the definition of Siegel disc. Therefore, the Fatou set of f does

not contain a Siegel disc.

Theorem 3.3.2. Let f ∈ E. Then, the Fatou set of f does not contain Baker domain.

Proof. Since f ∈ B, fk ∈ B for each k ∈ N where B denotes the class of functions for which

the set of all singular values is bounded. It is shown in [60] that the sequence {fkn(z)}n>0

does not converge to ∞ for any k ∈ N and z ∈ F(f). Therefore, the Fatou set of f cannot

contain a Baker domain.

The dynamics of fλ(z) = λf(z) for z ∈ C where f ∈ E0 and λ > 0 is described in the

following theorem.

Theorem 3.3.3. Let fλ(z) = λf(z) for z ∈ C where f ∈ E0 and λ > 0. Then, the Fatou

set of fλ is the union of a basin of attraction of the superattracting fixed point 0 of fλ and

possibly wandering domains.

Proof. If f ∈ E0 and λ > 0, then fλ ≡ λf ∈ E0. By Theorems 3.3.1 and 3.3.2, it follows

that the Fatou set of fλ does not contain rotational domains and Baker domains. Therefore,

the Fatou set of fλ contains only the basins of attractions, parabolic basins and possibly
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wandering domains. Suppose that U is an immediate basin of attraction (or a parabolic

domain) associated with a non-real attracting (or rationally indifferent) periodic point cλ

of period p of fλ. Then, there is at least one singular value w̃ (say) of fλ such that fnp
λ (w̃)

converges to cλ as n→ ∞. It shows that there exists a natural number n0 such that fnp
λ (w̃)

are non-real for all n > n0 which is a contradiction to the fact that the forward orbits of

all singular values are subset of the real line. Therefore, it is concluded that the immediate

basins of attractions, parabolic domains (and their pre-images) corresponding to the real

periodic points and possibly wandering domains are the only possible components of the

Fatou set of fλ. It is proved in Theorem 3.2.1 that the superattracting fixed point x = 0

is the only such real periodic point of fλ for λ > 0. Therefore, the Fatou set F(fλ) is

the union of the basin of attraction of the superattracting fixed point 0 of fλ and possibly

wandering domains.

The following computationally useful characterization of the Julia set of fλ for f ∈ E0

is an immediate consequence of Theorem 3.3.3.

Corollary 3.3.1. Let fλ(z) = λf(z) for z ∈ C where f ∈ E0 and λ > 0. Then, the Julia

set of fλ is the complement of the union of the basin of attraction of the superattracting

fixed point 0 of fλ and possibly wandering domains.

Remark 3.3.1. From Theorem 3.3.3, it is easy to see that there is no occurrence of bifur-

cation in the dynamics of the one parameter family S where f ∈ E0.

The following theorem describes the dynamics of fλ(z) = λf(z) for z ∈ C where f ∈ E1

and λ > 0.

Theorem 3.3.4. Let fλ(z) = λf(z) for z ∈ C where f ∈ E1 and λ > 0.

1. For 0 < λ < λ∗, the Fatou set of fλ is the union of the basin of attraction of the real

attracting fixed point aλ and possibly wandering domains.
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2. For λ = λ∗, the Fatou set of fλ is the union of the parabolic basin corresponding to

the real rationally indifferent fixed point x∗ and possibly wandering domains.

3. For λ > λ∗, the Fatou set is empty or possibly contains wandering domains.

Proof. If f ∈ E1 and λ > 0, then fλ ≡ λf ∈ E1. The Fatou set of fλ has no rotational

domains, Baker domains by Theorems 3.3.1 and 3.3.2. Suppose that U is an immediate

basin of attraction or a parabolic domain of fλ associated with a non-real attracting or

rationally indifferent periodic point of period p. Then, there is at least one singular value

w̃ of fλ and a natural number n0 such that fnp
λ (w̃) is non-real for all n > n0 which is not

possible since O+(Sfλ
) ⊆ [0, ∞). Therefore, if U is an immediate basin of attraction or a

parabolic domain of fλ, then the periodic point of fλ associated with U is real. Let λ∗ be

given in Equation (3.2).

1. For 0 < λ < λ∗, it follows from Theorem 3.2.2(1) that fλ has only one real attracting

fixed point aλ. Therefore, the Fatou set F(fλ) is equal to the union of the basin of

attraction of aλ and possibly wandering domains for 0 < λ < λ∗.

2. For λ = λ∗, fλ has only one real fixed point x∗ where x∗ is the unique real solution of

f(x)−xf ′(x) = 0 and is the real rationally indifferent fixed point by Theorem 3.2.2(2).

Therefore, it follows that the Fatou set of fλ∗ is the union of the parabolic basin

corresponding to the real rationally indifferent fixed point x∗ and possibly wandering

domains.

3. For λ > λ∗, the function fλ has no real fixed point by Theorem 3.2.2(3) and fn
λ (x) →

∞ for all x ∈ R as n → ∞ by Remark 3.2.2(3). Therefore, it is concluded that the

Fatou set F(fλ) is empty set or possibly contains wandering domains for λ > λ∗.
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Corollary 3.3.2. Let fλ(z) = λf(z) for z ∈ C where f ∈ E1 and λ > 0. Then,

1. For 0 < λ < λ∗, the Julia set of fλ is the complement of the union of the basin of

attraction of the real attracting fixed point aλ and possibly wandering domains.

2. For λ = λ∗, the Julia set of fλ is the complement of the union of the parabolic basin

corresponding to the real rationally indifferent fixed point x∗ and possibly wandering

domains.

3. For λ > λ∗, the Julia set of fλ is equal to Ĉ or complement of wandering domains.

Remark 3.3.2. For each f ∈ E1, it follows from Corollary 3.3.2 that if fλ does not

contain any wandering domain then the Julia set of fλ is a nowhere dense subset of Ĉ for

0 < λ ≤ λ∗. If the parameter λ exceeds the value λ∗, then the Julia set of fλ explodes

and becomes equal to the extended complex plane. Thus, the chaotic burst occurs in the

dynamics of the functions in the one parameter family S for f ∈ E1 at the parameter value

λ = λ∗ whenever fλ does not have any wandering domain for λ > 0.

Remark 3.3.3. Observe that, if f is an even function (i.e., f(−z) = f(z) for all z) in

the class E, then fλ ≡ λf and f−λ ≡ −λf are conformally conjugate for every nonzero

real parameter λ with the conjugating map ψ(z) = −z; and the dynamics of fλ and f−λ are

same. Therefore, if f is an even function in E, then dynamics of functions in {fλ : λ < 0}

follows from Theorems 3.3.3 and 3.3.4.

3.3.1 Connected Fatou set

If f is an entire transcendental function, then each pre-periodic component of the Fatou

set of f is simply connected. For the functions f in E, we show in the following that the

Fatou set of f is (simply) connected in certain cases.
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Lemma 3.3.1. Let f be a transcendental entire function and the set of all singular values

of f be contained in a bounded Jordan domain D containing 0 and with smooth boundary.

Then each component of f−1(Dc) is a simply connected domain whose boundary is a single

non-closed analytic curve in C both ends of which tend to ∞.

Proof. It is known that, if D r
2
(0) = {z : |z| < r

2
} contains all the singular values of

a transcendental entire function f , then every component of f−1(C \ Dr(0)) is a simply

connected domain bounded by a single non-closed analytic curve in C both ends of which

tend to ∞ [61]. Since D is homeomorphic to Dr(0), the same proof works.

Theorem 3.3.5. Let fλ ≡ λf where f ∈ E and λ > 0. Suppose that the Fatou set of fλ

is a basin of attraction of an attracting fixed point aλ. If all the singular values of fλ are

in the immediate basin of attraction of aλ, then the Fatou set of fλ is connected and each

maximally connected subset of J(fλ) \ {∞} is unbounded.

Proof. Let I(aλ) be the immediate basin of attraction of the attracting fixed point aλ and

D ⊂ I(aλ) be a Jordan domain with smooth boundary containing all the singular values

of fλ and 0 such that fλ(D) ⊂ D. Then, f−1
λ (Dc) does not intersect D and f−1

λ (D) =

C \ f−1
λ (Dc). Therefore, D ⊂ f−1

λ (D). By Lemma 3.3.1, each component of f−1
λ (Dc) is a

simply connected domain whose boundary is a single non-closed analytic curve in C both

ends of which tend to ∞. In other words, f−1
λ (Dc) is connected and its boundary has no self

intersections in C which means that f−1
λ (D) is (simply) connected. Since each component

of f−1
λ (I(aλ)) intersects f−1

λ (D), f−1
λ (I(aλ)) is connected. Further, aλ ∈ f−1

λ (I(aλ))
⋂
I(aλ)

implies that I(aλ) is backward invariant. Therefore, the Fatou set F(fλ) is equal to I(aλ)

and is connected. Since the Fatou set of fλ is simply connected, each maximally connected

subset of J(fλ) \ {∞} is unbounded.

Remark 3.3.4. Theorem 3.3.5 does not guarantee the existence of a curve in the Julia

set.
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3.4 Examples

In the present section, the dynamics of some interesting functions f in the class E are

described.

First, we prove a proposition on the number of (finite) asymptotic values of f that is

needed for our discussion.

Proposition 3.4.1. Let f be an entire transcendental function of order (growth) one and

w̃ be a finite asymptotic value of f . If all the critical values of f have only one limit point

in C and that is equal to w̃, then w̃ is the only finite asymptotic value of f .

Proof. Suppose that w∗ is a finite asymptotic value of f with w∗ 6= w̃. It is well known that

an entire function of finite order (growth) ρ has at most 2ρ finite asymptotic values. Since

f has order (growth) one, the function f has exactly two finite asymptotic values. If an

entire function of finite order (growth) ρ has 2ρ finite asymptotic values, then none is direct

(Page 307, [101]). Therefore, the asymptotic values w̃ and w∗ are indirect singularities of

f−1. Now, by Theorem 1 in [23], it follows that any indirect singularity of f−1 must be a

limit point of critical values of f . By hypothesis, all the critical values of f has only one

finite limit point w̃ and hence w̃ = w∗ which is a contradiction. Hence, it is concluded that

w̃ is the only finite asymptotic value of f .

For n = 0, 1, 2, · · · , define

Jn(z) =
∞∑

k=0

(−1)k

k! (k + n)!

(z
2

)2k+n

for z ∈ C.

The entire transcendental function Jn(z) is known as the Bessel function of first kind and

order n. Let

In(z) =
Jn(iz)

in
for z ∈ C .

Then, the function In(z) is called the modified Bessel function of first kind and order n.
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The orders (growth) of Jn(z), In(z) and z−nIn(z) are computed for each non-negative

integer n in the following proposition. Let ρ(f) denote the order of the entire function f .

Proposition 3.4.2. For each non-negative integer n, the orders (growth) of Jn(z), In(z)

and z−nIn(z) are equal to one.

Proof. The Bessel functions Jn satisfies the recurrence relation Jn+1(z) = n
z
Jn(z) − J ′

n(z)

for n = 0, 1, 2, ... (page-93, [32]). Since for any two entire functions g and h, ρ(g± h) =

ρ( g
h
) = max{ρ(g), ρ(h)} provided g 6= h (c.f. Theorem 1.1.33) and the order (growth) of g

is equal to the order (growth) of derivative of g (c.f. Theorem 1.1.32), the order (growth)

of Jn+1 is equal to the order (growth) of Jn for n = 0, 1, 2, .... Further, it is observed that

the order (growth) of Jn(z), In(z) and z−nIn(z) are equal for n = 0, 1, 2, .... Therefore,

it is enough to show that the order of J0 is 1.

The Taylor series of J0(z) about the point z = 0 is given by
∞∑

k=0

(−1)k

k! k!

(z
2

)2k

for z ∈ C.

Using the characterization of order of entire functions in terms of coefficients of the Taylor

series [71] and Stirling formula k! = kke−k
√

2πk for large enough k, it is easy to see that

the order of J0 is 1.

3.4.1 Example I: Bn(z) = z−nIn(z), n ≥ 0

For n = 0, 1, 2, 3, · · · , let

z−nIn(z) =
z−nJn(iz)

in
=

∞∑

k=0

z2k

22k+n k! (k + n)!
(3.3)

for z ∈ C. The following proposition locates all the singular values of z−nIn(z).

Proposition 3.4.3. For any non-negative integer n, the function Bn(z) = z−nIn(z) has

infinitely many singular values and all of them lie in [ −1
2nn!

, 1
2nn!

].

Proof. Observe that B′
n(z) = d

dz
{Jn(iz)

(iz)n } = −iJn+1(iz)
(iz)n . Since the set of all zeros of Jn+1(z)

is an unbounded subset of R, the set of all critical points of Bn(z) (that are the zeros of
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Jn+1(iz)) is an unbounded subset of the imaginary axis. Let all the critical points whose

imaginary part is positive be arranged in an increasing sequence, say {zk = ixk}k>0. Then

Bn(zk) = Bn(ixk) = Jn(−xk)
(−xk)n 6= 0 for each k because the roots of Jn and Jn+1 interlace

and Jn+1(−xk) = ±Jn+1(xk) = 0 for each k. As Bn(iy) = Jn(−y)
(−y)n → 0 as y → +∞,

limk→∞Bn(zk) = 0. Since Bn is an even function, −zk is also a critical point of Bn for each

k and limk→∞Bn(−zk) = 0. It shows that Bn(zk) are distinct for infinitely many values of

k. Therefore Bn(z) has infinitely many critical values. Since Bn(iy) → 0 as |y| → ∞, the

point z = 0 is an asymptotic value of Bn(z). It also follows that 0 is the only limit point

of all the critical values of Bn(z). By Proposition 3.4.1, the point z = 0 is the only finite

asymptotic value of Bn.

If zk = ixk is a critical point of Bn(z) then

n

xn
k

Jn(xk) =
Jn+1(xk) + J ′

n(xk)

xn−1
k

=
J ′

n(xk)

xn−1
k

by using the recurrence relation n
x
Jn(x) = Jn+1(x)+J ′

n(x) (Page 93, [32]) and the fact that

Jn+1(xk) = 0. Again by recurrence relation n
x
Jn(x) = Jn−1(x) − J ′

n(x), we get

n

xn
k

Jn(xk) =
Jn−1(xk) − n

xk
Jn(xk)

xn−1
k

=
Jn−1(xk)

xn−1
k

− n

xn
k

Jn(xk).

which gives that

Jn(xk)

xn
k

=
1

2n

Jn−1(xk)

xn−1
k

for each n = 1, 2, 3, ..., and hence

Jn(xk)

xn
k

=
1

2n 2(n− 1)...2

J0(xk)

x0
k

=
1

2n n!
J0(xk).

Since |J0(x)| ≤ 1 for x ∈ R, |Jn(xk)
xn

k

| ≤ 1
2n n!

. Thus, all the critical values lies in [ −1
2nn!

, 1
2nn!

].

Therefore all the singular values of Bn(z) are in [ −1
2nn!

, 1
2nn!

].

From Equation (3.3), it is obvious that all the coefficients in the Taylor series of Bn(z) =

z−nIn(z) about origin are positive, Bn(x) > 0 for all x < 0 and Bn(0) = 1
2nn!

. This fact
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along with Proposition 3.4.3 shows that the function Bn(z) = z−nIn(z) is in E1 for each

non-negative integer n.

For a fixed non-negative integer n, the dynamics of functions in the one parameter

family {λBn(z) = λz−nIn(z) : λ > 0} follows from Theorem 3.3.4. Thus, there is

a critical parameter λ∗n for this family such that F(λBn) is the union of the basin of

attraction of a real attracting fixed point and possibly wandering domains for 0 < λ < λ∗n

and is the union of the parabolic basin corresponding to a real rationally indifferent fixed

point and possibly wandering domains for λ = λ∗n. The Fatou set of λBn is empty or

contains possibly wandering domains when λ > λ∗n. If aλ denotes the attracting fixed

point of λBn for 0 < λ < λ∗n, then [0, aλ] is in the immediate basin of attraction of aλ by

Theorem 3.2.2. As Bn(z) is an even function, it follows that [−aλ, 0] is in the immediate

basin of attraction of aλ. Since λBn is increasing in R+ and 0 < aλ, it follows that

Bn(0) = 1
2nn!

< aλ. By Proposition 3.4.3, all the singular values of λBn are in [ −1
2nn!

, 1
2nn!

]

and hence in the immediate basin of attraction of aλ. By Theorem 3.3.5, F(λBn) is

connected for 0 < λ < λ∗n and hence the Fatou set is the basin of attraction. In other

words, J(λBn) is a nowhere dense subset of the complex plane for 0 < λ < λ∗n and is equal

to the entire complex plane or possibly the complement of wandering domains for λ > λ∗n.

Here a similar phenomena as chaotic burst occurs at the parameter value λ = λ∗n in the

dynamics of {λBn(z) = z−nIn(z) : λ > 0}.

Since Bn is an even function, dynamics of functions in {λBn : λ < 0} follows from

Remark 3.3.3.

For n = 0, the dynamics of functions in the family {λI0(z) : λ > 0} is studied in [77].

For n = 1, it is numerically found that the critical parameter λ∗1 for the family

{λz−1I1(z) : λ > 0} is approximately equal to 2.529. The pictures of the Julia sets

of 2.5z−1I1(z) and 2.5291z−1I1(z) are computationally generated using an algorithm (Re-

fer [77]) based on Corollary 3.3.2 and are given in Figures 3.1 and 3.2.
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Figure 3.1: Julia set of 2.5 I1(z)
z

Figure 3.2: Julia set of 2.5291 I1(z)
z

3.4.2 Example II: I2n(z), n > 0

For n = 1, 2, 3, · · · , I2n(z) =
∞∑

k=0

1

k! (k + 2n)!

(z
2

)2k+2n

for z ∈ C. All the coefficients in

the Taylor series of I2n about origin are positive. Further, I2n(x) > 0 for all x < 0 and,

I2n(0) = 0. Note that I ′2n(z) = i−2n+1J ′
2n(iz). Observe that the order of J2n(z) is one.

The function J2n(z) is real for real z and it has only real zeros. By Laguerre Theorem, all

the roots of J ′
2n(z) are real and separated from each other by zeros of J2n(z). Thus, all

the critical points of I2n(z) are purely imaginary and are separated by the zeros of I2n(z).

Observe that, the number of critical points is infinite and they form an unbounded subset

of the imaginary axis. Further, 0 is not a critical value and I2n(z) → 0 when z → ∞ along

positive (or negative) imaginary axis. Therefore, 0 is an asymptotic value. By the same

argument used in Proposition 3.4.3, it follows that 0 is the only limit point of all critical

values of I2n(z). By Proposition 3.4.1, the point z = 0 becomes the only finite asymptotic

value of I2n. Thus, I2n ∈ E0 for n > 0. The Fatou set F(λI2n(z)) is the union of the basin

of attraction of the superattracting fixed point 0 and possibly wandering domains for all

λ > 0. It is easy to see that, if λ is sufficiently large then some critical values of λI2n(z),

n > 0 are not in the immediate basin of attraction of the superattracting fixed point 0.

The pictures of the Julia sets of I2(z) and 5I2(z) are computationally generated and are
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given in Figures 3.3 and 3.4.
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Figure 3.3: Julia set of I2(z) Figure 3.4: Julia set of 5I2(z)

3.4.3 Example III: Sm,n(z) =
sinhm z

zn
, m ≥ n > 0

The Taylor series of sinh z about origin is given by
∞∑

k=0

z2k+1

(2k + 1)!
. For m,n ∈ N and

m ≥ n, all the coefficients of the Taylor series of Sm,n(z) =
sinhm z

zn
are positive. Let both

m and n be even or both of them be odd. Then Sm,n(x) > 0 for x < 0.

Note that S ′
m,n(z) =

sinhm−1 z(mz cosh z − n sinh z)

zn+1
. Since all the solutions of αtan z =

z are real for 0 < α ≤ 1, it follows that
n

m
tanh z = z has only purely imaginary solu-

tions when n
m

≤ 1 and these solutions form an unbounded set. Further, the solutions of

sinhm−1 z
zn+1 = 0 are purely imaginary. Therefore, all the critical points of Sm,n(z) are purely

imaginary. Note that, Sm,n takes the imaginary axis to a bounded interval in the real axis.

