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Abstract of the Dissertation

Towards classification of laminations
associated to quadratic polynomials

by

Carlos Cabrera

Doctor of Philosophy

in

Mathematics

Stony Brook University

2005

Advisor: Mikhail Lyubich

In this thesis we develop the topological classification of lamina-

tions associated to superattracting quadratic polynomials, those

are quadratic polynomials with periodic critical point. Such lami-

nations for rational maps were constructed by Lyubich and Minsky.

In particular, we prove that the topology of such laminations is de-

termined by the combinatorics of the parameter. We also describe

the topology of laminations associated to other types of quadratic

polynomials.
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Chapter 1

Introduction

The “natural extension” Nf (or the “inverse limit”) of a rational map f is a

very interesting object whose topology and geometry reflects in a intricate way

the dynamics of f (see Lyubich and Minsky in [21]). In this thesis, we study

the relation between the topology of Nf and the dynamics of f , focusing on

the case of quadratic polynomials fc : z 7→ z2 + c.

The natural extension Nf contains the “regular leaf space” Rf whose con-

nected components (“leaves”) are endowed with a natural conformal structure.

When the dynamics of f is simple, the corresponding regular leaf space has a

lamination structure that is, there is an atlas of charts, such that the image of

every chart is the product of a disk times a Cantor set. Moreover, the leaves

of Rf are simply connected Riemann surfaces conformally isomorphic to the

complex plane. This is the case for hyperbolic quadratic polynomials (and in

this case Rf is obtained from Nf by removing finitely many points). After a

suitable refinement of the topology of the inverse limit, this is also the case for

quadratic polynomials with non-recurrent critical point on the Julia set. In

general, Lyubich and Minsky’s construction provides an orbifold affine lami-
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nation associated to any rational map, which in turn, admits an extension to

a 3-dimensional hyperbolic lamination.

The main goal of this thesis is to prove that, for hyperbolic quadratic

polynomials, the topology of the lamination determines the combinatorics of

the corresponding parameter. More precisely, if h : Rc → Rc′ is an orienta-

tion preserving homeomorphism between the regular leaf spaces associated to

the superattracting parameters c and c′, then c = c′ (when h is orientation

reversing then we have c′ = c̄).

Let us now give a more detailed description of the contents of the thesis.

In Chapter 2, we summarize the necessary background in the basic holo-

morphic dynamics. We assume the reader is familiar with the subject, and

we highlighten only the facts that are important for understanding the struc-

ture of the associated laminations. Most of this theory is readily available in

various surveys in complex dynamics, like [3],[6], [9], [19] and [24].

We begin with the definitions of the Fatou and Julia sets, followed by the

classification of periodic points and Fatou components.

We then continue with the classical linearization theory near a periodic

point. From the lamination point of view, the linearization provides us with a

suitable uniformization of the corresponding periodic leaf. We discuss from this

point of view the Königs and Böttcher coordinates (near repelling and super-

attracting points), and then mention some recent results by Tomoki Kawahira

[14] concerning the parabolic case.

Although we are focused on the superattracting case, most of our results are

set over a broader class of parameters, including those for which the critical
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point is non-recurrent. According to [21], in this case the corresponding 3-

lamination is convex cocompact. We describe some basic dynamical features

of these convex cocompact parameters.

There are several combinatorial models that describe superattracting quadratic

polynomials. For a complete discussion of them see the paper of Henk Bruin

and Dierk Schleicher [5]. We describe some of these models, for which we

have found topological analogues in the regular leaf space. One of the most

informative is the model of ray portraits as presented by John Milnor in [25].

For the proof of our main theorem, we will see that the topology of the affine

lamination associated with a superattracting quadratic polynomial determines

the ray portrait of the corresponding parameter. The interested reader can

also find more about the theory of the combinatorics of postcritically finite

quadratic polynomials in [5], [8],[9],[4], [18], [25], and [26].

In Chapter 3, we discuss basic definitions and properties of inverse limits.

A classical example of an inverse limit is the dyadic solenoid S1, associated to

the map f0 : z 7→ z2 on the unit circle S1. As a lamination the dyadic solenoid

is one-dimensional; moreover, it is naturally endowed with the structure of a

compact topological group.

The map f0 admits a natural extension f̂0 to the solenoid S1. It turns out

that f̂0-periodic leaves in S1 are in one-to-one correspondence with periodic

points of f0 in S1. In turn, the periodic points of f0 are in one-to-one cor-

respondence with rational angles with odd denominators. These observations

are the first step towards the proof of the Main Theorem.

The inverse limit lim
←−

(f0, Ĉ \ D) is homeomorphic to a cone, denoted by
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Con (S1), over the dyadic solenoid S1. Due to the Böttcher’s coordinate at

infinity, for every quadratic polynomial fc with connected Julia set, the lift of

the basin of infinity to lim
←−

(f0, Ĉ \ D) is homeomorphic to the interior of that

cone.

We call it the solenoidal cone at infinity of fc. This solenoidal cone admits

a foliation by dyadic solenoids S1 coming from the lifts of the equipotentials in

the dynamical plane. Accordingly, we call each leaf of this foliation a solenoidal

equipotential, in fact, each solenoidal equipotential is canonically identified

with S1.

Let f̂c be the natural extension of fc, acting on its solenoidal cone at

infinity. Then, the action of f̂c over a solenoidal equipotential is conjugate to

the natural extension of f̂0 on S1. Hence, periodic leaves of the solenoidal cone

at infinity of fc are in one-to-one correspondence with periodic points in S1.

In Chapter 4, we describe the topology of the laminated Julia set, that is,

the lift of the Julia set in the regular leaf space. When fc is convex cocompact,

the laminated Julia set is compact, see [21]. We show that if the postcritical

set is not the whole Julia set and the Julia set is locally connected, then fc is

convex cocompact if and only if the laminated Julia set is leafwise connected.

By another result in [21], for a convex cocompact fc, all leaves of the reg-

ular leaf space Rc are conformally isomorphic to the complex plane. Thus,

given a leaf L ⊂ Rc, it makes sense to consider the unbounded Fatou compo-

nents in L. It turns out that, non-periodic leaves of Rc have no more than 2

unbounded Fatou components. On the other hand, the number of unbounded

Fatou components on periodic leaves depends on the valence of the correspond-
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ing repelling periodic point.

Once we have described the basic topology of the laminated Julia set, we

are ready to give some restrictions to homeormorphisms between regular leaf

spaces of superattracting parameters. Because, the regular leaf space is locally

compact and the laminated Julia set is compact, we can compute the number

of unbounded Fatou components in some leaf L in terms of the topology at

infinity of L.

When fc is superattracting, on the boundary of the attracting basin of

the critical cycle there is a repelling cycle, called the dynamic root cycle of

fc, which is the fixed point of the first return map of the Fatou component

containing the critical value. We prove that the topology at infinity of the

leaves containing the lift of the dynamic root cycle is different from all other

leaves. Then, any homeomorphism as in the Main Theorem, must send leaves

containing the lift of the dynamic root cycle of fc into the corresponding ones

of fc′ .

In the last section of Chapter 4, we prove that the regular leaf space associ-

ated to any hyperbolic quadratic polynomial fc is homeomorphic to the regular

leaf space of the center of the hyperbolic component containing c. Hence, it is

enough to describe the superattracting case for all hyperbolic parameters.

In Chapter 5, we prove the Main Theorem. The strategy of the proof is to

replace the homeomorphism h : Rc → Rc′ by another homeomorphism h̃ with

special characteristics.

First we show that h is isotopic to a homeomorphism h̃ that sends a

solenoidal equipotential of Rc homeomorphically into a solenoidal equipo-
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tential of Rc′ . Now, using the canonical identifications with S1 on both

solenoidal equipotentials, the map h̃ induces a self-homeomorphism of the

dyadic solenoid, which in turn, according to Kwapisz [17] is isotopic to an

affine transformation of the dyadic solenoid (that is, to the composition of an

automorphism of the solenoid and a translation). In order to get h̃, we discuss

some isotopic properties of self-homeomorphisms of the dyadic solenoid S1 and

its cone Con (S1).

From the results of the previous chapter, we can find a homeomorphism be-

tween the regular spaces that sends a solenoidal equipotential into a solenoidal

equipotential, and the restriction to this solenoidal equipotentials, after the

canonical identifications with S1, is the identity. This implies that the orbit

portraits of the dynamic root cycles of c and c′ are the same, which leads to

the conclusion of the Main Theorem.

In the last section, we discuss some local topological properties of irregular

points which make them distinguishable from regular points. In a forthcoming

joint work with Avraham Goldstein, we prove that if h : Nc → Nc′ is a

homeomorphism of the natural extensions of any two quadratic polynomials,

then h sends the point at infinity in Nc to the corresponding point in Nc′ .

This generalizes to inverse limits of polynomials of the form fc = zd + c.

Moreover, with Goldstein’s idea of “signatures”, a sort of combinatorial model

of irregular points, we can fully describe the local connectivity properties of a

given irregular point.

Chapter 6 is part of a joint project with Yasuhiro Tanaka, where we try

to compute the leafwise number of unbounded Fatou components of Fc using

6



the Monodromy group of the regular leaf space. The case z2 − 1 is easy

to carry on and can be generalized to hyperbolic components attached to the

Main Cardioid. However, the computation of unbounded components becomes

harder, the harder the topology of the Hubbard tree is. Altogether, the point

of this chapter is to remark that the computation of the number of Fatou

components and their description can be obtained from an algebraic point of

view.

When the parameter is postcritically finite, the working tool is a construc-

tion of the monodromy group of the regular leaf space, due to Volodymyr

Nekrashevych, which allows us to describe the orbits of points on a given

fiber. The orbits can be arranged in a graph, the Monodromy Graph, which is

leafwise connected, and shares the same topology at infinity as the laminated

Julia set. Let us remark that, the computation of unbounded Fatou compo-

nents using the monodromy group, can be done only for convex cocompact

polynomials.

In conclusion, we develop the “basillica” case, that is f−1 = z2−1, counting

the number of ends that the monodromy has in each leaf. The only property

of f−1 that we use is that the corresponding hyperbolic component is attached

to the Main Cardioid. Thus, the computation generalizes to all satellite com-

ponents attached to the Main Cardioid.

7



Chapter 2

Basic complex dynamics

2.1 Dynamical plane

2.1.1 The Fatou set

Let f : C̄ → C̄ be a rational function on the Riemann sphere C̄. By F (f),

we denote the Fatou set, that is, the set of all points in the plane C for which

there is a neighborhood U such that the set of iterates {fn} is a normal family

in U .

An invariant set A of f is a set such that f(A) ⊂ A. In other hand, the

set A is called completely invariant if f−1(A) = A. By definition, the Fatou

set is open and completely invariant.

2.1.2 Periodic points

Let P = {p1, ..., pm} be a periodic cycle of f of period m. The number

(fm)′(p1) = λp1 is called the multiplier of p1. By the Chain Rule, the multi-

plier λp1 is equal to the product
∏
f ′(pi) of the derivatives of the points in P .
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Thus, the multiplier only depends on P and not on a particular point in the

cycle.

A map f is locally linearizable at a periodic point p if there is a function

φ, defined on a neighborhood of p, satisfying the equation f(φ(z)) = λpφ(z).

The map φ is called a linearizing coordinate. A periodic point p of period m,

is called:

• Attracting if 0 ≤ |λp| < 1, when λp = 0, the point is also called superat-

tracting.

• Repelling if |λp| > 1.

• Neutral if |λp| = 1, neutral periodic points can be further separated in

three cases:

– Parabolic if λp = e2πi( p
q
), where p

q
is a rational number.

– Siegel if λp = e2πiθ, where θ is irrational and the map f is locally

linearizable at p.

– Cremer if λp = e2πiθ, where θ is irrational and f is not locally

linearizable at p.

A celebrated Theorem by Denis Sullivan [30], states that every connected

component of F (f) is eventually periodic. Thus, following Fatou, the con-

nected components of the Fatou set can be classified upon its associated cycle.

Let U be a periodic Fatou component, then U is called:

• hyperbolic if it contains an attracting periodic point p and every orbit in

U has p as an accumulation point.

9



• parabolic if it has a parabolic periodic point at the boundary which is an

accumulation point of every orbit in U .

• Siegel disk if it contains a Siegel periodic point and the set of accumula-

tion points of any orbit in U \ {p} has more than one point.

• Herman ring if it is doubly connected and the set of accumulation points

of any orbit on U has more than one point.

Let p be an attracting or superattracting periodic point, the set A(p) de-

notes the Fatou component containing p, and is called the immediate basin of

attraction of p. The immediate basin of attraction of a periodic cycle P is the

union of the immediate basins of the points in P .

Fatou components are either simply, doubly or infinitely connected. When

f is a polynomial, the Fatou set has infinitely connected components when

at least one finite critical point converges to infinity under dynamics. On

the other hand, doubly connected components are either Herman rings or

preimages of Herman rings, see Lyubich [19].

2.1.3 The Julia set

The set J(f) = C \F (f), is called the Julia set of the map f . As the comple-

ment of a completely invariant open set, the Julia set is closed and completely

invariant. A Theorem of Fatou and Julia relates the Julia set with the set of

repelling periodic points:

J(f) = {The set of repelling periodic cycles of f}.

10



In fact, if the degree of d = deg(f) is at least 2, then all but finitely many

periodic points are repelling. So, if d ≥ 2, then J(f) is non-empty and,

moreover, it does not have isolated points.

2.1.4 Local coordinates

One of the important features of holomorphic dynamics is that, besides Cre-

mer periodic points, the local behavior of periodic points can be described in

easy terms by locally conjugating the map f to a simple map. In this work,

we will only use Königs and Böttcher’s coordinates which are associated to at-

tracting and superattracting points. As a consequence of the existence of such

coordinates, attracting and superattracting periodic points belong to the Fa-

tou set. For reference, we also include the definition of the Fatou’s coordinate

which is associated to parabolic periodic points. Parabolic periodic points are

of a combined dynamical nature; there are orbits points attracted to them and

orbits which are repelled. Hence, parabolic points belong to the Julia set.

When p is a Siegel periodic point there is a linearizing coordinate φ con-

jugating f to a irrational rotation z 7→ λpz. This implies that Siegel periodic

points belong to the Fatou set. Fatou components containing Siegel periodic

points are, accordingly, Siegel disks. In other hand, Cremer periodic points do

not admit a linearizating coordinate and belong to the Julia set.

2.1.5 Königs coordinate

Let p be an attracting periodic point of f of period m, let A(p) be the imme-

diate basin of attraction of p. Then, a Theorem by Königs states that there

11



is a map φ : A(p) → C, called the Königs coordinate, such that makes the

following diagram commutative:

A(p) A(p)

C C

-
fm

?

φ

?

φ

-
z 7→λpz

the map φ is unique up to multiplication by scalars. A classical expression for

φ is φ(z) = lim
n→∞

fn(z)
λn

p
. In the case of repelling periodic points p, we can take

the branch of the inverse f−1 defined locally on disks around the cycle of p,

and such that p is also periodic for f−1. As p is repelling periodic point of f ,

p is an attracting periodic point of f−1. Thus Königs linearization provides

a coordinate chart φ for f−1, which conjugates f−1 with z 7→ λ−1
p z. Since

z 7→ λ−1
p z is invertible, φ can be used to conjugate f to z 7→ λpz.

2.1.6 Böttcher’s coordinate

Let f be a rational function of degree d, and let p be a superattracting periodic

point of f of period m. Then, there is a conformal map φ : A(p) → D, called

the Böttcher’s coordinate, that makes the following diagram commutative:

A(p) A(p)

D D

-
fm

?

φ

?

φ

-
z 7→zd

The map φ is unique up to multiplication by a p− 1 root of unity.
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2.1.7 Fatou’s coordinate

Let p be a parabolic periodic point of period m. Hence, p is a parabolic fixed

point for fm and, there are vp Fatou components Si, called the attracting petals

of p, such that p is a common point in the boundary of all Si; moreover, if

x ∈ Si, then f (vp·m)n(x) ∈ Si for every n and, the orbit of x under f (vp·m) tends

to p. The number vp is called the valence of p.

Let S be an attracting petal for p, then there is a map φ : S → C, called

the Fatou’s coordinate of S, that makes the following diagram commutative:

S S

C C

-
fvp·n

?

φ

?

φ

-
z 7→z+1

such φ is unique.

In analogy with the attracting case, the union of the attracting petals Si

is called the immediate basin of attraction of p, and will be also denoted by

A(p). Also, the immediate basin of a parabolic cycle P will be the union of

the immediate basins of each point in P . A Theorem by Fatou states that

there is always at least one critical point in the immediate basins of attracting

and parabolic cycles. Thus, all points in attracting and parabolic cycles are

accumulation points of the orbit of some critical point.

2.1.8 Dynamics of polynomials

From now on, unless otherwise stated, we restrict our attention to the case

of quadratic polynomials Q defined on C̄. Every quadratic polynomial Q is
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conjugate to a unique polynomial of the form fc(z) = z2 + c. The number c

is called the parameter of Q, whenever we refer to a quadratic polynomial we

will think of it as already on the normalized form fc. Objects depending on

fc will be just indexed by c.

The union of the bounded orbits of fc is called the filled Julia set and

will be denoted by Kc. As a consequence of the maximum principle, the set

of iterates of fc defined on bounded components of the Fatou set F (fc) are

bounded for every c. So, every bounded Fatou component belongs to the filled

Julia set, which justifies the name“filled”.

There are no Herman rings for polynomials, thus, all Fatou components are

simply connected and are either associated to attracting, parabolic or Siegel

cycles. It also can happen that there are no bounded components at all, in

this case, the basin of infinity is the whole Fatou set.

Quadratic polynomials of the form fc = z2 + c have two critical points, 0

and ∞. The point at infinity ∞ is a superattracting fixed point, its basin of

attraction, the basin of infinity, will be denoted by A(∞). Also, the boundary

∂A(∞) = J(fc).

Putting aside the fixed point at ∞, the orbit of 0 is called the critical orbit,

while its closure Pc = ∪{fn
c (0)} is called the postcritical set. If 0 is a periodic

point of fc, the parameter c is said to be superattracting and, accordingly, the

cycle of c will be called the critical cycle.

14



2.2 Parameter plane

Most of the dynamical behavior of rational maps can be understood by describ-

ing the dynamics of the critical points. A dramatic example of this principle

is given by the quadratic family QF = {fc(z) = z2 + c |c ∈ C}, where the

associated Julia set has a clear dichotomy:

Proposition 1 (Julia set dichotomy). The Julia set Jc of the quadratic

polynomial fc(z) = z2+c is either connected or totally disconnected, depending

on whether the critical orbit is bounded.

The set M = {c ∈ C|Jc is disconnected} is called the Mandelbrot set. An-

other characterization of the Mandelbrot set is as the set of parameters c such

that the basin of infinity Ac(∞) is simply connected in C̄. We refer to the

plane of c as the parameter plane. In counterpart, the plane where the Julia

set lies is called the dynamical plane.

