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Abstract

We study transcendental and rational mappings that arise as Newton maps
of entire functions. If Nf is the Newton map of an entire function f : C → C,
then the roots of f are exactly the finite fixed points of Nf , all of which are
attracting. It is well known that every finite fixed point ξ of Nf has an
unbounded, connected and simply connected neighborhood Uξ in which the
dynamics converges to ξ, its immediate basin. Note that the existence of
immediate basins suffices to explain why Newton’s method can locally be
used for root-finding.

We give a necessary and sufficient criterion under which a given trans-
cendental or rational function N : C → Ĉ is a Newton map and study its
behavior at infinity. If N is a rational Newton map, it extends to a function
N : Ĉ → Ĉ and ∞ is a repelling or parabolic fixed point. In the latter
case, N is necessarily the Newton map of a transcendental entire function
and there exists an attracting parabolic petal at ∞, that is an invariant,
simply connected and unbounded component V of the Fatou set in which
the dynamics converges to ∞. We call V a virtual immediate basin, because
it has many properties of an immediate basin but contains no fixed point. If
∞ is repelling, then N is necessarily the Newton map of a polynomial and
has no virtual immediate basins.

We extend the study of Newton maps near ∞ to general (rational or
transcendental) Newton maps N . Our first main result is that “in between”
any two accesses to ∞ of an immediate basin, N exhibits either another
immediate basin, a virtual immediate basin or a sequence zn → ∞ such
that N(zn) is constant. This result is joint work with Dierk Schleicher and
allows to locate virtual immediate basins. It also gives structure to the
dynamical plane beyond the structure provided by the immediate basins.
An important corrollary is a proof of the folklore result that for Newton
maps of polynomials, every complementary component of an immediate basin
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iv ABSTRACT

contains another immediate basin. For the proof of this first main result we
develop a fixed point inequality that we also use to show that transcendental
Newton maps have no fixed Herman rings.

Let Nf be the Newton map of the transcendental entire function f : C →
C. The second main result of this thesis, which is joint work with Xavier Buff,
shows an interesting connection between virtual immediate basins of Nf and
asymptotic values of f , answering a 2003 question of Douady. More precisely,
let V be a virtual immediate basin of Nf . Then, V can be of parabolic or
hyperbolic type, where the parabolic type splits into two further cases. If
V is parabolic, then 0 is an asymptotic value for f with asymptotic path
in V . If V is hyperbolic, this is only true under an additional assumption.
Conversely, if f has an asymptotic value of logarithmic type at 0, we prove
that Nf has a virtual immediate basin. We show by way of counterexamples
that this is not true for other types of asymptotic values.

With our third main result, we contribute to the study of parameter space
of Newton maps by giving a combinatorial classification of a large sub-class
of such maps. More precisely, let Np be the Newton map of a polynomial p
with simple roots such that all critical points of Np land on a fixed point after
finitely many iterations. In this case, we construct a graph that characterizes
Np uniquely up to Möbius conjugation. Conversely, we show that every graph
with an associated map that satisfies several natural conditions is realized
by a unique Newton map. This is a first step towards a classification of all
postcritically finite Newton maps of poynomials, which in turn might be an
important step towards a classification of arbitrary rational functions.

In an appendix, we introduce a class of bounded type transcendental
entire functions with the property that its set of escaping points is organized
in the form of unbounded rays. This fourth main result is joint work with
Günter Rottenfußer, Lasse Rempe and Dierk Schleicher, and is part of an
answer to a long-standing conjecture of Fatou and Eremenko. Since it is not
immediately part of this thesis, it is presented in the appendix.
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Chapter 1

Introduction

1.1 Overview

We study holomorphic dynamical systems that arise as Newton maps of
entire functions, and present several results concerning the structure of their
dynamical planes. We then carry some of these results over to parameter
space and give a classification of a large class of Newton maps of polynomials.
In an appendix, we present a result about the set of escaping points for a
transcendental entire function of bounded type.

We assume that the reader is familiar with the fundamental concepts of
holomorphic dynamics, as laid out in e.g. [Be1, Mi]. All further definitions
and prerequisites are treated in the chapters where they are needed. Each
chapter is mathematically self-contained, so some concepts may be intro-
duced more than once.

Let f be an entire function—polynomial or transcendental—and Nf its
Newton map. It is well known that the roots of f are exactly the finite
fixed points of Nf , and that all finite fixed points of Nf are attracting. The
immediate basins of the attracting fixed points of Nf are unbounded do-
mains and thus provide an elementary structure to the dynamical plane. In
Chapter 2, we prove a necessary condition on the possible mutual locations
of immediate basins. If an immediate basin U of an attracting fixed point
of Nf separates the plane, then every component of C \ U contains another
immediate basin of Nf or a virtual immediate basin (see Section 2.3.2 for the
definition), provided that some technical assumptions are satisfied. For the
proof, we develop a fixed point inequality that turns out to be useful in its
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2 CHAPTER 1. INTRODUCTION

own right; as an example, it implies that transcendental Newton maps do
not have fixed Herman rings.

Our result is related to a question of Smale, who posed the problem of
characterizing all possible combinatorics of the basins of attraction for the
Newton flow of a complex polynomial [Sm1]. This problem was solved in
1988 by Shub, Tischler and Williams [STW]. An easy corollary of our result
shows that if f is a polynomial, then every complementary component of
an immediate basin of Nf must contain another immediate basin. Thus,
it gives a necessary condition on the combinatorics of immediate basins,
providing a partial answer to Smale’s question in the context of the discrete
Newton method. Our condition is also used in the combinatorial classification
of Newton maps as outlined below. The results of this chapter are being
published jointly with Dierk Schleicher and are available on the arXiv [RuS].

In 2003, Douady asked whether the existence of a virtual immediate basin
V for Nf implied that f(z) → 0 as z → ∞ within V . In Chapter 3, we
present a condition on V under which this implication holds true; Bergweiler,
Drasin and Langley recently showed that our condition is necessary [BDL].
Conversely, we show that if f has a logarithmic singularity over 0, then this
singularity gives rise to a virtual immediate basin for Nf . We construct
functions f with a non-logarithmic direct singularity over 0 that does not
generate a virtual immediate basin for Nf . This shows that our result cannot
be extended to larger classes of singularities. The results in Chapter 3 were
developed in collaboration with Xavier Buff and have been published [BR].

Chapter 4 is concerned with rational mappings f : Ĉ → Ĉ that arise as
Newton maps of polynomials. If f satisfies the additional assumption that
each critical point maps onto a fixed point after finitely many iterations, we
construct a forward-invariant connected graph Γ ⊂ S2 that characterizes f .
That is, f |Γ allows to reconstruct f uniquely (up to Möbius conjugation).
Conversely, we show that a map f ′ : Γ′ → Γ′ on an abstract graph Γ′ ⊂ S2

gives rise to a unique Newton map if it satisfies some natural conditions. The
necessity of these conditions follows in part from results in Chapter 2. Thus,
we give a classification of a large class of Newton maps.

Unrelated to the investigation of Newton maps, Eremenko asked in 1989
whether every (path-)component of the set of escaping points for a transcen-
dental entire function of bounded type was necessarily unbounded [Er2]. In
his 2005 thesis [Ro], Rottenfußer constructed an unbounded domain T ⊂ H

in the right half-plane and a Riemann map F : T → H, whose set of es-



1.2. NEWTON’S METHOD 3

caping points has no unbounded path-components. The construction can be
extended to a bounded type entire function f with the same property, thus
answering Eremenko’s famous question in the negative. Rottenfußer’s thesis
also gives a condition under which the answer to this question is positive.
Some of these results have been obtained by Günter Rottenfußer in collab-
oration with Dierk Schleicher, Lasse Rempe and the author of the thesis
on hand, and they are being published as a joint paper of the four authors
[RRRS]. We include an excerpt of these results in Appendix A.

1.2 Newton’s Method

Newton’s root-finding method—named after Sir Isaac Newton (1643–1727)—
is one of the oldest, most used and most heavily studied iterative procedures
to approximate the roots of a differentiable function.

Newton’s method was first used on the real line, where it is motivated as
follows. Given a C1-function f : R → R, we want to find a point ξ ∈ R such
that f(ξ) = 0 (a root of f). Starting with an initial guess x1, we calculate

the root x2 = x1− f(x1)
f ′(x1)

of the linear map tangent to f at x1 (see Figure 1.1).
This tangent line approximates f well near x1, and it is reasonable to assume
that x2 will be a better approximation of ξ than x1. Indeed, it is well known
that the Newton sequence obtained iteratively by setting xn+1 = xn − f(xn)

f ′(xn)

converges to ξ, if x1 was sufficiently close to some root ξ of f . If this happens,
we say that the starting value x1 finds the root ξ.

However, in many cases there exist open sets of starting values for New-
ton’s method that do not find any roots. Consider f(x) = 1

2
x3 − x + 1. For

any starting value x1 ∈ R, Newton’s method gives the sequence

xn+1 =
x3

n − 1
3
2
x2

n − 1
.

It is easy to see that for the choice x1 = 0, we get x2 = 1 and x3 = 0 = x1, so
that the sequence will not converge. Furthermore, neither 0 nor 1 is a root of
f . This Newton’s method has a periodic critical point at 0, whose basin of
attraction is an open set of starting values for which Newton’s method does
not find a root of f , compare Figure 1.2.

Nevertheless, Newton’s method has been successfully used in many appli-
cations and in practice, “bad” starting values can often be avoided. Indeed,
Smale [Sm2] has shown that for polynomials f : C → C, the number of
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f

1x 2ξ x

Figure 1.1: For a starting value x1 sufficiently close to the root ξ of f , the
root x2 of the tangent to f at x1 is a better approximation of ξ.

randomly chosen starting values needed to find a root of f is very small on
average. But while Newton’s method has practical uses in much more general
contexts, e.g. for differentiable mappings between Banach spaces over R or
C (for a survey, we also refer to [Sm2]), Newton’s method has not even been
fully understood for a polynomial f : C → C in one complex variable.

1.3 A Dynamical Systems Approach

In the following, we restrict to an investigation of Newton’s method for holo-
morphic functions f : C → C. This is the easiest case in that it has only
one variable and assumes analyticity of f rather than only differentiability.
On the other hand, it contains the class of complex polynomials which are
important in many applications. Moreover, the methods of holomorphic dy-
namics provide powerful tools to gain insight into the structure of Newton’s
method that are not present in more general settings. But still, this case is
not yet completely understood and far from trivial.

While our results are not immediately of a numerical nature, they con-
tribute to a better undestanding of such starting points that do not find a
root of f . Furthermore, our results show similarities and differences between
the dynamics of certain classes of rational functions and certain classes of
transcendental functions. Studying these similarities and differences is an
important and active field of research in holomorphic dynamics.
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Figure 1.2: Newton’s method for a cubic polynomial over C. The roots of the
polynomial are indicated by white crosses. Each point is colored according
to the root to which Newton’s method converges for this starting value. The
open black regions indicate starting values that do not converge to any root.
Such points converge to the 2-cycle 0 7→ 1 7→ 0 7→ . . . . The white dot marks
the periodic critical point 0.

Let f : C → C be an entire function. We assign to f the meromorphic
function

Nf : C → Ĉ, z 7→ z − f(z)

f ′(z)
,

its Newton map. It is easy to see that for a starting value z1 ∈ C, the
sequence of iterates zn = N

◦(n−1)
f (z1) is exactly the Newton sequence defined

in Section 1.2. Observe also that Nf may be rational or transcendental; in

the first case, it extends to a rational map Nf : Ĉ → Ĉ with a fixed point at
∞. In Chapter 2, we will show for which f the Newton map Nf is rational.

An easy calculation shows that the roots of f are exactly the finite fixed
points of Nf and all of them are attracting, see also Proposition 2.2.8. There-
fore, each fixed point ξ ∈ C of Nf has a neighborhood Uξ such that for
z1 ∈ Uξ, the sequence N◦n

f (z1) converges to ξ. If ξ is a simple root of f ,
Böttchers theorem [Mi, Theorem 9.1] immediately gives that this conver-
gence is at least quadratic; if ξ is a multiple root, linear convergence follows
from Kœnigs’ theorem [Mi, Theorem 8.2]. If Nf has an attracting cycle of
higher period, the basin of attraction of this cycle is an open set of start-
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ing values for Newton’s method that do not find a root of f . This explains
the black regions in Figure 1.2. In the transcendental case, virtual immedi-
ate basins are another class of open sets where Newton’s method does not
converge to a root of f . We investigate those in Chapters 2 and 3.

According to Milnor, “the problem of understanding Newton’s method
has been a primary inspiration for the study of iterated rational functions”
[Mi, p. 51]. Besides the probabilistic approach of Smale in the 1980s, Manning
[Ma] constructed in 1992 explicit finite sets Sd for d ≥ 10 such that for each
properly normalized polynomial p of degree d, the Newton sequence of at least
one point in Sd converges to a root of p. Hubbard, Schleicher and Sutherland
extended this result in 2001 and constructed near-optimally small finite sets
Sd for d ≥ 2 such that for each polynomial p of degree d—normalized such
that all its roots are in D—every root of p is approached by the Newton
sequence of at least one point in Sd. In 2002, Schleicher [Sch] published an
a-priori upper bound on the number of Newton steps necessary for points in
Sd to approach all roots up to a distance of ε > 0. While this upper bound of
steps grows exponentially in d, he recently announced a sharper bound with
polynomial growth and an a-posteriori criterion to decide which points in Sd

actually are close to a root after the prescribed number of Newton iterations.
These results combined may make Newton’s method into a true algorithm for
the first time, i.e. into an iterative procedure that is guaranteed to terminate
after an a-priori determined time.

1.4 The Dynamics of Rational Newton Maps

Besides their application to root-finding, Newton maps form a class of func-
tions that is interesting to study in its own right. One of the main goals
in complex dynamics is to gain an understanding of the space of rational
functions (of a given degree d ≥ 2). While the special case of polynomi-
als is quite well understood, a classification of all rational functions seems
still far away. The space of Newton maps of polynomials is large enough to
form an interesting sub-case of this problem, while it has enough structure to
make a classification seem feasible. Hence, a classification of Newton maps
might provide an important intermediate step towards the longterm goal of
a classification of all rational functions.

In this section, let f : C → C be a rational map of degree d ≥ 2 that is
the Newton map of a polynomial p of degree d ≥ 2. Observe that f and p
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have the same degree if and only if all roots of p are simple. If d = 2, the
dynamics of f is very easy: up to Möbius conjugation, we may assume that
the roots of p are at −i and i. Setting J = R ∪ {∞}, an easy calculation
shows that J is the Julia set of f and f |J is conformally conjugate to σ|S1,

where σ(z) = z2. For any point z ∈ Ĉ \ J , we get f ◦n(z) → −i if Im(z) < 0
and f ◦n(z) → i if Im(z) > 0. Hence, there is only one quadratic Newton map
up to Möbius conjugation and the space of such maps reduces to a point.

The situation is very different for d = 3. A complete description of the
space of cubic Newton maps was given by Tan Lei in 1997 [TL]. She con-
structed an isomorphism between the space of cubic Newton maps (up to
conformal conjugacy) and C. Figure 4.1 shows this parameter plane. Build-
ing upon the thesis of Janet Head [He], Tan Lei gave a classification of all
hyperbolic components in this space and showed that every postcritically fi-
nite cubic Newton map (up to conformal conjugacy) can be represented as
a mating of two cubic polynomials, a capture, or both. Here, a capture is
a Thurston map that is constructed from the combinatorics of a single cu-
bic polynomial, compare [TL, Section 5]. Moreover, Tan Lei gave another
combinatorial classification of cubic Newton maps: she shows that every
postcritically finite cubic Newton map gives rise to a forward-invariant finite
connected graph, which contains the orbits of all critical points. Conversely,
every abstract graph that satisfies certain properties is realized, i.e. there
exists a unique postcritically finite cubic Newton map whose graph is home-
omorphic to the given abstract one. The result of Tan Lei also describes
when two given graphs give rise to the same Newton map.

However, very little is known in the case d > 3. A result of Jiaqi Luo
[Lu] extends part of Tan Lei’s work to “unicritcal” Newton maps of arbi-
trary degree. Here, we say that a Newton map is unicritical if it has only one
non-fixed critical value. For such maps, Luo constructs a forward-invariant,
finite, connected Newton graph, which contains the forward orbits of all crit-
ical values. Conversely, he considers topological Newton maps, i.e. branched
covering maps of S2 that imitate the behavior of Newton maps and have
only one free critical value. A topological Newton map g also gives rise to a
Newton graph, and Luo proves that if the unique free critical value is either
periodic or lands on a fixed critical point after finitely many iterations, then
g is equivalent (in the sense of Thurston) to a unique Newton map.

In Chapter 4, we extend the construction of Newton graphs to postcriti-
cally fixed Newton maps, that is Newton maps whose critical points land on
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fixed points after finitely many iterations. The main difficulty in the proof is
that the natural candidate for the Newton graph need not be connected (con-
nectedness is clear in the “unicritical” cases above). However, we identify one
connected component of this graph that carries all the relevant information,
and restrict our attention to that component. Conversely, we show that an
abstract graph that satisfies several natural conditions gives rise to a unique
postcritically fixed Newton map. In this sense, the Newton graphs classify
all postcritically fixed Newton maps. This result lays the groundwork for a
possible classification of all postcritically finite Newton maps, in particular
the hyperbolic ones, see also Section 5.3.

1.5 From Rational to Transcendental Dyna-

mics

The dynamics of transcendental meromorphic functions exhibits interesting
new phenomena that do not occur for rational maps. As an example, the
Fatou set of a transcendental meromorphic function may contain wandering
domains or Baker domains. For a detailed introduction to the dynamics of
meromorphic functions we refer the reader to the survey article [Be1]. In the
special case of Newton maps however, we mention the following facts.

Let f : C → C be an entire function—polynomial or transcendental—and
let Nf be its Newton map. Let U be the immediate basin of an attracting
fixed point of Nf . Then, U is simply connected and unbounded. If f is
a polynomial, this follows from [Pr], the transcendental case was proved in
[MS]. More generally, Shishikura [Sh] showed that the Julia set of Nf is
connected if Nf is a rational function. The question if the Julia set is also
connected for any transcendental Newton map is still open, but Jordi Taixes
has recently announced progress towards an affirmative answer.

If f is a polynomial, the number of accesses to ∞ of the unbounded
immediate basin U is determined by the number of critical points of Nf in
U (see Theorem 2.2.12). If f is transcendental, these two numbers seem
unrelated [My, Theorem 4.1] and may well be both infinite. Moreover, in
the transcendental case it is not even clear that ∞ is always an accessible
boundary point of U .

An invariant Fatou component of Nf is necessarily an immediate basin
if f is a polynomial. For transcendental f , the Fatou set of Nf may contain
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invariant components which do not have any interior fixed point, such as
fixed Baker domains. In many cases, we are able to explain why they appear,
see Chapter 3. By a result of Bergweiler [Be2], wandering domains do not
exist for Nf in the special case f(z) =

∫ z

0
p(t)eq(t)dt + c, where p and q are

polynomials. We show in Section 3.5 that in general, transcendental Newton
maps may have wandering domains.

The main reason for the dynamical differences between rational and trans-
cendental functions is the behavior at infinity: a transcendental function has
an essential singularity at ∞. Note that for a transcendental meromorphic
function, there is a countable set of points that can only be iterated finitely
many times: the backward orbit of ∞. By definition, it belongs to the Julia
set.

An essential singularity is not accessible to direct investigation, but study-
ing rays that converge to ∞ allows us to draw conclusions about the dynamics
near ∞. Rays to ∞ have often proved useful in other contexts, for example
in the classification of escaping points of polynomials [DH1] or of exponential
functions [SZ].

Unbounded rays play a crucial role in each of our results: as invariant
curves within immediate basins in Chapter 2, as asymptotic paths in Chapter
3, and as edges of the channel diagram in Chapter 4. Of course, the dynamic
rays we construct in Appendix A are also unbounded curves. Moreover, while
the results of Chapters 2 and 3 are mainly formulated for transcendental
maps, they can be applied to the rational case as well. In this sense, the
unifying theme of our work are curves to infinity. They organize the dynamics
of Newton’s method, both in the rational and the transcendental case.
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Chapter 2

Newton’s Method for Entire
Functions

2.1 Introduction

Newton’s method is a classical way to approximate roots of entire functions
by an iterative procedure. Trying to understand this method may very well
be called the founding problem of holomorphic dynamics [Mi, p. 51].

Newton’s method for a complex polynomial p is the iteration of a rational
function Np on the Riemann sphere. Such dynamical systems have been ex-
tensively studied in recent years. Tan Lei [TL] gave a complete classification
of Newton maps of cubic polynomials. In 1992, Manning [Ma] constructed a
finite set of starting values for Np that depends only on the degree of p, such
that for any appropriately normalized polynomial with degree d ≥ 10, the set
contains at least one point that converges to a root of p under iteration of Np.
Hubbard, Schleicher and Sutherland [HSS] extended this by constructing a
small set of starting values that depends only on the degree d ≥ 2 and trivial
normalizations and finds all roots of p.

If f is a transcendental entire function, the associated Newton map Nf

will generally be transcendental meromorphic, except in the special case
f = peq with polynomials p and q (see Proposition 2.2.11) which was studied
by Haruta [Ha]. Bergweiler [Be2] proved a no-wandering-domains theorem
for transcendental Newton maps that satisfy several finiteness assumptions.
Mayer and Schleicher [MS] have shown that immediate basins for Newton
maps of entire functions are simply connected and unbounded, extending a

11
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result of Przytycki [Pr] in the polynomial case. They have also shown that
Newton maps of transcendental functions may exhibit a type of Fatou compo-
nent that does not appear for Newton maps of polynomials, so called virtual
immediate basins (Definition 2.3.7) in which the dynamics converges to ∞.
The thesis [My] investigates the Newton map of the transcendental function
z 7→ zeez

and shows that it exhibits virtual immediate basins; see Figure 2.1
for an illustration. While immediate basins of roots are by definition related
to zeroes of f (compare Definition 2.2.1), under mild technical assumptions
a virtual immediate basin leads to an asymptotic zero of f ; in other words, a
virtual immediate basin often contains an asymptotic path of an asymptotic
value at 0 for f , see Chapter 3.

Figure 2.1: The Newton map for z 7→ z eez

. The immediate basin of 0 has
infinitely many accesses to the right. Any two of them surround a virtual
immediate basin. More precisely, all curves of the form (2k + 1)πi + [2,∞]
are contained in a virtual immediate basin; the virtual basins for k1 6= k2 are
disjoint and separated by an access to ∞ of the immediate basin of 0. The
visible area is from −8 − 10i to 12 + 10i.

In this chapter, we continue the work of [MS] and investigate the behavior
of Newton maps in the complement of an immediate basin. Our main result
(Theorem 2.5.1) is that if a complementary component can be surrounded
by an invariant curve through ∞, then it contains another immediate basin
or virtual immediate basin, unless it maps infinite-to-one onto at least one
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point of Ĉ. We believe that the last “unless”-condition is unnecessary, but
our methods do not allow us to show this.

An immediate corollary for Newton maps of polynomials is that between
any two “channels” of any root, there is always another root. This is folklore,
but we do not know of a published reference. This result can be viewed as a
first step towards a classification of polynomial Newton maps.

This chapter is structured in the following way: In Section 2.2, we give an
introduction to some general properties of Newton maps. In Section 2.3, we
investigate homotopy classes of curves to ∞ in immediate basins and prove
some auxiliary results. In Section 2.4, we prove a fixed point estimate which
we will need and which might be interesting in its own right. In Section 2.5,
we state and prove our main result.

2.2 Newton’s Method as a Dynamical Sys-

tem

2.2.1 Immediate Basins

Let f : C → C be a non-constant entire function and Nf its associated
(meromorphic) Newton map

Nf = id − f

f ′
.

If f is a polynomial, then Nf extends to a rational map Ĉ → Ĉ. If ξ is a
root of f with multiplicity m ≥ 1, then it is an attracting fixed point of Nf

with multiplier m−1
m

. Conversely, every fixed point ξ ∈ C of Nf is attracting
and a root of f .

Definition 2.2.1 (Immediate Basin). Let ξ be an attracting fixed point of
Nf . The basin of ξ is {z ∈ C : limn→∞N◦n

f (z) = ξ}, the open set of points
which converge to ξ under iteration. The connected component U of the basin
that contains ξ is called its immediate basin.

Immediate basins are Nf -invariant because they are Fatou components
and contain a fixed point. The following theorem is the main result (Theorem
2.7) of [MS].
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Theorem 2.2.2 (Immediate Basins Simply Connected). If ξ is an
attracting fixed point of the Newton map Nf , then its immediate basin U is
simply connected and unbounded.

We will use the following notation throughout the chapter:
If γ is a curve, the symbol γ denotes the mapping γ : I → C from

an interval into the plane as well as its image γ(I) ⊂ C. By a tail of an
unbounded curve we mean any unbounded connected part of its image.

For r > 0 and z ∈ C, the symbol Br(z) designates the disk of radius r
centered at z.