So all the critical values of Sm,n are in a bounded interval of the real axis. The function

Sm,n(z) tends to 0 as z → ∞ along either positive or negative imaginary axis. So the

point z = 0 is an asymptotic value of Sm,n and, same argument used in Proposition 3.4.3

gives that it is the only limit point of all the critical values of Sm,n . By Proposition 3.4.1,

the point z = 0 is the only finite asymptotic value of Sm,n. Note that Sm,n(0) = 1 for

n = m and Sm,n(0) = 0 for m > n. Thus,
sinhm z

zn
∈ E0 for m > n and

sinhm z

zn
∈ E1 for
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m = n when m, n ∈ N, m ≥ n and both m and n are even or both of them are odd. The

dynamics of the functions in {λSm,n : λ > 0} follows from Theorem 3.3.3 when m > n

and from Theorem 3.3.4 when m = n. Thus, the Fatou set of λSm,n is the union of a

basin of attraction of the superattracting fixed point 0 and possibly wandering domains

when m > n and λ > 0. However, for m = n, the functions in the one parameter family

{λSm,m : λ > 0} exhibit a phenomena similar to chaotic burst as follows. There is a

critical parameter, say λ∗m such that F(Sm,m) is the union of the basin of attraction of a

real attracting fixed point and possibly wandering domains for 0 < λ < λ∗m and is the

union of the parabolic basin corresponding to a real rationally indifferent fixed point and

possibly wandering domains for λ = λ∗m. The Fatou set of λSm,m is empty or possibly

contains wandering domains for λ > λ∗m.

The case m = n = 1 is studied in [106].

For m = n = 2, the critical parameter λ∗2 is found to be approximately equal to 0.7618.

The computationally generated pictures of the Julia sets of 0.75sinh2
z

z2 and 0.7619sinh2
z

z2

are given in Figures 3.5 and 3.6.
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Figure 3.5: Julia set of 0.75sinh2
z

z2 Figure 3.6: Julia set of 0.7619sinh2
z

z2
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3.4.4 Example IV: P (f) where f ∈ E

Let P (z) = (z + a1)
m1(z + a2)

m2 ...(z + an)mn be a non-constant polynomial where a1, a2,

· · · , an are positive real numbers and m1, m2, · · · , mn are non-negative integers. Then, it

follows from Proposition 3.1.1 (3) that the functions Φ = P ◦ f ∈ E1 and Ψ = h ◦ P ∈ E1

for f ∈ E and h ∈ E1.

Let P (z) = (z+1)(z+2) and f(z) = I0(z). Set Φ(z) = P (f(z)) = (I0(z)+1)(I0(z)+2)

for z ∈ C. Then, there exists a critical parameter λ∗ ≈ 0.155 such that the Fatou set F(λΦ)

is the union of the attracting basin of a real fixed point and possibly wandering domains

for 0 < λ < λ∗, is the union of the parabolic basin corresponding to a real rationally

indifferent fixed point and possibly wandering domains for λ = λ∗ and is an empty set or

possibly contains wandering domains for λ > λ∗. Thus, a sudden change occurs in the one

parameter family {λΦ : λ > 0} where Φ(z) = P (f(z)) = (I0(z) + 1)(I0(z) + 2) at the

parameter value λ = λ∗ ≈ 0.155. The computationally generated pictures of the Julia sets

of 0.15Φ(z) and 0.1556Φ(z) are given in Figures 3.7 and 3.8.
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Figure 3.7: Julia set of 0.15(I0(z) +
1)(I0(z) + 2)

Figure 3.8: Julia set of 0.1556(I0(z) +
1)(I0(z) + 2)
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3.4.5 Example V: ebz+cez

, b ∈ N and c > 0

Let f(z) = ebz+cez

for z ∈ C where b ∈ N and c > 0. All the coefficients of the Taylor series

of the functions ez and bz+cez are non-negative which in turn gives that all the coefficients

of the Taylor series of f(z) are non-negative. Clearly, f(x) > 0 for all x ∈ R. The function

f has only one finite asymptotic value 0 and the only critical value is eb ln |−b
c
|−c if b is

even and −eb ln |−b
c
|−c if b is odd. Therefore, f ∈ E1 and chaotic burst in the dynamics of

functions in the one parameter family {λf : λ > 0} occurs at a critical parameter λ∗

(depending on f) by Theorem 3.3.4.
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Chapter 4

Dynamics of certain meromorphic
functions of bounded type

In this chapter, we define a class of transcendental meromorphic functions and prove chaotic

burst in the one parameter family {λf : λ > 0} for each f in the class.

Let

E ≡





h(z) :

(i) h(z) =
∞∑

n=0

anz
n for z ∈ C where an ≥ 0 for all n > 0

(ii) a0 = h(0) ≥ 1
(iii) h(x) > 0 for all x < 0
(iv) The set Sh is a bounded subset of C∗ ⋃

R∗





where Sh is the closure of the set of singular values of h, C∗ = {z ∈ C : |z| = 1 and z 6= ±i}

and R∗ = R \ {0}. It is important to note that the class E defined in Chapter 3 and the

class E defined above have non-empty intersection. For instance, sinh z
z

+ 1 and ez + 1 are

in E
⋂

E. Define

M ≡ {f(z) = Jn(h(z)) for z ∈ C : n ∈ N and h ∈ E}

where Jn denotes the n-times composition of the Joukowski function J(z) = z + 1
z
. For

f ∈ M, the dynamics of functions in the one parameter family

S ≡ {fλ(z) = λf(z) : λ > 0}

is investigated in this chapter.
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The chaotic burst in the one parameter family S at certain critical parameter (depending

on f) is proved. The function J(ez+1) is an example from the class M and, the dynamics of

functions in the one parameter family {λ(ez +1+ 1
ez+1

) : λ > 0} is discussed in detail and

some additional properties of the Julia set are proved. For instance, it is established that,

whenever the Julia set of λ(ez+1+ 1
ez+1

) is not equal to Ĉ, it contains singleton components,

bounded (but not singleton) components and unbounded components. Further, it can be

written as union of two completely invariant sets one of which is totally disconnected.

4.1 Properties of fλ

Some basic properties of fλ ∈ S are proved in this section which are required for determining

the dynamics of fλ. Before that, we make some useful observations on the function z + 1
z
.

The Joukowski function J(z) = z + 1
z

is an odd meromorphic function having only

one pole at z = 0 and two critical values 2 and −2 in C. On R+ = {x ∈ R : x > 0},

the map J(x) decreases in (0, 1), attains its minimum at x = 1, increases in (1, ∞)

and J(x) → +∞ as x → +∞. For each x ∈ R+, {Jn(x)}n>0 is an increasing sequence

tending to ∞ as n → ∞. Observe that J(z) has only one fixed point ∞ in Ĉ which is

rationally indifferent and, the two singular (critical) values are in the parabolic domain

corresponding to ∞. Therefore, the Fatou set of J(z) is the parabolic basin corresponding

to ∞. A detailed treatment of dynamics of J(z) appears in [18].

For f ∈ M, there is a natural number n such that f(z) = Jn(h(z)) for z ∈ C where h ∈

E. Note that J−1(∞) = {0, ∞}, J−2(∞) = {0, ∞, i, −i} and <(J(z)) = x(1+ 1
x2+y2 ) = 0

if and only if <(z) = x = 0 for each nonzero z = x+ iy. Set Pn = {z ∈ Ĉ : Jn(z) = ∞}

for n ∈ N. Then, ∞ ∈ Pn for all n ∈ N because ∞ is a fixed point of J(z) and all the

finite elements of Pn are on the imaginary axis. For n = 1, P1 = {0, ∞} and the poles of

λJ(h(z)) are precisely the zeros of h(z) as h is entire. The function λJ(h(z)) is entire if 0 is

an exceptional value of h(z). For n > 1, the set Pn contains more than one point in C. The
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function h(z) is entire for which it takes each finite complex value infinitely often except

possibly one. Therefore, the function fλ(z) = λJn(h(z)) is meromorphic with infinitely

many poles for each n > 1. Further, all the poles of fλ(z) are in {z ∈ C : <(h(z)) = 0}

for n > 1. In Proposition 4.1.1, it is shown that the set Sp(fλ) is bounded for each fλ ∈ S

and p ∈ N.

Proposition 4.1.1. Let fλ ∈ S. Then, the set Sp(fλ) is bounded for each natural number

p. In particular, S1(fλ) = Sfλ
is a bounded subset of R∗.

Proof. A critical point of fλ(z) is a critical point of h(z) or a solution of J j(h(z)) = ±1

for j = 0, 1, 2, · · · , n − 1 since f ′
λ(z) = λh′(z)

n−1∏

j=0

{
1 − 1

(J j(h(z)))2

}
. Let z̃ be a critical

point of h(z). Then h(z̃) is a critical value of h(z) and λJn(h(z̃)) is a critical value of

fλ(z). Thus λJn(h(z̃)) ∈ λJn(Sh) where Sh is the set of all singular values of h(z). Now,

let ẑ be a solution of J j(h(z)) = ±1 for j, 0 ≤ j ≤ n − 1. Then λJn−j(J j(h(ẑ))) =

λJn−j(±1) is a critical value of fλ(z). In this way, λJn−j(±1) is a critical value of fλ

for each j ∈ {0, 1, ..., n − 1}. Since λJn(z) has no finite asymptotic value, any finite

asymptotic value a of fλ(z) is of the form λJn(w̃) where w̃ is a finite asymptotic value

of h(z). Therefore, a ∈ λJn(Sh) and Sfλ
⊂ λJn(Sh)

⋃{λJn−j(±1) : 0 ≤ j ≤ n − 1}.

Since Sh is a bounded subset of {z : |z| = 1 and z 6= ±i}⋃
R∗, λJn(Sh) is a bounded

subset of R∗ and hence Sfλ
is a bounded subset of R∗. For any x ∈ R, h(x) > 0 and

λJn(h(x)) ∈ R∗. In this way, {z ∈ C : fn
λ (z) = ∞ for some n ∈ N}⋂

R = ∅ and we

conclude that Sp(fλ) =

p−1⋃

k=0

fk
λ (Sfλ

\ Ak(fλ)) =

p−1⋃

k=0

fk
λ (Sfλ

) (c.f. Equation (1.1)) is bounded

for each p.

Since the singular values of λf and f are multiples of each other, it is clear from

Proposition 4.1.1 that the function f ∈ M is of bounded type. But, the number of singular

values of f may be finite or infinite. For example, f(z) = J( sinh z
z

+1) is in M and the set of

singular values of f is infinite. At the same time, the class M contains plenty of functions
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having finite number of singular values as suggested by the next proposition before which

we prove a lemma.

Lemma 4.1.1. Let m ∈ N and a be a positive real number. Then, the function Jm(ez + a)

has 2m + 1 singular values for a 6= 1 and the function Jm(ez + a) has 2m singular values

for a = 1.

Proof. Any finite asymptotic value of f is either a finite asymptotic value of Jm(z) or a

Jm-image of a finite asymptotic value of ez+a. The function Jm(z) has no finite asymptotic

value and a is the only finite asymptotic value of ez + a. Hence, Jm(a) is the only finite

asymptotic value of f(z) = Jm(ez + a).

Set J0(z) = z. Note that f ′(z) =
m−1∏

j=0

J ′(J j(ez + a))ez =
m−1∏

j=0

{
1 − 1

(J j(ez + a))2

}
ez

and the critical points of f(z) are precisely the solutions of J j(ez+a) = 1 or J j(ez+a) = −1

for j ∈ {0, 1, 2, · · · , m − 1}. There are two distinct roots of J(z) = 1 namely, 1+i
√

3
2

and 1−i
√

3
2

which gives by inductive argument that, J j(z) = J(J j−1(z)) = 1 has at least

two distinct solutions for each j > 0. The entire function h(z) = ez + a cannot omit

two values in C. This implies that J j(ez + a) = 1 has at least one solution for each j,

j = 1, 2, 3, · · · , m − 1. Let j be fixed and zj be a solution of J j(ez + a) = 1. Then

f(zj) = Jm(ezj +a) = Jm−j(J j(ezj +a)) = Jm−j(1) is a critical value of f(z) = Jm(ez +a).

Similarly, it follows that J j(ez +a) = −1 has at least one solution for each j and Jm−j(−1)

is a critical value of f(z) for each j, j = 1, 2, 3, · · · , m−1. For j = 0, there are two cases.

If a 6= 1, then each of the equations J0(ez + a) = ez + a = −1 and J0(ez + a) = ez + a = 1

has solutions and the resulting critical values are Jm(−1) and Jm(1). If a = 1, then the

equation J0(ez + a) = ez + a = −1 has a solution where as J0(ez + a) = ez + a = 1 has no

solution and the only resulting critical value is Jm(−1). Therefore, the set of all critical

values of Jm(ez + a), a 6= 1 is {Jm−j(1) : j ∈ N and 0 ≤ j ≤ m− 1}⋃{Jm−j(−1) : j ∈

N and 0 ≤ j ≤ m − 1} and that of Jm(ez + 1) is {Jm−j(1) : j ∈ N and 1 ≤ j ≤
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m − 1}⋃{Jm−j(−1) : j ∈ N and 0 ≤ j ≤ m − 1}. As J j(1) 6= Jk(1) for j 6= k and

Jm(−1) = −Jm(1), it is concluded that the number of critical values of Jm(ez + a) is 2m

and 2m−1 for a 6= 1 and a = 1 respectively. Therefore, the function Jm(ez +a) has 2m+1

singular values for a 6= 1 and the function Jm(ez +a) has 2m singular values for a = 1.

Proposition 4.1.2. For each natural number n, there is a function f in M such that f

has exactly n singular values.

Proof. Let h(z) = ez + a for z ∈ C where a > 0. Observe that all the coefficients in the

Taylor series of h(z) about origin are non-negative, h(0) = 1 + a > 0, h(x) > 0 for x < 0

and the set of singular values of h is {a}. Therefore, h ∈ E and Jn(h) ∈ M for all n ∈ N.

We assert that the function Jn(ez + a) has exactly n singular values for suitable values of

n and a. Two cases arise.

Case I: n is odd

If n is odd, then consider the function Jm(ez + a) in M where m = n−1
2

and a 6= 1. By

Lemma 4.1.1, the function Jm(ez + a) has 2m+ 1 = n singular values.

Case II: n is even

If n is even, then consider the function Jm(ez + 1) in M where m = n
2
. By Lemma 4.1.1,

the function Jm(ez + 1) has 2m = n singular values.

Remark 4.1.1. The set of positive critical values of Jn(ez + a), a 6= 1 is {J j(1) : j ∈

N, 1 ≤ j ≤ n}. Note that Jk(1) > Jk−1(1) for all natural number k. Therefore, Jn(1) is

the largest positive critical value of Jn(ez + a). Similarly, Jn(−1) is the smallest negative

critical value of Jn(ez + 1) because J(−z) = −J(z) for all z ∈ C. Since Jn(a) is the only

finite asymptotic value of Jn(ez +a) it is concluded that, all the singular values of Jn(ez +1)

lie in [−Jn(1), Jn(1)]
⋃{Jn(a)}. For a = 1, the asymptotic value of Jn(ez + 1) is Jn(1).

Similarly, it follows that, all the singular values of Jn(ez +a), a = 1 lies in [−Jn(1), Jn(1)].
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Now, we make some preliminary observations on the behaviour of fλ on R which will

be used later in determining the real dynamics of fλ.

Proposition 4.1.3. Let f ∈ M. Then, f(x) for x ∈ R satisfies the following.

1. f(x) > 0 for all x ∈ R.

2. f ′(x) and f ′′(x) > 0 for all x > 0.

3. lim
x→+∞

f(x) − x = lim
x→+∞

f ′(x) = +∞.

4. lim
x→+∞

f(x) − xf ′(x) = −∞.

Proof. Let n be the natural number such that f(x) = Jn(h(x)) where h ∈ E.

1. Since h(x) > 0 for all x ∈ R and Jn(x) > 0 for x > 0, it follows that f(x) =

Jn(h(x)) > 0 for x ∈ R.

2. Observe that

f ′(x) = h′(x)
n−1∏

i=0

J ′(J i(h(x))) = h′(x)
n−1∏

i=0

{
1 − 1

(J i(h(x)))2

}

and f ′′(x) =

h′′(x)
n−1∏

i=0

{
1 − 1

(J i(h(x)))2

}
+ h′(x)

n−1∑

j=0

2
d
dx
J j(h(x))

(J j(h(x)))3

{
n−1∏

i=0,i6=j

1 − 1

(J i(h(x)))2

}
.

Since h(z) =
∑∞

n=0 anz
n for z ∈ C where an ≥ 0 for all n, the functions h(x), h′(x) and

h′′(x) are positive for x > 0. The function h(x) is increasing in (0, ∞) and h(0) ≥ 1.

This gives that h(x) > 1 for x > 0 and consequently, J i(h(x)) > 1 for i ≥ 0 and x > 0.

Since J ′(x) > 0 for x > 1, it follows that
d

dx
J i(h(x)) =

i∏

k=1

J ′(J i−k(h(x)))h′(x) > 0

for x > 0 and each i. Therefore, f ′(x) and f ′′(x) are positive for x > 0.
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3. For each i ∈ N, lim
x→+∞

f(x) = lim
x→+∞

Jn(h(x)) = lim
x→+∞

(
Jn−1(h(x)) +

1

Jn−1(h(x))

)

and lim
x→+∞

f ′(x) = lim
x→+∞

h′(x)
n−1∏

i=0

{
1 − 1

(J i(h(x)))2

}
. Now lim

x→+∞
Jk(h(x)) = +∞ for

k = 0, 1, 2,· · · , n which gives that lim
x→+∞

f(x) − x = lim
x→+∞

h(x) − x = +∞ and

lim
x→+∞

f ′(x) = lim
x→+∞

h′(x) = +∞.

4. Let h(x) =
∑∞

n=0 anx
n for x ∈ R. Then h′(x) =

∑∞
n=1 nanx

n−1 and h(x) − xh′(x) =

a0+(a1−a1)x+(a2−2a2)x
2+... and lim

x→+∞
f(x) − xf ′(x) = lim

x→+∞
h(x) − xh′(x) = −∞.

4.2 Dynamics of fλ(x) for x ∈ R

The image of all the singular values of fλ lie in the real line and fλ(R) ⊂ R. Therefore,

the dynamics of fλ on the real line is important for determining the dynamics of fλ(z) for

z ∈ C. The dynamics of fλ(x) for x ∈ R is studied in this section.

Consider φ(x) = f(x) − xf ′(x) for x ≥ 0. As φ′(x) = −xf ′′(x) < 0 for x > 0, φ(x)

is decreasing in R+ = {x ∈ R : x > 0}. Observe that φ(0) = f(0) > 0 and from

Proposition 4.1.3 that limx→+∞ φ(x) = −∞. By the continuity of φ, there exists unique

x∗ > 0 such that

φ(x)





> 0 for 0 < x < x∗

= 0 for x = x∗

< 0 for x > x∗
(4.1)

Define λ∗ = 1
f ′(x∗)

where x∗ is the positive solution of φ(x) = 0. If f ′(0) 6= 0, it is noted

that λ∗ < 1
f ′(0)

since 1
f ′(x)

is decreasing in R+ and x∗ > 0. The value of λ∗ depends on n

and h where f(z) = Jn(h(z)) and h ∈ E.

Theorem 4.2.1. Let fλ ∈ S. Then, fλ has no real periodic points of period greater than

one and
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1. For 0 < λ < λ∗, fλ has only two real fixed points aλ and rλ with aλ < rλ such that

aλ is attracting and rλ is repelling. Further, limn→∞ fn
λ (x) = aλ for 0 ≤ x < rλ and

limn→∞ fn
λ (x) = ∞ for x > rλ.

2. For λ = λ∗, fλ has a real rationally indifferent fixed point x∗ where x∗ is the unique

positive solution of f(x) − xf ′(x) = 0. Further, limn→∞ fn
λ (x) = x∗ for 0 ≤ x < x∗

and limn→∞ fn
λ (x) = ∞ for x > x∗.

3. For λ > λ∗, fλ has no real fixed points. Further, limn→∞ fn
λ (x) = ∞ for all x ∈ R.

Proof. For λ > 0, the function fλ(x) is positive for all x ∈ R. Therefore, any real periodic

point of fλ(x) lies in R+. Since fλ(x) is increasing in R+, any real periodic point of fλ(x)

cannot have prime period greater than one.

Define gλ(x) = fλ(x) − x for x ∈ R. Suppose that f ′(0) 6= 0. Since f ′(x) is positive for

x > 0 and is continuous on R, f ′(0) > 0. Note that g′λ(0) = f ′
λ(0) − 1 ≥ 0 for λ ≥ 1

f ′(0)
.

Since g′′λ(x) = f ′′
λ (x) > 0 for x > 0, g′λ(x) is increasing in R+ and g′λ(x) > g′λ(0) ≥ 0 for

all x > 0 if λ ≥ 1
f ′(0)

. This gives that the function gλ(x) is strictly increasing on R+. As

gλ(0) > 0, gλ(x) has no zeros in R+. In other words, fλ(x) has no fixed points in R when

λ ≥ 1
f ′(0)

. For 0 < λ < 1
f ′(0)

, g′λ(0) = f ′
λ(0) − 1 < 0. The function g′λ(x) = f ′

λ(x) − 1

is increasing in R+ and tends to +∞ as x tends to +∞. Therefore, there is a unique

xλ > 0 such that g′λ(x) = f ′
λ(x) − 1 < 0 for 0 < x < xλ, g

′
λ(xλ) = f ′

λ(xλ) − 1 = 0 and

g′λ(x) = f ′
λ(x) − 1 > 0 for x > xλ.