Figure 2.1: The Mandelbrot Set

If the parameter c is such that |c| > 2, then the critical orbit of fc is

unbounded. Hence, the set M is bounded by the disk of radius 2 centered at
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the origin. Having the critical orbit bounded is a closed property, this implies

that the Mandelbrot set is closed and therefore it is compact. Also, by a

Theorem of Adrien Douady and John Hubbard [9], the set M is connected

and simply connected.

The Böttcher’s function φc : C \Kc → C \ D conjugates fc to z 7→ z2 and

is asymptotically the identity at infinity. The function φc is nothing but the

Böttcher coordinate at infinity composed with the map z 7→ 1/z. The Green’s

function of the complement of the Mandelbrot set G : C \M → R+, is tightly

related to φc. In fact, G(c) = log |φc(c)| and more, the map Φ : C\M → C\D,

given by Φ(c) = φc(c), is a conformal map.

Of special interest, is the orthogonal family in C \ M coming from the

inverse image under Φ of the orthogonal family of concentric circles centered

at the origin, and radial rays in C \ D. In the parameter plane, preimages of

concentric circles under Φ are called external equipotentials, and preimages of

radial rays are called external rays. Analogously, induced by the Böttcher’s

function on C \Kc, we have two foliations by external rays and equipotentials

on the basin of infinity. In order to avoid confusion, we will always be specific

whether we are dealing with external rays on the parameter plane, or on the

dynamical plane.

When c is superattracting, the Böttcher’s coordinate around the critical

orbit also induces a foliation on the immediate basin of attraction of the critical

cycle. Thus, if p is a point in the critical cycle, the basin of attraction A(p), is

foliated by rays and equipotentials, coming from concentric circles and radial

rays in D. To distinguish them from the ones associated to the critical point

at ∞ we will call them internal equipotentials and internal rays.

16



We say that the external rayRθ lands at the Mandelbrot set if lim
r→1

G−1(re2πiθ)

exists. An important question in holomorphic dynamics is whether every ray

lands at M . Nevertheless, Douady and Hubbard proved that every ray with

rational angle θ lands at the Mandelbrot set. Furthermore, if θ = p
q

is in

reduced form, then the ray R p

q
lands in a parabolic parameter when q is odd

and in a preperiodic parameter otherwise.

We say that a parameter c is called hyperbolic if the map fc has an at-

tracting cycle different from {∞}. The set of hyperbolic parameters is open

in the parameter plane. On the dynamical plane, the basin of attraction of

any attracting cycle contains a critical point, so if c is hyperbolic, then the

critical orbit is bounded and hence c belongs to the Mandelbrot set. A hy-

perbolic component of M is a connected component of the set of hyperbolic

parameters. The set of hyperbolic components is dense in the boundary of the

Mandelbrot set, in particular M has dense interior.

Let H be a hyperbolic component; for every c ∈ H, let λp(c) be the multi-

plier of the corresponding attracting cycle. A Theorem of Douady and Hub-

bard [9], states that the multiplier map Λ, given by c 7→ λp(c), is a conformal

isomorphism from H to D. In particular, the parameter c0(H) = Λ−1(0),

the center of H, is a superattracting parameter. By associating hyperbolic

components with their center, there is a one-to-one correspondence between

superattracting parameters and hyperbolic components. The hyperbolic com-

ponent containing 0 is known as the Main Cardioid.

By a Theorem of Jean-Christophe Yoccoz, the boundary of every hyper-

bolic component in the Mandelbrot set is locally connected. Hence, the mul-

tiplier map extends to ∂H. The point Λ−1(1) ∈ ∂M is a parabolic point
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called the root of H, and it is the only point in ∂H that disconnects H from

the Main Cardioid. Hence, hyperbolic components can be identified either

with their root or their center. We will see later that the root and the center

of a hyperbolic component H share the same combinatorial description than

all parameters in H. In particular, the Julia set of any parameter in H is

homeomorphic to the Julia set of the root of H.

There are two possibilities for a hyperbolic component H, either the root of

H belongs to the boundary of exactly two hyperbolic components, in this case

the hyperbolic component H is called satellite, or the root of H belongs only

to the boundary of H, and then H is called a primitive hyperbolic component.

2.2.1 Postcritically non-recurrent parameters

Besides superattracting, hyperbolic and Misiurewicz parameters, there is also

a class of parameters such that the orbit of the critical point does not return

too close back to itself. More precisely, let f : X → X be a dynamical

system defined in a metric space X. A non-periodic point x0 ∈ X is said

to be a recurrent point of f if there is a sequence {nk} of times such that

x0 ∈ ∪{fnk(x0)}. The action of f on a set A is said to be non-recurrent if

no point a in A is a recurrent point of f . The omega limit ω(x)-limit set of a

point x ∈ C is the set of accumulation points of the orbit {fn
c (x)} of x.

A stronger notion of recurrence in a set A is when every point of A is an

accumulation point of its orbit: Let f : X → X be a dynamical system defined

in a metric space X. A set A is called minimal if it is closed invariant under

f and no proper subset of A has this property.
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Note that every point in a minimal set most be recurrent. A Theorem of

Birkhoff shows that every dynamical system contains a minimal set.

A postcritically non-recurrent rational map f is a map whose action on

the postcritical set is non-recurrent. In the case of quadratic polynomials, it

has been proved by Carleson, Jones and Yoccoz [7], that any postcritically

non-recurrent quadratic polynomial has locally connected Julia set. Another

non-trivial Theorem by Yoccoz states that critically non-recurrent parameters

are locally connected in the Mandelbrot set. On [7] these parameters are

called subhyperbolic, however we will introduce later another term related to

the associated lamination.

A Theorem by Fatou states that if the critical points of a rational map

f belong to F (f) then, for every x in J(f) there is a number C > 0 and

σ > 1 such that |(fn)′(x)| > Cσn. In other words, the map f is expanding on

the Julia set. This is the case for all quadratic polynomials with hyperbolic

parameter. Now, the following Theorem by Ricardo Mañe [22] describes, in

the general case, those points in the Julia set which are expanding.

Theorem 2 (Mañe’s Theorem). Let f : C̄ → C̄ be a rational map. A point

z ∈ J(f) is either a parabolic periodic point, or belongs to the ω-limit set of a

recurrent critical point, or for every ε > 0, there exists a neighborhood U of x,

such that, ∀n ≥ 0 every connected component of f−n(U) has diameter ≤ ε.

A related, and useful, result is the following Lemma:

Lemma 3 (Shrinking Lemma). Let f : C̄ → C̄ be a rational map. If

K ⊂ J(f) is a compact subset disjoint from parabolic periodic points and ω-

limit sets of recurrent critical points, then for every ε > 0 there exist δ > 0
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such that for every k ∈ K and every n ≥ 0, all connected components of

f−n(B(k, δ)) have diameter less than ε.

The wilder the postcritical set of a function f is, the more intricate becomes

the description of the dynamics of f . In this work, when speaking of critically

recurrent quadratic polynomials fc, we will consider only parameters with

locally connected Julia set, and whose postcritical set Pc is either a Cantor set

or the action of the map fc restricted to Pc is minimal.

We will be primarily interested on superattracting quadratic polynomials.

The other cases of postcritically finite quadratic polynomials are parameters

with preperiodic critical orbit. Preperiodic parameters are also known as Mi-

siurewicz parameters. In this case, the corresponding cycle most be contained

on the Julia set, also, the Julia sets are locally connected, one dimensional

continua with no loops, this type of compact sets are known as dendrites see

[6].

As we disscused before, superattracting parameters can be associated to

the root of their corresponding hyperbolic component. Since parabolic and

Misiurewicz parameters are landing points of external rays of rational angle,

by taking the minimum of such angles, every postcritically finite parameter

is associated to a well defined rational angle. In this way, postcritically finite

parameters, can be described by the combinatorics of the corresponding angle.

In next section, we treat postcritically finite parameters.
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2.3 Combinatorics of postcritically finite poly-

nomials

A natural way to classify postcritically finite polynomials is by describing the

different ways the arrangement that the critical orbit may have as a subset

in the plane. The combinatorics of this arrangement are reflected in both

dynamical and topological properties of the Julia set. In fact, we could say

that similar properties are hold for a slightly large set of parameters; namely,

parameters postcritically non-recurrent. Any such description is called a com-

binatorial model. Combinatorics also make explicit the relationship between

the parameter and the dynamical plane. So, certain combinatorial behaivor of

a given parameter c, determines a region in the parameter plane where c must

lie.

2.3.1 Hubbard trees

To begin with, let us present a combinatorial model given by Douady and

Hubbard; for any postcritically finite parameter c they constructed an ab-

stract graph, called the Hubbard tree, describing the dynamical arrangement

of the postcritical set. Douady and Hubbard proved that different combina-

torics induces different Hubbard trees. The graph is properly embedded in

the dynamical plane as a subset of the filled Julia set and can be defined by a

finite set of vertices in the Julia set. To see this, note that between any two

points z and ζ in the Julia set J(fc) there is an unique arc γ, embedded in

the Julia set, connecting z with ζ. The unicity of γ is subject to the condition
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that, if the trayectory of γ intersects a Fatou component, then it goes along

internal rays. In this way, the Hubbard tree of a postcritically finite quadratic

polynomial fc is defined as the smallest collection of arcs, embedded in the

Julia set J(fc) and connecting the entire critical orbit. This tree is finite and

forward invariant under the action of fc.

2.3.2 The doubling map

Let us consider the polynomial f0 = z2 which is associated to the center of the

component inside the Main Cardioid. The orbit of any point inside the unit

circle converges to 0 under iteration of f0; while the orbit of any point outside

the unit circle tends to ∞. Hence, the Fatou set consists of only two domains

and, the Julia set is just the unit circle S1 in the complex plane C.

The action of f0 in the unit circle is f0(e
2πiθ) = e2(2πiθ). That is, it doubles

the corresponding angle θ. So, the map f0 : S1 → S1 is conjugate to the

doubling map D : R/Z → R/Z, which sends the angle θ to 2θ (mod 1). For

convenience, whenever we refer to a point in the unit circle, we denote it by

its angle in T = R/Z. We also assume the standard orientation on the unit

circle. The orbit under doubling of every rational angle is finite, and the set

of periodic points of D is exactly the set of rational angles p/q where q is an

odd number.

By parameterizing external rays with their corresponding angle in T, and

as a consequence of Böttcher conjugacy of fc to z2 on the basin of infinity, we

have fc(Rθ) = R2θ. So, the action of fc on the set of external rays is conjugate

to the action of the doubling map in T. This feature will play a very important
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role in this work.

2.3.3 Ray portraits

The description by ray portraits of postcritically finite maps is based upon the

following proposition:

Proposition 4 (Douady and Hubbard). Every repelling and parabolic pe-

riodic point of a quadratic polynomial fc is the landing point of an external ray

with rational angle. Conversely, every external ray with rational angle lands

either at a periodic or preperiodic point in J(fc).

From now on, we will follow the exposition of John Milnor in [25], see

also the related work of Alfredo Poirier [26] and Dierk Schleicher [29]. By

Proposition 4, every parabolic or repelling cycle P = {p1, ..., pn} is associated

to a family of finite sets OP = {A1, ..., An}, where Ai = {θ ∈ Q/Z|Rθ lands in

pi}. The family OP is called the orbit portrait of the cycle P . The doubling

map D on T permutes the sets Ai and acts on the angles in Ai in an order

preserving way. Moreover, every angle in ∪Ai is periodic under the doubling

map, the period of such angle only depends on the cycle. As a consequence,

all Ai have the same cardinality. Thus, for p ∈ P , the valence vp of p is the

cardinality of any of the sets Ai ∈ OP .

Given two angles θ1 and θ2 in the unit circle T, by θ̂1θ2 we denote the

directed arc in T from θ1 to θ2. Now, if A is a finite set in T, a complimentary

arc of A is the closure of any connected component of T \A. If the valence is

bigger than one, each Ai determines a finite collection of complimentary arcs in

the circle. Among the union of all complimentary arcs of all Ai, see Lemmas 2.5
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and 2.6 in [25], there is a unique arc of shortest length called the characteristic

arc. The preimage of the characteristic arc under doubling is also the longest

complimentary arc which is called the critical arc, also the critical arc is bigger

than 1/2. Since the doubling map preserves the order in the complimentary

arcs, if θ̂1θ2 is the characteristic arc of some orbit portrait OP , then by a

straight forward calculation, the critical arc is η̂1η2 where η1 = θ1/2 + 1/2 and

η2 = θ2/2.

2.3.4 The dynamic root point

Let c be a superattracting parameter of period n, then the first return map of

the Fatou component containing c has a unique fixed point on the boundary

of the Fatou component containing c. Following Milnor [25] and Schleicher

[29], we call rc the dynamic root of the superattracting parameter c. The orbit

portrait of rc is called the critical portrait of c. It is a Theorem by Milnor

[25] that, the critical portrait characterizes the parameter c. In other words,

no two superattracting parameters have the same critical portrait. (See also

[26].) Remind that rotations on the unit circle T are given by maps rθ : T → T

of the form rθ(τ) = τ + θ, mod (Z).

Lemma 5. Let OP and OP ′ be the ray portraits of the periodic cycles P and P ′.

If there is a rotation of the circle rθ, such that rθ(OP ) = OP ′, then OP = OP ′.

In particular, if Oc and Oc′ are the critical portraits of two superattracting

quadratic polynomials differing by a rotation, then c = c′

Proof. Since the characteristic arc is the minimal complimentary arc; the ro-

tation rθ must send the characteristic arc of P to the characteristic arc of P ′.
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Analogously, rθ must send the critical arcs of P to the critical arc of P ′. If

θ̂1θ2 and θ̂′1θ
′
2 are the characteristic arcs of P and P ′ respectively, then the

hypothesis yield the following equation

θi + θ = θ′i

for the characteristic arcs, and

θi/2 + 1/2 + θ = θ′i/2 + 1/2

for the critical arcs. Thus, θ = 0 and θi = θ′i for i = 1, 2, then the critical arc

of fc is equal to the critical arc of fc′ . Since the characteristic arcs generate

the orbit portrait, P = P ′. The second part of the lemma follows from the

fact that the critical portrait determines the parameter c.

2.3.5 Combinatorics in the parameter plane

Now, we briefly discuss how the ubication of certain parameter c on the Man-

delbrot set affects combinatorics of periodic orbits in the dynamical plane of

fc. Analogous to Proposition 4, we have:

Proposition 6 (Douady and Hubbard). In the parameter plane, every

parabolic or Misiurewicz parameter is the landing point of at least one external

ray of rational angle. Inversely, every external ray with rational angle θ lands

at some point c in the boundary of the Mandelbrot set. Moreover, if θ has odd

denominator, then c is a parabolic parameter and Misiurewicz otherwise.

In this way, every rational angle is associated to either a parabolic or a
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Misiurewicz parameter. Besides c = 1/4, which corresponds to the cusp of

the main cardiod, every parabolic parameter c is the landing point of exactly

two external rays, say Rθ1 and Rθ2. These external rays cut the plane into

two parts, one of them contains the Main Cardioid and the other is called the

wake Wc determined by c. The limb at c is the intersection Wc ∩M . When c

is Misiurewicz in can be the landing point of several external rays.

On other hand, every parabolic parameter c is the root of some hyperbolic

component Hc; if c 6= 1/4, then Hc is contained in Wc. Thus, except for the

hyperbolic component inside the Main Cardioid, the root of every hyperbolic

component H disconnects H from the Main Cardioid. Even more, and here

is the one of the most beautiful features of combinatorics of quadratic poly-

nomials, if Rθ1 and Rθ2 are the rays determining the wakes of the parabolic

parameter c, then θ̂1θ2 corresponds to the characteristic arc of the parabolic

cycle of c. Moreover, θ̂1θ2 is also the characteristic arc of the dynamic root

cycle of Hc(0), the center of the hyperbolic component Hc. As for the whole

wake Wc, it can be described as the set of parameters in M for which there is

a cycle P with orbit portrait OP , and such that the characteristic arc of OP

is θ̂1θ2. To any given hyperbolic H component we associate to H the smallest

angle of the external rays landing at the root of H. Another useful fact is that

the period of θ1 is the same as the period of the parabolic cycle of c and the

critical cycle of Hc(0).

Given two hyperbolic components or, for this discussion, Misiurewicz points,

H1 and H2, we said that H2 is visible from H1 if the rays landing at the root of

H1 separates H2 from the Main Cardioid. Visibility induces a partial ordering

in the hyperbolic components. More precisely, for every pair of hyperbolic
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components, or Misiurewicz parameters, H1 and H2 either one is visible from

the other, or there is a hyperbolic component, or Misiurewicz parameter, H3

from which both H1 and H2 are visible.

Given any hyperbolic component H there is a well defined path, called

the combinatorial arc of H, along the Mandelbrot set connecting the Main

Cardioid with H. This imposes a tree structure onto the arrangement of

hyperbolic components in the Mandelbrot set. The root of this tree is the

Main Cardioid, and the set of vertices is the set of hyperbolic components and

Misiurewicz parameters.

Again, by identifying a hyperbolic component with its center, any super-

attracting quadratic parameter c is associated to a combinatorial arc in the

parameter plane.

2.3.6 Internal address

Now, we turn to another combinatorial description of hyperbolic components.

The concept of internal address has been introduced by Eik Lau and Schleicher

in [18]. Recently, Henk Bruin and Schleicher in [5] completed the combinato-

rial picture for postcritically finite parameters; they proved the equivalence of

the standard combinatorial descriptions that a postcritically finite quadratic

polynomial can have.

Given a superattracting parameter c, it belongs to a hyperbolic component

Hc, although generally the combinatorial arc of Hc crosses infinitely many hy-

perbolic components, one can write down, in an increasing sequence of numbers

{an}, the periods of the hyperbolic components that the combinatorial path of
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Hc crosses. This sequence {an} is always a finite and is called internal address

of the component Hc. Following Lau and Schleicher’s notation, express the

internal address of a superattracting parameter c, by {an} making a1 = 1 and

each element of the sequence connected by arrows.

For example, the internal address of the “basillica” map f−1 = z2−1 is 1 →

2, while the “airplane” map fc(z) = z2+c where c = −1.1380006666509645111+

.24033240126209830169i has internal address given by 1 → 2 → 3, see Ap-

pendix. It is a Theorem by Schleicher that if two hyperbolic parameters c and

c′ have the same internal address then the maps restricted to the filled Julia

sets are conjugate.

