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In a recent paper, John H. Hubbard and Peter Papadopol study the dynamics of the Newton

map, N : C
2→C

2, for finding the common zeros of two quadratic equations P(x,y) = 0 and

Q(x,y) = 0. The map N has points of indeterminacy, critical curves, and invariant circles

that are non-uniformly hyperbolic. Most of the work in their paper is spent resolving the

points of indeterminacy of N, and creating a compactification of C
2 in a way that is both

compatible with the dynamics of N and that has “tame” topology. This part of their work

requires two very technical tools called Farey Blow-ups and Real-oriented blow-ups. In a

different direction, Hubbard and Papadopol show that the basin of attraction for each of the

four common zeros of P and Q is path connected. However, most further questions about

the topology of these basins of attraction remain a mystery.

The dynamics of N is much simpler if the common roots of P and Q lie on parallel

lines, for instance when P(x,y) = x(x− 1) = 0 and Q(x,y) = y2 + Bxy− y = 0. The first

component of N depends only on x, while the second component depends on both x and y.

Many of the complexities described by Hubbard and Papadopol disappear: one must still

do an infinite sequence of blow-ups in order to make N a well defined dynamical system,

but one can avoid the Farey Blow-ups and the Real-oriented blow-ups.

Let r1 and r2 be the roots in the line x = 0 and r3 and r4 be the roots in the line x = 1

and let W (r1),W (r2),W(r3) and W (r4) be the corresponding basins of attraction of under



iteration of N after this infinite sequence of blow-ups has been performed. There is a

symmetry exchanging r1 with r2 and exchanging r3 with r4, but for a given B the pair

(r1,r2) behaves differently from the pair (r3,r4). More specifically, one pair “attracts” the

points of indeterminacy of N, and the other does not. We consistently make the restriction

that B ∈ Ω = {|1− B| < 1} which guarantees that the pair (r1,r2) attracts the points of

indeterminacy.

We will prove that H1(W (r1)) and H1(W (r2)) are infinitely generated for every B ∈Ω.

There is an invariant circle within the line x = 1 that is super-attracting in the x-direction

and hyperbolically repelling in the line x = 1. Let W1 be the super-stable “manifold” cor-

responding to this invariant circle. For the values of B ∈ Ω for which W1 intersects the

critical value parabola C(x,y) = 0, H1(W (r3)) and H1(W (r4)) are infinitely generated. For

all other B ∈Ω, H1(W (r3)) and H1(W (r4)) are trivial.

In addition, for the parameter values B that are not in the bifurcation locus–which is

exceptional in the sense of Baire’s Theorem–the statements above remain true if we replace

the closures of the basins with the basins themselves.
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Chapter 1
Introduction
We will consider the dynamics of the Newton map, N : C

2 → C
2, for finding the com-

mon roots of two quadratic equations P(x,y) = 0 and Q(x,y) = 0. This map has points of
indeterminacy, critical curves, and invariant circles that are non-uniformly hyperbolic.

In a paper to appear as a Memoir of the American Mathematical Society, John Hubbard
and Peter Papadopol [35] analyze the dynamics of this system, especially how to create a
compactification of C2 that is both compatible with the dynamics of N and that has “tame”
topology. In a different direction, Hubbard and Papadopol use general principles to show
that the basin of attraction for each of the four common roots of P and Q is both path
connected and is a Stein manifold. However, most further questions about the topology
and the detailed structure of these basins of attraction remain a mystery.

In this dissertation we will restrict our attention to the degenerate case in which the
four roots of P and Q lie on a pair of parallel lines. In this case, the first component of
N(x,y) depends only on x, while the second component depends on both x and y, providing
a dramatic simplification of the dynamics. Systems of this form are commonly referred to
as skew products in the literature and they are often used as “test cases” when developing
new techniques. We develop techniques that allow a much more detailed study of the
topology of the basins of attraction for this degenerate system. While we rely upon the fact
that N becomes a skew product, we hope that some of the techniques developed here can
eventually be adapted to more general systems.

The reader who would like to skip forward to see a statement of our main results should
turn to Section 4.4 on page 31.

To put our work in perspective, we present a brief account of previous work on New-
ton’s Method and relevant work on complex dynamics in many variables. There is much
more work than we can present here, and we apologize for any important works that are
unmentioned.