Now, let us suppose that f ′(0) = 0. Then g′λ(0) = f ′
λ(0) − 1 < 0 for all λ > 0.

Since the function g′λ(x) = f ′
λ(x) − 1 is increasing in R+ and tends to +∞ as x tends

to +∞, there exist a unique xλ > 0 such that g′λ(x) = f ′
λ(x) − 1 < 0 for 0 < x < xλ,

g′λ(xλ) = f ′
λ(xλ) − 1 = 0 and g′λ(x) = f ′

λ(x) − 1 > 0 for x > xλ.

When f ′(0) 6= 0, for each λ with 0 < λ < 1
f ′(0)

and when f ′(0) = 0, for each λ > 0, there

exists a positive real number xλ such that gλ decreases in (0, xλ), attains its minimum at
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xλ and then increases in (xλ, ∞). Further, λ = 1
f ′(xλ)

.

1. If 0 < λ < λ∗, then 1
f ′(xλ)

< 1
f ′(x∗)

. Since 1
f ′(x)

is strictly decreasing in R+, xλ > x∗. It

follows from Equation (4.1) that φ(xλ) < 0 which gives that gλ(xλ) = fλ(xλ)−xλ < 0.

As limx→+∞ gλ(x) = +∞ and gλ(0) > 0, there are exactly two points, say aλ and

rλ with 0 < aλ < xλ < rλ such that gλ(aλ) = gλ(rλ) = 0. The points aλ and rλ

are the real fixed points of fλ(x). Obviously, 0 < f
′

λ(aλ) < f
′

λ(xλ) = 1 and f
′

λ(rλ) >

f
′

λ(xλ) = 1. Therefore, aλ is attracting and rλ is repelling. Note that fλ(x) > x for

0 ≤ x < aλ and fλ(x) < x for aλ < x < rλ. Since fλ(x) is increasing in R+, the

sequence {fn
λ (x)}n>0 is increasing and bounded above by aλ for 0 ≤ x < aλ and, is

decreasing and bounded below by aλ for aλ < x < rλ. Hence, limn→∞ fn
λ (x) = aλ for

0 ≤ x < rλ by monotone convergence theorem. Since fλ(x) is increasing in R+ and

fλ(x) > x for all x > rλ, it follows that limn→∞ fn
λ (x) = ∞ for x > rλ.

2. Let λ = λ∗. Proceeding on the similar lines of the arguments given for 0 < λ < λ∗,

it is arrived that gλ(xλ) = 0 for λ = λ∗ and xλ = x∗. As gλ∗(xλ) is the minimum

value of gλ∗(x) in R+, the point xλ = x∗ is the only zero of gλ∗(x) and hence it is

the only real fixed point of fλ∗(x). Clearly, x∗ is rationally indifferent. Further, the

sequence {fn
λ (x)}n>0 is increasing and bounded above by x∗ for 0 ≤ x < x∗ which

gives that limn→∞ fn
λ∗(x) = x∗. For x > x∗, the sequence {fn

λ∗(x)}n>0 is increasing

and unbounded above. Therefore, limn→∞ fn
λ∗(x) = ∞ for x > x∗.

3. Case I: f ′(0) = 0 and λ > λ∗

If f ′(0) = 0, then there exists a xλ such that 1
f ′(xλ)

> 1
f ′(x∗)

. It follows that xλ < x∗

and by Equation (4.1), φ(xλ) > 0. Therefore, gλ(x) > gλ(xλ) = 0 for all x > 0

showing that fλ has no fixed points on R.

Case II: f ′(0) 6= 0 and λ∗ < λ < 1
f ′(0)

There exists xλ such that gλ(x) attains the minimum value at x = xλ. Again, it
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follows from Equation (4.1) that φ(xλ) > 0 and consequently g(xλ) > 0. Therefore,

gλ(x) > 0 for all x ∈ R and hence fλ has no fixed points on R in this case.

Case III: f ′(0) 6= 0 and λ ≥ 1
f ′(0)

It is already shown in the beginning of the proof that fλ has no fixed points on R

when λ ≥ 1
f ′(0)

.

Since fλ(x) > 0 for all x ∈ R, fλ(x) > x for all x ∈ R+ and fλ has no fixed points on

R, it is concluded that limn→∞ fn
λ (x) = ∞ for all x ∈ R if λ > λ∗.

4.3 Dynamics of fλ(z) for z ∈ C

In the present section, the dynamics of fλ(z) for z ∈ C where fλ ∈ S is studied. Non-

existence of rotational domains, Baker domains and wandering domains in the Fatou set

of fλ are established in Proposition 4.3.1 and Proposition 4.3.2. In Theorem 4.3.1, the

dynamics of functions in the one parameter family S is described.

Proposition 4.3.1. Let fλ ∈ S. Then the Fatou set F(fλ) of fλ does not contain any

rotational domain.

Proof. Let D be a rotational domain in the Fatou set of fλ and ∂D denote the boundary

of D. Since all the singular values of fλ(z) are in a bounded subset of R∗ and fλ(x) > 0 for

all x ∈ R, there are negative real numbers which are not in P (fλ), the closure of the set of

forward orbits of all singular values of fλ whenever these are defined (c.f. Equation (1.2)).

In other words, the set P (fλ) is a proper subset of R. It is known that the boundary ∂D of

D is contained in the closure P (fλ) of P (fλ) which consequently gives that ∂D is properly

contained in R. Note that (∂D)c = Ĉ \ ∂D is path connected and D ⊆ (∂D)c. Now, we

claim that (D)c is an empty set. If possible, let there be a point z∗ in (D)c = (D
⋃
∂D)c =

Dc
⋂

(∂D)c. Then {z∗}⋃
D is a subset of (∂D)c and a path γ can be found in (∂D)c
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joining z∗ and a point of D. Since z∗ ∈ Dc, the path γ must intersect ∂D which is not

possible. Therefore, (D)c is an empty set. As any component of the Fatou set other than

D must be in (D)c, it is not possible for a component of the Fatou set of fλ other than D

to exist. Since F(fλ) is completely invariant, it follows that D is completely invariant. All

the points of D, except at most two have infinitely many pre-images by Picard’s theorem.

It shows that fλ is not one-one on D which leads to a contradiction to the definition of

rotational domains (c.f. Remark 1.1.2(2)). Therefore, it is concluded that the Fatou set of

fλ does not contain any rotational domain.

Proposition 4.3.2. Let fλ ∈ S. Then the Fatou set F(fλ) of fλ does not contain Baker

domain.

Proof. Since Sp(fλ) is bounded for each p ∈ N, there is no component in the Fatou set of fλ

on which fnp
λ (z) → ∞ as n→ ∞ [108]. Therefore there is no Baker domain in F(fλ).

Theorem 4.3.1. Let fλ ∈ S. Then, the dynamics of fλ is as follows.

1. If 0 < λ < λ∗, then the Fatou set F(fλ) of fλ is the union of the attracting basin of

a real fixed point and possibly wandering domains.

2. If λ = λ∗, then the Fatou set F(fλ) of fλ is the union of the parabolic basin corre-

sponding to a real rationally indifferent fixed point and possibly wandering domains.

3. If λ > λ∗, then the Fatou set F(fλ) of fλ is an empty set or possibly contains wan-

dering domains.

Proof. The Fatou set of fλ does not contain any rotational domain or Baker domain by

Propositions 4.3.1 and 4.3.2.

Since all the singular values of fλ are in R and fλ(R) ⊆ R+, by similar arguments used

in Theorem 3.3.4 of Chapter 3, it follows that any periodic Fatou component is associated
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to a real non-repelling periodic point. By Theorem 4.2.1, the function fλ has no real

periodic point of prime period greater than one.

1. If 0 < λ < λ∗, then fλ has only one attracting fixed point aλ. Therefore, F(fλ) is the

union of A(aλ) and possibly wandering domains for 0 < λ < λ∗ where A(aλ) is the

basin of attraction of aλ.

2. If λ = λ∗, then fλ has only one fixed point x∗ and that is rationally indifferent.

Consequently, F(fλ∗) is the union of P (x∗) and possibly wandering domains where

P (x∗) is the parabolic basin corresponding to x∗.

3. If λ > λ∗, the function fλ has no fixed points. Therefore, F(fλ) = ∅ or possibly

contains wandering domains for λ > λ∗.

4.4 An example: f(z) = J(ez + 1)

In this section, the dynamics of functions in the one parameter family {fλ ≡ λf : λ > 0}

where f(z) = J(h(z)), h(z) = ez + 1 and J(z) = z + 1
z

is discussed in detail. Observe

that all the coefficients in the Taylor series of the function h(z) = ez + 1 about origin are

non-negative, h(x) > 0 for all x < 0 and h(0) = 1. The point z = 1 is the only singular

value of ez + 1. Therefore, h ∈ E and f = J(h) ∈ M. In fact, Jn(h(z)) ∈ M for each

n ∈ N. The set of poles of the function J(ez + 1) is {iπ(2k + 1) : k ∈ Z}.

Let λ∗ = 1
f ′(x∗)

where x∗ is the positive solution of f(x) − xf ′(x) = 0. Numerically, it

is found that x∗ ≈ 1.36415 and λ∗ ≈ 0.2666. The graphs of fλ(x) are given in Figure 4.1.
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Figure 4.1: Graphs of fλ(x) = λJ(ex + 1) for (a) λ < λ∗ (b) λ = λ∗ and (c) λ > λ∗.

For 0 < λ < λ∗, fλ has an attracting fixed point aλ and a repelling fixed point rλ and,

limn→∞ fn
λ (x) = aλ for x ∈ [0, rλ) and limn→∞ fn

λ (x) = ∞ for all x > rλ. Since fλ(x)

is increasing on R, fλ(x) ∈ (0, aλ) for all x < 0. Therefore, limn→∞ fn
λ (x) = aλ for all

x ∈ (−∞, rλ) when 0 < λ < λ∗. The function fλ∗ has only one rationally indifferent

fixed point x∗. Further, limn→∞ fn
λ∗(x) = x∗ for x ∈ [0, x∗) and limn→∞ fn

λ (x) = ∞ for all

x > x∗. Since fλ∗(x) ∈ (0, x∗) for all x < 0, limn→∞ fn
λ∗(x) = x∗ for all x ∈ (−∞, x∗). If

λ > λ∗, then limn→∞ fn
λ (x) = ∞ for all x ∈ R since limn→∞ fn

λ (x) = ∞ for all x > 0 and

fλ(R
−) ⊆ R+. Thus, the dynamics of fλ(x) = λJ(ex +1) for x ∈ R changes suddenly when

the parameter λ passes through λ∗. The dynamics of fλ(x) on the real line is explained by

the phase portraits in Figure 4.2.
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Figure 4.2: Phase portraits of fλ(x) = λJ(ex + 1) for (a) 0 < λ < λ∗, (b) λ = λ∗ and
(c) λ > λ∗.

The dynamics of functions in the one parameter family {fλ(z) = λJ(ez + 1) : λ > 0}

follows from Theorem 4.3.1. The Fatou set F(fλ) of fλ(z) does not contain any wandering

domain since fλ is critically finite. It is the attracting basin of a real attracting fixed point

of fλ(z) for 0 < λ < λ∗. The Fatou set F(fλ∗) is the parabolic basin corresponding to a

real rationally indifferent fixed point x∗. If λ > λ∗, then F(fλ) is an empty set. We now

prove some additional properties of the Fatou set and the Julia set of λJ(ez + 1).

Theorem 4.4.1. Let S = {fλ(z) = λJ(h(z)) : λ > 0} where h(z) = ez + 1 and

J(z) = z+ 1
z
. For 0 < λ < λ∗, the Fatou set F(fλ) is connected and consequently, the Julia

set J(fλ) does not contain any continuum that disconnects Ĉ.

Proof. When 0 < λ < λ∗, the function fλ has only two real fixed points aλ and rλ with

0 < aλ < rλ such that aλ is attracting and rλ is repelling. The function fλ(x) is increasing

on R since f ′
λ(x) = λex(1− 1

(ex+1)2
) > 0 for all x ∈ R. Note that limx→−∞ fλ(x) = λJ(1) =
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2λ. Thus, the function fλ maps (−∞, 0) onto (2λ, fλ(0)) and 0 < 2λ < fλ(0) < aλ =

fλ(aλ) < rλ = fλ(rλ). The interval [0, rλ) is in the immediate basin of attraction I(aλ) of

aλ by Theorem 4.2.1. Therefore, (−∞, rλ) ⊂ I(aλ) and in particular, 2λ ∈ I(aλ).

Let Dr(2λ) be a disc of radius r with center at 2λ such that Dr(2λ) ⊂ I(aλ). Note that

2λ is a critical value of λJ(z) corresponding to the critical point 1. The point z = 1 is the

only pre-image of 2λ and each z ∈ Dr(2λ)\{2λ} has exactly two pre-images under the map

w = λJ(z). Therefore, (λJ)−1(Dr(2λ)) is an open connected set, say N(1) containing 1

and λJ : N(1)\{1} → Dr(2λ)\{2λ} is a two fold surjective map. Since 0 is a pole of λJ(z),

0 /∈ N(1). Now, let Dε(1) be a disc around 1 and of radius ε such that Dε(1) ⊂ N(1). If

E(z) = ez +1, then E−1(Dε(1)) is equal to the left half-plane Hln ε = {z ∈ C : <(z) < ln ε}.

Thus, there is an open set D̃ = λJ(Dε(1)) contained in Dr(2λ) such that f−1
λ (D̃) is equal

to Hln ε (See Figure 4.3).
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Figure 4.3: Mapping property of fλ(z) = λJ(ez + 1) for 0 < λ < λ∗.

This means that each component of f−1
λ (I(aλ)) intersects Hln ε (c.f. Theorem 1.1.6).

Observe that (−∞, ln ε) ⊂ Hln ε ⊂ F(fλ) and [rλ, ∞) ⊂ J(fλ) as a result of which it

follows that ln ε < rλ and Hln ε

⋂
I(aλ) is a non-empty set containing (−∞, ln ε). Thus

each component of f−1
λ (I(aλ)) intersects I(aλ) since Hln ε is connected. In other words, the

set I(aλ) is backward invariant. By definition, I(aλ) is connected and forward invariant.

Hence, F(fλ) = I(aλ) and is connected.

If possible, let the Julia set J(fλ) contain a continuum σ that disconnects Ĉ. Then
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σc = Ĉ\σ has at least two non-empty components. Since the Fatou set F(fλ) is non-empty

and J(fλ) has empty interior, the Fatou set intersects at least two of the components of

σc. This contradicts the connectedness of F(fλ). Therefore, J(fλ) does not contain any

continuum that disconnects Ĉ.

Remark 4.4.1. From the proof of Theorem 4.4.1, it is clear that there is a real number

Mλ such that {z ∈ C : <(z) < Mλ} is in the Fatou set of fλ for 0 < λ < λ∗.

By Theorem 4.3.1, the Julia set of fλ contains [rλ, ∞) and the Fatou set of fλ contains

(−∞, rλ) whenever 0 < λ < λ∗. Let L+
k = {x + 2πki : x ∈ [rλ, ∞)} and L−

k =

{x+ 2πki : x ∈ (−∞, rλ)} for k ∈ Z. Then L+
k ⊂ J(fλ) and L−

k ⊂ F(fλ) for each k ∈ Z

as fλ(z) is a 2πi periodic function. Thus, there are infinitely many unbounded curves in

J(fλ)\{∞}. We prove in the following lemma that any unbounded component in the Julia

set is contained in a horizontal half-strip of width less than 4π which is bounded to the

left and unbounded to the right.

Lemma 4.4.1. Let 0 < λ < λ∗ and τ be an unbounded component (maximally connected

subset) of J(fλ). Then τ ⊂ {z ∈ Ĉ : |=(z) − =(z0)| < 4π and <(z) > R0} for some

z0 ∈ C and R0 ∈ R. Consequently, each component of J(fλ) contains at most one pole.

Proof. If possible, let the component τ intersects two half-lines L+
n1

and L+
n2

for some

integers n1 and n2 with n1 6= n2. Then L+
n1

⋃
τ

⋃
L+

n2

⋃{∞} is an unbounded continuum

disconnecting Ĉ which is not possible by Theorem 4.4.1. Therefore, τ intersects L+
n for

at most one value of n which means that, |=(z) − =(z0)| < 4π for each z ∈ τ and some

z0 ∈ C. Further, there is a real number Mλ such that {z : <(z) < Mλ} is in the Fatou set

of fλ by Remark 4.4.1. This implies <(z) > R0 for each z ∈ τ and some R0 ∈ R. Hence

τ ⊂ {z ∈ Ĉ : |=(z) −=(z0)| < 4π and <(z) > R0} for some z0 ∈ C and R0 ∈ R.

The set of poles of fλ(z) is {iπ(2k + 1) : k ∈ Z}. If a component ρ of the Julia set

J(fλ) contains two poles, then by 2πi periodicity of fλ, ρ contains infinitely many poles
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and hence {=(z) : z ∈ ρ} will become unbounded which is not possible. Therefore, each

component of J(fλ) contains at most one pole.

The existence of non-singleton bounded components in the Julia set of fλ for 0 < λ < λ∗

is proved in the following theorem.

Theorem 4.4.2. Let S = {fλ(z) = λJ(h(z)) : λ > 0} where h(z) = ez + 1 and

J(z) = z + 1
z
. For 0 < λ < λ∗, the Julia set J(fλ) of fλ has infinitely many bounded

components which are not singletons. In particular, each component of J(fλ) containing a

pole is bounded and non-singleton.

Proof. Let w0 be a pole of fλ and ρ be the component of J(fλ) \ {∞} containing w0. We

claim that ρ is bounded and is not a singleton set. Since all the poles of fλ(z) are simple,

the function fλ(z) is one-one in a sufficiently small disc Dε(w0) with center w0 and radius

ε. The set fλ(Dε(w0)) contains a neighbourhood of ∞ and it is already shown that [rλ,∞)

is in the Julia set. Therefore, (x0, ∞)
⋃{∞} ⊂ fλ(Dε(w0))

⋂
J(fλ) for some x0 ≥ rλ and

consequently, Dε(w0) intersects a component ζ of f−1
λ ((x0, ∞)

⋃{∞}). Now, w0 ∈ ζ and

ζ ⊂ J(fλ) because ∞ ∈ J(fλ) and the Julia set is completely invariant. Clearly ζ ⊆ ρ and

ζ is not singleton. Therefore, ρ is not a singleton component of the Julia set.

Now, we assert that the component ρ of the Julia set J(fλ) is bounded. If possible,

let ρ be unbounded. Then ρ∗ = ρ \ {w0} has an unbounded component. Note that, if

ρ∗ contains two unbounded components, then ρ contains a continuum that disconnects Ĉ

which is not possible by Theorem 4.4.1. Also, if ρ∗ contains a pole of fλ, then ρ contains

two poles of fλ which is not possible by Lemma 4.4.1. Therefore, ρ∗ contains exactly one

unbounded component, say ρ̃, and ρ∗ contains no pole. Let ρ̃1 be a connected subset of

ρ̃
⋃{w0} contained in Dε(w0) and observe that ρ̃ \ ρ̃1 has an unbounded and connected

subset(See Figure 4.4). Let it be ρ̃2.
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Figure 4.4: Pictures of ρ̃1 and ρ̃2.

By Lemma 4.4.1, ρ̃2 is in {z ∈ Ĉ : |=(z) − =(z0)| < 4π and <(z) > R0} for some

z0 ∈ C and R0 ∈ R which gives that fλ(ρ̃2) = λJ(eρ̃2 + 1) is an unbounded component.

The set fλ(ρ̃1) is also unbounded since ρ̃1 contains the pole w0. If the two sets fλ(ρ̃1) and

fλ(ρ̃2) do not intersect, then fλ(ρ̃)
⋃{∞} forms a continuum in the Julia set disconnecting

Ĉ which is not possible by Theorem 4.4.1. Hence fλ(ρ̃1)
⋂
fλ(ρ̃2) is non-empty. Let z̃1 ∈ ρ̃1

and z̃2 ∈ ρ̃2 such that fλ(z̃1) = fλ(z̃2). Let ρ′ be the connected subset of ρ̃ containing z̃1

and z̃2. Then ρ′ is bounded. Since the two singular values of fλ are in the Fatou set which

is connected and unbounded, we can find a simply connected domain in C \Sfλ
containing

fλ(ρ
′). Let z∗ ∈ ρ′ and g be the branch of f−1

λ that satisfies g(fλ(z
∗)) = z∗. Then g is

single valued on fλ(ρ
′) by the Monodromy Theorem. So fλ is one-one on ρ′. It does not

agree with the fact that fλ(z̃1) = fλ(z̃2). Therefore, it is concluded that the component ρ

of the Julia set J(fλ) is bounded.

Since ρ contains exactly one pole of fλ and fλ has infinitely many poles, there are

infinitely many bounded components of J(fλ) which are not singletons. It is obvious from

the previous paragraph that each component of J(fλ) containing a pole is bounded.