Let c 6= 1/4 be a parabolic parameter, then the multiplier of the corre-

sponding parabolic cycle is a root of unity of the form e
p

q
πi, the number p/q

is called the combinatorial rotation number of c. If, in the internal address,

we label each arrow with the combinatorial rotation number of the hyperbolic

components on the sequence, then we obtain the labelled internal address, is

a Theorem of Lau and Schleicher [18], that the labelled internal address of a

superattracting parameter c characterizes the parameter.
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Chapter 3

Laminations

Following Vadim Kaimanovich and Lyubich in [13], see also Lyubich’s notes

[19]. A topological space B is said to have a product structure if it is provided

with a homeomorphism φ : B → Dn ×T where Dn is the open unit disk in Rn,

and T is some topological space. Sets of the form Bx = φ−1(Dn × {x}) are

called local leaves or, simply plaques, while sets of the form Tz = φ−1({z}×T )

are called local transversals. A laminar map between product spaces is a

continuous map that sends plaques into plaques.

A lamination is a Haussdorf topological space X which is endowed with

an atlas of open charts (φ, U) where U has a product structure and φ is a

homeomorphism as above. We also require that the change of coordinates are

laminar maps, thus change of coordinates are maps of the form γαβ : D×T →

D′ × T ′ given by γαβ(z, t) = (σ(z, t), ψ(t)), where σ and ψ are continuous

functions on t. The sets U will be called flow boxes.

Different regularity conditions can be impose on laminations. This is done

by requiring the corresponding regularity to the map σ along z. For instance,

smooth laminations are laminations whose transition maps γα,β are smooth in
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the z variable. Similarly, real and complex analytic laminations can be defined.

Laminations are generalizations of the concept of foliations, a foliation is a

lamination where X is a manifold itself.

A lamination is decomposed into a disjoint union of connected n-manifolds

X = tLα, the sets Lα are called global leaves, or just leaves. Global leaves can

be characterized as the smallest set L with the property that if it intersects a

plaque Bx then Bx ⊂ L. The maps φ restricted to plaques are, in fact, charts

for leaves. Given a point z in X , we will denote by L(z) the leaf in X which

contains z.

We define the dimension of a lamination X as the dimension of any plaque

in X . In dimension two, the concept of a conformal lamination is equivalent

to the one of a complex analytic lamination, these type of laminations are also

called Riemann surfaces laminations.

Other categories of laminations, which play an important role, are affine

and hyperbolic laminations. For these, we require the change of coordinates

on leaves to be affine and hyperbolic isometries, respectively. In this work, we

will be interested in affine laminations of dimension two arising from dynamics

of quadratic polynomials.

3.1 Inverse limits

Consider {fk : Xk → Xk−1}, a sequence of m-to-1 branched covering maps

between n-manifolds Xk. Then, define the inverse limit lim
←−

(fn, Xn) as

lim
←−

(fn, Xn) = {x̂ = (x1, x2, ...) ∈
∏

Xn|fn+1(xn+1) = xn}.
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The natural topology in lim
←−

(fn, Xn) is the one induced from the product topol-

ogy in
∏
Xn.

We are interested in inverse limits arising from dynamics; these are par-

ticular cases where all coverings fn ≡ f and the manifolds Xn are equivalent

to a single phase space X. Such inverse limits are called solenoids, or natural

extensions, we will denote them by lim
←−

(f,X) to make emphasis in X. When

f is a rational function and X = C̄ then, following Lyubich and Minsky [21],

we will denote lim
←−

(f, C̄) by Nf .

The map f : X → X has a natural extension f̂ : lim
←−

(f,X) → lim
←−

(f,X)

defined as

f̂(x0, x−1, ...) = (f(x0), x0, x−1, ...).

Also, there is a family of natural projections π−n : lim
←−

(f,X) → X, given by

π−n(x̂) = x−n. Each of these maps semiconjugates f̂ to f , so π−n(f̂(ẑ)) =

f(π−n(ẑ)). For simplicity, the subindex of the projection over the first coordi-

nate will be omitted, thus π ≡ π0. We are interested in studying properties of

dynamics of f̂ and how they are related to the dynamics of the original map

f .

Let A be an invariant set of f , so we have f(A) ⊂ A. The invariant lift

of A in lim
←−

(f, C̄) is the set Â of all backward orbits ẑ such that π−n(ẑ) ∈ A

for every n. When f is a rational function, invariant lifts of periodic points

are classified upon its corresponding classification in the dynamical plane.

Hence, a parabolic periodic point in lim
←−

(f, C̄) is the invariant lift of a parabolic

periodic point in C. Note that there is a natural one-to-one identification of

the periodic points of f with the periodic points of f̂ in Nf . Namely, to every
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periodic point p of f , the corresponding point p̂ is the point in the invariant

lift of the cycle of p such that π(p̂) = p. Vice versa, given a periodic point p̂

of f̂ , the point π(p̂) is a periodic point of f .

3.1.1 Lamination structure of solenoids

Assume f does not have critical points, so it is a m-to-1 covering map, and let

x̂ = (x0, x−1, x−2, ...) be a point in lim
←−

(f,X); each coordinate xn belongs to the

set of m preimages of xn−1. Hence, after a suitable labelling of the branches

of f−1, the fiber π−1(x0) can be identified with {0, ...,m − 1}N; moreover, by

taking the product discrete topology on {0, ...,m − 1}N, this identification is

a homeomorphism. Let U be an open neighborhood of x0, the set π−1(U) is

homeomorphic to U × {0, ...,m− 1}N and contains x̂. This endows lim
←−

(f,X)

with a lamination structure. For f with critical points, whenever an open set

U ⊂ C does not intersect the postcritical set of f , the set π−1(U) has a product

structure.

Let (U−n) be the pull-back of U = U0 along x̂, where U−n is the connected

component of f−n(U) containing x−n. Given a number N , the sets

B(U, ẑ, N) = π−1
−N(U−N)

form a local basis of open sets for lim
←−

(f,X). A plaque, then, can be regarded

either as a connected component of a flow box, or as the complete pull back of

some open disk U0 along x̂; that is, a sequence of the form (U0, U−1, U−2, ...).
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3.2 Dyadic solenoid

Consider the polynomial f0(z) = z2 defined on X = S1, the solenoid S1 =

lim
←−

(f0,S1) is called the dyadic solenoid, see Figure 3.1. As f0 is a covering map

of degree two, for every point z ∈ S1, the fiber π−1(π(z)) is homeomorphic

to {0, 1}N. The name “dyadic” comes from the fact that each fiber can be

identified with the dyadic numbers Ẑ2. Since S1 is a compact topological

group, the solenoid S1 is a compact topological group, in which the group

multiplication is defined componentwise. The unit û is the point (1, 1, 1, ...).

The translations of the solenoid, given by left multiplication, will be denoted

by τζ̂(ẑ) = ẑ · ζ̂.

The dyadic solenoid is isomorphic to the solenoid lim
←−

(D,T), where D is the

doubling map defined on T. This representation allow us to put the periodic

points of f̂0 ∈ S1 in one-to-one correspondence with the reduced rational angles

p/q in Q/Z with q an odd natural number.

The leaf containing the unit û in S1 is a one-parameter subgroup of the

dyadic solenoid, parameterized by the map ρ : R → S1, with ρ(r) = (e2πir, eπir, eπir/2, ...).

The image of ρ is dense in the solenoid, that is S1 = ρ(R), hence by homogene-

ity of topological groups, every leaf in the solenoid is dense. Let us remark that

the dyadic solenoid is connected but not pathwise connected. By transferring

the natural order in R to the leaves in S1, the map ρ also introduces a leafwise

order in S1, namely, if ẑ and ζ̂ are two points in the same leaf, then we say

that z > ζ whenever ρ−1(z−1 · ζ) > 0.
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Figure 3.1: The dyadic solenoid S1.

3.2.1 The adding machine

The projection π : lim
←−

(f0,S1) → S1 is a fibration map, the monodromy group

of this covering is isomorphic to Z, and its action on the fiber is equivalent

to the action of the adding machine on the group of dyadic numbers, i.e., it

is generated by the operation of adding one modulo 2. Let F be the fiber

of π over 1, the adding machine action on F can be extended continuously

to the whole solenoid. In fact, its generator is given explicitly by the map

σ : S1 → S1, defined as σ(ẑ) = ρ(1) · ẑ. We refer to the action of the group

< σ > as the adding machine action. The solenoid S1 can be described as the

quotient of the product space S = [0, 1]×F by the relation (1, f) ∼ (0, σ(f)).

Two points ẑ and ζ̂ in F belong to the same leaf if and only if ẑ and

ζ̂ belong to the same orbit under the adding machine action. The fiber F

is homeomorphic to {0, 1}N which is uncountable, but each orbit under the

adding machine action has a countable number of points in F , so the dyadic

solenoid has uncountable many leaves.
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3.3 Solenoidal cones

The solenoids lim
←−

(f0,D∗) and lim
←−

(f0,C \ D), are both homeomorphic to S1 ×

(0, 1). Since S1 × (0, 1) is homotopic to S1, the action over any fiber of

the monodromy group of the projection π : S1 × (0, 1) → S1 × (0, 1) is

just the diagonal action of the adding machine times the identity on (0,1).

Now, because ∞ is a superattracting fixed point of f0, the inverse limit

lim
←−

(f0, C̄ \ D) is homeomorphic to the cone over the dyadic solenoid S1, de-

fined as S1 × [0, 1]/{(s, 1) ∼ (s′, 1)} for all s, s′ ∈ S1. The vertex of this

cone corresponds to the point ∞̂ = (∞,∞,∞, ....). A closed solenoidal cone

is a space homeomorphic to lim
←−

(f0, C̄ \ D). In particular, the solenoidal cone

lim
←−

(f0, C̄\D) will be denoted by Con (S1). The dyadic solenoid S1 is contained

in Con (S1), and we regard S1 as the boundary of Con (S1). See figure 3.2.

Since there is no local product structure on ∞̂, the solenoid Con (S1) is not

a lamination. In general, for dynamical systems with critical points, the sit-

uation where critical points occur infinitely many times in the coordinates of

a given point, is one of the possible obstructions for the inverse limit to be a

lamination.

It is important to note that lim
←−

(f0,C \ D) ' S1 × (0, 1) is not pathwise

connected, whereas Con (S1) is pathwise connected. Later we will see that,

locally, path connectivity properties characterizes those points in the inverse

limits with lack of local product structure.

Let fc(z) = z2 + c be a quadratic polynomial with c on M , then fc has a

solenoidal cone associated to it. This is a consequence of Böttcher’s Theorem;

indeed, the Böttcher’s coordinate φc : (A(∞),∞) → (C̄ \ D̄,∞) conjugates fc
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to f0. The map φc naturally lifts to a homeomorphism φ̂c : lim
←−

(fc, A(∞)) →

Con (S1) \ S1 given by φ̂c(z0, z−1, ...) = (φc(z0), φc(z−1), ...) which conjugates

f̂c to f̂0. We will call the solenoid lim
←−

(fc, A(∞)) ⊂ Nfc
the solenoidal cone at

infinity of fc.

Another solenoidal cone is lim
←−

(f0, D̄), the two solenoids Con (S1) and lim
←−

(f0, D̄)

share the common boundary S1. The natural extension Nf0 is obtained by

gluing Con (S1) and lim
←−

(f0, D̄) along S1. Hence, Nf0 is homeomorphic to the

double cone over the solenoid S1.

Figure 3.2: The solenoidal cone Con (S1).

The solenoid lim
←−

(f0,D∗) is homeomorphic to the cylinder S1 × (0, 1).

Lemma 7. The solenoids S1 × (0, 1) and Con (S1) and are connected, and

every leaf is dense.

Proof. It follows from the fact that the one-dimensional solenoid S1 is con-

nected and every leaf in it is dense. So, the same properties hold in it’s

cylinder and its cone Con (S1).

36



3.3.1 Subsolenoidal cones

For r > 1, let Dr = {z ∈ C||z| < r}. Then, the canonical homeomorphism

between lim
←−

(f0,C \ Dr) and S1 × [0, 1) is given by

(z0, z−1, ...) 7→ (
z0

|z0|
,
z−1

|z−1|
, ...) × (1 −

r

|z0|
)

extends to a homeomorphism between lim
←−

(f0, C̄ \Dr) and Con (S1), fixing ∞̂.

This implies that, for the quadratic polynomial fc(z) = z2 + c and the space

Ar = {z ∈ Ac(∞)||φc(z)| ≥ r} outside the equipotential Er in Ac(∞), the

solenoid lim
←−

(fc, Ar) is also homeomorphic to Con (S1). In particular, the fiber

over π−1(Er) of any equipotential Er is homeomorphic to the dyadic solenoid

S1. We call such space, the solenoidal equipotential over Er, and denote it by

Sr. Solenoidal equipotentials form a foliation of the solenoidal cone at infinity

in Nfc
. Similarly, external rays induce a foliation in π−1(A(∞)) of solenoidal

external rays, each solenoidal external ray is homeomorphic to a cone over a

Cantor set. Periodic external rays under fc can be lifted to periodic external

rays of f̂c. Hence, periodic external rays are parameterized by reduced rational

numbers p
q
∈ T with q odd. Since Böttcher’s coordinate φc conjugates fc to

f0, every periodic external ray intersects S1
r in the corresponding periodic

point in S1. So, periodic external rays keep track of the periodic points along

the solenoidal equipotential foliation. Moreover, every periodic solenoidal ray

“lands” in a periodic point of f̂c in Nc. Hence, any periodic point which is

landing point of periodic solenoidal external rays p̂ of f̂c can be associated to

the orbit portrait of π(p̂).

We summarize the previous discussion in the following lemma:
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Lemma 8. Let L be a leaf containing a periodic point p̂ such that π(p̂) belongs

to the Julia set Jc, then L intersects the solenoidal equipotential on the periodic

leaves associated to the periodic rays landing at p.

3.4 Lyubich-Minsky laminations

Finally, we get to the object of study of this work. Inverse limits are also de-

fined for branching mappings, however, as we saw in Con (S1), these solenoids

may not have a local lamination structure. The case for rational maps on the

sphere was addressed by Lyubich and Minsky in [21]. In this setting, there are

two obstructions for the natural extension to be a lamination. The first, as

we have noted before, is structural; there are some points which fail to have

local product structure. The second, comes from the fact that the geometric

structure on the leaves may not vary continuously on the transverse direction.

Thus, it is necessary to refine the topology in an appropriate way. The first

problem is easy to carry over, simply by removing all points that don’t have

local product charts. The second is of more delicate nature, in fact, for many

rational functions the new topology is, in general, hard to describe by intrin-

sic properties of the natural extension. The way out found by Lyubich and

Minsky was to embed the lamination into an universal space.

First let us introduce the regular space. To keep things simple, we return

to the assumption that fc is a quadratic polynomial defined on the Riemann

sphere.

Definition. A point ẑ ∈ lim
←−

(C̄, fc) is called regular if there exists a neighbor-

hood U0 of π(ẑ) such that the pull back of U0 along ẑ is eventually univalent.
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The set Rc ⊂ lim
←−

(C̄, fc) of regular points is called the regular part of fc.

The regular part is a disjoint union of Riemann surfaces. To check this,

regard the above definition in terms of plaques Û = (U0, U−1, U−2, ...), thus a

point ẑ is regular if there is a number N ≥ 0 such that U−n does not contain

critical points for n ≥ N . Then, naturally, we can take as a conformal chart

for the plaque containing ẑ any of the maps π−n : Û → U−n. Plaques glue

together to form a Riemann surface L. The set L is called a leaf of the regular

part. Later, we will see in Proposition 51 that this conformal structure on

plaques of regular points is inherent of regularity.

The conformal structure on leaves makes the natural extension f̂ a confor-

mal biholomorphism sending L(ẑ) to L(f̂(ẑ)).

Another result in [21] states that all leaves in Rc are simply connected.

This is not true for general rational functions where invariant lifts of Herman

rings are doubly connected in Rc. Lyubich and Minsky also proved that there

are no compact leaves in Rc, consequence to the fact that the projections πn

restricted on leaves are branched coverings and πn ◦ f̂ = f ◦ πn+1.

Therefore by the Uniformization Theorem, conformally, leaves are either

disks or planes. The union Ac of the leaves in Rc conformally isomorphic to

the complex plane C is called the affine part of Rc. We call any such leaf an

affine leaf.

The conformal structure of the leaves is related to how dense the postcrit-

ical set is. A leaf conformally isomorphic to the disk is called a hyperbolic

leaf. The easiest cases where hyperbolic leaves arise are invariant lifts of Siegel

disks. Examples of non-rotational hyperbolic leaves have been constructed by
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Jeremy Khan and Juan Rivera-Lettelier.

Nevertheless, there are always infinitely many affine leaves. (See Proposi-

tion 4.5 in [21]). For a point ẑ ∈ Rc, the set α(ẑ) is the set of accumulation

points of {z−n = π−n(ẑ)}. If a point ẑ does not have all of its coordinates

on the postcritical set of recurrent critical points, and is neither parabolic nor

attracting periodic point, then the leaf L(ẑ) containing ẑ is affine.

In particular, leaves containing repelling periodic points are affine. More-

over, for such leaves L Königs coordinate provides the uniformization coordi-

nate from L to C.

The natural topology on Rc as a subspace of lim
←−

(C̄, f) may not be enough

to supply each point of Rc with a local lamination structure. The issue is that

local degree of plaques might not be continuous in the transversal direction.

However, for hyperbolic parameters we have:

Proposition 9 (Lyubich-Minsky). If c is hyperbolic, the associated regular

part Rc is a lamination with the topology induced by the natural topology.

In Lyubich-Minsky [21] the concept of convex cocompactness is introduced

in terms of the compactness of the quotient of the laminated Julia set under

dynamics. This justifies the terminology, however, we use as a definition a

proposition in the same paper which characterizes convex cocompactness.

Definition. A parameter c is called convex cocompact if the critical point is

not recurrent and does not converge to a parabolic cycle.

In particular, attracting and superattracting parameters are convex co-

compact. If c is convex cocompact, leaves in the regular part Rc are all affine,
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so Ac = Rc; in this case, the affine part has also a simple description (see

Proposition 4.5 in [21]), Ac = Rc = Nc \ {attracting and parabolics}.

Let Jc = π−1(Jc) ∩ Rc be the lift of the Julia set on the regular part. We

call Jc the laminated Julia set associated to fc. Of c is a convex co-compact

parameter, by a result of Lyubich and Minsky, Jc is compact inside Nc with

the natural topology. When c is convex cocompact, there are no irregular

points on the laminated Julia set Jc.
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Chapter 4

Topology of inverse limits

4.1 The laminated Julia set

In this section we discuss the topological properties of Jc. Given a repelling

periodic point q in the dynamical plane, let us denote by q̂ the periodic point

in the regular part which satisfies π(q̂) = q. Let P be the set of repelling

periodic points in Rc.

Lemma 10. The set Jc is a closed and perfect set in Rc. Every periodic point

in Rc either belongs to P or is a Siegel periodic point. Moreover, Jc = P̄.

Proof. The projection π is a continuous function from Rc to C. Since J(fc)

is closed and perfect, the set Jc inherits these properties from the dynamical

plane.

