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We, the dissertation committee for the above candidate for the Doctor of
Philosophy degree, hereby recommend acceptance of this dissertation.

John Milnor
Professor, Department of Mathematics, SUNY Stony Brook

Dissertation Director

Mikhail Lyubich
Professor, Department of Mathematics, SUNY Stony Brook

Chairman of Dissertation

Scott Sutherland
Professor, Department of Mathematics, SUNY Stony Brook

Jun Hu
Assistant Professor, Department of Mathematics, CUNY Brooklyn

Outside Member

This dissertation is accepted by the Graduate School.

Graduate School

ii



Abstract of the Dissertation

The Connected Isentropes Conjecture in a
Space of Quartic Polynomials

by

Anca Ruxandra Rǎdulescu

Doctor of Philosophy

in

Mathematics

Stony Brook University

2005

This paper illustrates how dynamic complexity of a system evolves

under deformations. The objects I considered are quartic poly-

nomial maps of the interval that are compositions of two logis-

tic maps. In the parameter space PQ of such maps, I consid-

ered the algebraic curves corresponding to the parameters (λ, µ)

for which critical orbits are periodic, and I called such curves left

and right bones. Using quasiconformal surgery methods and rigid-

ity I showed that the bones are simple smooth arcs that join two

boundary points. I also analyzed in detail, using kneading theory,
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how the combinatorics of the maps evolves along the bones. The

behavior of the topological entropy function of the polynomials in

my family is closely related to the structure of the bone-skeleton.

The main conclusion of the paper is that the entropy level-sets in

the parameter space that was studied are connected.
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Chapter 1

Introduction

1.1 General context

My dissertation illustrates how dynamic complexity of a system evolves

under deformations. This evolution is in general only partly understood. At-

tempts to give a quantitative approach have considered simple examples of

dynamical systems and have made use of the topological entropy h(f) as a

particularly useful measure of the complexity of f . However, the only results

so far have been obtained in the case of interval polynomials of degree two and

three.

The logistic family Q = {fµ(x) = µx(1−x) , µ ∈ [0, 4]} illustrates many of

the most important phenomena that occur in Dynamics. The theory in this

case is the most complete: µ → h(fµ) is continuous, monotonely increasing,

and different values h0 = h(fµ) are realized for a single µ in some cases, or for

infinitely many in other cases (see [D]).

The case of the cubic polynomials has been discussed in [DGMT] and

[MT]. The family was parametrized by p in a compact set P using the pair
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of critical values provided by the 2-modal shape. The monotonicity property

was generalized to connectedness of the level sets {p , h(fp) = h0}.
In general, families of degree d polynomials depend on d − 1 parameters,

so the same concepts are harder to inspect for higher degrees. It is most

natural to research next a family of quartic polynomials that depends only

on two parameters. My paper is therefore focused on showing the Connected

Isentropes Conjecture for the family of compositions of quadratic maps: Q2 =

{fµ ◦ fλ ,where fµ, fλ ∈ Q}, which I called the Q-family.

I realized this by comparing the properties of the Q-family with those of

a subset in the standard family of stunted sawtooth maps (see figure 1.3).

These are continuous, piecewise monotone functions, very useful in kneading-

theory because they are rich enough to encode in a canonical way all possible

kneading-data of m-modal maps. The subfamily I used to mimic the behav-

ior of these degree 4 polynomials in the ST -family {f b ◦ fa , where fa, f b are

stunted tent maps with critical values a and b}.

1.2 Brief description of proofs and results

I organized my paper as follows:

In chapter 1 I briefly study the more general combinatorics of 2n-periodic

orbits under a pair of (+,−) unimodal maps (f1, f2) (i.e. orbits under alternate

iterations of f1 and f2):

x1 = xi1

f1−→ yj1

f2−→ ...
f1−→ yjn

f2−→ xi1 ,

where (xi)1≤i≤n and (yj)1≤j≤n are increasing finite sequences in I = [0, 1].

2



I introduce a way to keep track of the succession of the orbit points in

I by defining the order-data of the orbit to be the (σ, τ) ∈ S2
n such that

f1(xi) = yσi
and f2(yj) = xτj

. If the critical orbits are periodic under (f1, f2),

their order-data turns out to be strongly connected to the kneading-data of

the composition f2 ◦ f1.

I consider the parameter spaces PQ and P ST corresponding to the Q-family

and the ST -family. For a given order-data (σ, τ), I define the left bones in the

parameter space PQ to be the subset for which the critical point 1
2
∈ I has

periodic orbit of order-data (σ, τ) under (fλ, fµ). We define the right bone as

the subset of PQ for which the critical point is periodic under (fµ, fλ) with

order-data (σ, τ). Similarly I define the bones in P ST .

In either family, the bones are algebraic curves , and clearly left bones

BL(σ1, τ1) can only intersect right bones BR(σ2, τ2). I call a crossing:

• primary intersection, if (σ1, τ1) = (σ2, τ2), and it corresponds to a pair of

maps with common bicritical orbit.

• secondary intersection, if it corresponds to a pair of maps with disjoint

critical orbits.

The properties of the bones in P ST are easy to understand. I construct a

diffeomorphic correspondence between P ST and PQ to get information on the

behavior of the bones in PQ. The combinatorial results made crucial use of

Thurston’s Uniqueness Theorem, and of an extension of it due to Poirier and

interpreted by [MT].

Chapters 2 shows the following assertion:
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Theorem: The bones in PQ are smooth 1-dimensional submanifolds that

intersect transversally with other bones and the boundary of PQ.

Smoothness follows as in [M] at parameter points inside the hyperbolic

components of PQ. If the parameter point is outside these components, a

quasiconformal surgery construction is necessary in order to smoothly perturb

a map with a superattracting cycle to a map having an attracting cycle with

small nonzero multiplier.

Chapter 3 completes the description of Q-bones with the following:

Theorem: There are no bone-loops in PQ.

[MT] proved the similar assertion in the case of cubic polynomials, either

assuming true the well-known Fatou Conjecture or using a weaker theorem

due to Heckman. I used instead a quite new and interesting rigidity result of

[KSvS], that delivers density of hyperbolicity in my parameter space.

The results complete the proof of:

Theorem: For any n ≥ 1, there is a homeomorphism ηn that takes P ST to

PQ, carrying the boundary of P ST to the boundary of PQ, each left/right bone

of order-data (σ, τ) in P ST to a corresponding left/right bone in PQ with the

same order-data, and each primary/secondary intersection in P ST to a similar

one in PQ.
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Moreover, we can define, in either parameter space, the n-skeleton to be

the union of all bones of period at most 2n , together with the boundary of the

space. We call the skeletons SST
n ⊂ P ST and SQ

n ⊂ PQ. Put a dimension 2

topological cell structure on P ST and PQ as follows:

• the 0-cells are the intersections of bones in Sn and the boundary points;

• the 1-cells are the connected components of Sn\{ 0-cells };
• the 2-cells are the connected components of the complement of Sn.

The map ηn is then a homeomorphism of cell-complexes.

All these results converge in chapter 4 to finalize the proof of the central

statement of the paper. The relation between entropy and the bones becomes

apparent: two points in either parameter space correspond to distinct values

of the entropy only if any path connecting them crosses infinitely many bones.

The interval of entropy values is therefore the same within corresponding cells

in the two parameter spaces. We are interested in the isentropes, i.e. the

entropy level sets. Their properties in P ST are just a particularization of the

more general result explained extensively in [MT] for the stunted sawtooth

family:

Theorem: For each h0 ∈ [0, log(m+ 1)], the h0-isentrope in the stunted saw-

tooth family is contractible.

Transporting this topological property through the homeomorphism ηn is

the last step towards proving my claim:
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Main Theorem. Isentropes in PQ are connected.
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1.3 A discussion on the kneading-data

Let h : I → I be an m-modal map of the interval, i.e. there exist 0 <

c1 ≤ c2 ≤ ... ≤ cm < 1 “folding” or “critical points” of h such that h is

alternately increasing and decreasing on the intervals H0, ..., Hm between the

folding points.

I =
m⋃

j=0

Hj ∪
m⋃

j=1

{cj}

We say that h is of shape s = (+,−,+, ...) if h is increasing on H0 and of shape

s = (−,+,−, ...) if h is decreasing on H0. We say that h is strictly m-modal

if there is no smaller m with the properties above.

We define the itinerary =(x) = (A0(x), A1(x), ...) of a point x ∈ I under h

as a sequence of symbols in A = {H0, ..., Hm} ∪ {c1, ..., cm}, where





Ak(x) = Hj , if f ◦k(x) ∈ Hj

Ak(x) = cj , if f ◦k(x) = cj

The kneading sequences of the map h are defined as the itineraries of its

folding values:

Kj = K(cj) = =(f(cj)), j = 1,m

The kneading-data K of h is the m-tuple of kneading-sequences:

K = (K1, ...,Km)

The simplest example of an m-modal map is a sawtooth map with m teeth

7



(see figure 1.1(a)).

0 c1 c2 cm 1 0 c1 c2 cm 1

Figure 1.1: (a)Sawtooth map of the interval. (b)Stunted sawtooth map

We call a stunted sawtooth map a sawtooth map whose vertexes have been

stunted by plateaus placed at chosen heights (see figure 1.1(b)).Its critical

points are considered to be the centers of the plateaus. In the next sections

we will focus our attention specifically on tent maps (1-modal sawtooth maps)

and on their stunted version, which we will call stunted tent maps.

Another simple and rich example of m-modal maps is the collection of

(m + 1)-degree polynomials from I to itself. The “folding points” for each

polynomial are in this case its regular critical points of odd order.

Definition 1.3.1. A polynomial map is called post-critically finite if the orbit

of every critical point is periodic or eventually periodic.

Theorem 1.3.2. Thurston Uniqueness Theorem for Real Polyno-

mial Maps: A post-critically finite real polynomial map of degree m+1 with

8



m distinct real critical points is uniquely determined, up to a positive affine

conjugation, by its kneading data.

We will also use a converse of this basic theorem of Thurston, due to Poirier

(as interpreted by [MT]).

Definition 1.3.3. We say that a symbol sequence =(x) = (A0(x), A1(x), ...)

is flabby if some point of the associated orbit which is not a folding point

has the same itinerary as an immediately adjacent folding point. A symbol

sequence is called tight if it is not flabby. The kneading data of a map is tight

if each of its kneading sequences is tight.

Lemma 1.3.4. The kneading data of a stunted sawtooth map is tight if and

only if the orbit of each folding point never hits a plateau except at its critical

point.

Theorem 1.3.5. Suppose that the m-modal kneading data K is admissible

for some shape s, with Ki 6= Kj for all i. There exists a post-critically finite

polynomial map of degree m+1 and shape s with kneading-data K if and only

if each Ki is periodic or eventually periodic, and also tight. This polynomial

is always unique when it exists, up to a positive affine change of coordinates,

or as a boundary anchored map of the interval.

1.4 Definitions and first goals

In the light of the general definition given in section 1.3, a (boundary

anchored) (+,-) unimodal map of the unit interval is a f : I = [0, 1] → I such

9



that f(0) = f(1) = 0 and such that there exists γ ∈ (0, 1), called folding or

critical point, with f increasing on (0, γ) and decreasing on (γ, 1). The orbit

of a point x ∈ I under a such f will be the sequence of iterates (f ◦n(x))n≥0.

The itinerary of x under f is the sequence (J0, J1, ...) of symbols L,R and Γ

such that:





Jj = L, if f ◦j(x) < γ

Jj = R, if f ◦j(x) > γ

Jj = Γ, if f ◦j(x) = γ

The first sections of this paper are dedicated to the study of combinatorics

of the dynamical system I am considering: generated by alternate iterates

of two unimodal interval maps. In this sense, it is convenient to consider

two copies of the unit interval I1 = I2 = I and think of our pair of maps

(f1, f2) as a map from the disjoint union I1 t I2 → I1 t I2 which carries I1 to

I2 as f1 and I2 to I1 as f2, with critical points γ1 ∈ I1 and γ2 ∈ I2, respectively.

We call an orbit under the pair (f1, f2) a sequence:

x→ f1(x) → f2(f1(x)) → f1(f2(f1(x)))...

and we say a such orbit is bicritical if it contains both critical points γ1 and

γ2. We call the itinerary of a point x under (f1, f2) the infinite sequence

=(x) = (Jk(x))k≥0 of alternating symbols in {L1,Γ1, R1} and {L2,Γ2, R2}
that expresses the positions of the iterates of x in I1 and I2 with respect to γ1

or γ2. More explicitly, for j ≥ 0:
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J2j = L1, if (f2 ◦ f1)
◦j(x) < γ1 J2j+1 = L2, if (f1 ◦ f2)

◦j(f(x)) < γ2

J2j = R1, if (f2 ◦ f1)
◦j(x) > γ1 J2j+1 = R2, if (f1 ◦ f2)

◦j(f(x)) > γ2

J2j = Γ1, if (f2 ◦ f1)
◦j(x) = γ1 J2j+1 = Γ2, if (f1 ◦ f2)

◦j(f(x)) = γ2

Clearly, not all arbitrary symbol sequences are in general admissible as

itineraries of a point under a pair of given maps.

We would like to emphasize here the immediate connection between the

combinatorics of the dynamical system considered (f1, f2) and of iterations of

the composed map f2◦f1. The following statement shows the relation between

the critical itineraries of (f1, f2) and the kneading-data of f2 ◦ f1.

Theorem 1.4.1. Consider (f1, f2) a pair of (+,−) unimodal maps such that

f2 ◦ f1 has real critical points. The itineraries =(γ1) and =(γ2) of the two

critical orbits under (f1, f2) determine completely the kneading-data of f2 ◦ f1

and conversely.

Proof. Let x be an iterate of γ1 in I1, i.e. x = (f2 ◦ f1)
◦k(γ1). =(γ1)

gives us the L1, R1 or Γ1 position of x in I1. To tell its address from A, we

look at the position of f1(x) in I2: if it is R2, then x ∈ (c1, c3); if it is L2,

then x ∈ [0, c1) ∪ (c3, 1]; if it is Γ2, then x ∈ {c1, c3}. This gives us K2 of

c2 = γ1. For K1 = K3 we have to look at the address from A of the iterates

of the critical values (f2 ◦ f1)(c1) = (f2 ◦ f1)(c3) = f2(γ2) ∈ I1 under f2 ◦ f1.

This is also clear, as =2 gives us the L1, R1,Γ1 position in I1 and the L2, R2,Γ2

position in I2 of all iterates of γ2 in I1 and I2, respectively.

Conversely, from K1 = K3 and K2 we know the address from A of any
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x ∈ I1 in either critical orbit of (f1, f2). Hence we will automatically have its

L1, R1,Γ1 position in I1 and also the L2, R2,Γ2 position of f1(x) in I2. So the

two itineraries will be known. 2

Corollary 1.4.2. The theorem applies to pairs of stunted tent maps and to

pairs of logistic maps.

I will use the regular order on admissible itineraries:

=(x) < =(x′)

if there exists N ∈ N such that Jk(x) = Jk(x
′), for all k = 0, N − 1 and either

• JN(x) < JN(x′) and there is an even number of R1, R2 among Jk, for

k ≤ N − 1

or

• JN(x) > JN(x′) and there is an odd number of R1, R2 among Jk, for

k ≤ N − 1.

This is a total order on admissible itineraries, consistent with the order on

the real line, i.e.:

=(x) < =(x′) ⇒ x < x′

x < x′ ⇒ =(x) ≤ =(x′)

We say that the orbit of x ∈ I1 is periodic of period 2n under (f1, f2) if n

is the smallest positive integer such that (f2 ◦ f1)
◦n(x) = x (i.e. x has period

n under the composition (f2 ◦ f1)) . I will use the following notation for a

2n-periodic orbit under (f1, f2):

12



x1 = xi1

f1−→ yj1

f2−→ xi2

f1−→ ...
f1−→ yjn

f2−→ xi1 (1.1)

where (xi)i=1,n ⊂ I1 and (yj)j=1,n ⊂ I2 are both increasing.

To study the combinatorics, it is essential to have a way of keeping track

of the succession of points in a periodic orbit. We are particularly interested

in the behavior of periodic orbits containing either critical point γ1 or γ2.

Definition 1.4.3. The order-data of the periodic orbit (1.1) is the pair (σ, τ)

of permutations in Sn given by:

f1(xi) = yσi

f2(yj) = xτj

so that σik = jk and τjk
= ik+1. (Here the subscripts must be understood as

integers mod n, e.g. in+1 = i1 = 1.)

An admissible order-data is a (σ, τ) ∈ S2
n which is achieved as order-data

of a periodic orbit of some pair (f1, f2) of interval unimodal maps.

The (+,-) unimodal shape of f1 and f2 imposes a set of necessary and

sufficient conditions for a (σ, τ) to be “admissible”:

(I)





If σi+1 < σi , then σj+1 < σj,∀j ≥ i

If τi+1 < τi , then τj+1 < τj, ∀j ≥ i

(II) τ ◦ σ is a cyclic permutation (i.e. has no smaller cycles).

13



A first goal will be to research the relation between the itinerary and the

order-data of a periodic orbit. To begin, we prove the following:

Theorem 1.4.4. If the orbit of γ1 is bicritical of period 2n under a pair

of (+,-) unimodal maps (f1, f2), then the itinerary of γ1 determines the order-

data of the orbit and conversely.

This result will turn out to be of a very practical use: It will give an

“order” on the admissible order-data, inherited from the predefined order on

itineraries, hence consistent with the order of numbers on the unit interval.

Before starting the proof, note that the order of points in a critical peri-

odic orbit of a (+,-) unimodal map is strictly preserved in the order of their

itineraries, as shown in the following lemma.

Lemma 1.4.5. If x and x′ are two distinct points of a critical periodic orbit

under a pair of (+,-) unimodal maps (f1, f2), then =(x) 6= =(x′). Hence x < x′

implies =(x) < =(x′).

Proof. For any arbitrary map h of the interval, two distinct points x and

x′ along a periodic orbit of period n of h can never map to the same value

under iterations of h.

Suppose now that, in our case, =(x) = =(x′) under (f1, f2). The orbit

being critical, this means that x and x′ will both map to the same critical

point after a finite number of iterates, hence x = x′ 2

Lemma 1.4.6. Suppose γ1 is periodic of period 2n under (f1, f2) and let

x1 = xi1 → yj1 → ... → yjn → xi1 be its orbit. Then its order-data

14



(σ, τ) ∈ S2
2n determines its itinerary via the position of the element in I2 closest

to γ2. In other words, there are at most two critical itineraries corresponding

to a given order-data.

Proof. We have x1 < x2 < ... < xn and y1 < y2 < ... < yn the elements

of the critical orbit in I1 and I2, respectively. We hence know that there exist

a k such that xik = γ1 ( take k for which f1(xik) = yn), and an l such that

yjl
is closest to γ2 (take l for which f2(yjl

) = xn). Then, we will also know

that xi < xik = γ1, for all i < ik and that xi > xik = γ1, for all i > ik.

Similarly, yj < γ2, for all j < jl and that yj > γ2, for all j > jl. This only

leaves ambiguous the position of yjl
.

If, in particular, the orbit is bicritical, then yjl
= γ2 and the itinerary is

completely defined. 2

Proof of Theorem 1.4.4.

(⇒) Suppose we have the itinerary = of the bicritical orbit (subsequently,

we have the itineraries of all points in the orbit, which differ from each other by

shifts). For any two elements xi 6= xj ∈ I1 in the orbit, we have =(xi) 6= =(xj)

(from lemma 1.4.5). Strict order of itineraries =(xi) < =(xj) gives strict order

of the points xi < xj. So we will know the order of occurrence of the orbit

points in I1, similarly in I2, separately:

x1 = xi1

f2◦f1−→ xi2 → ...→ xin = x1

y1 = yj1

f1◦f2−→ yj2 → ...→ yjn = y1

If shift is the one-sided map that shifts sequences with one position to the
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right, then, for an arbitrary l ∈ 1, n we clearly have:

shift(=(xil)) = =(f1(xil))

Again from lemma 1.4.5, there is a unique k ∈ 1, n for which =(f1(xil)) =

=(yjk
)), hence f1(xil) = yjk

. Repeating the argument for all points, we get the

order-data (σ, τ) of the orbit.