Corollary 4.4.1. Let fλ(z) = λJ(h(z)) where J(z) = z + 1
z

and h(z) = ez + 1. Then, the

singleton components are dense in J(fλ) for 0 < λ < λ∗.
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Proof. Since the Julia set of fλ for 0 < λ < λ∗ contains infinitely many bounded compo-

nents by Theorem 4.4.2, the connectivity of the Fatou set F(fλ) is infinity. The corollary

follows from the fact that, if the Fatou set of a transcendental meromorphic function has a

component of connectivity at least three, then singleton components are dense in the Julia

set of the function [50].

A point w0 ∈ C is called a pre-pole of a meromorphic function f(z) if there is a natural

number k such that fk(w0) = ∞.

Corollary 4.4.2. Let fλ(z) = λJ(h(z)) where J(z) = z + 1
z

and h(z) = ez + 1. Also, let

0 < λ < λ∗. If ζ is a component of J(fλ) containing a pre-pole, then ζ is bounded.

Proof. Let on the contrary, ζ be an unbounded component of the Julia set J(fλ) containing

a pre-pole ŵ. Then, for some n̂, f n̂
λ (ŵ) = ∞. Observe that ζ ⊂ {z ∈ Ĉ : |=(z)−=(z0)| <

4π and <(z) > R0} for some z0 ∈ C and R0 ∈ R by Lemma 4.4.1. By the property of

fλ, the set fλ(ζ) is unbounded. Further, fλ(ζ) is contained in {z ∈ Ĉ : |=(z) − =(z′0)| <

4π and <(z) > R′
0} for some z′0 ∈ C and R′

0 ∈ R by Lemma 4.4.1. Repeating this argument,

it is seen that the set fn
λ (ζ) is unbounded for each n. Since fλ(z) is meromorphic, fn

λ (ζ) is

connected for all n ∈ N. Therefore, f n̂−1
λ (ζ) is a component of the Julia set J(fλ) containing

a pole f n̂−1
λ (ŵ) of fλ. But in Theorem 4.4.2, it is shown that each component of the Julia

set of fλ containing a pole is bounded leading to a contradiction. Therefore, it is concluded

that each component ζ of J(fλ) containing a pre-pole is bounded when 0 < λ < λ∗.

The following remark determines the number of pre-poles that can lie in a bounded

component of the Julia set of fλ for 0 < λ < λ∗.

Remark 4.4.2. Let 0 < λ < λ∗ and σ be a bounded component of J(fλ). Let z1, z2 ∈ σ be

two pre-poles of fλ. Then, there are two natural numbers n1 and n2 such that fni

λ (zi) = ∞

for i = 1, 2. Since fλ is meromorphic, fn
λ (σ) is connected for all n ∈ N. If n1 =
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n2, then the component fn1−1
λ (σ) of the Julia set contains two poles which is not possible

by Lemma 4.4.1. So n1 6= n2 and let n1 > n2. Then fn1−1
λ (σ) contains a pole of fλ.

Since fn2
λ (σ) is unbounded, fn

λ (σ)} is bounded for all n ≥ n2 by similar arguments used in

Corollary 4.4.2. Therefore, fn1−1
λ (σ) is unbounded which is not possible by Theorem 4.4.2.

Thus any bounded component of J(fλ) contains at most one pre-pole when 0 < λ < λ∗.

A bounded component σ of J(fλ) contains at most one pre-pole. The following remark

answers the question whether σ can contain (pre) periodic points also when a pre-pole lies

on σ.

Remark 4.4.3. Suppose that a bounded component σ of the Julia set of fλ contains a pre-

pole of fλ. Then, there is a natural number n0 such that fn0
λ (σ) is unbounded. By using the

arguments used in Corollary 4.4.2, it follows that fn
λ (σ) is unbounded for all n > n0. Since

the function fλ is meromorphic, fn
λ (σ) is connected for all n ∈ N. If σ contains a (pre)

periodic point z0 of fλ, then a natural number n∗ > n0 can be found such that fn∗

λ (z0) = z0

and consequently, fn∗

λ (σ) = σ. Now fn∗

λ (σ) is unbounded whereas σ is bounded leading to

a contradiction. Therefore, any bounded component of J(fλ) containing a pre-pole cannot

contain a (pre) periodic point of fλ where 0 < λ < λ∗.

It is well known that, the Julia set of a meromorphic function is completely invariant.

In the following theorem, we show that the Julia set of fλ, 0 < λ < λ∗ consists of two

completely invariant subsets one of which is totally disconnected.

Theorem 4.4.3. Let S = {fλ(z) = λJ(h(z)) : λ > 0} where h(z) = ez + 1 and

J(z) = z+ 1
z
. Then, for 0 < λ < λ∗, the Julia set of fλ can be expressed as a union of two

completely invariant subsets one of which is totally disconnected.

Proof. By Corollary 4.4.1, there are singleton components of the Julia set of fλ. Let J1(fλ)

consist of all the singleton components of J(fλ) and J2(fλ) = J(fλ)\J1(fλ). Then J1(fλ) is
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totally disconnected by definition. Since there are curves in the Julia set J(fλ) containing

∞ and the function fλ is one-one in sufficiently small neighbourhood of each pole, the

components of J(fλ) containing a pole is not singleton. Therefore, J1(fλ) does not contain

any pole of fλ. Since J(fλ) is completely invariant, J1(fλ) is completely invariant if and

only if J2(fλ) is completely invariant.

Let z1 ∈ J1(fλ). Since the set Sfλ
of all the singular values of fλ(z) is a subset of the

Fatou set F(fλ) for 0 < λ < λ∗ and fλ : Ĉ \ f−1
λ (Sfλ

) → Ĉ \ Sfλ
is a covering map, the

function fλ(z) is locally one-one on J(fλ) \ {∞}. Therefore, the image and pre-images of

z1 are singleton components of J(fλ). Hence, J1(fλ) is completely invariant.

Remark 4.4.4. Domı́nguez [50] proved that the Julia set of a meromorphic function with

finitely many poles cannot be totally disconnected. However, the Julia set of a meromorphic

function with infinitely many poles may not be totally disconnected, for example J(tan z) =

R
⋃{∞}. The function fλ(z) = λJ(ez + 1) has infinitely many poles and the Julia set

of fλ 0 < λ < λ∗ is not totally disconnected. But, the Julia set of fλ has a completely

invariant and totally disconnected proper subset J1(fλ) for 0 < λ < λ∗.

A comparison between the dynamics of λ(ez + 1 + 1
ez+1

), λez and λ tan z is given in the

Table 4.1.
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Dynamics of
fλ(z) = λJ(ez + 1), λ > 0

Dynamics of
Eλ(z) = λez, λ > 0

Dynamics of
Tλ(z) = λ tan z, λ > 0

fλ has one critical value
−2λ.

Eλ has no critical values. Tλ has no critical values.

fλ has one asymptotic value
2λ.

Eλ has one asymptotic value
0.

Tλ has two asymptotic val-
ues −iλ and iλ.

fλ is periodic with period
2πi.

Eλ is periodic with period
2πi.

Tλ is periodic with period π.

fλ is neither even nor odd. Eλ is neither even nor odd. Tλ is even.

Bifurcation in the dynamics
of fλ occurs at one critical
parameter λ∗ ≈ 0.27.

Bifurcation in the dynamics
of Eλ occurs at one critical
parameter 1

e
.

Bifurcation in the dynamics
of Tλ occurs at one critical
parameter 1.

The Fatou set of fλ is in-
finitely connected for 0 <
λ < λ∗.

The Fatou set of Eλ is sim-
ply connected for 0 < λ <
1
e
.

The Fatou set of Tλ is in-
finitely connected for 0 <
λ < 1.

For 0 < λ < λ∗, the Julia
set of fλ

(i) has infinitely many sin-
gleton components,
(ii) has infinitely many non-
singleton bounded compo-
nents (the Julia set is not
totally disconnected),
(iii) has infinitely many un-
bounded components.

For 0 < λ < 1
e
, the Julia set

of Eλ

(i) has no singleton compo-
nents,
(ii) has no bounded com-
ponents (the Julia set is
connected),
(iii) has only one un-
bounded component.

For 0 < λ < 1, the Julia set
of Tλ

(i) has infinitely many sin-
gleton components,
(ii) has no non-singleton
bounded components (the
Julia set is totally discon-
nected),
(iii) has no unbounded com-
ponents.

The Julia set of fλ is Ĉ for
λ > λ∗.

The Julia set of Eλ is Ĉ for
λ > 1

e
.

The Julia set of Tλ is
R

⋃{∞} for λ ≥ 1.

Table 4.1: Comparison between the dynamics of λJ(ez + 1), λez and λ tan z.
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Dynamics of fλ(z) = λ
zm

sinhm z

The dynamics of entire functions λ sinhm z
zn , λ > 0, m ≥ n are investigated in Chapter 3

where both of m and n are either even or odd natural numbers. In the present chapter, the

dynamics of the meromorphic functions λ zm

sinhm z
which are not of bounded type is studied.

Define

N =

{
f(z) =

zm

sinhm z
for z ∈ C : m ∈ N

}
.

For f ∈ N, consider the one parameter family

S = {fλ(z) = λf(z) : λ ∈ R \ {0}}.

The two functions fλ and f−λ are conformally conjugate by the conjugating map ψ(z) = −z

and consequently, the dynamics of fλ and f−λ are essentially same. For this reason, we

investigate the dynamics of the functions fλ ∈ S for λ > 0. A Fatou component of

a transcendental entire/meromorphic function can be a Baker domain or a wandering

domain. However a number of classes of transcendental entire/meromorphic functions of

bounded type not having these domains in their Fatou sets are known (c.f. Theorem 1.1.11

and Theorem 1.1.14). In this chapter, non-existence of Baker domains and wandering

domains for fλ is established in spite of the fact that fλ is not in the class B. Using this,

the occurrence of bifurcation in the dynamics of functions in the one parameter family
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{fλ ∈ S : λ > 0} at a parameter value is proved. The topology of the Fatou components

of fλ, λ > 0 is also explored.

5.1 Properties of fλ

Some dynamically relevant properties of functions fλ ∈ S are proved in this section. The

function fλ(z) = λ zm

sinhm z
is a meromorphic function with poles at {iπk : k ∈ Z \ {0}}.

All the poles are multiple if m > 1 and simple if m = 1. The function fλ(z) is one-one

around each of its poles only when m = 1. The point z = 0 is an omitted value of fλ and

hence an asymptotic value of fλ(z). Further, the function fλ(z) is even and not periodic.

In Proposition 5.1.1, we prove that the Julia set of fλ is symmetric with respect to both

real and imaginary axes. More importantly, the function fλ(z) is shown to be not in the

class B in Proposition 5.1.2.

Proposition 5.1.1. Let fλ ∈ S. If z ∈ J(fλ), then −z ∈ J(fλ) and z ∈ J(fλ).

Proof. Let z ∈ J(fλ). Since fλ(−z) = fλ(z) for all z ∈ C and J(fλ) is completely invariant,

−z ∈ J(fλ). Observe that fλ(z) = fλ(z) and consequently, fn
λ (z) = fn

λ (z) for all z ∈ C and

n ∈ N. For z ∈ J(fλ), the sequence {fn
λ }n>0 is not normal at z. This gives that {fn

λ }n>0 is

also not normal at z. Therefore, {fn
λ }n>0 is not normal at z̄ and z ∈ J(fλ).

Proposition 5.1.2. Let fλ ∈ S and λ > 0. Then, the set of all the critical values of fλ is

an unbounded subset of R \ (−λ, λ) and 0 is the only finite asymptotic value of fλ.

Proof. Observe that f ′
λ(z) = λ mzm−1

sinhm−1 z
{ sinh z−z cosh z

sinh2 z
} = 0 and mzm−1

sinhm−1 z
6= 0 for z ∈ C.

Further, the point z = 0 is the only common zero of sinh z − z cosh z and sinh2 z and is

a zero of sinh z−z cosh z
sinh2 z

. Therefore, the solutions of f ′
λ(z) = 0 are precisely the solutions of

sinh z − z cosh z = 0 i.e., the solutions of tanh z = z. It is easy to see that the set of all

the solutions of tanh z = z is an unbounded subset of the imaginary axis. If tanh(iy) = iy

for some y ∈ R, then tanh(−iy) = − tanh(iy) = −iy. Therefore, the set of all the critical

103



CHAPTER 5 λzm/ sinhm z

points of fλ(z) is symmetric with respect to origin and is an unbounded subset of the

imaginary axis. Let {iyk}k>0 be the sequence of critical points in the positive imaginary

axis arranged in increasing order of their modulli. Then −iyk is also a critical point of

fλ(z) for each k. Since fλ(z) is an even function, limk→∞ fλ(iyk) = limk→∞ fλ(−iyk) =

limk→∞ λ
imym

k

im sinm yk
= ∞. Therefore, the set of all the critical values of fλ is unbounded.

Every critical point iyk of fλ(z) satisfies tanh(iyk) = iyk and consequently, iyk

sinh(iyk)
=

1
cosh(iyk)

. The critical value fλ(iyk) = λ( iyk

sinh(iyk)
)m = λ( 1

cosh(iyk)
)m = λ( 1

cos yk
)m is real. Since

| cos y| < 1 for all y ∈ R, it follows that |fλ(iyk)| > λ. Therefore, the set of all the critical

values of fλ(z) is an unbounded subset of R \ (−λ, λ).

All the critical points of sinh z
z

, i.e., the roots of z cosh z−sinh z
z2 are purely imaginary and

form an unbounded set. Since lim|y|→∞
sinh iy

iy
= lim|y|→∞

sin y
y

= 0, 0 is an asymptotic value

of sinh z
z

and is the only limit point of all the critical values of sinh z
z

. Since the order of sinh z
z

is one, it can have at most two finite asymptotic values (c.f. Theorem 1.1.34). Further,

if there are exactly two finite asymptotic values of sinh z
z

, then both the asymptotic values

are indirect singularities of the inverse function of sinh z
z

(c.f. Theorem 1.1.35). If f is a

meromorphic function of finite order and a is an asymptotic value of f , then a is a limit

point of critical values ak 6= a or all singularities of f−1 are logarithmic (a special case

of direct singularity) [23]. Therefore, if there is a finite asymptotic value ŵ of sinh z
z

other

than 0, then both 0 and ŵ are indirect singularities of inverse function of sinh z
z

and the

limit points of critical values of sinh z
z

. Since the critical values of sinh z
z

accumulate only at

0, ŵ cannot be an asymptotic value of sinh z
z

. Thus, 0 is the only finite asymptotic value of

sinh z
z

. Since sinh z
z

is an entire function, ∞ is also an asymptotic value. This implies that

the function z
sinh z

has only one finite asymptotic value, namely 0. Hence, 0 is the only

finite asymptotic value of fλ(z) = λ zm

sinhm z
for m ∈ N.
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Remark 5.1.1. For z = x+ iy 6= 0,

∣∣∣
zm

sinhm z

∣∣∣ =

{(
x2 + y2

sinh2 x+ sin2 y

) 1
2

}m

.

If {=(z) : z ∈ γ} is bounded and limt→∞ |<(γ(t))| = ∞ for a path γ : [0, ∞) → C, then

limt→∞ fλ(γ(t)) = 0. If {<(z) : z ∈ γ} is bounded and limt→∞ |=(γ(t))| = ∞ for a path

γ : [0, ∞) → C, then limt→∞ fλ(γ(t)) = ∞.

5.2 Dynamics of fλ(x) for x ∈ R

In the present section, the dynamics of fλ (λ > 0) on the real line is studied. In Theo-

rem 5.2.1, the existence and nature of real fixed points of fλ are investigated. The change

in the nature and existence of real periodic points leads to a bifurcation in the dynamics

of fλ(x) for x ∈ R at a critical parameter value and that is proved in Theorem 5.2.2.

Consider the function φ(x) = xf ′(x) + f(x) = x mxm−1

sinhm+1 x
(sinhx− x cosh x) + xm

sinhm(x)
=

xm

sinhm+1(x)
((m+ 1) sinhx−mx cosh x) for x ≥ 0. If p(x) = (m+ 1) sinhx−mx coshx, then

p′(x) = coshx−mx sinh x and p′′(x) = (1−m) sinh x−mx cosh x. Observe that p′′(x) < 0

for x ∈ R+ = {x ∈ R : x > 0}, since m ≥ 1. Therefore, the function p′(x) is decreasing on

R+. Since p′(0) = 1 and limx→+∞ p′(x) = −∞, by continuity of p′(x), it follows that, there

is a unique x̂ > 0 such that p′(x) > 0 for 0 ≤ x < x̂, p′(x̂) = 0 and p′(x) < 0 for x > x̂.

Therefore, p(x) increases in [0, x̂), attains its maximum at x̂ and decreases thereafter. It

follows from the facts p(0) = 0 and limx→+∞ p(x) = −∞ that, there is a unique positive

x∗ > x̂ such that p(x) > 0 for 0 < x < x∗, p(x∗) = 0 and p(x) < 0 for x > x∗. Since

xm

sinhm+1 x
> 0 for all x > 0, it follows that

φ(x) =
xm

sinhm+1 x
p(x)





> 0, for 0 < x < x∗

= 0, for x = x∗

< 0, for x > x∗
(5.1)

Define

λ∗ =
x∗

f(x∗)
(5.2)
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where x∗ is the unique positive real root of the equation φ(x) = xf ′(x) + f(x) = 0.

Remark 5.2.1. Let x∗(m) is the root of φ(x) = xf ′(x) + f(x) for f(x) = xm

sinhm x
and

λ∗(m) = x∗(m)
f(x∗(m))

be the corresponding critical parameter. For m = 1, 2, 3, the graphs of

φ(x) are given in Figure 5.1.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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m=1 
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Figure 5.1: Graph of φ(x) for m = 1, m = 2 and m = 3.

Numerically, it is computed that x∗(1) ≈ 1.915, x∗(2) ≈ 1.2878, x∗(3) ≈ 1.03402 and

λ∗(1) ≈ 3.3198, λ∗(2) ≈ 2.1772, λ∗(3) ≈ 1.7926.

The following theorem shows that fλ(z) has a unique real fixed point for each λ > 0.

However, the nature of the fixed point changes when the parameter λ passes through the

critical parameter λ∗.

Theorem 5.2.1. Let fλ ∈ S and λ > 0. Then, the function fλ(z) has a unique real fixed

point xλ. Further,

1. The fixed point xλ is attracting for 0 < λ < λ∗.

2. The fixed point xλ is rationally indifferent for λ = λ∗.
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3. The fixed point xλ is repelling for λ > λ∗.

Proof. Since fλ(x) > 0 for all x ∈ R, each real periodic point of fλ is positive. The function

f ′
λ(x) = λ mxm−1

sinhm+1 x
(sinhx − x cosh x) < 0 for x > 0 and hence fλ(x) is decreasing on R+.

Let gλ(x) = fλ(x) − x for x ∈ R. Since f ′
λ(x) < 0 for x > 0, g′λ(x) = f ′

λ(x) − 1 < 0

and consequently, gλ(x) is decreasing on R+. Now, gλ(0) = λ > 0, limx→+∞ gλ(x) = −∞

and gλ(x) is continuous on R+. By the intermediate value theorem, there exists a unique

positive xλ such that gλ(xλ) = 0. In other words, fλ(x) has a unique positive fixed point

xλ and λ = xλ

f(xλ)
. Note that the function x

f(x)
is increasing on R+, since d

dx

(
x

f(x)

)
=

f(x)−xf ′(x)
(f(x))2

> 0 for x > 0.

1. For 0 < λ < λ∗, xλ

f(xλ)
< x∗

f(x∗)
which gives that xλ < x∗. By Equation (5.1), φ(xλ) > 0.

This implies that φ(xλ)
f(xλ)

= xf ′(xλ)+f(xλ)
f(xλ)

= f ′
λ(xλ)+1 > 0. Since f ′

λ(x) is negative on R+,

it follows that −1 < f ′
λ(xλ) < 0 and the fixed point xλ is attracting for 0 < λ < λ∗.

2. For λ = λ∗, xλ = x∗ and φ(xλ) = 0 by similar arguments used in case (1). Now, by

Equation (5.1), it follows that φ(xλ)
f(xλ)

= 0 implying f ′
λ∗(xλ) = −1. Therefore, the fixed

point xλ = x∗ is rationally indifferent if λ = λ∗.

3. For λ > λ∗, it follows xλ > x∗ by similar arguments used in case (1). Again by

Equation (5.1) and by the fact xλ > x∗, we have φ(xλ) < 0. It shows that φ(xλ)
f(xλ)

=

f ′
λ(xλ) + 1 < 0 and hence f ′

λ(xλ) < −1. Therefore, xλ is a repelling fixed point of fλ

for λ > λ∗.

Now, we investigate the possibility of the real periodic points of fλ with prime period

greater than one. The function fλ(x) is decreasing on R+, fλ(R) = (0, λ] and fλ has a

unique real fixed point xλ by Theorem 5.2.1. It is easy to see that fλ(0) = λ > fλ(x) > xλ
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for 0 < x < xλ and fλ(x) < xλ < fλ(0) = λ for x > xλ > 0. In other words, fλ((0, xλ)) =

(xλ, λ) and fλ(xλ, ∞) = (0, xλ). This gives that fn
λ (x) 6= x for x ∈ R+ \ {xλ} and odd n.