The full preimage of a point z ∈ Ĉ is the set N−1
f ({z}). Its only accumu-

lation point can be ∞ by the identity theorem. Any point z′ ∈ N−1
f ({z}) is

called a preimage of z.
Unless stated otherwise, the boundary and the closure of a set are con-

sidered in C.

2.2.2 Singular Values

Since the concept of singular values is crucial for the study of dynamical
systems, we give a brief reminder of the most important types. In partic-
ular, we state some properties of asymptotic values; these appear only for
transcendental maps.

Definition 2.2.3 (Singular Value). Let h : C → Ĉ be a meromorphic
function. We call a point p ∈ C a regular point of h if p has a neighborhood
on which h is injective. Otherwise, we call p a critical point. A point v ∈ Ĉ is
called a regular value if there exists a neighborhood V of v such that for every
component W of h−1(V ), h−1|V : V → W is a single-valued meromorphic
function. Otherwise, v is called a singular value.

The image of a critical point is a singular value and is called a critical
value.

Critical points in C are exactly the zeroes of the first derivative. For a
rational map, all singular values are critical values.

Definition 2.2.4 (Asymptotic Value). Let h : C → Ĉ be a transcendental

meromorphic function. A point a ∈ Ĉ is called an asymptotic value of
h if there exists a curve Γ : R+ → C with limt→∞ Γ(t) = ∞ such that
limt→∞ h(Γ(t)) = a. We call Γ an asymptotic path of a.



2.2. NEWTON’S METHOD AS A DYNAMICAL SYSTEM 15

In general, an asymptotic value is defined by having an asymptotic path
towards any essential singularity. Note that in our definition, the set of
singular values is the closure of the set of critical and asymptotic values.

We follow [BE] in the classification of asymptotic values.

Definition 2.2.5 (Direct and Indirect Singularity). Let h : C → Ĉ be a
meromorphic function and a ∈ C be a finite asymptotic value with asymptotic
path Γ. For each r > 0, let Ur be the unbounded component of h−1(Br(a))
that contains an unbounded end of Γ.

We say that a is a direct singularity (with respect to Γ) if there is an
r > 0 such that h(z) 6= a for all z ∈ Ur. We call a an indirect singularity if
for all r > 0, there is a z ∈ Ur such that h(z) = a (then there are infinitely
many such z in Ur).

Theorem 2.2.6 (Direct Singularities). [Hs, Theorem 5]. The set of direct
singularities of a meromorphic function is always countable.

It is possible however that the set of (direct and indirect) singularities is
the entire extended plane: Eremenko [Er1] constructed meromorphic func-

tions of prescribed finite order whose set of asymptotic values is all of Ĉ.

Lemma 2.2.7 (Unbounded Preimage). Let h : C → Ĉ be a meromorphic
function and B ⊂ C a bounded topological disk whose boundary is a simple
closed curve β. Suppose that β contains no critical values and that B̃ is an
unbounded preimage component of B. Then ∂B̃ contains an unbounded curve
β̃ with h(β̃) ⊂ β such that either h|eβ : β̃ → β is a universal covering map or

h(β̃) lands at an asymptotic value on β.

Proof. Let w ∈ ∂B̃. Clearly, h(w) ∈ β and by assumption, h is a local
homeomorphism in a neighborhood of w. It follows that the closed and un-
bounded set ∂B̃ is locally an arc everywhere; therefore it cannot accumulate
in any compact subset of C and must contain an arc β̃ that converges to ∞.
The curve β̃ contains no critical points. If h|eβ : β̃ → β is not a universal
covering map, then it must land at an asymptotic value.

2.2.3 Newton Maps

We show that there is only one class of entire functions that have rational
Newton maps. This class contains all polynomials. We give a classification
of the dynamics within immediate basins for Newton maps of polynomials.
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First, we investigate under which conditions a meromorphic function is
the Newton map of an entire function. The following proposition uses ideas
of Matthias Görner and extends a similar result for rational maps (see be-
low) and certain transcendental functions [Be2, page 3]. We do not know
if the proposition is new; however, we certainly do not know of a published
reference.

Proposition 2.2.8 (Newton Maps). Let N : C → Ĉ be a meromorphic
function. It is the Newton map of an entire function f : C → C if and only
if for each fixed point N(ξ) = ξ ∈ C, there is a natural number m ∈ N such
that N ′(ξ) = m−1

m
. In this case, there exists c ∈ C \ {0} such that

f = c · exp

(∫
dζ

ζ −N(ζ)

)
.

Two entire functions f, g have the same Newton maps if and only if f = c · g
for a constant c ∈ C \ {0}.

Proof. We start with the last claim: f and cf have the same Newton map
id − f/f ′ = id − 1/(ln f)′. Conversely, if f and g have the same Newton
maps, then (ln f)′ = (ln g)′, and the claim follows.

It is easy to check that every Newton map satisfies the criterion on deriva-
tives at fixed points.

For the other direction, we construct a map f such that Nf = N . Let

z0 ∈ C be any base point and define f̃(z) =
∫

γ
dζ

ζ−N(ζ)
, where γ : [0; 1] → C

is any integration path from z0 to z that avoids the fixed points of N . This
defines f̃ up to 2πik: if γ′ is another choice of integration path, the residue
theorem shows that

1

2πi

∫

γ′◦γ−1

dζ

ζ −N(ζ)
=
∑

N(ξ)=ξ

Resξ

(
1

ζ −N(ζ)

)
,

where the sum is taken over the finitely many fixed points of N that are
contained in the compact regions bounded by the closed path γ′ ◦ γ−1. Near
a fixed point ξ, it is easy to show that z−N(z) = 1

m
(z− ξ) +o(z− ξ). Hence

we get Resξ

(
1

z−N(z)

)
= m ∈ N.

It follows that the map f = exp(f̃) is well defined and holomorphic

outside the fixed points of N . Near such a fixed point ξ, f̃ has the form
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m log(z − ξ) + O(1). Clearly, the real part of this converges to −∞ for
z → ξ, hence setting f(ξ) = 0 makes f an entire function as desired. An
easy calculation then shows that Nf = N . A different choice of base point
z0 will change f by a multiplicative constant and lead to the same Newton
map Nf .

The following corollary is essentially due to Janet Head ([He, Proposition
2.1.2], [TL, Lemma 2.2]).

Corollary 2.2.9 (Rational Newton Maps). A rational map f : Ĉ → Ĉ

of degree d ≥ 2 is the Newton map of a polynomial of degree at least two
if and only if f(∞) = ∞ and for all other fixed points a1, . . . , ad ∈ C there
exists a number mj ∈ N such that f ′(aj) =

mj−1

mj
< 1. Then, f is the Newton

map of the polynomial

p(z) = a
d∏

j=1

(z − aj)
mj

for any complex a 6= 0.

Sketch of Proof. Let a ∈ C \ {0}. Since Np and f have the same fixed points

with identical multiplicities, the residuals of the maps f̃ := (f − id)−1 and

Ñ := (Np−id)−1 at their common simple poles a1, . . . , ad ∈ C agree, and thus

also those at ∞. Hence, f̃ − Ñ is a polynomial with limz→∞(f̃ − Ñ)(z) = 0.

Hence f̃ = Ñ and the claim follows.

We want to exclude the trivial case of Newton maps with degree one.

Lemma 2.2.10 (One Root). Let f : C → C be an entire function such
that its Newton map Nf has an attracting fixed point ξ ∈ C with immediate
basin U = C. Then, there exist d > 0 and a ∈ C such that f(z) = a(z − ξ)d.

Proof. Since Nf has no periodic points of minimal period at least 2, it cannot
be transcendental [Be1, Theorem 2]. Hence Nf is rational and its fixed points
can only be ξ and ∞, both of which must be simple. It follows that Nf has
degree at most one and since it has no poles in C, it is a polynomial. The
claim now follows from Proposition 2.2.8.

In the rest of this chapter, we will assume that Nf is not a Möbius trans-
formation. Theorem 2.2.2 implies then that for each immediate basin U of
Nf , there exists a Riemann map ϕ : D → U with ϕ(0) = ξ.
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The following simple proposition classifies rational Newton maps of entire
functions. Its first half is stated without proof in [Be1].

Proposition 2.2.11 (Rational Newton Map). Let f : C → C be an entire
function. Its Newton map Nf is rational if and only if there are polynomials
p and q such that f has the form f = p eq. In this case, ∞ is a repelling or
parabolic fixed point.

More precisely, let m,n ≥ 0 be the degrees of p and q, respectively. If
n = 0 and m ≥ 2, then ∞ is repelling with multiplier m

m−1
. If n = 0 and

m = 1, then Nf is constant. If n > 0, then ∞ is parabolic with multiplier
+1 and multiplicity n+ 1 ≥ 2.

Proof. By [Mi, Corollary 12.7], every rational function of degree at least 2
has a repelling or parabolic fixed point. Since Nf is a Newton map, this
non-attracting fixed point is unique and must be at ∞. In addition to this,
there are finitely many attracting fixed points a1, . . . , an ∈ C with associated
natural numbers m1, . . . , mn ∈ N such that the multipliers satisfy N ′

f (ai) =
mi−1

mi
. Let p(z) =

∏n
i=1(z − ai)

mi .
Since attracting fixed points of Nf correspond exactly to the roots of f ,

f has the form f = p eh for an entire function h. If h was transcendental, so
would be

Nf = id − p eh

p′eh + h′p eh
= id − p

p′ + h′p
,

a contradiction. The other direction follows by direct calculation and the
rest of the proof is left to the reader.

For Newton maps of f = peq, the area of every immediate basin is finite
if deg q ≥ 3 [Ha] and infinite if p(z) = z and deg q ∈ {0, 1} [Ci].

The dynamics within immediate basins of Newton maps of polynomials
has an easy classification, because all singular values are critical values.

Theorem 2.2.12 (Polynomial Newton Maps). [HSS] Let p be a polyno-
mial of degree d > 1, normalized so that its roots are contained in the unit
disk D. Let ξ be a root of p and U its immediate basin for Np. Then, U
contains k > 0 critical points of Np and Np|U is a proper self-map of degree
k + 1. Outside the disk B2(0), Nf is conformally conjugate to multiplication
by d−1

d
. Finally, U \ B2(0) has exactly k unbounded components, so called

channels, each of which maps over itself under Nf .

Figure 2.2 illustrates this theorem.
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Figure 2.2: The Newton map for a polynomial of degree 9. The channels are
clearly visible.

2.3 Accesses in Immediate Basins

2.3.1 Invariant Accesses

We investigate the immediate basins of attraction for the attracting fixed
points of Nf . If f is a polynomial, we have seen in Theorem 2.2.12 that
immediate basins have an easy geometric structure. In the general case,
Nf has an essential singularity at ∞ and immediate basins may well have
infinitely many accesses to ∞. We use prime end theory to distinguish them.

Under a finiteness assumption, we have some control over the image of a
sequence that converges to ∞ through an immediate basin.

Lemma 2.3.1 (Invariant Boundary). Let U be an immediate basin of
the Newton map Nf and UR an unbounded component of U \BR(0) with the
property that no point has infinitely many preimages in UR. Then for any
sequence (zn) ⊂ UR with zn → ∞, all limit points of Nf(zn) are contained in
∂U ∪ {∞}.

The condition is necessary, because if there exists a point p ∈ U with
infinitely many preimages p1, p2, . . . ∈ UR, we have pn → ∞ and Nf(pn) =
p ∈ U for all n ∈ N.
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Proof. Assume there exists a sequence (zn) ⊂ UR that converges to ∞ with
Nf(zn) → p ∈ U . Let B ⊂ U be a closed neighborhood of p inside U
such that its boundary ∂B is a simple closed curve β that contains no direct
singularities (this is possible by Theorem 2.2.6) nor critical values.

Suppose first that p 6∈ Nf(∂BR(0)). Then we may choose B small enough
such that B ∩ Nf(∂BR(0)) = ∅. The image of the first finitely many zn

need not be in B; ignoring those, each zn is contained in a component Wn

of N−1
f (B) ∩ U . If a Wn is bounded, it maps surjectively onto B under

Nf . Therefore, by the finiteness assumption, there can be only finitely many
bounded Wn. Each bounded Wn contains finitely many zn; hence there must
be an n such that Wn is unbounded. By Lemma 2.2.7 and again because of
the finiteness assumption, ∂Wn contains an asymptotic path of an asymptotic
value on β. But this asymptotic value must be an indirect singularity, which
also contradicts the finiteness assumption.

If p ∈ Nf (∂BR(0)), a small homotopy of the curve ∂BR(0) in a neighbor-
hood of p solves the problem.

Figure 2.1 suggests that immediate basins can reach out to infinity in
several different directions. We make this precise in the following definitions
that generalize the concept of a channel in the polynomial case.

Definition 2.3.2 (Invariant Access). Let ξ be an attracting fixed point of
Nf and U its immediate basin. An access to ∞ of U is a homotopy class
of curves within U that begin at ξ, land at ∞ and are homotopic with fixed
endpoints.

An invariant access to ∞ is an access with the additional property that
for each representative γ, its image Nf (γ) belongs to the access as well.

Lemma 2.3.3 (Access Induces Prime End). Let [γ] be an access to ∞
in U . Then [γ] induces a prime end P in U with impression {∞}. If [γ] is
invariant, then Nf (P) = P.

Proof. Let γ ⊂ U be a curve representing [γ] that starts at the fixed point
ξ and lands at ∞. For n ∈ N, let Wn be the component of U \ Bn(0) that
contains a tail of γ. The Wn represent a prime end P with impression ∞.
Now a curve γ′ ⊂ U that starts at ξ and lands at ∞ is homotopic to γ if and
only if a tail of it is contained in Wn for n large enough. Hence the prime
end P of [γ] is well-defined. The last claim follows immediately from the
definition.
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It is clear that different accesses induce different prime ends. We state one
more well-known topological fact about the boundary behavior of Riemann
maps before using prime ends to characterize invariant accesses.

Lemma 2.3.4 (Accesses Separate Disk). Let U ( C be a simply con-
nected unbounded domain and γ1, γ2 : R+

0 → U ∪ {∞} two non-homotopic
curves that land at ∞ and are disjoint except for their common base point
z0 = γ1(0) = γ2(0) ∈ U . Let C be a component of C\(γ1∪γ2) and ϕ : D → U
a Riemann map with ϕ(0) = z0.

Then ϕ−1(γ1) and ϕ−1(γ2) land at distinct points ζ1 and ζ2 of ∂D. Fur-

thermore, ∂U ∩ C ⊂ Ĉ corresponds under ϕ−1 to a closed interval on ∂D

that is bounded by ζ1 and ζ2.

This follows immediately because ϕ extends to a homeomorphism from
D to the Carathéodory compactification of U , see [Mi, Theorem 17.12].

If f is a polynomial, it follows from Theorem 2.2.12 that every immediate
basin contains a curve that lands at ∞, is homotopic to its image and induces
an invariant access. In the general case, it is a priori not even clear that a
curve that lands at ∞ and is homotopic within U to its image induces an
invariant access. The following proposition deals with this issue.

Proposition 2.3.5 (Curve Induces Invariant Access). Let γ ⊂ U∪{∞}
be a curve connecting the fixed point ξ to ∞ such that Nf (γ) is homotopic to γ
in U with endpoints fixed. Let Wn be a sequence of fundamental neighborhoods
representing the prime end P induced by [γ]. Then γ defines an invariant

access to ∞ if and only if there is no z ∈ Ĉ that has infinitely many preimages
in all Wn.

Proof. Suppose that γ defines an invariant access, i.e. if γ′ is homotopic in
U to γ, then Nf (γ′) is homotopic to Nf(γ). Assume there is a point z0 ∈ Ĉ

with the property that N−1
f ({z0})∩Wn is an infinite set for all Wn. Without

loss of generality, we may assume that for all n ∈ N, Wn \Wn+1 contains one
preimage of z0. Then we can find a curve γ′ with a tail contained in each
Wn that goes through a preimage of z0 in each Wn \ Wn+1. Clearly, γ′ is
homotopic to γ, while its image does not land at ∞ and can therefore not
be homotopic to Nf (γ) with endpoints fixed, a contradiction.

Now suppose that no point has infinitely many preimages in all Wn. Since
the Wn are nested, no point can have infinitely many preimages in any Wn

for n sufficiently large. We uniformize U to the unit disk via a Riemann
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map ϕ : D → U such that ϕ(0) = ξ and consider the induced dynamics
g = ϕ−1 ◦Nf ◦ ϕ : D → D.

By [Mi, Corollary 17.10], ϕ−1(γ) and ϕ−1(Nf(γ)) land on ∂D. Since the
curves are homotopic, they even land at the same point ζ ∈ ∂D. Now by
assumption, there exists an ε > 0 such that within Bε(ζ), no g-preimage of
any point in D accumulates. By Lemma 2.3.1 it follows that the g-image of
any sequence converging to ∂D inside Bε(ζ) ∩ D will also converge to ∂D.
Hence we can use the Schwarz Reflection Principle [Ru, Theorem 11.14] to
extend g holomorphically to a neighborhood of ζ in C. It follows that for
the extended map, ζ is a repelling fixed point with positive real multiplier:
if the multiplier was not positive real, g would map points in Bε(ζ) ∩ D out
of D. Also, ζ cannot be attracting or parabolic, because in this case it would
attract points in D, which all converge to 0 under iteration.

Since D is simply connected, all curves in D from 0 to ζ will be homotopic
to each other and their g-images. A curve in D that starts at 0 lands at ζ if
and only if its ϕ-image in U is homotopic to γ with endpoints fixed, because
ϕ−1(P) is a prime end in D with impression ζ .

Remark. We have shown that each invariant access defines a boundary
fixed point in the conjugated dynamics on the unit disk, and the dynamics
can be extended to a neighborhood of this boundary fixed point, necessarily
yielding a repelling fixed point. By [Mi, Corollary 17.10] it follows that
different invariant accesses induce distinct boundary fixed points.

If f is a polynomial, there exists a one-to-one correspondence between
accesses to ∞ of U and boundary fixed points of the induced map g [HSS,
Proposition 6].

Corollary 2.3.6 (Invariant Curve). Each invariant access has an invari-
ant representative, i.e. a curve γ : R+

0 → U that lands at ∞ with γ(0) = ξ
and Nf (γ) = γ.

Proof. For the extension of g to a neighborhood of ζ ∈ ∂D, the multiplier of ζ
is positive real. A short piece of straight line in linearizing coordinates around
ζ maps over itself under g. Its forward orbit lands at the fixed point.

Since there are uncountably many choices of such invariant curves, we can
always find one that contains no critical or direct asymptotic values outside
a sufficiently large disk.
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2.3.2 Virtual Basins

If f is a polynomial and U ⊂ C an invariant Fatou component of Nf , then U
is the immediate basin of a root of f , because the Julia set of Nf is connected
[Sh], all finite fixed points are attracting and the fixed point at ∞ is repelling.
If f is transcendental entire, Nf may possess invariant unbounded Fatou
domains in which the dynamics converges to ∞. Such components are Baker
domains or attracting petals of an indifferent fixed point at infinity. In many
cases, such components contain an asymptotic path of an asymptotic value
at 0 for f , see Chapter 3.

Definition 2.3.7 (Virtual Basin). An unbounded domain V ⊂ C is called
virtual immediate basin of Nf if it is maximal (among domains in C) with
respect to the following properties:

1. lim
n→∞

N◦n
f (z) = ∞ for all z ∈ V ;

2. there is a connected and simply connected subdomain S0 ⊂ V such
that Nf(S0) ⊂ S0 and for all z ∈ V there is an m ∈ N such that
N◦m

f (z) ∈ S0.

We call the domain S0 an absorbing set for V .

Clearly, virtual immediate basins are forward invariant.

Theorem 2.3.8 (Virtual Basin Simply Connected). [MS, Theorem 3.4]
Virtual immediate basins are simply connected.

It might be possible to extend Shishikura’s theorem [Sh] to show that for
Newton maps of entire functions, all Fatou components are simply connected.
Taixes has announced partial results in this direction, in particular he rules
out the existence of cycles of Herman rings (see also Corollary 2.4.7 below).
If it were also known that Baker domains are always simply connected, then
a result of Cowen [Co, Theorem 3.2] would imply that every invariant Fatou
component of a Newton map is an immediate basin or a virtual immediate
basin (see [MS, Remark 3.5]).

2.4 A Fixed Point Estimate

Let X be a compact, connected and triangulable real n-manifold and let
f : X → X be continuous with finitely many fixed points. Each fixed point
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of f has a well-defined Lefschetz index, and f has a global Lefschetz number.
The classical Lefschetz fixed point formula says that the sum of the Lefschetz
indices is equal to the Lefschetz number of f , up to a factor of (−1)n [Le, Br].

In [GM, Lemma 3.7], Goldberg and Milnor give a version of this theorem
for weakly polynomial-like mappings f : D → C. We prove a similar result
for a class of maps f : ∆ → Ĉ, where ∆ ⊂ Ĉ is a closed topological disk. By
extending the range of f to Ĉ, i.e. allowing poles, we lose equality and get
an inequality between the Lefschetz number and the sum of the Lefschetz
indices that we will need in the proof of our main theorem.

Definition 2.4.1 (Lefschetz Map). Let ∆ ⊂ Ĉ be a closed topological

disk with boundary curve ∂∆ and f : ∆ → Ĉ an orientation preserving
open mapping with isolated fixed points. We call f a Lefschetz map if it
satisfies the following additional conditions: for any z ∈ Ĉ, the full preimage
f−1({z}) ⊂ ∆ is a finite set. Furthermore, f(∂∆) is a simple closed curve
so that f |∂∆ : ∂∆ → f(∂∆) is a covering map of finite degree. Assume also
that

f(∂∆) ∩ ∆̊ = ∅
and that if ξ ∈ ∂∆ is a fixed point of f , then ξ has a neighborhood U such
that f(∂∆ ∩ U) ⊂ ∂∆, and f is expanding on ∂∆ ∩ U .

Remark. The definition of “expanding” is with respect to the local para-
metrization of ∂∆ near ξ so that f |∂∆∩U is topologically conjugate to x 7→ 2x
in a neighborhood of 0.

In this case, the map f can be extended continuously to U \ ∆ so that f
on U \ ∆̊ is topologically conjugate to z 7→ 2z on the half disk {z ∈ C : |z| <
1 and Im(z) ≥ 0} (possibly after shrinking U). Such an extension will be
called the simple extension outside of ∆.

Definition 2.4.2 (Lefschetz Index). Let W ⊂ C be a closed topological
disk and f : W → C be continuous with an isolated fixed point at ξ ∈ W̊ .
With g(z) = f(z) − z, we assign to ξ its Lefschetz index

ι(ξ, f) := lim
εց0

1

2πi

∮

g(∂Bε(ξ))

dζ

ζ
.

This is the number of full turns that the vector f(z) − z makes when z goes
once around ξ in a sufficiently small neighborhood.
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If ξ ∈ ∂W ∩ C is an isolated boundary fixed point which has a simple
extension outside of W , then we define its Lefschetz index as above for this
simple extension.

For an interior fixed point, it is easy to see that the limit exists and is
invariant under homotopies of f that avoid additional fixed points. Strictly
speaking, the curve g(∂Bε(ξ)) need not be an admissible integration path
(i.e. rectifiable), but because of homotopy invariance, we may ignore this
problem, and we will often do so in what follows.

The Lefschetz index is clearly a local topological invariant; for boundary
fixed points, it does not depend on the details of the extension. Therefore,
the index is also defined if ξ = ∞, using local topological coordinates. Note
that for boundary points, the simple extension as defined above generates
the least possible Lefschetz index for all extensions of f to a neighborhood
of ξ.

If f is holomorphic in a neighborhood of a fixed point ξ, then ι(ξ, f) is
the multiplicity of ξ as a fixed point.

Definition 2.4.3 (Lefschetz Number). The Lefschetz number of f is the
degree of the covering map f |∂∆ : ∂∆ → f(∂∆).

In this definition, we need to find compatible orientations for ∂∆ and its
image. The set Ĉ \ f(∂∆) consists of two connected components; let V be
the one which intersects ∆. Then ∆ ⊂ V are two closed topological disks,
and they can be oriented in a compatible way.

With this convention, the Lefschetz number is invariant under topological
conjugacies. We may thus choose coordinates so that V ⊂ C.

Lemma 2.4.4 (Winding Number). Suppose f : ∆ → Ĉ is a Lefschetz
map with f(∂∆) ⊂ C such that ∆̊ is contained in the bounded component of
C \ f(∂∆). If ∂∆ contains no fixed points of f , then the Lefschetz number of
f equals

1

2πi

∮

g(∂∆)

dζ

ζ
, (2.1)

where g(z) = f(z) − z.

Proof. Let w0 ∈ ∆̊ be any base point. Since ∆ is contractible to w0 within
∆̊, g|∂∆ = (f − id)|∂∆ is homotopic to (f − w0)|∂∆ in C \ {0}.