Note. The argument applies under the weaker assumption of critical orbit

rather than bicritical.

(⇐) Follows immediately from lemma 1.4.6. 2

I will end this introductory section with a focus on how these notions and

properties apply to a particular family of maps that are subject of our interest,

the stunted tent maps:

Recall that the tent map of the interval is:

ftent(x) =





fL(x) = 2x if x ≤ 1
2

fR(x) = 2− 2x if x > 1
2

A stunted tent-map is obtained by cutting a plateau at an arbitrary height

0 ≤ a ≤ 1 :

fa(x) =





2x if x ≤ a
2

a if a
2
< x < 1− a

2

2− 2x if x ≥ 1− a
2
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0 11
2

Figure 1.2: Tent map of the interval. The critical point is 1
2
.

Also recall that the “critical point” of such a stunted tent map was taken

by convention to be the midpoint γ = 1
2
.

0 1− a
2

a
2

a

11
2

Figure 1.3: The stunted tent map fa, with critical point 1
2

and critical value
plateau at height a.

The pair of (+,-) unimodal maps will be in this case a pair of two stunted

tent maps:

fa : I1 → I2, γ1 =
1

2
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f b : I2 → I1, γ2 =
1

2

We call the family of all such pairs (fa, f b) of stunted tent maps: the

ST-family (where (a, b) ∈ I2 × I1).

The behavior of the pairs in the ST-family is well understood and much

easier to study than the behavior of pairs of quadratic polynomials. Although

we would like to have the following result for pairs of quadratic maps, proving

it first for the “approximations” in the stunted tent family is a good thing to

do. This will be a strategy very frequently used for the proofs in the next few

sections. We will eventually sustain with an argument why this approximation

is “correct”.

Theorem 1.4.7. Given (σ, τ) ∈ S2
n admissible order-data, there is a unique

pair of stunted tent maps (fa, f b) with periodic bicritical orbit of order-data

(σ, τ).

We will first prove the following :

Proposition 1.4.8. Let = be a sequence of symbols in {L1, R1,Γ1} and {L2, R2,Γ2},
admissible as a bicritical itinerary of period 2n under a pair of unimodal maps:

= = (J0 = Γ1, J1, J2, ..., J2l, J2l+1 = Γ2, J2l+2, ..., J2n−1, J2n = Γ1, ...)

where J2n+k = Jk for all k and Jk 6= Γ1,Γ2, for all k nonequivalent to 1, ..., 2l

mod 2n. There exists a unique pair of stunted tent maps (fa, f b) that has a

bicritical orbit of period 2n:
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x1 = xi1 → yj1 → ...yjn → xi1 = x1

having = as its itinerary.

Proof. Uniqueness: Our required orbit is bicritical, hence there will be a

k such that xik = γ1 = 1
2
, ⇒ f b(yjk−1

) = xik = γ1. The itinerary gives us the

position of yjk−1
with respect to γ2, so we know which branch of f b applies to

yjk−1
. This permits us to find yjk−1

. If we continue to iterate backwards, we

obtain b, the height of the second plateau. Similarly we get a, starting with

γ2 and iterating backwards. The uniqueness follows, as a stunted tent map is

well-determined by the height of its plateau.

Existence: Consider the partial finite sequences

=1 = (J1, J2, ..., J2l+1 = Γ2)

and

=2 = (J2l+2, ..., J2n−1, J2n = Γ1)

Clearly, = is obtained by starting with Γ1 and following it by =1 and =2,

alternated infinitely.

We extend each of these two partial sequences with the itinerary of 1 (the

critical value under a pair of tent maps):

=1 = (J1, J2, ..., J2l+1 = Γ2, R1, L2, L1, L2, ...)

and

=2 = (J2l+2, ..., J2n−1, J2n = Γ1, R2, L1, L2, L1, ...)
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There is an orbit of the tent map for each itinerary =1,=2, respectively.

Indeed, in the same way we proceeded to prove uniqueness, we can start with

γ1 = 1
2
∈ I1 and γ2 = 1

2
∈ I2 and work our way backwards to determine

all elements of the orbit by means of solving linear equations. Doing so, we

are guaranteed to have the points of the orbit on either L or R as required,

because:





f−1
L (y) = y

2
∈ (0, 1

2
) , if y ∈ (0, 1)

f−1
R (y) = 1− y

2
∈ (1

2
, 1) , if y ∈ (0, 1)

We obtain :

yjk
→ xik+1 → ...→ yjl

= γ2 → 1 → 0 → 0 → ...

xil+1 → ...→ yjk−1
→ xjk

= γ1 → 1 → 0 → 0 → ...

as the two orbits under the tent maps corresponding to =1 and =2.

yjk
and xil+1 are the highest elements in each partial orbit, that is the

largest elements to the left of 1 → 0 → 0... in the respective sequence. We cut

the tent maps at heights yjk
and xil+1, respectively, to get the stunted maps

fa and f b.

Clearly, = will be the sequence for the bicritical orbit

xil+1 → ...→ xik → yjk
, ...→ yjl

of (fa, f b) of length 2n , with γ1 = 1
2
∈ I1 and γ2 = 1

2
∈ I2 being the critical
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points. 2

Proof of Theorem 1.4.7. Given an admissible order-data (σ, τ) ∈ S2
n for

a required bicritical orbit, we can determine the itinerary = of the orbit. By

Proposition 1.4.8, we can find a unique pair (fa, f b) of stunted tent maps

with a bicritical orbit of length 2n and itinerary =. By Theorem 1.4.4, the

order-data for the orbit we have found will be (σ, τ). 2

1.5 Disjoint periodic critical orbits

To make the discussion a step more general, we look next at pairs of ar-

bitrary unimodal maps for which both critical points γ1 and γ2 are periodic.

There are two possible cases that can occur: a bicritical orbit (discussed in

section 1.4) and two disjoint critical orbits. This section will extend the results

in section 1.4 for the second case.

Definition 1.5.1. Let (σ, τ) ∈ S2
m+n be a pair of permutations decomposable

into two cycles: (σ1, τ1) ∈ S2
m and (σ2, τ2) ∈ S2

n. We say that two disjoint

periodic orbits o1 and o2 under a pair (f1, f2) of (+,-) unimodal maps have

joint order-data (σ, τ) if:

1. o1 has order-data (σ1, τ1) and o2 has order-data (σ2, τ2);

2. the order of the points in I1 and I2 (see “order-type” [MT]) is given by

(τ ◦ σ) and (σ ◦ τ) respectively.

We will say about a permutation (σ, τ) ∈ Sm+n that it is “admissible” as
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a joint order-data, if there exist two disjoint orbits under some pair of (+,-)

unimodal maps which have joint order-data (σ, τ).

Theorem 1.5.2. Let o1 and o2 be disjoint critical orbits under a pair (f1, f2)

of (+,-) unimodal maps. Their itineraries determine their joint order-data

and conversely.

Proof. (⇒) For two points x 6= x′ of o1∪o2 in I1, we have =(x) 6= =(x′).

Indeed, if x and x′ are both in the same critical orbit (either o1 or o2), then

=(x) 6= =(x′) follows directly from lemma 1.4.5. Suppose x ∈ o1 and x′ ∈ o2

such that =(x) = =(x′). Then there exists a k ∈ 1,m such that (f b◦fa)k(x) =

γ1, i.e. J2k(x) = Γ1. Hence J2k(x
′) = J2k(x) = Γ1 ⇒ (f b ◦ fa)◦k(x′) = γ1; so

γ1 is in o2, which means o1 = o2 bicritical orbit, contradiction.

So the strict order of the itineraries of the points in I1 of o1∪o2 is preserved

in the strict order of the points themselves:

=(x) < =(x′) ⇒ x < x′

In conclusion, all points of o1 ∪ o2 in I1 can be strictly ordered, and sim-

ilarly in I2. Also, by the note to the proof of theorem 1.4.4, the itineraries

determine the order-data of each of the two disjoint orbits, separately. So the

joint order-data is well defined.

(⇐) Follows from lemma 1.4.6. 2

Theorem 1.5.3. Given (σ, τ) = ((σ1, τ1), (σ2, τ2)) ∈ S2
m+n admissible joint

order-data, there exists a unique pair (fa, f b) of stunted tent maps with disjoint

critical orbits o1 3 γ1 and o2 3 γ2 having joint order-data (σ, τ).
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Proof. The proof develops very similarly to the one for a common bicritical

orbit in section 1.4. By theorem 1.5.2, from the joint order-data we can de-

termine the itineraries for the two periodic orbits of lengths 2m and 2n under

(fa, f b).

Uniqueness: Start with γ1 and iterate backwards, using the branch of the

stunted tent map imposed by the itinerary. This will determine uniquely the

height b of the plateau of f b. Similarly get the plateau a of fa starting with

γ2 and iterating backwards.

Existence: To prove existence, shift the itineraries by one position, so

that they start with the position of the critical values, then end them at the

first Γ1 , respective Γ2 position. We complete them with the itineraries of

the critical value 1 under a pair of tent maps : =1 = (R1, L2, L1, ...) and

=2 = (R2, L1, L2, ...). We find two orbits under the tent maps having the

given extended sequences, then we stunt the maps conveniently to make the

orbits closed; we are guaranteed this way that they have the given itineraries

and that their critical values are a = fa(γ1) and b = f b(γ2). By theorem 1.5.2,

they will also have the required order-data. 2

1.6 Description of bones in the ST-family

Fix an admissible order-data (σ, τ) ∈ S2
n.

By a left bone in the parameter space I2 × I1 for the ST-family we mean

the set of pairs (a, b) ∈ I2× I1 = [0, 1]2 such that the critical point γ1 ∈ I1 has

under (fa, f b) a periodic orbit of given period 2n and given order-data (σ, τ).

We will use the notation BST
L (σ, τ) or BST

L if there is no ambiguity. We define
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a right bone symmetrically (i.e. we require γ2 to be periodic of specified period

and order-data) and we denote it by BST
R (σ, τ) = BST

R . Later we will give a

more comprehensive approach to the left and right bones and their properties.

Recall form theorem 1.4.7 that: There is a unique pair (a0, b0) ∈ BST
L

such that the periodic orbit of γ1 is bicritical (i.e. hits γ2) under (fa0 , f b0).

Theorem 1.6.1. For each admissible order-data (σ, τ), let (a0, b0) be the pa-

rameter pair for the associated bicritical orbit in the ST-family. Then there

are unique numbers a1 < a0 < a2 so that the left bone BST
L (σ, τ) is the union

{a1, a2}× [b0, 1]∪ (a1, a2)×{b0} of three line segments, as illustrated in figure

1.7. The description of the right bone BST
R (σ, τ) is completely analogous.

2 4 6

4 6
6

6

6

Figure 1.4: Left bones in the ST-family of period at most 6.We marked by
(2) the unique bone of period 2, corresponding to order-data in (σ = (1), τ =
(1)) ∈ S2

1 . (4) are the 2 bones of period 4 and having the two possible order-
data (σ = (12), τ = (1)(2)) or (σ = (1)(2), τ = (12)) ∈ S2

2 . (6) are the bones
of period 6 and one of the 5 admissible order-data: (σ = (123), τ = (231),
(σ = (132), τ = (321)), (σ = (231), τ = (231)), (σ = (321), τ = (132)) or
(σ = (231), τ = (123)).

We will determine the shape of BST
L , hence prove 1.6.1, by constructive
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means, starting with the point (a0, b0).

a0

γ1

b0

1− b0
2

b0
2 γ2

Figure 1.5: The pair (fa, f b) has a bicritical orbit for a = a0 and b = b0.

Under (fa0 , f b0): γ1 → a0 → ...→ γ2 → b0 → ...→ γ1

The bicritical orbit only hits each plateau once, at its center.

By sliding the first plateau up and down, the orbit of γ1 will change in a

continuous way. For a fixed height a of the first plateau, call yl(a) the element

in I2 closest to γ2 in the orbit of γ1 under (fa, f b0). Clearly, if a = a0, then

yl(a0) = γ2.

We can move a continuously within an interval [a1, a2] = [a0−ε, a0+ε], ε >

0 such that yl(a) moves from b0
2

to 1− b0
2

(see figure 1.5). Along the process,

the orbit stays periodic and the order of the occurrence of points remains

consistent with (σ, τ).

Hence [a1, a2]× {b0} ⊂ BST
L .

It is not hard to see that also for any b > b0: (a1, b) and (a2, b) are in BST
L .

(Indeed, the orbit itself will not change in this case with the raising of the

second plateau.)

If we call t = t(σ, τ) = {a1, a2}× [b0, 1]∪ (a1, a2)×{b0} 3 (a0, b0) we have
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b0

yl(a1)γ1

a1

b0a2

γ1 yl(a2)

Figure 1.6: By sliding the first plateau up and down between a1 and a2, the
orbit point in I2 closest to γ2 slides continuously between the left and right
endpoints of the second plateau

just obtained :

Lemma 1.6.2. t ⊂ BST
L .

Lemma 1.6.3. There are exactly two values a = a1 and a = a2 such that the

orbit of γ1 has given order-data (σ, τ) under (fa, f 1) (i.e. there are exactly two

points of BST
L on [0, 1]× {1}).

Proof. The critical periodic orbit of γ1 has order-data (σ, τ), so all symbol-

positions of the orbit elements are precisely determined, via the position of yl,

the element in I2 closest to γ2. The ambiguity is between L2 and R2; Γ2 is

impossible, because it would mean bicritical orbit under (fa, f 1).

26



We hence have two distinct itineraries for the orbit

γ1 → a→ ...→ γ1

Each itinerary uniquely determines a value of a, iterating backwards from

γ1 through left or right branches of the tent map, according to the respective

itinerary. So there are at most two values of a.

Since the orbits of γ1 are not bicritical, there are exactly two values of a.

2

(a1, 1) (a2, 1)

(a1, b0)

(a0, b0)

(a2, b0)

Figure 1.7: BST
L = t = {a1, a2} × [b0, 1] ∪ (a1, a2)× {b0} 3 (a0, b0)

Theorem 1.6.4. BST
L = t

Proof. We have shown in lemma 1.6.2 that t ⊂ BST
L . We prove the inverse

inclusion.

Take an arbitrary (a, b) ∈ BST
L . The orbit of γ1 under (fa, f b) is periodic:

γ1 → a→ ...→ yl → ...→ γ1

where again we call yl = yl(a) the closest element to γ2 in I2 (such that
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f b(yl) ∈ I1 is the maximal element in I1 of the orbit).

We distinguish two cases:

(I) yl <
b
2

or yl > 1− b
2

, i.e. f b(yl) < b

(II) yl ∈ [ b
2
, 1− b

2
] , i.e. f b(yl) = b

We discuss them separately.

(I) The critical orbit never hits the second plateau, so it is identical with

the orbit of γ1 under (fa, f 1). By lemma 1.6.3, a = a1 or a = a2. It follows

almost immediately that b can’t be lower than b0, for either a = a1 or a = a2.

Hence in this case (a, b) ∈ {a1, a2} × [b0, 1] ⊂ t.

(II) The orbit has the form:

γ1 → a→ ...→ yl → b→ ...→ γ1

We slide the first plateau continuously. As yl(a) is the closest point in the

orbit to γ2 in I2, it will reach γ2 (for some a = a′) without changing the order

of the points in the orbit. (fa′ , f b) has therefore a bicritical orbit of the same

order-data (σ, τ) as the orbit of γ1 under (fa, f b). By the uniqueness of such

a pair, it follows that a′ = a0 and b = b0.

Knowing b = b0, we solve for a:
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b0
2
< yl < 1− b0

2
⇒ a1 < a < a2

(Recall that a1 and a2 were defined such that they corresponded to yl(a1) =

b0
2

and yl(a2) = 1− b0
2
).

So in this case: (a, b) ∈ (a1, a2)× {b0} ⊂ t 2

1.7 Important points on the bones

We aim to compare the parameter spaces for the two families ST={ pairs

(f1, f2) of stunted tent maps } and Q={ pairs (f1, f2) of logistic maps } :

P ST = {(a, b) / a = f1(1/2), b = f2(1/2), (f1, f2) ∈ ST} ∈ [0, 1]2

PQ = {(λ, µ) / λ = 4f1(1/2), µ = 4f2(1/2), (f1, f2) ∈ Q} ∈ [0, 4]2

In either space, we defined the left and right 2n-bones for a given admissi-

ble (σ, τ) ∈ S2
n to be (see section 1.6):

BL(σ, τ)= the set of all parameters for which γ1 has periodic orbit of order-

data (σ, τ) under the corresponding pair of maps;

BR(σ, τ)= the set of all parameters for which γ2 has periodic orbit of order-

data (σ, τ) under the corresponding pair of maps.

29



For a fixed admissible (σ, τ) ∈ S2
n, I will call the bones in P ST : BST

L , BST
R

and the ones in PQ: BQ
L , BQ

R .

Remarks: (1) By definition, any two left bones are disjoint and any two

right bones are disjoint.

(2) It follows easily from theorem 1.6.1 that two bones in the ST-family

can cross only at 0,2 or 4 points.

Figure 1.8: Left and right bones in P ST of all periods less or equal to 6 and
all possible order-data. Left bones can intersect right bones only at 0, 2 or 4
points.

Definition 1.7.1. In either parameter space, an intersection of BL(σ1, τ1) and

BR(σ2, τ2) is called a primary intersection if (σ1, τ1) = (σ2, τ2) and there is a

bicritical orbit with this order-data under the pair of maps. It is called a
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secondary intersection if the two critical orbits are disjoint, of distinct order-

data (σ1, τ1) and respectively (σ2, τ2), and joint order-data (σ, τ).

Figure 1.9: The left 4-bone of order-data (σ, τ) = ((12), (21)) crosses the
right 2-bone at two secondary intersections with joint order-data ((231), (321))
and ((132), (231)) (filled dots) and crosses the corresponding right 4-bone at
a primary intersection with order-data (σ, τ) and at a secondary intersection
with joint order-data ((1243), (3421)) (empty dots).

A capture point on BL(σ1, τ1) in either P ST or PQ is a pair of maps for

which γ2 eventually maps on γ1 such that it has an eventually periodic, but

not periodic, orbit (see picture). We define symmetrically a capture point on

BR(σ2, τ2).

Theorem 1.4.7 provided us with a bijection between admissible order-data

and primary intersections in P ST . In the following section, theorem 1.5.3

extended the result with a bijection between admissible joint order-data and

secondary intersections. The next statement is a further extension for capture

itineraries and can be proved similarly with the direct implication in theorem

1.5.3.

Theorem 1.7.2. Suppose the two critical points of a pair of unimodal maps
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are such that one of them has a closed orbit and the other maps on this closed

orbit after a finite number of iterates, but without being periodic itself. Let =1

and =2 be the itineraries of the two critical points. Then there exists at least

a pair (fa, f b) with critical itineraries =1 and =2, respectively. (i.e.: There

exists at least a capture point in P ST with given “capture” critical itineraries.)

All previous theorems concern bones crossings in the ST-family. One of

our goals will be to establish similar results in the case of pairs of quadratic

maps. This will bring us a better perspective on the shape of the bones in PQ

and their similarity with the bones in P ST .

1.8 More on kneading-data

In this section we will construct a bijective correspondence of bones inter-

sections between our two parameter spaces P ST and PQ. For the proof, it is

necessary to view the composition fµ ◦ fλ of the two logistic maps either as a

3-modal map with three critical points in I = I1: c1 ≤ c2 ≤ c3, with c2 = γ1

and fλ(c1) = fλ(c3) = γ2 or as a unimodal map with folding point γ1, (in case

f(x) = γ2 has a double real root or two complex roots). I will use rigidity

theorems that involve essentially some properties of the kneading-data.

Let us look in more detail at the possible kneading-data of the maps in

P ST and PQ.