Classical theory
Given F : C

n→C
n of class C2 and a point a0 ∈C

n, Kantorovitch’s Theorem [39] provides
sufficient conditions depending on ||F(a0)||, ||[DF(a0)]−1|| and the Lipshitz constant of
DF guaranteeing that the initial seed a0 is superattracted to some root r of F under iteration
of the Newton map

N(x) = x− [DF(x)]−1F(x).

The reader who would like to see a precise statement and proof of Kantorovich’s Theorem
is encouraged to read sections 2.6 and 2.7, as well as appendices A5 and A6 of [37] or the
original source [39].

Newton’s method as a dynamical system in one complex variable
When F(z) is a polynomial, the Newton map N is a rational function, and many proper-
ties of the dynamics of N follow from general work on complex dynamics in one variable.
Those interested in a survey of one variable dynamics may wish to consult Milnor’s text-
book [43].

1



2

Specific results about Newton’s method in one complex variable include the work of
Hubbard, Schleicher, and Sutherland [31], who show that if F is a polynomial of degree
d, there is a finite set Sd , dependent only on d, with the property that given any root ri

of F there is at least one point in Sd converging under iteration of N to ri. An extension
of this result by Schleicher [46] studies the number of iterations necessary to obtain good
approximations to the roots starting with these initial seeds.

In a different direction, works by McMullen [41, 42] show that for polynomials of
degree d > 3 there is no purely iterative rational root-finding method that works for almost
all complex polynomials of degree d and for almost all initial conditions.

A study of Newton’s Method applied to transcendental function is provided by Haruta
[27].

Newton’s method in many complex variables, as a dynamical system
The topological degree dt(g) of a mapping g : Pn

 Pn is defined as the generic number
of inverse images of a point. When F is a function of more than one variable, the Newton
map N has

• topological degree dt(N) > 1 (and correspondingly N has critical curves), and

• points of indeterminacy.

To this author’s knowledge, the only paper specifically about Newton’s method as a
global dynamical system in many complex variables is [35]. The papers [45] and [26],
which we will describe in more detail below, study ergodic properties of more general
classes of mappings than N and their results are applicable to the global dynamics of N as
well.

Dynamics in many complex variables
Although not nearly as complete as the theory of dynamics in one complex variable, there
are many papers on the dynamics of mappings with one or the other of the two difficulties
mentioned above.

Mappings g : P
n
 P

n with dt(g) > 1, but without points of indeterminacy are maps
given by polynomials of degree > 1 in each component. Such systems have been studied
by Briend [10], Briend and Duval [11], Dinh and Sibony [16], Fornaess and Sibony [21,
23, 22], Hubbard and Papadopol [36], Jonnson [38], and Ueda [49].

Meanwhile, birational maps g : Pn
 Pn (rational maps with rational inverse) are ex-

amples of systems with points of indeterminacy, but with dt(g) = 1. The famous Henon
mappings from H : P2

 P2 fall under this class. Such systems have been studied ex-
tensively by Bedford and Smillie [2, 3, 4, 5, 6, 8, 7], Bedford, Lyubich and Smillie [1],
Devaney and Nitecki [14], Diller [15], Dinh and Sibony [17], Dujardin [18], Favre and
Jonsson [19], Fornaess [20], Guedj [25], and Hubbard and Oberste-Vorth [32, 33, 34].

Dynamics of mappings g : Pn
 Pn with dt(g) > 1 and with points of indeterminacy

Not nearly as much is known about mappings g : Pn
 Pn with topological degree dt(g) > 1

and with points of indeterminacy.
The work of Russakovskii and Shiffman [45] considers a measure that is obtained by

choosing a “generic” point, taking the each of its inverse images under g◦n and giving them
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all equal weight in order to obtain a probability measure µn. Under appropriate conditions
on g they show that the measures µn converge to a measure µ that is independent of the
initial point.

In [35], the authors present a proof by A. Douady that µ does not charge points in the
line at infinity, a result not obtained in [45].

A recent paper by Guedj [26] proves further properties of the Russakovskii-Shiffman
measure µ. He shows that if the topological degree dt(g) is sufficiently large, then µ does
not charge the points of indeterminacy of g and does not charge any pluripolar set. He then
uses these facts to establish ergodic properties of µ.



Chapter 2
Newton’s Method in C2
In this chapter we review the basics facts from the paper Newton’s method applied to two
quadratic equations in C2 viewed as a dynamical system by John H. Hubbard and Peter
Papadopol [35]. Our notation and perspective on Newton’s Method is virtually entirely
based on this paper. We will outline the first chapter of [35] and fill in the proofs which we
feel will be useful for later in this dissertation.