The fact that lifts of Siegel periodic points in the dynamical plane belong

to the regular part is a consequence of the existence of linearizing coordinates

around Siegel periodic points. By a Theorem by Fatou, parabolic and attract-

ing cycles are the accumulation set of some critical orbit, hence the pull back
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{U−n} of every neighborhood U0 contains critical points at infinitely many

times n, so parabolic and attracting cycles lift to irregular points.

Now, let us prove that Cremer cycles also lift to irregular points. This is,

actually, a consequence of the Shrinking Lemma. To illustrate it’s use, we will

follow the proof given by Lyubich and Minsky [21], see also Proposition 1.10

in Lyubich’s survey [19].

Suppose on the contrary, that a Cremer cycle lifts to a periodic regular

point. By considering an appropriate iterate of fc, we can assume that the cycle

is a Cremer fixed point a0. As â0 is regular, there exist an open neighborhood

U0 of a0 such that no component U−n of the pull back of U0 along â0 contains

critical points. Without loss of generality we can assume that U0 is a small

disk around a0, then U−n is also a topological disk, since f : U−n → U−n+1

is a conformal isomorphism. Hence, there is a sequence of Riemann maps

φn : D → U−n with φn(0) = a0. Put ρn = fn ◦ φn : D → U0, then by Montel’s

Theorem, the sequence {ρn} is a normal family. Let P = {α1, α2, ..., αp} be

any cycle of fc of period p ≥ 3. By normality there is a disk D′ ⊂⊂ D around

0 such that φn(D′) does not intersect P for every n. Therefore, {φn|D′} is also

a normal family.

Let B(a0, δ) denote the ball around a0 of radius δ, since ρn is a conformal

isomorphism, for δ small enough mod(ρ−1
n (U0 \B(a0, δ)) = mod(U0 \B(a0, δ)),

so the modulus of ρ−1
n (U0 \ B(a0, δ)) depends only on δ. Because mod(U0 \

B(a0, δ)) → ∞ when δ → 0, there exist a δ such that B = B(a0, δ) ⊂ ρn(D′)

for all n.

It follows that diam(φ−1
n (B)) → 0 uniformly when n tends to infinity,

otherwise by taking a converging subsequence from {φn} and by normality
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there would be a limiting open set B∞ containing a0 such that fnk(B∞) ⊂ U0

for all k, contradicting the fact that every Cremer periodic point belongs to

the Julia set J(fc). If the diameters of Bn tend to zero, there is an m such

that Bm ⊂ B and fm(Bm) = B, but this would imply that f is repelling at

a0, again a contradiction.

Take ẑ ∈ Jc, by continuity of fc and the density of the set of repelling

periodic points in J(fc), there is a periodic point p in the δ neighborhood of

z−n such that |f j
c (p) − z−n+j| < ε for j = 0, ..., n. Then, f̂n

c (p) is a repelling

periodic point in B(D(z0, ε), ẑ, n).

4.2 Leafwise connectivity of Jc

Lemma 11. Let c be a parameter with locally connected Julia set, P (fc) 6= Jc,

and such that π−1(J(fc)) contains an irregular point in the natural extension

Nc. Then, there is a leaf L in the regular part Rc, such that Jc ∩L is discon-

nected.

Proof. Let ẑ be an irregular point in the Julia set in Nc, thus π−j(ẑ) ∈ J(fc)

for every j. Since the Julia set is locally connected, for every j there is an

external ray R(j) landing at z−j, let r0 be a point in R(0)∩A(∞), by pulling

back r0 along the backward orbit determined by ẑ, there is a point r̂ ∈ Rc

such that π(r̂) = r0 and π−j(r̂) ⊂ R(j), now by moving r0 along the ray R(0),

we construct a line R̂ in the regular part, such that π−j(R̂) = R(j). Let L be

the leaf in the regular part containing R̂. Since by construction the endpoints

of R̂ are the irregular points ẑ and ∞̂, this line can not have accumulation

points in Rc when r0 either tends to z0 or to ∞. So, R̂ is a line escaping to
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infinity in both directions and separates L in two pieces.

Fix r0 in the external ray R(0), let a ∈ J(fc)\P (fc), and choose two paths,

σ1 and σ2, from r0 to a starting at different directions with respect to the ray

R(0), and such that none of them crosses R(0) again. These two paths lifts to

paths in L, joining r̂ with points in Jc ∩ L, by construction the points lie on

different sides of the line R̂. Thus Jc ∩ L is disconnected.

As interesting examples we have: parameters with parabolic cycles (see

Tomoki Kawahira [14]), the Feigenbaum parameter. For parameters with

parabolic cycles, such leaves only occur as the periodic leaves correspond-

ing to the parabolic cycle. As in the case of repelling cycles the linearizing

coordinate of parabolic cycles, Fatou’s coordinate, provides a global picture

for such leaves described by Kawahira in [14]. In particular, the set Jc∩L con-

sists of finitely many components. For Feigembaum, however, we know that

the critical point has 4 rays landing. So, it makes sense to think that the set

Jc ∩L consists of at most 4 components. In the worst case we could have, due

to branching leaves, 2n components of the set Jc∩L, with arbitrary n. Which,

may be reflecting the fact that the parameter is infinitely renormalizable with

period 2.

As a consequence of Lemma 11, given that the dynamical Julia set Jc is

locally connected and Jc 6= P (fc), if the laminated Julia set Jc is leafwise

connected, then there are no irregular points in Jc but this implies that c

must be convex cocompact. The following Lemma shows that these are all the

cases:

Lemma 12. If c is a convex cocompact parameter, then the set Jc is leafwise

45



connected.

Proof. Let us first consider the case when c is postcritically finite. Let L be a

leaf in the regular part, and let ẑ and ζ̂ be two points in Jc ∩L. Take paths γ1

and γ2 outside the Julia set J(fc) joining π(ẑ) = z0 and π(ζ̂) with the α fixed

point of fc, respectively. We can lift γ1 and γ2 to paths γ̂1 and γ̂2 in L starting

at ẑ and ζ̂, respectively, ending at points in π−1(α)∩ L. Since ẑ and ζ̂ belong

to L there exist a path σ in L joining ẑ with ζ̂. Then γ̂2 ◦ σ ◦ γ̂1
−1 it is a path

with end points at π−1(α), thus it is homotopic rel{π−1(α)} to a path in the

Julia set Jc. By reparameterizing this path, we can assume that ẑ and ζ̂ are

fixed by the corresponding homotopy. In such a way, σ is homotopic rel{0, 1}

to a path in Jc joining ẑ and ζ̂.

If c is postcritically infinite convex cocompact, let L be a leaf in the regular

part. By analytic continuation on the Caratheodory loop at the Julia set, π

projects every component of Jc ∩ L surjectively on the Julia set J(fc). Take

two points ẑ and ζ̂ in Jc ∩L, and let γ̂ be a path joining these points. We can

also assume that γ̂ neither auto intersects nor intersects the Julia set at other

points but its endpoints.

Let γ = π(γ̂), consider a finite open covering {U0, ..., Uk}. By Mañé’s

Theorem, for ε > 0 there is anN > 0 such that for n > N the diameter of every

component of f−n
c (∪Ui) is less than, say, ε/10. Now consider the shortest path

σ, in the Julia set J(fc), joining the points π−n(ẑ) and π−n(ζ). Then π−n(γ̂) is

contained in the ε neighborhood V of σ. Again by Mañé’s Theorem, there is an

M > 0 such that for every m > M , every component of f−m(V ) branches at

most K times. Thus, for large enough m, the component of f−m(V ) containing
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π−m−n(γ̂) does not contain critical values. Since π(γ̂) is contained in A(∞)

except at its end points. We can use the homotopy induced by moving along

external rays, from π−m−n(γ̂) to a path in the Julia set, without crossing any

critical values. Hence, this homotopy lifts to a homotopy in L from γ̂ to a

path in the Julia set. Therefore, Jc ∩ L is connected.

Together, Lemma 11 and Lemma 12 imply:

Proposition 13. A quadratic parameter c with locally connected Julia set

J(fc) and P (fc) 6= Jc has leafwise connected Julia set Jc in its regular part

Rc, if and only if c is convex cocompact.

The proof for the case of non-postcritically finite convex cocompact pa-

rameters of Lemma 12 applies also for the postcritically finite, however, the

proof we presented in these cases gives a hint the relation between the mon-

odromy group over the fiber π−1(a) and the Julia set Jc in the regular part in

Chapter 6 we will discuss monodromy groups for postcritically finite parame-

ters. Such relationship should also be present in the case of convex cocompact

quadratic polynomials. By modifying the last homotopy argument in the proof

of Lemma 12, the lemma can be extended to convex cocompact rational func-

tions. Unfortunately, Lemma 11 may not be true in this setting.

4.3 Unbounded Fatou components

Let Fc = π−1(F (fc)) ∩ Rc be the lift of the Fatou set to the regular part.

Given an affine leaf L in Rc, consider the uniformization φ : L → C. We call

a subset A in L bounded, if the corresponding set φ(A) is bounded in C.

47



Lemma 14. Let fc be a convex cocompact quadratic polynomial, and let A be

a Fatou component of Fc inside an affine leaf L. Then A is bounded if and

only if the restriction π|A has finite degree.

Proof. If the dynamical Fatou set consist only of the basin of infinity, then all

Fatou components in Fc are unbounded, this is because the lift of Böttcher’s

coordinate maps π−1(A(∞)) to an open solenoidal cone, and each leaf of this

cone has ∞̂ on the boundary. Moreover, since the fiber of z2 on the solenoidal

cone intersects each leaf infinitely many times, the restriction of π|A over every

leaf of the solenoidal cone has infinite degree.

The remaining case is when fc is hyperbolic. By the same argument above,

every Fatou component A in π−1(A(∞)) is unbounded and the restriction π|A

has infinite degree. So let A a Fatou component in Fc such that π(A) is

bounded in the dynamical plane. Since fc is hyperbolic, π(A) is actually

simply connected and the boundary ∂(π(A)) is a Jordan closed curve. The

set A is bounded if and only if ∂(A) is bounded. The lift of ∂(π(A)) is also

a Jordan curve, say C, so C bounded if and only if π|C has finite degree, but

π|C corresponds to the degree of π|A.

We want to count how many unbounded Fatou components there are in L.

Remind that the valence vp, of a repelling periodic point p, is the number of

external rays landing at p. When p is the dynamic root point rc and c belongs

to a satellite hyperbolic component, there are vp Fatou components touching

at rc. If c belongs to a primitive hyperbolic component, rc only touches one

Fatou component and vrc
= 2, see Milnor’s [25]. As noted in Lyubich and

Minsky [21], the Königs’s coordinate φ around a repelling periodic point p
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lifts to the uniformization Φ of L(p̂). Moreover, if m is the period of p, then Φ

conjugates f̂m
c |L(p̂) to the affine map z 7→ λpz, where λp is the multiplier of p.

By means of Φ, local properties of p are reflected in global properties in L(p̂).

This is the idea behind the proof of the following proposition.

Proposition 15. Let fc be a quadratic polynomial and let L be a periodic affine

leaf in the regular part Rfc
containing a periodic point p̂. Then, the number

of unbounded Fatou components of L \ Jc is either 2vp, if the corresponding

periodic point p belongs to the dynamic root cycle and c belongs to a satellite

hyperbolic component; 3 if p belongs to the dynamic root cycle and c is in a

primitive hyperbolic component, finally is vp otherwise.

Proof. Since Siegel periodic points lift into hyperbolic leaves in Rc, by Lemma 10,

p most be a repelling periodic point. In the dynamical plane, there are vp rays

landing at p, so, these rays cut C in vp sectors. Let S be one of these sectors,

then S is invariant under an appropriate iterate of fc, say fk
c , where k is a

multiple of the period m.

Now, every ray landing at p = π(p̂) lifts to a landing ray in L(p̂). As in

the dynamical plane, landing rays cut the leaf L(p̂) also in vp sectors. We will

check that when p is not in the dynamic root cycle, for each sector Ŝ in L

there is an unbounded subset Ê of the Julia set Jc. In fact, suffices to find a

subset Ê in Jc ∩ L invariant under the action of f̂k
c . Since f̂k

c is a similarity,

the set Ê would be unbounded.

To do that, let us construct a fundamental piece to the action of f k
c in C.

Every sector S contains a subset E of the Julia set. Let us take a point b in

J(fc)∩S, very close to p, and such that there is a pair of rays Rb and R′b landing
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at b, whose images Rfk
c (b) and R′

fk
c (b)

belong to the wake WS determined by Rb

and R′b. For instance, b can be a preimage of the dynamic root point, since the

set of such preimages is dense in the Julia set. Fix an equipotential Er and

join consecutive landing rays by arcs of this equipotential. We obtain a region

P around p. The image f k
c (P ) is a region around p and complactly contains

P . The annulus A = P \ f k
c (P ) is the fundamental piece we are looking for,

see Figure 4.1.

P

p
b

Rb

fk

c
(P )

Figure 4.1: The annulus A when p is not in the dynamic root cycle.

The Julia set intersects the annulus A at the wake WS defined by the rays

Rb and R′b, thus for every S, we can enclose the subset of the Julia set in

A ∩WS, in a simply connected open set VS contained in A ∩WS.

Now, A lifts to an annulus Â in L, which by construction, is a fundamental

region for the action of f̂k
c . By iterating f̂k

c on V̂S, the lifts of the sets VS,

we obtain a set in L, similar to a pearl beds string, which contains the subset

of the Julia set Ê in Jc that we claim before. By construction, this pearl

beds string is unbounded and, there is one for each sector S. The conclusion
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follows.

When p is the dynamic root point rc, each Fatou component attached to

p, lifts to another unbounded Fatou component in L(p̂). In this case, let S be

a sector that contains a Fatou component, say FS, having p in the boundary.

Instead of the point b as above, we consider a pair of points q and q ′ on

∂FS and on opposite sides of p. There is two pairs of landing rays, {Rq, Iq}

and {Rq′, Iq′} landing at q and q′, the names R stand for external and I for

internal rays. On the basin of infinity we follow the same construction as in

the case before, whereas in FS connect the internal rays Iq with I ′q by a internal

equipotential. So we obtain again a puzzle piece P around p, see Figure 4.2.

From now on, the argument above goes through either for S or sectors that

do not contain Fatou components attached to p.

F3

F2

F1

Figure 4.2: The annulus A when p belongs to the dynamic root cycle.

The following proposition gives another restriction that combinatorics im-

pose in the leaf structure of the Julia set. However, it works in a more weak

generality.

Proposition 16. Let fc be a postcritically finite quadratic polynomial, and
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let L be a non-periodic affine leaf. Then, the number of unbounded Fatou

components of L \ Jc is either 1 or 2.

Proof. Let R and R′ be two external rays landing at the Julia set such that

the wake W determined by R and R′ does not contain postcritical points. If

R̂ and R̂′ are lifts of the rays R and R̂ landing at the same point in a leaf L

in Rc, then every arc connecting R and R′ along W must lift to an arc joining

R̂ and R̂′. Such arc, for instance, can be taken to be part of an equipotential.

Thus, if Ŵ is the wake determined by R̂ and R̂′, then Ŵ ∩ Jc is a bounded

set in L. So, R̂ and R̂′ belong to the same unbounded Fatou component.

Now, let L be a non-periodic affine leaf. Since the Julia set J(fc) is locally

connected, the set Jc is leafwise locally connected and every point in Jc is the

landing point of some external ray in Rc. If L has more than 3 unbounded

Fatou components, by Lemma 12, Jc∩L is path connected, so there is a point

ẑ in Jc ∩ L on the boundary of at least 3 unbounded Fatou components in

L, this implies that ẑ is the landing point of, at least, 3 rays, each ray in a

different unbounded Fatou component. Hence, each coordinate π−n(ẑ) ∈ J(fc)

is also the landing point of at least 3 rays. By the argument above, the rays

landing at π−n(ẑ) cut the postcritical set in three disjoint pieces. This implies

that π−n(ẑ) must be a vertex of the Hubbard tree of J(fc) for each n. Since L

is non-periodic, ẑ is non-periodic either, and the set of coordinates π−n(ẑ) is

an infinite set in the dynamical plane. But, this contradicts the fact that the

Hubbard tree is a finite graph.

Let us note that when L is a non-periodic affine leaf, the cases where L

has 1 or 2 unbounded Fatou components can both happen. To get leaves with

52



two unbounded Fatou components, consider, for instance, the set of biaccesible

points ẑ in Jc, i.e., points where at least 2 rays land, with the property that

exactly 2 wakes determined by the rays landing at z−n contain postcritical

points. The case where L has only 1 unbounded component is the most com-

mon inside regular parts of postcritically finite parameters c, that is because

almost all repelling periodic points in J(fc) are the landing point of exactly

one ray. Non-periodic leaves with one unbounded Fatou components can be

also constructed.

In regular parts of postcritically finite parameters, leaves with more than

three unbounded components are in one-to-one correspondence with the ver-

texes of the Hubbard tree with degree greater than 2. All other leaves either

have one or two unbounded components. So, there are only finitely many

leaves with more than three unbounded components. This is how the number

of unbounded Fatou components is related to the combinatorics of the param-

eter c. The following proposition describes the cycle of leaves with more than

3 unbounded components using internal addresses.

Proposition 17. Let c be a superattracting parameter with internal address

1 → n1 → n2 → ... → nk. If nj−1 | nj, for j < k then there is a cycle of

nj periodic leaves such that each leaf has
nj

nj−1
unbounded Fatou components.

When j = k there are nk leaves with 2 nk

nk−1
unbounded Fatou components.

If nj−1 - nj, there is a cycle of nj periodic leaves with 2 unbounded Fatou

components for j < k, and 3 unbounded Fatou components if j = k.

Proof. The condition of whether nj−1 divides nj or not reflects the fact that the

combinatorial arc of c crosses a satellite or a primitive hyperbolic component
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in the parameter plane. Let j = k, the number nk corresponds to the period

of the critical orbit, which is equal to the period of the dynamic root point;

hence by Proposition 15, if nk−1 | nk the parameter belongs to a satellite

component, then the valence of the dynamic root point is nk

nk−1
, and there are

2 nk

nk−1
unbounded Fatou components. If nk−1 - nk, then c is the center of a

primitive hyperbolic component and there are nk leaves with 3 unbounded

Fatou components.

Now, let j < k, if nj−1 | nj , then there is a repelling cycle P of fc with

period nj and valence
nj

nj−1
, by Proposition 15, the lift P̂ belongs to a cycle

of nj periodic affine leaves with
nj

nj−1
unbounded Fatou components in Rfc

. If

nj−1 - nj, the corresponding ray portrait has valence 2 and period nj .