Maps in P ST : For any (a, b) ∈ P ST , the map f b ◦ fa could be considered

3-modal, with folding points c1 = 1
4
, c2 = γ1 = 1

2
and c3 = 3

4
.
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AST = {[0, 1
4
),

1

4
, (

1

4
,
1

2
),

1

2
, (

1

2
,
3

4
),

3

4
, (

3

4
, 1]}

.

and

K = (K(c1),K(c2),K(c3))

As appendix A shows, we can consider P ST as made of three parts:

P ST = P ST
1 ∪ P ST

2 ∪ P ST
3

PST
1

PST
2

PST
3

Figure 1.10: The behavior of the composed map f b ◦ fa changes with the
position of the parameter (a, b) ∈ P ST , as shown in appendix A.

I. Clearly there are no right bones in P ST
1 , hence no bones intersections.

Indeed: 2a < b ≤ 1, so a < 1
2
, hence γ2 could not be hit by any orbit

under (fa, f b).

II. Left bones in P ST
2 do not contain secondary intersections, because b

2
≤

a ≤ 1− b
2
, so f b(γ2) = b = (f b ◦ fa)(γ1).
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Moreover, if (a, b) ∈ P ST
2 is a primary intersection, then the map fa ◦ f b is

strictly 3-modal, with only one exception: (a, b) = (1
2
, 1

2
).

Indeed, 2a ≥ b, hence 1− a
2
≤ 1− b

4
. So either

1− b
4
< b ⇒ (b, a) ∈ P ST

3 , (see III), or:

b
4
< b < 1 − b

4
⇒ (fa ◦ f b)◦k(γ1) = b, ∀k. Hence b = γ1 = 1

2
, so

fa(γ1) = γ2 ⇒ a = γ2 = 1
2
.

III. For (a, b) ∈ P ST
3 we clearly have that f b ◦ fa is strictly 3-modal, that

is K(c1) = K(c3) 6= K(c2).

Maps in PQ: The behavior of the degree 4 polynomials in the family PQ

is also different for distinct values of the parameters.

Figure 1.11: A few examples of behavior of maps in PQ. The critical points
of the quartic map fµ◦fλ are distinct and real for λ > 2,all coincide for λ = 2,
while two of them are complex for λ < 2.
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I. If λ < 2, then fµ ◦ fλ has only one real critical point C2 = γ1 = 1
2

and

two complex C1, C3 ∈ C\R.

This parameter subset will be of somewhat less interest, as it does not cross

any right bones, hence contains no bones intersections. Indeed, if fλ(x) is less

than 1
2
, ∀x ∈ I1, no orbit can go through γ2.

II. If λ = 2, then fµ ◦ fλ has a degenerated real critical point C1 = C2 =

C3 = γ1. This line contains primary intersections with right bones. More

precisely, if a left bone hits {λ = 2}, then the crossing point is its primary in-

tersection. However, in this case fλ ◦fµ is strictly 3-modal, with the exception

of λ = µ = 2, which is the period 2 primary intersection.

III. If λ > 2, there are three distinct real critical points for fµ ◦ fλ:

C1 < C2 = γ1 < C3, with fλ(C1) = fλ(C3) = γ2

The map is 3-modal:

AQ = {[0, C1), C1, (C1, C2), C2, (C2, C3), C3, (C3, 1]}

.

and

K = (K(C1),K(C2),K(C3))

Remark. We emphasize that fµ ◦ fλ has complex critical points iff λ < 2.
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If the point (λ, µ) is on a bone, it can’t be in the region {λ < 2, µ < 2}, so

µ ≥ 2. Hence the map fλ ◦ fµ corresponding to the symmetric point (µ, λ) has

real critical points, non-degenerate if µ 6= 2.

A correspondence is already apparent between the shape and position of

the left bones in the two families P ST and PQ. For instance, the unique pri-

mary intersection of period two: (a, b) = (1
2
, 1

2
) ∈ P ST clearly corresponds to

its similar (λ, µ) = (2, 2) ∈ PQ. We will consider at least this case classified in

our future analysis. The following theorems will therefore concern specifically

the strictly 3-modal case (applicable for either f b ◦ fa and fµ ◦ fλ or fa ◦ f b

and fλ ◦ fµ).

1.9 The correspondence of the

bones intersections

I will use Thurston’s Theorem and its extension for boundary anchored

polynomials of degree four and shape (+,-,+,-). In this section, I plan to con-

struct a bijection between bones crossings in the two parameter spaces. More

precisely, we claim:

1. For each primary intersection in P ST , there is a unique one in PQ with

the same order-data and conversely (hence each bone in either family

has a unique primary intersection with the dual bone).
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2. For each secondary intersection in P ST , there is a unique one in PQ with

the same joint order-data and conversely (hence bones in either family

cross at 0, 2 or 4 points).

Remark. By theorem 1.4.7, (σ, τ) ∈ S2
n is admissible order-data is equiv-

alent to existence of a pair (fa, f b) with bicritical orbit of order-data (σ, τ),

hence equivalent to the existence of a primary intersection in P ST with order-

data (σ, τ). By theorem 1.5.3, (σ, τ) ∈ S2
m+n is admissible joint order-data is

equivalent to existence of a pair (fa, f b) with disjoint critical orbits of joint

order-data (σ, τ), hence equivalent to the existence of a secondary intersection

in P ST with joint order-data (σ, τ). So we can restate our claim in the form

of the following two theorems.

Theorem 1.9.1. Let (σ, τ) ∈ S2
n be admissible order-data. There is a unique

primary intersection (λ, µ) in PQ with this data and conversely.

Proof. Uniqueness: Suppose we have a pair (λ, µ) ∈ PQ with a bicritical

orbit of order-data (σ, τ). We implicitly know the itinerary of the bicritical

orbit, hence the kneading sequences of the three real distinct critical points

C1 < C2 = 1
2
< C3 of fµ ◦ fλ ( if λ > 2) or fλ ◦ fµ (if µ > 2). By Thurston’s

Theorem, the boundary anchored polynomial of degree 4 with the expected

kneading data is unique, implying the uniqueness of the pair (fλ, fµ) with the

given order-data.

Existence: Let (fa, f b) be the pair of stunted tent maps with bicritical

orbit of order-data (σ, τ). We know by theorem 1.4.4 that we can determine

the itinerary of this bicritical orbit. If we exclude the case a = b = 1
2
, which is

already classified, then either f b ◦ fa or fa ◦ f b is strictly 3-modal (say f b ◦ fa,
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to fix our ideas). Theorem 1.4.1 says we can obtain the kneading-data K for

f b ◦fa, which should also be the kneading-data for the polynomial fµ ◦fλ that

we want to find. We hence need to prove existence of a polynomial of degree

4 with the required kneading-data K and then show that it can be written as

a composition of two logistic maps fλ and fµ. We will finally show that the

pair (fλ, fµ) we found has indeed the given order-data.

I will use the extended version of Thurston’s theorem, so I aim to show:

1. Each two consecutive kneading-sequences of K are distinct.

2. All kneading sequences of K are tight.

1. The critical points of f b ◦ fa are c1 = 1
4
, c2 = 1

2
and c3 = 3

4
. Clearly,

K(c1) = K(c3). The pair (fa, f b) has a bicritical orbit, so the orbits of

both c1 and c3 go through c2 and either one of them closes through c2.

But, by lemma 1.4.5, we can’t have two distinct elements of a periodic

critical orbit follow identical itineraries. So K(c1) 6= K(c2).

2. To use lemma 1.3.4 we only need to show that each K(ci) hits each

plateau at most once, above its corresponding critical point. This also

follows almost directly from lemma 1.4.5, because f b(fa(c1)) = f b(fa(c3)).

By Thurston’s Theorem, (1) and (2) imply existence and uniqueness of a

polynomial P with kneading-data K, of shape (+,-,+,-) and conditions at the

boundary P (0) = 0 and P (1) = 0 . A boundary anchored polynomial P of de-

gree 4, shape (+,-,+,-) and real distinct critical points 0 < C1 < C2 < C3 < 1

is a composition of logistic maps if and only if P (C1) = P (C3) (see appendix).
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We know that the kneading sequences K(C1) = K(c1) and K(C3) = K(c3)

are identical. Suppose v1 = P (C1) < P (C3) = v3. Then the whole interval

[v1, v3] will have the same (bicritical) itinerary, as K(C1) = K(C3), so, after

a finite number of iterations under P , it will all map to C2, contradiction.

So P (C1) = P (C3), hence there exists a pair of quadratic maps such that

P = fµ ◦ fλ.

The kneading data K determines the itinerary of the bicritical orbit which,

according to theorem 1.4.4, determines the order-data. So the polynomial map

we found can only have the given order-data (σ, τ). 2

Theorem 1.9.2. Let (σ, τ) ∈ S2
m+n admissible joint order-data. There is a

unique secondary intersection in PQ with this data and conversely.

Proof. Existence: Consider the secondary intersection (a, b) ∈ P ST with

joint order-data (σ, τ). It determines the kneading data of f b ◦ fa. Clearly

K(c1) = K(c3) 6= K(c2), otherwise the orbits would coincide into a bicritical

one, which doesn’t happen at a secondary intersection. The tightness condition

also follows. Hence there exists a polynomial of degree four with the respective

kneading-data, which can be easily shown to be of the form fµ ◦ fλ, with

(λ, µ) ∈ PQ. Its joint order-data is (σ, τ).

Uniqueness: Suppose we have a point (λ, µ) ∈ PQ with disjoint periodic

critical orbits of joint order-data (σ, τ) ∈ S2
m+n, hence distinct real critical

points. This will determine the critical itineraries under (fλ, fµ), hence the

kneading-data of the polynomial fµ ◦ fλ.

By directly applying Thurston’s Theorem, there is at most one boundary
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anchored polynomial of degree four with this set of kneading data, which in

particular gives us the required uniqueness of the pair (fλ, fµ) with the given

joint data. 2

1.10 The correspondence of the

boundary points

Fix (σ1, τ1) ∈ S2
n. The left bone BST = BST

L (σ1, τ1) in P ST with order-data

(σ1, τ1) is as an algebraic curve in P ST = I2 × I1 = I2. Its boundary consists

of two points:

δBST = BST ∩ δP ST = BST ∩ (I2 × {1}) = {(a1, 1), (a2, 1)}

with a1 < a2.

For any (a, b), I will call =(x)(a, b) the itinerary of x under (fa, f b) and

K(a, b) the kneading-data of f b ◦ fa.

The itineraries of the critical points γ1 and γ2 under (fa1 , f 1) and (fa2 , f 1)

are respectively:

=(γ1)(a1, 1) 6= =(γ1)(a2, 1) (as will become explicit later)

=(γ2)(a1, 1) = =(γ2)(a2, 1) = (Γ2, R1, L2, L1, L2, L1, ...) = (Γ2, R1, L2, L1)

At any (a, b) ∈ BST , γ1 has a periodic orbit o1 of period 2n and order-data

(σ1, τ1). At the points (a1, 1) and (a2, 1) in δBST ⊂ P ST , the orbit o2 of γ2 is
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not periodic, although it is finite.

Statements in previous sections referred to primary or secondary intersec-

tions of bones. I will need some extensions of these statements to apply to

boundary points of left bones in either parameter space. As we have noted,

these boundary points are not bones crossings.

Theorem 1.10.1. (extension of 1.5.3) Suppose we have two sequences admis-

sible as critical itineraries under a pair of unimodal maps: a 2n-periodic =1

and =2 = (Γ2, R1, L2, L1). Then there exists a unique pair of stunted tent maps

(fa, f b) with =(γ1)(a, b) = =1 and =(γ2)(a, b) = =2. Moreover, b = 1.

Proof. Uniqueness: If the iterates of a point in I2 under (fa, f b) stay

indefinitely on L1 and L2 in both I1 and I2, then the point has to be zero

(otherwise it will get pushed away after a certain number of iterates). Hence

=2 = =(γ2) = (Γ2, R1, L2, L1) implies that (fa ◦ f b)(γ2) = 0 and f b(γ2) is R,

so clearly f b(γ2) = 1, i.e. b = 1. We obtain a by starting with γ1 and using

=1 = =(γ1) to iterate backwards.

Existence: There exists a point x ∈ I1 with orbit of length 2n and

itinerary shift(=1) under a pair of tent maps (f1, f2). Take a to be the high-

est value in I1 in the orbit of x under (f1, f2) and take b = 1. The required

itineraries follow for the pair of stunted maps (fa, f b). 2

Remark. Theorem 1.10.1 shows in particular why =(γ1)(a1, 1) 6= =(γ1)(a2, 1).

We expect the boundary of the corresponding quadratic left bone BQ =

BQ(σ1, τ1) to look similarly. The next theorem gives us the first information
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we have so far on the general shape of a quadratic bone.

Theorem 1.10.2. δBQ = {(λ1, 4), (λ2, 4)}, with λ1 < λ2.

Remark. In fact, we will show that an arbitrary quadratic bone BQ is a

simple arc joining the two boundary points. The proof will be based on the

following assertion, detailed in chapter 3:

Theorem A: There are no bone-loops in PQ.

Any bone in PQ is an algebraic variety, hence it is a disjoint union of con-

nected components which can be simple arcs with end-points on δPQ or can

contain loops (simple closed curves). Theorem A states that a bone in PQ

can’t contain any loops.

Proof of theorem 1.10.2. We will show that the boundary of BQ consists

of exactly two distinct points in [0, 4]× {4} ⊂ δPQ.

Consider the maps fai ◦ f 1 with their kneading-data K(1, ai). For each i,

the adjacent kneading-sequences are distinct.

For each i ∈ {1, 2}, the pair of critical itineraries at (1, ai) determines the

respective kneading-data K(1, ai), by theorem 1.4.1. Note that =(γ1)(a1, 1) 6=
=(γ1)(a2, 1), so K(1, a1) 6= K(1, a2). The kneading-data also satisfies for each

i the conditions in the extended version of Thurston’s theorem:

1. the kneading sequences are finite;

2. K(1, ai)(c1) = K(1, ai)(c3) 6= K(1, ai)(c2);
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3. they are tight.

Hence for each i there exists a point (µi, λi) ∈ PQ such that fλi
◦ fµi

has

kneading-data K(1, ai), and subsequently (theorem 1.4.1) the same critical

itineraries as (fai , f 1). In consequence:

=(γ1)(λi, µi) = =(γ1)(ai, bi)

=(γ2)(λi, µi) = =(γ2)(ai, 1) = (Γ2, R1, L2, L1)

As we stated in the proof of theorem 1.4.4, the order-data of a critical

orbit under a pair of unimodal maps is well-determined by its itinerary (not

conversely). The order-data at (1, ai) of γ1 is (σ1, τ1); hence the order-data of

the orbit of γ1 under (fλi
, fµi

) is also (σ1, τ1). (λi, µi) must therefore be in the

left bone BQ
L = BQ in PQ corresponding to BST

L = BST in P ST .

We also know that the itinerary of γ2 under (fλi
, fµi

) is (Γ2, R1, L2, L1).

Zero is a repeller for the composition fµ ◦ fλ, for any (λ, µ) ∈ [0, 4]2 such

that µλ > 1, and this will be the case if we are situated on a left quadratic

bone (see chapter 3 for proof). So the only way for the itinerary of a point to

stay indefinitely on L1 and L2 is for the point to map to zero after a number

of iterates. To be consistent with the required itinerary, we need to have

(fλi
◦ fµi

)(γ2) = 0 and fµi
(γ2) is R, so fµi

(γ2) = 1, hence µi = 4, for both

values of i.

In conclusion: for the two points (a1, 1), (a2, 1) ∈ δBST we found two points

(λ1, 4), (λ2, 4) ∈ δBQ with the same kneading-data for fai
◦ f1 and fλi

◦ f4. We
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prove that the two points (λ1, 4) and (λ2, 4) we found in δBQ are the only two

boundary points of BQ.

Indeed, suppose that δBQ is made of more than two points (λ, µ), all

clearly in [0, 4] × {4} ⊂ δPQ. By Thurston’s theorem, the 3-modal maps

fλ ◦ fµ have distinct kneading-data. For each of the kneading-data, we have

=(γ2) = (Γ2, R1, L2, L1) and necessarily distinct periodic itineraries =(γ1).

From theorem 1.10.1, there will be a unique pair (a, b) ∈ δP ST for each =(γ1);

all these pairs (a, b) have to have the same order-data (σ1, τ1) for the orbit of

γ1, yet different itineraries for γ1. This contradicts lemma 1.4.6, which permits

at most two such points. 2

(a1, 1) (a2, 1)

(a0, b0)

(λ1, 4) (λ2, 4)

(λ0, µ0)

Figure 1.12: For given (σ1, τ1), both BST
L (σ1, τ1) and BQ

L (σ1, τ1) have ex-
actly two boundary points. The itinerary of γ1 changes only at the primary
intersection along either bone. Moreover, =(γ1)(a1, 1) = =(γ1)(λ1, 4) and
=(γ1)(a2, 1) = =(γ1)(λ2, 4).

Remark. We will put aside the proof of theorem A until later. As an easier,

more immediate goal, we plan to show that the succession of crossings along

BQ = BQ(σ1, τ1) ⊂ PQ is same as along the corresponding bone BST =
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BST (σ1, τ1) ⊂ P ST . This requires a closer look at the properties of a bone in

the ST family.

1.11 A more complete description of

bones in PST

In this section we show a combinatorial result concerning the order of

occurrence of the primary and secondary intersections along a bone in P ST

with fixed order-data (σ1, τ1). To fix our ideas, all proofs and results are

developed for left bones BST = BST
L , hence we will omit writing the index L

unless it causes ambiguity.

The following idea has been mentioned several times before. I would like

to state it and prove it as a simple but important result in its own right.

Lemma 1.11.1. Following (a, b) along the bone BST , the itinerary =(γ1)(a, b)

changes at the primary intersection point with the corresponding dual bone and

only there.

Proof. Recall that the order-data of γ1 at a point (a, b) ∈ BST determines

the itinerary =(γ1)(a, b) except from the position L2, R2 or Γ2 of the point

yl ∈ I2 closest to γ2 = 1
2
∈ I2.

Sliding along the horizontal part of the bone from (a1, b0) to (a2, b0), yl

continuously changes from one side of γ2 to the other, passing through γ2

when a = a0. Hence =(γ1) only changes at the primary intersection (a0, b0).

2
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Therefore, BST
∗ = BST\{(a0, b0)} can be divided into two halves, each

corresponding to a different itinerary of γ1 under (fa, f b); call BST
− the left

half, containing (a1, 1) ∈ δBST and BST
+ the one containing (a2, 1) ∈ δBST .

Clearly:

BST = BST
∗ ∪ {(a0, b0)} = BST

− ∪ {(a0, b0)} ∪BST
+

(a2, 1)(a1, 1)

BST−

b0

a2

(a0, b0)

a1

Figure 1.13: We divide a left bone in P ST in two halves, according to the two
possible itineraries of γ1: B

ST = BST
− ∪ {(a0, b0)} ∪BST

+

To fix our ideas, we look at BST
− ; the results and the proofs should work

symmetrically for BST
+ . BST

− is composed of a vertical segment and a horizontal

one:

BST
− = {a1} × [b0, 1] ∪ [a1, a0]× {b0} = BST

−,v ∪BST
−,h

We can now state our claim for this section in more precise terms:

Theorem 1.11.2. The secondary intersections occur along BST
−,v in the strictly

decreasing order of their itinerary =(γ2), as b decreases from 1 to b0.
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BST
−,h

BST−,v

Figure 1.14: We divide the left half BST
− of a left bone in P ST into a vertical

segment BST
−,v and a horizontal segment BST

−,h. All secondary intersections occur
along BST

−,v. The horizontal part is composed only of capture points.

Let’s take a brief look at our case: the itinerary of γ1 under (fa1 , f b) remains

constant all along BST
−,v:

=(γ1)(a1, b) = =(γ1)(a1, 1), ∀b0 ≤ b ≤ 1

and the itinerary of γ2 should intuitively change at the secondary crossings,

but not only. So we propose to study a slightly wider problem: the succession

of all points along BST
−,v where the itinerary =(γ2)(a1, b) changes. To follow is

the description of such points.