Certain readers may wish to skip this chapter, returning to it for reference as needed.

2.1 Standard background about Newton’s Method

Given two vector spaces V and W of the same dimension and a mapping F : V →W , the
associated Newton map NF : V →V is given by the formula

NF(x) = x− [DF(x)]−1(F(x). (2.1)

It is important to allow that F maps a space V to a different space W (of the same dimen-
sion.) For example, in the real world, F(x) will commonly represent a measurement in
terms of some units (say Newtons force) and x will be some quantity in different units (say
meters).

Having mentioned the real world, ever so briefly, we might as well mention that New-
ton’s method is of immense importance in the real world. It is the most common (and
almost the only) method used to numerically determine the roots of a nonlinear equation.

The most used and important property of the Newton Map NF is that so long as the
roots of F are non-degenerate, i.e. DF(ri) is invertible for each root ri of F , then roots of
F corresponds to a super attracting fixed point of NF . Conversely, every fixed point of NF

is a root of F .
Since each fixed point ri of NF is super-attracting, there is some neighborhood Ui of ri

for which each initial guess x0 ∈U0 will converge to ri. Probably the most used theorem
about Newton’s Method is Kantorovich’s Theorem [39], which gives a precise lower bound
on the size of this neighborhood Ui.

One of the most useful general properties of the Newton Map is that it transforms nicely
under linear and affine changes of variables:

Proposition 2.1.1. (Transformation rules) If A : V → V is affine, and invertible, and if
L : W →W is linear and invertible, then:

NL◦F◦A = A−1 ◦NF ◦A. (2.2)

The proof is an exercise in the careful use of the chain rule. Those who wish to see
it should consult [35], Lemma 1.1.1. The fact that L is linear, while A is merely affine
indicates that we only care about the origin in W , but not in V .

4
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2.2 The intersection of conics

In the paper [35], the authors quickly specialize to considering only the dynamics of New-
ton’s Method for finding the intersection of two quadratic curves. Using a dimension count,
they prove the following:

Proposition 2.2.1. Newton’s Method to find the intersection of two conics depends only on
the intersection points and not on the choice of curves.

For the proof, see Corollary 1.5.2 [35].
Using the transformation properties proved in Proposition 2.1.1, one can normalize the

system N in many different ways. The normalization that we will most commonly use is:
Normalization 1: We can normalize so that the roots are at

(0
0
)
,
(1

0
)
,
(0

1
)
, and

(α
β
)
. In this

normalization if we let A = 1−α
β and B = 1−β

α , then

F

(
x
y

)
=

(
x2 +Axy− x
y2 +Bxy− y

)
=

(
P(x,y)
Q(x,y)

)
. (2.3)

The Newton Map is given by:

NF

(
x
y

)
=

(
x
y

)
−
[ 2x+Ay−1 Ax

By 2y+Bx−1
]−1( x2 +Axy− x

y2 +Bxy− y

)

=
1
∆

(
x(Bx2 +2xy+Ay2− x−Ay)
y(Bx2 +2xy+Ay2−Bx− y)

)
, (2.4)

where

∆ = 2Bx2 +4xy+2Ay2− (2+B)x− (2+A)y+1. (2.5)

Figure 2.1 shows a slice through C2 along the line y = (1 + .1i)x for the parameters
(α,β)= (1.2+0.3i,0.2+0.5i). Three successive zooms are made, with the location of each
zoom indicated by the black box in the previous image. This figure, and all of the computer
images to follow were computed in the computer program FractalAsm [44], written by Karl
Papadantonakis.
Normalization 2:
Hubbard and Papadopol also use another normalization in order to prove many of the basic
properties about Newton’s Method:

One can normalize to have

F

(
x
y

)
=

(
x2− y+a
y2− x+b

)
, (2.6)

and correspondingly

NF

(
x
y

)
=

(
x
y

)
−

1
4xy−1

[ 2y 1
1 2x

](
x2− y+a
y2− x+b

)

=
1

4xy−1

(
2x2y+ y2−2ay−b
2xy2 + x2−2xb−a

)
. (2.7)
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Figure 2.1: Slices through C2 along the line y = (1 + .1i)x with parameters (α,β) =
(1.2 + 0.3i,0.2 + 0.5i). Three successive zooms are made, with the location of each zoom
indicated by the black box in the previous image.
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x = y2 +b