The integral (2.1) counts the number of full turns of f(z) − z as z runs
around ∂∆. By homotopy invariance, this is equal to the number of full turns
f(∂∆) makes around w0, and this equals the Lefschetz number of f .
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Lemma 2.4.5 (Equality in C). Let V ⊂ C be a simply connected and
bounded domain with piecewise C1 boundary and let f : V → f(V ) ⊂ C be
a continuous map with finitely many fixed points, none of which are on ∂V .
Then ∑

f(ξ)=ξ

ι(ξ, f) =
1

2πi

∮

g(∂V )

dζ

ζ
,

where again g = f − id.

Proof. Break up V into finitely many disjoint simply connected open pieces
Vi with piecewise C1 boundaries so that each Vi either contains a single fixed
point of f or f(Vi) ∩ Vi = ∅, and each fixed point of f is contained in some
Vi. This can be done by first choosing disjoint neighborhoods for all fixed
points and then partitioning their compact complement in V into pieces of
diameter less than θ, where θ is chosen in such a way that |f − id| > θ in
this complement. Set

ci :=
1

2πi

∮

g(∂Vi)

dζ

ζ
.

Then
1

2πi

∮

g(∂V )

dζ

ζ
=
∑

i

1

2πi

∮

g(∂Vi)

dζ

ζ
=
∑

i

ci .

On the pieces with f(Vi) ∩ Vi = ∅, we have ci = 0, and on a piece Vi with
fixed point ξi, we have ι(ξi, f) = ci by definition. The claim follows.

Theorem 2.4.6 (Fixed Point Inequality). Let f : ∆ → Ĉ be a Lefschetz
map with Lefschetz number L ∈ Z. Then,

L ≤
∑

f(ξ)=ξ

ι(ξ, f) .

Proof. Let V be the component of Ĉ \ f(∂∆) containing ∆̊, and choose

coordinates of Ĉ such that V is bounded.
Suppose first that f has no fixed points on ∂∆. Let {Ui} be the collection

of components of f−1(Ĉ \V ) and let {Vj} be the collection of components of

f−1(V ). Since f is open, each Ui maps onto Ĉ \ V and each Vj maps onto V
as a proper map. It follows that there are only finitely many Ui and Vi, and
they satisfy f(∂Ui) = f(∂Vi) = f(∂∆).

Subdivide the Ui and Vj into finitely many simply connected pieces so
that no poles or fixed points of f are on the boundaries; call these subdivided
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domains U ′
i′ and V ′

j′. The orientation of C induces a boundary orientation
on U ′

i′ and V ′
j′.

Set again g := f − id. Then, applying Lemma 2.4.5 to V ′
j ⊂ ∆ ⊂ V ⊂ C

yields
∑

f(ξ)=ξ

ι(ξ, f) =
∑

j′

1

2πi

∮

g(∂V ′
j )

dζ

ζ
=
∑

j

1

2πi

∮

g(∂Vj)

dζ

ζ
.

Note that for every U ′
i′ , we have

∑
i

1
2πi

∮
g(∂U ′

i′
)

dζ
ζ
≤ 0 (this counts indices of

poles).

The covering map f : ∂∆ → f(∂∆) has mapping degree L. Since the
contributions from the boundaries within ∆ cancel, we get

L =
∑

j

1

2πi

∮

g(∂Vj)

dζ

ζ
+
∑

i

1

2πi

∮

g(∂Ui)

dζ

ζ
≤
∑

f(ξ)=ξ

ι(ξ, f) .

If f has boundary fixed points, we employ a simple extension outside of ∆
in a small neighborhood of each such fixed point. In order for the extended
map to be a Lefschetz map, the preimages need to be extended as well. If
the extended neighborhoods are sufficiently small, this does not change the
Lefschetz number of f .

As an immediate corollary of this theorem, we observe that Newton maps
do not have fixed Herman rings. Note that Taixes has announced a more
general result: he uses quasiconformal surgery to rule out any periodic cycles
of Herman rings for Newton maps.

Corollary 2.4.7 (No Fixed Herman Rings). Newton maps of entire
functions have no fixed Herman rings.

Proof. By [Sh], we may assume that N : C → Ĉ is a transcendental mero-
morphic Newton map. Suppose it has a fixed Herman ring, i.e. an invariant
Fatou component H such that N |H is conjugate to an irrational rotation of
an annulus of finite modulus. Then, H contains an invariant and essential
simple closed curve γ. Clearly, deg(N : γ → γ) = +1. Let ∆ be the bounded
component of C \ γ. Then, N |∆ is a Lefschetz map and by Theorem 2.4.6,
∆ contains a fixed point. This is a contradiction, because all fixed points of
N have an unbounded immediate basin (Theorem 2.2.2).



28 CHAPTER 2. NEWTON’S METHOD FOR ENTIRE FUNCTIONS

2.5 Between Accesses of an Immediate Basin

In this section, we state and prove our main result. Let f : C → C be
an entire function and Nf its Newton map. Let ξ ∈ C be a fixed point of
Nf and U its immediate basin. Suppose that U has two distinct invariant
accesses, represented by Nf -invariant curves Γ1 and Γ2. Consider an un-

bounded component Ṽ of C \ (Γ1 ∪ Γ2). We keep this notation for the entire
section.

Theorem 2.5.1 (Main Theorem). If no point in Ĉ has infinitely many

preimages within Ṽ , then the set V := Ṽ \U contains an immediate basin or
a virtual immediate basin of Nf .

Note that we do not assume that V is connected.

Corollary 2.5.2 (Polynomial Case). If Nf is the Newton map of a poly-
nomial f , then each component of C \ U contains the immediate basin of
another root of f .

Proof of Corollary 2.5.2. If f is a polynomial, Nf is a rational map. It has
finite mapping degree and there exists R > 0 such that all components of
U \BR(0) contain exactly one invariant access. Furthermore, all accesses are
invariant [HSS, Proposition 6]. Since ∞ is a repelling fixed point of Nf , there
are no virtual immediate basins.

The rest of this section will be devoted to the proof of Theorem 2.5.1. This
proof will be based on the fixed point estimate in Theorem 2.4.6. In order to
be able to use it in our setting, we will need some preliminary statements.

Proposition 2.5.3 (Pole on Boundary). If no point z ∈ U has infinitely

many preimages within Ṽ ∩U , then ∂V = ∂U ∩ Ṽ contains at least one pole
of Nf .

In particular, if ∂V is connected or Nf |U has finite degree, then ∂V con-
tains a pole of Nf . Every pole on ∂V is arcwise accessible from within U .

Proof. Let ϕ : D → U be a Riemann map for the immediate basin U with
ϕ(0) = ξ. It conjugates the dynamics of Nf on U to the induced map
g = ϕ−1 ◦Nf ◦ϕ : D → D. By Lemma 2.3.4, the Carathéodory extension ϕ−1

maps ∂V ⊂ ∂U ∪ {∞} to a closed interval I ⊂ ∂D that is bounded by the
landing points ζ1 and ζ2 of ϕ−1(Γ1) and ϕ−1(Γ2). By assumption, there is an
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open neighborhood of I̊ in D which contains only finitely many g-preimages
of every z ∈ D. By Proposition 2.3.5, there is a neighborhood W ′ of I in D

with the same property. Consider a sequence (zn) ⊂ D whose accumulation
set is in W ′ ∩ ∂D. By Lemma 2.3.1, all limit points of (g(zn)) are in ∂D.
Hence there is a neighborhood W of I in C such that we can extend g by
Schwarz reflection to a holomorphic map g̃ : W → C that coincides with g
on W ∩ D. The endpoints ζ1 and ζ2 of I are fixed under this map, because
each is the landing point of an invariant curve. They are repelling, because
otherwise they would attract points from within D.

Clearly, g̃(I) ⊂ ∂D. If g̃(I) = I, then g̃ has to have an additional fixed
point on I̊ which is necessarily parabolic and thus attracts points in D. This
is a contradiction because all points in D converge to 0 under iteration of g.

If I contained a critical point c of g̃, points in D arbitrarily close to c
would be mapped out of D by g̃, again a contradiction. Hence g̃ : I → ∂D is
surjective and there are points z1, z2 ∈ I̊ such that g̃(z1) = ζ1, g̃(z2) = ζ2.

For i = 1, 2, let βi : [0; 1) → D be the radial line from 0 to zi. Then, ϕ(βi)
accumulates at a continuum Xi ⊂ ∂V while Nf(ϕ(βi)) = ϕ(g(βi)) lands at
∞ in the access of Γi. By continuity, Nf(Xi) = {∞}; the identity theorem
shows that Xi = {pi} is a pole and ϕ(βi) lands at pi.

We use the following general lemma to show that Nf |eV can be continu-
ously extended to ∞.

Lemma 2.5.4 (Extension Lemma). Let h : C → Ĉ be a meromor-
phic function and G ⊂ C an unbounded domain. Suppose that ∂G can be
parametrized by two asymptotic paths of the asymptotic value ∞ and that no
point has infinitely many preimages within G. Then, h|G can be continuously
extended to ∞.

Proof. Since h(∂G) is unbounded, the only possible continuous extension is
to set h(∞) = ∞.

If h cannot be continuously extended to ∞, there exists a sequence zn →
∞ in G such that h(zn) → p ∈ C. Let S > |p| and pick R > 0 such that
|h(z)| ≥ S for all z ∈ ∂G with |z| ≥ R, and p /∈ h(∂BR(0)). We may suppose
that all |zn| > R. Then we can choose a closed neighborhood B ⊂ BS(0) of
p whose boundary is a simple closed curve that contains no critical values or
direct singularities and so that B is disjoint from h(∂BR(0)). Now let Wn

be the component of h−1(B) that contains zn. Then Wn ⊂ C \BR(0). Since
zn ∈ G, it follows that all Wn ⊂ G \BR(0).



30 CHAPTER 2. NEWTON’S METHOD FOR ENTIRE FUNCTIONS

If all Wn are bounded, each can contain only finitely many zk and there
must be infinitely many such components. Since bounded Wn map onto B,
this would contradict the finiteness assumption. Hence there is an unbounded
preimage component W0. By Lemma 2.2.7, G \ BR(0) then contains an
asymptotic path of an indirect singularity on ∂B, which also contradicts the
finiteness assumption.

In the next proposition, we show that Nf |eV is injective near ∞. For the
proof, we use an extremal length argument in the half-strip

Y := [0,∞) × [0, 1] ,

in which we measure the modulus of a quadrilateral by curves connecting the
left boundary arc to the right. For x ∈ R, define

Hx := {z ∈ C : Re(z) ≥ x} .

First, we prove a technical lemma.

Lemma 2.5.5 (Bound on Modulus). Let 0 < t ≤ s, let β ⊂ Y an
injective curve from (t, 1) to (s, 0) and let Q the bounded component of Y \β.
Let (0, 0), (s, 0), (t, 1) and (0, 1) be the vertices of the quadrilateral Q. Then,
mod(Q) ≤ t+ 1.

Proof. Let R ⊂ Y be the rectangle with vertices (0, 0), (0, 1), (t + 1, 1),
(t+1, 0). Its area and modulus are both equal to t+1. In particular, area(Q∩
R) ≤ area(R) = t + 1. Using the admissible density ρ(x) = 1q

area(Q ∩ R)
·

χQ∩R(x), we get the estimate

1

mod(Q)
≥ 1

area(Q ∩ R)
≥ 1

area(R)
=

1

t + 1
,

because
∫

γ
ρ dγ ≥ 1√

area(Q∩R)
for this density and all rectifiable curves γ

that connect the upper to the lower boundaries.

Proposition 2.5.6 (Invariance Near ∞). Suppose that every z ∈ Ĉ has

only finitely many Nf -preimages in Ṽ . Then there exists R0 > 0 such that

for all R > R0, the map Nf is injective on Ṽ \BR(0). Moreover, there exists
S > 0 with the property that

Nf(Ṽ \BR(0)) \BS(0) = Ṽ \BS(0) .
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Proof. Choose R0 > max{|z| : z ∈ N−1
f (∞) ∩ Ṽ }. It follows from the open

mapping principle and invariance of ∂Ṽ that there exists S0 > 0 such that
∂Nf (Ṽ \BR0

(0))\BS0
(0) ⊂ ∂Ṽ . Since there are points z ∈ Ṽ with arbitrarily

large |z| such that Nf(z) ∈ Ṽ , it follows that either Nf (Ṽ \ BR(0)) ⊂ Ṽ or

Nf (Ṽ \BR(0)) contains a punctured neighborhood of ∞ within Ĉ.

In the first case, the claims follow easily. By way of contradiction, we
may thus assume that we are in the second case.

We consider the situation in logarithmic coordinates: with an arbitrary
but fixed choice of branch, let C ⊂ Hlog(R) be the unique unbounded com-

ponent of log(Ṽ \ BR(0)). This is a closed set whose boundary consists of
two analytic curves γ1 and γ2 and a subset of the vertical line at real part
log(R). Define a holomorphic map g : C → C by g(z) = log(Nf(ez)), choos-
ing the branch such that γ1 ⊂ g(γ1). This is possible because Γ1 = eγ1 is
Nf -invariant. Since eγ2 is also Nf -invariant, there exists k ∈ Z such that with

γ4 := g(γ2), γ4 = γ2 +2πik. Define also γ3 := γ1 +2πik. Since Nf (Ṽ \BR(0))
contains a neighborhood of ∞, we get k 6= 0. See Figure 2.3 for an illus-
tration of the notations and note that γ1, γ2, γ3 and γ4 are pairwise disjoint.
These four curves have a natural vertical order induced by the observation
that each curve separates sufficiently far right half planes into two unbounded
components. To fix ideas, suppose that γ2 is below γ1. Then γ4 is below γ3.
The construction implies that γ4 is below γ1, and no curve is between γ1 and
γ2. Then, the vertical order is γ1, γ2, γ3, γ4.
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Figure 2.3: Illustrating the notations for Proposition 2.5.6.
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By Lemma 2.5.4, g is continuous at +∞. By the open mapping principle,
there exists T > log(R) such that ∂g(C)∩HT ⊂ γ1∪γ4. Let C1 be the unique
unbounded component of C ∩ HT , C2 = C1 + 2πik and CT := g(C) ∩ HT .
Note that C1 ∪ C2 ⊂ CT . We may choose T in such a way that ∂HT does
not contain any critical values of g. Define C ′ = g−1(CT ) ⊂ C. Then,
g : C ′ → CT is a proper map and therefore has well-defined degree. Since g
is injective on ∂C ′ and has no pole, this degree is one and g is univalent.

The idea of the proof is as follows: the curves γ2 and γ3 subdivide CT into
three parts which are unbounded to the right. With an appropriate bound
to the right, we obtain a large bounded quadrilateral consisting of three
sub-quadrilaterals. Two of these sub-quadrilaterals, the upper and the lower
ones, have moduli comparable to the modulus of the entire quadrilateral.
This is a contradiction to the Grötzsch inequality if the right boundaries are
sufficiently far out.

Define a homeomorphism ψ : Y → C1 that is biholomorphic on the
interior and normalized so that it preserves the boundary vertex ∞ and the
other two boundary vertices. We denote by µx ⊂ Y the vertical line segment
at real part x. There exists an x0 such that for x ≥ x0, ψ(µx) ⊂ C ′. For
x > x0, we denote by Qx the rectangle in Y that is bounded by µx0

and µx.
With vertices a = (x, 1), b = (x0, 1), c = (x0, 0) and d = (x, 0), its modulus
is equal to x − x0. We denote the vertices of its image Q′

x := ψ(Qx) by
a′, b′, c′, d′, respectively. Let a′′ = g(a′) and d′′ = g(d′). Since g and ψ are
univalent, mod(g(Q′

x)) = x− x0.
The curve g(ψ(µx)) is a boundary curve of g(Q′

x); it connects a′′ and
d′′ within CT . Let e− be the intersection point g(ψ(µx)) ∩ γ2 closest to a′′

along g(ϕ(µx)), and let e+ be the intersection point furthest to the left along
γ2. Let C ′

1 be the bounded subdomain of C1 bounded by g(ψ(µx)) between
a′′ and e−, viewed as a quadrilateral with vertices a′′ and e− and two more
vertices on ∂HT . Similarly, let C ′′′′

1 be the bounded subdomain of C bounded
by ∂HT , γ1, the part of γ2 to the left of e+, and the part of g(ϕ(µx)) between
a′′ and e+, with right vertices a′′ and e+. Finally, let C ′′

1 := C ′
1 ∪ C ′′′′

1 with
right vertices a′′ and e−, and let C ′′′

1 := C ′′
1 but with right vertices a′′ and e+

(instead of a′′ and e−).
If g(ψ(µx)) intersects γ2 only once, then e− = e+ and C ′

1 = C ′′
1 = C ′′′

1 =
C ′′′′

1 . In general, the three domains C ′
1, C

′′
1 , C

′′′′
1 may be different. However,

we have mod(C ′
1) ≥ mod(C ′′

1 ) ≥ mod(C ′′′
1 ) ≥ mod(C ′′′′

1 ): the first inequality
holds because C ′

1 ⊂ C ′′
1 , the second describes identical domains but with

one boundary vertex moved, and the third follows again from the inclusion
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C ′′′′
1 ⊂ C ′′′

1 , but this time the domain is extended on the “right” side of the
domain, rather than on the “lower” side because the boundary vertex has
moved.

Pulling back under ψ, we find that Re(ψ−1(a′′)) ≤ Re(a) = x, because
the map ψ−1 ◦ g ◦ ψ repels points away from ∞. By Lemma 2.5.5, it follows
that mod(C ′′′′

1 ) ≤ mod(C ′
1) ≤ x+ 1.

Similar considerations on the left end of C1, as well as for C2, allow
to subdivide g(Q′

x) by a single curve segment of γ2 and γ3 into three sub-
quadrilaterals, two of which have modulus at most x + 1. But the Grötzsch
inequality implies that

1

x− x0

=
1

mod(g(Q′
x))

≥ 1

x + 1
+

1

x+ 1
,

hence x ≤ 2x0 + 1 which is a contradiction for large x.

Proof of Theorem 2.5.1. In order to use Theorem 2.4.6, we construct an in-
jective curve that surrounds an unbounded domain in Ṽ such that the im-
age of the curve does not intersect this domain. Consider a Riemann map
ϕ : D → U with ϕ(0) = ξ and the induced dynamics g = ϕ−1 ◦ Nf ◦ ϕ on
D. By the Remark after Proposition 2.3.5, the curves ϕ−1(Γ1) and ϕ−1(Γ2)
land at points ζ1, ζ2 ∈ ∂D, and g extends to a neighborhood of ζ1 and ζ2
so that ζ1 and ζ2 become repelling fixed points. These fixed points have
linearizing neighborhoods in which the curves ϕ−1(Γ1), respectively ϕ−1(Γ2),
are straight lines in linearizing coordinates. If 0 < r < 1 is large enough,
these two curves intersect the circle at radius r only once and we can join
them by a circle segment at radius r to an injective curve Γ′ ⊂ D in such
a way that Γ := ϕ(Γ′) separates V from ξ. Let W be the closure in Ĉ of
the connected component of C \ Γ that contains V (Figure 2.4). Note that
no component of N−1

f (Γ) that intersects W̊ can leave W : in D, any such
component would have to intersect Γ′. But by the Schwarz Lemma, g−1(Γ′)
has greater absolute value than r everywhere and Γ′ has only one g-preimage
within the linearizing neighborhood of ζ1; this preimage is contained in Γ′.
The same is true at ζ2.

By Proposition 2.5.6, W contains an unbounded preimage component
W ′ of itself such that the boundary ∂W ′ is contained in Γ1 ∪ Γ2 outside a
sufficiently large disk. Make W ′ simply connected by filling in all bounded
complementary components.
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Figure 2.4: A schematic illustration of some notations in the proof of Theo-
rem 2.5.1.

We claim that ∂W ′ contains at least one finite pole on ∂U : if it did not,
then ∂W ′ ⊂ U and Nf |∂W ′ : ∂W ′ → Γ would be injective for all choices of
r above. In the limit for r → 1, this would imply that Nf |∂V was injective,
contradicting Proposition 2.5.3.

Therefore, ∂W ′ maps onto Γ with covering degree at least +2. If ∞ is
not an isolated fixed point in W ′, we are done. Otherwise it is easy to see
that Nf |W ′ is a Lefschetz map: there is a single boundary fixed point ∞;
the conditions on this boundary fixed point are satisfied because Γ1,Γ2 ⊂ U ,
where the dynamics is expanding away from ∞. Now Theorem 2.4.6 implies
thatW ′ contains fixed points of combined Lefschetz indices at least 2, because
∂W ′ contains a pole. If W ′ contains a finite fixed point, we are done. If not,
it follows that the fixed point at ∞ has Lefschetz index at least 2. Consider a
Riemann map ψ : W ′ → H+ that uniformizes W ′ to the upper half plane and
maps ∞ to 0; this map preserves the Lefschetz index. By Proposition 2.5.6,
the map g = ψ ◦ Nf ◦ ψ−1 is defined in a relative neighborhood of 0 in
H+. If a sequence converges to R in this neighborhood, then so will the
image of this sequence. Hence we can extend g to a neighborhood of 0 in
C by reflection. This extension does not reduce the Lefschetz index of 0:
for a boundary fixed point, the index is defined by extending g to the lower
half-plane in the way which generates the least possible fixed point index
(compare Definition 2.4.2). Reflection however may increase the Lefschetz
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index. Therefore, 0 is a parabolic (since multiple) fixed point of the extended
map, and it is easily seen that ∂H+ is in the repelling direction. By the
Fatou flower theorem [Mi, Theorem 10.5], 0 has an attracting petal in H+

that induces a virtual immediate basin inside V .
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Chapter 3

Virtual Immediate Basins and
Asymptotic Values

3.1 Introduction

Let f : C → C be an entire function. Newton’s root finding method for f is
implemented by iterating the associated Newton map

Nf : C → Ĉ, z 7→ z − f(z)

f ′(z)
.

It is well known that ξ ∈ C is a fixed point of Nf if and only if f(ξ) = 0. Fur-
thermore, every finite fixed point ξ of Nf is attracting, so it has an invariant
neighborhood on which Nf -orbits converge locally uniformly to ξ. In 2003,
Douady raised the following question: if there exists a virtual immediate
basin (an invariant, unbounded domain on which Nf -orbits converge locally
uniformly to ∞), does this imply that ∞ is a ‘virtual root’ of f , in other
words, does this imply that 0 is an asymptotic value of f? In this chapter,
we give a condition under which this is true. A recent result of Bergweiler,
Drasin and Langley [BDL] implies that the condition is sharp when the Ju-
lia set of Newton maps is connected. Conversely, we show that if f has a
singularity of logarithmic type over 0, then this singularity is contained in
a virtual immediate basin of Nf ; if it is not of logarithmic type, then we
provide counterexamples.

The dynamics of Nf partitions the Riemann sphere Ĉ into two com-
pletely invariant parts: the open Fatou set of all points at which the iterates

37
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{N◦n
f }∞n=0 are defined and form a normal family in the sense of Montel, and its

complementary Julia set that contains the backward orbit of ∞; see [Be1, Mi]
for an introduction to these concepts. Note that starting values in the Julia
set will never converge to an attracting fixed point of Nf .

A component of the Fatou set of Nf for which no point converges to
a root of f under iteration is either wandering or will eventually land on
a cycle of Böttcher domains, Leau domains, Siegel disks, Herman rings or
Baker domains (compare [Be1, Theorem 6]).

The possibilities become much more restricted when considering an in-
variant component U of the Fatou set, so that Nf(U) ⊂ U . In this case, it
follows from Proposition 3.2.1 that U either contains a root of f , or is an
invariant Herman ring or Baker domain.

Shishikura [Sh] has shown that if Nf is rational, then its Julia set is
connected (see Proposition 3.2.5 for a characterization of rational Newton
maps). Hence rational Newton maps have no Herman rings. In Corollary
2.4.7, we have shown that even transcendental Newton maps have no invari-
ant Herman rings; hence, an invariant Fatou component of Nf either contains
a root of f or is a virtual immediate basin (see Section 3.2 for the precise
definition).

In this chapter, we continue the analysis of virtual immediate basins in
[MS] and [RuS] (see also Chapter 2). We prove that if f has a logarithmic
singularity over 0, thenNf has a virtual immediate basin (in 1994, Bergweiler,
von Haeseler, Kriete, Meier and Terglane investigated a class of functions f
that tend to 0 in a sector and showed that a right end of this sector is
contained in a Baker domain of Nf [BHK, Theorem 3.3]).

For non-logarithmic singularities over 0, we give examples of functions
whose Newton maps do not have a virtual immediate basin associated to
these singularities.

Furthermore, we show that there are three classes of virtual immediate
basins for Nf , two of which induce an asymptotic value at 0 for f . For the
third class, this statement requires an additional assumption, without which
it is false. Every such virtual immediate basin even has an open subset of
starting values z0 such that as zn = N◦n

f (z0) → ∞, f(zn) → 0.

This chapter is structured as follows: in Section 3.2, we give a precise def-
inition of virtual immediate basins and state several of their properties. In
Section 3.3, we recall some fundamental notions concerning singular values.
In Section 3.4, we prove that a logarithmic singularity over 0 for f induces a
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virtual immediate basin for Nf , while the counterexamples for direct singu-
larities are treated in Section 3.5. The converse theorem is stated and proved
in Section 3.6. The underlying idea of the proof is to compare iterates of the

Newton map Nf = id − f

f ′
to the time 1 flow of ż = − f(z)

f ′(z)
.