Recall that capture points in BST
−,v are the pairs (a1, b) ∈ BST

−,v for which γ2

maps to γ1 after a finite number of iterates under (fa1 , f b).

So, at such a point, the orbit of γ2 is eventually periodic, but not periodic,

hence not bicritical. The itinerary of γ2 is therefore finite at all capture points,

but these points are not bones intersections.
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We introduce some notations. For all m ≥ 1, we call:

Cm = {(a1, b) ∈ BST
−,v / γ2 maps to γ1 after 2m− 1 iterates under (fa1 , f b)}

Sm = {(a1, b) ∈ BST
−,v / γ2 maps to itself after 2m iterates under (fa1 , f b),

i.e. γ2 has a critical orbit of length 2m}

Dm = Cm ∪ Sm

Also:

C =
⋃

m≥1 Cm = {(a1, b) ∈ BST
−,v capture points }

S =
⋃

m≥1 Sm = {(a1, b) ∈ BST
−,v secondary intersections }

D =
⋃

m≥1Dm = C ∪ S

I will call the points in D the distinguished points of BST
−,v. I will use, for

an arbitrary b ∈ [b0, 1] , the following notation for the itinerary of γ2 under

(fa1 , f b):

=(γ2)(a1, b) = =(γ2)(b) = (J b
0 , J

b
1 , J

b
2 , ..., J

b
2m, J

b
2m+1, ...)

The even indexes correspond to iterates in I2, hence to elements of {L2, R2,Γ2};
the odd indexes stand for iterates in I1, hence for elements of {L1, R1,Γ1}.
Remark. If (a1, b) ∈ Dm, then J b

2k−1 6= Γ1 and J b
2k 6= Γ2, for all 1 ≤ k ≤ m−1.
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Moreover, either J b
2m−1 = Γ1, if (a1, b) ∈ Cm, or J b

2m = Γ2 and J b
2m−1 6= Γ1, if

(a1, b) ∈ Sm.

Definition 1.11.3. If = = (J0, J1, ...), call =m = (J0, J1, ..., J2m) the finite

symbol sequence obtained by truncating = to the first 2m positions. If = =

=(γ2)(b) for some b ∈ [b0, 1], then we use the notation:

=m(γ2)(b) = (J b
0 , J

b
1 , ..., J

b
2m−1, J

b
2m)

On the set of truncated itineraries of length k, we put the order naturally

inherited from the space of infinite itineraries.

Properties:

(a) If =1 and =2 are infinite itineraries such that for some m we have

=m
1 < =m

2 , then =1 < =2.

(b) If =1 ≤ =2, then =m
1 ≤ =m

2 , ∀m ≥ 1.

(c) If (J∗0 , ..., J
∗
2m−1, J2m) < (J∗0 , ..., J

∗
2m−1, J2m) are such that J2m, J2m ∈

{L2, R2}, then:

(J∗0 , ..., J
∗
2m−1, J2m) < (J∗0 , ..., J

∗
2m−1,Γ2) < (J∗0 , ..., J

∗
2m−1, J2m).

(c′) If (J∗0 , ..., J
∗
2m, J2m+1) < (J∗0 , ..., J

∗
2m, J2m+1) are such that J2m+1, J2m+1 ∈

{L1, R1}, then:
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(J∗0 , ..., J
∗
2m, J2m+1) < (J∗0 , ..., J

∗
2m,Γ1) < (J∗0 , ..., J

∗
2m, J2m+1).

In the following, fix m ∈ N.

Lemma 1.11.4. =m(γ2)(a1, b) changes at all points in
⋃

k≤mDk (which are

finitely many) and only at these points, as b goes from 1 to b0.

Proof. Clearly, =m(γ2)(a1, b) changes at any (a1, b) ∈
⋃

k≤mDk. The

second part follows: suppose =m(γ2)(a1, b) 6= =m(γ2)(a1, b) for some b < b.

Then there exists a 1 ≤ k ≤ 2m such that J b
k 6= J b

k. By continuity, there

is a b∗ ∈ [b, b] such that J b∗
k = Γ1 or Γ2 (depending on the parity of k), i.e.

(a1, b
∗) ∈ ⋃

k≤mDk. 2

Consider now the function that assigns to each point (a1, b) ∈ BST
−,v the

truncated itinerary of length 2m of γ2 under (fa1 , f b):

ψm : BST
−,v → {=m(γ2)(b) / b ∈ [b0, 1]}

ψm(a1, b) = =m(γ2)(b)

ψm is locally constant on BST
−,v \

⋃
k≤mDk , from lemma 1.11.4. More pre-

cisely, ψm is constant on the intervals between consecutive points of
⋃

k≤mDk

and it does change at all these points (its constant value has to change from an

interval to the next through an intermediate value at the point in
⋃

k≤mDk) .

We will say that a function on BST
−,v with values in an ordered set is in-

creasing if it is increasing as a function of its second variable b ∈ [b0, 1]. In
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this context:

Proposition 1.11.5. For any fixed m ≥ 1, ψm is increasing (with the pre-

viously defined order on finite symbol sequences) and locally constant on

BST
−,v \

⋃
k≤mDk, with actual changes at all points in

⋃
k≤mDk.

Proof. We only need to prove ψm increasing.Take b < b such that there exists

b∗ ∈ [b, b], with (a1, b
∗) ∈ ⋃

k≤mDk. WLOG, we can take b such that the first

2m iterates of f b(γ2) = b in I1 under (fa1 , f b) do not hit again the second

plateau value b. Same take b such that f b(γ2) doesn’t return to the plateau in

less than 2m iterates under (fa1 , f b). We then have that the orbit of b = f b(γ2)

under (fa1 , f b) is identical on the first 2m positions with the orbit of b under

(fa1 , f 1) and the orbit of b = f b(γ2) under (fa1 , f b) coincides on the first 2m

positions with the orbit of b under (fa1 , f 1):

=m(γ2)(a1, b) = =m−1(fa1(b))(a1, b) = =m−1(fa1(b))(a1, 1)

=m(γ2)(a1, b) = =m−1(fa1(b))(a1, b) = =m−1(fa1(b))(a1, 1)

But: b < b, hence fa1(b) < fa1(b) ⇒ =(fa1(b))(a1, 1) < =(fa1(b))(a1, 1).

So, from property (b):

=m−1(fa1(b))(a1, 1) ≤ =m−1(fa1(b))(a1, 1)

Hence:
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=m−1(fa1(b))(a1, b) ≤ =m−1(fa1(b))(a1, b)

In other words:

=m(γ2)(a1, b) ≤ =m(γ2)(a1, b)

By lemma 1.11.4, this automatically means:

=m(γ2)(a1, b) < =m(γ2)(a1, b)

If b∗ ∈ ⋃
k≤mDk, then for arbitrary b, b 6∈ ⋃

k≤mDk such that b < b∗ < b, it

follows from the above and from property (c) that:

=(γ2)(b) < =(γ2)(b
∗) < =(γ2)(b). 2

Theorem 1.11.6. ψm is increasing on BST
−,v.

Proof. Follows from proposition 1.11.5 2

Define:

ψ : BST
−,v −→ {=(γ2)(b) / b ∈ [b0, 1]}

ψ(a1, b) = =(γ2)(b)

Theorem 1.11.7. ψ is increasing on BST
−,v.

Proof. Follows from theorem 1.11.6 and property (a). 2

Corollary 1.11.8. ψ is strictly increasing on D.
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Proof to theorem 1.11.2. The secondary intersections S on BST
−,v are a sub-

set of D, so in particular ψ is strictly increasing on S. 2

Remark. Theorem 1.11.2 makes it possible to identify the order of occurrence

of the distinguished points (in particular of the secondary intersections) along

BST
−,v by looking at the itinerary of γ2. From the construction of the stunted

bones in section 1.6 it is also easy to see that there are no secondary intersec-

tions on the horizontal segment of BST
−,h. In fact, all points of BST

−,h are capture

points and =(γ2)(a, b0) is constant for a ∈ [a1, a0].

1.12 A more careful look at the bone-arcs in

PQ

We want to shift our attention now to the quadratic bone-arc corresponding

to BST
L (σ1, τ1) ∈ P ST for our arbitrarily fixed order-data. More precisely, we

look at the left bone in PQ having the same order-data (σ1, τ1) ∈ S2
n for the

2n-periodic orbit of γ1. It is composed of a simple arc connecting its boundary

points and possible bone-loops. We will continue to call BQ the arc-component

of this left bone. There will be no need to take into account the bone-loops

within this section. To avoid ambiguity, we will use more precise notations for

the distinguished points along BST and BQ: Dm
ST ⊂ DST ⊂ BST ⊂ P ST and

respectively Dm
Q ⊂ DQ ⊂ BQ ⊂ PQ, for all m ≥ 1.

BQ is a connected arc joining two boundary points (λ1, 4) and (λ2, 4) and

having a unique primary intersection (λ0, µ0). As before, the itinerary of γ1

53



under (fλ, fµ) changes only at (λ0, µ0) as we move (λ, µ) along BQ. Hence we

can divide BQ into two halves: left of (λ0, µ0), containing (λ1, 4) and right of

(λ0, µ0), containing (λ2, 4).

BQ = BQ
− ∪ {(λ0, µ0)} ∪BQ

+

I will study the left half, comparatively with the vertical left half BST
−,v.

The itinerary =(γ1) of γ1 has the same form along both partial bones

BST
−,v and BQ

− .Go along the half bones from the boundary point towards the

primary intersection. For any fixed m, the itinerary =m(γ2) changes at each

distinguished point in
⋃

k≤mDk and stays constant on the intervals between

such points. There is an actual change in =m(γ2) from one such interval to the

adjacent one (through the critical state that occurs at the distinguished point).

We proved that in P ST this change is an actual decrease. In PQ such a change

is required in order for Thurston’s uniqueness condition to hold. Indeed, as

we move along the bone, an iterate of γ2 may reach either critical point γ1 or

γ2 at a value of the parameter (σ, τ) in some Dk. This iterate can’t bounce

back to the left or right interval it came from.

We also know that there is a bijective correspondence between secondary

intersections along BST
−,v and BQ

− that associates to each intersection in BST
−,v

one with identical =(γ2) in BQ
− .We would like to prove that these secondary

intersections occur on both BST
−,v and BQ

− in the same decreasing order of =(γ2),

going from the boundary towards the primary intersection. In other words,

we prove that the bijection is order preserving.

Fix m ≥ 1. Call (l1,m1) the first distinguished point in
⋃

k≤mDk
Q on BQ

−
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(from (λ1, 4) along the connected curve, with the regular order inherited by

the order on (0, 1) ⊂ R).

Using theorems 1.5.3 and 1.7.2, there is a corresponding distinguished point

(α, β) ∈ ⋃
k≤mDk

ST ⊂ BST
−,v with the same critical itineraries :

1. =(γ1)(α, β) = =(γ1)(l1,m1) and

2. =(γ2)(α, β) = =(γ2)(l1,m1)

Claim. (α, β) is the first point to occur in
⋃

k≤mDk
ST along BST

−,v.

Suppose not. Then there exists a point (a∗, b∗) ∈ ⋃
k≤mDk

ST between (a1, 1)

and (α, β). We then have (see picture):

=m(γ2)(a1, 1) > =m(γ2)(α
∗, β∗) > =m(γ2)(α, β)

=m(γ2)(a1, 1) = =m(γ2)(λ1, 4)

=m(γ2)(l1,m1) = =m(γ2)(α, β)

The contradiction follows easily. (Note, for instance, that the conditions imply

that the pair of critical itineraries at (a1, 1) has to be the same as the pair at

a point right before (α, β)).

So the distinguished point in BST
− with itinerary =(γ2)(l1,m1) is the first

to occur in
⋃

k≤mDk
ST . Continuing the procedure shows that the order of

occurrence of all points in
⋃

k≤mDk
ST along BST

−,v is the same as the order of

points in
⋃

k≤mDk
Q along BQ

− (i.e. the decreasing order of the itinerary =m(γ2)).

We can state this as follows.
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Theorem 1.12.1. For a fixed m ≥ 1, going along BST
−,v from (a0, b0) to

(a1, 1) and along BQ
− from (λ0, µ0) to (λ1, 4), the itinerary =m(γ2) is mono-

tonely increasing, with actual changes occurring at each distinguished point in
⋃

k≤mD
k
ST and

⋃
k≤mD

k
Q, respectively. Hence the infinite itinerary =(γ2) is

monotonely increasing along BST
−,v.

Proof. Follows from the previous considerations and from properties (a)

and (b). 2

Theorem 1.12.2. For a fixed m ≥ 1, going along [0, 1] × {1} ⊂ ∂P ST and

[0, 4] × {4} ⊂ ∂PQ, the itinerary =(γ2) = (Γ2, R1, L2, L1) stays constant, but

the itinerary =(γ1) increases monotonically, with an actual change at each

end-point of a bone of period 2k ≤ 2m.

Proof. Similar to previous theorem. 2

(λ1, 4)

(λ0, µ0)

(l1,m1)

(a1, 1)

(α∗, β∗)

(α, β)

(a1, b0)
(a0, b0)

Figure 1.15: If =(γ2) changes along BST
−,v at (α∗, β∗) between (a1, 1) and (α, β),

then =m(γ2) would have to change along BQ
− between (λ1, 4) and (l1,m1). This

contradicts our assumption.
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1.13 The big picture

Overview of results:

Fix m ≥ 1. Going along BST
− from (a0, b0) to (a1, 1) and along BQ

− from

(λ0, µ0) to (λ1, 4), the truncated itinerary =m(γ2) increases monotonically, with

an actual increase at each crossing with a right bone. Hence there is a one-

to-one correspondence between the crossing points of bones of period at most

2m in the two families, correspondence that preserves the order of critical

itineraries (i.e. of the joint order-data).

The end-points of left bones have the same critical itineraries along the

upper boundary of the two parameter spaces ([0, 1]× {1} ⊂ ∂P ST and [0, 4]×
{4} ⊂ ∂PQ). There is a one-to-one correspondence between all boundary points

of bones of period smaller than 2m in the two families, correspondence that

preserves the order of the critical itineraries.

We want to restate the results in terms of kneading-data.

Take two points (λ1, µ1) and (λ2, µ2) on the same BQ
− . They will have the

same itinerary =(γ1) and different itineraries for γ2. ”<“ is a total order on

the space of itineraries of γ2 along BQ
− . Suppose =1(γ2) << =2(γ2). If the

left bone-arc BQ
− is in the region {λ ≤ 2}, we can think of the maps fµ1 ◦ fλ1

and fµ2 ◦ fλ2 as unimodal, with folding point γ1 and identical kneading-data

K1 = K2. If not, the maps are 3-modal, and for either i = 1 or i = 2 their

critical points are Ci
1 < C2 = γ1 < Ci

3. The collection of interval-symbols is

AQ = {I0, C1, I1, C2, I2, C3, I3} and kneading-data:
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Ki = (Ki(Ci
1),Ki(γ1),Ki(C i

3))

Lemma 1.13.1. Consider (λ, µ) ∈ BQ
− such that fµ ◦ fλ has critical points

C1 < γ1 < C3, and call

=(γ2) = (J0, J1, ..., J2k, J2k+1, ...)

K(C1) = (A1, A2, ..., Ak, ...)

Then, for any k ≥ 1:

Ak = I0 iff (J2k−1, J2k) = (L2, L1)

Ak = I1 iff (J2k−1, J2k) = (L2, R1)

Ak = I2 iff (J2k−1, J2k) = (R2, R1)

Ak = I3 iff (J2k−1, J2k) = (R2, L1)

Ak = C1 iff (J2k−1, J2k) = (L2,Γ1)

Ak = C3 iff (J2k−1, J2k) = (R2,Γ1)

Ak = C2 iff J2k−1 = Γ2

Proof. The proof is an easy exercise. 2

Lemma 1.13.2. For (λ1, µ1), (λ2, µ2) ∈ BQ
− we have =1(γ2) < =2(γ2) implies

K1 << K2.

Proof. =1(γ2) and =2(γ2) coincide up to a position k. If the common part

contains a Γ1 or Γ2, then =1(γ2) = =2(γ2), hence K1 = K2. If not, the parity

of the number of Rs in this common part is going to be reflected in the parity

of the number of groups (R2L1) and (L2R1) in the corresponding common part

of the kneading sequences. The result follows easily from the lemma. 2

Remark. (1) A similar statement works for the boundary [0, 4] × {4}, on
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which =(γ2) is constant. If (λ1, 1) and (λ2, 1) are such that =1(γ1) < =2(γ1),

then K1 << K2.

(2) The results were proved for left half of bone-arcs, but are similar for

right halves.

We restate two important conclusions.

Theorem 1.13.3. For parameters (λ, µ) ∈ PQ, the kneading-data of the maps

fµ ◦ fλ increases along a left bone-arc from its primary intersection towards

either boundary point and increases along the upper boundary interval [0, 4]×
{4} ∈ ∂PQ from left to right (see picture). A symmetric statement holds for

right bones and the right boundary interval.

We know (see appendix D) that the order of the kneading-data of two maps

is preserved into the order of their topological entropies. Hence:

Theorem 1.13.4. The topological entropy increases in PQ along each bone-

arc from its primary intersection towards the boundary ∂PQ and along the

boundary segments [0, 4]× {4} and {4} × [0, 4] towards the upper right corner

(see picture).

Remark. The equivalent result for P ST is discussed in detail in appendix B.

1.14 Important conclusions

To end this chapter and the combinatoric discussion, we want to point out

two major results, most important for our later goals.
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Figure 1.16: The arrows show the direction of increasing entropy along the
bones and the boundary in P ST and PQ.

We showed that every bone in PQ is composed of a bone-arc (that we

called BQ in a previous section) and possible loop components. These loops

will eventually turn out not to be valid objects. For the time being, a step

towards this conclusion follows as a consequence of Thurston’s uniqueness: for

any arbitrary left bone in PQ, the bone-arc BQ contains all possible post-

critically finite kneading data (itineraries) admissible for the given bone. In

consequence, any loop component that the bone may have can not contain any

post-critically finite points.

Definition 1.14.1. Fix n ∈ N. We define the n-skeleton in either parameter

space to be :

SST
n = the union of all (left and right) bones BST

2k ⊂ P ST of period 2k ≤ 2n,

together with the boundary ∂P ST ;

SQ
n = the union of all (left and right) bones BQ

2k ⊂ PQ of period 2k ≤ 2n,

together with the boundary ∂PQ.

By a vertex of either skeleton we mean either an end-point of its bones or

a (primary or secondary) intersection point.
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Theorem 1.14.2. For any fixed n ∈ N, there is a homeo

ηn : P ST −→ PQ

which maps SST
n onto SQ

n , carrying ∂P ST to ∂PQ, carrying bones to corre-

sponding bones and and vertexes to vertexes with the same data.

Proof. We use the result that will be proved independently in the next

two chapters: the bones in PQ are smooth C1 curves, intersecting transversally

with each other and with the boundary. There are no bone loops in PQ, so

each bone is a smooth arc connecting two boundary points. Moreover, each

such bone-arc contains all post-critically finite kneading-data existing on the

corresponding bone in P ST , in the same order of occurrence.

The construction of the homeomorphism is topologically straightforward.

Define ηn on the set of vertexes by corresponding to each vertex in SST
n the

unique one in SQ
n with the same data. Along each bone, ηn preserves the order

of the vertexes. Hence we can extend it continuously to the intervals on the

bones or boundary between each two vertexes, then to each skeleton-enclosed

region. This can easily be done in such a way that the resulting continuous

map ηn : P ST −→ PQ is a homeomorphism. 2

We can associate to the n-skeleton in either parameter space a topological

cell-structure as follows:

• the 0-cells are points, more precisely the vertexes of the n-skeleton;

• the 1-cells are the connected components of the bones obtained by delet-

ing the vertexes, hence they are homeo to open intervals;

• the 2-cells are the connected components of the complement of the n-
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skeleton in the respective parameter space, hence they are homeo to open

discs.

We will also use the closures of such cells, which are homeo to points, closed

intervals and closed discs respectively.