Therefore, fλ(x) does not have any real periodic point of odd period other than xλ. Observe

that fλ(x) > 0 and f ′
λ(x) < 0 for x > 0 and λ > 0. So (f 2

λ)′(x) = f ′
λ(fλ(x))f

′
λ(x) > 0 and

f 2
λ(x) is increasing on R+. Consequently, if f 2

λ(x) > x (or f 2
λ(x) < x) for some x ∈ R+,

then f 2n
λ (x) > f

2(n−1)
λ (x) (or f 2n

λ (x) < f
2(n−1)
λ (x)) for all n. It shows that the function

f 2
λ(x) does not have any real periodic point of period greater than 1 and hence fλ(x) has

no real periodic point of even period greater than 2. Therefore, a real periodic point of fλ

other than xλ is of prime period exactly equal to 2, if it exists. Also, each cycle {x1λ, x2λ}

of real 2 periodic points satisfies x1λ < xλ < x2λ. Let us assume that fλ has two different 2

periodic real cycles {a, b} with 0 < a < b and {c, d} with 0 < c < d. Since fλ(x) is strictly

decreasing on R+ for λ > 0, it follows that c < a < aλ < b < d or a < c < xλ < d < b. In

the first case {c, d} and in the second case {a, b} is called the outer cycle. In the first case

{a, b} and in the second case {c, d} is called the inner cycle. The following proposition

shows that whenever such a 2 periodic cycle exists, it is attracting or rationally indifferent

and all the singular values of fλ(z) goes to this cycle under iteration of f 2
λ .

Proposition 5.2.1. Let fλ ∈ S and λ > 0. If fλ has a real 2-periodic cycle, then

limn→∞ f 2n
λ (x) = y1λ or y2λ for all x ∈ [0, y1λ]

⋃
[y2λ, + ∞) where {y1λ, y2λ} is the

outermost 2 periodic cycle. In particular, the cycle {y1λ, y2λ} is either attracting or ratio-

nally indifferent and all the singular values of fλ tend to {y1λ, y2λ} under iteration of f 2
λ.

Proof. It is observed earlier that any periodic point of the function fλ is of prime period

one or two and each 2-periodic cycle {a, b} satisfies a < xλ < b where xλ is the fixed point

of fλ. Since {y1λ, y2λ} is the outermost 2-periodic cycle, fλ(x) 6= x for all x > y2λ. If

possible, let f 2
λ(x) > x for some x > y2λ. Then, the sequence {f 2n

λ (x)}n>0 is increasing

and bounded above by λ, and hence f 2n
λ (x) converges to l, say. Obviously, l > y2λ. By the
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continuity of f 2
λ it follows that the point l must be a periodic point of fλ of period at most

two. It contradicts the fact that {y1λ, y2λ} is the outermost 2 periodic cycle. Therefore, we

conclude that f 2
λ(x) < x for all x > y2λ. Since f 2

λ(x) is increasing, the sequence {f 2n
λ (x)}n>0

is decreasing and bounded below by y2λ and consequently, limn→∞ f 2n
λ (x) = y2λ for x > y2λ.

Similarly, it can be proved that f 2
λ(x) > x and limn→∞ f 2n

λ (x) = y1λ for all 0 < x < y1λ.

Therefore, limn→∞ f 2n
λ (x) = y1λ or y2λ for all x ∈ [0, y1λ]

⋃
[y2λ, + ∞).

Each interval containing y1λ contains points tending to y1λ under iteration of f 2
λ .

Therefore, y1λ cannot be a repelling periodic point of f 2
λ and is either attracting or ra-

tionally indifferent. Thus, {y1λ, y2λ} is either attracting or rationally indifferent. As

(−y2λ, y2λ) ⊂ (−λ, λ) and fλ is an even function, limn→∞ f 2n
λ (x) = y1λ or y2λ for all

x ∈ R \ (−λ, λ). Since all the singular values of fλ are in R \ (−λ, λ), it is concluded that

all the singular values of fλ tend to {y1λ, y2λ} under iteration of f 2
λ .

The dynamics of fλ(x) for x ∈ R is determined in the following theorem.

Theorem 5.2.2. Let fλ ∈ S and λ > 0.

1. If λ < λ∗, then limn→∞ fn
λ (x) = aλ for all x ∈ R where aλ is the unique real attracting

fixed point of fλ.

2. If λ = λ∗, then limn→∞ fn
λ (x) = x∗ for all x ∈ R where x∗is the unique real rationally

indifferent fixed point of fλ.

3. If λ > λ∗, then limn→∞ f 2n
λ (x) = a1λ or a2λ for all x ∈ R \ {rλ, − rλ} where rλ

is the unique real repelling fixed point of fλ and {a1λ, a2λ} is the real attracting or

rationally indifferent 2-periodic cycle.

Proof. All the singular values of fλ(z) are on R \ (−λ, λ) by Proposition 5.1.2. If there

is a 2-periodic cycle, then the cycle is in (0, λ) and by Proposition 5.2.1, all the singular

values tend to the outermost 2-cycle under iteration of f 2
λ .
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1. Let f 2
λ(x) > x (or f 2

λ(x) < x) for some x > 0. Since f 2
λ(x) is increasing on R+,

the sequence {f 2n
λ (x)}n>0 is increasing and bounded above by λ (or decreasing and

bounded below by 0). Therefore, f 2n
λ (x) converges to x̂, say. Now, by continuity of

fλ, the point x̂ is a periodic point of fλ(x) of period one or two. If possible, let x̂

be a periodic point of fλ with prime period 2. Then, there is an outermost 2-cycle

of fλ and all the singular values of fλ tends to the outermost 2-periodic cycle under

iteration of f 2
λ which is a contradiction to the fact that the basin of attraction of

aλ must contain at least one singular value of fλ. Therefore, x̂ is not a 2-periodic

point and is a fixed point. Since fλ has only one real fixed point aλ for 0 < λ < λ∗,

x̂ = aλ and limn→∞ f 2n
λ (x) = aλ for all x ∈ R+. By continuity of fλ, it follows that

limn→∞ fn
λ (x) = aλ for all x ∈ R+. Since fλ(R

− ⋃{0}) ⊂ R+, limn→∞ fn
λ (x) = aλ for

all x ∈ R.

2. Let f 2
λ(x) > x (or f 2

λ(x) < x). Since f 2
λ(x) is increasing on R, the sequence

{f 2n
λ (x)}n>0 is increasing and bounded above by λ (or decreasing and bounded below

by 0). Proceeding as in Case 1, it is easy to see that the sequence {f 2n
λ (x)}n>0 con-

verges to x∗ for all x ∈ R+. By continuity of fλ, it follows that limn→∞ fn
λ (x) = x∗

for all x ∈ R+. Since fλ(R
− ⋃{0}) ⊂ R+, limn→∞ fn

λ (x) = x∗ for all x ∈ R.

3. If λ > λ∗, then the unique real fixed point of fλ is repelling. Therefore, we can find

a real number x sufficiently close to the fixed point rλ such that f 2
λ(x) > x. Since

f 2
λ(x) is increasing on R+, the sequence {f 2n

λ (x)}n>0 is increasing and bounded above

by λ. Therefore, {f 2n
λ (x)} converges to x̂, say. By continuity of f 2

λ , it follows that x̂

is a 2-periodic point of fλ. If possible, let there are more than one 2-periodic cycles

of periodic points. If {i1λ, i2λ} is the innermost real cycle of 2-periodic point of fλ,

then i1λ < rλ < i2λ and, fλ(x) ∈ (rλ, i2λ) for all x ∈ (i1λ, rλ) and fλ(x) ∈ (i1λ, rλ)

for all x ∈ (rλ, i2λ). Further, the sequence {f 2n
λ (x)}n>0 converges either to i1λ or to
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i1λ for x ∈ (i1λ, i2λ) \ rλ by same arguments used in the previous cases. Therefore,

{i1λ, i2λ} is either an attracting or a rationally indifferent cycle and at least one

singular value of fλ tends to this cycle under iteration of f 2
λ . All the singular values

of fλ tend to the outermost 2-cycle under iteration of fλ by Proposition 5.2.1 leading

to a contradiction. Hence, fλ has exactly one 2-periodic cycle. Let it be {a1λ, a2λ}.

By Proposition 5.2.1, limn→∞ f 2n
λ (x) = a1λ or a2λ for all x ∈ [0, a1λ]

⋃
[a2λ, + ∞).

If x ∈ (rλ, a2λ], then f 2
λ(x) > x and limn→∞ f 2n

λ (x) = a2λ. Similarly, it is easily seen

that limn→∞ f 2n
λ (x) = a1λ for all x ∈ [a1λ, rλ). Since fλ(z) is an even function, it

follows that limn→∞ f 2n
λ (x) = a1λ or a2λ for all x ∈ R− \ {−rλ}. Therefore, if λ > λ∗

it is concluded that limn→∞ f 2n
λ (x) = a1λ or a2λ for all x ∈ R\{rλ, − rλ} where rλ is

the repelling fixed point of fλ and {a1λ, a2λ} is the attracting or rationally indifferent

2-periodic cycle.

Remark 5.2.2. All the singular values of fλ, λ > 0 are in R and tend to either an

attracting or rationally indifferent periodic point under iteration of f 2
λ. Therefore, the set

P (fλ) of well defined forward orbits of singular values is in the Fatou set of fλ for λ > 0.

In particular, the point 0 is in the Fatou set F(fλ) for λ > 0.

Remark 5.2.3. Note that fλ(iy) = ym

sinm y
and the image of any point on the imaginary axis

is either infinity or a real number. By Theorem 5.2.2, each of the real numbers except at

most two are in an attracting or a parabolic domain of fλ corresponding to a real periodic

point. Therefore, any Fatou component U of fλ other than an attracting or parabolic

domain (and their pre-images) intersects neither the real nor the imaginary axis. Thus,

the component U is contained completely in one of the four quadrants of the complex plane.
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5.3 Dynamics of fλ(z) for z ∈ C

The dynamics of fλ(z) for z ∈ C is studied in this section. Theorem 5.3.1 proves non-

existence of Baker domains in the Fatou set of fλ ∈ S for λ > 0 though the function fλ is

not in the class B. The dynamics of fλ is determined in Theorem 5.3.2.

Theorem 5.3.1. Let fλ ∈ S and λ > 0. Then, the Fatou set of fλ has no Baker domain.

Proof. Suppose, on the contrary that the Fatou set of fλ has a Baker domain B of period

p. All the singular values of fλ are real by Proposition 5.1.2 and fλ(R) = (0, λ]. Therefore,

Sp(fλ) is bounded for each p > 1 and the Fatou set of fλ cannot have a Baker domain

of period greater than 1 (c.f. Theorem 1.1.11). Therefore, p = 1 i.e., B is an invariant

Baker domain. By the definition of an invariant Baker domain, there is a point z∗ in the

boundary of B such that limn→∞ fn
λ (z) = z∗ for all z ∈ B and fλ(z

∗) is not defined. Since

the point at infinity is the only point in Ĉ where the function fλ(z) is not defined, z∗ = ∞.

Now, limn→∞ fn
λ (z) = ∞ and fn

λ (z) ∈ B for all n ∈ N and z ∈ B gives that the domain

B is unbounded. Since fλ(z̄) = fλ(z) for all z ∈ C and B is contained in one of the four

quadrants by Remark 5.2.3, B = {z̄ ∈ C : z ∈ B} is also an invariant Baker domain of

fλ. Clearly, one of B and B contains points with positive imaginary parts. Let it be B

i.e., =(z) > 0 for each z ∈ B.

We assert that the set {=(z) : z ∈ B} is unbounded. To see it, let on the contrary

that {=(z) : z ∈ B} is bounded. Then {<(z) : z ∈ B} must be unbounded as B is itself

unbounded. Now, let {zk}k>0 be a sequence in B such that limk→∞ |<(zk)| = ∞. Then

fλ(zk) =
2mzm

k

(ezk−e−zk )m → 0 as k → ∞ by Remark 5.1.1. The point 0 is in the attracting

or parabolic domain for each λ > 0 by Remark 5.2.2. Let N(0) be a neighbourhood of

z = 0 completely lying in the Fatou set. Then, there is a natural number k̂ such that

fλ(zk) ∈ N(0) for all k > k̂. Consequently, zk is in a Fatou component U such that fλ(U)

is contained in an attracting domain or a parabolic domain and hence not in B for k > k̂.
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It contradicts the invariance of B. Thus the set {=(z) : z ∈ B} is unbounded.

Let B be in the first quadrant of the plane. If B is assumed to lie in the second

quadrant, the proof is similar. For θ ∈ (0, π
2
), let Sθ = {z ∈ C : θ < Arg(z) < π

2
} and

Sθ′ = {z ∈ C : 0 < Arg(z) < θ} where 0 < Arg(z) < 2π. Let Lk = {z ∈ C : =(z) = πk},

L+
k = {z ∈ Lk : <(z) > 0} and L−

k = {z ∈ Lk : <(z) < 0} for k ∈ Z. We now show that

the set {=(z) : z ∈ B
⋂
Sθ} is unbounded for each θ ∈ (0, π

2
). Suppose the set {=(z) : z ∈

B
⋂
Sθ′} is unbounded. Then a curve γ : (0, ∞) → C can be found in B

⋂
Sθ′ such that

=(z) < (tan θ)<(z) for all z ∈ γ and =(γ(t)) → ∞ as t→ ∞. Consequently, <(γ(t)) → ∞

and
∣∣∣ γ(t)
sinh(γ(t))

∣∣∣ < 2
|<(γ(t)) + i=(γ(t))|
e<(γ(t)) − e−<(γ(t))

< 2
|(1 + tan θ)<(γ(t))|
e<(γ(t)) − e−<(γ(t))

→ 0 as t → ∞. This gives

that there is a t0 ∈ (0, ∞) such that fλ(γ(t)) ∈ N(0) for t > t0. Consequently, the set

{γ(t) : t > t0} is not in the Baker domain which is a contradiction. Therefore, the set

{=(z) : z ∈ B
⋂
Sθ′} cannot be unbounded. Now, since {=(z) : z ∈ B} is unbounded,

the set {=(z) : z ∈ B
⋂
Sθ} is unbounded. In particular, there exists an integer k0 such

that the set B
⋂
Sθ intersects L+

k for all k ≥ k0. Choose θ in such a way that for all

δ, β ∈ (θ, π
2
), |m(δ − β)| < π

4
where fλ(z) = λ zm

sinhm z
. Note that

fλ(x+ iπk) = λ
(x+ iπk)m

sinhm(x+ iπk)
=





−λ(x+ iπk)m

sinhm x
, for odd k

λ
(x+ iπk)m

sinhm x
, for even k

(5.3)

Let z1 = x1 + iπk, z2 = x2 + iπ(k + 1) ∈ B
⋂
Sθ for some k ≥ k0. If Arg(z1) = θ1 and

Arg(z2) = θ2, then θ1, θ2 ∈ (θ, π
2
) and |Arg(zm

1 )−Arg(zm
2 )| = |m(θ1−θ2)| < π

4
. Therefore,

the two points zm
1 and zm

2 belong to two consecutive quadrants. This means either the real

parts or the imaginary parts of zm
1 and zm

2 have same sign. Let the first possibility hold

i.e.,
<(zm

1 )

<(zm
2 )

> 0. One of k and k + 1 is even and another is odd. Also note that λ
sinhm x

> 0

for x > 0. Using Equation (5.3), we have <(fλ(z1))
<(fλ(z2))

= −<(zm
1 )

<(zm
2 )
< 0. In other words, <(fλ(z1))

and <(fλ(z2)) have opposite sign. Thus fλ(B) = B intersects the imaginary axis which

contradicts Remark 5.2.3. For
=(zm

1 )

=(zm
2 )

> 0, arguing similarly, we can get =(fλ(z1))
=(fλ(z2))

< 0 which
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also results in a similar contradiction to Remark 5.2.3. Therefore, the Fatou set of fλ does

not contain any Baker domain.

Theorem 5.3.2. Let fλ ∈ S and λ > 0.

1. For λ < λ∗, the Fatou set F(fλ) of fλ is the basin of attraction of the unique real

attracting fixed point aλ of fλ.

2. For λ = λ∗, the Fatou set F(fλ) of fλ is the parabolic basin corresponding to the

unique real rationally indifferent fixed point x∗ of fλ.

3. For λ > λ∗, the Fatou set F(fλ) of fλ is the basin of attraction or parabolic basin

corresponding to a cycle of real 2-periodic points {a1λ, a2λ} of fλ.

Proof. By Remark 5.2.2, the set P (fλ) \ {∞} is in the Fatou set of fλ and the derived set

P (fλ)
′ ⊂ R. The set P (fλ)

′ contains ∞ and at most finitely many pre-periodic points. By

Remark 2 of Theorem 3 in [139], if for a meromorphic function f , fn has finitely many

limit functions on a wandering domain then each such limit function is constant and in

the backward orbit of ∞. Therefore, if a point z0 is in a wandering domain of fλ, then

every limit point of {fn
λ (z0)}n>0 is ∞ (c.f. Theorem 1.1.12). In other words, fn

λ (z0) → ∞

as n → ∞ if z0 is in a wandering domain. Since S2(fλ) is bounded, f 2n
λ (z0) cannot tend

to ∞ as n → ∞ by the main result of [108]. This is a contradiction. Therefore, the

Fatou set of fλ does not contain any wandering domain. We know that the boundary of

a rotational domain of a meromorphic function f is contained in the closure of P (f) (c.f.

Theorem 7, [19]). Since the closure of P (fλ) intersects J(fλ) at finitely many points, the

Fatou set of fλ does not contain any rotational domain. By Theorem 5.3.1, the Fatou set

of fλ also does not contain any Baker domain for λ > 0.

If U is an attracting domain or parabolic domain of period p and zu is the corresponding

attracting or rationally indifferent periodic point of fλ, then there is a singular value s of fλ
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such that fnp
λ (fk

λ (s)) → zu as n → ∞ for some k, 0 < k ≤ p. Since all the singular values

and their forward orbits (whenever defined) are in R, zu is real. Therefore, any attracting

or parabolic domain of fλ corresponds to a real attracting or rationally indifferent periodic

point.

1. For 0 < λ < λ∗, fλ has only one real periodic point which is the attracting fixed

point aλ. Therefore, F(fλ) is the basin of attraction of aλ.

2. For λ = λ∗, fλ has only one real periodic point which is the rationally indifferent

fixed point x∗. Therefore, F(fλ) is the parabolic basin corresponding to x∗.

3. For λ > λ∗, fλ has a repelling fixed point rλ and a cycle of real 2-periodic points

{a1λ, a2λ} which is either attracting or rationally indifferent. Therefore, F(fλ) is the

attracting basin or parabolic basin corresponding to {a1λ, a2λ}.

Remark 5.3.1. Consider the map ψ : R → R defined by ψ(y) = y
sin y

. Then |ψ(y)| > 1 for

y > 1. Therefore, |fλ(iy)| = |λ (iy)m

(i sin y)m | = |λ(ψ(y))m| > λ for λ > 0 and for all y > 1. Since

sec2 y−1 > 0 in (0, 1), the function µ(y) = tan y−y is increasing and µ(y) > µ(0) = 0 for

y ∈ (0, 1). For y ∈ (0, 1), µ(y) = sin y−y cos y
cos y

> 0 gives sin y−y cos y > 0 because cos y > 0.

Therefore, ψ′(y) = sin y−y cos y
sin2 y

> 0 and ψ(y) is increasing in (0, 1). Since ψ(y) → 1 as

y → 0, ψ(y) > 1 for y ∈ (0, 1). Hence |fλ(iy)| = |λ(ψ(y))m| > λ for all y > 0. As the

function fλ(z) is even, |fλ(iy)| > λ for all y ∈ R and λ > 0.

5.4 Topology of the Fatou components

The present section deals with some topological issues pertaining to the Fatou components

of fλ. It is observed from Theorem 5.3.2 that the Fatou set of fλ can contain compo-

nents with period one and two. The connectivity of a periodic Fatou component of a
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meromorphic function is either 1, 2 or ∞ whereas the connectivity of a pre-periodic Fatou

component can be any finite number [13]. In Theorem 5.4.1, it is proved that the Fatou set

of fλ, 0 < λ < λ∗ is infinitely connected. The existence of pre-periodic Fatou components

is established and the connectivity of all the Fatou components of fλ is determined for

λ > λ∗ in Theorem 5.4.2.

Theorem 5.4.1. Let fλ ∈ S and 0 < λ < λ∗. Then, the Fatou set F(fλ) of fλ is connected.

Further, the Fatou set F(fλ) is infinitely connected.