NF

(
c
d

)

y
y = x2 +a

x

(
c
d

)

Figure 2.2: Geometric computation of NF(c,d)

There is a nice geometric interpretation of NF in this normalization. Given a point
(c

d

)
,

to find NF
(c

d

)
, one first finds the points

( c
c2+a

)
on the parabola y = x2 + a and the point

(d2+b
d

)
on the parabola x = y2 + d. Then, NF

(a
d

)
is the intersection of the line tangent to

the parabolas y = x2 + a at
( c

c2+a

)
with the line tangent to x = y2 + b at

(d2+b
d

)
. Figure 2.2

illustrates this process.
One can easily check from Equation 2.7 that this geometric interpretation is accurate.

Sometimes the two tangent lines are parallel, or even coincide. When they are parallel,
one can define NF

(a
d

)
to be the point “at infinity” in P2 defined by the direction of the

two parallel lines. When the two tangent lines coincide, this fails, and there is a point of
indeterminacy of NF at

(c
d

)
. Both of these issues will be discussed later.

2.3 Global properties of NF

Many of the methods used in [35] and in this dissertation rely upon extending NF to P2, the
complex projective plane.
Proposition 2.3.1. NF extends to a mapping NF : P2→ P2 with 5 points of indeterminacy,
the three intersections of the invariant lines and the two points at infinity on the axes of the
parabolas.

We prove Proposition 2.3.1 in the appendix since it involves some lengthy, but elemen-
tary computations in homogeneous coordinates. The extension that we obtain is:

NF([X : Y : Z]) =
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[2YX2 +Y 2Z− 2aYZ2−bZ3 : 2XY 2 +X2Z−2XZ2b−aZ3 : 4XY Z−Z3].

The points of indeterminacy are the points where NF([X : Y : Z]) = [0 : 0 : 0] for some
triple [X : Y : Z] 6= [0 : 0 : 0]. They are easy to find using Equation 2.8 when Z = 0, this
gives [2Y X2 : 2XY 2 : 0], which is zero whenever X = 0 or Y = 0, corresponding to the
point at infinity on the axes of the parabolas y = x2 + a and x = y2 + b. It is more difficult
to use Equation 2.8 to determine the points of indeterminacy in the finite plane (Z 6= 0).
However, using the geometric interpretation of NF in Normalization 2.4, we see that the
points of indeterminacy in C2 are the points (c,d) that result in a common tangent to the
two parabolas. There are three common tangents to the parabolas, so there are exactly three
points of indeterminacy in C2.

Note: if we were working in Normalization 2, these points of indeterminacy that are
in C2 are the points of intersection of the lines joining the roots that are not the roots
themselves.

One can do “Blow-ups” to extend NF to a continuous mapping on a modification of P2.

Proposition 2.3.2. If the parabolas of equation y = x2 +a and x = y2 +b are not tangent,
then the mapping NF extends to the blow-up of P2 at the five points of indeterminacy,
mapping each exceptional divisor to a line tangent to both parabolas.

We will refer the reader to Proposition 1.5.4 from [35], since we will do plenty of
blow-ups later in this paper.

In fact, performing the blow-ups at these points of indeterminacy is not sufficient to
make N a well-defined dynamical system. We will say more about this in the following
section.

It is a classical result (known to Cayley?) that the dynamics of the Newton map N(z) to
solve for the roots of a quadratic polynomial p(z) is always conjugate to the map z 7→ z2.
For the latter, the unit circle S1 forms the boundary between the basin of attraction of 0
and of ∞. If φ is the map conjugating N(z) to z 7→ z2, then φ−1(S1) is the line in C that
is equidistant from the roots of p. This line forms the boundary between the the basin of
the two roots of p(z) and the dynamics on this line (once you add a point at infinity) are
conjugate to angle doubling on the unit circle.

Proposition 2.3.3. (Invariant lines and invariant circles) The lines joining the roots of F
are invariant under Newton’s Method (NF ) and on these lines NF induces the dynamics of
the one dimensional Newton’s method to find the roots of a quadratic polynomial.

Within each line is an invariant “circle,” corresponding to the points of equal distance
from the two roots in the line.