3.2 Virtual Immediate Basins

The concept of a virtual immediate basin was introduced in [MS] to explain
the behavior of Newton maps between different accesses to ∞ of an immediate
basin. Examples of Newton maps having virtual immediate basins can be
found in [MS, RuS]; these example are discussed in detail in [My]. The name
was chosen to suggest that these domains behave in many ways similar to
immediate basins.

The following proposition characterizes Newton maps of entire functions,
see Proposition 2.2.8 for a proof.

Proposition 3.2.1 (Newton Maps). Let N : C → Ĉ be a meromorphic
function. It is the Newton map of an entire function f : C → C if and only
if for each fixed point N(ξ) = ξ ∈ C, there exists a natural number m > 0
such that N ′(ξ) = m−1

m
< 1. In this case, there exists c 6= 0 such that

f = c · exp

(∫
dζ

ζ −N(ζ)

)
.

Note that while all definitions in this section are written in terms of
Newton maps, they make sense for arbitrary meromorphic functions.

Definition 3.2.2 (Immediate Basin). Let Nf be a Newton map. If ξ is
an attracting fixed point of Nf , we call the open set

{z ∈ C : lim
n→∞

N◦n
f (z) = ξ}

its basin (of attraction). The component of the basin that contains ξ is called
its immediate basin and denoted Uξ.

For the definition of virtual immediate basins, we need the following con-
cept.
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Definition 3.2.3 (Absorbing Set). Let V be an Nf -invariant domain. A
connected and simply connected open set A ⊂ V is called a weakly absorbing
set for V if Nf(A) ⊂ A and for each compact K ⊂ V , there exists k ∈ N

such that N◦k
f (K) ⊂ A.

We call A an absorbing set if it is weakly absorbing and additionally
satisfies Nf(A) ⊂ A, where the closure is taken in C.

Definition 3.2.4 (Virtual Immediate Basin). A domain V ⊂ C is called
a virtual immediate basin for Nf if it is maximal (among domains in C) with
respect to the following conditions:

1. for every z ∈ V , limn→∞N◦n
f (z) = ∞;

2. V contains an absorbing set.

Every virtual immediate basin is unbounded, invariant and simply con-
nected [MS, Theorem 3.4]. Since Newton maps of polynomials have a re-
pelling fixed point at ∞, virtual immediate basins can appear only for New-
ton maps of transcendental functions.

Proposition 3.2.5 (Rational Newton Map). (see Proposition 2.2.11.)
Let f : C → C be an entire function. Its Newton map Nf is rational if and
only if there exist polynomials p, q such that f = p · eq. In this case, ∞ is a
repelling or parabolic fixed point.

More precisely, let m := deg p and n := deg q. If n = 0 and m ≥ 2,
then ∞ is repelling with multiplier m

m−1
. If n > 0, then ∞ is parabolic with

multiplier +1 and multiplicity n + 1 ≥ 2.

In the following, let f be a transcendental entire function. If Nf is ratio-
nal, then it has virtual immediate basins which are the attracting petals of
the parabolic fixed point at ∞ (see [Mi, Theorem 10.5]). If Nf is transcen-
dental meromorphic, then any virtual immediate basin is (contained in) an
invariant Baker domain.

Definition 3.2.6 (Baker Domain). Let B be an invariant component of
the Fatou set of Nf . If limn→∞N◦n

f (z) = ∞ ∈ ∂B for all z ∈ B and Nf has
an essential singularity at ∞, then we call B a Baker domain of Nf .

If B is a simply connected Baker domain, it contains a weakly absorbing
set A by a result of Cowen [Co, Theorem 3.2]. Using Cowen’s work, it is
easy to find an absorbing subset of A, hence B is a virtual immediate basin.
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Moreover, Cowen’s result implies that there are three dynamically defined
classes of virtual immediate basins. The following notations are based on
[Ko] and [BF].

Definition 3.2.7 (Conformal Conjugacy). Let V be a virtual immediate
basin of Nf and define T (z) = z + 1. If there exists a weakly absorbing set
A for V , a T -invariant domain Ω ⊂ C and a holomorphic map ϕ : V → Ω
such that

ϕ ◦Nf(z) = T ◦ ϕ(z)

for all z ∈ V , ϕ is univalent on A and ϕ(A) ⊂ Ω is a weakly absorbing set
for T |Ω, then we call the triple (Ω, ϕ, T ) a conformal conjugacy for Nf on V .

Definition 3.2.8 (Types of Virtual Immediate Basins). Let V be a
virtual immediate basin of Nf . We say that V is parabolic of type I if it has
a conformal conjugacy (Ω, ϕ, T ) such that Ω = C. It is parabolic of type II
if there exists a conjugacy such that Ω is an upper or lower half-plane and
hyperbolic with constant h if there exists h > 0 such that Ω is the strip

Sh := {z ∈ C : |Im(z)| < h} .

Theorem 3.2.9 (Classification of Virtual Immediate Basins). [Co,
Theorem 3.2]. Every virtual immediate basin V has a conformal conjugacy
and is of exactly one of the three types defined above. If V is hyperbolic, the
constant h is uniquely defined.

Remark. We believe that any Baker domain of a Newton map is simply
connected; if this were proved, the notion of a virtual immediate basin would
simply stand for either an attracting petal or a Baker domain, depending on
whether the map under consideration is rational or not.

3.3 Asymptotic Values

We recall several important definitions concerning the singular values of a
meromorphic map. Singular values play an important role in iteration theory,
because their orbits determine the dynamics of a map in many ways.

We denote by Br(z) the open disk of radius r > 0 around z ∈ C. In this

section, let g : C → Ĉ be a meromorphic function.
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Definition 3.3.1 (Regular and Singular Value). Let a ∈ C and assume
that for r > 0, Ur is a connected component of g−1(Br(a)) such that Ur1

⊂ Ur2

if r1 < r2.
1 We have the following two cases:

1. If
⋂

r>0 Ur = {z} for some z ∈ C, then g(z) = a. If g′(z) 6= 0, then we
call z a regular point of g. If g′(z) = 0, then z is called a critical point
and a a critical value. In this case, we say that the critical point z lies
over a.

2. If
⋂

r>0 Ur = ∅, then we say that U : r 7→ Ur defines a singularity of
f−1 and we call a an asymptotic value. For simplicity, we call U a
singularity and say it lies over a.

A singular value is an asymptotic or critical value. If no singularities or
critical points lie over a point, we call it a regular value.

Note that there can be many different singularities as well as regular or
critical points over any given point a ∈ C.

For a rational map, all singular values are critical values. Asymptotic
values of transcendental maps have a well-known characterization via paths.

Lemma 3.3.2 (Asymptotic Path). A point a ∈ Ĉ is an asymptotic value
of g if and only if there exists a path Γ : (0,∞) → C with limt→∞ Γ(t) = ∞
such that limt→∞ g(Γ(t)) = a.

We call Γ an asymptotic path of a. We follow [BE] in the classification of
asymptotic values.

Definition 3.3.3 (Direct, Indirect and Logarithmic Singularity). Let
U be a singularity of g−1 lying over a ∈ C.

If a 6∈ g(Ur) for some r > 0, then we call U a direct singularity. Other-
wise, U is called an indirect singularity.

A direct singularity U over a is called logarithmic if g : Ur → Br(a) \ {a}
is a universal covering map for all sufficiently small r.

As an example, the positive real axis is an asymptotic path of 0 for the
map z 7→ sin(z)/z. Since its image assumes this value infinitely many times,
it is contained in an indirect singularity over 0. For z 7→ exp z, any left half
plane is a logarithmic singularity over 0.

1The function U : r 7→ Ur is completely determined by its germ at 0. Since
⋂

r>0
Ur is

connected, the intersection contains at most one point.



3.4. A CRITERION FOR VIRTUAL IMMEDIATE BASINS 43

3.4 A Criterion for Virtual Immediate Basins

Our first result is the following.

Theorem 3.4.1 (Logarithmic Singularity Implies Virtual Immediate
Basin). Let f : C → C be an entire function with a logarithmic singularity
U over 0. Then there exists r0 > 0 such that Ur0

is an absorbing set for a
parabolic virtual immediate basin of type I for Nf .

Note that if U is an indirect singularity, each Ur contains infinitely many
roots of f and hence infinitely many attracting fixed points of Nf . Therefore,
Ur cannot be part of a virtual immediate basin. In Section 3.5, we show that
there exist functions f : C → C with a direct singularity U over 0 which does
not induce a virtual immediate basin for Nf .

Proof. The idea is to compare the iterates of Nf to the time 1 flow of the

differential equation ż = − f(z)
f ′(z)

. If r is small enough, this flow sends Ur

isomorphically to Ur/e. We will see that for r small enough, Nf maps Ur

univalently into itself and is an absorbing set for a virtual immediate basin
of Nf .

First, let r > 0 be small enough so that f : Ur → Br(0)\{0} is a universal
covering. Set η := − log r and Hη := {w ∈ C : Re(w) > η}. Since e−id :
Hη → Br(0) \ {0} is also a universal covering, the map − log(f) : Ur → Hη

is biholomorphic with inverse ψ : Hη → Ur (see Figure 3.1). With this, we
get log(f(ψ(w))) = −w for w ∈ Hη.

Taking derivatives yields

f ′(ψ(w))

f(ψ(w))
· ψ′(w) = −1; hence ψ′(w) = − f(ψ(w))

f ′(ψ(w))
.

In other words, ψ is a solution of ż = − f(z)
f ′(z)

and following the flow during

time 1 maps Ur = ψ(Hη) to Ur/e = ψ(Hη+1).

We now want to compare Nf to the time 1 flow of ż = − f(z)
f ′(z)

. We will

do the comparison in time space: we will show that if z = ψ(w) with Re(w)
large enough, then Nf (z) = ψ(w′) with w′ close to w+ 1. More precisely, we
have the following lemma.

Lemma 3.4.2. There exists η0 > η and a holomorphic map G : Hη0
→

Hη0+1/2 such that for all w ∈ Hη0
, we have

Nf ◦ ψ(w) = ψ ◦G(w) and |G(w) − (w + 1)| < 1

2
.
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Hη

Ur

ψ

w 7→ e−w

Br(0)

0

f

Figure 3.1: If f : Ur → Br(0) \ {0} is a universal covering, there exists a
biholomorphic map ψ : Hη → Ur.

The proof of Theorem 3.4.1 is then easily completed. Indeed, set V0 :=
ψ(Hη0

) = Ur0
with r0 = e−η0 and let Vn+1 be the component of N−1

f (Vn)
that contains V0. Since all points in Hη0

converge to ∞ under iteration of
G (the real part increases by at least 1/2 in each step), we conclude that
V :=

⋃
n∈N

Vn is a virtual immediate basin of Nf with absorbing set V0.
Let us now prove Lemma 3.4.2. Note that

Nf(ψ(w)) = ψ(w) − f(ψ(w))

f ′(ψ(w))
= ψ(w) + ψ′(w) .

Thus, it is equivalent to prove that there exists η0 > η and a holomorphic
map G : Hη0

→ Hη0+1/2 such that for all w ∈ Hη0
, we have

ψ(w) + ψ′(w) = ψ(G(w)) and |G(w) − (w + 1)| < 1

2
. (3.1)

Given w ∈ Hη+2, define functions g, h : B2(w) → C by

g : ζ 7→ ψ(ζ) − ψ(w) − ψ′(w)

ψ′(w)
and h : ζ 7→ ζ − (w + 1) .

Since g and h satisfy g(w) = h(w) = −1, g′(w) = h′(w) = 1 and can both
be extended to all of Hη as univalent maps, by Koebe’s distortion theorem
there exists η0 > η + 2 such that for every w ∈ Hη0

and every ζ ∈ B2(w),
|g(ζ) − h(ζ)| < 1/4.
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Clearly, h(w + 1) = 0. Note that |h(ζ)| = 1/2 > |g(ζ) − h(ζ)| when
ζ belongs to the circle ∂B1/2(w + 1). By Rouché’s theorem, the map g
has a (unique) root ξw ∈ B1/2(w + 1). It is now easy to see that the map
G : Hη0

→ C defined by G(w) = ξw satisfies equations (3.1).

3.5 A Direct Singularity Counterexample

In this section, we will exhibit examples of entire functions with direct sin-
gularities over 0 that do not induce Baker domains of the associated Newton
maps. This shows that Theorem 3.4.1 cannot be improved much further; 0 is
an omitted value in all examples, so that a generalization is not even possible
to this case. We will only treat the first example in full detail.

For α ∈ ]0,+∞[, consider the entire function fα defined by

fα(Z) = exp

(
− 1

α

(
Z +

1

2iπ
e2iπZ

))
.

The function fα has infinitely many singularities over 0 which are necessarily
direct since fα does not vanish. We have two kinds of asymptotic paths:

1. for k ∈ Z, as t ∈ R → +∞, fα(k + 1
4
− it) → 0;

2. as t ∈ R → +∞, fα(t) → 0.

The singularities of the first kind are of logarithmic type. Thus, each one
induces a Baker domain of parabolic type I for the Newton map

Nα(Z) = Z +
α

1 + e2iπZ
.

The singularity of the second kind is not of logarithmic type and contains
infinitely many critical points of f . We will see that for some values of α, it
does not induce a Baker domain for Nα.

More precisely, observe that Nα(Z + 1) = Nα(Z) + 1. It follows that we
can study the dynamics of Nα modulo 1. In other words, we have

e2iπNα(Z) = gα

(
e2iπZ

)
with gα(z) = ze2iπα/(1+z) .

The map gα has a fixed point with multiplier e2iπα at z = 0, a fixed point
with multiplier 1 at z = ∞ and an essential singularity at z = −1.
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Let F(Nα) and F(gα) be the Fatou sets of Nα and gα and let π : C → C∗

be the universal covering π : Z 7→ z = e2iπZ . We claim that

F(Nα) = π−1
(
F(gα)

)
.

It is easy to see that π−1
(
F(gα)

)
⊂ F(Nα) (see for example [Be3]). The

inclusion F(Nα) ⊂ π−1
(
F(gα)

)
is less immediate. One may argue as follows.

Assume z0 = π(Z0) /∈ F(gα). Then, z0 lies in the closure of the set of
iterated gα-preimages of −1 (otherwise, the family of iterates of gα would be
well defined near z0 and avoid the infinite set g−1

α ({−1}), thus it would be
normal). It follows that any neighborhood of Z0 contains a preimage of a
pole of Nα. Thus, Z0 /∈ F(Nα).

As z → ∞, we have

gα(z) = z + 1 +
2iπα

z
+ o(1/z) .

Thus, the parabolic fixed point at ∞ has multiplicity 2. It has a single
attracting direction along the positive real axis. The full preimage of its
parabolic basin under the map e2iπZ is the union of the Baker domains of Nα

induced by the singularities of fα of the first kind. The map gα has exactly
two critical points: the solutions to (1 + z)2 − 2iπαz = 0.

Conjugating with z 7→ w = 1/(z + 1), we may put the singularity at
∞ and the fixed points at 0 and 1. The map gα is thus conjugate to the
meromorphic function

hα(w) =
w

w + (1 − w)e2iπαw
.

The map hα has growth order 1 and two critical points. Thus, it has at most 2
asymptotic values by [BE, Corollary 3]. But as t ∈ R → +∞, hα(it) → 0 and
hα(−it) → 1. Thus, hα has exactly 2 (fixed) asymptotic values and 2 critical
values and is therefore a finite type map. It is well known that finite type
meromorphic functions have neither wandering domains nor Baker domains
[BKL, RS1].

The map hα has a fully invariant parabolic point at 0 and for suitably
chosen α, the fixed point at 1 is Cremer (in analogy to [Mi, Theorem 11.13]).
We want to prove that in this case, the Fatou set of hα consists of the
parabolic basin at 0 and its preimage components. We deduce that then,
the Fatou set of gα is equal to the parabolic basin of ∞ and its preimage



3.5. A DIRECT SINGULARITY COUNTEREXAMPLE 47

components. Thus, every Fatou component of Nα maps after finitely many
iterations into one of the invariant Baker domains induced by the first kind
of singularities of fα. There is no Fatou component associated to the second
kind of singularity of fα.

So it remains to show that hα has no additional non-repelling periodic
points nor Herman rings. While both claims follow directly from Epstein’s
version of the Fatou-Shishikura inequality for finite type maps [Ep1, Ep2,
Ep3], we provide a version of Epstein’s proof that is sufficient for our pur-
poses; we treat Herman rings separately in Lemma 3.5.2.

Lemma 3.5.1 (Epstein). There cannot be any additional non-repelling pe-
riodic points.

Proof. Suppose that hα has an additional non-repelling cycle

{z1 7→ z2 7→ . . . , 7→ zk 7→ z1} .

Let v1 and v2 be the two critical values of hα, set

X = {0, 1, z1, . . . , zk}, X ′ = X ∪ {v1, v2} .

Let Q1(X) (resp. Q1(X ′)) be the set of meromorphic quadratic differentials

on Ĉ which are holomorphic outside X (resp. X ′) and have at most simple
poles in X (resp. X ′). Let Q2(X) be the set of meromorphic quadratic

differentials on Ĉ which are holomorphic outside X, have at most double
poles in X and whose polar part of order 2 along X is of the form

A
dz2

z2
+B

dz2

(z − 1)2
+ C

k∑

i=1

dz2

(z − zi)2
with A,B,C ∈ C .

The sets Q1(X), Q1(X ′) and Q2(X) are vector spaces of respective dimen-
sions k−3, k−1 and k. We can define a linear map ∇ : Q2(X) → Q1(X ′) as

follows. If U is a simply connected subset of Ĉ \X ′, then hα : h−1
α (U) → U

is a (trivial) covering map. We let (gi : U → Ĉ)i∈I be the countably many
inverse branches and we set

(hα)∗q|U =

(
∑

i∈I

g∗i q

)
.
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The sum is convergent because
∑

i∈I

∫

U

|g∗i q| =

∫

h−1
α (U)

|q| <∞ .

We can define in such a way a quadratic differential (hα)∗q which is holomor-
phic outside X ′. A local analysis shows that

∇q := (hα)∗q − q

has at most simple poles at points of X ′ and thus, belongs to Q1(X ′).
Since the dimension of Q1(X ′) is less than the dimension of Q2(X), the

linear map ∇ is not injective and there is a q ∈ Q2(X) such that ∇q = 0,
i.e., (hα)∗q = q. To see that this is not possible, set

Uε := D(0, ε) ∪D(1, ε) ∪
k⋃

i=1

h−i
α

(
D(z1, ε)

)
, Vε := h−1

α (Uε) ,

let Wε ⊂ Ĉ\
(
Uε∪{v1, v2}

)
be a simply connected subset of full measure and

let gi : Wε → Ĉ be the countably many inverse branches of hα. Then, for ε
sufficiently small, we have

∫

bC\Uε

∣∣(hα)∗q
∣∣ =

∫

Wε

∣∣∣∣∣
∑

i

g∗i q

∣∣∣∣∣ ≤
∑

i

∫

Wε

∣∣g∗i q
∣∣ =

∫

C\Vε

|q|

with equality if and only if each g∗i q is a (real positive) multiple of (hα)∗q = q.
In particular q = h∗α(g∗i q) has to be locally, and thus globally, a constant
multiple of h∗αq, i.e. q = c · h∗αq for some constant c > 0. But in that case

g∗i q = c · q and the sum
∑

i

∫

Wε

∣∣g∗i q
∣∣ will be diverging which is not the case.

Thus, ∫

bC\Uε

|q| ≤
∫

bC\Vε

|q| − Cε with Cε > 0 .

Note that for δ < ε, we have
∫

bC\Uδ

|q| =

∫

bC\Uε

|q| +

∫

Uε\Uδ

|q|

≤
∫

bC\Vε

|q| − Cε +

∫

Vε\Vδ

|q|

=

∫

bC\Vδ

|q| − Cε ,
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thus ∫

bC\Vδ

|q| −
∫

bC\Uδ

|q| ≥ Cε > 0 .

We will obtain a contradiction by proving

lim inf
δ→0

(∫

bC\Vδ

|q| −
∫

bC\Uδ

|q|
)

≤ 0 .

This is the place where we use the fact that the cycle is non-repelling. As
δ → 0, we can find a radius rδ = δ + o(δ) such that

D(0, rδ) ∪D(1, rδ) ∪D(z1, rδ) ∪
k⋃

i=2

h−i
α

(
D(z1, δ)

)
⊂ Vδ.

Then, Uδ \ Vδ is contained within the union of three annuli

{z ; rδ ≤ |z| < δ} ∪ {z ; rδ ≤ |z − 1| < δ} ∪ {z ; rδ ≤ |z − z1| < δ} .

Since q has at most double poles at 0, 1 and z1, the integral of |q| on those
annuli tends to 0 as δ tends to 0 and we have

∫

bC\Vδ

|q| −
∫

bC\Uδ

|q| =

∫

Uδ\Vδ

|q| −
∫

Vδ\Uδ

|q| ≤
∫

Uδ\Vδ

|q| −→
δ→0

0 .

Lemma 3.5.2. There cannot be any cycle of Herman rings.

Proof. Recall that 0 is a multiple fixed point and its immediate basin of
attraction must contain a critical point ω0 and the critical value v0 = hα(ω0).
Also, 1 is a Cremer point. It must be accumulated by the orbit of the second
critical point ω1 with critical value v1 = hα(ω1).

Assume there is a cycle of Herman rings H1 7→ H2 7→ . . . 7→ Hk 7→ H1.
Let Γ be the union of the equators of the Herman rings Hi (Γ is the union of a

cycle of Jordan curves). Choose a connected component W of Ĉ\Γ which does
not contain 1. Then, there are infinitely many iterates of v1 contained in W
(accumulating a boundary component of some Herman ring). In particular,
there is an integer m > 2 such that h◦mα (v1) ∈ W . Let D be a disk around
1 avoiding Γ, the forward orbit of v0 and the m first iterates of v1. Let D−1

be the connected component of h−1
α (D) containing 1. Since D \ {1} does not

contain any singular value of hα, hα : D−1 → D has to be an isomorphism.
Since D−1 contains 1 and avoids Γ, it does not contain h◦mα (v1). So, D−1
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is a disk avoiding Γ, the forward orbit of v0 and the m first iterates of v1.
We can therefore construct inductively a sequence of disks D−k containing
1 such that h◦kα : D−k → D is an isomorphism. Since |(h◦kα )′(1)| = 1 for all
k ∈ N, by Koebe’s one quarter theorem the disks D−k contain a common
neighborhood of 1 on which the iterates of hα form a normal family. This
contradicts the fact that 1 is a Cremer point contained in the Julia set of
hα.

Note that if we choose α ∈ Q, Nα will have a wandering domain that
projects to a parabolic basin of a parabolic fixed point. If α is a Brjuno
number, Nα will have a univalent Baker domain of parabolic type II which
projects to a Siegel disk of gα.

We can construct other examples in a similar way. The maps we will
present do not have fixed points. It follows from Proposition 3.2.1 that they
are Newton maps of non-vanishing entire functions, whose singularities over
0 are therefore direct.

Assume
N(Z) = Z +

α

1 + ε sin(2πZ)

with

0 < ε < 1 and 0 < α < mε =

⌊
(1 − ε)2

2πε

⌋
.

Then, N is the Newton map of an entire function f such that f(t) → 0 as
t ∈ R → +∞. The restriction of N to R is an increasing homeomorphism
which commutes with translation by 1. Indeed,

N ′(Z) = 1 − 2πεα cos(2πZ)
(
1 + ε sin(2πZ)

)2 ≥ 1 − 2πεα

(1 − ε)2
> 0.

Thus, it has a well defined rotation number Rot(N). This rotation number
is positive since N(Z) > Z. Note that for α = mε, N(0) = mε and thus,
Rot(N) = mε. For each fixed ε ∈ (0, 1), the rotation number increases
continuously from 0 to mε as α increases from 0 to mε. If Rot(N) is rational,
then N has a chain of wandering domains along the real axis. If Rot(N) is a
Brjuno number, N has a univalent Baker domain of hyperbolic type centered
on the real axis. For suitably chosen parameters α, Rot(N) is irrational and
the induced map N : R/Z → R/Z is topologically but not analytically
conjugate to the rotation Z 7→ Z + Rot(N) : R/Z → R/Z. It should follow
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that N does not have any Baker domain associated to the singularity of f
containing the large positive real numbers. The proof should be similar to
the one we presented above: study the dynamics modulo 1.

In the previous examples, f had a direct singularity containing critical
points of f . One may wonder whether it is the presence of critical points
that prevents Nf from having a Baker domain associated to the singularity.
The following example shows that this is not the case. We still assume α > 0
and set

Nα(Z) = Z + αee2iπZ

.

Then, Nα does not have any fixed points. So, it is the Newton map of the
non-vanishing entire function

fα(Z) = exp

(
− 1

α

∫ Z

0

e−e2iπW

dW

)
.