η3

Figure 1.17: The n-skeletons define topological cell-complexes in both param-
eter spaces. The map ηn is a homeomorphism between these complexes. The
picture illustrates n = 3.

We call the resulting complexes: P ST
n in P ST and PQ

n in PQ. The map

ηn : P ST
n −→ PQ

n is a homeomorphism of cell complexes, taking each cell in

P ST
n to a corresponding cell in PQ

n by carrying vertexes to vertexes with the

same entropy and edges to edges with the same interval of entropies.
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Chapter 2

Smoothness of the Q-bones

2.1 Preliminary remarks

As we have stated before, a bone in PQ is an algebraic variety with two

boundary points in ∂PQ. As far as we presently know, the bone curves may

not even be connected. We will rule this out in chapter 3, where we show

independently that a bone can’t contain any loops. For now, we dedicate this

paragraph to proving that:

Theorem 2.1.1. The bones are smooth C1 curves that intersect transversally.

Recall that we use the notations BQ
L,2n and BQ

R,2n for a left/right bone in

PQ of period 2n and given order-data. Fix an arbitrary point p0 = (λ0, µ0) on

a left bone BQ
L,2n. We want to show that BQ

L,2n is smooth at p0 = (λ0, µ0). For

any p = (λ, µ) close to p0, the corresponding map fµ ◦fλ has a unique periodic

point close to γ1 = 1
2
. The multiplier m(λ, µ) of this periodic point depends

holomorphically on (λ, µ). We must prove that the partial derivatives ∂m
∂λ

and

∂m
∂µ

are not simultaneously zero.
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For the map h = fµ0 ◦fλ0 , γ1 has a superattracting periodic orbit of period

2n. Let Uh = Uh(γ1) be the immediate attracting basin of γ1. Hence, if K(h)

is the filled Julia set of h, then Uh ⊂ K(h) is a simply connected bounded

open neighbourhood of γ1 that is carried to itself by h◦n. We point out the

two cases that could appear, depending on the behavior of the other two (com-

plex) critical points of h, called C1 and C3.

(1) The map h is not hyperbolic (i.e. C1 and C3 are not attracted to at-

tracting cycles).

(2) The map h is hyperbolic (i.e. C1 and C3 are attracted). But each hy-

perbolic component in PQ is biholomorpfic to a Blaschke model. Within each

of these components, the locus of the maps with a specific superattracting

orbit is a smooth complex manifold (see section 3.1.3 or [M1]).

2.2 Plan of proof for case 1

We will use quasiconformal surgery in the neighbourhood of our fixed map

h ∈ PQ. No iterates of the other two critical points of h belong to Uh, the im-

mediate attracting basin of γ1, hence Uh is isomorphic to the open unit disc,

parametrized by its Bottcher coordinate. I.e., there exists a biholomorphic

isomorphism that conjugates h◦n to the squaring map z −→ z2:

β : Uh −→ D
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β(h◦n(z)) = (β(z))2

β

D

D

f

Uh

Uh

βh◦n

Figure 2.1: The Bottcher isomorphism β conjugates h◦n with the squaring map
f(z) = z2

We want to replace the superattracting basin Uh by a basin with small

positive multiplier Λ. For each Λ in a small disc centered at zero, we will

construct a new map hΛ corresponding to a (λΛ, µΛ) ∈ PQ in such a way that

Λ −→ hΛ ∼ (λΛ, µΛ) is analytic and that h0 = h.

The composition of smooth (analytic) maps

Λ −→ hΛ ∼ (λΛ, µΛ) ∈ PQ −→ m(hΛ)

is the identity. (Here m denotes again the function that assigns to each map in

PQ its multiplier at the specified attracting point). It follows that the partial
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derivatives ∂m
∂λ
, ∂m

∂µ
can’t be simultaneously zero on a small neighbourhood of

h ∈ PQ. By the Implicit Function Theorem, the bone curve is smooth C1 on

a small neighbourhood of h.

Consider the map f(z) = z2 on the open unit disk D (which is the Bottcher

parametrization of h◦n). Its unique critical point in D is the origin. Fix a small

ε > 0 (along the proof we will make specific requirements of how small we want

ε to be) and let Λ be an arbitrary complex number such that 0 ≤| Λ |≤ ε.

We want to perturb the map f to a new degree 2 map gΛ such that:

• gΛ has the same dynamics as fΛ(z) = z2 + Λz inside a small disc around

zero; in particular, the origin will be fixed, with multiplier Λ;

• gΛ has the same dynamics as f outside a larger disc around zero.

We carry out the construction as follows:

Fix an r < 1, small. We will use concentric discs of radii r2 < r/2 < r, so

we want r < 1
2

from the start.

For the fixed Λ, we consider the map:

fΛ : ∆r2 −→ C , fΛ(z) = z2 + Λz

We want to chose r such that we are sure that, for any Λ with 0 ≤| Λ |≤ ε,

the following conditions, (1) and (2), are satisfied:

(1) fΛ maps ∆r2 into ∆r2
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∆ r

2

∆r

∆r2

f

fΛ

Figure 2.2: We construct a map that coincides with fΛ on the disc ∆r2 and
with the squaring map f on the exterior of the disc ∆ r

2
(where r < 1 is chosen

conveniently).

But | fΛ(z) |=| z2 + Λz |=| z || z + Λ |≤ r2(r2 + ε)

So it suffices to ask that r2 < 1− ε, to have: fΛ(z) ∈ ∆r2 , ∀z ∈ ∆r2

(2) the critical point of fΛ is in ∆r2

We need | −Λ
2
|≤ r2. It is sufficient to ask for ε

2
≤ r2.

Overall, it is sufficient to make our choice of the radius r such that:

ε

2
≤ r ≤ min(

1

2
, 1− ε)
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Using a partition of unity, we construct a smooth map that is identical

with fΛ(z) inside ∆r2 and with f(z) outside ∆r/2. To make an explicit con-

struction,start with:

ξ : R −→ R , ξ(x) = e−
1
x , ∀ x > 0

Then define:

ρ(z) =





ξ( r
2
−|z|)

ξ( r
2
−|z|)+ξ(|z|−r2)

, if r2 <| z |< r/2

0 , if | z |≥ r/2

1 , if | z |≤ r2

It is an easy exercise to show that ρ : C −→ R is a smooth C1 map. We

define gΛ : C −→ C as:

gΛ(z) = z2 + Λρ(z)z

Clearly gΛ is C1 smooth and

gΛ(z) = fΛ(z) in ∆r2

gΛ(z) = f(z) in C∆r/2

We would like to also have that: (1) gΛ is a 2-to-1 map on D and that (2)

it carries ∆r/2\∆r2 into ∆r2 .
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| gΛ(z) |=| z2 + Λρ(z)z |≤| z | (| z | +ε)
To get condition (2) it suffices to ask for:

r

2
(
r

2
+ ε) ≤ r2, i.e.

2ε

3
≤ r

For our fixed ε, fix an r such that 2ε
3
≤ r ≤ 1 − ε. Then take ε smaller (if

necessary), such that gΛ has no critical point outside ∆r2 , for any 0 ≤| Λ |≤ ε.

(Recall that the critical point of g0(z) = f(z) = z2 is 0 ∈ ∆r2 and the depen-

dence Λ −→ gΛ is smooth for | Λ |≤ ε). This will insure that the map gΛ is

2-1 on D, for all Λ less in absolute value than the chosen small ε.

To summarize: For any fixed | Λ |≤ ε, the map gΛ : D → D constructed

above is a 2-to-1 C1 smooth map that carries ∆r\∆r2 into ∆r2 and carries

∆r2 into itself. gΛ coincides with fΛ inside ∆r2 and with f outside of ∆ r
2

(in

particular it is conformal outside ∆r) and has no critical points in ∆r\∆r2 .

We would like to emphasize that, as ∆r\∆r2 is mapped by gΛ directly into

∆r2 , the annulus ∆r\∆r2 is intersected at most once by any orbit under gΛ.

We pull gΛ back to Uh through the Bottcher biholomorpic diffeomorphism

β:

GΛ = β−1 ◦ gΛ ◦ β : Uh → Uh

The new map GΛ is 2-to-1 and C1 smooth, and has similar properties as

the ones stated above for gΛ (see figure):

It carries Xh to Wh and Wh to itself. GΛ coincides with β−1 ◦ f ◦ β = h◦n
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∆r2

∆ r
2

∆r

gΛ = f

Vh

Wh

GΛ = h◦n
β

Xh

Figure 2.3: Xh, Vh and Wh are the preimages under the Bottcher map β of
∆r, ∆ r

2
and ∆r2, respectively. The map gΛ : D → D pulls back as the C1-map

GΛ, that acts as h◦n outside Vh and carries Vh to Wh.

outside Vh. It has a critical point inside Wh and none in the annular region

Xh\Wh. Also, any orbit under GΛ crosses Xh\Wh at most once.

Recall that what we ultimately need is a small distortion of h ∈ PQ to a

hΛ ∈ PQ with similar dynamics, that replaces the superattracting cycle of h

by a cycle with multiplier Λ.

We notice that h : C → C carries

Uh → h(Uh)
∼−→ ...

∼−→ h◦(n−1)(Uh)
∼−→ h◦n(Uh) = Uh

(acting as a diffeo except on Uh).

We define HΛ as

HΛ = h outside Vh

and such that

h◦(n−1) ◦HΛ = GΛ inside Xh (i.e. HΛ = h
◦(1−n) ◦GΛ)

The new HΛ is C1 (notice that the two definitions coincide on Xh\Vh) and
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h(Uh)

h

h◦(n−1)(Uh)

h,HΛ

h◦n, GΛ

Uh

Figure 2.4: Using GΛ : Uh → Uh to replace h◦n, we can construct HΛ : UΛ →
h(UΛ) to replace h. Extend it as HΛ = h on C\Uh.

has the desired dynamical behavior. However, it may fail to be analytic, hence

it may not be a map in PQ. The rest of the construction aims to transform

HΛ into a polynomial hΛ ∈ PQ, preserving the dynamics.

The Beltrami dilatation of HΛ is:

µHΛ
(z) =

(HΛ)z

(HΛ)z

HΛ = h outside Vh, hence µHΛ
(z) = 0 outside Vh.

h◦(n−1) ◦ HΛ = GΛ inside Xh, and h◦(n−1) is conformal, hence µHΛ
= µGΛ

on Xh.

But β ◦GΛ = gΛ ◦ β and β is conformal, so:

µβ◦GΛ
(z) = µGΛ

(z) and

71



µgΛ◦β(z) = µgΛ
(β(z))β′(z)

β′(z)

Hence on Xh:

µHΛ
(z) = µGΛ

(z) = µgΛ
(β(z))

β′(z)
β(z)

Recall that gΛ has no critical point in ∆r\∆r2 , so (gΛ)z 6= 0 on ∆r\∆r2 .

Hence the denominator of:

µgΛ
(z) =

(gΛ)z

(gΛ)z

never vanishes. Moreover, for fixed z, both top and bottom above are linear

in Λ, so it follows easily that:

Λ → µgΛ

is an analytic dependence.

Under iteration of gΛ, points hit the annulus ∆r\∆r2 at most once, hence

µgΛ
is bounded less than 1 in modulus.

µHΛ
(z) therefore depends itself analytically on Λ and :

| µHΛ
(z) |=| µgΛ

(β(z)) || β′(z)
β′(z)

|=| µgΛ
(β(z)) |≤ 1 on Xh\Wh and

µHΛ
(z) = 0 outside Xh\Wh.

We define an ellipse field starting with circles inside Wh and outside all
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preimages of Xh under HΛ and pulling it back invariantly under HΛ. All

orbits hit Xh\Wh (the annular region where HΛ is not analytic) at most once,

so the ellipse field is distorted at most once along any orbit. Let µΛ be the

coefficient of this field. The dependence of µΛ on Λ is holomorphic on | Λ |≤ ε.

HΛ

Wh

HΛ

Xh

Uh

Vh

Figure 2.5: The infinitesimal circles inside Wh are pulled back under H−1
Λ to

ellipses in Vh (the region with radial marks).

Let φΛ solve the Beltrami equation:

φz

φz

= µΛ

determined uniquely by the normalization φΛ(0) = 0, φΛ(1) = 1, φΛ(∞) = ∞,

With this choice for φΛ, hΛ = φΛ◦HΛ◦φ−1
Λ is a quartic complex polynomial.

To validate the construction, we have to show that, for Λ ∈ R, | Λ |< ε, hΛ is
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a polynomial in our family PQ. Start by showing that hΛ has real coefficients,

in other words:

hΛ(z) = hΛ(z), ∀z ∈ C

To begin with, recall that gΛ(z) = z2 + Λρ(z)z, where ρ(z) = ρ(z) ∈ R.

Hence:

gΛ(z) = z2 + Λρ(z)z = gΛ(z)

Pulling back through the Bottcher coordinate, we remark that β(z) = β(z),

and so all three domains Wh, Vh and Xh are symmetric (i.e. z ∈ Wh ⇔ z ∈ Wh

etc). On Xh:

GΛ(z) = β−1(gΛ(β(z))) = β−1(gΛ(β(z))) = β−1(gΛ(β(z))) =

= β−1(gΛ(β(z))) = GΛ(z)

Clearly, the property transfers to HΛ:

HΛ(z) = h(z) = h(z) = HΛ(z) outside Vh and

HΛ(z) = h◦(1−n)(GΛ(z)) = HΛ(z) inside Xh\Vh

So HΛ : C → C commutes with complex conjugation. We want to prove

that φΛ has the same property.

74



We use the chain rule:

φz = φz and φz = φz

(φ(z))z = φz(z) and (φ(z))z = φz(z)

As GΛ is symmetric, we have:

µGΛ
(z) =

(GΛ)z

(GΛ)z

(z) =
(GΛ(z))z

(GΛ(z))z

=
(GΛ(z))z

(GΛ(z))z

=
(GΛ)z(z)

(GΛ)z(z)
=

= (
(GΛ)z

(GΛ)z

) = µGΛ
(z)

Hence µHΛ
is symmetric. µΛ is also clearly symmetric. Recall that φΛ is

the solution of the Beltrami equation

φz

φz
= µΛ

normalized by fixing three points. We claim that φΛ is symmetric. Indeed:

φΛ(z)z

φΛ(z)z

=
(φΛ(z))z

(φΛ(z))z

=
(φΛ)z(z)

(φΛ)z(z)
= (

(φΛ)z

(φΛ)z

)(z) =

= µΛ(z) = µΛ(z) =
(φΛ)z

(φΛ)z

By the uniqueness of solution of the Beltrami equation:
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φΛ(z) = φΛ(z)

Hence φΛ is symmetric, and so hΛ = φΛ ◦HΛ ◦ φ−1
Λ is a symmetric quartic

polynomial, i.e. a quartic polynomial with real coefficients.

Furthermore: hΛ(0) = (φΛ◦HΛ◦φ−1
Λ )(0) = 0 and hΛ(1) = (φΛ◦h◦φ−1

Λ )(1) =

0.

Also, hΛ has a critical point C2 inside φΛ(Xh). The other two, C1 and C3,

are outside φΛ(Xh) and given by the images under φΛ of the critical points in

C\Xh of HΛ = h. Hence they are such that hΛ(C1) = hΛ(C3). By appendix

A, hΛ ∈ PQ.

Since HΛ has an attracting cycle of length n , so does hΛ, and the multiplier

of the cycle is the same: m(hΛ) = Λ.

Finally, from a well known theorem of Ahlfors [AB], φΛ depends holomor-

phically on the parameter Λ, as the coefficient µΛ depends holomorphically

on Λ. Hence the solution φΛ depends holomorphically on Λ, so hΛ depends

smoothly on the parameter Λ, which completes our construction and the proof

of case 1 of the theorem.

2.3 The mapping schema of a hyperbolic map

In section 2.2, we considered an arbitrary parameter point p = (λ, µ) sit-

uated on a left bone B = BQ
L,2n (i.e. such that γ1 is periodic superattracting

under fµ ◦ fλ). We were able to carry out a construction that proved smooth-

ness of the bone curve B at p, provided that p was chosen such that there were
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no iterates of the other critical points of fµ ◦ fλ in the immediate attracting

basin of γ1. Although such parameters p also cover some hyperbolic cases,

we prefer to discuss the hyperbolic maps separately in the present section, to

obtain consistent results that will also be of further use in chapter 3.

We would like to detail the description of hyperbolic maps in PQ by defining

the notion of a hyperbolic component and by classifying the types of hyperbolic

components that can appear along a left bone in our parameter space PQ.

Definition 2.3.1. Let M be a finite disjoint union of copies of C and let

f : M −→ M be a proper holomorphic map of degree ≥ 2 on each component

of M . We say that f is hyperbolic if every critical orbit converges to an

attracting cycle.

Let f be a hyperbolic map as above. Let W (f) be the union of the basins of

attraction of all attracting cycles of f . f carries each component Wα ⊂ W (f)

onto a component Wβ by a map of degree dα ≥ 1. Also let W c(f) be the union

of all critical components Wα ⊂ W (f), that is of all Wα that contain critical

points of f .

We define the reduced mapping schema S(f) = (| S |, F, w) associated to

f as the triplet made of:

• a set of vertexes | S |, obtained by associating a vertex α to each critical

component Wα ⊂ W c(f);

• a weight function w :| S |−→| S |, defined as w(α) = the number of

critical points of f in Wα;

• a set of edges F :| S |−→| S | , F (α) = β, where Wβ is the image of Wα

under the first return map to W c(f).
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The critical weight of S(f) is defined as w(f) =
∑

αw(α)

2.4 Hyperbolic maps in PQ

Let us return to our space, containing real quartic polynomials that are

compositions fµ ◦ fλ of logistic maps fλ : I1 −→ I2 and fµ : I2 −→ I1. fµ ◦ fλ

is hyperbolic if all three critical points are attracted to attracting cycles under

iterations of the map. Alternatively, we can express this as follows:

Let C1 and C2 be two copies of the complex plane and consider fλ : C1 −→
C2 and fµ : C2 −→ C1 the complex extensions of two fixed logistic maps of

the interval. We define a new map: fµ
λ : C1 tC2 −→ C1 ∪C2, acting as fλ on

C1 and as fµ on C2.

Let W (fµ
λ ) ⊂ C1tC2 be the open set consisting of all complex numbers in

C1 and C2 whose forward orbit under fµ
λ converges to an attracting periodic

orbit of fµ
λ .

Under iteration of fµ
λ , each component of W (fµ

λ ) is mapped onto a compo-

nent ofW (fµ
λ ). As before, we will say that fµ

λ is hyperbolic if both γ1 ∈ I1 ⊂ C1

and γ2 ∈ I2 ⊂ C2 are contained in W (fµ
λ ). Such hyperbolic maps can be

roughly classified into the three following types (see [M3]):

(1) Bitransitive case: γ1 and γ2 belong to U1 ⊂ C1 and U2 ⊂ C2 such

that: U1 is mapped to U2 under q1 iterates of fµ
λ and U2 is mapped to U1

under q2 iterates. All primary intersections of bones in PQ provide us with

particular examples of such maps.

(2) Capture case: γ1 ∈ U1 ⊂ C1 and γ2 ∈ U2 ⊂ C2 such that U1 is
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U1 3 γ1 U2 3 γ2

(fµ
λ )◦q1

(fµ
λ )◦q2

Figure 2.6: The behavior of a bitransitive hyperbolic map.

periodic and U2 is not, but some forward image of U2 coincides with U1. Also

its symmetric case. Example: all capture points along a bone.

U1 3 γ1
(fµ

λ )◦q1

(fµ
λ )◦q

(fµ
λ )◦q1(U1) = (fµ

λ )◦q(U2)

(fµ
λ )◦q2

U2 3 γ2

Figure 2.7: The behavior of a map in the capture case.

(3) Disjoint periodic sinks: γ1 ∈ U1 and γ2 ∈ U2, where U1 and U2 are

periodic of periods q1 and q2, but no forward image of U1 coincides with U2

and vice-versa. Example: secondary intersections along a bone.