(See Proposition 1.5.3 in [35])
Proof: This is easy to see in Normalization 2.4. Given any pair of roots of F , there is an
affine mapping taking them to

(0
0
)

and
(1

0
)

and a third root to
(0

1
)

The new system is also
within the form of the normalization 2.4, but with the chosen pair of roots on the x-axis.
Using Proposition 2.1.1, we see that if the we can show that the x-axis is invariant under NF ,
then we will have shown that the line connecting the chosen pair of roots is also invariant
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x

y

( 0
1
)

( 1
0
)

( 0
0
)

( α
β
)

q

p

r

Figure 2.3: Invariant lines and invariant circles

under NF . But this is easy to see because there is a factor of y in the second coordinate of
equation 2.4 for NF , giving that the x-axis is in fact invariant.

The dynamics on the x-axis correspond to taking the first coordinate of NF in the nor-
malization 2.4 with y = 0. One finds x 7→ x(Bx2−x)

2Bx2−(2+B)x+1 = x2

2x−1 . This is the Newton’s
Method to solve x(1− x) = 0. Using the transformation rules from Proposition 2.1.1, we
see that the dynamics on each invariant line must be conjugate to this map via an affine map,
hence it must be the dynamics of Newton’s method for finding the roots of a quadratic poly-
nomial. The “invariant circle” is the line of equal distance between the two roots, and the
dynamics on this circle are conjugate to angle doubling on the circle. � .

These invariant lines will be important throughout this paper. Figure 2.3 shows all six
invariant lines for a certain choice of A and B. The roots of F are marked by filled dots, and
the three points of indeterminacy of NF are marked by open dots and labeled p,q, and r.

The fact that each invariant line intersects only two basins of attraction is visible in R
2.

Figure 2.4 shows the basins of attraction in R2 in Normalization 1, when the fourth root
is at (α,β) = (2,3). Notice that each of the invariant lines appears to intersect only two
basins.

Chapter 2 of [35] focuses on the stability of these invariant circles, which is quite a del-
icate issue, since they are not uniformly hyperbolic. For some parameter values Hubbard
and Papadopol are able use holomorphic motions to prove that these circles have topologi-
cal stable manifolds.

Given four points in C2, so long as no three of these points lie on a line, they determine
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q

r1

r2

r3

r4

Figure 2.4: Newton’s Method in R2 with the root (α,β) = (2,3)
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exactly two parabolas.

Proposition 2.3.4. The critical value locus of NF is the union of the two parabolas that go
through the four roots of F.

In Normalization 2.7, the critical value locus is therefore the union of the two curves
y = x2 +a and x = y2 +b. The critical points locus is the union of the two cubics of equation
2xy2− x2 +2xb− y+a = 0 and 2x2y− y2 +2ay− x+b = 0.

Proof: Denote the parabola y = x2 + a by Y and the parabola x = y2 + b by X . We first
check that any point (u0,v0) that is not on the curves X or Y is a regular value. To do so,
we’ll show that given any inverse image (x0,y0), there is a locally defined analytic inverse
from a neighborhood U of (u0,v0) to an neighborhood of (x0,y0). We denote this mapping
by Φ = (φ1(u,v),φ2(u,v)) for (u,v) ∈U .

We choose U to be some small neighborhood of (u0,v0) which is disjoint from X and Y .
We check that φ1(u,v) is an analytic function in U . A tangent line from (u,v) to Y can be
obtained by a slight change in the original tangent line from (y2

0 + b,y0) to (u0,v0). Using
this new tangent line, define ψ(u,v) = (x,y). Clearly φ1(u,v) is the first coordinate of ψ, so
checking that ψ is analytic will prove that φ1 is analytic.

The mapping ψ is defined implicitly by the following equation:

G1(x,y,u,v) = 2x(u− x)− v+ y = 0
G2(x,y,u,v) = x2− y+b = 0

since the first equation states that (u,v) is on the tangent line to Y at (x,y) and the second
states that (x,y) is a point on X . One can solve for (x,y) as an analytic function of (u,v) if
the following Jacobian is non-singular:

det
[ 2(u− x)−2x 1

2x −1
]

=−2(u− x)+2x−2x =−2(u− x)

Hence, ψ is analytic for every (u,v) in the neighborhood U since u = x for a solution
of this equation implies that v = y, contrary to the fact that U is disjoint from the curves X
and Y . Therefore, the first coordinate of Φ is analytic on U .

An entirely symmetric proof gives that the second coordinate of Φ is also analytic on
U .