Note that when W ∈ R, the real part of e−e2iπW

is greater than 1/e. Thus,
for α > 0 and for t ∈ [0,+∞), we have

|fα(t)| ≤ e−t/(eα) −→
t→+∞

0.

The entire map fα has a singularity over 0 containing large real numbers.
This is a direct singularity since fα does not vanish. In addition, Nα does
not have poles and so, fα does not have critical points.

Again, Nα(Z + 1) = Nα(Z) + 1 and Nα projects via Z 7→ z = e2iπZ to an
entire map gα fixing 0 with multiplier e2iπα:

gα(z) = ze2iπαez

.

By a result of Bergweiler [Be3], the Fatou sets of Nα and gα correspond
under the map Z 7→ e2iπZ . If gα has a Siegel disk around 0, the map Nα has
a Baker domain of parabolic type II which corresponds to the singularity of
fα described above. But if gα has a Cremer point at 0, there can be no Baker
domain for Nα associated to the singularity of fα described above.

3.6 Asymptotic Paths in Virtual Basins

Theorem 3.6.1 (Asymptotic Paths in Virtual Basins). Let f : C → C

be an entire function such that its Newton map Nf has a virtual immediate
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basin V . If V is parabolic of type I or type II, then 0 is an asymptotic value
of f with asymptotic path in V . There exists H > 0 such that the same is
true if V is hyperbolic with constant h ≥ H.

Bergweiler, Drasin and Langley have constructed an entire function for
which 0 is not an asymptotic value and whose Newton map has a virtual
immediate basin of hyperbolic type [BDL]. Thus, the statement of Theorem
3.6.1 cannot be extended to all hyperbolic virtual immediate basins.

Using Theorem 3.6.1, we can give the following formulation of Theorem
2.5.1.

Corollary 3.6.2 (Outside Immediate Basins). Let Nf be the Newton
map of an entire function f and Uξ the immediate basin of the attracting fixed
point ξ ∈ C for Nf . Let Γ1,Γ2 ⊂ Uξ be two Nf -invariant curves connecting ξ

to ∞ such that Γ1 and Γ2 are non-homotopic in Uξ and let Ṽ be an unbounded

component of C \ (Γ1 ∪ Γ2). If the set N−1
f ({z}) ∩ Ṽ is finite for all z ∈ Ĉ,

then f |eV assumes the value 0 or has 0 as an asymptotic value.

Proof. If 0 6∈ f(Ṽ ), then the virtual immediate basin constructed in the proof
of Theorem 2.5.1 is parabolic of type I.

For the proof of Theorem 3.6.1, we will need the following corollary to
the Koebe distortion theorem.

Lemma 3.6.3 (Bounded Non-Linearity). Let R > 0, g : BR(0) → C be
univalent and ε > 0. If r/R is sufficiently small, then

∣∣∣∣
g(z) − g(w)

g′(z)(z − w)
− 1

∣∣∣∣ < ε

for all w, z ∈ Br(0).

Proof. By possibly conjugating g with z 7→ Rz, multiplying g with a constant
or adding a constant to g, we may assume that R = 1, g(0) = 0 and g′(0) =
1. Fix 0 < r < 1. By the Koebe distortion theorem, there is an α > 0
independent of g such that

|g(z) − g(w) − (z − w)g′(z)| < α|(z − w)|2
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for all z, w ∈ Br(0) (Taylor expansion around z). Moreover, there is a β > 0
so that |g′(z)| > β for all z ∈ Br(0). This yields

∣∣∣∣
g(z) − g(w)

g′(z)(z − w)
− 1

∣∣∣∣ < α

∣∣∣∣
z − w

g′(z)

∣∣∣∣ <
2αr

β
.

It follows from the Koebe distortion theorem that α → 0 and β → 1 as
r → 0. The claim follows.

Proof of Theorem 3.6.1. Suppose first that V is parabolic of type I. Then,
there exists a weakly absorbing set A of V and a conformal conjugacy
(C, ϕ, T ) such that F := ϕ(A) is an absorbing set for T : z 7→ z + 1 in
C. Since ϕ|A is univalent, it has a univalent inverse ψ : F → A. With this,
we get for z ∈ F that Nf (ψ(z)) = ψ(z + 1), and hence

ψ(z) − f(ψ(z))

f ′(ψ(z))
= ψ(z + 1) .

It follows that
f ′(ψ(z))

f(ψ(z))
·
(
ψ(z + 1) − ψ(z)

)
= −1 (3.2)

(note that since V is a virtual immediate basin, f has no roots in ψ(F )). Let
0 < ε < 1. By Lemma 3.6.3, there exists R > 2 such that if BR(z) ⊂ F , then

∣∣∣∣
ψ′(z)

ψ(z + 1) − ψ(z)
− 1

∣∣∣∣ < ε , (3.3)

and by equation (3.2) and inequality (3.3) we get

∣∣∣∣
f ′(ψ(z))

f(ψ(z))
· ψ′(z) + 1

∣∣∣∣ =

∣∣∣∣
f ′(ψ(z))

f(ψ(z))
· ψ′(z) · ψ(z + 1) − ψ(z)

ψ(z + 1) − ψ(z)
+ 1

∣∣∣∣ < ε . (3.4)

Since F contains all sufficiently far right translates of the disk BR(z0), for
every z0 ∈ F there exists Sz0

≥ 0 such that (3.4) holds for all z0 + t with real
t ≥ Sz0

.

Let z0 ∈ F such that Sz0
= 0. Then, for t ≥ 0 and z = z0 + t ∈ F , we use
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a standard estimate in complex variables and inequality (3.4) to get

|log(f(ψ(z))) + z| ≤
∣∣∣∣
∫ z

z0

((log ◦f ◦ ψ)′(ζ) + 1) dζ

∣∣∣∣+ |log(f(ψ(z0))) + z0|

≤ sup
w∈[z0,z]

{∣∣∣∣
f ′(ψ(w))

f(ψ(w))
· ψ′(w) + 1

∣∣∣∣
}
· |z − z0| + C ′

≤ ε · |z − z0| + C ′

≤ ε · |z| + C ,

where C ′ = | log(f(ψ(z0))) + z0| and C > 0 depend only on z0; [z0, z] de-
notes the straight line segment in F connecting z0 to z. It follows that
log(f(ψ(z))) ∈ Bε|z|+C(−z) and

Re(log(f(ψ(z)))) < −Re(z) + ε|z| + C . (3.5)

Since Im(z) does not depend on t, we have that |z|/Re(z) → 1 as t →
∞ and the right hand side of inequality (3.5) converges to −∞. Hence,
exponentiating (3.5) yields limt→+∞ f(ψ(z)) = 0.

Analogous estimates hold for sufficiently large imaginary parts if V is
parabolic of type II. If V is hyperbolic, sufficiently large h will permit a
construction as above. This finishes the proof.

Remark. In fact, we not only show the existence of an asymptotic path to
0 for f in V , but even that V has an Nf -invariant open subset in which f
converges to 0 along Nf -orbits. This is another similarity between immediate
basins and their virtual counterparts.



Chapter 4

A Combinatorial Classification
of Postcritically Fixed Newton
Maps of Polynomials

4.1 Introduction

In this chapter, we consider rational functions f : Ĉ → Ĉ that appear as
Newton’s method of a complex polynomial. Newton’s method of a linear or
quadratic polynomial is easy to understand and we will exclude these cases
from our investigation.

Definition 4.1.1 (Newton Map). We call a rational function f : Ĉ → Ĉ

of degree d ≥ 3 a Newton map if there exists a polynomial p of degree d with
d distinct roots such that in C, f has the form

f(z) = z − p(z)

p′(z)
.

Observe that f and p have the same degree if and only if p has d distinct
roots, which is the only case that we will treat here. For a characterization
of Newton maps of polynomials with possible multiple roots, see Corollary
2.2.9.

One of the most important open problems in rational dynamics is un-
derstanding the structure of the space of rational functions of a fixed degree
d ≥ 2. This problem is today wide open.

55
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Aside from being a useful tool for numerical root-finding (see for example
[HSS, Sch]), Newton maps form an interesting subset of the space of rational
maps that is more accessible for studying than the full space of rational
maps. So a partial goal in the classification of all rational maps is to gain
an understanding of the space of Newton maps (of a given degree). Newton
maps have a number of properties that help to study them.

Proposition 4.1.2 (Head’s Theorem). A rational map f : Ĉ → Ĉ of
degree d ≥ 3 is a Newton map if and only if f(∞) = ∞ is a repelling fixed
point and all other fixed points ξ1, . . . , ξd ∈ C are superattracting. Then, for
any complex a 6= 0, f is the Newton map of the polynomial

p(z) = a
d∏

j=1

(z − ξj) .

A proof of this proposition can be found in [He, Proposition 2.1.2], see
also Corollary 2.2.9.

Since ∞ is the only non-attracting fixed point of a Newton map, a result
of Shishikura [Sh] implies the following.

Proposition 4.1.3 (Julia Set Connected). The Julia set of a Newton
map is always connected.

A number of people have studied Newton maps and used combinatorial
models to structure the parameter spaces of some Newton maps. Janet Head
[He] introduced the so-called Newton tree to characterize many postcritically
finite cubic Newton maps. Tan Lei [TL] built upon this thesis and gave a
classification of all postcritically finite cubic Newton maps, see Figure 4.1.
Jiaqi Luo [Lu] extended some of these results and gave a combinatorial classi-
fication of postcritically finite Newton maps of any degree with the property
that they have only one free critical value.

In this chapter, we extend these results to postcritically finite Newton
maps with the only restriction that all critical points map onto a fixed point
after finitely many iterations. We call such maps postcritically fixed. More
precisely, we introduce a combinatorial object that we call an abstract Newton
graph and show that every abstract Newton graph is realized by a postcrit-
ically fixed Newton map (which is unique up to Möbius conjugation) and
that vice versa, every postcritically fixed Newton map generates an abstract
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Figure 4.1: The parameter space of cubic Newton maps up to Möbius con-
jugation. The regions are colored depending on the fixed point to which the
unique free critical value converges; every component of the red, green or
blue set is a hyperbolic component and contains a unique postcritically finite
parameter. The black regions are little Mandelbrot sets in which the free
critical point converges to a nontrivial attracting cycle.

Newton graph. Hence we may say that the graphs classify these Newton
maps.

It might be possible to extend our construction to a classification of all
postcritically finite Newton maps by adding combinatorial information about
those critical points that are not eventually fixed, see also Section 5.3. This
would be an important step towards a classification of all rational maps.

Structure of the Chapter

This chapter is structured as follows. In Section 4.2, we introduce some
aspects of Thurston theory, in particular Thurston equivalence, Thurston
obstructions and Thurston’s characterization of postcritically finite rational
maps. We also give an introduction to the combinatorics of arc systems and
state a result by Kevin Pilgrim and Tan Lei that restricts the possibilities of
how arc systems and Thurston obstructions can intersect (Theorem 4.2.10).
We will use this theorem in the proof of our main result.

In Section 4.3, we define abstract Newton graphs and prove that every
such graph is realized by a postcritically fixed Newton map. In Section 4.4,
we show how a postcritically fixed Newton map gives rise to an abstract
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Newton graph.

Some Basic Notations

Let f be a Newton map of degree d ≥ 3. We call a point z ∈ C critical
if f ′(z) = 0 (in this case, we do not need to make special conventions for
∞ because it can never be a critical point). It follows from the Riemann-
Hurwitz formula [Mi, Theorem 7.2] that f has exactly 2d− 2 critical points,
counting multiplicities.

Definition 4.1.4 (Postcritically Fixed). Let f be a Newton map of degree
d ≥ 3 with fixed points ξ1, . . . , ξd,∞ and critical points c1, . . . , c2d−2. Then,
f is called postcritically finite if the set

Pf :=

2d−2⋃

i=1

⋃

n>0

{f ◦n(ci)}

is finite. We say that f is postcritically fixed if there exists N ∈ N such that
for each i ∈ {1, . . . , 2d− 2}, f ◦N (ci) ∈ {ξ1, . . . , ξd,∞}.
Definition 4.1.5 (Immediate Basin). Let f be a Newton map and ξ ∈ C a
fixed point. Let Bξ = {z ∈ C : limn→∞ f ◦n(z) = ξ} the basin (of attraction)
of ξ. The component of Bξ containing ξ is called the immediate basin of ξ
and denoted Uξ.

Clearly, Bξ is open and by a theorem of Przytycki [Pr], Uξ is simply
connected and unbounded (in fact, by Proposition 4.1.3 every component
of the Fatou set is simply connected). Moreover, ∞ ∈ ∂Uξ is an accessible
boundary point.

Definition 4.1.6 (Access to ∞). Let Uξ be the immediate basin of the
fixed point ξ ∈ C. Consider a curve Γ : [0,∞) → Uξ with Γ(0) = ξ and
limt→∞ Γ(t) = ∞. Its homotopy class within Uξ defines an access to ∞ for
Uξ, i.e., a curve Γ′ with the same properties lies in the same access as Γ if
they are homotopic in Uξ with endpoints fixed.

Proposition 4.1.7 (Accesses). (c.f. [HSS]) Let f be a Newton map of
degree d ≥ 3 and Uξ an immediate basin for f . Then, Uξ contains 0 <
k ≤ d − 1 critical points of f (counting multiplicities) and f : Uξ → Uξ is
a covering map of degree k + 1. Furthermore, Uξ has exactly k accesses to
∞.
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4.2 Thurston Theory

In this section, we recall some fundamental notions of Thurston’s character-
ization of rational maps. Thurston’s theorem is a very deep and powerful
method to prove the existence of a rational map with given combinatorics:
it provides a necessary and sufficient condition on the existence of rational
maps with a certain combinatorial behavior in terms of a collection of linear
maps that are generated from a set of simple closed curves.

The notations and results in this section are based on [DH3] and [PT].

4.2.1 Thurston’s Criterion For Marked Branched Cov-
erings

Before we can state Thurston’s criterion, we need several definitions. Re-
call that by the Riemann-Hurwitz formula [Mi, Theorem 7.2], a degree-d
branched covering of S2 has 2d− 2 branch points (counting multiplicities).

Definition 4.2.1 (Marked Branched Covering). Let f : S2 → S2 be a
branched covering map of degree d ≥ 2 with branch points c1, . . . , c2d−2. If its
postcritical set Pf is finite, then all branch points are (eventually) periodic
and we call f postcritically finite.

A marked branched covering is a pair (f,X), where f : S2 → S2 is a
postcritically finite branched covering map and X is a finite set containing
Pf such that f(X) ⊂ X.

Definition 4.2.2 (Thurston Equivalence). Let (f,X) and (g, Y ) be two
marked branched coverings. We say that they are (Thurston) equivalent and
write f ≃ g, if there are two homeomorphisms ϕ0, ϕ1 : S2 → S2 such that

ϕ0 ◦ f = g ◦ ϕ1

and there exists an isotopy Φ : [0, 1]×S2 → S2 with Φ(0, .) = ϕ0 and Φ(1, .) =
ϕ1 such that Φ(t, .)|X is constant in t ∈ [0, 1] with Φ(t, X) = Y .

If (f,X) is a marked branched covering and γ a simple closed curve in
S2 \X, then the set f−1(γ) is a disjoint union of simple closed curves.

Definition 4.2.3 (Multicurve). Let (f,X) be a marked branched covering.
We say that a simple closed curve γ ⊂ S2 is a simple closed curve in (S2, X)
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if γ ⊂ S2 \X. It is called peripheral if there exists a component of S2 \γ that
intersects X in at most one point, and non-peripheral otherwise.

Two simple closed curves γ1, γ2 in (S2, X) are called isotopic (relative X)
(write γ1 ≃ γ2) if there exists a continuous one-parameter family γt, t ∈ [1, 2],
of such curves joining γ1 to γ2. We denote the isotopy class of γ1 by [γ1].

A finite set Γ = {γ1, . . . , γm} of disjoint, non-peripheral and pairwise
non-isotopic simple closed curves in (S2, X) is called a multicurve.

Definition 4.2.4 (Irreducible Thurston Obstruction). Let (f,X) be a
marked branched covering and Γ a multicurve. Denote by RΓ the real vector
space spanned by the isotopy classes of the curves in Γ. Then, we associate
to Γ its Thurston transformation fΓ : RΓ → RΓby specifying its action on
representatives γ ∈ Γ of basis elements:

fΓ(γ) :=
∑

γ′⊂f−1(γ)

1

deg(f |γ′ : γ′ → γ)
[γ′] . (4.1)

The sum is taken to be zero if there are no preimage components isotopic to
a curve in Γ.

The linear map given by equation (4.1) is represented by a square matrix
with non-negative entries and thus its largest eigenvalue λ(Γ) is non-negative
and real by the Perron-Frobenius theorem.

A square matrix Ai,j ∈ Rn×n is called irreducible if for each (i, j), there
exists k ≥ 0 such that (Ak)i,j > 0. We say that the multicurve Γ is irreducible
if the matrix representing fΓ is.

An irreducible multicurve Γ is called an irreducible (Thurston) obstruc-
tion if λ(Γ) ≥ 1.

Definition 4.2.5 (Hyperbolic Orbifold). Let f : S2 → S2 be a postcrit-
ically finite branched covering map with postcritical set Pf . There exists a
minimal function νf : S2 → N ∪ {∞} with the properties

1. νf(x) = 1 if x 6∈ Pf ;

2. νf(y) · degy(f)
∣∣ νf(x) for all y ∈ f−1({x}). Here, degy(f) denotes the

local degree of f at y.

We say that f has hyperbolic orbifold if

2 −
∑

x∈Pf

(
1 − 1

νf (x)

)
< 0 .
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It is easy to see that a postcritically finite branched covering f : S2 → S2

with at least three fixed branch points will have hyperbolic orbifold: the
minimal orbifold weight on a fixed branch point is ∞ and hence three such
points suffice to make its Euler characteristic negative. In general, f has
hyperbolic orbifold if #Pf ≥ 5.

Now we are ready to state Thurston’s theorem for marked branched cov-
erings as given in [PT, Theorem 3.1] and proved in [DH3].

Theorem 4.2.6 (Marked Thurston Theorem). Let (f,X) be a marked
branched covering with hyperbolic orbifold. It is Thurston equivalent to a
marked rational map (R, Y ) if and only if it has no irreducible Thurston
obstruction, i.e. for each irreducible multicurve Γ, λ(Γ) < 1. In this case,

the rational map R is unique up to automorphism of Ĉ.

Remark. Note that a marked rational map is in particular a rational map,
“forgetting” the marked set Y .

4.2.2 Arcs Intersecting Obstructions

We present a theorem of Kevin Pilgrim and Tan Lei that is useful to show that
certain marked branched coverings are equivalent to rational maps. Again,
we first need to introduce some notation.

Let (f,X) be a marked branched covering of degree d ≥ 3.

Definition 4.2.7 (Arc System). An arc in (S2, X) is a map α : [0, 1] → S2

such that α({0, 1}) ⊂ X, α((0, 1))∩X = ∅ and α|(0,1) is injective. The notion
of isotopy relative X extends to arcs and is also denoted by ≃.

A set of pairwise non-isotopic arcs in (S2, X) is called an arc system.
Two arc systems Λ,Λ′ are isotopic if each curve in Λ is isotopic relative X
to a unique element of Λ′ and vice versa.

Note that arcs connect marked points (note that we do not require the
endpoints to be distinct) while simple closed curves run around them. We
will see that this leads to intersection properties that will give us some control
over the location of possible Thurston obstructions. Since arcs and curves
are only defined up to isotopy, we make precise what we mean by arcs and
curves intersecting.
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Definition 4.2.8 (Intersection Number). Let α and β each be an arc or
a simple closed curve in (S2, X). Their intersection number is

α · β := min
α′≃α, β′≃β

#{(α′ ∩ β ′) \X} .

This intersection number extends bilinearly to arc systems and multic-
urves, compare [ST, Section 3D].

If λ is an arc in (S2, X), then the closure of a component of f−1(λ \X) is
called a lift of λ. Each arc clearly has d distinct lifts. If Λ is an arc system,
an arc system Λ̃ is called a lift of Λ if each λ̃ ∈ Λ̃ is a lift of some λ ∈ Λ.

An arc system Λ is (forward) invariant (up to isotopy relative X) if it

contains a sub-system Λ0 ⊂ Λ and a lift Λ̃0 such that Λ̃0 ≃ Λ.
For a multicurve Γ, we introduce its unweighted Thurston transformation

f#,Γ : RΓ → RΓ by setting

f#,Γ(γ) =
∑

γ′⊂f−1(γ)

[γ′] ,

analogous to the definition of fΓ. As for the usual Thurston linear transforma-
tion, this map is independent of the choice of representatives and commutes
with iteration. Since (fΓ)i,j ≤ (f#,Γ)i,j and one is zero if and only if the other
is, fΓ is irreducible if and only if f#,Γ is.

For an arc system Λ, introduce a linear map f#,Λ in an analogous way

and say that Λ is irreducible if f#,Λ is. Denote by Λ̃(f ◦n) the union of
those components of f−n(Λ) that are isotopic to elements of Λ relative X,

and define Γ̃(f ◦n) in an analogous way. Note that if Λ is irreducible, each

element of Λ is isotopic to an element of Λ̃(f ◦n). We omit the easy proof of
the following lemma.

Lemma 4.2.9. Let f : S2 → S2 a branched covering and B ⊂ S2 such that
f |B : B → f(B) is a k-to-1 mapping. Let A be any subset of S2. Then,
#(f−1(A) ∩ B) = k · #(A ∩ f(B)).

The following theorem is Theorem 3.2 of [PT]. It says that up to isotopy
relative X, a Thurston obstruction cannot intersect any preimage compo-
nents of an irreducible arc system, except possibly for the arc system itself.
For the sake of completeness, we provide a proof here.
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Theorem 4.2.10 (Arcs Intersecting Obstructions). Let (f,X) be a
marked branched covering, Γ an irreducible Thurston obstruction and Λ an
irreducible arc system. Suppose furthermore that #(Γ ∩ Λ) = Γ · Λ. Then,
exactly one of the following is true:

1. Γ · Λ = 0 and Γ · f−n(Λ) = 0 for all n ≥ 1.

2. Γ · Λ 6= 0 and for n ≥ 1, each component of Γ is isotopic to a unique
component of Γ̃(f ◦n). The mapping f ◦n : Γ̃(f ◦n) → Γ is a homeo-

morphism and Γ̃(f ◦n)∩ (f−n(Λ) \ Λ̃(f ◦n)) = ∅. The same is true when
interchanging the roles of Γ and Λ.

Proof. We give the proof for n = 1 and write Λ̃ for Λ̃(f ◦1). The proof

generalizes easily to n > 1. Let Λ̃′ ⊂ Λ̃ such that Λ̃′ ≃ Λ. Then, f : Λ̃′ \X →
Λ \X is a homeomorphism, because Λ ∩ Pf = ∅. From Definition 4.2.8, we
immediately get for γj ∈ Γ

f#,Γ(γj) · Λ ≤ #(f−1(γj) ∩ Λ̃′) = #(γj ∩ Λ) = γj · Λ , (4.2)

where the last two steps follow by Lemma 4.2.9 and by hypothesis. Define
coefficients bij by setting f#,Γ(γj) =

∑
i bijγi. By inequality (4.2), we get

(
∑

j

∑
i bijγi) · Λ ≤ Γ · Λ. On the other hand,

(
∑

j

∑

i

bijγi

)
· Λ =

(
∑

i

(
∑

j

bij

)
γi

)
· Λ ≥

∑

i

γi · Λ = Γ · Λ , (4.3)

because bij ≥ 1 whenever bij 6= 0 and f#,Γ has neither zero rows nor
columns by irreducibility. Therefore, inequality (4.3) is actually an equal-
ity. If inequality (4.2) was strict, then there exists γ′ ⊂ f−1(γj) such that

#(γ′ ∩ Λ̃′) > #(γj ∩ Λ), which contradicts the fact that f : Λ̃′ \X → Λ \X
is a homeomorphism. Hence, equation (4.2) is also an equality.

If Γ · Λ = 0, let γi ∈ Γ. Then, there is γj ∈ Γ and γ′ ⊂ f−1(γj) such that
γi ≃ γ′. By Definition 4.2.8 and Lemma 4.2.9, γi ·f−1(Λ) ≤ #(γ′∩f−1(Λ)) =
k · #(γj ∩ Λ) = 0. This implies the first case of the claim.

Now consider the case Γ · Λ 6= 0. By equation (4.3), for each i there
exists a unique j such that bij 6= 0 and bij = 1. Thus for γi ∈ Γ, there is a
unique j and a unique γ′ ⊂ f−1(γj) such that γi ≃ γ′. Also, γ′ is the unique
preimage component of γj isotopic to an element of Γ. Equation (4.2) says
that f#,Γ(γj) · Λ = γj · Λ. Since f#,Γ(γj) = γi, we get γi · Λ = γj · Λ = γ′ · Λ.
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Clearly, γ′ · Λ ≤ #(γ′ ∩ Λ̃′), while γ′ ∩ Λ̃′ ⊂ f−1(γj) ∩ Λ̃′. Hence, γ′ ∩ Λ̃′ =

f−1(γj) ∩ Λ̃′ and γ′ is the unique curve in f−1(γj) intersecting Λ̃′. Since this

holds for all j, f−1(Γ) ∩ Λ̃′ = Γ̃ ∩ Λ̃′.