Leaves containing the lift of the dynamic root cycle of primitive param-

eters have 3 unbounded Fatou components. When the parameter c crosses

to a satellite hyperbolic component, one of the unbounded Fatou components

collapses to an infinite number of bounded Fatou components. So, the leaves

in the corresponding cycle only have 2 unbounded Fatou components, each of

them on the lift of the basin of infinity π−1Ac(∞), see Figure 4.3.

Proposition 18. Let c1 and c2 be two superattracting parameters. If h :

Rc1 → Rc2 is a homeomorphism conjugating f̂c1 with f̂c2, then c1 = c2.

Proof. Any such conjugation sends periodic points into periodic points. Hence,

by Lemma 10, h sends the Julia set Jc1 into the Julia set Jc2 . Since h is a

homeomorphism it has to leave invariant the number of unbounded Fatou

components, and as h is a conjugacy of dynamics, it also leave invariant the

combinatorial rotation numbers among the unbounded Fatou components on
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Figure 4.3: Collapsing of unbounded Fatou components by bifurcation.

periodic leaves. This means that c1 and c2 must have the same labelled internal

address. But by Lau and Schleicher this implies c1 = c2.

4.4 Topology of ends

In this section, we will deal with regular parts which are always locally compact

with the natural topology. This is not the case for affine laminations endowed

with Lyubich-Minsky topology, Lyubich and Lasse Rempe [Lyu-Rem] recently

found some examples of affine laminations which are not locally compact.

Consider the one point compactification R̂c of the regular part of fc, let ∗

be the point at infinity. A path γ : [0, 1) → Rc escapes to infinity if eventually

leaves every compact set K ⊂ Rc. Equivalently, γ escapes to infinity if admits

an extension γ̂ : [0, 1] → R̂c with γ̂(1) = ∗. Two paths, γ1 and γ2, escaping

to infinity are homotopic at infinity if for every compact set K ⊂ Rc there is

an r ≥ 0 such that the subpaths γ1|r : [r, 1) → Rc and γ2|r : [r, 1) → Rc are

homotopic in Rc \K.

Definition. Given a leaf L in Rc, the number E(L) denotes the number of
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non-homotopic paths escaping to infinity.

Now, for a convex cocompact parameter c, we can describe the unbounded

Fatou components in Rc from a homotopic point of view.

Lemma 19. If c is a convex compact parameter, then for every leaf L in Rc,

the number E(L) is equal to the number of unbounded Fatou components in L.

Proof. This is a direct consequence to the fact, due to Lyubich and Minsky,

that when c is a convex cocompact parameter the laminated Julia set Jc is

compact in Rc, so every path escaping to infinity must leave eventually the

Julia set Jc then it most escape through an unbounded Fatou component.

Let LUn be the set of leaves with exactly n unbounded Fatou components.

Corollary 20. The cardinality of LUn is a topological invariant.

Proof. The number of non-homotopic paths escaping to infinity is a topological

invariant. So, if h : Rc → Rc′ is a homeomorphism between regular parts, then

E(L) = E(h(L)) for every leaf L in Rc.

Corollary 21. Let fc be a convex cocompact quadratic polynomial, then E(L(β̂)) =

1.

Proof. The β fixed point is, by definition, a repelling fixed point where exactly

1 external ray lands. So, by Proposition 15, the leaf L(β̂) has exactly one

unbounded Fatou component.

Corollary 22. If fc is a convex cocompact quadratic polynomial, then ∞̂ is

the only disconnectivity point of Nc.
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Proof. By going through external rays, all leaves in the regular part have, at

least, one access to ∞̂. But, leaves with one unbounded Fatou component

have access only to ∞̂. By Lemma 21, at least, the leaf corresponding to the

β fixed point has only one unbounded Fatou component. So, ∞̂ is the only

irregular point that can be accessed from from every leaf in Nc.

Thus, the solenoidal cone at infinity can be characterized as the only

solenoidal cone in Nc which connects all of the leaves of the regular part in

the natural extension.

Lemma 23. If c is convex cocompact, then every periodic leaf has exactly one

periodic point.

Proof. It is clear that every periodic point in Rc lies in a periodic leaf. Now,

let L be a periodic leaf in R of period n, so f̂n
c (L) = L. Because, in the case of

convex cocompact parameters, the affine part coincides with the regular part,

for every leaf L in the regular part there is a uniformization ψ : L→ C which

conjugates the map f̂n
c : L → L to an affine map f̂n

c (z) = az + b where a is a

complex number. We claim that a 6= 1. If on the contrary a = 1, as the Julia

set upstairs is compact, there is a finite covering of small flow boxes, with the

property that the derivative of φ is bounded away from zero on the Julia set

Jc.

Let ẑ ∈ π−1(A(∞)) any point on the lift of the basin of infinity. Take W

around z0 = π(ẑ) as in the Shrinking Lemma 3 and let W ′ the plaque con-

taining ẑ in the fiber of W . By assumption, f̂−nm
c (W ′) has the same diameter

for all m, since translations are isometries, on the other hand the diameters of

f−nm
c (W ) are shrinking to 0 by the Shrinking Lemma 3. Moreover, for every
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neighborhood V around the dynamical Julia set J(fc) we have f−nm
c (W ) ⊂ V

for large enough n. This means that the derivative of π, under uniformization

φ, shrinks to 0 which is a contradiction. So, the map f̂n
c can not be conju-

gated to a translation in L. Therefore a 6= 1, which implies the existence of a

periodic point in L.

At every periodic point in the dynamic root cycle there are, at least, 2

landing external rays. Also, by definition, any point in the dynamic root cycle

is on the boundary of, at least, 1 Fatou component. Let L be one of the leaves

containing a periodic point in the lift of the dynamic root cycle. Then, by

Proposition 15, E(L) ≥ 3.

If c is the center of a primitive hyperbolic component, then any leaf con-

taining a periodic point in the dynamic root cycle, has 3 unbounded Fatou

components, however, two of the unbounded Fatou components are associated

to the basin of infinity, whereas the other is associated to a Fatou component in

the basin of attraction of the critical cycle. By Proposition 15 and Lemma 19,

we obtain the following characterization of regular parts of primitive superat-

tracting parameters:

Corollary 24. A superattracting parameter c is primitive if and only if there

is a leaf L in Rc such that E(L) = 3, and the classes of paths non-homotopic

at infinity in L belong to different solenoidal cones.

In order to make the previous corollary more precise, let us introduce the

concept of ends of laminated sets. Let L be a locally compact laminated

set, and consider the one point compactification L̂ = L ∪ {∗}. Two paths,

σ : [0, 1) → L and τ : [0, 1) → L escaping to infinity, are said to be equivalent
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at infinity, if for every compact set K ⊂ L there is a number r > 0 such that

σ([r, 1)) and τ([r, 1)) belong to the same connected component of L\K. This

is an equivalence relationship in the set of paths escaping to infinity.

Definition. An end of a locally compact laminated set L, is an equivalence

class of the relationship above described. Let End(L) denote the set of ends of

L, then L ∪ End(L) is the end compactification of L.

By definition, each end contains the homotopic class of each of its ele-

ments, so equivalence at infinity is a weaker relationship than the equivalence

relationship of being homotopic at infinity.

Lemma 25. If the Julia set J(fc) is locally connected, for every irregular point

Î in Nc there is an end in End(Rc) associated to Î.

Proof. Since the coordinates of Î belong to the postcritical set, the coordinates

of Î belong either to the Julia set or to an attracting or superattracting cycle.

In any case, by the local connectivity of J(fc), there is a point z0 in the Fatou

set F (fc) and a path γ from z0 to i0 = π(Î) such that the trajectory of the path

γ intersects the postcritical set, or the Julia set, exactly at i0. So, the pullbacks

{γn} of γ are well defined, and altogether define a path γ̂ : [0, 1) → Rc that

escapes to infinity in the regular part. Hence, we associate the irregular point

Î with the end [γ̂]. Let γ̂ ′ be any other path defined as γ̂, we want to check

that γ̂ ′ is equivalent at infinity with γ̂. By definition, γ̂ and γ̂ ′ extend to paths

from [0, 1] to Nc satisfying γ̂(1) = γ̂ ′(1) = Î, so the trajectories of γ̂ and γ̂ ′

eventually belong to any neighborhood of Î in Nc. Since for every t ∈ [0, 1) the

points γ̂(t) and γ̂ ′(t) belong to the regular part, for every compact set K ⊂ Rc
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the paths γ and γ ′ eventually belong to the same connected component in

Rc \K.

Lemma 26. Let c be a parameter in the Mandelbrot set, then there is one

and only one end E∞̂ ∈ End(Rc) associated to ∞̂ in Rc. Furthermore, if c is

superattracting, then every end of Rc is associated to a unique irregular point.

Proof. Consider the equipotential Er in the dynamical plane, since Er is com-

pact and does not contain postcritical points, the corresponding solenoidal

equipotential Sr = π−1(Er) is compact in Rc. Now, let Rθ be any external

ray in the dynamical plane, then the end [R̂] of any lift R̂ of Rθ in Rc is

associated to ∞̂. If γ̂ is equivalent to infinity to R̂ then γ̂ must eventually

lie in the same connected component of Rc \ Sr as R̂. This implies that π(γ̂)

converges to ∞ in the dynamical plane, and so γ̂ must converge to ∞̂ in Nc.

If c is superattracting, then instead of the equipotential Er, we can consider

to be an internal equipotential inside the corresponding Fatou component on

the basin of attraction of the critical cycle. The argument goes on using the

corresponding internal solenoidal equipotential.

Lemma 27. Let fc be a quadratic polynomial, every end of Rc is associated

to an irregular point in Nc.

Proof. Let [γ] be an end of Rc, with γ a representative of this end in Rc. Let An

denote the accumulation set of γn = π−n(γ). Let us check that fc(An) = An−1,

by continuity fc(An) ⊂ An−1, now let y ∈ An−1 then there is a sequence tm ↗ 1

such that γn−1(tm) converges to y. That means that γn(tm) is as close as we

want to a point in f−1
c (y), since fc has finite degree, γn(tm) must actually

converge to a point in f−1
c (y). So, fc(An) = An−1 as we claimed, this implies
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that we can construct a backward orbit ŷ ∈ Nc, such that π−n(ŷ) ∈ An. Let

us check that ŷ must be irregular. If, on the contrary, ŷ is regular, then there

is a N such that yn is outside the postcritical set of fc for n > N , since the

postcritical set is closed there is a neighborhood U of yn such that U is outside

P (fc). Let K ⊂ U be a compact neighborhood of yn then π−1
−n(K) is a compact

neighborhood of ŷ, but γn(tm) converges to yn so γ(tm) is contained in K for

m large. This contradicts the fact that γ is escaping to infinity.

Lemma 25 does not rule out the possibility that several irregular points

are associated to the same end. It is not clear whether there is a one-to-one

correspondence between the irregular points and the ends of the regular part.

This would imply that the natural extension of every quadratic parameter c

corresponds to the end compactification of Rc. However, we have a positive

answer for certain parameters.

Proposition 28. Let c be a parameter such that J(fc) is locally connected,

and c is either convex cocompact or the postcritical set of fc is a Cantor set,

then the set of ends corresponds to the set of irregular points, and the end

compactification of Rc is Nc.

Proof. If fc is convex cocompact then, by Lyubich and Minsky, the Julia set

Jc is compact. Hence, the only irregular points in Nc correspond to attracting

cycles. By Proposition 34 and Lemma 26, attracting cycles correspond to

vertices of solenoidal cones, and vertices of solenoidal cones correspond to ends

of the regular part. Thus, if c is convex cocompact, the end compactification

of Rc is homeomorphic to the natural extension Nc.

Now, assume that the postcritical set is a Cantor set, in this case, there
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are no bounded Fatou components in the dynamical plane. By Lemma 25 and

Lemma 27 it is enough to prove that different irregular points are associated

to different ends. Let Î and Î ′ be two irregular points in Nc, without loss of

generality we can assume that π(I) = i0 6= i′0 = π(I ′), also by 25 assume that

both i0 and i′0 belong to the Julia set J(fc).

By the local connectivity of J(fc), there is a path γ embedded in J(fc)

connecting i0 with i′0. Let U and U ′ neighborhoods around i0 and i′0 small

enough that {t ∈ [0, 1]|γ(t) /∈ U ∪U ′} contains an interval (t1, t2). Since P (fc)

is a Cantor set, there is a t′ ∈ (t1, t2) and an open neighborhood V around

γ(t′) and not intersecting P (fc). Since V is open, there are two external rays

R and R′ landing at both sides of γ in V , say at z1 and z2, and such that the

path τ embedded in J(fc) from z1 to z2 lies completely in V .

Let T the image of τ in the dynamical plane. By construction, the curve

whose trajectory is σ = R ∪ T ∪ R′ separates U from V . Finally, take any

equipotential Er, the set that consists of the union of Er and the part of

σ inside Er is a compact set K. By construction K does not intersect the

postcritical set, so π−1(K) is a compact set in Rc such that I and I ′ lies in

different connected components in Nc. See Figure 4.4.

Corollary 29. Let c be any parameter as in Proposition 28, then every home-

omorphism h : Rc → Rc′ between regular parts extends to a homeomorphism

of the natural extensions h̃ : Nc → Nc′ . Moreover, h̃(∞̂) = ∞̂

Proof. By Proposition 28, if c is superattracting the end compactification of

Rc is homeomorphic to the natural extension Nc, since any homeomorphism

h : Rc → Rc′ extends to the end compactification. By Corollary 22, ∞̂ is the
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Figure 4.4: To the proof of Proposition 28.

only disconnection point among the irregular points, and the second part of

the corollary follows.

Corollary 30. Let h : Rc → Rc′ be a homeomorphism between the regular

parts of two superattracting parameters c and c′, then the periods of c and c′

are equal.

Proof. By Corollary 29, h : Rc → Rc′ extends to a homeomorphism of the

natural extensions sending irregular points into irregular point. If p is the

period of c, there are p+ 1 irregular points in Nc.

Lemma 31. Let c1 and c2 be two superattracting parameters, and h : Rc1 →

Rc2 be a homeomorphism, then h sends the leaves containing the dynamic root

cycle of c1 into the leaves of the dynamic root cycle of c2.

Proof. By Proposition 15 there are, at least, three unbounded Fatou com-
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ponents associated to the leaves containing the dynamic root cycle. On the

other hand, these unbounded Fatou components correspond to, at least, two

different ends in the regular part. So, one of the ends is associated to at least

two unbounded Fatou components, this end most be ∞̂ and no other periodic

point in the regular part can have access to different ends and multiple access

to ∞̂.

Given a superattracting parameter c, let vc be the valence of the dynamic

root point.

Corollary 32. Let c1 and c2 be two superattracting parameters with the same

period if vc1 6= vc2, then the corresponding regular parts Rc1 and Rc2 are not

homeomorphic.

Proof. Having different valence, the corresponding leaves containing the lift

of the dynamic root cycle on each regular part must have different number

of unbounded Fatou components, which implies that the corresponding leaves

have different number of access to infinity.

4.5 Hyperbolics components

As we pointed before, combinatorially, the Julia sets associated to parameters

within a hyperbolic component H and the root of H, are indistinguishable.

Here, we present a proposition that topologically ties the regular parts of

parameters inside hyperbolic components with the regular part of their center.

Although it was not explicitly stated the proof of next proposition follows

immediately from Lemma 11.1 in Lyubich and Minsky’s. We include the
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settings and the statement of that lemma for reference. The interested reader

can find the proof on [21].

Let U and V two open sets with Ū ⊂ V and let f : U → V be an analytic

branched covering. Let us remark that when U and V are disks with the

property U ⊂⊂ V the map f is called polynomial-like or quadratic-like if the

degree of f is 2, let Nf denote the set of backward orbits of f . In this setting,

iterations of the map f̂ on Nf may not be defined, since f is not defined on

V \ U . For m = 1, 2, ... let Nm ⊂ Nf be the set of backward orbits ẑ that can

be iterated under f̂ at most m times. So, we have inclusions Nm ⊂ Nm+1 for

m = 1, 2, ....

The map f̂−m : Nf → Nf is an immersion, that maps Nf onto Nm for

m = 1, 2, .... So, by composing with the inclusions Nm ↪→ Nf consider Nf

as an extension of Nm and let us denote these extensions by Nm. Make

Nf = N0 and identify any point ẑ ∈ Nm with f̂−1(ẑ), so the map f̂−1 induces

the following increasing sequence of sets

N 0 ↪→ N 1 ↪→ N 2 ↪→ ...

let Df = ∪Nm, a set W in Df is said to be open if W ∩Nm is open for every

m. The set Df is called the direct limit of the increasing sequence above. The

natural extension f̂ of f in Nf induces a homeomorphism of Df into itself.

Now, we can state the following Lemma:

Lemma 33 (Lyubich and Minsky). Assume that a branched covering f :

U → V is the restriction of a rational endomorphism R : C̄ → C̄ such that

C \ V is contained in the basin of attraction of a finite attracting set A. Then
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f̂ : Df → Df is naturally conjugate to R̂ : NR \ Â→ NR \ Â.

Proposition 34. The regular part of a quadratic hyperbolic map is homeo-

morphic to the regular part of its corresponding superattracting map.

Proof. First, let us discuss parameters inside the Main Cardioid.

Let fε(z) = z2 + ε a quadratic polynomial with ε a parameter inside the

Main Cardioid. Thus fε has an attracting fixed point aε. The Fatou set consists

of two open sets corresponding to the basins of infinity A(∞) and A(aε). The

Julia set J(fε) is a quasicircle, so that the conjugating map φ : J(fε) → S1

can be quasiconformally extended to a neighborhood of J(fε). Since fε is

expanding on the Julia set, the map φ ◦ fε ◦ φ
−1 is an expanding circle map of

degree 2.

By a Theorem of Shub the map φ◦fε ◦φ−1 is topologically conjugate to z2,

that is, there is a map h : S1 → S1 such that f0 = h ◦φ ◦ fε ◦φ−1 ◦h−1. Also, h

admits an equivariant extension to a neighborhood of S1. Actually, Böttcher’s

coordinate in the basin of infinity extends h to the whole basin of infinity. So

we obtain a conjugacy of fε to f0 defined on a simply connected neighborhood

U containing the basin of infinity and the Julia set J(fε). We can choose U

small enough such that the map fε : U → V is quadratic-like. This implies that

the map fε : U → V is topologically equivalent to the map f0 : φ(U) → φ(V ).

By construction, C \ V is contained in the basin of attraction of aε.

By Lemma 33, the map f̂ε : Dfε
→ Dfε

is conjugate to f̂ε : Nε\ âε → Nε\ âε,

also the map f̂0 : Df0 → Df0 is conjugate to f̂0 : N0 \ 0̂ → N0 \ 0̂. But,

the conjugacy φ from fε to f0 lifts to a conjugacy from f̂ε : Dfε
→ Dfε

to

f̂0 : Df0 → Df0. So, Rε = Nε \ {∞̂, âε} is homeomorphic to R0 = N0 \ {∞̂, 0̂}.
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It follows that Nε is homeomorphic to the double cone over S1. Let us

remark that since the homeomorphism above is a conjugacy, it sends the Julia

set Jε onto S1 = J0, so we can restrict such homeomorphism to the lift of the

basin of attraction of aε, therefore lim
←−

(fε, A(aε)) ∪ J(fε) is homeomorphic to

Con (S1).