Remark. If our parameter p = (λ, µ) is on a left bone in PQ and falls under

case 3 (disjoint sinks), then there is no iterate of another critical point of fµ
λ

in the immediate superattracting basin of γ1. Hence this case could also be
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U1 3 γ1
U1 3 γ1

(fµ
λ )◦q1

(fµ
λ )◦q2

Figure 2.8: The behavior of a map in the disjoint sinks case.

classified by the quasiconformal surgery argument in section 2.2, as we claimed

at the start of this section.

[M1] provides us with enough information to understand the structure of

the hyperbolic components in PQ. However, all results are stated and proved

for families of monic centered polynomials of arbitrary fixed degree d (we call

these normal polynomials of fixed degree d). So it is convenient to show the cor-

respondence between our family of pairs of real quadratic maps, parametrized

by (λ, µ) ∈ PQ and the family of degree 2 normal polynomials. More precisely,

we will show that each map fµ ◦ fλ : C1 −→ C2 is conjugated by a complex

affine map L to a composition of maps z −→ z2 + a1 and z −→ z2 + a2.

Moreover, the correspondence (λ, µ) → (a1, a2) is “nice” enough to permit us

to carry over to PQ properties we have in the space of normal forms.

2.5 A re-parametrization of PQ

Theorem 2.5.1. Let U be the subset of PQ consisting of pairs (λ, µ) with

λµ > 1. For each such pair (λ, µ) ∈ U there is a unique pair (A,B) ∈ R2 such

that fµ ◦ fλ is linearly conjugate to z −→ z4 + Az2 + B; there also exists a
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unique pair (a1, a2) ∈ R2 so that fµ◦fλ is linearly conjugate to the composition

of z −→ z2 + a1 and z −→ z2 + a2.

Furthermore, let us define the connectedness locus CR ⊂ R2 to be the subset

of parametes (a1, a2) ∈ R2 for which the complex critical points of (z2+a1)
2+a2

have bounded orbits. The correspondence described above:

Ξ : U −→ CR

Ξ(λ, µ) = (a1, a2)

is a bijective diffeomorphism.

Proof. Consider (λ, µ) ∈ U . The map fµ ◦ fλ : C → C is conjugate to a

quartic complex polynomial in the normal form P (z) = z4 + Az2 + B. More

precisely: there exists a unique linear L(z) = mz + b such that

L−1 ◦ (fµ ◦ fλ) ◦ L = P

The map L can be computed explicitely:

m = − 1
3
√
λ2µ

and b =
1

2

and so the pair (A,B) could be expresses as

A =
µλ(2− λ)

2 3
√
λ2µ

and B =
[8− µλ(4− λ)] 3

√
λ2µ

16

Then we can write:
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z4 + Az2 +B = (z2 +
A

2
)2 + (B − A2

4
)

In conclusion: each fµ◦fλ with (λ, µ) ∈ PQ is conjugated by the affine map

L(z) = − 1
3
√

λ2µ
z+ 1

2
to a composition of the two monic centered quadratic com-

plex maps: z −→ w = z2 + a1 and w −→ z = w2 + a2, where a1(λ, µ) = A(λ,µ)
2

and a2(λ, µ) = B − A2(λ,µ)
4

.

Appendix C shows that the correspondence

Φ : U −→ R2, Φ(λ, µ) = (A,B)

is a diffeomorphism onto its image; hence Ξ(λ, µ) = (a1, a2) is also a diffeo onto

its image. We want to show that the image Ξ(U) is exactly the connectedness

locus CR.
To do this, we consider an arbitrary map in CR:

P (z) = (z2 + a1)
2 + a2 = z4 + Az2 +B

We want to find a pair (λ, µ) ∈ PQ such that the map fµ ◦ fλ is linearly

conjugate to P . We look at the map Q(z) = −P (−z) = −P (z) = −z4 −
Az2 − B. Q is symmetric, linearly conjugate to P and may have three real

critical points C1 ≤ C2 = 0 ≤ C3 = −C1 or one real critical point C2 = 0 and

the other two complex. However, as we started with P ∈ CR, the orbits of the

critical points of Q are also bounded.

Suppose C1 ≤ C2 ≤ C3 real. Then there exists a ξ ∈ (−∞, C1) fixed point
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of Q such that Q′(ξ) > 1. Otherwise Q(x) ≤ x, ∀x ∈ R, hence the orbits of

the critical points are unbounded, contradiction.

(ξ, ξ) (−ξ, ξ)

Figure 2.9: Q takes the interval [ξ,−ξ] into itself, and the restriction of Q to
[ξ,−ξ] is boundary anchored.

So we have that Q(ξ) = Q(−ξ) = ξ. If we look at the restriction of Q to

the interval [ξ,−ξ], clearly Q is boundary anchored and Q([ξ,−ξ]) ⊂ [ξ,−ξ],
because poins outside [ξ,−ξ] are repelled to ∞ under iterations of Q.

We conjugate Q to a polynomial S by a linear map L(z) = mz + b such

that S(0) = S(1) = 0. Explicitely, we look for L such that L(0) = ξ and

L(1) = −ξ, which gives us L(z) = ξ(1 − 2z). The map S can be written as

a composition fµ ◦ fλ (see appendix A). Moreover, the boundary of the unit

interval is repelling for S, hence (λ, µ) ∈ U .

We follow the same procedure if C1 and C3 are complex. We find ξ ∈
(−∞, C2) such that Q′(ξ) > 1. We conjugate Q to an S, boundary anchored
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on the unit interval, by L(z) = ξ(1− 2z). The proof of lemma A2 in appendix

A shows how S = fµ ◦ fλ, with (λ, µ) ∈ [0, 4]2. Automatically, (λ, µ) ∈ U .

So we proved that, for each (a1, a2) ∈ CR, there exists a pair (λ, µ) ∈ U

such that Ξ(λ, µ) = (a1, a2). 2

Remarks. (1) Some maps Q in the proof above have two fixed points ξ1, ξ2 in

the interval (−∞, C1), with Q′(ξ1) > 1 and Q′(ξ2) < 1. This allows us two con-

structions: of a map S1 that is a composition fµ1 ◦ fλ1 , with (λ1, µ1) ∈ U , and

of a second map S2 such that S2 = fµ2 ◦fλ2 , with (λ2, µ2) ∈C U (see figure 3.2).

(2) All bones in PQ are contained in U . Indeed, suppose there is a (λ, µ)

on a bone such that (λ, µ) /∈ U . The fixed origin is not repelling for the map

fµ ◦ fλ with negative Schwarzian derivative, so it attracts all critical points,

hence (λ, µ) can’t be on a bone, contradiction.

To continue, we will prove smoothness of bones in the family of normal

maps, using [M1]. The result will automatically follow in PQ.

2.6 The hyperbolic components model

Recall that we defined in 2.3 the mapping schema of a hyperbolic map

(also see [M1]). All hyperbolic maps that interest us have reduced mapping

schemata of critical weight 2, so we will only analyze the cases that appear for

w = 2.

To a fixed mapping schema with w = 2, we associate the universal polyno-

mial model space P . This will be the space of all maps f from C1tC2 to itself
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such that the restriction of f to each copy of C is a monic centered polynomial

of degree 2. More precisely:

f(z) = z2 + a1, for all z ∈ C1

f(z) = z2 + a2, for all z ∈ C2

where a1, a2 ∈ C.

Remark Our PQ family, re-parametrized as a family of normal polynomials,

is the subset of real polynomials in P .

We say that a map f ∈ P belongs to the connectedness locus C if its filled

Julia set K(f) intersects both C1 and C2 in a connected set. The hyperbolic

connectedness locus H ⊂ C is the open set of all f ∈ P for which the orbits of

both critical points 0 ∈ C1 and 0 ∈ C2 converge to attracting periodic orbits.

For maps f ∈ H, we may consider their reduced mapping schemata S(f).

These schemata will all have critical weight 2, but not all are isomorphic.

However, all maps in each connected component of H clearly have isomorphic

schemata. Furthermore, by theorem 4.1 in [M1]:

Theorem 2.6.1. If Hα ⊂ C is a hyperbolic component of H with maps having

reduced schemata isomorphic to S, then Hα is diffeomorphic to a model space

B(S). In particular, any two hyperbolic components Hα and Hβ with schemata

isomorphic to S are diffeomorphic. Moreover, each Hα contains a unique post-

critically finite map fα, called its center.

Looking at the classification of hyperbolic components shown in section

2.4, we have a different reduced schema for each case as shown in figure 2.10.
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(3)(2) (1) 

α2

α1

α1
α2α2α1

Figure 2.10: (1) Bitransitive case: | S |= {α1, α2}, F (α1) = α2, F (α2) =
α1, ω(α1) = ω(α2) = 1. (2) Capture case: | S |= {α1, α2}, F (α1) =
α1, F (α2) = α1, ω(α1) = ω(α2) = 1. (3) Disjoint sinks case: | S |=
{α1, α2}, F (α1) = α1, F (α2) = α2, ω(α1) = ω(α2) = 1

In other words, the hyperbolic components in each class have identical

mapping schemata, hence within each class (bitransitive, capture and disjoint

sinks) the hyperbolic components are diffeomorphic to each other. The center

points in each case will be respectively primary intersections, capture points

and secondary intersections. The characterization of the model space for each

schema, presented in [M1],gives us a complete description of all hyperbolic

components in H.

However, we are not quite done yet. We still have to translate everything

for polynomials with real coefficients, in order to have the results apply to our

original family.

Definition 2.6.2. A real form of the mapping schema S is an antiholomor-

phic involution ρ : C1 tC2 −→ C1 tC2 which commutes with the special map

fS
0 : C1 t C2 −→ C1 t C2, fS

0 (z) = z2. The collection of maps f ∈ P that

commute with ρ is an affine space PR(ρ), which we call the real form of P
associated with ρ. We also define the corresponding real connectedness locus
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and the real hyperbolic locus as:

CR(ρ) = C ∩ PR(ρ)
HR(ρ) = H ∩ PR(ρ)

For each mapping schema of weight 2, [M1] shows that there are exactly

two real forms. The form ρ0(z) = z corresponds to the space PR(ρ0) of real

polynomials in P . If we restate theorem 6.4 of [M1] in our particular case, we

obtain:

Theorem 2.6.3. Any hyperbolic component in CR = CR(ρ0) ⊂ PR(ρ0) is a

topological 2-cell with a unique “center point” and is real analytically homeo-

morphic to a space of Blaschke products βR(S, ρ0).

In other words, any hyperbolic component in CR is diffeomorphic to a “prin-

cipal” hyperbolic component HS
0R(ρ0). For example, all bitransitive compo-

nents are diffeo to the principal component centered at:

fS
0 : C1 t C2 −→ C1 t C2, f

S
0 (z) = z2

For a detailed characterization of the construction and properties of the

suitable Blaschke-products model spaces, see [M1]. We use the results in the

reference to give the needed description of the hyperbolic components in our

original parameter space PQ.

Theorem 2.6.4. Each hyperbolic component in U ∈ PQ is a topological 2-cell

which contains a unique post-critically finite point, called its center. Moreover,

every bone that intersects such a component does it along a simple arc pass-

ing through the center. Subsequently, there could be either one bone crossing
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the component through its center (capture case) or a pair of left-right bones

intersecting transversally at the center point (bitransitive and disjoint sinks

cases).

Remark. The theorem above discusses the hyperbolic components in the

region U where the boundary of the unit interval is repelling for the map fµ◦fλ.

The region PQ \U = {(λ, µ) / λµ < 1} is itself a hyperbolic component of PQ,

whose maps have all critical points attracted to zero. However, as mentioned

in a remark of section 2.5, this component contains no bones.

The theorem completes the proof of the second part of theorem 2.1.1, but

also completes the description of the hyperbolic behavior in PQ, which will be

useful for later purposes (see picture 3.2).
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Chapter 3

The impossibility of bone-loops

3.1 Introductory remarks

Our plan for this chapter is to prove that bones in the parameter space PQ

can not contain any loops (i.e. simple closed curves). One of the results in the

first chapter was that each bone contains a simple arc (that we called BQ).

We have also showed in section 1.1.4 that all possible distinguished kneading

data can be found in a certain order along this bone-arc.

We argue by contradiction. Suppose there exists a bone loop L. We will

show next that the interior U of the loop can’t contain any hyperbolic maps.

This will contradict the genericity of hyperbolicity stated in theorem 3.1.3 and

proved in detail in section 3.2.

Remark. The following statements and proofs are given for left bones, but

apply by symmetry to right bones.

Lemma 3.1.1. A left bone loop in PQ can’t contain any distinguished point,
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hence it can’t contain any crossing with a right bone.

Proof. Any distinguished point on the loop L would need to have a

kneading-data already achieved along the bone arc (section 1.1.4). Thurston’s

Theorem shows easily that this is impossible. 2

Theorem 3.1.2. The region enclosed by a left bone loop in PQ can’t contain

any hyperbolic maps.

Proof. We know by theorem 2.6.4 that each hyperbolic component in PQ

is an open topological 2-cell that contains a unique post-critically finite point,

called “center”. Moreover, the intersection of any bone with a hyperbolic

component must be a simple arc passing through the center.

Suppose, by contradiction, that some hyperbolic component H intersects

the region U . We have two cases:

(1) H ⊂ U . then there is a bone that passes through the center of H. This

can only be a bone arc, as bone loops can’t contain distinguished points (by

lemma 3.1.1). From the Jordan Curve Theorem, this bone arc has to intersect

the bone loop L, contradiction with lemma 3.1.1.

(2) H intersects the loop L. Then the loop must contain the center point

of H, again contradiction. 2

Our next goal is to prove density of hyperbolicity in PQ. In other words:

Theorem 3.1.3. Consider a polynomial P = fµ ◦ fλ ∈ PQ. Then P can be

approximated by hyperbolic polynomials in PQ.
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Remark. The theorem is a modification of the more general version of the

Fatou conjecture, showed in [KSvS]. The reference gives a proof that makes

use of the following Rigidity Theorem:

Theorem 3.1.4. Let f and f ′ be two polynomials with real coefficients, real

non-degenerate critical points, connected Julia sets and no neutral periodic

point. If f and f ′ are topologically conjugate as dynamical systems on the real

line R, then they are quasiconformally conjugate as dynamical systems on the

complex plane C.

We will use ourselves the Rigidity Theorem to prove theorem 3.1.3.

3.2 Preliminaries for proving Theorem 3.1.3.

Recall that a complete characterization of PQ is the set of degree 4 real

polynomials P : I → I of shape (+,−,+,−), boundary anchored (i.e. P (0) =

P (1) = 0) and symmetric with respect to x = 1
2
, i.e. P (x) = P (1−x),∀x ∈ I.

We want to emphasize some properties of the maps in our family PQ, to justify

why we are entitled to use the Rigidity Theorem 3.1.4.

(1) For any P ∈ PQ, the iterates of all critical points are bounded, hence

the critical points are all in the filled Julia set K(P ). Therefore,the Julia set

J(P ) is connected (see for example theorem 17.3 in [M4]).

(2) Recall that the three complex critical points of an arbitrary P ∈ PQ

are C1, C2 = 1
2

and −C1. An equivalent condition to C1 /∈ R is that:

91



fλ(
1

2
) <

1

2
⇔ λ

4
<

1

2
⇔ λ < 2

For convenience of notation, we prefer to work within this section with

a family of normal polynomials (see section 2.4 for definitions) affinely con-

jugated to our interval maps, hence having the same dynamical behavior.

Polynomials Q in this family will be of the form

Q : [−1, 1] → [−1, 1], Q(−1) = Q(1) = −1, Q(−x) = Q(x), ∀x ∈ [−1, 1]

If we consider the complex extensions of these polynomials, we can define

the family S4 as the set of complex polynomials Q : C → C of degree 4,

even (i.e. Q(z) = Q(−z), ∀z ∈ C) and “boundary anchored” (i.e. Q(−1) =

Q(1) = −1). In other words, S4 = {az4 + bz2 + c / a+ b+ c = −1}.
We define Xs to be the subset of maps in S4 with the following properties:

• they have real coefficients;

• their three critical points are real and nondegenerate;

• all critical points and values are in [-1,1] (hence their Julia sets are con-

nected);

• the boundary {−1, 1} is repelling.

We claim that hyperbolic polynomials are dense in Xs. Then the proof

of 3.1.3 follows relatively easily. Indeed, the claim implies directly density of

hyperbolicity in the region in PQ where λµ > 1 and λ ≥ 2. By the symmetry
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µ = 2

λ = 2

λµ = 1

Figure 3.1: All maps in {λµ < 1} and in {λ < 2, µ < 2} are hyperbolic.
Hyperbolic maps are dense in {λµ > 1, λ ≥ 2}. By symmetry, they are dense
in the shaded region {λµ > 1, µ ≥ 2}.

property (2), the result follows in the region where λµ > 1 and µ ≥ 2. In the

regions {λµ > 1, λ < 2, µ < 2} and {λµ < 1} the proof is trivial.

Indeed, if λµ < 1 then all three critical orbits of fµ ◦ fλ converge to zero,

while if λ < 2, µ < 2 and λµ > 1 then all critical orbits converge to a point in

(0, 1
2
).

Next, we aim to prove density of hyperbolicity in Xs.

Lemma 3.2.1. Consider P ∈ Xs with one parabolic cycle {z1, ..., zm}. We

can approximate P by a polynomial S ∈ Xs for which the cycle is attracting.

Proof. Fix P ∈ Xs, hence P (z) = az4 + bz2 + c, a, b, c ∈ R, with a¡0 and

a+ b+ c = −1.

Since P has real coefficients and real critical points, the forward critical

orbits are real. The parabolic cycle {z1, ..., zm} attracts at least one critical
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Figure 3.2: Hyperbolic maps are dense in PQ. The picture sketches the hyper-
bolic components with maps whose two critical orbits converge to an attracting
fixed point or an attractor of period two (shaded regions). The middle lightly
shaded region is the principal component, containing the map (λ, µ) = (2, 2).
For the maps in the lower-left region (under the curve λµ = 1), both critical
poins are attracted to zero. These two regions have the same corresponding
image in the space of normal polynomials (see remark (1) to theorem 2.5.2.)

point, therefore zj ∈ R, ∀j ∈ 1,m. Also, note that zj 6= −zk for any two

zj 6= zk (otherwise the two points would be mapped to the same value P (zj) =

P (−zk)).

Consider a complex polynomial H such that:

H(zj) = 0, ∀j ∈ 1,m

∑ Re(H ′(zj))

P ′(zj)
< 0
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H ′(x) = 0 when P ′(x) = 0 (recall P has real critical points)

H(−1) = H(1) = 0

By the remark above, we can chooseH to be even, i.e. H(−z) = H(z), ∀z ∈
C. We can changeH into a polynomialQ with all properties ofH and real coef-

ficients by setting Q(z) = H(z)+H(z). Indeed, for x ∈ R, Q(x) = 2Re(H(x))

and Q′(x) = 2Re(H ′(x)), hence:

Q(zj) = H(zj) +H(zj) = 2ReH(zj) = 0

Q(−1) = Q(1) = 0

Q′(x) = 2Re(H ′(x)), so if P ′(x) = 0 then Q′(x) = 0

∑ Q′(zj)

P ′(zj)
=

∑ 2Re(H ′(zj))

P ′(zj)
< 0

Consider the new polynomial R = P + εQ, for small real values of ε. R

perturbes the neutral cycle of P to an attracting cycle:

∑
log | R′(zj) | =

∑
log | P ′(zj) |+

∑
log | 1 + ε

Q′(zj)

P ′(zj)
| =

= ε
∑ Q′(zj)

P ′(zj)
+ o(ε2) < 0
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For small enough values of ε, R has the following properties:

• the parabolic cycle of P is attracting for R;

• the attracting/repelling cycles of P change to attracting/repelling cycles

for R (hence {−1} remains a repelling fixed boundary point for R);

• R is even (as Q was chosen even) and R(−1) = R(1) = −1, hence R ∈ S4;

• R has real coefficients;

• the critical points of R are the same as the critical points of P , hence

they are real, nondegenerate; all critical points and values are contained in

[−1, 1], hence the Julia set J(R) is connected;

However, in order to satisfy all required conditions, Q (hence R) may have

degree larger than 4. We use the Straightening Theorem to obtain a degree 4

polynomial S ∈ Xs with the same behavior as R (see for example [CG]).