We have seen that the matrix fΓ has exactly one non-zero entry of the
form 1/kj, kj ∈ N, in each row and column and no non-zero entries on the
diagonal. It is easy to check that the leading eigenvalue of fΓ is (k1 · . . . ·
kn)−

1

n ≥ 1 by hypothesis. It follows that kj = 1 for all j and fΓ = f#,Γ.

Repeating the above arguments with Γ and Λ interchanged, we find that
Λ̃′ = Λ̃. Hence, Γ̃∩f−1(Λ) = Γ̃∩ Λ̃ = f−1(Γ)∩ Λ̃ and #(Γ̃∩ Λ̃) = #(Γ∩Λ) =

Γ · Λ. It follows that Γ̃ ∩ (f−1(Λ) \ Λ̃) = ∅.

4.3 Combinatorial Models

4.3.1 The Channel Diagram

In the following, by a (finite) graph we mean a connected topological space Γ
homeomorphic to the quotient of a finite disjoint union of closed arcs by an
equivalence relation on the set of their endpoints. The arcs are called edges
of the graph, an equivalence class of endpoints a vertex.

We usually consider imbedded graphs on S2, i.e. the homeomorphic image
of a graph in S2. In the following, the closure and boundary operators will
be understood with respect to the topology of Ĉ, unless otherwise stated.
Also, we will say that a set X ⊂ Ĉ is bounded if ∞ 6∈ X.

Lemma 4.3.1 (Only Critical Point). Let f be a postcritically finite New-
ton map, ξ ∈ C a fixed point of f and Uξ its immediate basin. Then, there
is no critical point in Uξ except ξ.

Proof. Let k ≥ 2 be the multiplicity of ξ as a critical point and suppose
there is a critical point other than ξ in Uξ. Then, by [Mi, Theorem 9.3] there
exists a maximal 0 < r < 1 and an open set ξ ∈ V ⊂ V ⊂ Uξ such that the
Böttcher map near ξ extends to a conformal isomorphism ϕ : Br(0) → V .
Then, ϕ ◦ f(z) = ϕ(z)k for z ∈ V and there is a critical point ζ ∈ ∂V .
Let zl ∈ V be a sequence satisfying zl → ζ . By assumption, there exists
n ∈ N such that f ◦n(ζ) = ξ. By continuity, we also get liml→∞ f ◦n(zl) = ξ,
a contradiction.
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Hence, each immediate basin Uξ has a global Böttcher map ϕξ : (D, 0) →
(Uξ, ξ) with the property that f(ϕξ(z)) = ϕξ(z

kξ) for each z ∈ D [Mi, Theo-
rem 9.1 & 9.3], where kξ ≥ 2 is the multiplicity of ξ as a critical point of
f . The kξ − 1 radial lines (or internal rays) in D which are fixed under
z 7→ zkξ map under ϕ to kξ − 1 pairwise disjoint, non-homotopic injective

curves Γ1
ξ , . . . ,Γ

kξ

ξ in Uξ that connect ξ to ∞ and are invariant under f . They
represent all accesses to ∞ of Uξ. The union

∆ :=
⋃

ξ

kξ⋃

i=1

Γi
ξ

of these invariant curves over all immediate basins forms a connected graph
in Ĉ that we call the channel diagram of f . The channel diagram records
the mutual locations of the immediate basins of f , providing an elementary
combinatorial structure to the dynamical plane. Figure 4.2 shows a Newton
map and its channel diagram. The following definition is an axiomatization
of the channel diagram.

Definition 4.3.2 (Abstract Channel Diagram). An abstract channel
diagram of degree d is a graph ∆ ⊂ S2 with vertices v0, . . . , vd and edges
e1, . . . , el that satisfies the following properties:

1. l ≤ 2d− 2;

2. each edge joins v0 to a vi, i > 0;

3. each vi is connected to v0 by at least one edge;

4. if ei and ej both join v0 to vk, then each connected component of S2 \
ei ∪ ej contains at least one vertex.

We say that an abstract channel diagram ∆ is realized if there exists a
Newton map whose channel diagram is isotopic to ∆.

It is clear from the definition that a channel diagram has at most 2d− 2
edges. If Uξ is an immediate basin, it is shown in Corollary 2.5.2 that every
component of C \ Uξ contains at least one fixed point (see also Theorem
4.3.4). Hence every channel diagram is an abstract channel diagram.
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��
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Figure 4.2: A Newton map of degree 6 with its channel diagram. The solid
lines represent the fixed rays of the immediate basins, the black dots corre-
spond to the fixed points. The dashed lines show the first preimage of the
channel diagram: white circles represent poles, a cross is a free critical point.
Clearly visible are the free pole, and that the right boundary component of
the central immediate basin contains two poles.

4.3.2 Basic Properties of Channel Diagrams

The following useful observation is a direct consequence of Theorem 2.4.6.
As always, f denotes a postcritically fixed Newton map (although the lemma
is true in much more general situations).

Lemma 4.3.3 (Fixed Points). Let D ⊂ Ĉ be a closed topological disk such
that γ := f(∂D) is a simple closed curve with the property that γ ∩ D̊ = ∅.
Let V be the unique component of Ĉ \ γ intersecting D and let {γ′i}i∈I be the
boundary components of f−1(V )∩D. Then, the number of fixed points in D
equals ∑

i∈I

deg(f : γ′i → γ) ,

where the sum equals 0 if I = ∅.

Remark. Since f has no parabolic fixed points, we do not need to take
multiplicities into account.

The following theorem shows a relation between poles and fixed points
outside immediate basins. It considerably sharpens Corollary 2.5.2.



4.3. COMBINATORIAL MODELS 67

Theorem 4.3.4 (Fixed Points and Poles). Let Uξ be an immediate basin
of f and V a component of C \ Uξ. Then, the number of fixed points in V
equals the number of poles in V , counting multiplicities.

Proof. If Uξ does not separate the plane, i.e. it has only one access to ∞,
then the claim follows trivially. So suppose in the following that there is a
Böttcher map ϕ : (D, 0) → (Uξ, ξ) with f(ϕ(z)) = ϕ(zk) for z ∈ D such that
k ≥ 3.

We are going to construct a simple closed curve Γ through ∞ that sur-
rounds V and has a preimage component Γ′

1 with the same properties such

that Γ does not intersect the component of Ĉ \ Γ′
1 containing V . Then, we

will use Lemma 4.3.3.

Let p be the number of poles in V and choose 0 < ρ < 1. Let

γ := {re2πi d
k−1 : r ≥ ρ} ∪ {re2πi d+1

k−1 : r ≥ ρ} ∪ {ρe2πiθ : d
k−1

≤ θ ≤ d+1
k−1

} ,

where d is chosen in the unique way such that Γ := ϕ(γ) ∪ {∞} separates
V from ξ. Let Γ′

1 be the component of f−1(Γ) containing ∞. It is easy to
see that ϕ−1(Γ′

1 ∩ C) consists of exactly two connected components, hence
Γ′

1 contains one pole on ∂Uξ ∩ V and deg(f : Γ′
1 → Γ) = 2 (compare Figure

4.3). Let Γ′
2, . . . ,Γ

′
m be the other preimage components of Γ in V . Clearly,

deg(f : Γ′
i → Γ) equals the number of poles on Γ′

i, counting multiplicities,
for each i. Conversely, each pole in V is contained in some Γ′

i. Now it follows

from Lemma 4.3.3 that V ⊂ Ĉ contains p+ 1 fixed points. Since the simple
fixed point ∞ ∈ ∂V was included in the count, the claim follows.

Remark. If f is not postcritically fixed, we cannot use a global Böttcher
coordinate, but since the construction of γ is local, the proof should extend
to the general case with little change.

Corollary 4.3.5 (Fixed Points in Complement). Let ∆ be the channel

diagram of f and V a component of Ĉ \ ∆. If V contains p poles of f , then
∂V ∩ C contains p+ 1 fixed points.

Proof. If V is the only component of Ĉ \ ∆, the claim follows trivially. If
there is exactly one fixed point ξ on ∂V whose immediate basin Uξ separates
the plane, then the claim follows directly from Theorem 4.3.4. Indeed, let
in this case R1, R2 be the fixed internal rays of Uξ that are on ∂V and let
V1 be the component of C \ (R1 ∪ R2 ∪ {ξ}) such that V ⊂ V1. Then, V1
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V

’1

Uξ

γ

p

ξ

Γ

0

Γ

Figure 4.3: Illustrating the proof of Theorem 4.3.4: the construction of γ ⊂ D

on the left (the dashed curves are components of ϕ−1(Γ′
1)), the curve Γ ⊂ Uξ

on the right. The dashed curve on the right indicates where Γ′
1 differs from

Γ.

also contains p poles and by Theorem 4.3.4, V1 contains p fixed points. Since
ξ ∈ ∂V as well, the claim follows.

Now suppose that ∂V contains fixed points ξ1, . . . , ξk whose immediate
basins all separate the plane. Let R1, R2 be the fixed internal rays of Uξ1

on ∂V and let V1 be as above. Let m be the number of poles in V1 and
m′ = m− p > 0. For j = 2, . . . , k, denote by V 1

j , . . . , V
ij
j all complementary

components of the fixed internal rays of Uξj
that do not contain V . It is easy

to see that all V i
j combined contain m′ poles and hence, ∂V ∩ C contains

p+ 1 fixed points, including ξ1.

Corollary 4.3.6 (Existence of Shared Poles). Let ∆ be the channel

diagram of f and V a component of Ĉ \∆. There is at least one pair of fixed
points ξ1, ξ2 ∈ ∂V ∩ C such that ∂Uξ1 and ∂Uξ2 intersect in a pole.

Proof. Let Uξ be an immediate basin. Clearly, the components of ∂Uξ ∩ C

are separated by the accesses to ∞. In Böttcher coordinates, there are pre-
fixed internal rays in between any two fixed rays, and since all rational rays
land, every component of ∂Uξ ∩ C contains at least one pole (Figure 4.2
shows that there can be more: the right boundary component of the central
immediate basin contains two poles). By Corollary 4.3.5, there has to be at
least one pole in V that is on the boundary of at least two immediate basins.
If a pole was on the boundary of more than two immediate basins, then f
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cannot preserve the cyclic order of the immediate basins near that pole, a
contradiction.

4.3.3 Extending Maps on Finite Graphs

The channel diagram motivates the definition of a Newton graph. For this,
we first need to introduce some notation regarding maps on imbedded graphs
and their extensions to S2, compare [BFH, Chapter 6]. We assume in the
following without explicit mention that all graphs are imbedded into S2.

Definition 4.3.7 (Graph Map). Let Γ1,Γ2 ⊂ S2 be two finite graphs and
g : Γ1 → Γ2 continuous. We call g a graph map if it is injective on each edge
of Γ1 and forward and inverse images of vertices are vertices.

An orientation-preserving branched covering map g : S2 → S2 is called a
regular extension of g if g|Γ1

= g and g is injective on each component of
S2 \ Γ1.

Lemma 4.3.8 (Isotopic Graph Maps). [BFH, Corollary 6.3] Let g, h :
Γ1 → Γ2 be two graph maps that coincide on the vertices of Γ1 such that
if γ ⊂ Γ1 is an edge, then g(γ) = h(γ) as a set. Suppose that g and h
have regular extensions g, h : S2 → S2. Then there exists a homeomorphism
ψ : S2 → S2, isotopic to the identity relative the vertices of Γ1, such that
g = h ◦ ψ.

Let g : Γ1 → Γ2 be a graph map. For the next proposition, we will assume
without loss of generality that each vertex v of Γ1 has a neighborhood Uv ⊂ S2

such that all edges of Γ1 that enter Uv terminate at v; we may also assume
that in local cordinates, Uv is a round disk of radius 1 centered at v, that
all edges entering Uv are radial lines and that g|Uv

is length-preserving. We
make analogous assumptions for Γ2. Then, we can extend g to each Uv as
in [BFH]: for a vertex v ∈ Γ1, let γ1 and γ2 be two adjacent edges ending
there. In local coordinates, these are radial lines at angles, say, θ1, θ2 such
that 0 < θ2 − θ1 ≤ 2π (if v is an endpoint of Γ1, then set θ1 = 0, θ2 = 2π).
In the same way, choose arguments θ′1, θ

′
2 for the image edges in Ug(v) and

extend g to a map g̃ on Γ1 ∪
⋃

v Uv by mapping

(ρ, θ) 7→
(
ρ,
θ′2 − θ′1
θ2 − θ1

· θ
)
,
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where (ρ, θ) are polar coordinates in the sector bounded by the rays at θ1
and θ2. In other words, sectors are mapped onto sectors in an orientation-
preserving way. Then, the following holds.

Proposition 4.3.9 (Regular Extension). [BFH, Proposition 6.4] The map
g : Γ1 → Γ2 has a regular extension if and only if for every vertex y ∈ Γ2

and every component U of S2 \ Γ1, the extension g̃ is injective on
⋃

v∈g−1({y})

Uv ∩ U .

In this case, the regular extension g may have critical points only at the
vertices of Γ1.

4.3.4 The Newton Graph

With these preparations, we are ready to introduce the concept of a Newton
graph. It is a generalization of the Newton tree introduced by Janet Head
[He] for postcritically finite cubic Newton maps and by Jiaqi Luo [Lu] for
higher-degree postcritically finite Newton maps with only one free critical
value.

Definition 4.3.10 (Abstract Newton Graph). Let Γ ⊂ S2 be a connected
graph and g : Γ → Γ a graph map. The pair (Γ, g) is called an abstract
Newton graph if it satisfies the following conditions:

1. There exists dΓ ≥ 3 and an abstract channel diagram ∆ ( Γ of degree
dΓ such that g fixes each vertex and each edge of ∆.

2. If v0, . . . , vdΓ
are the vertices of ∆, then vi ∈ Γ \ ∆ if and only if i 6= 0.

3. there are exactly 2dΓ−2 vertices of Γ at which g is not injective, count-
ing multiplicities.

4. There exists a minimal NΓ ∈ N such that g◦NΓ(Γ) ⊂ ∆.

5. The graph Γ \ ∆ is connected.

6. For every vertex y ∈ Γ and every component U of S2 \Γ, the extension
g̃ is injective on ⋃

v∈g−1({y})

Uv ∩ U .
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If (Γ, g) is an abstract Newton graph, g can be extended to a branched
covering map g : S2 → S2 by Proposition 4.3.9. Condition (3) and the
Riemann-Hurwitz formula ensure that g has degree dΓ. An immediate con-
sequence of Lemma 4.3.8 is that g is unique up to Thurston equivalence.

If ∆ is the channel diagram of the postcritically fixed Newton map f , we
denote by ∆n the component of f−n(∆) that contains ∆ and by ∆′

n the set
of vertices of ∆n. With these definitions, we can formulate the first part of
our main result.

Theorem 4.3.11 (Realization). Every abstract Newton graph is realized
by a postcritically fixed Newton map which is unique up to automorphism of
Ĉ.

More precisely, let (Γ, g) be an abstract Newton graph and X the set of
vertices of Γ. Then, there exists a postcritically fixed Newton map f with
channel diagram ∆̃ and a subset Y ⊂ ∆̃′

NΓ
such that (g,X) and (f, Y ) are

Thurston equivalent as marked branched coverings.

Proof. Let ∆ ⊂ Γ be the abstract channel diagram in Γ. Observe that by
condition (2) of Definition 4.3.10, the vertices v1, . . . , vdΓ

of ∆ are branch
points of g. Since dΓ ≥ 3, g has hyperbolic orbifold and it suffices to show
that (g,X) has no irreducible Thurston obstruction: it then follows from
Theorem 4.2.6 that g is Thurston equivalent to a rational map f of degree
dΓ, which is unique up to Möbius transformation. Then, f has dΓ + 1 fixed
points, dΓ of which are superattracting because g has the marked branch
points v1, . . . , vdΓ

. The last fixed point is repelling [Mi, Corollary 12.7 &
14.5] and after possibly conjugating f with a Möbius transformation, we
may assume that it is at ∞. Now it follows from Proposition 4.1.2 that f is
a Newton map.

So suppose by way of contradiction that Π is an irreducible Thurston
obstruction for (g,X) and let γ ∈ Π. Then, γ is a non-peripheral simple
closed curve in S2 \ X. It is easy to see that each edge λ of ∆ forms an
irreducible arc system, hence Theorem 4.2.10 implies that γ ·(g−n(λ)\λ) = 0
for all n ≥ 1. Since this is true for all edges of ∆, we get that γ · (Γ \ ∆) = 0.
But since Γ \ ∆ is connected and contains X \ {v0}, this means that γ is
peripheral, a contradiction.
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4.4 The Channel Diagram of a Newton Map

In order to complete the classification of postcritically fixed Newton maps, it
remains to prove the following theorem. Let ∆ be the channel diagram of f
and recall that ∆n denotes the connected component of f−n(∆) containing
∆.

Theorem 4.4.1 (Newton Map Generates Newton Graph). Every post-
critically fixed Newton map f gives rise to an abstract Newton graph.

More precisely, there exists N ∈ N such that (∆N , f) is an abstract New-
ton graph.

We will need the rest of this section to prove Theorem 4.4.1. It is clear
that all (∆n, f) satisfy conditions (1), (2) and (4) of Definition 4.3.10. We
will show that for sufficiently large N , ∆N will contain all critical points of
f , and hence satisfy (3) and (6). Then, condition (5) will follow from Lemma
4.4.5.

So it remains to show that all critical points of f will be contained in
∆N for some N ∈ N. First observe that ∆ connects every fixed point of f
to ∞. Since f is postcritically fixed, each critical point of f is connected to
some prepole by an iterated preimage of ∆. It thus suffices to show that for
sufficiently large n, all poles of f are connected to ∞ through ∆n; the claim
then follows by induction.

If ∆1 contains all poles of f , then we are done. So assume in the following
that there exists a component C1 of f−1(∆) such that C1 ∩ ∆1 = ∅ (Figures
4.2 and 4.4 suggest that this may occur whenever deg(f) ≥ 4). Equivalently,

we may assume that there exists a component V0 of Ĉ \∆ and a component
V1 of f−1(V0) such that V1 is multiply connected. Then, C1 intersects ∂V1.

Denote by Cn the component of f−n(∆) containing C1. Our standing
assumption will be that Cn ∩ ∆n = ∅ for all n ∈ N (otherwise we would be
done). We will lead this assumption to a contradiction.

Lemma 4.4.2 (Properties of V1). V1 is unbounded and satisfies V1 ⊂ V0.

Proof. Since ∆ ⊂ f−1(∆), we either have V1 ⊂ V0 or V1 ∩ V0 = ∅. In the
latter case, let γ ⊂ V0 be a simple closed curve that avoids all critical values
and has the property that there exists a component γ′ of f−1(γ) ∩ V1 that
is not contractible in V1 (the image of a sufficiently large circle under any

Riemann map of V0 will do). Let D be the component of Ĉ \ γ′ that does
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Figure 4.4: This Newton map of degree 4 has a pole which is not on any
immediate basin boundary. The polynomial underlying the picture is a slight
perturbation of z 7→ z4 − 1.

not intersect V0. By Lemma 4.3.3, D contains a fixed point of f . This is a
contradiction, because D is separated from ∆.

Now suppose that V1 is bounded. Then, either V1 ⊂ V0 or V1 is contained
in a bounded component W of Ĉ \ ∆1. In the first case, we can construct
a fixed point in V1 as before and arrive at a contradiction. In the second
case, it follows from our standing assumption that C2 ⊂W as well and since
f(C2) = ∆1, there exists a component W ′ ⊂ W ′ ⊂ W of Ĉ \ C2 such that
f(W ′) = W . Again by Lemma 4.3.3 (or by observing that f : W ′ → W is
polynomial-like), we arrive at the contradiction that W ′ must contain a fixed
point outside ∆.

Corollary 4.4.3 (Free Pole in Unbounded Nest). For each n ∈ N,
there exists an unbounded component Vn of f−n(V0) such that Vn ⊂ Vn−1,
Cn ∩ ∂Vn 6= ∅ and f : Vn → Vn−1 is a proper map of degree dn ≥ 2.

Proof. Let n ≥ 2. By induction on Lemma 4.4.2, we may suppose that Vn−1

is unbounded. Recall that ∞ is fixed under f and has positive real multiplier,
and that ∆n is the only unbounded component of f−n(∆). Hence for each
unbounded end of Vn−1, there is a component of f−1(Vn−1) that contains this
end. If the boundaries of all these components were disjoint from Cn, then
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Cn would be contained in a bounded component of Ĉ \ ∆n. As in Lemma
4.4.2, this leads to a contradiction.

Let Vn be the unbounded component of f−1(Vn−1) whose boundary in-
tersects Cn (by our standing assumption, this defines Vn uniquely). Clearly,
f : Vn → Vn−1 is proper and ∂Vn intersects at least two components of
f−1(∆n−1): ∆n and Cn. Hence dn ≥ 2.

The unbounded component of ∂Vn is clearly contained in ∆n. We call
this component the outer boundary of Vn and denote it with Bn. Now we are
ready to prove the following.

Proposition 4.4.4 (All Poles in ∆n). There exists n ∈ N such that ∆n

contains all poles of f .

Proof. The idea of the proof is that the disk bounded by Bn that contains
Cn shrinks as n → ∞, while Cn itself grows, yielding a contradiction. The
proof will be in several steps.

1) First observe that while all Vn are unbounded, V1 has strictly less
unbounded ends than V0: Corollary 4.3.6 implies that there exist fixed points
ξ1, ξ2 ∈ C, a pole p ∈ C and internal rays R1

1 ∈ Uξ1 , R
2
1 ∈ Uξ2 such that

p ∈ X1 := R1
1 ∪R2

1 ⊂ B1 is connected and separates some unbounded end of
V0 from V1.

2) Let Xn be the component of f−n(X1) ∩ Vn whose closure contains ξ1
(since f is conjugate to some z 7→ zk near ξ1, this defines Xn uniquely). If
such a component does not exist, then ξ1 must be separated from Vn by a
similar “bridge” between two fixed points on Bn. In this case, replace Xn by
this bridge and start the argument over. Since f has only finitely many fixed
points, we may conclude that Xn exists as desired for all sufficiently large n,
possibly after choosing new ξi finitely many times.

3) Let us show that ξ2 ∈ Xn for at most finitely many n. Suppose
this was not true. Recall that then, Xn consists of two internal rays R1

n ∈
Uξ1 , R

2
n ∈ Uξ2 such that f ◦(n−1)(Ri

n) = Ri
1 and a continuum X ′

n that satisfies
f ◦(n−1)(X ′

n) ⊂ X1 (X ′
n is a prepole, unless p was a postcritical point. In

that case, X ′
n may consist of a bounded number of internal rays in some

Fatou components of f . In either case, it follows from [Mi, Corollary 19.4]
that diam(X ′

n) → 0 as n → ∞). We know that the dynamics of f within
the Uξi

is conjugate to some z 7→ zk; therefore, Ri
n converges to a fixed ray

Ri
0 ⊂ ∆ ∩ Bn. Consider the unbounded component Un of Ĉ \ R1

0 ∪R2
0 ∪Xn

that contains Cn. Now, Ĉ \ Cn has bounded components of some definite
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area. On the other hand, area(Un) → 0, because its boundary converges to

the arc R1
0 ∪ R2

0. This is a contradiction.
4) Hence, ξ2 6∈ Xn for all sufficiently large n. Then, the component Yn

of f−n(X1) ∩ Vn whose closure contains ξ2 is disjoint from Xn. If these two
sets are in the same component of ∆n \∆n−1, then let Xn be this component
and show as in step (3) that this can only happen for finitely many n. Also,
by steps (2) and (3), Xn and Yn cannot connect to other fixed points except
ξ1, ξ2 for infinitely many n.

5) Let {ξi
2} be the points in f−1({ξ2})∩V n−1, where n is chosen minimal

such that Xm ∩ Bm = {ξ1} for all m ≥ n. Such an n exists by (4). Since
Xn must contain some ξi

2, it follows that it connects a “free” pole to ∆n. In
other words, ∆n contains at least one pole more than ∆n−1. Since there is
also another preimage of ξ1 connected to this pole in f−n(∆) and preimages
cannot just end, it follows that at time n, there exists a curve segment in Bn

that connects ξ1 to some finite fixed point in ∆n through this “new” pole.
6) Repeating steps (2)–(5) with X1 being this new connection, we can

show that this will also have to break up and connect a new free pole to ∆n′

for some n′ sufficiently large. Since f has only finitely many poles, we arrive
at a contradiction to our standing assumption after finitely many steps. This
finishes the proof.

In order to prove Theorem 4.4.1, it only remains to show that ∆N \ ∆
is connected if N is large enough such that ∆N−1 contains all critical points
of f . Then, (∆N , f) will be a Newton graph of f . (We need to pull back
this additional step to ensure that the critical points of f are actually branch
points of f on ∆N .)