Proof. By Theorem 5.2.2(1), limn→∞ fn
λ (x) = aλ for x ∈ R and 0 < λ < λ∗ where aλ

is the attracting fixed point of fλ. The Fatou set of fλ is the attracting basin A(aλ) =

{z ∈ C : fn
λ (z) → aλ as n → ∞} for 0 < λ < λ∗. Let I(aλ) be the immediate basin of

attraction of aλ. By definition, I(aλ) is a forward invariant connected subset of the Fatou

set F(fλ) containing aλ. Note that A(aλ) = I(aλ) if I(aλ) is backward invariant. Since

I(aλ) is connected, in order to prove the connectedness of F(fλ), it is sufficient to show

that I(aλ) is backward invariant.

Let, if possible, V be a component of f−1
λ (I(aλ)) other than I(aλ). Since 0 is an

omitted value of fλ, there is only one singularity of f−1
λ lying over 0 and that is logarithmic.

This means that V contains an asymptotic path γ corresponding to the asymptotic value

0 and by Remark 5.1.1, the set {<(z) : z ∈ γ} is unbounded. Therefore, the set

{<(z) : z ∈ V } is unbounded. The function fλ is even and fλ(z̄) = fλ(z) for all

z ∈ C. In view of Remark 5.2.3, it is assumed without loss of generality that, the set

V is in the upper half-plane {z ∈ C : =(z) > 0}. Let {wn}n>0 be a sequence on γ

such that <(wn) → ∞ as n → ∞. Then limn→∞ fλ(wn) = 0. Each of the vertical lines

ln = {z ∈ C : <(z) = <(wn) and 0 ≤ =(z) < =(wn)} joins a point of V and a point of

R
⋂
I(aλ) and we get that ln intersects the boundary ∂V of V for each n. Let zn ∈ ln

⋂
∂V .
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Then zn ∈ J(fλ) and =(zn) < =(wn) for all n. Further,

|fλ(zn)| = λ

{( <(zn)2 + =(zn)2

sinh2 <(zn) + sin2 =(zn)

) 1
2

}m

< λ

{( <(wn)2 + =(wn)2

sinh2 <(wn) + sin2 =(zn)

) 1
2

}m

(5.4)

Since the sequence {sin2(=(zn))}n>0 is bounded, the right hand side of Equation (5.4)

is equal to |fλ(wn)| when n → ∞. Therefore, limn→∞ fλ(zn) = 0. Let Dr(0) = {z ∈

C : |z| < r} ⊂ I(aλ). Then, there exists an n0 such that fλ(zn) ∈ Dr(0) for all n > n0.

This means that zn is in the Fatou set of fλ for n > n0 which is a contradiction. Therefore,

each component of f−1
λ (I(aλ)) intersects I(aλ) and hence is a subset of I(aλ). Thus I(aλ)

is backward invariant.

Since F(fλ) is connected and contains an attracting fixed point, it is invariant. The

connectivity of any invariant Fatou component of a meromorphic function is 1, 2 or ∞, 2

being the case when the component is an Herman ring (c.f. Theorem 1.1.17). Since the

Fatou set F(fλ) is an attracting domain for 0 < λ < λ∗, the connectivity of F(fλ) is either 1

or ∞. If possible, let F(fλ) be simply connected. Then, the Julia set J(fλ) is connected. As

the point at ∞ and a pole w∗ lying on the imaginary axis are in J(fλ), there is an unbounded

connected subset Jw∗ of the Julia set containing w∗. Now, −Jw∗ = {z ∈ C : − z ∈ Jw∗}

is also in the Julia set by Proposition 5.1.1. Thus J = Jw∗

⋃−Jw∗ is in the Julia set

and the set Ĉ \ J has at least two components each intersecting the Fatou set of fλ. It

contradicts the fact that F(fλ) is connected. Therefore, F(fλ) is infinitely connected for

0 < λ < λ∗.

Remark 5.4.1. The Fatou set of fλ∗ is the parabolic basin corresponding to the real ratio-

nally indifferent fixed point x∗. Since fλ∗(−x∗, x∗) ⊂ (x∗, ∞) and each petal corresponding

to a rationally indifferent fixed point is forward invariant, the set [0, ∞) \ {x∗} is in the

same petal, say P . Further, 0 ∈ P . Now, proceeding as in Theorem 5.4.1, it can be

concluded that, the Fatou set F(fλ∗) is infinitely connected.
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Remark 5.4.2. Since the Fatou set is connected with connectivity greater than three for

0 < λ ≤ λ∗, singleton components of J(fλ) are dense in J(fλ) (c.f. Theorem 1.1.22).

It is seen in Theorem 5.4.1 that the Fatou set of fλ is connected and hence unbounded

for 0 < λ < λ∗. The next proposition shows that, there are at least three Fatou components

of fλ two of which are unbounded for λ > λ∗.

Proposition 5.4.1. Let fλ ∈ S and λ > λ∗. If U+, U− and U0 denote the Fatou compo-

nents containing (a2λ,+∞), (−∞, −a2λ) and 0 respectively where {a1λ, a2λ} is the 2-cycle

of real periodic points of fλ, then the Fatou components U+, U− and U0 are mutually

disjoint. Further, the components U+ and U− are unbounded.

Proof. Observe that both U+ and U− are mapped into U0 and U0 is mapped into U+ by

fλ for λ > λ∗. Since U0 and U+ form a cycle of 2-periodic Fatou components, U0 6= U+. If

U0 intersects U−, then U0 = U− will become invariant which is not true. Therefore, U0 is

different from U+ and U−. If U+ and U− are the same component of F(fλ), then U+ = U−

intersects the imaginary axis. Then, since all the points in the imaginary axis are mapped

onto R\(−λ, λ) ⊂ (−∞, −a2λ)
⋃

(a2λ, +∞), the points of the set U+
⋂{iy : y ∈ R} are

mapped into U+ and consequently, U+ is invariant leading to a contradiction. Therefore,

U0, U
+ and U− are mutually disjoint components of F(fλ) for λ > λ∗. The components

U− and U+ are unbounded by definition.

Theorem 5.4.2. Let fλ ∈ S and λ > λ∗. Then, the Fatou set F(fλ) of fλ contains

infinitely many pre-periodic components and each component of F(fλ) is simply connected.

Proof. It is clear from Theorem 5.2.2 that the point 0 ∈ F(fλ) for all λ. Let U0 be the

Fatou component containing 0. If λ > λ∗ and {a1λ, a2λ} is the 2-cycle of real periodic

points of fλ, then by Theorem 5.2.2, (−∞, − a2λ) and (a2λ, +∞) are in the Fatou set of

fλ. Let U− and U+ be the Fatou components of fλ containing (−∞, −a2λ) and (a2λ, +∞)
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respectively. If a pre-image of a point of U− lies in U−, then U− ⋂
fλ(U

−) 6= ∅ which shows

that U− = fλ(U
−) since fλ(U

−) is connected. This means that U− is forward invariant.

But it is already known that U− is not forward invariant. Therefore, no pre-image of any

point of U− lies in U−. In other words, U− is not backward invariant. Since none of U0

and U+ is mapped into U− by fλ, each component of f−1
λ (U−) is different from U0 and

U+ and consequently, is a pre-periodic Fatou component. Repeating the same arguments

for each component of f−1
λ (U−) and continuing the process, we can find infinitely many

pre-periodic Fatou components.

Let U be any Fatou component of fλ. Suppose, on the contrary that U is multiply

connected. Let γ be a simple closed curve in U such that the bounded component B(γc)

of γc = Ĉ \ γ intersects the Julia set J(fλ). Set Bj = f j
λ(B(γc)) for j ∈ N. If B(γc)

does not contain a pole of fλ, then fλ(z) is analytic on B(γc), the closure of B(γc) and

B1 = fλ(B(γc)) is bounded. Further, the function fλ(z) maps the interior of B(γc) (which

intersects the Julia set) into the interior of B1 and, by the complete invariance of J(fλ),

it follows that B1

⋂
J(fλ) 6= ∅. If B1 does not contain any pole of fλ, then consider

B2 = fλ(B1) and repeat the above arguments. Since the pre-images of all the poles of fλ

are dense in J(fλ), B(γc) contains a point w̃ such that fn∗

λ (w̃) is a pole of fλ for a natural

number n∗. Let n∗ be the least of such natural numbers. Then, the set Bn∗ contains a

pole. Since all the poles of fλ are on the imaginary axis, the boundary of Bn∗ intersects the

imaginary axis. Therefore, the set Bn∗+1 = fλ(Bn∗) contains a neighbourhood of ∞ and the

unboundedness of U+ and U− gives that Bn∗+1 intersects both U+ and U−. Further, the

fλ-image of ∂(Bn∗) intersect at least one of U+ or U− by Remark 5.3.1. This implies that,

there are some points in Bn∗ which are mapped into U+ and others into U− by fλ(z). There

are Fatou components V + and V − in Bn∗ which are mapped into U+ and U− respectively

(c.f. Theorem 1.1.6). Being mapped to two different Fatou components, V + and V − are

also different. Note that ∂Bj+1 ⊆ fλ(∂Bj) for j = 1, 2, 3, ..., n∗. Therefore, ∂(Bn∗) ⊆
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fn∗−1
λ (∂B1) ⊆ fn∗

λ (γ) ⊂ F(fλ). Consequently, fλ(∂(Bn∗)) ⊂ F(fλ) and either lies in U+ or

U−. Let fλ(∂Bn∗) ⊂ U−. Then fλ maps V + into U+ and the set U+ \ fλ(V
+) contains at

most two elements (c.f. Theorem 1.1.6). Now, U+ contains infinitely many critical values

of fλ and each of these critical values (except possibly two) has at least one pre-image in

V +. Therefore V + contains infinitely many critical points of fλ. These infinitely many

critical points necessarily form an unbounded subset of V + which contradicts to the fact

that V + ⊂ Bn∗ is bounded. Therefore, U is simply connected.

A comparison between the dynamics of λ sinhm z
zm , λ tanh(ez) and λ(ez +1+ 1

ez+1
) is given

in the Table 5.1.
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Dynamics of
fλ(z) = λ zm

sinhm z
, λ 6=

0, m ∈ N

Dynamics of
gλ(z) = λ tanh(ez), λ 6= 0

Dynamics of
hλ(z) = λJ(ez + 1), λ > 0

The order of fλ is 1. The order of gλ is ∞. The order of hλ is 1.

fλ is not of bounded type. gλ is of finite type. hλ is of finite type.

fλ has infinitely many crit-
ical values all lying in {x ∈
R : |x| > |λ|}.

gλ has no critical values. hλ has one critical value
−2λ.

fλ has one asymptotic value
0.

gλ has three asymptotic val-
ues 0, λ and −λ.

hλ has one asymptotic value
2λ.

fλ is not periodic. gλ is periodic with period
2πi.

hλ is periodic with period
2πi.

fλ is even. gλ is neither even nor odd. hλ is neither even nor odd.

Bifurcation in the dynam-
ics of fλ occurs at two criti-
cal parameters λ∗f > 0 and
−λ∗f . For m = 1, 2, 3,
λ∗f is approximately equal to
3.3198, 2.1772 and 1.7926
respectively.

Bifurcation in the dynamics
of gλ occurs at one critical
parameter λ∗g ≈ −3.2946.

Bifurcation in the dynamics
of hλ occurs at one critical
parameter λ∗h ≈ 0.27.

The Fatou set of fλ is
infinitely connected for
|λ| < λ∗.

The Fatou set of gλ has
infinitely many components
and each is simply con-
nected for λ < λ∗g.

The Fatou set of hλ is
infinitely connected for
0 < λ < λ∗h.

The Julia set of fλ has a
dense subset of singleton
components for |λ| < λ∗.

The Julia set of gλ has
no singleton components for
λ < λ∗g.

The Julia set of hλ has
a dense subset of singleton
components for 0 < λ < λ∗h.

The Fatou set of fλ has
infinitely many components
and each component is sim-
ply connected for |λ| > λ∗.

The Fatou set of gλ has only
one component and it is in-
finitely connected for λ >
λ∗g.

The Fatou set of hλ is
empty set for λ > λ∗h.

Table 5.1: Comparison between the dynamics of λ zm

sinhm z
, λ tanh(ez) and λJ(ez + 1).
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Chapter 6

Dynamics of certain real
meromorphic functions

The dynamics of certain real meromorphic functions (which takes real values only on the

real line) are investigated in this chapter. If a real meromorphic function ψ(z) maps the

upper half-plane onto the upper half-plane, then its poles ak (±k = 0, 1, 2, ...) are all real

and simple, and it may be represented in the form ψ(z) = a + bz +

β∑

k=α

Ak

( 1

ak − z
− 1

ak

)

(−∞ ≤ α < β ≤ ∞), where b ≥ 0, a is real, Ak ≥ 0 (±k = 0, 1, 2, ...) and the series
∑β

k=α
Ak

a2
k

converges [85]. Note that the function ψ(z) is a rational function if and only if

both α and β are finite. Let H+ = {z ∈ C : =(z) > 0} and H− = {z ∈ C : =(z) < 0}.

We consider only the transcendental real meromorphic functions satisfying f(H+) ⊆ H+.

For the dynamical study of functions for which f(H+) ⊆ H−, the results obtained in this

chapter follow with simple modifications using the fact that f 2(H+) ⊆ H+ and f 2(H−) ⊆

H−. Define

R ≡





f(z) :

(i) f(z) =
∞∑

k=−∞
Ak

(
1

ak − z
− 1

ak

)

(ii) Ak > 0, ak 6= 0 for k ∈ Z

(iii)
∞∑

k=−∞

Ak

a2
k

converges





.

Note that, if f ∈ R, then the point z = 0 is a fixed point and f(z) = f(z) for all z ∈ C.

The class R is closed under addition and the function λf ∈ R for f ∈ R and λ > 0.
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If a−k = −ak and Ak = A−k for all k ∈ N and A0 = 0 for a function f ∈ R, then

A−k

(
1

a−k−z
− 1

a−k

)
+Ak

(
1

ak−z
− 1

ak

)
= Ak

(
1

−ak−z
− 1

−ak

)
+Ak

(
1

ak−z
− 1

ak

)
= Ak

2z
a2

k
−z2 . In this

case, the function f(z) assumes the form
∑∞

k=1
Akz

a2
k
−z2 .

Let

R∗ ≡





f(z) :

(i) f(z) =
∞∑

k=1

Akz

a2
k − z2

(ii) Ak > 0, ak 6= 0 for k ∈ N

(iii)
∞∑

k=1

Ak

a2
k

converges





.

Observe that R∗ ⊂ R and the functions in R∗ preserve the imaginary axis. Important exam-

ples of functions in R∗ include tan z =
∞∑

k=1

z

(2k−1
2
π)2 − z2

,
3

z
− z sin z

sin z − z cos z
=

∞∑

k=1

2z

a2
k − z2

where ak’s are positive roots of tan z = z and
1

2i
+

1

z
+

1

i(eiz − 1)
=

∞∑

k=1

2z

4k2π2 − z2
.

If f is a transcendental real meromorphic function, then either (i) J(f) = R
⋃{∞},

(ii) J(f) is an unbounded Cantor set or (iii) J(f) is the complement of an interval in

R
⋃{∞} [11]. However, the nature of the Fatou sets and related topological issues remain

unexplored. In the present chapter, we investigate the change in the nature of the Fatou

set of transcendental real meromorphic functions in the family

S = {ha,b,c(z) = a+ bz − c

z
+ f(z) : a, b, c ∈ R, b, c ≥ 0 and f ∈ R}.

A number of examples are discussed. Finally, the dynamics of functions in the one pa-

rameter family {a + tan z : a ∈ C} is explored though these functions are not real

meromorphic.

6.1 Dynamics of ha,b and ha

In this section, the change in the Fatou set of ha,b ≡ ha,b,c with c = 0 and ha ≡ ha,b,c with

b = c = 0 are investigated where ha,b,c ∈ S. Define p∗ = h′a,b(0) = b+
∑∞

k=−∞
Ak

a2
k

.

Proposition 6.1.1. Let ha,b(z) = a+ bz + f(z) for a ∈ R, b ≥ 0 and f ∈ R. Then
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1. The Fatou set F(ha,b) contains neither a wandering domain nor a rotational domain.

2. Each attracting or rationally indifferent periodic point of ha,b(z) is a fixed point.

Further, if the function ha,b(z) preserves the imaginary axis, then the fixed point lies

on the imaginary axis.

3. The function ha,b(z) has at most one real attracting or rationally indifferent fixed

point.

4. If each real fixed point of ha,b(z) is repelling, then the Fatou set F(ha,b) of ha,b is

H+
⋃
H− or a completely invariant Baker domain. In particular, the conclusion

remains true if b ≥ 1.

5. For a = 0, the Fatou set F(ha,b) is an attracting domain if p∗ < 1 and a parabolic

domain if p∗ = 1.

6. If |h′a,b(x)| > 1 for x ∈ R whenever h′a,b(x) is defined and if the set {|x1−x2| : ha,b(x1) =

∞ = ha,b(x2) and ha,b(z) has no pole in (x1, x2)} is bounded, then F(ha,b) =

H+
⋃
H−.

7. If the Fatou set F(ha,b) is connected, then it is infinitely connected.

Proof. As both H+ and H− are completely invariant under ha,b, H
+ and H− must be in

the Fatou set F(ha,b) by Theorem 1.1.1. Therefore, the Fatou set F(ha,b) has either two

completely invariant Fatou component namely H+ and H− or it is connected.

1. If there is a wandering domain or a rotational domain in F(ha,b), then there must

be infinitely many Fatou components which is not possible. Therefore, the Fatou set

F(ha,b) contains neither a wandering domain nor a rotational domain.
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2. Let w0 be an attracting or rationally indifferent periodic point of ha,b(z) with prime

period p. Then, there are at least p number of p-periodic components in the Fatou

set of ha,b. But the Fatou set F(ha,b) is either connected or consists of two completely

invariant components. Therefore, p = 1 and w0 is a fixed point of ha,b(z).

Let w0 ∈ C \ {iy : y ∈ R} be an attracting or a rationally indifferent fixed point

of ha,b(z). Then each neighbourhood N(w0) of w0 intersects at least one of H+ or

H−. Let N(w0)
⋂
H+ 6= ∅. Since H+ ⊂ F(ha,b), limn→∞ hn

a,b(z) = w0 for all z ∈ H+.

If z ∈ iR+ = {iy : y > 0}, then hn
a,b(z) ∈ iR+ for all n ∈ N. This gives that

limn→∞ hn
a,b(z) 6= w0 for z ∈ iR+ leading to a contradiction. A contradiction can be

arrived by similar arguments if N(w0)
⋂
H− 6= ∅. Hence, we conclude that the fixed

point w0 is on the imaginary axis.

3. Any two real attracting or rationally indifferent fixed points give rise to more than

one Fatou component intersecting H+ which is not possible because H+ ⊂ F(ha,b).

Therefore, the function ha,b(z) has at most one real attracting or rationally indifferent

fixed point.

4. If each real fixed point of ha,b(z) is repelling, then it follows from (2) of this proposition

that ha,b(z) has no real attracting or rationally indifferent periodic point. Since both

H+ and H− are in the Fatou set, J(ha,b) ⊆ R. If the Fatou set F(ha,b) is not equal to

H+
⋃
H−, then F(ha,b)

⋂
R 6= ∅ and the Fatou set F(ha,b) is connected. Now, if the

Fatou set is an attracting domain or a parabolic domain, then it must correspond

to a real attracting or rationally indifferent fixed point since ha,b(R) ⊆ R. It is not

possible. Therefore, the Fatou set F(ha,b) is not an attracting domain or a parabolic

domain. The Fatou set is non-empty and does not contain any rotational domain or

wandering domain. Therefore, the Fatou set F(ha,b) is a completely invariant Baker

domain.
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For b ≥ 1, h′a,b(z) = b +
∑+∞

k=−∞
Ak

(ak−z)2
> 1 when z ∈ R and each real fixed point of

ha,b(z) is repelling. Thus, the above conclusion remains true.

5. For a = 0, the point z = 0 is a fixed point of ha,b(z). The fixed point z = 0 is

attracting for p∗ < 1 and rationally indifferent for p∗ = 1. Now for p∗ < 1, any

neighbourhood of 0 intersects both H+ and H− which means that the Fatou set of

ha,b is the attracting domain of 0 when p∗ < 1. Similarly, the Fatou set of ha,b is the

parabolic domain corresponding to the rationally indifferent fixed point 0 for p∗ = 1.

6. Let, on the contrary F(ha,b)
⋂

R 6= ∅. Suppose I = (c, d) ⊂ R ⊂ F(ha,b). The func-

tion ha,b(z) is increasing in each interval between consecutive poles because |h′a,b(z)| >

1 for z ∈ R whenever h′a,b(z) is defined. Then, ha,b(d) − ha,b(c) = k(d − c) for some

k > 1. If ha,b(I) does not contain a pole of ha,b(z), then h2
a,b(d)− h2

a,b(c) = k2(d− c).