Let fc(z) = z2 + c be a quadratic polynomial with c in a hyperbolic com-

ponent H, with attracting cycle P = {p1, ..., pn} of period n. Let U1, U2, ..., Un

be the Fatou components of the basin of attraction of P .

The regular part Rc can be decomposed in several parts, by cutting along

the Julia set Jc which are:

• The Julia set Jc.

• The lift of the basin at infinity π−1(A(∞)) in Rc.

This set is homeomorphic to S1× (0, 1) by means of the lift of Böttcher’s

coordinate.

• Fatou components of finite branching.

This set is homeomorphic to a countable union of sets {Vn}, where each

Vn is homeomorphic to D × {0, 1}N. Each point ẑ ∈ Vn has at most

finitely many coordinates in the basin of attraction of the critical cycle

∪Uj. Also, each component in Vn projects onto some Ui for i fixed.

• The invariant lift Û of the basin of attraction of P .

Let Ûi be the of points ẑ ∈ Û such that π(ẑ) ∈ Ui, with the lift of

Köning’s coordinate on Ûi, f̂
n
c has the form of z 7→ λz, where λ is the
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multiplier of the cycle P , so f̂n
c in Ûi is topologically equivalent to f̂λ in

π−1(A(aλ)). By the discussion above, Ûi is homeomorphic to S1 × (0, 1).

Let c0 = H(0) be the center of H. Now, the regular part Rc0 has the

same decomposition as Rc, the decomposition is such that the corresponding

components are homeomorphic. These homeomorphisms glue together to a

homeomorphism from Rc to Rc0.

We call the decomposition of Rc above, the laminated decomposition of

the regular part associated to the hyperbolic parameter c. Tomoki Kawahira

independently proved Proposition 34 in the more general setting of hyperbolic

rational maps and in the quasiconformal level. That is, hyperbolic affine lami-

nations are stable in Lyubich-Minsky setting. See [15]. Let H be a hyperbolic

component, and c0 = H(0) be the center of H. For any hyperbolic parameter

c in the boundary of H, the path from c0 induces a transformation hc from

Rc0 to Rc. If correspondingly c1 denotes the root of H, then fc1 is a parabolic

quadratic polynomial. Let L be the regular part of Rc0 with the leaves con-

taining the dynamic root cycle removed. Analogously, let L′ be set obtained

by removing from Rc1 the periodic leaves associated to Fatou’s coordinate.

Then, another result of Kawahira, see [14], states that the map hc1 = limhc,

as c tends to c1 in H, is a laminar homeomorphism between L and L′, and

moreover, the map hc1 semi-conjugates f̂c0|L to f̂c1|L′ .
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Chapter 5

Classification of regular parts of

superattracting quadratic polynomials

5.1 Isotopies

A self-embedding of a compact topological space X is a continuous injective

map of X into itself. A homeomorphism h : X → X is called isotopic to the

identity, if there exist a continuous map Φ : [0, 1]×X → X such that Φ(0, x) =

x, Φ(1, x) = h(x) and the restriction Φt(x) = Φ(t, x) is a homeomorphism of

X for every t ∈ [0, 1]. In general, two maps h1 : X → Y and h2 : X → Y are

called isotopic if there is a homeomorphism φ : Y → Y isotopic to the identity,

such that φ ◦ h1 = h2. In this section, we will prove that every self-embedding

of the solenoidal cone Con (S1) is isotopic to a self-embedding of Con (S1)

sending S1 to a solenoid of the form S1 × {r} in Con (S1).
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5.1.1 Isotopies of the dyadic solenoid

The group H(S1,S1) of self-homeomorphisms of the solenoid, endowed with

the uniform topology, is a topological group. As the dyadic solenoid S1 is also

a topological group, an automorphism of S1 is an element in H(S1,S1) that

preserves the group structure of S1. The set of automorphisms of the solenoid

is denoted by Aut(S1). Let τ ∈ S1 the map ζ 7→ τ ·ζ is called a left translation

of S1, abusing notation, we identify the map with the element τ ∈ S1. The set

Aff(S1) of affine maps of the solenoid, is a transformation in S1 × Aut(S1),

where the first factor corresponds to the set of left translations in S1.

Let `2 be the standard Hilbert space. The following result, due to James

Keesling [16], describes the topological embedding of Aut(S1) insideH(S1,S1).

Proposition 35 (Keesling). The group H(S1,S1) is homeomorphic to `2 ×

S1 × Aut(S1).

Actually, Keesling’s proof shows that H(S1,S1)/Aff(S1) is homeomorphic

to `2. Since `2 is a vector space, this implies that every self-homeomorphism

of the solenoid is isotopic to an affine map. According to Jaroslaw Kwapisz

[17], the group Aut(S1) has a simple set of generators:

Proposition 36 (Kwapisz). The group Aut(S1) is the infinite dihedral group

generated by f̂0 and the inversion s 7→ s̄.

This proposition was proved in [17] in the more general setting of P -adic

solenoids, where P is an arbitrary sequence of prime numbers. Together these

propositions yield the following corollary:
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Corollary 37 (Kwapisz). Every homeomorphism of the dyadic solenoid onto

itself is isotopic to an affine map of the form τ ◦ f̂n ◦ r, where r is the identity

if the map is orientation preserving, or the inversion s 7→ s̄ otherwise.

The following is a known topological property of the dyadic solenoid, see

[17].

Lemma 38. The image of very continuous map φ : S1 → S1, of the solenoid

into itself, is either a point, a closed interval or onto.

Proof. The solenoid is a connected, compact metric Haussdorf space. So, it

is φ(S1) by continuity. Now consider a leaf L ⊂ S1, then its image φ(L)

is contained in a leaf L′. We claim that, if φ(L) is unbounded in L′ then

φ(L) = S1. If the image of L is a complete leaf then is clear because density

of leaves, now assume that φ(L) is a half line in the solenoid. Recall that

the leaf containing the unit is a one parameter subgroup of the solenoid. By

homogeneity, assume that the unit belongs to φ(L) and, after identifying φ(L)

with the real numbers R, that φ(L) covers the positive numbers. Now let −M

be some negative number. Since the numbers 2m transversally converge to

0 as m goes to infinity, the numbers 2m −M converge to −M as m goes to

infinity, so the closure of φ(L) contains the whole leaf containing the unit and

our claim follows.

Assume that φ(L) is bounded, then by connectivity φ(S1) is on the con-

nected component of a bounded set, therefore it should be an interval or a

point.
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5.1.2 Isotopies of solenoidal cones

Remind that we can regard the solenoid S1 as the quotient of S = I × F

by the map σ, which is the generator of the adding machine action. Here,

I = [0, 1] and F denotes the fiber over 1 of the projection π : S1 → S1; F is

homeomorphic to the Cantor set {0, 1}N. Thus, the cylinder I × S1 can be

expressed as the quotient of I × S by the adding machine action. For x ∈ F ,

let Rx = I × (0, x) ⊂ I × S, then R = ∪Rx over all x ∈ F is just the trivial

one dimensional lamination I × F . The goal of this section is to prove:

Figure 5.1: Embedding of S1 into [0, 1] × S1.

Proposition 39. Let φ : Con (S1) → Con (S1) be an orientation preserving

self-embedding with φ(S1) ∩ S1 = ∅, then Con (S1) \ φ(Con (S1)) is homeo-

morphic to S1 × I.

First, we say that two 1-dimensional laminations embedded into a third

lamination of dimension 2 intersect transversally if they intersect leafwise

transversally. Transversality is a smooth notion, so we need an isotopy that
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regularizes the embedding φ on S1, the existence of such isotopy is given

by a generalization of the corresponding theorem about surfaces. Namely, if

γ : I → I × I is a curve in the unit square, such that γ(I) ∩ ∂(I × I), then

there is a map h : I × I → I × I isotopic to the identity, rel the endpoints of

γ, such that h ◦ γ is piecewise linear, and h leaves the extremes of γ fixed. See

[11].

Moreover, the corresponding map from the set of embeddings Emb(I, I×I)

to the set of self-homeomorphisms of the unit square isotopic to identity can be

chosen to depend continuously on parameters. That is, if X is a topological

space, and the family of maps φx : I → I × I in Top(I, I × I) depends

continuously on x, then there is a family of maps hx in Top(I × I, I × I)

depending continuously on x such that hx ◦ γ is piecewise linear. So, making

X = F , we have the following lemma:

Lemma 40. Let S → I×S be a laminar embedding, such that φ(S)∩∂(I×S) =

∅. Then, there is a homeomorphism h : I×S → I×S, isotopic to the identity,

such that h ◦ φ is piecewise linear.

This immediately implies:

Lemma 41. Given an embedding φ : S1 → I×S1 such that φ(S1)∩I×S1 = ∅,

then, there exist a homeomorphism h : I×S1 → I×S1, isotopic to the identity,

such that h ◦ φ is piecewise linear.

Proof. Let {B1, B2, ..., Bk} be a partition by square flow boxes in S1 such that

each plaque of Bi intersects at most one vertical segment Rx. So, we can apply

Lemma 40 to each Bi.
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By further local isotopies, we can assure that φ(S1) does not contain vertical

segments and that φ(S1) intersects R transversally.

Lemma 42. For every x ∈ F , the intersection φ(S1) ∩ Rx consist of a finite

number of points.

Proof. By transversality, every intersection is leafwise isolated. Since every Rx

is compact, there are finitely many intersections in every Rx.

We can identify Rx with I for each x ∈ F .

Lemma 43. Let m(x) = min{r|r ∈ Rx∩φ(S1)}. Then, the function m : F →

I depends continuously in x.

Proof. By compactness and Lemma 42, there is a covering of φ(S1) ∩ R, by

flow boxes {B1, B2, ..., Bk} in I × S and such that each plaque of Bi contains

a single point of φ(S1) ∩R for every i.

The intersection φ(S1) ∩ R ∩ Bi is a transversal for Bi. The points where

m attains the minimums are arranged into these transversals. By definition,

transversals depend continuously on the fiber.

Fix x ∈ F , by the action of σ, the segments {Rσn(x)} with n ∈ Z are

precisely the segments in R that belong to the same leaf in I ×S, let L be the

corresponding leaf in S1 that contains φ−1(x). By a suitable parametrization,

identify L with R in an order preserving way.

Lemma 44. Assume that φ is orientation preserving and let tx = φ−1(m(x)),

then tx < tσ(x).
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Proof. Every leaf S in S1 × [0, 1] is an infinite horizontal strip. By Lemma

38, composition of φ with the vertical projection over the solenoid is onto.

This implies that of every x ∈ F , there is a first time t0 such that φ(t0) ∈ Rx

and a last time t1 such that φ(t1) ∈ Rσ(x). Suppose, on the contrary, that

tσ(x) < tx, since φ is orientation preserving, t0 < tσ(x), also we have t1 > tσ(x).

By definition φ(t0) > m(x), and φ(t1) > m(σ(x)) in Rx and Rσ(x) respectively.

Now, from m(x) there is no way that the trajectory of φ gets to φ(t1) without

self-intersecting or crossing Rσ(x) in a lower point than m(σ(x)), see Figure 5.2.

Therefore tx < tσ(x).

Rσ(x)

m(σ(x))

Rx

m(x)

φ(t1)

φ(t0)

φ(L)

Figure 5.2: To the proof of Lemma 44.

Proof of proposition 39. Let (tx, tσ(x)) be the arc joining tx with tσ(x) in S1,

by definition all of these arcs are disjoint. Moreover, S1 = ∪
x∈F

(tx, tσ(x)). By

Lemma 43 the extremes of these arcs depend continuously on F . Now, the arcs

(m(x), (x, 0)) along Rx, also depend continuously on F . So, for every x ∈ F we

have a quadrilateralQx in I×S, with vertices (m(x),m(σ(x)), (σ(x), 0), (x, 0)),
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see Figure 5.3. For every x ∈ F , consider homeomorphisms ψx from Qx to the

plaque I × I × x in I ×S such that ψx = ψσ(x) on the side (m(σ(x)), (σ(x), 0).

The homeomorphisms ψx paste together to form the desired homeomorphism

from Con (S1) \ φ(Con (S1)) to I × S1.

m(x)

m(σ(x))

σ−1(x) x σ(x)

Q

Figure 5.3: The quadrilateral Qx.

Corollary 45. Let φ : Con (S1) → Con (S1) be an embedding with φ(S1) ∩

S1 = ∅, then there is an isotopy of φ to a map that sends the boundary onto

the boundary.

Proof. The external ray foliation in S gives the track of the desired isotopy.

Lemma 46. A map h : SR → SR isotopic to the identity, extends to map

h̃ : Con (S1) → Con (S1) isotopic to the identity. This extension can be

done in such a way that h̃ restricted to the complement Con (S1) \N of some

neighborhood N of SR is the identity.

Proof. Consider N = ∪t∈(R−ε,R+ε)St, clearly N is a neighborhood of SER
. Let

Φ : I × SET
→ SER

be an isotopy of h to the identity. Define b : I → I by
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b(t) = max{1, | ε
2
(t − R)|}, then the map h̃ : Con (S1) → Con (S1) given by

h̃(t, s) = (t,Φ(b(t), s)) satisfies the conditions of the lemma.

Corollary 47. Let φ : S1 → I × S1 be an embedding. Assume that φ admits

an extension to a map S1 × (−ε, ε) → I × S1 for some positive ε. Then, the

image of φ is isotopic to S1 × 0.

Proposition 48. Assume that h : Nc → Nc′ is a homeomorphism such that

h(∞̂) = ∞̂. Then h is isotopic to a homeomorphism sending a solenoidal

equipotential SR(c) onto SR(c′).

Proof. The solenoidal cone at infinity admits a foliation by solenoidal equipo-

tentials. These solenoidal equipotentials define a local base of neighborhoods

homeomorphic to solenoidal cones around ∞̂. So, any homeomorphisms send

any of this solenoidal local base of neighborhoods into a local base of neigh-

borhoods around ∞̂ in Nc′ . Thus, there is a solenoidal cone at SR(c) in Nc

which is embedded by h into some solenoidal cone at SR(c′) in Nc′ . Now, the

proposition follows from Proposition 39.

5.2 Classification of laminations associated to

superattracting parameters

In this section, we will prove the central theorem of this work, the remaining of

the chapter will be dedicated to generalizations to larger class of parameters.

The idea is to recognize the topological impressions that combinatorics of

parameters impose over the regular parts. We will prove the following:
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Theorem 49. Let h : Rfc
→ Rfc′

be a orientation preserving homeomorphism

between the regular parts of two superattracting quadratic polynomials, fc and

fc′. Then, fc = fc′.

Proof. By Corollary 29, the homeomorphism h admits an extension h̃ : Nc →

Nc′ such that h̃(∞̂) = ∞̂. By Proposition 48, h̃ is isotopic to a homeomorphism

that sends a solenoidal equipotential SR in Nc onto a solenoidal equipotential

S ′R in Nc′ . Using the lift of Böttcher’s coordinate at the solenoidal cones at

infinity in Nc and Nc′ the map h̃ restricted to SR, becomes a homeomorphism

of S1 into itself. Now, Corollary 37 there exist a map, say ψ : S1 → S1,

isotopic to the identity such that ψ ◦ h̃ is an affine transformation of S1 of the

form τ ◦ f̂n
0 . By Lemma 46, ψ extends to a map ψ̃ isotopic to the identity,

defined on a neighborhood N of SR, so that ψ̃ ◦ h̃ coincides with h̃ outside N .

The map f̂−n
c′ ◦ ψ̃ ◦ h̃ is conjugate to τ in SR. So, by means of the previous

normalizations we can assume that h̃ restricted to SR is already the translation

τ . On the other hand, by Lemma 31, h̃ must send the leaves containing the

dynamic root cycle of f̂c into the leaves containing the dynamic root cycle of

f̂c′ . We do not know whether the dynamic root lift r̂c is actually map to r̂c′ .

But at least on the level of solenoidal equipotentials, by Lemma 8, the map h̃

maps the corresponding periodic leaves in the solenoid SR (under doubling),

into periodic leaves of S ′R. Remind that there is a one-to-one correspondence

between periodic leaves and periodic points on S1. Thus, if necessary after

another isotopic deformation of h̃, we can assume that h̃|SR
sends a periodic

point in S1 to a periodic point in S1 but if a translation τ in S1 sends a

periodic point of S1 into a periodic point in S1, then τ itself must be periodic.
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By Corollary 30, the periods of c and c′ must be the same.

Therefore, τ sends every periodic point in SR ∩ L(r̂c) into every periodic

point in S ′R ∩ L(r̂c′). That happens in every leaf containing the lift of the

dynamic root cycle. So, by projecting onto S1 by π, the action of τ becomes a

rotation in S1 that sends the ray portrait of rc onto the ray portrait of r′c. By

Lemma 5, the dynamic root cycle must be the same and then c = c′.

5.3 Irregular points.

Proposition 50. Let fc be a quadratic polynomial then lim
←−

(fc, C̄) is pathwise

connected.

Proof. Let ẑ be any point in lim
←−

(fc,C) then consider a path γ in C joining

z0 = π(ẑ) with ∞. The lift of γ to ẑ connects ẑ to ∞̂, since the fiber of infinity

π−1(∞) consists only of ∞̂.

Proposition 51. Let V be a local pathwise component of an irregular point Î,

then Î is a path disconnectivity point of V .

In particular, if there are irregular points in Nf , the pathwise connected

components of Nf can not be Riemann surfaces. Remind that two sequences

{pk} and {qk} are called cofinal if there exist a number N such that qn = pn

for n > N .

Proof. The proof is divided in two cases:

Case 1: We first assume that only finitely many of the coordinates of Î are

critical points. In fact, without loss of generality by considering a cofinal

subsequence of Nf , we can assume that none of the points in the backward
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orbit of Î is a critical point. Let πj(Î) = ij, and let φ : (U1, i1) → (D, 0) be

a local chart around i1 in C. Let Un be the pullback of U1 along the orbit of

Î and, let n1 the first time such that πn1 is not univalent. Then, there is a

critical point c1 ∈ Un1 ⊂ C, let b1 = πn1(c1). Now let be B1 some small ball

around 0 such that φ−1(B1) does not contain b1; for safeness take the ball with

radius 1
2
d(φ(b1), 0). Again there is a first moment n2 where the pullback of

φ−1(B1) by πn2 is not univalent. If n2 = n1 we take the closest critical point

to in1 and define that critical point to be c1 otherwise let c2 the corresponding

critical point in C. Since at every level there are only finitely many critical

points, this process defines: An increasing sequence {nk} of times, a sequence

of critical points ck in C respectively, and a sequence of postcritical points bk

converging to i1 in C. Let us emphasize that, by construction, for every k

there is a ball around i1 such that φ−1(Bk) lifts univalently along Î up to the

k − 1 coordinate.