Looking carefully at the above proof, one can see that points on X and Y are actually
critical values. At inverse images of these points DNF only covers the line tangent to the
curve. Hence, at inverse images of points on X or on Y , but not on both, DNF has rank 1.
At inverse images of points on both X and Y , i.e. the roots themselves, DNF is identically
zero.

In Normalization 2.7, one can check that NF maps the cubics 2xy2−x2 +2xb−y+a = 0
and 2x2y− y2 +2ay− x+b = 0 to X and Y with degree 2. �

The reader should be aware that the critical value locus in Normalization 1 is not generally
the union of the zero sets of P and Q. In this normalization the zero sets of P and Q are not
parabolas.
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x = y2 +b

y
y = x2 +a

x

Figure 2.5: Geometric computation of inverse images

Proposition 2.3.5. The Newton Map has topological degree 4.

Proof: Recall the geometric interpretation of NF in Normalization 2.7. Given a point(c
d

)
that is not in the critical value locus, hence not on either of the parabolas y = x2 + a

or x = y2 + b, there are two lines from
(c

d

)
tangent to each of the parabolas. The points

mapped to
(c

d

)
by NF are then the points of intersection between the vertical lines through

the points of tangency of these lines with y = x2 + a and the horizontal lines through the
points of tangency to x = y2 +b. There are four such points, so NF has degree 4. �

We note that this extends nicely to show that a point on one of the parabolas has two
inverse images, unless it is a root of F , in which case it has a single inverse image under
NF , the root itself.

Figure 2.5 shows the four inverse images of the black dot obtained by the method de-
scribed above.

2.4 Making N a well-defined dynamical system

If the one wants make N a continuous mapping, one can blow-up at the points of indetermi-
nacy p,q and r. After doing this, since we have blown-up at p, replacing p by the complex
line (exceptional divisor) Ep, it is not clear to which point or points on Ep NF should map
(x,y). To make NF(x,y) well-defined, we need to blow-up at (x,y). (In fact, if (x,y) is
a critical point, we will have to blow up two or more times above (x,y)). But doing this
results in points of indeterminacy at each point that was mapped to (x,y) by N.
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To make NF well-defined at each of the repeated inverse images of the points of inde-
terminacy, p,q, and r we need to blow-up at every repeated inverse image of p,q, and r.
(Formally this is achieved by an inverse limit.)

So long as there is no degeneracy (like one of the conics P or Q reducing to a pair of
parallel lines), the points that one blows up accumulate in P2. Without further work, these
points of accumulation are terribly wild (for instance, every neighborhood has infinitely
generated second homology.)



Chapter 3
General facts about the topology of the basins.
Given a root ri of F , denote the basin of attraction under NF by W (ri). In this chapter we
will review the results that were proved by Hubbard and Papadopol about the topology of
the W (ri) and we will then explain why it is necessary to consider these basins after the
sequence of blow-ups mentioned in section 2.4 has been performed.

3.1 Facts proved by Hubbard and Papadopol about W (ri)

In [35], Hubbard and Papadopol prove two surprising results about the topology of W (ri):
W (ri) is path connected and H3(W (ri),C) = 0.

Proposition 3.1.1. The basin of attraction of each root ri is path connected.

Proof: The mapping NF is locally four-to-one near the roots. So, we can choose a con-
nected neighborhoodU0 of ri such that U1 = N−1

F (U0) is connected. Define Uk = N−1
F (Uk−1);

we must prove that each of the Uk is path connected. Suppose that Uk is the first discon-
nected one, choose x ∈Uk, and choose a path γ in Uk−1 connecting NF(x) to some point
in U0. By a small perturbation of γ, we may assume that γ does not intersect the critical
value locus Γ1 ∪Γ2, or the three double tangents L1,L2,L3. Then, the inverse image of γ
consists of four arcs, all ending at points in U1. One such arc must lead to x in Uk. Hence,
we have connected every point in Uk to a point in U1, which is connected. This contradicts
the assumption that Uk was disconnected. �

Compare to Theorem 1.5.9, [35, p. 28].

Proposition 3.1.2. (Hubbard and Papadopol) For any root ri, W (ri) is a Stein domain.

We refer the reader to [35, p. 122].

Theorem 3.1.3. If M is a Stein Manifold of complex dimension n, then Hi(M,C) = 0
for n < i≤ 2n.