Theorem 3.2.2. (Straightening Theorem.) If f : D1 → D2 is polynomial-

like of degree d, then there are a polynomial g and a quasiconformal map φ

such that f = φ◦g ◦φ−1 on U1. Moreover, φ is unique up to three fixed points.

Take ρ > 1 large. Set D2 = ∆(0, ρ4) and D1 = R−1(D2). If ε is small

enough, then R ∼ P near {| z |= ρ}, so (R;D1, D2) is polynomial-like of

degree 4. We may assume that {z1, ..., zm} ⊂ D1 and all critical points of P
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are also in D1. By theorem 3.2.2, R is conjugate on D1 to a polynomial S of

degree 4.

Moreover, the quasiconformal map φ that conjugates R to S is even and

symmetric on D1 (for details, see the proof of the Straightening Theorem in

[CG] and the proof of theorem 2.1.1). We can choose φ to fix 1,−1 and ∞.

Therefore, on the domain D1:

• S = φ−1 ◦R ◦ φ is symmetric (i.e. S(z) = S(z)), hence S has real coeffi-

cients;

• S is even, as φ is even;

• S ′(x) = 0 when R′(φ(x)) = 0, so the three critical points of S are in

φ(D1) and are the images under φ of the critical points of R; hence S has real,

nondegenerate critical points contained in [−1, 1];

• S(−1) = S(1) = −1;

• J(S) is connected, as J(R) is connected.

Hence S ∈ Xs is close to P and replaced the parabolic cycle of P with an

attracting cycle. 2

For every Q ∈ S4, let τ(Q) be the number of critical points contained in
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the attracting basin of a hyperbolic attracting cycle of Q.

Define: X ′
s = {Q ∈ Xs / τ(Q) has a local maximum at Q}.

As τ is uniformly bounded above, X ′
s is dense in Xs. Moreover, τ is locally

constant at any P ∈ X ′
s, hence we have the following:

Proposition 3.2.3. X ′
s is open and dense in Xs.

Proposition 3.2.4. No map in X ′
s has a neutral cycle.

Proof. Consider P ∈ X ′
s and Q given by the lemma. By making the

perturbation small enough, we can arrange that the other hyperbolic attractors

of P do not disappear. Moreover, we can also make sure that the critical points

that were attracted to the attracting cycles remain so under the perturbation.

On the other hand, each attracting cycle attracts at least one critical point.

Hence introducing a new attractor by perturbing P to Q will change τ as :

τ(Q) ≥ τ(P ) + 1

contradiction with the local maximality of τ at P . 2

We finish by giving a reduced statement, from which theorem 3.1.3 follows

now almost immediately. The proof is detailed in section 3.3.

Theorem 3.2.5. Hyperbolic polynomials are dense in X ′
s.

3.3 Hyperbolic polynomials are dense in X ′
s

Recall that two points z1 and z2 are in the same foliated equivalence class

of a map f if their grand orbits under f have the same closure. For a fixed f ,
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we denote by nac the number of foliated equivalence classes of acyclic critical

points in the Fatou set of f . By [MS], the complex dimension of the Teich-

muller space of a map f : C → C is given by:

dim(Teich(f)) = nac + nhr + nlf + np, where:

nac = # of foliated equivalence classes of acyclic critical points in the Fatou

set F (f);

nhr = # of Herman rings of f ;

nlf = # invariant line fields;

np = # parabolic cycles.

If P ∈ X ′
s, the general theory says that P has no Herman rings and no

Siegel discs. By [KSvS] and [S], P does not support an invariant line field in

its Julia set. We also proved in section 3.2 that P does not have any parabolic

basins. So all connected components of its Fatou set are attracting basins.

Hence:

nhr = nlf = np = 0 ⇒ dim(Teich(P )) = nac

Hence the set:
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QC(P ) = {Q ∈ S4 / Q quasiconformally conjugate toP}

is covered by countably many complex submanifolds of dimension nac. Subse-

quently, the set:

QCR(P ) = QC(P ) ∩Xs

is covered by countably many embedded real analytic submanifolds of Xs with

real dimension nac.

We will also use the following( [dMvS], pp 93):

Definition 3.3.1. If the 3-modal maps P,Q : [−1, 1] → [−1, 1] are such that

hQ
P :

⋃
n,iP

n(ci(P )) → ⋃
n,iQ

n(ci(Q)) i = 1, 2, 3

defined by :

hQ
P (P n(ci(P ))) = Qn(ci(Q)), ∀i = 1, 2, 3, ∀n ∈ N

is an order-preserving bijection, then we say that P and Q are combinatorially

equivalent as 3-modal maps of the interval.

The relationship between combinatorial equivalence and topological conju-

gacy in our space Xs is given by ( [dMvS]):

Theorem 3.3.2. Call F the family of maps f of the interval satisfying the

following:

(1) they are of class C3;

(2) they have nonflat critical points ( i.e. D2f(c) 6= 0, ∀c such that

Df(c) = 0 );
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(3) they have negative Schwartzian derivative: Sf < 0;

(4) the boundary of the interval is repelling (in other words | Df(x) |> 1,

if x ∈ {−1, 1});
(5) they have no one-sided periodic attractors.

Two maps f, g ∈ F are topologically conjugate (f
top∼R g) if and only if they

are combinatorially equivalent (f
c.e.∼ R g).

Remark. If P and Q are maps in X ′
s restricted to the interval [−1, 1], then

both the conditions of theorem 3.3.2 and the Rigidity Theorem are satisfied,

hence we have the following implications:

P
c.e.∼ R Q ⇔ P

top∼R Q ⇒ P
qc.∼C Q

Proof of theorem 3.2.5. Fix P ∈ X ′
s.

We think of S4 ⊂ C2 and we consider the three holomorphic functions

ci : U → C, i = 1, 2, 3 that give the three critical points of each map Q ∈ U .

By taking B ⊂ U ⊂ S4 to be a small ball around P , we can arrange to have

c1(Q) < c2(Q) < c3(Q) = −c1(Q), for any Q ∈ B ∩Xs. Take B small enough

for τ to be constant: τ = τ(Q), ∀Q ∈ B ∩Xs (recall τ is locally constant at

each P ∈ X ′
s).

We want to prove (by contradiction) that B∩Xs contains hyperbolic maps.

Suppose the maps in U ∩Xs are not hyperbolic, hence τ < 3. There are two

cases that remain for analysis:
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(1) τ = 1 (only C2 is attracted) or τ = 2 (only C1 and C3 are attracted).

Either way there is only one foliated equivalent class of critical points in the

Fatou set, hence nac ≤ 1 (note that the critical points are not necessarily

acyclic). Hence QCR(Q) is in this case at most a countable union of lines in

Xs, for any Q ∈ B ∩Xs.

(2) τ = 0 (no critical points are attracted). Hence nac = 0, so QCR(Q) is

a countable union of points in Xs, for any Q ∈ B ∩Xs.

A. Suppose first there are no bones crossing the neighbourhood B.

If there are no other “critical relations” in B (i.e. there are no m,n ∈ N
such that Qm(c1(Q)) = Qn(c2(Q)) for some Q ∈ B), then for any arbitrary

Q ∈ B the map hQ
P defined in 3.3.1 is order preserving.(Note that we do not

consider Q(c1(Q)) = Q(c3(Q)) a critical relation.) Indeed: Suppose that h

reverses the order of two elements:

P k(ci(P )) < P l(cj(P )) and

Qk(ci(Q)) > Ql(cj(Q))

By continuity, there exists a T ∈ B such that:

T k(ci(T )) = T l(cj(T )), contradiction.

Since hQ
P is order-preserving for any Q ∈ B ∩ Xs, it follows that P is

combinatorially equivalent to any Q ∈ B ∩ Xs, hence P is quasiconformally

conjugate to any Q ∈ B ∩ Xs. This contradicts the fact that QCR(P ) is at

most a union of countably many lines in Xs.
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Clearly, the “no critical relations” condition applies in the case τ = 1 or

τ = 2.

If τ = 0, it could happen that all neibourhoods of τ , arbitrarily small,

contain critical relations. In other words, there exists a map R arbitrarily

close to P that has a critical relation, say Rm(c1(R)) = Rn(c2(R)).

Consider Σ = {Q ∈ B ∩ Xs /Q
m(c1(Q)) = Qn(c2(Q))}. This is a 1-dim

curve in B ∩Xs. There clearly are no other critical relations on Σ, hence the

map hQ
R is order-preserving for any Q ∈ Σ. Subsequently, all maps in Σ are

combinatorially equivalent to R, hence quasiconformally conjugate to R. This

contradicts the fact that QCR(R) is a collection of countably many points in

Xs, as τ = 0.

B. If B ∩Xs is crossed by a bone B, let R ∈ B ∩ B ∩Xs.

W
V

S

B R

Bones can’t accumulate at R, or R would be hyperbolic. So there exists

a neighbourhood V of R, V ⊂ B ∩Xs that intersects no other bones than B.

Take S ∈ V\B and take W a neighbourhood of S in V\B. Then the argument

at A. applies for W and leads us to a contradiction.

The proof of theorem 3.2.5 is now finished. 2
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Chapter 4

Topological conclusions

4.1 The entropy and the bones

Recall some notations and results from the general theory ofm-modal maps

of the interval.

If f : I → I is an m-modal map with folding points c1 ≤ c2 ≤ ... ≤
cm, we define the sign of the fixed point x of f ◦k with itinerary =(x) =

(A0, A1, ..., Ak−1) as the number:

sign(x) = ε(A0)ε(A1)...ε(Ak−1)

where ε(Aj) = +1, −1 or 0 according to Aj being an increasing/decreasing

lap of f or a folding point c1, ..., cm. If sign(x) = −1 we say that x is a fixed

point of negative type of f ◦k.

We define Neg(f ◦k) as the number of fixed points of negative type of f ◦k.

Theorem 4.1.1. ( [MT], page 22) If f is an interval m-modal map, then its

topological entropy is:
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h(f) = lim
k→∞

1

k
log+(Neg(f ◦k))

where log+ s = max(log(s), 0).

Remark: Neg(f ◦k) is an integer ≥ 1 unless f ◦k has no fixed points of negative

type; in that case, log+(Neg(f ◦k)) = 0.

Lemma 4.1.2. Suppose that for two sequences (ak)k∈N and (bk)k∈N of positive

integers, there exists a C > 0 such that:

| ak − bk |< C, ∀k ∈ N

Then the sequence | log+ ak − log+ bk | is bounded.

Proof. We analyze three cases:

(1) ak, bk 6= 0. We can assume WLOG that ak ≥ bk. Then :

| log+ ak − log+ bk | = log(ak)− log(bk) = log
ak

bk
=

= log(
ak − bk
bk

+ 1) < log(
C

bk
+ 1) ≤ log(C + 1)

(2) ak 6= 0, bk = 0. Then 1 ≤ ak < C, ∀k ∈ N.

| log+ ak − log+ bk | = | log(ak) | = log(ak) < log(C)
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Same for ak = 0 and bk 6= 0.

(3) ak = bk = 0. Then | log+ ak − log+ bk |= 0.

We found an upper bound for our sequence:

| log+ ak − log+ bk |≤ log(C + 1), ∀k ∈ N

2

Lemma 4.1.3. If for two m-modal interval maps f and g the topological en-

tropies h(f) 6= h(g), then the sequence | Neg(f ◦k) − Neg(g◦k) | must be un-

bounded as k →∞.

Proof. Suppose :

| Neg(f ◦k)−Neg(g◦k) |< C , ∀k ∈ N

WLOG, assume h(f) = h(g) + ε , ε > 0. Then:

ε = h(f)− h(g) = lim sup
1

k
log+Neg(f ◦k)− lim sup

1

k
log+Neg(g◦k) ≤

≤ lim sup
1

k
| log+Neg(f ◦k)− log+Neg(g◦k) |≤

≤ lim sup
1

k
log(C + 1) = 0 ,

contradiction. 2
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Lemma 4.1.4. Consider p1 = (λ1, µ1) and p2 = (λ2, µ2) in PQ such that

h(fµ1 ◦ fλ1) 6= h(fµ2 ◦ fλ2)

Then any path in PQ from p1 to p2 crosses infinitely many bones.

Proof. To simplify notation, for p = (λ, µ) ∈ PQ call gp = fµ ◦ fλ

By the previous lemma, | Neg(g◦kp1
)−Neg(g◦kp2

) | is unbounded as k →∞.

Consider an arbitrary path in PQ from p1 to p2:

p : [0, 1] → PQ , p(t) = (λ(t), µ(t))

p(0) = p1 = (λ1, µ1) , p(1) = p2 = (λ2, µ2)

For a fixed k ∈ N, as t goes from 0 to 1, Neg(g◦kp(t)) changes where a fixed

point of g◦kp(t) ( i.e. a periodic point of gp(t) of period dividing k ) of negative

type appears or disappears. An existing negative-type fixed point of g◦kp(t) can

be lost under continuous deformations of the map by becoming a positive-type

fixed point. Conversely, a such fixed point can appear by a reverse process.

Both changes imply the existence of an intermediate state, corresponding to

some t∗ ∈ [0, 1], in which the respective fixed point is a critical point of g◦kp(t∗).

We want to see what a such critical point x of g◦kp(t∗) signifies for gp(t∗):

(g◦kp(t∗))
′(x) =

j=k−1∏
j=0

g′p(t∗)(g
◦j
p(t∗)(x)) = 0

In other words, g◦jp(t∗)(x) is a critical point for gp(t∗), for some j ∈ 0, k − 1.

But yj = g◦jp(t∗)(x) is a periodic point of period dividing k under gp(t∗):
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g◦kp(t∗)(yj) = g◦jp(t∗)(g
◦k
p(t∗)(x)) = yj

In conclusion, a critical point of gp(t∗) has to be periodic of period dividing

k. This implies that p(t∗) = (λ(t∗), µ(t∗)) ∈ PQ is on either a left or a right

bone of period 2n | 2k.
So if the integer Neg ((fµ(t) ◦ fλ(t))

◦k) has an actual change at t = t∗, then

the path p(t) crosses a bone at t = t∗.

To end the proof of the lemma, suppose that the path p(t) only crosses N

bones. Then, for all k ∈ N,

| Neg(g◦kp1
)−Neg(g◦kp2

) |

would be bounded by N , contradiction with lemma 4.1.3. 2

4.2 The entropy and the cellular structure

To continue, we will make use of two nontrivial results on topological en-

tropy for both families of stunted sawtooth maps and polynomials.

Assertion 1: ([MT] - pp 28) The topological entropy of a stunted sawtooth

map depends continuously of its parameter.

Assertion 2: ([MT] - pp 16) The topological entropy is continuous as a func-

tion
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h : C∞(I, I) → [0,∞)

.

Remark: In the quadratic family, the function fµ ◦ fλ changes continuously

in C∞(I, I) as the pair (λ, µ) moves continuously in PQ.

Most results in this section stand for both our families of maps, so the

notation P for the space of parameters is to be understood as P ST or PQ, as

the case requires. For a fixed n, Pn will stand for the cell complex defined

by the bones in either parameter space. Depending on the case, a parameter

p ∈ P is a pair:

• p = (a, b) ∈ P ST and the corresponding map gST
p = f b ◦ fa

• p = (λ, µ) ∈ PQ with corresponding polynomial gQ
p = fµ ◦ fλ

We will omit the superscript ST or Q as long as it doesn’t allow ambiguity.

Lemma 4.2.1. For any ε > 0, there exists n ∈ N such that, if p and p′ belong

to the same closed cell in P n, then the corresponding maps satisfy:

| h(gp)− h(gp′) |< ε

Proof. Suppose the contrary: there exists ε > 0 such that, for all n ∈ N,

there are two parameters pn and p′n in some common cell of Pn with:
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| h(gpn)− h(gp′n) |≥ ε

By the compactness of P , we can choose a subsequence (kn)n ⊂ N such

that both (pkn)n and (p′kn
)n converge in P :

pkn −→ p as n→∞
p′kn

−→ p′ as n→∞
The two assertions deliver the continuity of the entropy function of param-

eters in either family. Using it and passing to the limit:

| h(gpkn
)− h(gp′kn

) |≥ ε ⇒ | h(gp)− h(gp′) |≥ ε

Moreover, the closed cells of Pn are nested as n increases (in other words,

the cell complex gets “finer” with larger values of n ).

Fix an arbitrary N ∈ N. For all kn ≥ N , pkn and p′kn
are in the same closed

cell of Pkn , hence in the same closed cell of PN .

In conclusion, for any arbitrary N ∈ N, p and p′ are in the same closed cell

of PN , yet:

| h(gp)− h(gp′) |≥ ε > 0

contradiction with lemma 4.2.1. 2

Theorem 4.2.2. In P ST , the entropy function is a monotone function of

either coordinate.

Proof. See proof in Appendix A. 2

Lemma 4.2.3. Fix n ∈ N. In either parameter space P , the entropy function:
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Pn −→ [0, log4]

p −→ h(gp)

restricted to any closed cell in Pn takes its maximum and minimum values on

the boundary of the cell ( more precisely on the boundary vertexes ).

Proof. In the case Pn = P ST
n , the proof is a simple corollary of lemma

4.2.2. We have to prove the identical statement for Pn = PQ
n .

For the fixed n ∈ N, suppose the lemma is not true for some closed cell

CQ
n ∈ PQ

n , that is : there exists p∗ = (λ∗, µ∗) ∈ int(CQ
n ) such that

h(gp∗) = h(fµ∗ ◦ fλ∗) > hmax ,

where hmax is the maximum value of the entropy on the boundary δ(CQ
n ).

Let

ε =
h(gp∗)− hmax

2
≥ 0

By lemma 4.2.1, there exists m ∈ N such that the entropy variation on all

closed cells of PQ
m is less than ε. WLOG, we can take m > n. Call CQ

m the

closed cell in PQ
m such that p∗ ∈ CQ

m ⊂ CQ
n and consider any arbitrary vertex

pm = (λm, µm) of CQ
m.

As p∗, pm ∈ Cq
m, we automatically have:

| h(gp∗)− h(gpm) |< ε

But hmax + 2ε ≤ h(gp∗) , so:
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h(gpm) > hmax

The homeomorphism of complexes η−1
m : PQ

m −→ P ST
m carries vertexes

to vertexes with the same entropy, edge to edge with the same interval of

entropies and 2-cells to 2-cells. So CST
m = η−1

m (CQ
m) will be a 2-cell in P ST

m

and qm = η−1
m (pm) will be a vertex of CST

m . Also, η−1
n (δCQ

n ) = δ(CQ
n ) =

δCST
n , so the maximum value hmax(δC

Q
n ) of the entropy on δCQ

n is the same

as the maximum value hmax(δC
ST
n ) on CST

n . Hence, in the stunted family:

h(gST
qm

) = h(gQ
pm

) > hmax(δC
Q
n ) = hmax(δC

ST
n ) ,

contradiction, since the result has already been proved for P ST . 2

Corollary 4.2.4. For a fixed n ∈ N, the interval of entropy values realized by

any cell in PQ
n is the same as the interval of values for the corresponding cell

in P ST
N .

4.3 Connectedness of isentropes

Definitions and notations:

For h0 ∈ [0, log4] we call the h0-isentrope in either family the set of param-

eters:

iST (h0) = {(a, b) / h(f b ◦ fa) = h0}
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iQ(h0) = {(λ, µ) / h(fµ ◦ fλ) = h0}

For a fixed n ∈ N∗, we also use the following notations:

UST
n (h0) = {CST

n ∈ P ST
n closed cell / CST

n ∩ iST (h0) 6= Φ}

UQ
n (h0) = {CQ

n ∈ PQ
n closed cell / CQ

n ∩ iQ(h0) 6= Φ}

for the collection of closed cells in either cell complex that touch the respective

h0-isentrope.