Lemma 4.4.5 (Newton Graph Connected in C). Let N ∈ N minimal
such that ∆N−1 contains all critical points of f . Then, ∆N \ ∆ is connected.

Proof. Suppose that the bounded set ∆N−1 \ ∆ is not connected (otherwise,

we are done). Then, there exists an unbounded component V of Ĉ \ ∆N−1

that separates the plane, i.e. V has at least two accesses to ∞. Let W be a
neighborhood of ∞ and let V1, . . . , Vk be the components of V ∩W . If W
is sufficiently small, f acts injectively on each Vi and there exists a branch
gi of f−1 that maps Vi into itself (recall that ∞ is a repelling fixed point of
f , so it is attracting for the gi). By assumption, V is simply connected and
contains no critical values of f , so the gi extend to all of V by holomorphic
continuation on lines. Since ∆N−1 ⊂ ∆N , we get gi(V ) ⊂ V for all i. If there
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are i 6= j such that gi(V ) ∩ gj(V ) 6= ∅, then it follows that gi = gj and we
have found a holomorphic self-map of V with two attracting boundary fixed
points, contradicting the Denjoy-Wolff theorem [Mi, Theorem 5.4].

Hence, the gi(V ) are pairwise disjoint and if w ∈ ∂gi(V ) for some i, then
f(w) ∈ ∂V , for otherwise the map gi would be defined in a neighborhood of
f(w). Hence w ∈ f−1(∆N−1) and since all gi(V ) are open disks, we even get

that w ∈ ∆N . It follows that no component of Ĉ \ ∆N has more than one
access to ∞.



Chapter 5

Outlook

In this chapter, we discuss some questions that arise naturally from the
research outlined in Chapters 2–4. These questions show possible directions
for new research, and might lead to a more complete understanding of the
dynamics of Newton maps.

5.1 Root Finding

While we have not directly discussed effective root finding with Newton’s
method, this problem has always been a motivation for our work. Building
on the results of Hubbard, Schleicher and Sutherland [HSS], we ask if it is
possible to construct universal sets of starting values for more general Newton
maps. More precisely, let f = peh, where p and h are polynomials. Then, we
have seen in Proposition 2.2.11 that the Newton map Nf is rational. Assume
that p is normalized in such a way that all roots of p are contained in D.

Question 5.1.1 (Global Starting Points). Can one explicitly construct
a finite set S ′

d that intersects all immediate basins for all maps Nf , where f
has the above form and deg p = d?

A more bold version of this question would allow h to be transcendental.
In this case, Nf is transcendental with finitely many fixed points, all of which
are contained in D.

In the case of general transcendental Newton maps with infinitely many
fixed points, this question would be ill-posed. But locally, the question still
makes sense.

77



78 CHAPTER 5. OUTLOOK

Question 5.1.2 (Local Starting Points). Let f be an entire function and
Nf its Newton map. Suppose that γ ⊂ C is a (smooth) Jordan curve that is
disjoint from all roots of f , and let n > 0 be the number of roots of f in the
bounded component U of C \ γ.

Is it possible to construct a finite set S ⊂ γ that depends only on γ and n,
but not on Nf , such that S intersects all immediate basins of the fixed points
in U?

Even under additional hypotheses, progress in this direction might be
useful in making the notion of a Newton map local. This may lead to a
theory of Newton-like mappings in the spirit of polynomial-like mappings
[DH2].

5.2 Virtual Immediate Basins

The assumption on the degree of Nf within V in Theorem 2.5.1 was made
for purely technical reasons. Hence it is natural to ask the following.

Question 5.2.1 (Infinite Degree). Using the notation of Theorem 2.5.1,
is it true that V always contains an immediate basin or a virtual immediate
basin, even if there exists z ∈ Ĉ such that N−1

f ({z}) ∩ V is an infinite set?
Alternatively, does there exist a transcendental Newton map N and a set

V as above that contains neither an immediate nor a virtual immediate basin?

Our Lefschetz-type fixed point estimate 2.4.6 allowed us to show that
a Newton map has no invariant Herman rings (Corollary 2.4.7). Ruling
out non-trivial cycles of Herman rings seems less straightforward. Taixes
(personal communication) has recently accomplished this using methods of
holomorphic surgery.

Question 5.2.2 (Herman Rings). Is it possible to prove the non-existence
of cycles of Herman rings for Newton maps with the methods of Section 2.4?

Assuming that Shishikura’s theorem [Sh] extends to the transcendental
case and that the Julia set of a Newton map is indeed always connected, we
ask if there is a proof of this fact that does not use surgery.

Our last question in this section aims to strengthen Theorem 3.6.1.

Question 5.2.3 (Hyperbolic Virtual Basins). What is the numerical
value (or an upper bound thereof) of the constant H in Theorem 3.6.1?
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5.3 Classification of Newton Maps

For the construction of the Newton graph in Chapter 4, we have only shown
that (∆n, f) is an abstract Newton graph if n was sufficiently large.

Question 5.3.1 (Number of Pull-Backs). With the notation of Section
4.4, what is the minimum number of pull-backs needed to ensure that all
critical points of f are contained in ∆n?

A very natural extension of our results in Chapter 4 and a major break-
through in the theory of rational dynamics would be a classification of all
postcritically finite Newton maps. This might need a combination of the
theory of Newton graphs with the theory of polynomial-like mappings [DH2]
and their Hubbard trees.

Question 5.3.2 (Classification of Newton Maps). Is it possible to obtain
a combinatorial classification of all postcritically finite Newton maps (i.e.
including preperiodic and periodic dynamics of the free critical points), e.g.
by combining the Newton graph with several Hubbard trees?

A positive answer to that question would yield a description of all hyper-
bolic components of the space of Newton maps (of any given degree). Then,
one could extend the successful polynomial theory and investigate local con-
nectivity of the Newton-bifurcation locus, density of hyperbolicity, etc.

Beyond that, one might try to generalize the idea of a channel diagram
so that it makes sense for transcendental maps with infinitely many fixed
points.

Question 5.3.3 (Transcendental Classification). Is there a combinato-
rial object that can be used to classify transcendental Newton maps or some
reasonable subclass thereof?
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Appendix A

On Questions of Fatou and
Eremenko Concerning Escaping
Points of Entire Functions

This chapter presents an excerpt of the results proved in [RRRS]. We show
that for a large class of bounded-type entire functions, in particular those of
finite order, every escaping point can be connected to ∞ by a curve of escap-
ing points. This gives a partial positive answer to a question of Eremenko,
and answers a question of Fatou from 1926.

A.1 Introduction

The dynamical study of transcendental entire functions was initiated by Fa-
tou in 1926 [Fa]. As well as being a fascinating field of its own, the topic
has recently received increasing interest partly because transcendental phe-
nomena seem to be deeply linked with the behavior of polynomials in cases
where the degree gets large.

In his seminal 1926 article, Fatou observed that the Julia sets of certain
explicit entire functions, such as z 7→ r sin(z), r ∈ R, contain curves of points
which escape to infinity under iteration. He then remarks

Il serait intéressant de rechercher si cette propriété n’apparti-
endrait pas à des substitutions beaucoup plus générales.1

1“It would be interesting to study whether this property holds for much more general
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Sixty years later, Eremenko [Er2] was the first to undertake a thorough
study of the escaping set

I(f) := {z ∈ C : |fn(z)| → ∞}
of an arbitrary entire transcendental function. In particular, he showed that
every component of I(f) is unbounded, and asks whether in fact each compo-
nent of I(f) is unbounded (we will call this problem Eremenko’s conjecture,
or more precisely, the weak form of Eremenko’s conjecture). He also states
that

It is plausible that the set I(f) always has the following prop-
erty: every point z ∈ I(f) can be joined with ∞ by a curve in
I(f).

This can be seen as making Fatou’s original question more precise, and will
be referred to in the following as the strong form of Eremenko’s conjecture.

These problems are of particular importance since the existence of such
curves can be used to study entire functions using combinatorial methods.
This is analogous to the notion of “dynamic rays” of polynomials introduced
by Douady and Hubbard [DH1], which has proved to be one of the funda-
mental tools for the successful study of polynomial dynamics.

We show that, in general, the answer to Fatou’s question (and thus also
to Eremenko’s conjecture in its strong form) is negative, even when restricted
to the class B of entire functions with a bounded set of singular values. For
such functions, all escaping points lie in the Julia set.

Theorem A.1.1 (Entire Functions without Rays). There exists a hy-
perbolic entire function f ∈ B such that every path component of J(f) is
bounded.

For a proof of this theorem, we refer to [RRRS]. On the other hand, we
show that the strong form of Eremenko’s conjecture does hold for a large
subclass of B. Recall that f has finite order if log log |f(z)| = O(log |z|) as
|z| → ∞.

Theorem A.1.2 (Entire Functions With Rays). Let f ∈ B be a function
of finite order, or more generally a finite composition of such functions. Then
every point z ∈ I(f) can be connected to ∞ by a curve γ such that fn|γ → ∞
uniformly.

functions.”
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Remark. Observe that while B is invariant under finite compositions, the
property of having finite order is not.

We remark that our methods are purely local in that they only use the
existence of a logarithmic singularity over ∞. Therefore, they will apply to
any function having a logarithmic singularity over ∞.

A.1.1 Previous Results

In the early 1980s, Devaney gave a complete description of the Julia set of
the map z 7→ λ exp(z) with λ ∈ (0, 1/e); i.e., real exponential maps with an
attracting fixed point (see [DK]). This seems to have been the first entire
function for which it was discovered that the escaping set (and in fact the
Julia set) consists of curves to ∞. Devaney, Goldberg and Hubbard [DGH]
proved the existence of some curves to ∞ in I(f) for arbitrary exponential
maps z 7→ λ exp(z) and championed the idea that these should be thought
of as analogs of dynamic rays for polynomials. Devaney and Tangerman
[DT] proved a similar result for a subclass of B consisting of functions whose
tracts (see Section A.2) behave in essentially the same way as those of the
exponential map. It seems that it was partly these developments that led
Eremenko to pose the abovementioned questions in his 1989 paper.

In [SZ], it was shown that every escaping point of every exponential map
can be connected to ∞ by a curve consisting of escaping points. This seems to
have been the first time that a complete classification of all escaping points,
and with it a positive answer to either of Eremenko’s questions, was given
for a complete family of transcendental functions. This result was carried
over to the cosine family z 7→ a exp(z) + b exp(−z) in [RoS].

A very interesting and surprising case in which the weak form of Ere-
menko’s question has a positive answer was discovered by Rippon and Stal-
lard [RS2]. For the case of an entire function with a multiply-connected
wandering domain, they show that I(f) consists of a single and unbounded
connected component. Such a function, however, is not in class B. More-
over, they showed that for any transcendental entire function, the subset
A(f) ⊂ I(f) introduced by Bergweiler and Hinkkanen [BH] has only un-
bounded components.
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Notation

Throughout this chapter, we denote the Riemann sphere by Ĉ = C ∪ {∞}
and the right half plane by H := {z ∈ C : Rez > 0}. Also, we write

Br(z0) := {z ∈ C : |z − z0| < r} and HR := {z ∈ C : Rez > R} .

If A ⊂ C, the closures of A in C and Ĉ are denoted A and Â, respectively.

Euclidean length and distance are denoted ℓ and dist, respectively. If a
domain V ⊂ C omits at least two points of the plane, we similarly denote
hyperbolic length and distance in V by ℓV and distV .

A.2 Bounded-Type Entire Functions

A.2.1 Tracts

Let f ∈ B, and let R0 be sufficiently large (R0 > |f(0)| + sup{|s| : s ∈
sing(f−1)} will suffice). Setting WR0

:= {z ∈ C : |z| > R0}, it is easy to see
that every component V of

V := f−1(WR0
)

is an unbounded Jordan domain, and that f : V → WR0
is a universal

covering. (In other words, f has only logarithmic singularities over ∞.) The
components of V are called the tracts of f . Observe that each compact
K ⊂ C will intersect at most finitely many tracts of f .

A.2.2 Logarithmic Coordinates

To study logarithmic singularities, it is natural to apply a logarithmic change
of coordinates (compare [EL, Section 2]). More precisely, let ρ0 := logR0,
T := exp−1(V) and

Hρ0
:= exp−1(WR0

) = {z ∈ C : Rez > ρ0} .
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Then there is a function F : T → Hρ0
(the logarithmic transform of f) such

that the following diagram commutes.

T F
- Hρ0

V

exp

?

f
- WR0

.

exp

?

The components of T are also called the tracts of F .
By construction, the function F and its domain T have the following

properties:

1. every component T of T is an unbounded Jordan domain;

2. T can be written as the disjoint union

T =
⋃

T component of T

T .

3. for every component T of T , F : T → Hρ0
is a conformal isomorphism,

and F extends continuously to the closure T of T in C;

4. for every component T of T , exp |T is injective;

5. T is invariant under translation by 2πi; in particular, for every tract T
of T , F |T is unique up to translation by 2πinT , where nT ∈ Z can be
chosen independently for each tract T .

6. |F ′(z)| ≥ 1
4π

(ReF (z) − ρ0) ≥ 2, provided that R0 was chosen large
enough.

Property (6) is [EL, Lemma 2.1] and follows from a simple application of
Koebe’s distortion theorem; in the following, we will refer to this property
as expansivity of F . Furthermore, applying the change of variable w = z/R0,
we may suppose without loss of generality that R0 = 1; i.e., ρ0 = 0.

We will denote by Blog the class of all functions F : T → H such that
T and F satisfy (1) to (6), regardless of whether they arise from an entire

function f ∈ B or not. In particular, if f : U → Ĉ is any holomorphic
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function with a logarithmic singularity U ⊂ C over ∞, then we can associate
to f a function F ∈ Blog which encodes the behavior of f in its logarithmic
singularities.

If F ∈ Blog and T is a tract of F , we denote the inverse of the conformal
map F : T → H by F−1

T .

A.2.3 Combinatorics in Blog

Let F ∈ Blog; we denote the Julia set and the set of escaping points of F by

J(F ) := {z ∈ T : F ◦n(z) is defined and in T for all n ≥ 0} and

I(F ) := {z ∈ J(F ) : ReF ◦n(z) → ∞} .
If f ∈ B and F is its logarithmic transform, then it is not hard to show that
exp(J(F )) ⊂ J(f) and exp(I(F )) ⊂ I(f). Furthermore, every escaping point
of f eventually maps to some point in exp(I(F )). For K > 0 we also define
more generally

JK(F ) := {z ∈ T : F ◦n(z) is defined and ReF ◦n(z) ≥ K for all n ≥ 0} .
The partition of the domain of F into tracts suggests a natural way to

assign symbolic dynamics to points in J(F ). More precisely, let z ∈ J(F )
and, for j ≥ 0, let Tj be the tract of F with f j(z) ∈ Tj . Then the sequence

s := T0T1T2 . . .

is called the external address of z. More generally, we refer to any sequence
of tracts of F as an external address (of F ). If s is such an external address,
we define the closed set

Js := {z ∈ J(F ) : z has address s} ;

we define Is and JK
s in a similar fashion.

We denote the one-sided shift-operator on external addresses by σ; i.e.
σ(T0T1T2 . . . ) = T1T2 . . . .

Definition A.2.1 (Dynamic Rays, Ray Tails). Let F ∈ Blog. A ray tail
with address s is an injective curve

γs : [0,∞) → Is

such that limt→∞ Reγs(t) = +∞. A ray tail whose image in Is is maximal
with respect to inclusion is called a dynamic ray.
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A.3 General Properties of Class Blog

In this section, we prove some general results for functions in class Blog.
The first of these strengthens the aforementioned expansion estimate of [EL,
Lemma 2.1] by showing that such a function expands distances exponentially.

Lemma A.3.1 (Exponential Separation of Orbits). Let F ∈ Blog and
T a tract of F . If ω, ζ ∈ T such that |ω − ζ | > 2, then

|F (ω) − F (ζ)| ≥ exp(|ω − ζ |/8π) · min{ReF (ω),ReF (ζ)} .

Proof. Suppose without loss of generality that ReF (ω) ≥ ReF (ζ). By as-
sumption and the standard estimate of hyperbolic distance, it follows that

|ω − ζ |/2π ≤ distT (ω, ζ) = distH(F (ω), F (ζ)) .

We will estimate the euclidean distance s between the point F (ζ) and a point
ξ that satisfies distH(F (ζ), ξ) = distH(F (ω), F (ζ)) and ReF (ζ) = Reξ. Then,
|F (ω) − F (ζ)| ≥ s. Let γ be the unique curve that consists of straight line
segments parallel to the coordinate axes and connects F (ζ) with ξ through
F (ζ) + s and ξ + s, see Figure A.1.

ζ

ξξ

F(  )ω

S

s γ

ζF(  )+sF(  )

+s

Figure A.1: The set S = {z ∈ H : distH(z, F (ζ)) = distH(F (ζ), F (ω))} is
a euclidean circle. Clearly, ξ is the euclidean closest point to F (ζ) on this
circle that satisfies Reξ ≥ ReF (ζ). We use the dashed line γ to estimate s.
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Each of the horizontal parts of γ ⊂ H has hyperbolic length

log ((ReF (ζ) + s)/ReF (ζ)) ,

and it is easy to see that the hyperbolic length of the vertical part is at most
1. Hence, we get

|ω − ζ |
2π

≤ 2 log
ReF (ζ) + s

ReF (ζ)
+ 1 ,

and therefore

|F (ω) − F (ζ)| ≥ s ≥
(

exp

( |ω − ζ |
4π

− 1

2

)
− 1

)
· ReF (ζ) .

Since ex−1/2 − 1 > ex/2 for x > 2, the claim follows.

Remark. It follows from expansivity of F that for any two distinct points
w, z with the same external address, there exists k ∈ N such that |F ◦k(w) −
F ◦k(z)| > 2. Hence Lemma A.3.1 will apply eventually.

Lemma A.3.2 (Escape of Some Real Parts). Let F ∈ Blog. Then there
is K > 0 with the following property: if ζ, ω ∈ JK(F ) are distinct points with
the same external address, then

lim
k→∞

max(ReF ◦k(ζ),ReF ◦k(ω)) = ∞ .

Proof. Choose K large enough so that no bounded component of H ∩ T
intersects the line {z ∈ C : Rez = K} (this is possible because up to
translation, only finitely many tracts intersect ∂H). Let α : (0, 1) → HK be
a curve such that limt→0 Reα(t) = K, limt→1 Reα(t) = ∞ and that is disjoint
from all tracts of F (since all tracts are isolated, we may follow the boundary
of a tract to ∞ and then perturb this curve outward of T ).

Now let ζ, ω ∈ JK(F ) have the same external address and set ζk :=
F ◦k(ζ), ωk := F ◦k(ω). The family of curves {α+ 2πil}l∈Z partitions HK into
countably many domains Wl that are unbounded to the right, intersect any
left-half plane H−

S := {z ∈ C : Re(z) ≤ S} (S > K) in a bounded set and
have the property that for all k ≥ 1 there exists l ∈ Z such that ζk, ωk ∈Wl.
Note that dS := diam(Wl ∩H−

S ) only depends on S and not on l, because the
Wl are vertical translates of each other.
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It follows from expansivity of F that |ωk − ζk| → ∞. Thus for sufficiently
large k, we have |ωk − ζk| > dS. So at least one of the points ωk and ζk does
not belong to H−

S , or in other words

max(Reωk,Reζk) ≥ S .

As mentioned in the introduction, Rippon and Stallard [RS2] showed that
the escaping set of every entire function f contains unbounded connected sets.
The following theorem is a version of this result for functions in Blog.

Theorem A.3.3 (Existence of Unbounded Continua in Js). For every
F ∈ Blog there exists K ≥ 0 with the following property. If z0 ∈ JK(F ) and s
is the external address of z0, then there exists an unbounded closed connected
set A ⊂ Js with dist(z0, A) ≤ 2π.

Proof. Similarly as in the previous lemma, choose K large enough so that no
bounded component of H ∩ T intersects the line {z ∈ C : Rez = K}. Let
s = T0T1 . . . be the external address of z0. We set zk := F ◦k(z) and consider
the disks B2π(wk). If S ⊂ C is an unbounded set such that S \ B2π(wk) has
exactly one unbounded component, let us denote this component by Xk(S).

We claim that Xk(Tk) is contained in H for all k ≥ 1. (However, this
set is not necessarily contained in HK .) Indeed, this is trivial if Tk ⊂ H.
Otherwise, let α− and α+ denote the two unbounded components of H∩∂Tk .
Since Tk does not intersect its 2πiZ-translates, both α− and α+ must intersect
the vertical line segment L := zk + i[−2π, 2π]. It follows easily that the
unbounded component of Tk \ L is contained in H.

In particular, we can pull back the set Xk(Tk) into Tk−1 using F−1
Tk−1

. By
expansivity of F , this pullback has distance at most π from zk−1. Continuing
inductively, we obtain the sets

Ak := X0(F
−1
T0

(X1(F
−1
T1

(. . . (Xk−1(F
−1
Tk−1

(Xk(Tk)))) . . . ))))

for k ≥ 1; let A0 = X0(T0). Each Âk ⊂ Ĉ is a continuum, has distance at

most 2π from z0 and contains Âk+1. Hence, the set A′ =
⋂

k≥0 Âk has the
same properties and there exists a component A of A′\{∞} with dist(A, z0) ≤
2π. By definition, A is closed and connected, and it is unbounded by the
Boundary Bumping theorem [Na, Theorem 5.6].
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A.4 Functions Satisfying a Head-Start Con-

dition

Throughout this section, we will fix some function F ∈ Blog. We will intro-
duce the “head-start condition” which ensures that every escaping orbit will
eventually land on a ray tail. In the subsequent section, we give sufficient
conditions on F under which the head-start condition is satisfied.

Definition A.4.1 (Head-Start Condition). Let T and T ′ be tracts of F
and let ϕ : R → R be a (not necessarily strictly) monotonically increasing
continuous function with ϕ(x) > x for all x ∈ R. We say that the pair (T, T ′)
satisfies the head-start condition for ϕ if, for all z, w ∈ T with F (z), F (w) ∈
T ′,

Rew > ϕ(Rez) =⇒ ReF (w) > ϕ(ReF (z)) .

An external address s satisfies the head-start condition for ϕ if all consec-
utive pairs of tracts (Tk, Tk+1) satisfy the head-start condition for ϕ, and if for
all z, w ∈ Js, there exists M ∈ N such that either ReF ◦M(z) > ϕ(ReF ◦M(w))
or ReF ◦M(w) > ϕ(ReF ◦M(z)).

We say that F satisfies a head-start condition if every external address
of F satisfies the head-start condition for some ϕ. If the same function ϕ
can be chosen for all external addresses, we say that F satisfies the uniform
head-start condition for ϕ.

Theorem A.4.2 (Ray Tails). Suppose that F satisfies a head-start condi-
tion. Then for every escaping point w, there exists k ∈ N such that F ◦k(w)
is on a ray tail γ. Under the condition γ(0) = F ◦k(w), this ray tail is unique
up to parametrization and satisfies ReF ◦n(z) → ∞ uniformly on γ.

We will devote the remainder of this section to the proof of Theorem
A.4.2.

If s satisfies any head-start condition, the points in Js are eventually
ordered by their real parts: for any two points z, w ∈ Js, there is a K ∈ N

such that after K iteration steps, the orbit of z remains to the right of w or
vice versa.

Definition and Lemma A.4.3 (Speed Ordering). Let s be an external
address satisfying the head-start condition for ϕ. For z, w ∈ Js, we say that
z ≻ w if there exists K ∈ N such that ReF ◦K(z) > ϕ(ReF ◦K(w)). We extend

this order to Ĵs = Js ∪ {∞} by the convention that ∞ ≻ z for all z ∈ Js.
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With this definition, (Ĵs,≻) is a totally ordered space.

Remark. Note that if z ≻ w, then ReF ◦k(z) > ϕ(ReF ◦k(w)) for all
k ≥ K.

Proof. By definition, ReF ◦k(z) < ϕ(ReF ◦k(z)) for all k ∈ N and z ∈ Js.
Hence “≻” is non-reflexive.

Let a, b, c ∈ Js such that a ≻ b and b ≻ c. Then, there exist k, l ∈ N

such that ReF ◦k(a) > ϕ(ReF ◦k(b)) and ReF ◦l(b) > ϕ(ReF ◦l(c)). Setting
m := max{k, l}, we get from the head-start condition that ReF ◦m(a) >
ϕ(ReF ◦m(b)) > ReF ◦m(b) > ϕ(ReF ◦m(c)). Hence a ≻ c and “≻” is transi-
tive.

By assumption, for any distinct z, w ∈ Js there exists k ∈ N such that
ReF ◦k(w) > ϕ(ReF ◦k(z)) or ReF ◦k(z) > ϕ(ReF ◦k(w)). It follows that any
two points are comparable under “≻”. This completes the proof.

Corollary A.4.4 (Growth of Real Parts). Let s be an external address
that satisfies the head-start condition for ϕ and z, w ∈ Js. If w ≻ z, then
w ∈ I(F ). In particular, with at most one exception every point in Js escapes.

Proof. This is an immediate corollary of Lemma A.3.2 and the definition of
“≻”.