This is carried out in detail in Chapter 5 of Hörmander [29], culminating in Theorem 5.2.7
which states that if M is a Stein manifold of dimension n then H i(M,C) = 0 for i > n.
Because we have C coefficients, Hi(M,C)∼= Hom(H i(M,C),C) = 0, for i > n, as well. �

Corollary 3.1.4. For any root ri, H3(W (ri),C) = 0.

3.2 Why do we use blow-ups?

In the proof that the basins of attraction are path connected, Hubbard and Papadopol used
in an important way the fact that the path γ is one-dimensional. They were able to choose
that γ is disjoint from the critical value locus and from the three double tangents L1,L2,L3.
These double tangents are in the image of the exceptional divisors at the three points of

14
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indeterminacy p, q, and r. By choosing that γ is disjoint from L1,L2,L3. we were able to
completely ignore the blow-ups.

Our further considerations about the topology of W (ri) will be done after performing
the sequence of blow-ups described in Section 2.4. For instance, in the remainder of this
paper, we will study H1(W (ri)) for each of the basins of attraction. Suppose that we had
not done blow-ups to resolve the points of indeterminacy and that we are working in C

2.
In this case we can generate many homologically non-trivial loops in a basin of attraction,
but the loops formed this way are in some sense tautological:

Choose one of the double tangents, say L1. One can find a small open ball U that
intersects L1, is disjoint from the critical value locus of N, and entirely contained with in
the basin of attraction of a single root W (ri).

Then N−1(U) consists of four disjoint open sets which are entirely contained in the
basin W (ri), except for the point of indeterminacy p, which is not in any of the basins.
Three of the components of N−1(U) intersect the three curves in N−1(L1) and the remain-
ing component contains the point of indeterminacy, p. Denote by Ũ the component of
N−1(U) containing p.

By construction, Ũ is disjoint from the three curves N−1(L1) because if there were an
intersection, it would be in N−1(U), and Ũ is disjoint from the other three components of
N−1(U). Furthermore, because U is an open ball, there is a deformation retraction of U
onto U ∩L0. This deformation retraction lifts via N to a contraction of Ũ to p.

Take a small closed curve γ within U that is linked with L1 with linking number 1. By
linked, we mean that γ is chosen such that any 2-chain σ having ∂σ = γ must intersect L1
with algebraic intersection number 1. Since γ is in U , N−1(γ) consists of four closed curves
each in a different component of N−1(U)⊂W (ri). Let γ̃ be the one that is in Ũ . We will
show that γ̃ corresponds to a non-trivial element in H1(W (ri)).

Because γ̃ is contained in the contractible set Ũ , there is a 2-chain σ in Ũ with ∂σ = γ̃.
Since Ũ is disjoint from the three curves in N−1(L1) σ is as well, hence σ has algebraic in-
tersection number 0 with each of these curves. The algebraic intersection number depends
only on the homology class of σ, and since we are working in C2 (which has H2(C2) = 0)
every two chain τ with ∂τ = γ̃ has algebraic intersection number 0 with each of the three
curves in N−1(L1).

This will imply that if ∂τ = γ̃ then τ must contain the point of indeterminacy p. Since
∂τ = γ̃, N(τ) is a 2 chain with ∂N(τ) = γ. Because we chose γ to have linking number 1
with L1, N(τ) must have algebraic intersection number 1 with L1. Since τ has algebraic
intersection number 0 with three curves in N−1(L1), this can only happen if τ contains the
point of indeterminacy p.

Since p /∈W (ri), τ is not entirely in W (ri) and hence γ̃ is non-trivial in H1(W(ri)).
Figure 3.1 provides an illustration of this construction.

Similarly, after appropriately perturbing away from the critical value locus of N, curves
in N−2(γ),N−3(γ), · · · would all correspond to non-trivial elements of H1(W (ri)), and,
in fact, one could easily prove that they correspond to an infinite set of generators of
H1(W (ri)).

Within this paper we will do the sequence of blow-ups, avoiding loops of the form con-
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x = y2 +b

y
y = x2 +a

x

L1

p

γ

γ̃

Figure 3.1: Without blow-ups, one can easily create non-trivial loops around the points of
indeterminacy.



17

Figure 3.2: Does a curve surrounding this bubble correspond to a non-trivial loop in the
orange basin? We will not be able to answer this question, but we will address a simpler
but related question later in this dissertation.

structed above. We are interested in the much more subtle question: what is the topology
of W (ri) within X∞, the space obtained from P2 after having performed the sequence of
blow-ups. In particular, we will ask: within X ∞ what is H1(W(ri)). This is a much more
difficult question.