Observe that kn → ∞ as n → ∞ and the set {|x1 − x2| : ha,b(x1) = ∞ =

ha,b(x2) and ha,b(z) has no pole in (x1, x2)} is bounded. Repeating this process, it

is seen that there is a natural number n0 such that hn0
a,b(I) contains a pole of ha,b(z)

which is a contradiction to the complete invariance of the Fatou set. Therefore,

F(ha,b) = H+
⋃
H−.

7. Let F(ha,b) be connected. Then F(ha,b)
⋂

R 6= ∅. Suppose that I = (p, q) where

p and q are two consecutive poles of ha,b. Observe that limx→p+ ha,b(x) = −∞ and

limx→q− ha,b(x) = +∞ because ha,b(z) is increasing in I. Therefore, ha,b(I) = R and

by the complete invariance of the Fatou set, it follows that the interval I intersects the

Fatou set. Consequently, the Julia set J(ha,b) consists of infinitely many maximally

connected sets and F(ha,b) is infinitely connected.

Remark 6.1.1. Proposition 6.1.1(1), (3), (4), (6) and (7) remain true for every real

meromorphic function.
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Let ha(z) = a+ f(z) for f ∈ R and a ∈ R. Then h′a(z) = f ′(z) > 0 for all z ∈ R. Let

J = {x ∈ R : 0 < f ′(x) < 1}.

If p and q are two consecutive poles of f(z), then f ′(z) is continuous in (p, q) and undefined

at p and q. For next two theorems, let ϕ(x) = x − f(x) for x ∈ R. If the set J is empty,

then h′a(x) = f ′(x) ≥ 1 for all x ∈ R whenever f ′(x) is defined and the dynamics of ha is

discussed in the following theorem.

Theorem 6.1.1. Let ha(z) = a+ f(z) for f ∈ R and a ∈ R, and J∗ = {x ∈ R : f ′(x) =

1}. Suppose that the set J = {x ∈ R : 0 < f ′(x) < 1} is empty.

1. If J∗ = ∅ or a /∈ ϕ(J∗), then the Fatou set F(ha) is either H+
⋃
H− or a completely

invariant Baker domain.

2. If J∗ 6= ∅ and a ∈ ϕ(J∗), then the Fatou set F(ha) is a parabolic domain corresponding

to a real rationally indifferent fixed point.

Proof. The Fatou set F(ha) does not contain any wandering or rotational domains by

Proposition 6.1.1(1).

1. If J∗ = ∅, then h′a(x) > 1 for x ∈ R whenever h′a(x) is defined and consequently, each

real fixed point of ha(z) is repelling. If a /∈ ϕ(J∗), then ha(x) 6= x for x ∈ J∗. This

means that each real fixed point of ha lie in R\J∗ and consequently, is repelling. Now,

applying Proposition 6.1.1(4) it is concluded that, the Fatou set is either H+
⋃
H−

or a completely invariant Baker domain.

2. Let J∗ 6= ∅ and a ∈ ϕ(J∗). Then, there is a point xa ∈ J∗ such that ϕ(xa) =

xa − f(xa) = a. This means that ha(xa) = xa and h′a(xa) = f ′(xa) = 1. Any

neighbourhood of the rationally indifferent fixed point xa intersects H+ and H−.

Therefore, the Fatou set F(ha) is the parabolic domain corresponding to xa.
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If the set J is non-empty then it can be written as a union of countably many intervals

i.e., J =
⋃

n∈K

Jn where K ⊆ Z is some index set. Note that f ′(x) = 1 only when x belongs

to the boundary of some Jn and ϕ′(x) = 1 − f ′(x) ≥ 0 for x ∈ Jn. Therefore, ϕ(x) is

increasing in Jn for all n ∈ K. Set In = ϕ(Jn) and I =
⋃

n∈K

In. The values of a at the

end points of In are the critical parameters at which a change in dynamics of ha occurs as

given in the following theorem. Let A0 and ∂A denote the interior and the boundary of a

set A respectively.

Theorem 6.1.2. Let ha(z) = a + f(z) for f ∈ R and a ∈ R. If the set J is non-empty,

then

1. For a ∈
⋃

n∈K

I0
n, the Fatou set F(ha) is the attracting domain corresponding to a real

attracting fixed point xa of ha(z).

2. For a ∈
⋃

n∈K

∂In, the Fatou set F(ha) is the parabolic domain corresponding to the

real rationally indifferent fixed point na of ha(z).

3. For a ∈ R\⋃
n∈K In, the Fatou set F(ha) is either H+

⋃
H− or a completely invariant

Baker domain.

Proof. 1. If a ∈
⋃

n∈K

I0
n, then a ∈ I0

n for some n ∈ K. Since the function ϕ(x) is increas-

ing in Jn for all n, ϕ(J0
n) = I0

n and there exists a point xa ∈ Jn such that ϕ(xa) = a.

This means that ha(xa) = xa and 0 < h′a(xa) < 1. Therefore, xa is an attracting

fixed point of ha(z). The immediate basin of attraction of xa intersects H+ and

H−. Thus, the Fatou set F(ha) is the attracting domain corresponding to the real

attracting fixed point xa.
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2. If a ∈
⋃

n∈K

∂In, then a ∈ ∂In for some n ∈ K. Since the function ϕ(x) is increasing

in Jn for all n, ϕ(∂Jn) = ∂In and there exists a na on an end point of Jn for some n

such that ϕ(na) = a. This means that ha(na) = na and h′a(na) = 1. Therefore, na is

a rationally indifferent fixed point of ha(z). The parabolic domain corresponding to

na intersects both H+ and H−. Thus, the Fatou set F(ha) is the parabolic domain

corresponding to na.

3. If a ∈ R \ ⋃
n∈K In and F(ha) 6= H+

⋃
H−, then F(ha)

⋂
R 6= ∅ and the Fatou set

F(ha) is connected. Each real periodic point of ha is repelling. Since ha(R) ⊂ R, if the

Fatou set is an attracting domain or parabolic domain, then it must correspond to a

real attracting or rationally indifferent fixed point which is not possible. There are no

rotational domain or wandering domain in the Fatou set of ha by Proposition 6.1.1.

Therefore, the Fatou set F(ha) is a completely invariant Baker domain.

Remark 6.1.2. Let In
⋂
Im 6= ∅ for some n 6= m and a ∈ In

⋂
Im. Then Jm 6= Jn and

ϕ(Jm) = ϕ(Jn). This gives that, there exist two points xa ∈ Jm and x̃a ∈ Jn such that

ϕ(xa) = ϕ(x̃a) = a. Consequently, ha(xa) = xa and ha(x̃a) = x̃a. Further, 0 < h′a(xa) =

f ′(xa) < 1 as xa ∈ Jm and similarly, 0 < h′a(x̃a) < 1. Therefore, xa and x̃a are two distinct

real attracting fixed points of ha(z) which is a contradiction to Proposition 6.1.1(3). Hence,

In
⋂
Im = ∅ for m 6= n.

6.2 Dynamics of hb,c and hb

In this section, we determine the dynamics of the functions ha,b,c ∈ S for various possible

values of b and c with a = 0 where f ∈ R∗ is bounded on the imaginary axis. Theorem 6.2.1

deals with the dynamics of functions ha,b,c(z) = a+bz− c
z
+f(z) for a = 0, b ≥ 0, c > 0. The

dynamics of functions ha,b,c ∈ S is described where a = c = 0 and b > 0 in Theorem 6.2.4.
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Firstly, we find a sufficient condition for real meromorphic functions f ∈ R∗ to be bounded

on the imaginary axis.

Proposition 6.2.1. Let f(z) =
∑∞

k=1
Akz

a2
k
−z2 be a function in R∗. If {Ak}∞k=1 is bounded

and
a2

k

Ak
> k2 where k > k0 for some k0 ∈ N, then the function f(z) is bounded on the

imaginary axis.

Proof. Note that f(iy) =
∑∞

k=1
Akiy

a2
k
−(iy)2

=
∑∞

k=1
Akiy

a2
k
+y2 =

∑k0

k=1
Akiy

a2
k
+y2 +

∑∞
k=k0+1

Akiy
a2

k
+y2 for

y ∈ R. Since f(−iy) = −f(iy) for all y ∈ R, it is sufficient to prove that f(iy) is bounded

on R+.

Clearly, the function
∑k0

k=1
Akiy

a2
k
+y2 is bounded for y ∈ R+ and it remains to show that

the function S(y) =
∑∞

k=k0+1
Akiy

a2
k
+y2 =

∑∞
k=k0+1

iy
(a2

k
/Ak)+(y2/Ak)

is bounded for y ∈ R+. Since

{Ak}∞k=1 is bounded and
a2

k

Ak
> k2 for all k > k0,

a2
k

Ak
+ y2

Ak
> k2 +My2 for some M > 0. It

now follows that k2 +My2 > k2 +My2 − 1 > 0 for all k > k0 and consequently, |S(y)| <
∑∞

k=k0+1
y

k2+My2−1
for y > 0. Now, |S(y)| < S1(y)+S2(y) where S1(y) =

∑
k0<k<y

y
k2+My2−1

and S2(y) =
∑

k≥y
y

k2+My2−1
. Set M0 =

√
1/M and δ = max{k0, M0}+1. As the function

S(y) is continuous and hence bounded in [0, δ], it is sufficient to prove that S(y) is bounded

on (δ, + ∞).

Now y
k2+My2−1

< y
My2−1

= y
M(y2−(1/M))

and it gives S1(y) <
∑

k0<k<y
y

M(y2−M2
0 )

. There-

fore, S1(y) <
∑

k0<k<y
y+M0

M(y−M0)(y+M0)
<

∑
k0<k<y

1
M(y−M0)

. As there are [y] − k0 terms in

this series, S1(y) <
[y]−k0

M(y−M0)
< y+1

M(y−M0)
. The function y+1

M(y−M0)
is bounded on (δ, + ∞).

Hence, the function S1(y) is bounded on (δ, + ∞). Note that, for y ≤ k0, there are no

terms in the series S1(y) and S1(y) = 0.

For y ∈ (δ, + ∞), My2 > Mδ2 > MM2
0 = 1 and My2 − 1 > −k which gives that

k2 +My2−1 > k2−k > 0. Therefore, y
k2+My2−1

< y+1
k2−k

and S2(y) <
∑

k≥y
y+1
k2−k

. If n is the

smallest integer satisfying n ≥ y, then
∑∞

k=n
1

k2−k
=

∑∞
k=n

(
1

k−1
− 1

k

)
= 1

n−1
which gives

S2(y) <
y+1
n−1

. Now, n ≥ y > δ > 1 implies n − 1 ≥ y − 1 and S2(y) ≤ y+1
y−1

. The function

y+1
y−1

is bounded on (δ, + ∞) and we conclude that S2(y) is bounded on (δ, + ∞).
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Theorem 6.2.1. Let hb,c = bz − c
z

+ f(z) where b ≥ 0, c > 0 and f ∈ R∗ be bounded on

the imaginary axis. Then,

1. For b ∈ [0, 1), the Fatou set F(hb,c) = H+
⋃
H−, where H+ and H− are the at-

tracting domains corresponding to a conjugate pair of attracting fixed points za and

za respectively.

2. For b ≥ 1, the Fatou set F(hb,c) consists of Baker domains.

Proof. As the function hb,c(z) preserves the positive imaginary axis, the function φb,c(y) =

hb,c(iy)

i
is a non-negative real valued continuous function on R+

⋃{0}. A point y0 is fixed

point of φb,c(y) if and only if iy0 is a fixed point of hb,c(z). Let φ(y) = f(iy)
i

for y ∈ R. Then

φ(y) is bounded on the positive real axis and φb,c(y) = 1
i
(biy− c

iy
+ f(iy)) = by+ c

y
+φ(y).

1. Since b ∈ [0, 1) and φ(y) is bounded on R+, limy→+∞ φb,c(y) − y = limy→+∞(b −

1)y + c
y

+ φ(y) = −∞ and limy→0+ φb,c(y) − y = +∞. By the intermediate value

theorem, there is a zero of φb,c(y) − y and hence a fixed point of φb,c(y) in R+.

Consequently, there is a fixed point za of hb,c(z) in the positive imaginary axis. Any

Fatou component of a meromorphic function containing a fixed point is either an

attracting domain or a Siegel disc. Since za ∈ H+ ⊂ F(hb,c), the Fatou component of

hb,c containing H+ is either an attracting domain or a Siegel disc. But F(hb,c) does

not contain any Siegel disc. Therefore, H+ is contained in the attracting basin of za.

Since hb,c(z) = hb,c(z), there is also a fixed point za of hb,c(z) in the negative imaginary

axis and H− is contained in the attracting basin of za. Thus F(hb,c) = H+
⋃
H−

where H+ and H− are the basins of attractions of a conjugate pair of attracting fixed

points za and za respectively.

2. For b ≥ 1, φb,c(y)−y = (b−1)y+ c
y
+φ(y) > 0 for all y > 0. This means that, hb,c(z)

has no fixed point on iR+. As hb,c(−iy) = −hb,c(iy) for y ∈ R, the function hb,c(z)
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has also no fixed point on iR−. By Proposition 6.1.1(2), hb,c(z) has no attracting

or rationally indifferent fixed point in C. Therefore, the Fatou set F(hb,c) does not

contain any attracting or parabolic domain. It follows from Proposition 6.1.1(1) that,

F(hb,c) does not contain any wandering domain or rotational domain. Since F(hb,c)

is non-empty, it contains Baker domains only.

Remark 6.2.1. 1. The second case in the above theorem where b ≥ 1 remains true even

if f is assumed to be unbounded on the imaginary axis.

2. In Theorem 6.2.1(2), the Fatou set of hb,c is either a disjoint union of two completely

invariant Baker domains H+ and H− or is a single completely invariant Baker do-

main. If the set {|x1−x2| : hb,c(x1) = hb,c(x2) = ∞ and ha,b(z) has no pole in (x1, x2)}

is bounded, it follows by Proposition 6.1.1(6) that F(hb,c) = H+
⋃
H− and each of

H+ and H− is a completely invariant Baker domain.

Theorem 6.2.2. Suppose gj, fj ∈ R∗. Let limy→+∞
gj(iy)

i
= lj 6= 0 and limy→+∞

fj(iy)

i
=

mj 6= 0 for each j = 1, 2, ..., n. Let h(z) =
∑n

j=1{αjgj(z) − βj

fj(z)
} where αj > 0 and

βj ≥ 0. Assume that at least one βj is not zero. Then the Fatou set of h is the union of

two completely invariant attracting domains.

Proof. Observe that =(αjgj(z)) and =
(

−βj

fj(z)

)
have the same sign for z ∈ C and each j

if βj > 0 and, the function h(z) =
n∑

j=1

{
αjgj(z) −

βj

fj(z)

}
is real meromorphic for αj > 0

and βj ≥ 0. Further, h(−z) = −h(z) for z ∈ C. Let µj(y) =
gj(iy)

i
and ϕj(y) =

fj(iy)

i
for

each j. Then φ(y) =
h(iy)

i
=

1

i

n∑

j=1

{
αjgj(iy) −

βj

fj(iy)

}
=

n∑

j=1

{
αjgj(iy)

i
− βj

ifj(iy)

}
=

n∑

j=1

{
αjµj(iy) +

βj

ϕj(y)

}
. Since lim

y→+∞
µj(y) = lj 6= 0 and lim

y→+∞
ϕj(y) = mj 6= 0, it follows

that lim
y→+∞

φ(y) =
n∑

j=1

αjlj +
βj

mj

<∞ and consequently, lim
y→+∞

φ(y) − y = −∞. Since gj
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and fj are bounded on the imaginary axis, lim
y→0+

µj(y) = lim
y→0+

ϕj(y) = 0 and consequently,

lim
y→0+

φ(y) − y = lim
y→0+

n∑

j=1

(
αjµj(y) +

βj

ϕj(y)
− y

)
= +∞ . By the intermediate value the-

orem, there is a y0 ∈ R+ such that φ(y0) = y0 and consequently, h(iy0) = iy0. By similar

arguments used in Theorem 6.2.1(1), it is concluded that the Fatou set of h is the union

of two completely invariant attracting domains.

Before describing the dynamics of hb(z) = bz+ f(z), we present an important theorem

regarding parabolic domains [18]. For each positive t, each positive integer p, and each

k ∈ {0, 1, ..., p− 1}, we define the sets Πk(t) = {reiθ : rp < t(1+ cos(pθ)); |2kπ/p− θ| <

π/p} and these sets are called petals. The line of symmetry of Πk(t) is the ray θ = 2kπ/p

and is called the axis of the petal Πk.

Theorem 6.2.3. (The Petal theorem) Suppose that the analytic map ψ has a Taylor series

expansion ψ(z) = z − zp+1 + O(z2p+1) at the origin where O(z2p+1) denotes terms having

degree of z equal or higher than 2p+ 1. Then for all sufficiently small t,

1. ψ maps each petal Πk(t) into itself.

2. ψn(z) → 0 uniformly on each petal as n→ ∞.

3. arg ψn(z) → 2kπ/p locally uniformly on Πk as n→ ∞.

4. |ψ(z)| < |z| on a neighbourhood of the axis of each petal.

5. ψ : Πk(t) → Πk(t) is conjugate to a translation.

Remark 6.2.2. 1. In the above theorem there are exactly p petals in the parabolic do-

main of f corresponding to the rationally indifferent fixed point 0.

2. Any two distinct petals are contained in two different Fatou components.
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Theorem 6.2.4. Let hb(z) = bz + f(z) where b ≥ 0 and f ∈ R∗ be bounded on the

imaginary axis. Then,

1. For h′b(0) < 1, the Fatou set F(hb) is the attracting basin of 0.

2. For h′b(0) = 1, the Fatou set F(hb) is the parabolic domain corresponding to the

rationally indifferent fixed point 0. Further, the Fatou set F(hb) = H+
⋃
H−.

3. For h′b(0) > 1, the Fatou set F(hb) is equal to H+
⋃
H−. Further, H+ and H− are

completely invariant basins of attraction if 0 ≤ b < 1 and each component of the

Fatou set is a Baker domain if b ≥ 1.

Proof. Observe that hb(0) = 0 and the fixed point z = 0 is attracting, rationally indifferent

or repelling if h′b(0) < 1, = 1 or > 1 respectively. As hb(H
+) ⊆ H+, H+ is contained in a

Fatou component and similarly, H− is also contained in a Fatou component of hb.

1. For h′b(0) < 1, every neighbourhood of 0 intersects both H+ and H−. Therefore, the

Fatou set of hb contains both the half-planes and F(hb) = A(0), the attracting basin

of 0. In other words, the Fatou set is connected when h′b(0) < 1.

2. For h′b(0) = 1, any neighbourhood of 0 intersects both H+ and H−. Therefore,

the Fatou set F(hb) contains these two half-planes and F(hb) = P (0), the parabolic

domain corresponding to the rationally indifferent fixed point 0. Note that hb(z) =

hb(0)+h′b(0)z+
h′′

b
(0)

2!
z2+

h′′′

b
(0)

3!
z3+... for z lying in a sufficiently small neighbourhood of

0. Observing that hb(0) = 0, h′b(0) = b+f ′(0) = b+
∑∞

−∞
Ak

a2
k

> 0, h′′b (0) = f ′′(0) = 0,

h′′′b (0) = f ′′′(0) > 0, hiv
b (0) = f iv(0) = 0 and hv

b(0) = f iv(0) > 0 and comparing this

expansion with that of Petal theorem 6.2.3, we conclude that, there are two petals

in F(hb) = P (0) when h′b(0) = 1. By Theorem 6.2.3 (3) the axes of the petals must

be iR+ and iR− because these remain invariant under hb. Therefore, the Fatou set

F(hb) consists of two disjoint simply connected petals, namely H+ and H−.
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3. Since h′b(0) > 1, the point 0 is a repelling fixed point and there exists a δ > 0 such

that |h′b(z)| > 1 for z ∈ (0, iδ). Consider φb(y) = by + φ(y) where φ(y) = f(iy)
i

. Then

φ′
b(y)−1 > 0 and φb(y)−y is increasing in (0, δ). Therefore, φb(δ)−δ > φb(0)−0 = 0.

For 0 ≤ b < 1, limy→+∞ φb(y) − y = limy→+∞(b − 1)y + φ(y) = −∞ since φ(y) is

bounded on the positive imaginary axis. Therefore, there is a fixed point of φb(y)

in (δ, ∞). Consequently hb(z) has a fixed point za in iR+. A Fatou component of

a meromorphic function containing a fixed point is either an invariant Siegel disc or

an invariant attracting domain. The Fatou set of hb does not contain any rotational

domain. As za ∈ H+ ⊂ F(hb), it is concluded that H+ is contained in an attracting

basin. Since hb(z) = hb(z) for z ∈ C, the half-plane H− is also contained in an

attracting domain corresponding to the attracting fixed point za lying in the negative

imaginary axis. Hence, the Fatou set F(hb) is equal to H+
⋃
H− where H+ and H−

are basins of attractions of a conjugate pair of attracting fixed points za and za.