The unions of such closed cells will be denoted by :

NST
n (h0) =

⋃ {CST
n / CST

n ∈ UST
n (h0)}

NQ
n (h0) =

⋃ {CQ
n / CQ

n ∈ UQ
n (h0)}

Remarks : (1) Clearly: iST (h0) ⊂ NST
n (h0) and iQ(h0) ⊂ NQ

n (h0).

(2) Recall that for fixed n we have the homeomorphism of cell complexes:

ηn : P ST
n → PQ

n

If CST
n is a cell in P ST

n that touches iST (h0), then the corresponding cell

CQ
n = ηn(CST

n ) will touch iQ(h0) and conversely. This follows from corollary

4.2.4 , which states that the interval of entropy values is the same in the two
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closed cells CST
n and CQ

n .

Hence:

UQ
n (h0) = {ηn(CST

n ) / CST
n ∈ UST

n (h0)}

Subsequently:

NQ
n (h0) =

⋃
{ηn(CST

n ) / CST
n ∈ UST

n (h0)}

Theorem 4.3.1. For any value h0 ∈ [0, log4], the h0-isentrope iST (h0) is

contractible.

We will prove Theorem 4.3.1 in two steps.

Lemma 4.3.2. For each h0 ∈ [0, log 4], the isentrope iST (h0) = {h = h0} is a

deformation retract of {h ≤ h0} in P ST .

Proof. Fix an arbitrary point p = (a, b) ∈ {h ≤ h0} ⊂ P ST .

Construct the path:

qp : [0, 1] → P ST , qp(t) = (1 + t(a− 1) , 1 + t(b− 1))

This is the continuous, entropy-increasing path in P ST connecting the fixed

p ∈ {h ≤ h0} with the upper-right corner of P ST ( of maximal entropy log 4).

Hence there exists (Mean Value Theorem) a smallest t∗ = t∗(p) ∈ [0, 1] such

that qp(t
∗(p)) ∈ {h = h0}.

We define the homotopy:
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p = (a, b)

t∗p

(1, 1)

h = h0

Figure 4.1: The path qp(t) = t(a, b)+(1− t)(1, 1) has to cross h = h0 at some
point. Call t∗p the first crossing.

H : [0, 1]× {h ≤ h0} → {h ≤ h0}

H(t, p) =





qp(t) , t ≤ t∗(p)

qp(t
∗(p)) , t > t∗(p)

We have that for p1, p2 ∈ {h ≤ h0}:

‖ qp1(t)− qp2(t) ‖= t ‖ p1 − p2 ‖

It follows easily that the map H is continuous in both arguments.

Clearly:

H(t, p) ∈ {h ≤ h0}, ∀t ∈ [0, 1], p ∈ {h ≤ h0}

H(1, p) ∈ {h = h0}, ∀p ∈ {h ≤ h0}
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H(0, p) = qp(0) = p, ∀p ∈ {h ≤ h0}

Hence H is a deformation retract from {h ≤ h0} to {h = h0}. 2

Lemma 4.3.3. The region {h ≤ h0} is contractible in P ST .

Proof. For a fixed p ∈ {h ≤ h0}, construct the straight segment joining

rp(0) = p and rp(1) = (0, 0): rp(t) = (1− t)p, t ∈ [0, 1].

h = h0

p = (a, b)

(0, 0)

h ≤ h0

Figure 4.2: The region h ≤ h0 contracts to the origin by straight lines

The homotopy H(t, p) = rp(t), t ∈ [0, 1], p ∈ {h ≤ h0} contracts our region

to the lower-left point (0, 0) ∈ P ST of entropy zero. 2

Proof of theorem 4.3.1. The isentrope iST (h0) is a deformation retract of

the contractible region {h ≤ h0}, hence it is contractible. 2

Remark. In [MT] the same result is shown in the space V of classical pa-
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rameters for m-modal stunted sawtooth maps. For each h0 ∈ [0, log(m + 1)],

the h0-isentrope {w ∈ V / h(fw) = h0} is contractible.

Fix an entropy value h0 ∈ [0, log4] and an n ∈ N∗.
Since NST

n (h0) and NQ
n (h0) are both unions of closed cells, they are com-

pact subsets of P ST and PQ, respectively. By the previous theorem, NST
n (h0)

is connected, so its image NQ
n (h0) = ηn(NST

n (h0) is also connected. Hence we

have the following:

Summary. For any n ∈ N∗, the set NQ
n (h0) is compact, connected and con-

tains iQ(h0).

We have now a quite comprehensive description of the sets NQ
n (h0). To

obtain topological properties of iQ(h0), we try to relate it to the collection

{NQ
n (h0)}n∈N.

Lemma 4.3.4.
⋂
NQ

n (h0) = iQ(h0)

Proof. Since iQ(h0) ⊂ NQ
n (h0) for all n ∈ N∗, the inclusion iQ(h0) ⊂

⋂
NQ

n (h0) is trivial.

For the converse, suppose there exists (λ, µ) ∈ ⋂
NQ

n (h0)\iQ(h0). In other

words: for any arbitrary n ∈ N∗, (λ, µ) is contained in a closed cell CQ
n ⊂ PQ

n

that touches iQ(h0), but such that (λ, µ) /∈ iQ(h0). For any such closed cell

CQ
n , there exists (λ∗n, µ

∗
n) ∈ iQ(h0) ∩ CQ

n .

The sequence (λ∗n, µ
∗
n)n∈N∗ satisfies in particular:
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(1) (λ∗n, µ
∗
n) 6= (λ, µ), ∀n ∈ N∗

(2) h(fµ∗n ◦ fλ∗n) = h0

We calculate:

| h(fµ∗ ◦ fλ∗)− h(fµ ◦ fλ) |= | h0 − h(fµ ◦ fλ) |

This contradicts the statement of lemma 5.2.1: the maximal variation of

the entropy over cells in PQ
n can be made arbitrarily small by increasing n. 2

Figure 4.3: The isentropes in PQ appear to be either arcs joining two points
in ∂PQ, or connected regions between such arcs, or a single point (the case
(λ, µ) = (4, 4) of entropy log 4. Appendix E shows a magnified upper corner.
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Theorem 4.3.5. iQ(h0), the h0-isentrope in PQ, is connected.

Proof. iQ(h0) is an intersection of compact, connected sets in PQ, therefore

it is compact and connected. 2
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Appendix A

Lemma A1. Suppose a complex polynomial P of degree 4 and with real

coefficients has critical points C2 = 0, C1 6= C3 such that the critical values

P (C1) = P (C3). Then P is an even complex function.

Proof. WLOG, assume P ′ is monic.

P ′(z) = z(z − C1)(z − C3) = z3 − (C1 + C3)z
2 + C1C3z

Hence:

P (z) = z4

4
− C1+C3

3
z3 + C1C3z

2 + k

P (C1) =
2C3

1C3−C4
1

12
+ k

P (C3) =
2C1C3

3−C4
3

12
+ k

As P (C1) = P (C3), we have :

2C3
1C3 − C4

1 = 2C1C
3
3 − C4

3 ⇔ (C1 − C3)
3(C1 + C3) = 0 ⇒ C3 = −C1

So:

P ′(z) = z(z − C1)(z + C1) = z3 − C2
1z
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P (z) = z4

4
− C2

1
z2

2
+ k

which makes P an even polynomial: P (−z) = P (z), ∀z ∈ C. 2

Remark. If C2 6= 0, by an affine conjugation we obtain that P (C2 + z) =

P (C2 − z), for all z ∈ C, i.e. P is “symmetric with respect to C2”.

Lemma A2. Consider a real polynomial P : I = [0, 1] −→ I with

real nondegenerate critical points 0 < C1 < C2 < C3 < 1, boundary an-

chored (i.e. P (0) = P (1) = 0). P is a composition of quadratic polynomials

in the logistic family if and only if P is symmetric with respect to 1
2

(i.e.

P (1− x) = P (x), ∀x ∈ R).

Proof. “⇒” P = fµ ◦ fλ ⇒ P (1− x) = (fµ ◦ fλ)(1− x) = P (x)

“⇐” Suppose P (x) = P (1 − x), ∀x ∈ R. Let Q(x) = P (1
2

+ x), hence

Q(x) = Q(−x), ∀x ∈ R

so:

Q(x) = ax4 + bx2 + c, a ≤ 0

As P is boundary anchored, we have:
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Q(
1

2
) = Q(−1

2
) = 0 ⇒ a

16
+
b

4
+ c = 0

Q has nondegenerated critical points in [−1
2
, 1

2
], so a < 0.

We want to find (λ, µ) ∈ R2 such that:

P (x) = (fµ ◦ fλ)(x) ⇔ Q(x) = (fµ ◦ fλ)(
1

2
− x) = −λµ(λx4 +

λ− 2

2
x2 +

4− λ

16
)

We solve: a = −λ2µ, b = λ(λ−2)µ
2

, c = λ(4−λ)µ
16

As a < 0, we can write:

λ− 2

−2λ
=
b

a
⇒ 1

λ
=
b

a
+

1

2

Suppose a + 2b = 0. Then b + 8c = 0, so Q(x) = c(16x4 − 8x2 + 1) =

c(4x2 − 1)2, which has critical points −1

2
, 0,

1

2
, hence does not satisfy our

original requirements.

Hence a+ 2b 6= 0, so we have:

λ =
2a

a+ 2b
and µ = −(a+ 2b)2

4a
≥ 0.

We need to show that the pair (λ, µ) obtained above is in [0, 4]2.

P (
1

2
) = fµ(fλ(

1

2
)) = fµ(

λ

4
) =

µλ(4− λ)

16
∈ [0, 1]

We ask that P (1
2
) ∈ [0, 1]. As µ ≥ 0 it follows that λ(4 − λ) ≥ 0, hence
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λ ∈ [0, 4].

Moreover, if we ask that the critical value P (C1) = fµ(1
2
) = µ

4
≤ 1, then

we get that µ ≤ 4.

Theorem A3. Let P : I −→ I be real polynomial of degree 4 and shape

(+,-,+,-), boundary anchored and with real critical points C1 ≤ C2 ≤ C3. Then

there exists (λ, µ) ∈ [0, 4]2 such that P = fµ ◦fλ if and only if P (C1) = P (C3).

Proof. “⇒” If P (x) = (fµ ◦ fλ)(x), then P ′(x) = f ′µ(fλ(x))f
′
λ(x), so

fλ(C1) = fλ(c3) = 1
2

and P (C1) = P (C3) = fµ(1
2
).

“⇐” If C1 < C2 < C3, it follows from lemma 1 that P is symmetric. If

C1 = C2, then also C3 = C2 (from P (C1) = P (C3)), so C1 = C2 = C3 =

1
2
, hence P is again symmetric. In both cases, lemma 2 implies that P is

composition of two quadratic polynomials in our family. 2
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Appendix B

Let fa and f b be two maps in the stunted tent family, i.e. (a, b) ∈ P ST =

[0, 1]2. We can write explicitly what the composition f b ◦ fa looks like, for all

parameter values.

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢A

A
A
A
A
A
A
A
A
A
A
A
A
AA

P ST
1 P ST

3

P ST
2

I Let P ST
1 = {(a, b) \ b ≥ 2a}. For (a, b) ∈ P ST

1 :

(f b ◦ fa)(x) =





4x , x < a
2

2a , a
2
≤ x < 1− a

2

4− 4x , 1− a
2
≤ x < 1

II Let P ST
2 = {(a, b) \ b ≤ 2a ≤ 2− b}. For (a, b) ∈ P ST

2 :

(f b ◦ fa)(x) =





4x , x < b
4

b , b
4
≤ x < 1− b

4

4− 4x , 1− b
4
≤ x < 1
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III Let P ST
3 = {(a, b) \ b ≥ 2− 2a}. For (a, b) ∈ P ST

3 :

(f b ◦ fa)(x) =





4x , x < b
4

b , b
4
≤ x < 1

2
− b

4

2− 4x , 1
2
− b

4
≤ x < a

2

2− 2a , a
2
≤ x < 1− a

2

4x− 2 , 1− a
2
≤ x < 1

2
+ b

4

b , 1
2

+ b
4
≤ x < 1− b

4

4− 4x , 1− b
4
≤ x < 1

Recall [MT, page 28]: Let f and g be two m=modal maps of shape

(+,−,+...), folding vectors v(f) = (v1
f , ..., v

m
f ), v(g) = (v1

g , ..., v
m
g ) and knead-

ing data K(f), K(g). We say that:

(1) v(f) << v(g) iff (−1)jvj
f ≥ (−1)jvj

g

(2) K(f) << K(g) iff σi−1Ki(f) ≤ σi−1Ki(g), ∀1 ≤ i ≤ m

With these definitions, we have:

v(f) << v(g) ⇒ K(f) << K(g) ⇒ h(f) ≤ h(g)

Lemma B1. The entropy function (a, b) ∈ P ST −→ h(f b ◦ fa) ∈ [0, log 4]

increases with either parameter.

Proof. Fix a ∈ [0, 1]. We want to show that:
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b1 ≤ b2 ⇒ K1 = K(f b1 ◦ fa) << K2 = K(f b2 ◦ fa)

We have the following cases:

(1) (a, b1), (a, b2) ∈ P ST
1 . Then f b1 ◦ fa = f b2 ◦ fa, hence K1 = K2.

(2) (a, b1), (a, b2) ∈ P ST
2 . Then both composed maps can be considered

unimodal with folding vectors (b1) << (b2), hence K1 << K2.

(3) (a, b1) ∈ P ST
2 , (a, b2) ∈ P ST

1 . Then the folding vectors (b1) << (2a),

hence K1 << K2.

(4) (a, b1), (a, b2) ∈ P ST
3 . Then the two maps are 3-modal, and (b1, 2 −

2a, b1) << (b2, 2− 2a, b2) ⇒ K1 << K2.

(5) (a, b1) ∈ P ST
2 , (a, b2) ∈ P ST

3 . Then: (b1) << (b2) and (b2, b2, b2) <<

(b2, 2− 2a, b2).

In all cases it follows that h(f b1 ◦ fa) ≤ h(f b2 ◦ fa).

Similarly, we fix b ∈ [0, 1] and a1 ≤ a2.

(1) (a1, b), (a2, b) ∈ P ST
1 ⇒ (2a1) << (2a2)

126



(2) (a1, b) ∈ P ST
1 , (a2, b) ∈ P ST

2 ⇒ (2a1) << (b)

(3) (a1, b), (a2, b) ∈ P ST
2 ⇒ K1 = K2.

(4) (a1, b) ∈ P ST
2 , (a2, b) ∈ P ST

3 ⇒ (b, b, b) << (b, 2− 2a2, b)

(5) (a1, b), (a2, b) ∈ P ST
3 ⇒ (b, 2− 2a1, b) << (b, 2− 2a2, b)

In all cases, it follows that h(f b ◦ fa1) ≤ h(f b ◦ fa2). 2
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Appendix C

Consider U = {(λ, µ) ∈ [0, 4] / λµ > 1} and the map φ : U → R2 given by

φ(λ, µ) = (A(λ, µ), B(λ, µ)), where:

A(λ, µ) =
λµ(2− λ)

2− 3
√
λ2µ

B(λ, µ) =
1

16
[8− λµ(4− λ)] 3

√
λ2µ

We claim and will prove that φ is a diffeomorphism from U onto its image in

R2.

Define:

ξ : U → R2, ξ(λ, µ) = (u, v) = ( 3
√
λ2µ, λµ(2− λ)) and

ψ : ξ(U) → R2, ψ(u, v) = (A,B) = (
v

2u
,

1

16
[8− u3 − 2v]u)

Clearly φ = ψ ◦ ξ. We will prove separately that ξ and ψ are C1 diffeomor-

phisms.

(1) We consider ξ(λ, µ) = (u, v), where:

u = 3
√
λ2µ, v = λµ(2− λ)

ξ is a C1 injective map from U = {(λ, µ) / λµ > 1} onto its image. We note

that if (u, v) ∈ ξ(U) then u > 0 and u3 + v = 2λµ > 2.

We calculate the inverse map ξ−1 : ξ(U) → U, ξ−1(u, v) = (λ, µ):

λ =
2u3

u3 + v
, µ =

(u3 + v)2

4u3

It is clear that ξ−1 is a C1 map on ξ(U), hence ξ is a diffeo.
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(2) We consider ψ(u, v) = (A,B), where:

A =
v

2u
, 16B = (8− u3 − 2v)u

ψ is C1 on ψ(U). We want to show that it is injective and that its inverse

ψ−1 : φ(U) → ψ(U) is C1.

Suppose ψ(u1, v1) = ψ(u2, v2). Then:

u4
1 + 4Au2

1 − 8u1 = u4
2 + 4Au2

2 − 8u2 ⇒
(u1 − u2)[(u1 + u2)(u

2
1 + u2

2) + 4A(u1 + u2)− 8] = 0

But :

u3
1 + 2Au1 = u3

1 + v1 > 2 ⇒ u2
1 + 2A > 2

u1

u3
2 + 2Au2 = u3

2 + v2 > 2 ⇒ u2
2 + 2A > 2

u2

Hence:

(u1 + u2)(u
2
1 + u2

2) + 4A(u1 + u2)− 8 > (u1 + u2)(
2
u1

+ 2
u2

)− 8 =

= 4 + 2(u1

u2
+ u2

u1
)− 8 > 0

Hence u1 = u2, and so (u1, v1) = (u2, v2).

This proves that ψ is injective. We show that ψ−1 is continuous. Indeed:

ψ(u, v) = (A,B) = (
v

2u
,

1

16
[8− u4 − 2vu2])

Hence, for (u, v) ∈ ξ(U):

∂
∂u
ψ(u, v) = − 1

16
(4u3 + 4v) = −1

4
(u3 + v) < 0

Therefore ψ is a homeo on ξ(U). By the Implicit Function Theorem, ψ is a C1

diffeo.
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Appendix D

Let X 6= Φ be a compact space and C a cover of X. Let f : X → X be a

continuous map and k a positive integer. Define the cover:

Ck
f = {D0 ∪ f−1(D1) ∪ ... ∪ f−(k−1)(Dk−1) / Dj ∈ C, ∀j = 0, k − 1}

Call n(Ck
f ) the smallest cardinality of a finite subcover of Ck

f . We define the

entropy of f for the cover C to be:

h(f, C) = lim
k→∞

1

k
log n(Ck

f )

The limit exists and 0 ≤ h(f, C) ≤ ∞. We define the topological entropy of f

as:

h(f) = sup{h(f, C) / C open cover ofX}

We want to outline some basic results on the topological entropy of m-

modal maps of the interval; proofs and references could be found in [MT].

Theorem 4.3.6. (Misiurewicz, Yomdin) Let I be the unit interval. The

topological entropy function h : C∞(I, I) → [0,∞) is continuous.

Corollary 4.3.7. For d ≥ 1, the entropy function is continuous on the com-

pact space of polynomials P : I → I of degree ≤ d.
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Proposition 4.3.8. (Misiurewicz, Szlenk, Rothschild) If f : I → I is

an m-modal map, then:

h(f) = lim
k→∞

log l(f ◦k)
k

≤ log(m+ 1),

where l(f ◦k) is the minimum number of intervals of monotonicity of f ◦k.

The proposition above gives an easy computation method for the entropy

in the case the orbits of the folding points give a Markov partition of I.

Another useful alternate definition involves the notion of negative orbit

complexity :

h(f) = lim
k→∞

1

k
log+(Neg(f ◦k)),

where Neg(f ◦k) is the number of fixed points of negative type of f ◦k.

Finally, we state the following results to illustrate the relation between the

topological entropy of an m-modal map and its kneading-data.

Theorem 4.3.9. The topological entropy h(f) of an m-modal map f is deter-

mined by its kneading-data K(f) and depends continuously on it.

Moreover, if K(f) >> K(g) then h(f) ≥ h(g).
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Appendix E

Figure 4.4: The figure shows the region in PQ with λ > 1
2

and µ > 3
4
. The

two large white arcs correspond to the regions with entropy log 2. The points
on the diagonal of PQ should have the same corresponding entropy values as
the points in the real Mandelbrot set, described in [D].
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