Cover the sequence {φ(bk)} by disjoint balls Vk of small radii, say of size

1/10 of the distance between φ(bk) and the rest of the sequence. There might

be another critical points inside this balls, since we only care for the critical

points in lower levels, we can take the balls small enough such that, for every

k, there are no critical points in φ−1(Vk) for πj and j < k. Let γk = φ−1(∂Vk),

be the loop in U1 that projects to the boundary of the ball corresponding to

φ(bk). For every k, let pk, qk ∈ γk, such that φ(pk) and φ(qk) are the points with

largest and smallest modulus in Vk. The points pk and qk separates γk into

two paths say σk and σ′k. We will label the paths with the primes according

the parity of k. For k odd σk is the path that connects pk with qk and has bk

on the left; for k even σk is the path connecting pk with qk having bk to the
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right. Then connect qk with pk+1 by a path lk whose is as short as possible.

The closure of the union the loops γk and the paths ρk contains the point i1

and defines two paths σ and σ′, both starting at i1 and ending at p1 in the

following way: Every time σ crosses qk goes along σk to pk and goes along lk

from pk to qk−1. On the other hand, define σ′ as the path by always chooses

the path σ′k from qk to pk. By the election of σk each path σ is ‘snaking’ along

the sequence {bk}. So we have a picture like in Figure 5.4. This picture lifts

univalently until n1 − 1 where the first loop γ1 encloses the critical value of c1.

If we lift one more time we get a picture like in Figure 5.5.

σ3

σ2

p1

q1

p2

q2

i1

σ′

2

σ′

1

σ′

3

b1
σ1

b2

U1

Figure 5.4: A sequence of postcritical points.

Since there are no other critical points closer to i1. The portion of σ and σ′

from i1 to q1 lift univalently to unique paths in C starting at i2 and ending at

some point q̃1 over the π1 fiber of q1. Now having q̃1, the paths σ1 and σ′1 lift

to unique paths starting at q̃1 and ending at p̃1 and p̃′1, respectively. Which

project onto p1 under π2. This give a procedure to subsequently lift the paths,

namely; each time we get to a critical point ck consider the point q̃nk
uniquely
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Un1

p̃1

p̃′

1

in1

q̃′1

q̃1

ĩn1

Figure 5.5: A sequence of postcritical points.

defined by univalent lifting of portions of σ (or σ′), from i1 to qnk
. And then

take the lifts of σk and σ′k defining two points in the fiber of pk, we could have

different choices for the lift of the path from pk to p1, since it could happen

that contains critical points. However, any choice of these paths would work

for us. Following this for all points bk we can construct two points P1 and P2

in π−1(p1) ⊂ Nf , that belong to the path connected component of Î.

Now connect P1 and P2 with any path ŝ, this path projects to a loop

s in C which must be non-trivial in every level k. The only way that this

can happen is if s is homotopic to σ ◦ σ′ relative to a cofinal sequence of bk.

But, then the πk image of ŝ over C most cross ik for all k. Thus ŝ must cross Î.

Case 2: There are infinitely many critical points in the coordinates of Î. This

case is more simple than the previous. Consider a local chart U1 ⊂ C around

i1. Take a point p1 not in the postcritical set, and joint it by a path σ outside
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the postcritical set. For every time k that there is a critical point in the

coordinate of Î, we can choose two paths in the πk fiber of γ. Such that if

we join the end points of these lifting, we get a path that π1 projects onto a

loop in C based at p1 and with winding number bigger than 2k−1. So, again

can construct two points P1 and P2 in the π fiber of p1. Such that any path ŝ

connecting P1 and P2 in Nf have to pass through Î.

From the proof of the previous proposition, we have the following corollar-

ies:

Corollary 52. Let φ : Con (S1) → Con (S1) be a self-embedding of the

solenoidal cone, then φ(∞̂) = ∞̂.

Corollary 53. Every coordinate of an irregular point belongs to the postcritical

set.

Lemma 54. Let fc be a quadratic polynomial with minimal postcritical set.

Then, the point ∞̂ is the only isolated irregular point in the natural extension

of Nc.

Proof. Let î be an irregular point in lim
←−

(fc, C̄) \ {∞}, then each coordinate

of î belongs to the postcritical set Pfc
(0), since it is minimal with respect to

fc, we have 0 ∈ {fn(i0)}, where i0 = π(̂i). Let U be any neighborhood around

î and U0 be an open set in C, evenly covered by the connected component of

U containing î. This implies that there exist m > 0 such that 0 ∈ Um. Since

0 ∈ fn(i0), there exist r > m such that f̂ r+m(̂i) ∈ U .
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Proposition 55. Let fc be a quadratic polynomial that is either convex cocom-

pact or the postcritical set P (fc) is a minimal set, then any homeomorphism

h : Nfc
→ Nfc′

fixes ∞̂.

Proof. An irregular point is a local disconnectivity point by Proposition 51,

hence irregular points are topologically different than regular points. Now,

we have to check that under the proposition’s hypothesis, the irregular point

at infinity is topologically distinguishable. The case of convex cocompact is

clear; since 0 is not recurrent then, by Mañe’s Theorem, there are no irregular

points associated to 0. Hence, in this case, ∞̂ is the only irregular point.

When c is either parabolic or hyperbolic, ∞̂ is the only disconnectivity point

of Nc. Finally, when the postcritical set is a minimal set, ∞̂ is the only isolated

irregular point by Lemma 54.
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Chapter 6

Monodromy groups

6.1 Construction of monodromy

Let f be a postcritically finite rational map defined on the Riemann sphere C̄

of degree d. Given a path γ : [0, 1] → C̄ \ Pf , defined on the complement of

the postcritical set Pf of f , and any point ẑ ∈ π−1(γ(0)) there is a lift γ̂ in

lim
←−

(f, C̄ \Pf ) such that γ̂(0) = ẑ and whose end point γ̂(1) ∈ π−1(γ(1)). This

defines a holonomy map Hγ from π−1(γ(0)) to π−1(γ(1)), which is actually a

homeomorphism of fibers. In fact, Hγ depends only on the homotopy class of

γ.

6.1.1 Encoding trees and their automorphisms

A tree is a planar graph without cycles. Given a finite set X = {x1, ..., xd},

we consider X as an alphabet in d symbols. Denote by Xω the set of all finite

words made with the alphabet X. We regard the empty set {∅}, as the word

of length zero in Xω. The set Xω is endowed with a rooted tree structure,

denoted by T (X) in the following way. The root of the tree is the empty set
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{∅}, two words ω1 and ω2 have an edge in common if one is obtained by adding

a letter at end of the other. The tree T (X) is also a graded tree, the n-th level

of the T (X) consists of the words with exactly n-letters. Except for the root

of the tree, every vertex on T (X) is attached to d+1 symbols, one “ancestor”

and d “childs”. We refer to the tree T (X), as the encoding tree in d symbols.

Every automorphism of the tree T (X) most leave invariant each n-th level.

Moreover, the restriction on the n-level of γ is a permutation of dn symbols.

Let Aut(T (X)) denote the set of automorphisms of T (X). The subtree Tω(X)

of T (X) consisting of the words that start with the word ω is canonically iso-

morphic to T (X). In particular, the set of automorphisms of T (X) fixing the

one letter word (xi) is isomorphic to Aut(T (X)). By postcomposing γ with

the inverse of the associated permutation on the first level, γ induces d auto-

morphisms of T (X) each corresponding to every symbol xi. If Sd denotes the

group of permutations in d symbols, then we have the following representation

Aut(T (X)) ' Aut(T (X))d o Sd.

6.1.2 Preimage trees

Given a fixed point ∗ ∈ C\Pf , the set B(∗) =
⋃
f−n(∗) of all backward images

of ∗, also has a natural rooted tree structure. Simply, the root of the tree is

∗ itself, and a point x ∈ B(∗) is a child of y ∈ B(∗) if and only if y = f(x).

The n-th level of the tree is precisely the set f−n(∗). Let us denote by T (f, ∗)

the set B(∗) endowed with the rooted tree structure, T (f, ∗) will be called the

preimage tree of ∗ under f . As rooted trees, the tree T (f, ∗) is isomorphic

to the encoding tree T (X) in d symbols. However, any isomorphism of trees
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would break the dynamical information of the preimage tree.

Following Bartholdi, Grigorchuk and Nekrashevich, we build a one-to-one

correspondence between the vertices of T (X) and T (f, ∗). To make this bijec-

tion, first identify X with f−1(∗) so we can select d paths inside C \ Pf such

that for every x ∈ X, lx will denote a path joining ∗ with x.

Given lx, for every y ∈ X there is a preimage l of the path lx starting

at y. Identify the end point of l with the word yx. This procedure, induces

the desired bijection between the vertices of the encoding tree T (X), with the

vertices of T (f, ∗). When deg f = 2, Figure 6.1 sketches the first three levels

of this morphism. Let us remark that the bijection above depends on the

homotopy classes of the paths lx in C \ Pf .

Figure 6.1: Here, we put together T (X) and T (f, ∗), the last is drawn with
straight lines.

6.1.3 Iterated Monodromy groups

Every loop γ based on ∗ induces an automorphism of the tree T (f, ∗) as follows,

given x ∈ X let γx be the preimage of γ starting at x, the end point γx(1)

is again an element in the first level of T (f, ∗). As γx is uniquely defined,

the preimages of γ to the first level of T (f, ∗) induces a permutation of the
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symbols X. We can repeat this procedure to the subsequent levels of T (f, ∗),

so altogether γ induces a transformation of T (f, ∗) onto itself which, it turns

out, it is also a transformation of T (X) onto itself by means of the bijection

above. Once again, the corresponding automorphism of T (X) only depends on

the homotopy class of γ, and up to conjugacy, does not depend on the choice

of the base point ∗.

Thus, we have a representation of the fundamental group π1(C\Pf , ∗) into

Aut(X). The image of this group is called the iterated monodromy group of

(C \ Pf , ∗). By the discussion on Subsection 6.1.1, the action of γ admits

a representation of the form Aut(T (X))d o Sd. The permutation factor is

given by the pullback of γ to the first level X of T (f, ∗), and for each symbol

x ∈ X the automorphism corresponding to the subtree starting at x is the

automorphism of T (X) induced by the loop lx · γx · l−1
γ(1). Where · represents

the concatenation of paths, read from left to right.

Note that the fiber π−1(∗) ⊂ lim
←−

(f,C \ Pf ) is naturally identified with the

set of infinite simple paths on T (f, ∗). In this way, the Iterated Monodromy

Group of (C \Pf , ∗) becomes a representation of the monodromy group of the

fiber π−1(∗) in lim
←−

(f,C \ Pf ).

When f is postcritically finite, the fundamental group π1(C \ Pf , ∗) is

finitely generated. In this case, the action of the fundamental group on T (f, ∗)

is conveniently represented by an automaton called the Moore diagram. That

is, a labelled directed graph whose nodes represents generators of the funda-

mental group π1(C \ Pf ), labels are a directed pair of elements in X, so that

if a edge is going from the vertex γ to γ ′ the labelling pair is (x, γx(1)).

Let us consider the situation f0 = z2, then Pf0 = {0} and C \Pf0 = C∗ the
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punctured plane. Take the fixed point 1 for the base point ∗ in C∗. The set

f−1(1) = {−1, 1} ⊂ C∗ is identified with the set of symbols X = {0, 1} taking

1 to “0” and −1 to “1”. To encode the preimage tree T (f0, 1) into T ({0, 1}),

let l0 be a simple loop based on 1 homotopic to 0 rel 1 in C∗, and l1 be the

semi-arc on the unit circle going from 1 to −1 in the standard orientation.

The fundamental group π1(C∗, 1) ' Z is generated by any simple loop, say

γ, around 0. The action of γ on X is the trivial transposition τ , whereas the

transition maps l0 · γ0 · l
−1
1 = Id and l1 · γ1 · l

−1
0 = γ. Thus, the action of γ is

expressed in terms of A(0, 1)2 o S2 as (Id, γ)τ . Then the automaton contains

two vertices the Identity Id and σ. If we have a sequence of 0’s and 1’s, the

automaton works as a “reader” of the sequence from left to right. Applies the

action of a vertex to the first coordinate, say θ0, and applies the action of the

end vertex of the corresponding arrow. For instance σ(0, 0) = (1, 0) whereas

σ(1, 0) = (0, 1), so the action of σ on sequences of 0’s and 1’s corresponds

precisely to the action of the generator of the Adding Machine σ, (hence the

abuse of notation). So, the extension of this action to the set of infinite

sequences is the Adding Machine action in {0, 1}N. The Moore Diagram for

f0 is depicted on Figure 6.2.

τ

(0,0)

Id

(1,0)

(0,1)

(1,1)

Figure 6.2: The Moore diagram of the Adding Machine
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6.2 The basillica, f−1 = z2 − 1

Now let us describe the case f−1(z) = z2 − 1. Here the postcritical set Pf−1 =

{−1, 0}. As the base point ∗, let us take the α fixed point.

Since deg f−1 = 2 we identify the set of preimages of α, that is {α,−α}

with X = {0, 1} taking α to the symbol “0” and −α to the symbol “1”. Let

l0 be a simple loop based at α, and let l1 be the path from α to −α as on

Figure 6.3. The paths l0 and l1 are the auxiliary paths that allow us to identify

the preimage tree of T (f−1, α) with the coding tree T ≡ T ({0, 1}).

l0

l1

ba

−αα

0−1

b1

b0

a1

a0

Figure 6.3: To the construction of the IMG for z2 − 1.

Let a and b be simple loops around −1 and 0, such that a and b generate the

fundamental group π1(C \ P, α) (see Figure 6.3). The preimages of a under

f−1 are the paths a0 connecting α with −α and a1 connecting −α with α.

Thus the action of a on the first level of T (f−1, α) is just the transposition.

Moreover, the loop l0 · a0 · l
−1
1 represents the identity Id in π1(C \ {−1, 0}, α),

whereas the loop l1 · a1 · l
−1
0 is homotopic to b. Thus, the representation of a

in terms as an element of Aut(T )2 o S2 is a = (Id, b)τ .

The preimages of b are the loops b0 and b1 based on α and −α, respectively
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(see Figure 6.3). The loop l0 · b0 · l
−1
0 is homotopic to a, and the loop l1 · b1 · l

−1
1

is trivial. Therefore, the action of b in terms of Aut(T ) is b = (a, Id)Id. The

Moore Diagram of the corresponding Iterated Monodromy Group is given in

Figure 6.4.

The action of the Iterated Monodromy Group of f−1 extends to {0, 1}N,

which is identified with π−1(α) by encoding. We have the following expressions:

a(θ1, θ2, θ3, ...) =





(1, Id(θ2, θ3, ...))

(0, b(θ2, θ3, ...))
if
θ1 = 0

θ1 = 1
,

and

b(θ1, θ2, θ3, ...) =





(0, a(θ2, θ3, ...))

(1, Id(θ2, θ3, ...))
if
θ1 = 0

θ1 = 1
.

(0,0)

Id

b(1,0)

(0,1) (1,
1)

a

(0,0) (1,1)

Figure 6.4: The Moore diagram for f−1 = z2 − 1.

Let fc = z2+c be a quadratic polynomial whose postcritical set Pc is finite.

Consider the fiber π−1(α) over the α fixed point of fc. Now, we introduce an

object in lim
←−

(f−1,C \Pc) that will help us to keep track of the orbits of points

in π−1(α) under the action of the Iterated Monodromy Group of fc.
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Let {a1, ..., an} be a set of simple loops representatives of a generating set of

the fundamental group π1(C\Pc, α), and let Gc = π−1(
⋃
ai) ⊂ lim

←−
(fc,C\PC),

then for every leaf L ⊂ lim
←−

(fc,C \ Pc) the set Gc(L) = Gc ∩ L is an infinite

graph embedded in L. By construction Gc belongs to the regular part of fc.

Definition. The set Gc is called the monodromy graph of Rc.

The monodromy graph is related to Schrerier’s graph as defined in [2].

The π−n-projection of the monodromy graph corresponds to the n-level of

Schrerier’s graph.

Starting from any vertex v ∈ π−1(α) ∩ Gc(L), the number of ends of Gc(L)

is the number of disjoint infinite simple paths along Gc(L) starting from v. If

Gc(L) is connected, then the number of ends of Gc(L) is independent of the

starting point v.

The relevance of the monodromy graph to the topology of regular parts of

postcritically finite quadratic polynomials is that topologically resembles the

Julia set JC ∩ L, in next lemma we prove it for c = −1.

Lemma 56. The monodromy graph G−1 is homotopic to J−1 relative to π−1(α).

Proof. The first thing to notice is that the loops a and b can be taken to be

homotopic to the Julia set J(f−1) rel {α}. Because f−1 is hyperbolic, the Julia

set of a f−1 is locally connected, this implies that the Böttcher coordinate φ−1

extends continuously to J(f−1). Consider any equipotential Er on the basin

of infinity, by deforming Er along the external ray foliation, in such way that

the points in Er over the external rays R 1
3

and R 2
3

landing at α go to α. Then

we obtain a and b loops based on α and homotopic to J(f−1) rel α. Since the
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homotopy, say H, is done along external rays which do not contain critical

points. The homotopy H lifts to a homotopy from G−1 to J−1.

Hence we have the following corollary:

Corollary 57. Given a leaf L in R−1, the number of ends of G−1(L) is equal

to the number of unbounded Fatou components of L.

Later on, we will discuss how to generalize the previous corollary and

lemma to postcritically finite quadratic polynomials. First, let us count the

number of ends of G−1 using only the algebraic properties of the Iterated Mon-

odromy Group for f−1. To do so, we have to describe the action of a and b in

terms of infinite sequences in {0, 1}N.

Lemma 58. Let θ ∈ {0, 1}N, then

• a acts invariantly on the even coordinates of θ, i.e., (a(θ))2n = θ2n,

∀n ∈ N.

• b acts invariantly on the odd coordinates of θ, i.e., (b(θ))2n−1 = θ2n−1,

∀n ∈ N.

Furthermore, both elements act finitely on the coordinates of any point in

{0, 1}N, with the exception of one point for each generator.

Proof. It is immediate from the definition of a and b. The action of both

generators is an alternating game between them that ends with the Identity.

Whenever, a acts it interchanges the first coordinate and switches either to b

or Id, when b acts it leaves invariant the first coordinate, and either switches to

a over the remaining coordinates or to Id. The only way that this game never
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stops is when at every time that a acts there is a 1 on the first coordinate, and

at every time that b acts there is a 0. This is only the case for (10), starting with

a, or for (01) when b is the starting element. Note that a(10) = b(01) = (0̄).