For b ≥ 1, φb(y)− y = (b−1)y+φ(y) > 0 for all y ∈ R+ which gives that, there is no

fixed point of φb(y) in R+ and limn→∞ φn(y) = ∞. Consequently, there is no fixed

point of hb(z) in H+ by Proposition 6.1.1(2) and limn→∞ hn
b (z) = ∞ for all z ∈ iR+.

Since H+ ⊂ F(hb), limn→∞ hn
b (z) = ∞ for all z ∈ H+. Further, the Fatou set F(hb)

does not contain any attracting domain, parabolic domain, wandering domain or any

rotational domain by Proposition 6.1.1(1). Since the Fatou set is non-empty, each

component of F(hb) is a Baker domain.

Corollary 6.2.1. Let f ∈ R∗ be bounded on the imaginary axis and consider the one

parameter family S = {fλ ≡ λf : λ ∈ R \ {0}}. Taking b = 0 in Theorem 6.2.4, it is

seen that, the Fatou set F(f) = A(0), the attracting basin of 0 for 0 < λ < 1
f ′(0)

. The

Fatou set F(f) = P (0), the parabolic domain corresponding to rationally indifferent fixed
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point 0, with two invariant petals, H+ and H− for λ = 1
f ′(0)

and F(f) = H+
⋃
H−, the

union of two invariant attracting domains for λ > 1
f ′(0)

. Since f(−z) = −f(z) for z ∈ C,

fλ and f−λ are conformally conjugate and their dynamics are essentially same. Therefore,

bifurcations in the dynamics of functions in S occur at parameter values ± 1
f ′(0)

.

The above corollary for f(z) = tan z was proved by Linda and Keen [42].

6.3 Examples

Some examples of functions of the family S are discussed in this section illustrating the

theorems proved in this chapter.

Example 1:

Let ha(z) = a + λ tan z for z ∈ C, a ∈ R and λ ∈ R+. The function f(z) = λ tan z =

λ
∞∑

k=1

z

(2k−1
2
π)2 − z2

∈ R∗ and is bounded on the imaginary axis. Let J = {x ∈ R : 0 <

f ′(x) < 1} and J∗ = {x ∈ R : f ′(x) = 1}. The set {|x1 − x2| : ha(x1) = ha(x2) =

∞ and ha,b(z) has no pole in (x1, x2)} is bounded. Since ha has only finitely many singular

values, the Fatou set of ha has no Baker domain.

For 0 < λ < 1, the set J is non-empty and the dynamics of ha follows from Theo-

rem 6.1.2. If J =
⋃

n∈K Jn for some index set K ⊂ Z where Jn are intervals in R, then

set In = φ(Jn) where φ(x) = x − f(x). The Fatou set F(ha) is the attracting domain

corresponding to a real attracting fixed point xa of ha(z) if a ∈ ⋃
n∈K I0

n and the Fatou set

F(ha) is the parabolic domain corresponding to the real rationally indifferent fixed point na

of ha(z) for a ∈ ⋃
n∈K ∂In. For a ∈ R\ ⋃

n∈K In, the Fatou set F(ha) is either H+
⋃
H− or

a completely invariant Baker domain. Since ha has no Baker domains, F(ha) = H+
⋃
H−.

For λ = 1, h′a(z) = sec2 z. The set J = ∅ and J∗ = {kπ : k ∈ Z}. Note that

ϕ(J∗) = J∗ where ϕ(x) = x − f(x) for x ∈ R. The dynamics of ha(z) is given by

Theorem 6.1.1. Therefore, the Fatou set F(ha) is the parabolic domain corresponding to a

rationally indifferent fixed point for a ∈ J∗. For a /∈ J∗, the Fatou set is either H+
⋃
H−
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or a Baker domain. But Baker domains do not exist in F(ha). Therefore, the Fatou set

F(ha) = H+
⋃
H−. Further, each component of the Fatou set is a completely invariant

attracting domains for a /∈ J∗.

For λ > 1, |h′a(z)| > 1 for all z ∈ R and by Proposition 6.1.1(6), it is concluded that

F(ha) = H+
⋃
H−. Further, none of H+ and H− are Baker domains or parabolic domains

(since, ha has no rationally indifferent real fixed point). Therefore, each of H+ and H− is

an attracting domain.

Example 2:

Let λn’s be the roots of tan z − z = 0 and f(z) =
3

z
− z sin z

z cos z − sin z
=

∞∑

k=1

2z

λ2
n − z2

. It

is easy to verify that f(z) is bounded on the imaginary axis and f ∈ R∗. Let hb,c(z) =

bz − c
z

+ f(z) for z ∈ C. It follows from Theorem 6.2.1 that, when c > 0, the Fatou set

F(hb,c) is the union of two attracting domains H+
⋃
H− for 0 ≤ b < 1 and consists of

Baker domains for b ≥ 1.

Example 3:

Let f(z) =
n∑

j=1

αj tan(rjz) − βj cot(sjz) where rj, sj, αj, βj > 0, j = 1, 2, ..., n. Then

tan(rjz) ∈ R∗ for each j and
tan(rjiy)

i
= tanh(rjy) → 1 as y → +∞. Hence F(f) is union

of two attracting domains by Theorem 6.2.2.

Example 4:

Let f(z) =
n∑

j=1

αjg(rjz) −
βj

g(sjz)
where rj, sj, αj, βj ∈ R+, j = 1, 2, ..., n. The function

g(z) = −i{1
2
− 1

iz
+ 1

eiz−1
} =

∑∞
k=1

2z
4k2π2−z2 ∈ R∗. Then g(iy)

i
= −{1

2
+ 1

y
+ ey

1−ey } → 1
2

as

y → ∞. Therefore, F(f) is union of two attracting domains by Theorem 6.2.2.

Example 5:

Let F = {fλ1,λ2(z) = λ1z + λ2 tan z : λ1 ≥ 0, λ2 > 0} be a two parameter family

of transcendental meromorphic functions. Set f ′
λ1,λ2

(0) = λ1 + λ2. The function λ2 tan z

belongs to the class R∗ and is bounded on the imaginary axis for each λ2 > 0. It follows

137



CHAPTER 6 Real meromorphic functions

from the Theorem 6.2.4 that, a bifurcation occurs in the dynamics of functions in the

family F as follows.

1. If λ1 + λ2 < 1, then the Fatou set of fλ1,λ2 is the attracting basin of 0.

2. If λ1 + λ2 = 1, then the Fatou set of fλ1,λ2 is the parabolic domain corresponding to

the rationally indifferent fixed point 0.

3. If λ1 + λ2 > 1, then the Fatou set of fλ1,λ2 is the union of H+ and H− each of which

is a completely invariant attracting domains if λ1 < 1. For λ1 ≥ 1, |f ′
λ1,λ2

(x)| > 1

for x ∈ R and it follows from Proposition 6.1.1(6) that F(ha,b) = H+
⋃
H−. Further,

each component is a completely invariant Baker domain.

6.4 Dynamics of a + tan z

Let Ta(z) = a + tan z for z ∈ C where a ∈ C. For a ∈ R, the function Ta(z) is real

meromorphic and its dynamics is discussed in Example 1. This section deals with the

dynamics of Ta(z) when a ∈ C\R. The function Ta(z) is not real meromorphic for a ∈ C\R

and natural difficulties arise in the investigation of its dynamics. Since −T−a(−z) =

−(−a+tan(−z)) = Ta(z) for all z and a ∈ C, the two functions Ta and T−a are conformally

conjugate and have essentially same dynamics. Therefore, we only determine the dynamics

of Ta for =(a) > 0. The function Ta(z) has no critical value and only two finite asymptotic

values, namely a+ i and a− i. The Fatou set F(Ta) is shown to be an immediate basin of

attraction for a ∈ P1

⋃
P2 where P1 = {x+ iy ∈ C : x ∈ R and y > 1}⋃{x+ i ∈ C : x 6=

2k+1
2
π for any k ∈ Z} and P2 = {πk + iy ∈ C : k ∈ Z and y > 0} in Theorem 6.4.1.

Theorem 6.4.2 deals with the topology of Fatou components of Ta when a /∈ P1

⋃
P2 under

certain extra conditions.

Proposition 6.4.1. Let a ∈ C such that =(a) > 0 and Ta(z) = a+tan z for z ∈ C. Then,

the Fatou set F(Ta) of Ta contains a completely invariant component Ua and the singular
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value a+ i lies in Ua. Further, if the singular value a− i lies in Ua, then F(Ta) = Ua and

is an attracting domain corresponding to an attracting fixed point lying in H+.

Proof. For =(a) > 0, Ta(H
+) ⊂ H+. Therefore, T n

a (H+) ⊆ H+ for all n and it follows from

Theorem 1.1.1 that, H+ is contained in the Fatou set of Ta. Denote the Fatou component

of Ta containing H+ by Ua. Since H+ is forward invariant under Ta and contains a+ i, the

component Ua is forward invariant and contains the singular value a+ i. Observe that, for

sufficiently small ε, there exists a M(ε) > 0 such that each component of T−1
a (Dε(a + i))

intersects HM(ε) = {z ∈ C : =(z) > M(ε)}. Since HM(ε) ⊂ Ua, the component Ua is

backward invariant. Hence Ua is completely invariant.

Since the function Ta has finitely many singular values, the Fatou set F(Ta) does not

contain any Baker domain (c.f. Theorem 1.1.11) or wandering domain [14]. If both the

singular values of Ta lie in Ua, then the Fatou set of Ta does not contain any rotational

domain and any attracting domain or parabolic domain different from Ua does not exist

in F(Ta) (c.f. Theorem 1.1.7). Therefore, for any Fatou component U of Ta there is a

k ∈ Z such that T k
a (U) ⊆ Ua. The complete invariance of Ua gives that k = 0 and we

have F(Ta) = Ua. Now, it is clear that Ua is either an immediate basin of attraction or a

parabolic domain corresponding to an attracting or rationally indifferent fixed point. Since

Ta(H
+) ⊂ H+ ⊂ Ua, the fixed point must lie in H+ and be attracting.

Remark 6.4.1. It is clear from Proposition 6.4.1 that H+ is contained in the completely

invariant Fatou component Ua if =(a) > 0. Further, if x ∈ R and x 6= 2k+1
2
π for any k ∈ Z,

then Ta(x) ⊂ H+ ⊂ Ua and the complete invariance of Ua gives that R \ {2k+1
2
π : k ∈

Z} ⊂ Ua.

Next theorem shows that the Fatou set of Ta is equal to the completely invariant

attracting domain for certain values of a.

Theorem 6.4.1. Let a ∈ P1

⋃
P2 where P1 = {x+ iy ∈ C : x ∈ R and y > 1}⋃{x+ i ∈
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C : x 6= 2k+1
2
π for any k ∈ Z} and P2 = {πk + iy ∈ C : k ∈ Z and y > 0}. Then, the

Fatou set F(Ta) of Ta is an attracting domain corresponding to an attracting fixed point

lying in H+.

Proof. In view of Proposition 6.4.1, it is sufficient to show that a−i ∈ Ua for all a ∈ P1

⋃
P2.

Case I: a ∈ P1

If a = ra + isa and sa > 1, then =(a− i) > 0 and we have a− i ∈ H+ ⊂ Ua. If a = ra + i

and ra 6= 2k+1
2
π for any k ∈ Z, then a − i ∈ R \ {2k+1

2
π : k ∈ Z} ⊂ Ua by Remark 6.4.1.

Therefore, a− i ∈ Ua whenever a ∈ P1.

Case II: a ∈ P2

In this case, a = πk+isa for some k ∈ Z and sa > 0. Then Ta(πk+iy) = πk+isa+tan(πk+

iy) = πk + i(sa + tanh y). The function φ(y) = sa + tanh y is increasing in R. Consider

ψ(y) = φ(y)− y for y ∈ R. Then ψ′(y) = sech2y− 1 < 0 for all nonzero y and the function

ψ(y) is decreasing in R. Observe that limy→+∞ ψ(y) = −∞ and limy→−∞ ψ(y) = +∞.

Further, ψ(0) = sa > 0. Therefore, there is a unique ya > 0 such that ψ(y) < 0 for y > ya,

ψ(y) = 0 for y = ya and ψ(y) > 0 for y < ya. Hence, the function φ(y) has only one

real fixed point ya. Obviously, ya is attracting. As φ(y) > y for 0 < y < ya the sequence

{φn(y)}n>0 is increasing and bounded above by ya. Similarly, the sequence {φn(y)}n>0 is

decreasing and bounded below by ya for y > ya. Therefore, by the monotone convergence

theorem, limn→∞ φn(y) = ya for y > 0. For y < 0, φ(y) > y and the sequence {φn(y)}n>0

is increasing. If φn(y) < 0 for all n, then the sequence {φn(y)}n>0 must converge to a fixed

point of φ(y) in negative real axis. But φ(y) has only one real fixed point ya and that is

positive leading to a contradiction. So, there is a ny such that φny(y) > 0. Since φ(y) > 0

for all y > 0, φn(y) > 0 for all n ≥ ny. Consequently, limn→∞ φn(y) = ya for y < 0. We

now conclude that Ta(πk+ iya) = πk+ isa + i tanh ya = πk+ i(sa +tanh ya) = πk+ iya, the

fixed point πk + iya is attracting and limn→∞ T n
a (z) = πk + iya for all z = πk + iy where

k ∈ Z and y ∈ R. Both the singular values πk + i(sa + 1) and πk + i(sa − 1) of Ta lie on
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the line h(k) = {πk + iy : y ∈ R}. Since h(k)
⋂
H+ 6= ∅, h(k) ⊂ Ua and a− i ∈ Ua.

Remark 6.4.2. If a ∈ {2k+1
2
π + i : k ∈ Z}, then the singular value a− i is a pole of Ta.

Therefore F(Ta) does not contain any rotational domain (c.f. Theorem 1.1.7). Further,

any attracting domain or parabolic domain different from Ua also does not exist in F(Ta).

It follows by same arguments used in Proposition 6.4.1 that F(Ta) = Ua and Ua is an

attracting domain corresponding to an attracting fixed point lying in H+.

Theorem 6.4.2. Let a ∈ C such that =(a) > 0 and Ta(z) = a+ tan z for z ∈ C. If Ua is

the completely invariant Fatou component of Ta(z) containing H+ and the singular value

a− i /∈ Ua, then each component of F(Ta) other than Ua is simply connected.

Proof. Let U be a multiply connected component of F(Ta) different from Ua and γ be a

Jordan curve in U such that the bounded component B(γc) of γc intersects the Julia set

J(Ta). Set Bj = T j
a (B(γc)) for j ∈ N. If B1 contains no pole of Ta, then Ta is analytic on

the closure of B1 and the interior of B1 is mapped into the interior of B2 which means B2

intersects the Julia set. If B2 does not contain any pole of Ta, then repeat the arguments.

As all the pre-images of poles are dense in the Julia set, we can find a natural number n∗

such that Bn∗ contains a pole of Ta and Bn∗+1 contains a neighbourhood of infinity. Note

that ∂Bj+1 ⊆ Ta(∂Bj) for j = 1, 2, 3, ..., n∗.

Since U 6= Ua, the boundary of Bn∗+1 does not lie in Ua and a + i ∈ Ua ⊂ Bn∗+1.

The set Bn∗ contains an asymptotic path corresponding to the asymptotic value a + i.

Since there is only one singularity of T−1
a over a + i and that is logarithmic, the set Bn∗

is unbounded [23] which is a contradiction. Thus, each component of F(Ta) different from

Ua is simply connected.

Corollary 6.4.1. Let a ∈ C, =(z) > 0 and Ta(z) = a + tan z for z ∈ C. Then Ta(z) has

no Herman ring.
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Proof. For a ∈ R, the function Ta(z) is real meromorphic and cannot contain any Herman

ring by Proposition 6.1.1(1). If the singular value a−i lies in Ua, then F(Ta) is a completely

invariant attracting domain by Proposition 6.4.1 and cannot contain any Herman ring. If

a − i /∈ Ua, then Ua is completely invariant and cannot be a Herman ring. Each Fatou

component other than Ua is simply connected by Theorem 6.4.2 and therefore, Ta(z) has

no Herman ring for a ∈ C.
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[1] L. V. Ahlfors, Über die asymptotischen werte der meromorphen functionen endlicher
ordnung, Acta Acad. Abo. Math. Phys. 6 (1932), 3–8.

[2] I. N. Baker, Multiply connected domains of normality in iteration theory, Math. Z.
81 (1963), 206–214.

[3] , Completely invariant domains of entire functions, Mathematical Essays Ded-
icated to A.J.Macintyre(H.Shankar, Ed.), Ohio University Press, Athens, Ohio, 1970.

[4] , Limit functions and sets of non-normality in iteration theory, Ann. Acad.
Sci. Fenn. Ser. AI 467 (1970), 1–11.

[5] , An entire function which has wandering domains, J. Austral. Math. Soc. 49
(1976), no. Ser.A, 173–176.

[6] , Wandering domains in the iteration of entire functions, Proc. London Math.
Soc. 49 (1984), no. 3, 563–576.

[7] , Some entire functions with multiply connected wandering domains, Ergodic
Theory and Dynamical Systems 5 (1985), 163–169.

[8] , Iteration of entire functions: An introductory survey, Lectures on Complex
Analysis, World Scientific, 1987.

[9] , Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn.
Ser. A I Math. 12 (1987), 191–198.

[10] , Infinite limits in the iteration of entire functions, Ergodic Theory and Dy-
namical Systems 8 (1988), 503–507.

[11] I. N. Baker, J. Kotus, and L. Yinian, Iterates of meromorphic functions II: Examples
of wandering domains, J. London Math. Soc. 2 (1990), no. 42, 267–278.

[12] , Iterates of meromorphic functions I, Ergodic Theory and Dynamical Systems
11 (1991), 241–248.

[13] , Iterates of meromorphic functions III: Preperiodic domains, Ergodic Theory
and Dynamical Systems 11 (1991), 603–618.

[14] , Iterates of meromorphic functions IV: Critically finite functions, Results in
Mathematics 22 (1992), 651–656.

143



References 144

[15] I. N. Baker and P. J. Rippon, Iteration of exponential functions, Ann. Acad. Sci.
Fenn. Math. 9 (1984), 49–77.

[16] , A note on complex iteration, Amer. Math. Monthly 92 (1985), 501–504.

[17] , Iterating exponential functions with cyclic exponents, Math. Proc. Camb.
Phil. Soc. 105 (1989), 357–375.

[18] A. F. Beardon, Iteration of rational functions, Springer-Verlag, 1991.

[19] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29
(1993), no. 2, 151–188.

[20] , Newton method and a class of meromorphic functions without wandering
domains, Ergodic Theory and Dynamical Systems 13 (1993), 231–247.

[21] , Singularities in Baker domains, Bull. Amer. Math. Soc. 29 (1993), no. 2,
151–188.

[22] , On the Julia set of analytic self maps of the punctured plane, Analysis 15
(1995), 251–256.

[23] W. Bergweiler and A. E. Eremenko, On the singularities of the inverse to a mero-
morphic function of finite order, Revista Math. Iberoamericana 11 (1995), 355–373.

[24] , Meromorphic functions with two completely invariant domains, Transcen-
dental Dynamics and Complex Analysis, LMS Lecture Note Series, Cambridge Uni-
versity Press, 2003.

[25] W. Bergweiler, M. Haruta, H. Kriete, H. Meier, and N. Terglane, On the limit func-
tions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Math. Ser. A I Math.
18 (1993), 369–375.

[26] W. Bergweiler and N. Terglane, Weakly repelling fixpoints and the connectivity of
wandering domains, Trans. Amer. Math. Soc. 348 (January, 1996), no. 1, 1–12.

[27] R. Bhattacharjee and R. L. Devaney, Tying hairs for structurally stable exponentials,
Ergodic Theory and Dynamical Systems 20 (2000), 1603–1617.

[28] R. Bhattacharjee, R. E. L. Deville, and M. Moreno-Rocha, Accessible points in the
Julia set of stable exponentials, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 3,
299–318.

[29] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math.
Soc. 11 (July 1984), no. 1, 85–141.

[30] A. Bolsch, Iteration of meromorphic functions with countably many essential singu-
larities, Ph.D. thesis, Berlin, 1997.

[31] , Periodic Fatou components of meromorphic functions, Bull. London Math.
Soc. 31 (1999), 543–555.

[32] F. Bowman, Introduction to Bessel functions, Dover, 1958.

144



References 145

[33] B. Branner and A. Douady, Surgery on complex polynomials, Holomorphic Dynamics
Proceedings, Springer-Verlag Lecture Notes in Mathematics 1345, 1988, pp. 11–71.

[34] B. Branner and J. Hubbard, The iteration of cubic polynomials, Part-I: The global
topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206.

[35] , The iteration of cubic polynomials, Part-I: Patterns and parapatterns, Acta
Math. 169 (1992), 229–325.

[36] C. Cao and Y. Wang, On completely invariant Fatou components, Ark. Mat. 41
(2003), 253–265.

[37] L. Carleson and T. W. Gamelin, Complex dynamics, Springer, 1993.
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