Proposition A.4.5 (Arcs in Js). Let s be an external address satisfying the

head-start condition for ϕ. Then the topology of Ĵs as a subset of the Riemann

sphere Ĉ agrees with the order topology induced by ≻. In particular,

1. every component of Ĵs is homeomorphic to a (possibly degenerate) com-
pact interval, and

2. there exists K > 0 such that if JK
s 6= ∅, then Js has a unique unbounded

component, which is a closed arc to infinity.

Proof. Let us first show that id : Ĵs → (Ĵs,≻) is continuous. Since Ĵs is

compact and the order topology on Ĵs is Hausdorff, this implies that id is a
homeomorphism and that both topologies agree. It suffices to show that sub-
basis elements for the order topology of the form U−

a := {w ∈ Js : a ≻ w}
and U+

a := {w ∈ Ĵs : w ≻ a} are open in Ĵs for any a ∈ Ĵs. We will only
give a proof for the sets U−

a ; the proof for U+
a is analogous.
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Let w ∈ U−
a and k ∈ N minimal such that ReF ◦k(a) > ϕ(ReF ◦k(w)).

Since ϕ,Re and F ◦k are continuous, this is true for a neighborhood V of w.
It follows that U−

a is a neighborhood of w in Ĵs, because V ∩ Ĵs ⊂ U−
a .

Thus the topology of Ĵs agrees with the order topology. Every connected

component C of Ĵs is compact; it follows from [Na, Theorems 6.16 & 6.17]
that C is either a point or an arc. This proves (a). To prove (b), observe
that existence follows from Theorem A.3.3, while uniqueness follows because
∞ is the largest element of (Ĵs,≻).

Proposition A.4.6 (Points in the Unbounded Component of Js). Let
s be an external address that satisfies the head-start condition for ϕ. Then
there exists K ′ ≥ 0 such that JK ′

s is contained in the unbounded component
of Js, which is an arc. (The value K ′ depends on F and ϕ, but not on s.)

Proof. Let K be the constant from Theorem A.3.3, set K ′ := max{ϕ(0) +
1, K} and let z0 ∈ JK ′

s . For each k ≥ 0, we let zk := F ◦k(z0) and consider
the set

Sk := {w ∈ Jσk(s) : w ≻ zk} ∪ {zk} .
By Proposition A.4.5, this set has a unique unbounded component Ak which
is a closed arc. By Theorem A.3.3, Ak satisfies dist(zk, Ak) ≤ 2π.

Let us show Ak ⊂ H, so that we may apply F−1 to it. Indeed, if w ∈ Jσk(s)

with Rew ≤ 0, then the choice of K ′ and monotonicity of ϕ yield that
Rezk > ϕ(0) ≥ ϕ(Rew), and therefore zk ≻ w. Thus, w 6∈ Sk. We conclude
that F−1

Tk−1
(Ak) ⊂ Ak−1, because it is unbounded and contained in Sk−1. Since

F is expanding, this means that

dist(A0, z0) ≤ 2−kdist(zk, Ak) ≤ 2−(k−1)π

for all k ≥ 0. Thus z0 ∈ A0, as required. That A0 is an arc follows from
Proposition A.4.5.

Proof of Theorem A.4.2. Let w be an escaping point for F and s its external
address. By hypothesis, there exists ϕ : R → R such that s satisfies the
head-start condition for ϕ. If K ′ is the constant from Proposition A.4.6,
then by the same proposition there exists k ≥ 0 such that F ◦k(w) ∈ JK

s and

γk := {z ∈ Iσk(s) : z ≻ F ◦k(w)} ∪ {F ◦k(w)} is an injective curve connecting
F ◦k(w) to ∞, i.e. a ray tail. Note that K ′ can be chosen independently from
s.



A.5. GEOMETRY, GROWTH & HEAD-START 93

Let γ′ be another curve connecting F ◦k(w) to ∞. It follows from the
construction of γk that there exists ℓ ∈ N such that F ◦ℓ(γ′) is not contained
in Tℓ+k. Hence γ′ must intersect H \ F−ℓ(T ) and is thus not a ray tail.
This implies uniqueness. It remains to show that the real parts of all points
on γk grow uniformly. Observe that for all z ∈ γ and ℓ ∈ N, ReF ◦ℓ(z) ≥
inf{ϕ−1(ReF ◦(k+ℓ)(w))}. Hence the ReF ◦ℓ(z) converge uniformly to ∞ as
ℓ→ ∞.

Theorem A.4.7 (Existence of Absorbing Brush). Suppose that F sat-
isfies a head-start condition. Then there exists a closed subset X ⊂ J(F )
with the following properties:

1. F (X) ⊂ X;

2. each connected component C of X is an arc to infinity, all of whose
points except possibly the finite endpoint escape;

3. every escaping point of F enters X after finitely many iterations. If F
satisfies the uniform head-start condition for some function, then there
exists K ′ > 0 such that JK ′

(F ) ⊂ X.

Proof. Let X denote the union over all external addresses of all unbounded
components of J(F ). Since X̂ is the unbounded connected component of the
compact set J(F ) ∪ {∞}, X is a closed set. Clearly X is F -invariant, and
satisfies (2) and (3) by Propositions A.4.5 and A.4.6.

A.5 Geometry, Growth & Head-Start

This section discusses geometric properties of tracts which imply a head-start
condition. Moreover, we present a class of functions in Blog that satisfies these
properties.

Let K > 1 and M > 0. We say that s satisfies the linear head-start
condition with constants K and M if it satisfies the head-start condition for

ϕ(t) := K · t+ +M ,

where t+ = max{t, 0}.
We will restrict our attention to functions whose tracts do not grow too

quickly in the imaginary direction.
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Definition A.5.1 (Bounded Slope). Let F ∈ Blog. We say that the tracts
of F have bounded slope (with constants α, β > 0) if

|Imz − Imw| ≤ α max{Rez,Rew, 0} + β

whenever z and w belong to a common tract of F . We denote the class of all
functions with this property by Blog(α, β).

Remark. This condition is equivalent to the existence of a curve γ :
[0,∞) → T with ReF (γ(t)) → ∞ and lim sup |Imγ(t)|/Reγ(t) < ∞. Hence
if one tract of F has bounded slope, then property (5) of Blog implies that
all tracts do.

The bounded slope condition means, roughly, that the distance between
two points grows in proportion to the difference of their real parts. It turns
out that this implies a linear head-start condition.

Lemma A.5.2 (Linear Separation of Orbits). Let F ∈ Blog(α, β) and
K,M > 0. Then, there exists δ = δ(α, β,K,M) > 0 with the following
property. If s is an external address and z, w ∈ Js with |z − w| > δ, then

ReF ◦k(z) > KReF ◦k(w) +M or ReF ◦k(w) > KReF ◦k(z) +M

for all k ∈ N.

Proof. Again, let zk = F ◦k(z) and wk = F ◦k(w). Set δ′ =
√

2 + (α + β)2,
δ = max{δ′, 16π log δ′,M} and fix k ∈ N. By possibly enlarging δ further,
we may assume that et/16π > K + t + 1/2 for t ≥ δ − 1/2.

Suppose that Rewk+1 ≥ Rezk+1. Using the bounded slope condition, it
is easy to estimate |wk+1 − zk+1|2 ≤ (Rewk+1)

2(2 + α2) + 2αβRewk+1 + β2.
If Rewk+1 < 1, then this implies that |wk+1 − zk+1| ≤ δ′, contradicting
expansivity of F . Hence Rewk+1 ≥ 1 and we conclude |wk+1 − zk+1| ≤
δ′Rewk+1. Since δ′ > 2, Lemma A.3.1 now yields

Rewk+1 ≥
exp(|wk − zk|/8π)

δ′
· Rezk+1 ≥ e

1

16π
|wk−zk| · Rezk+1 , (A.1)

because exp(x/8π)/δ′ > exp(x/16π) for all x > 16π log δ′.
If Rezk+1 ≥ 1, then equation (A.1) implies

Rewk+1 ≥ e
|wk−zk|

16π Rezk+1 > (K+|wk−zk|+ 1
2
)Rezk+1 ≥ KRezk+1+|wk−zk| .



A.5. GEOMETRY, GROWTH & HEAD-START 95

Otherwise, let z′ = F−1
T (1 + Imzk+1). Then |zk − z′| < 1/2, so |z′ − wk| ≥

|wk − zk| − 1/2. Applying the above argument to z′ and wk, we again have

Rewk+1 > KReF (z′) + |z′ − wk| + 1/2 ≥ KRezk+1 + |wk − zk| .

After possibly interchanging the roles of w and z, the claim follows, be-
cause |wk − zk| > M .

Corollary A.5.3 (Linear Head-Start is Preserved by Composition).
Let F : TF → H and G : TG → H be in Blog. If F and G have tracts of
bounded slope and satisfy linear head-start conditions, then so does F ◦G.

Proof. Since Blog(α′, β ′) ⊂ Blog(α, β) whenever α ≥ α′ or β ≥ β ′, we may
suppose that F,G ∈ Blog(α, β) for some α, β > 0. Since TF◦G = F−1(TG ∩
H) ⊂ TF , we get F ◦G ∈ Blog(α, β).

Let KF ,MF and KG,MG be the constants for the linear head-start con-
ditions of F and G, respectively, and set K = max{KF , KG} and M = δ,
where δ = δ(α, β,K,max{MF ,MG}) is chosen as in Lemma A.5.2. Let
T be a tract of F and w, z ∈ T , such that Rew > KRez + M . Then,
|w − z| ≥ Rew − Rez > M ≥ δ, and the head-start condition of F gives
ReF (w) > KF ReF (z) +MF ≥ ReF (z). Now, Lemma A.5.2 gives that

ReF (w) > KReF (z) +M .

The same applies for G, so we may suppose that both F and G satisfy the
head-start condition with constants K and M . Now it follows by definition
that F ◦G satisfies the head-start condition with constants K and M .

Remark. Note that in general, the image of F ◦ G will not equal H, so
strictly speaking, F ◦ G is not an element of Blog. But since only finitely
many tracts of G (up to translation) will leave H, the set TG \ H is compact
and hence, the image of TF◦G under F ◦ G contains a right-half plane. So
after possibly restricting TF◦G and shifting it to the left, F ◦G will be in Blog

up to conjugation with a translation.

Definition A.5.4 (Bounded Wiggling). Let F ∈ Blog, and let T be a tract
of F . We say that T has bounded wiggling if there exist K > 1 and µ > 0
such that for every z0 ∈ T , every point z on the hyperbolic geodesic of T that
connects z0 to ∞ satisfies

Rez > 1
K

Rez0 − µ .
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We say that F ∈ Blog has uniformly bounded wiggling if the wiggling of all
tracts of F is bounded by the same constants K,µ.

Proposition A.5.5 (Functions with Linear Head-Start Conditions).
Let F ∈ Blog(α, β), s = T0T1T2 . . . be an external address, and let K > 1.
Then the following are equivalent:

1. For some µ > 0, all tracts Tk have bounded wiggling with constants K
and µ;

2. for some M > 0, s satisfies the linear head-start condition with con-
stants K and M .

The relation between µ and M depends on K, α and β, but not on s.

Proof. Suppose that (1) holds and let M = δ(α, β,K,K(µ+ 2π(α+ β))) be
the constant from Lemma A.5.2. Let k ∈ N and choose z, w ∈ Tk, such that
F (z), F (w) ∈ Tk+1 and Rew > KRez + M . Then, |z − w| > M and by
Lemma A.5.2, it suffices to show that ReF (w) ≥ ReF (z).

So suppose by way of contradiction that ReF (z) > ReF (w). In this
case, the same arguments as in Lemma A.5.2 give that ReF (z) ≥ 1. Set
Γ := {F (w) + t : t ≥ 0} and γ := F−1

Tk
(Γ); in other words, γ is the geodesic

of Tk connecting w to ∞. The bounded slope condition ensures that

distTk
(z, γ) = distH(F (z),Γ) ≤ |ImF (z) − ImF (w)|

ReF (z)
≤ α + β .

Therefore, dist(z, γ) ≤ 2π(α + β) and consequently, Rez ≥ minζ∈γ{Reζ} −
2π(α + β). By the bounded wiggling condition, we have Reζ ≥ 1

K
Rew − µ

for all ζ ∈ γ. Thus

Rew ≤ K(Rez + µ+ 2π(α+ β)) ≤ KRez +M ,

a contradiction.
For the converse direction, suppose that (2) holds. Let T be a tract

of F and z ∈ T . Observe that there exists a constant κ > 0 such that
dist(F (z), I(F )) < κ (this is because some right half-plane contains the 2πiZ-
translates of a curve connecting some escaping point to ∞). Pulling back,
we find that there exists an escaping point ζ ∈ T such that z and ζ can be
joined in T with a curve of euclidean length at most κ. Let s be the external
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address of ζ and γ ⊂ {w ∈ Is : w ≻ ζ} be a curve of escaping points that
join ζ to ∞. By the head-start condition, every w ∈ γ satisfies

Rew ≥ Reζ

K
− M

K
.

Hence there exists a curve γ′ ⊂ T that connects z to ∞ such that for every
w ∈ γ′,

Rew ≥ Reζ

K
− M

K
− κ ≥ Rez

K
− κ

K
− M

K
− κ .

Now the claim follows from Lemma A.6.3.

Finally, let us consider functions of finite order.

Definition A.5.6 (Finite Order). We say that F ∈ Blog has finite order
if

log ReF (w) = O(Rew)

as Rew → ∞ in T .

Note that this definition ensures that f ∈ B has finite order if and only
if its logarithmic transform F ∈ Blog has finite order.

Theorem A.5.7 (Finite Order Functions Have Good Geometry).
Suppose that F has finite order. Then the tracts of F have bounded slope
and (uniformly) bounded wiggling.

Proof. By the Ahlfors non-spiralling theorem A.6.1, F ∈ Blog(α, β) for some
constants α, β, and by the finite-order condition, there are ρ and M such
that log ReF (z) ≤ ρRez+M for all z ∈ T . Let T be a tract of F and z ∈ T .

Suppose first that ReF (z) ≥ 1. Consider the geodesic γ(t) := F−1
T (F (z)+

t) (for t ≥ 0). Since the hyperbolic distance between z and γ(t) is at most
log t, we have

Rez − Reγ(t) ≤ 2π log t ≤ 2π log ReF (γ(t)) ≤ 2π(ρReγ(t) +M) .

In other words, Rez ≤ (1 + 2πρ)Reγ(t) + 2πM , i.e.

Reγ(t) ≥ 1

1 + 2πρ
Rez − 2πM

1 + 2πρ
.

Since z was chosen arbitrarily, F has uniformly bounded wiggling with con-
stants 1/(1 + 2πρ) and 2πM/(1 + 2πρ).

If ReF (z) < 1, we can connect z to a point w ∈ T with ReF (w) ≥ 1 by
a curve of bounded length.
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Proof of Theorem A.1.2. Let f = gn ◦ · · · ◦ g1, where g1, . . . , gn ∈ B have
finite order, and let G1, . . . , Gn be the logarithmic transforms of g1, . . . , gn.
Then, each Gi has bounded slope and satisfies a linear head-start condition by
Theorem A.5.7 and Proposition A.5.5. By Corollary A.5.3, F = Gn ◦ · · · ◦G1

also satisfies a linear head-start condition and it is easy to see that F is a
logarithmic transform of f , after possibly restricting its domain and enlarging
the critical disk WR0

of f .

Now let X be the absorbing collection of ray tails from Theorem A.4.7.
Then, X ′ = exp(X) ⊂ I(f) is absorbing and there exists k ∈ N such that
f ◦k(z) ∈ X ′. It follows from Theorem A.4.7 that there exists a unique arc
γk : [0,∞) → X ′ with γk(0) = f ◦k(z) and limt→∞ γk(t) = ∞. It satisfies
f ◦n|γk

→ ∞ uniformly.

Now let T ∈ (0,∞] be maximal such that there is a curve γk−1 : [0, T ) →
C with γk−1(0) = f ◦(k−1)(z) and f(γk−1(t)) = γk(t). If T = ∞, then clearly

γk−1(t) → ∞ as t → ∞. Otherwise, w = limt→T γk−1(t) exists in Ĉ. If
w 6= ∞, we could extend γk−1 further (choosing any one of the possible
branches of f−1 in the case where w is a critical point), contradicting the
maximality of T . Thus w = ∞ (and, in particular, γk(T ) is an asymptotic
value of f).

In either case, we have found a curve γk−1 ⊂ f−1(γk) ⊂ I(f) which
connects f ◦(k−1)(z) to infinity. Continuing this method inductively, we find
a curve γ0 with the required properties.

A.6 Some Hyperbolic Geometry

The Ahlfors spiral theorem [Hay, Theorem 8.21] states that any entire func-
tion of finite order has controlled spiralling. We give a simple proof of this
result for functions in class Blog.

Theorem A.6.1 (Spiral Theorem). Suppose that F ∈ Blog has finite or-
der. Then the tracts of F have bounded slope.

Proof. Let T be a tract of F , set ρ := sup{ logReF (z)
Rez

: z ∈ H ∩ T } < ∞, and
consider the central geodesic γ : [1,∞) → T ; t 7→ F−1

T (t). Then for every
t ≥ 1,

|γ(t)| − |γ(1)| ≤ |γ(t) − γ(1)| ≤ 2πℓT
(
γ
(
[1, t]

))
= 2π log t ≤ 2πρReγ(t) .
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Thus we have proved the existence of an asymptotic curve γ satisfying
|Imγ(t)| ≤ |γ(t)| ≤ KReγ(t) + M for K = 2πρ and M = |γ(1)|, which
is equivalent to the bounded slope condition.

Proposition A.6.2 (Geodesics are short). There is a constant C > 0
with the following property. Let V ⊂ C be an unbounded Jordan domain and
F : V → H a conformal map with F (∞) = ∞, and let γ(t) := F−1(t) be the
central geodesic.

1. For every t ∈ R there exists a geodesic α connecting t to the positive
imaginary axis such that

ℓ(F−1(α)) ≤ C dist(γ(t), ∂V ) .

The same is true for the negative imaginary axis.

2. Let 1 ≤ R1 < R2 with R2/R1 ≥ 2. Then any curve α ⊂ V connect-
ing the two vertical geodesics F−1({|z| = R1}) and F−1({|z| = R2})
satisfies

C diam(α) ≥ ℓ(γ([R1, R2])) .

3. Let z, w ∈ V , let α1 be the geodesic of V connecting z and w and let
α2 ⊂ V be any curve connecting z and w. Then

diam(α1) ≤ C diam(α2) .

A proof of these inequalities can be found in [Po, Section 4.5].

Lemma A.6.3 (Domains with bounded wiggling). Let V be an un-
bounded Jordan domain such that exp |V is injective, and let F : V → H a
conformal isomorphism with F (∞) = ∞. Suppose that there are K,M > 0
such that every z0 ∈ V can be connected to ∞ by a curve γ ⊂ V satisfying

Rew ≥ Rez0
K

−M

for all w ∈ γ. Then there is M ′ > 0 which depends only on M such that, for
every z0 ∈ V ,

Rez ≥ Rez0
K

−M ′

for all z on the geodesic connecting z0 to ∞.
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Proof. Let z0 ∈ V , let γ be a curve as in the statement, and let

γ′ := {F−1(F (z0) + r) : r ≥ 0}

be the hyperbolic geodesic connecting z0 to ∞, and let z ∈ γ′. Then by
the previous proposition, there is a crosscut of V passing through z which
separates z0 from ∞ and has diameter at most Cdist(z, ∂V ) ≤ 2πC.

The curve γ must intersect this crosscut in some point w. We thus have

Rez ≥ Rew − 2Cπ ≥ Rez0/K −M − 2πC .



Appendix B

The Mechoui — A Family
Recipe

The Mechoui—a whole lamb roasted over an open fire—is a traditional North-
African dish. The idea of preparing a Mechoui at special occasions was
introduced to the holomorphic dynamics community by Adrien Douady and
passed on to John Hubbard and Dierk Schleicher.

During a visit of Adrien Douady at International University Bremen in
September 2004, we used the opportunity to learn how to prepare a Mechoui
from him. In this chapter, we would like to lay out how to successfully
prepare this dish and what preparations are necessary in advance.

A Mechoui is the perfect meal for an outdoors-style campfire dinner or a
BBQ evening on the porch. Served with some tasty side-dishes and dessert,
one lamb easily feeds 30 adults. However, we will in the following concentrate
on the lamb itself and not go into sides, drinks, dessert, or anything else
necessary for a full meal.

B.1 Equipment

In order to cook a Mechoui, a decent fireplace and a rotating spit are the
only equipment necessary.

The spit should be made of stainless steel and 1.6m in length, pointed
at one end and with a crank at the other. Since rotation of the lamb will
only be necessary at discrete time intervals, it should be possible to arrest
the spit in any position. In order to fix the lamb on the spit, it must have
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two movable awls parallel to the spit and at least 10cm in length.
There are two choices of fire one can make under the lamb: charcoal

or wood. A charcoal fire is advisable to be made in a barbecue grill of
dimensions at least 100× 50cm. It burns hotter than wood and the Mechoui
will be finished faster, but the spit must be placed lower over the coal than
with wood. For a wood fire, any fireplace (a shallow hole in the ground, a
ring of rocks or metal, etc.) of diameter not larger than 120cm will do.

In either case, a contraption to fix the spit over the fire is necessary.
Depending on individual skills, this can be built from wood or metal or
bought from a blacksmith. The device should be resting so firmly on the
ground that a load of 20kg can be rotated on the spit without tilting. It
should allow for the spit to be placed at various heights between 40 and 120cm
above ground. Figure B.1 describes the device that has been successfully
used at International University Bremen. It was custom built by a local
blacksmith.

5cm

160cm

120cm

80cm

20cm

Figure B.1: The Mechoui grill of Dierk Schleicher. The bottom frame consists
of 4 separate pieces of square steel pipe (edge length 20mm) and can be
adjusted in length (all arrows indicate screws). The frame goes around the
campfire or BBQ.

The only other permanent acquisition necessary is a meat thermometer
to measure the progress of the meat over the fire. Experienced chefs may
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replace this tool by instinct.

B.2 Shopping

This section contains a list of items necessary to make the Mechoui.

• The lamb should be ordered a week in advance from a trusted butcher.
It should weigh about 20kg, skinned and with head and innards re-
moved (except possibly the kidneys). The breastbone must not be
split, and the meat should hang for several days before the event. It
must not be marinated at delivery.

• 200kg firewood (preferably beech), cut into logs, or 20kg charcoal,
depending on the desired fire and cooking time.

• A large clean tablet to place the finished lamb on for cutting.

• A sharp knife and a large fork to cut the meat.

• Firestarters, matches, old paper etc. to get the fire going.

• Several large trashbags.

• A long stick.

• Several meters of thin, non-insulated wire and a pair of pliers.

• A shovel to stir the fire.

• 2kg onions.

• About 60 cloves of garlic (400g).

• 200g pitted olives.

• A knife and cutting board.

• Rosemary, thyme, ground pepper and salt.

• 3 liters of vegetable oil.

• A clean piece of cloth.
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• A large bowl.

• Several meters aluminum foil.

• Detergent and other cleaning equipment at will.

B.3 Over the Fire

For an open woodfire, a cooking time of 5–6 hours should be allocated; over
a charcoal grill, the lamb reaches its target temperature after 3–4 hours. The
Mechoui can succeed in slight rainfall; under such conditions, the fire needs
to be hotter (allocate more fuel) and the lamb needs approximately an hour
extra.

The fire should be started an hour before the lamb is put on. After it
burns, peel the onions and the garlic (cut the onions into quarters; the cloves
of garlic need not be cut). Insert the spit into the lamb through throat and
rear end and attach the lamb firmly with the awls. To give it more stability
when turning, the backbone should be attached to the spit using several
short pieces of wire: the wire can be poked through the meat around spit
and backbone and twisted tight. Then, fill the hollow belly with onions,
garlic and olives and sew it shut with a long piece of wire, poking it through
both edges of the meat in short spacing. Several leftover pieces of garlic may
be wedged into small cuts in the outside of the lamb to add to the flavor.

Now, the lamb can go over the fire, which needs to be watched for the
entire time and fed so that it remains so hot that one cannot hold a hand
near the lamb.

Fill the oil into the bowl, add spices and stir. Attach the piece of cloth
to the long stick with the wire. Dipping the cloth into the bowl, the oil and
spice can be applied to the lamb brush-style without burning one’s hand.
This should be done in regular intervals (e.g. every 15min.), depending on
the heat of the fire.

Now the lamb needs to cook for 3–6 hours as discussed above. Approx-
imately every five minutes, the spit can be rotated 1/8 turn. The target
temperature for the meat is between 50◦ and 60◦C everywhere, meaning es-
pecially deep down inside the lamb near the bones.

Should the lamb be done too early or run danger of burning, wrap it with
a layer of aluminum foil (kept in place with more wire).
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When dinner is ready, remove the lamb from the fire, cut into pieces and
enjoy!

Figure B.2: Adrien Douady and Dierk Schleicher grilling a lamb on IUB
campus (September 2004).
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