Given any sequence θ ∈ {0, 1}ω, where ω can be either finite or infinite, if

θ 6= (0̄) let m(θ) be the smallest number j such that θj = 1. Remind that two

points in the same fiber are leaf equivalent if they belong to the same leaf L.

The following lemma allow us to use the encoding of π−1(α) into {0, 1}N to

describe the leaf equivalence on π−1(α). We say that two sequences θ and θ′

in {0, 1}N are cofinal equivalent if there exist an N such that θn = θ′n for all

n ≥ N . Two points in π−1(α) belong to the same leaf if and only if they belong

to the same orbit of the Iterated Monodromy Group. The following lemma

is an algebraic proof that every leaf L is dense on every fiber, and therefore

every the closure of every leaf is the whole regular part.

Lemma 59. The action of the holonomy for z2 − 1 is transitive on cylinders.

Proof. It is enough to check that any finite cylinder θ ∈ {0, 1}n, can be taken

to the cylinder (0̄) ∈ {0, 1}n. If m(θ) is odd, then a−
m+1

2 (θ) is a cylinder with

the first m(θ) digits equal to 0. If, now m(θ) is even then b−
m
2 ([θ1, θ2, ..., θn])

also increases m(θ). Repeating this procedure a finite number of times, at the

end, we get by composition an element in the Iterated Monodromy Group of

f−1 such that sends θ to (0̄).

Corollary 60. With the exception of points in L(α̂) ∩ π−1(α), the leaf equiv-

alence in π−1(α) coincides with cofinal equivalence.

Proof. By last remark in the proof of Lemma 58, the points (01), (10) and (0̄)

belong to the same leaf. Actually, the point (0̄) corresponds to the point α̂ in
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π−1(α). Now, by definition, if two points two points θ, θ′ ∈ {0, 1}N are cofinal,

the coordinates of θ and θ′ are different at most on a cylinder of size N . By

Lemma 59, there is an element γ in the Iterated Monodromy Group of f−1

such that γ(θ) = θ′. Conversely, if two points θ and θ′ belong to the same leaf,

they are related by the Iterated Monodromy Group and if they are not, and

do neither (01), (10) or (0̄), then by Lemma 58 the sequences θ and θ′.

Let θ ∈ {0, 1}N, let e(θ) the smallest number j such that θ2j = 1, we call

e(θ) the a-obstruction of θ. Analogously, o(θ) is the smallest number j such

that θ2j−1 = 1 and we call o(θ) the b-obstruction of θ. If, in any case, no such

1 exist, we said that there is no obstruction of the kind.

For instance, e(0100...) = 1, and o(0001101...) = 3. Let θ ∈ {0, 1}N, the

order of the orbit θ under the cyclic group < a > is related to e(θ) in fact, θ

is periodic under < a > if and only if e(θ) is finite. Analogously for the orbit

of θ under b. More precisely:

Lemma 61. Let θ ∈ {0, 1}N, then

i) the orbit of θ under < a > has order 2e(θ), or infinity if there is no

a-obstruction; and,

ii) the orbit of θ under < b > has order 2o(θ), or infinity if there is no

b-obstruction.

Proof. By Lemma 58, a acts only on the odd coordinates of θ, so < a > will

only change the odd coordinates of θ by the definition of b if there is 0 at the

even coordinates then the action of a can go on. But if it finds a 1 it switches
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to the Identity and the automaton stops. As for the orbit of b, it behaves as

a but in even places.

We could say that each group, < a > and < b >, acts as an “alternating”

Adding Machine on {0, 1}N with possible obstructions to the “carrying” one

operation. If θ belongs to the leaf L in R−1 and the orbit of θ under a is finite,

we have an a-loop attached to θ on G−1(L), the size of this loop is precisely

2e(θ). Similarly, if θ has finite orbit under < b > there is a b-loop attached to

θ in G−1(L).

Proposition 62. Let L be a leaf in R−1, then the monodronomy graph G−1(L)

has either 4, 2 or 1 ends.

Proof. By Lemma 58 and Lemma 61, the action of < a > creates obstructions

to the action of < b > and viceversa. If a point θ has no obstruction, say of

the kind a, then there an ”infinite” loop attached to θ in G−1(L) infinite loops

create at least to ends of the monodromy graph. Again by Lemma 58, L(α̂)

is the only leaf that contains a point, namely (0̄), with infinite loops of both

kinds attached to it. Thus L(α̂) has at least 4 ends. See Figure 6.5.

Given a finite loop, say an a-loop A, among the vertices of A there is a

vertex with maximum b-obstruction, actually such vertex θ is the only vertex

in A such that e(θ) < o(θ). The b-loop attached to θ also contains a unique

vertex with maximum a obstruction. This features creates an order in the way

a-loops and b-loops are glued: For every loop C there is a unique vertex in

C which has a loop attached of bigger size than C. Unless the size of C is

already infinite. So, ends of G−1(L) either go along infinite loops, or if there
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Figure 6.5: The Monodromy graph in the invariant leaf L(α̂).

is no infinite loops on the leaf, an end arise as a sequence of increasing loops,

in this case there is only one end in G−1(L). See Figure 6.6

If there is an infinite loop C, on every vertex of it there is attached a finite

sequence of loops. So, if there is an infinite loop the number of ends is either

2 or 4, which only happens in the leaf L(α̂). See Figure 6.7.

Using Proposition 62 and Corollary 57, we obtain the same result of Propo-

sition 15 for f−1:

Lemma 63. Given any leaf L ∈ R−1 the number of unbounded Fatou compo-

nents of L is either 1, 2, or 4. Moreover, the number is 4 only in the case of

the invariant leaf L(α̂).
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Figure 6.6: The monodromy graph, with one end, bigger and bigger loops are
attached.

Figure 6.7: The Monodronomy graph with two ends.

6.3 Other parameters

In this section we discuss how to generalize the results of the previous section

to other parameters. The easiest cases are first bifurcation superattracting

parameters, which are centers of hyperbolic components attached to the Main

Cardioid of the Mandelbrot set M . The point c = −1 is a first bifurcation

superattracting parameter. First bifurcation parameters can be classified as

the parameters whose Hubbard trees are star shaped with common vertex at

the α fixed point.

We denote the first bifurcation parameter with critical cycle of size q and

combinatorial rotation number p/q by c p

q
. Now, let us calculate the Iterated

Monodromy group for fc p
q

. The group π1(C\Pc p
q

, α) is generated by q elements.
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Let a be a simple loop around the critical value c, and let bi = f i
c p

q

(a) for

i = 1, ..., q − 1. Hence, the loop bq−1 contains 0. These simple loops represent

a set of generators of the fundamental group π1(C \ Pc p
q

, α). We assume that

a, and therefore all bi, are oriented counter clockwise.

By construction, f−1
c p

q

(a) consist of two paths connecting α with −α in

both senses. So, the permutation associated to a is also the transition τ .

On the other hand, f−1
c p

q

(bi) are either loops based at α or at −α. Thus, the

corresponding transition maps for the actions of a and bi on the tree T ({0, 1}N)

are

l−1
1 a0l0 ≈ Id l−1

0 b10l0 ≈ a

l−1
0 a1l1 ≈ bq−1 l−1

1 b11l1 ≈ Id

and

l−1
0 bi0l0 ≈ bi−1 l−1

1 bi1l1 ≈ Id

for i = 2, ..., q − 1. So, the generators of the Iterated Monodromy group for

fc p
q

are a = (Id, bq−1)τ , bq−1 = (a, Id) and bi = (bi−1, Id) for i = 2, ..., q − 1.

In terms of functions defined in {0, 1}N, for (θ1, θ2, ...) ∈ {0, 1}N, we have

a(θ1, θ2, θ3, ...) =





(1, Id(θ2, θ3, ...))

(0, b1(θ2, θ3, ...))
if
θ1 = 0

θ1 = 1
,

for the critical loop:

b1(θ1, θ2, θ3, ...) =





(0, a(θ2, θ3, ...))

(1, Id(θ2, θ3, ...))
if
θ1 = 0

θ1 = 1
,
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and, finally

bi(θ1, θ2, θ3, ...) =





(0, bi−1(θ2, θ3, ...))

(1, Id(θ2, θ3, ...))
if
θ1 = 0

θ1 = 1
.

For i = 2, ..., q − 1. The Moore diagram is given in Figure 6.8. All results

from the previous section generalize to the Iterated Monodromy Group by

just changing the discussion of even and odd coordinates of θ by positions

modulo q. So, analogous to Proposition 62, we have:

Id(0,0)

b1 bq−1

(0,0)

(1,1)

(0,1)

a (1,0)

(1,1)

(1,1)

(0,0)

Figure 6.8: Moore diagram of the parameter c p

q

Proposition 64. Let L be a leaf in Rc p
q

, then the holonomy graph Gc p
q

(L)

either has:

i) 2q ends.

ii) 2 ends.

iii) 1 end.
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Appendix A

Examples of Iterated Monodromy groups.

A.1 Period 2.

A.1.1 The basillic, c=-1

Internal address 1 → 2

Wake 1/3, 2/3

Kneading Sequence [1/3, {down, (1̄)}, {up, (1, 0)}], [2/3, {down, (1, 0)}, {up, (1̄)}]

Binary [1/3, (0, 1)], [2/3, (1, 0)]

Holonomy:
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a1 = (Id, a2)σ

a2 = (a1, Id)

a−1
1 = (a−1

2 , Id)σ

a−1
2 = (a−1

1 , Id)

Moore Diagram
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A.2 Period 3.

A.2.1 First bifurcation.

The rabbit, c=-.12256116687665361998+.74486176661974423660I

Internal address 1 → 3

Wake 1/7, 2/7

Kneading Sequence [1/7, {down, (1̄)}, {up, (1, 1, 0)}], [2/7, {down, (1, 1, 0)}, {up, (1̄)}]

Binary [1/3, (0, 0, 1)], [2/3, (0, 1, 0)]

Holonomy:

a1 = (Id, a3)σ

a2 = (a1, Id)

a3 = (a2, Id)

a−1
1 = (a−1

2 , Id)σ

a−1
2 = (a−1

1 , Id)

a−1
3 = (a−1

2 , Id)

Moore Diagram

103



A.2.2 Primitive.

The airplane, c=-1.7548776662466927601

Internal address 1 → 2 → 3

Wake 3/7, 4/7

Kneading Sequence [3/7, {down, (1, 0, 1)}, {up, (1, 0, 0)}], [4/7, {down, (1, 0, 0)},

{up, (1, 0, 1)}]

Binary [3/7, (0, 1, 1)], [4/7, (1, 0, 0)]

Holonomy:
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a1 = (Id, a3)σ

a2 = (a1, Id)

a3 = (Id, a2)

a−1
1 = (a−1

2 , Id)σ

a−1
2 = (a−1

1 , Id)

a−1
3 = (Id, a−1

2 )

Moore Diagram
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A.3 Period 4.

A.3.1 First bifurcation.

c=.28227139076691387970+.53006061757852529949I

Internal address 1 → 4

Wake 1/15, 2/15

Kneading Sequence [1/15, {down, (1̄)}, {up, (1, 1, 1, 0)}], [2/15, {down, (1, 1, 1, 0)},

{up, (1̄)}]

Binary [1/15, (0, 0, 0, 1)], [2/15, (0, 0, 1, 0)]

Holonomy:

a1 = (Id, a3)σ

a2 = (a1, Id)

a3 = (a2, Id)

a4 = (a3, Id)

a−1
1 = (a−1

2 , Id)σ

a−1
2 = (a−1

1 , Id)

a−1
3 = (a−1

2 , Id)

a−1
4 = (a−1

3 , Id)

Moore Diagram
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A.3.2 Second bifurcation.

c=-1.3107026413368328836

Internal address 1 → 2 → 4

Wake 2/5, 3/5

Kneading Sequence [2/5, {down, (1, 0)}, {up, (1, 0, 1, 1)}], [3/5, {down, (1, 0, 1, 1)},

{up, (1, 0)}]

Binary [2/5, (0, 1, 1, 0)], [3/5, (1, 0, 0, 1)]

Holonomy:

107



a1 = (a−1
2 , a4a2)σ a4a2 = (a3a1, Id)

a2 = (a1, Id) a3a1 = (Id, a4a2)σ

a3 = (Id, a2)

a4 = (a3, Id)

a−1
1 = ((a4a2)

−1, a2)σ (a4a2)
−1 = (a3a1, Id)

a−1
2 = (a−1

1 , Id) (a3a1)
−1 = ((a4a2)

−1, Id)σ

a−1
3 = (Id, a−1

2 )

a−1
4 = (a−1

3 , Id)

Moore Diagram :
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A.4 Period 6.

A.4.1 First Bifurcation

c=.38900684056977123544+.21585065087081910777I

Internal address

1 → 6

The holonomy

a1 = (Id, a6)σ

a2 = (a1, Id)

a3 = (a2, Id)

a4 = (a3, Id)

a5 = (a4, Id)

a6 = (a5, Id)

a−1
1 = (a−1

6 , Id)σ

a−1
2 = (a−1

1 , Id)

a−1
3 = (a−1

2 , Id)

a−1
4 = (a−1

3 , Id)

a−1
5 = (a−1

4 , Id)

a−1
6 = (a−1

5 , Id)

c=-1.4760146427284298975

Internal address 1 → 2 → 4 → 6

Wake 26/63, 37/63

Kneading Sequence [26/63, {down, (1, 0, 1, 1, 1, 0)}, {up, (1, 0, 1, 1, 1, 1)}],
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[37/63, {down, (1, 0, 1, 1, 1, 1)}, {up, (1, 0, 1, 1, 1, 0)}]

Binary [26/63, (0, 1, 1, 0, 1, 0)], [37/63, (1, 0, 0, 1, 0, 1)]

Real Kneading Sequence L,R,L, L, L.

Real Combinatorics x1, x5, x3, x4, x0, x2. Holonomy

a1 = (a2, a6a2)σ a6a2 = (a5a1, a2)

a2 = (a1, Id) a5a1 = (a2, a4a6a2)σ

a3 = (Id, a2) a4a6a2 = (a1a5a3, Id)

a4 = (a3, Id) a1a5a3 = (Id, a4a6a2)σ

a5 = (a4, Id)

a6 = (a5, Id)

a−1
1 = ((a6a2)

−1, a−1
2 )σ (a6a2)

−1 = ((a5a1)
−1, Id)

a−1
2 = (a−1

1 , Id) (a5a1)
−1 = ((a4a6a2)

−1, a−1
2 )σ

a−1
3 = (Id, a−1

2 ) (a4a6a2)
−1 = ((a1a5a3)

−1, Id)

a−1
4 = (a−1

3 , Id) (a1a5a3)
−1 = ((a4a6a2)

−1, Id)σ

a−1
5 = (a−1

4 , Id)

a−1
6 = (a−1

5 , Id)
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A.4.2 Second Bifurcation

c=-.11341865594943657219+.86056947250157305512I

Internal address 1 → 3 → 6

Wake 10/63, 17/63

Kneading Sequence [10/63, {down, (1, 1, 0)},

{up, (1, 1, 0, 1, 1, 1)}], [17/63, {down, (1, 1, 0, 1, 1, 1)}, {up, (1, 1, 0)}]

Binary [10/63, (0, 0, 1, 0, 1, 0)], [17/63, (0, 1, 0, 0, 0, 1)]

Holonomy
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a1 = (a−1
3 , a6a3)σ a6a3 = (a5a2, Id)

a2 = (a1, Id) a5a2 = (a4a1, Id)

a3 = (a2, Id) a4a1 = (Id, a6a3)σ

a4 = (Id, a3)

a5 = (a4, Id)

a6 = (a5, Id)

a−1
1 = ((a6a3)

−1, a3)σ (a6a3)
−1 = ((a5a2)

−1, Id)

a−1
2 = (a−1

1 , Id) (a5a2)
−1 = ((a4a1)

−1, Id)

a−1
3 = (a−1

2 , Id) (a4a1)
−1 = ((a6a3)

−1, Id)σ

a−1
4 = (Id, a−1

3 )

a−1
5 = (a−1

4 , Id)

a−1
6 = (a−1

5 , Id)

Moore Diagram
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c=-1.1380006666509645111+.24033240126209830169I

Internal address 1 → 2 → 6

Wake 22/63, 25/63

Kneading Sequence [22/63, {down, (1, 0)},

{up, (1, 0, 1, 0, 1, 1)}], [25/63, {down, (1, 0, 1, 0, 1, 1)}, {up, (1, 0)}]

Binary [22/63, (0, 1, 0, 1, 1, 0)], [25/63, (0, 1, 1, 0, 0, 1)]

Holonomy

a1 = ((a4a2)
−1, a6a4a2)σ a4a2 = (a3a1, Id)

a2 = (a1, Id) a3a1 = (a−1
4 , a6a4a2)σ

a3 = (a2, Id) (a4a2)
−1 = ((a3a1)

−1, Id)

a4 = (a3, Id) (a3a1)
−1 = ((a6a4a2)

−1, a4)σ

a5 = (a4, Id)

a6 = (a5, Id)

a−1
1 = ((a6a4a2)

−1, a4a2)σ a6a4a2 = (a5a3a1, Id)

a−1
2 = (a−1

1 , Id) a5a3a1 = (Id, a6a4a2)σ

a−1
3 = (a−1

2 , Id) (a6a4a2)
−1 = ((a5a3a1)

−1, Id)

a−1
4 = (a−1

3 , Id) (a5a3a1)
−1 = ((a6a4a2)

−1, Id)σ

a−1
5 = (a−1

4 , Id)

a−1
6 = (a−1

5 , Id)
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Moore Diagram :
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A.4.3 Primitive, first bifurcation.

c=-1.7728929033816237994

Internal address 1 → 2 → 3 → 6

Wake 4/9, 5/9

Kneading Sequence [4/9, {down, (1, 0, 0)},

{up, (1, 0, 0, 1, 0, 1)}], [5/9, {down, (1, 0, 0, 1, 0, 1)}, {up, (1, 0, 0)}]

Binary [4/9, (0, 1, 1, 1, 0, 0)], [5/9, (1, 0, 0, 0, 1, 1)]

Holonomy
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a1 = (a−1
3 , a6a3)σ a6a3 = (Id, a5a2)

a2 = (a1, Id) a5a2 = (a4a1, Id)

a3 = (Id, a2) a4a1 = (a6a3, Id)σ

a4 = (Id, a3)

a5 = (a4, Id)

a6 = (Id, a5)

a−1
1 = ((a6a3)

−1, a3)σ (a6a3)
−1 = ((a5a2)

−1, Id)

a−1
2 = (a−1

1 , Id) (a5a2)
−1 = ((a4a1)

−1, Id)

a−1
3 = (Id, a−1

2 ) (a4a1)
−1 = (Id, (a6a3)

−1)σ

a−1
4 = (Id, a−1

3 )

a−1
5 = (a−1

4 , Id)

a−1
6 = (Id, a−1

5 )
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