By drawing slices in C2 through the basins, one finds many “bubbles” and other geo-
metric objects which may or may not correspond to non-trivial elements of H1(W (ri)) and
H2(W (ri)). See for instance the beautiful bubble shown in Figure 3.2.

The groups H1(W (ri)) and H2(W (ri)) are currently too difficult for our study, so in
the remaining chapters of this dissertation, we will study H1(W (ri)) and H2(W (ri)) in the
degenerate case where the parabola P becomes a pair of parallel lines. Hopefully some
of the techniques developed in this degenerate case will be fruitful for some of the non-
degenerate cases.



Chapter 4
The degenerate case, A = 0.
The case where the roots of F lie on two parallel lines is exceptional and presumably
much simpler that the general case, because one variable evolves independently of the
other. More precisely, if we set A = 0 in Normalization 1 obtain P(x,y) = x(1− x) and
Q(x,y) = y2 +Bxy− y and the roots lie on the parallel lines x = 0 and x = 1. The common
roots of P and Q become r1 = (0,0),r2 = (0,1),r3 = (1,0), and r4 = (1,1−B).

Equation 2.4 for the Newton map simplifies in the following way:

NF

(
x
y

)
=

1
∆

(
x(Bx2 +2xy− x)

y(Bx2 +2xy−Bx− y)

)

=

(
x2

2x−1
y(Bx2+2xy−Bx−y)
(2x−1)(Bx+2y−1)

)
. (4.1)

Using that when A = 0

∆ = 2Bx2 +4xy− (2+B)x−2y+1 = (2x−1)(Bx+2y−1).

In the remainder of this dissertation we will drop the subscript F writing N for the Newton
map with the understanding that we are always solving

F
(

x
y

)
=

(
x(1− x)
Q(x,y)

)
=
( 0

0
)

.

4.1 Basic properties

The critical value locus is the union of the two parabolas going through the four roots. One
of these coincides with P(x,y) = x(1− x), while the other is the non-degenerate parabola

C(x,y) = y2 +Bxy+
B2

4
x2−

B2

4
x− y = 0 (4.2)

We will often refer to the locus C(x,y) = 0 by C. Figure 4.1 shows the the curves P(x,y) = 0
and Q(x,y) = 0, the critical value parabola C, and the four roots, r1,r2,r3, and r4.

Another property from Chapter 2 that continues to hold is that N has topological degree
4. One can also see this directly from Equation 4.1, since clearly every x 6= 0,1 has two
inverse images and the second component is an equation of degree two in y.

Recall from Proposition 2.3.3 that any line containing two of the roots is invariant under
N. There are six such lines and, in this degenerate case, these lines have six points of
intersection in C2. Four of these intersections correspond to the roots r1,r2,r3, and r4,
while the remaining two correspond to points of indeterminacy, which we label p and q.
These are labeled as p and q in Figure 4.1.

The mapping governing the x coordinate is x 7→ x2

2x−1 , which is itself the Newton Map
corresponding to the polynomial x(x−1), with Julia set consisting of the line Re(x) = 1/2.
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r3

p

C

x

q

r4

P

re(x) = 1/2
y

Q

r1

r2

Figure 4.1: The degenerate case A = 0.

The dynamics of this one variable Newton map are easily understood, consequently, the
dynamics of the Newton map in the form of Equation 4.1 is much easier to understand:
all points in C2 with Re(x) < 1/2 are super-attracted to the line x = 0 and all points with
Re(x) > 1/2 are super-attracted to the line x = 1. The vertical line at x = m is mapped to
the line at x = m2/(2m−1) by the second coordinate of 4.1, which is in fact a rational map
of degree 2, except at those values of m where the numerator and the denominator in the
second coordinate of 4.1 have a common factor. This occurs exactly when x = 1/B,x =
1/(2−B), and x = 1/2. The first two correspond to the points of indeterminacy p and q.

Another way in which the dynamics simplifies for the degenerate case A = 0 is that one
can compactify the space obtaining N : P×P→ P×P since x evolves independently. In
fact, we will only compactify in the y-direction obtaining N : C×P→ C×P, for reasons
that will become apparent in the next chapter. In this simpler compactification, it is easy to
see that the invariant circles in the lines at x = 0 and x = 1 are in fact super-attracting in the
x-direction. We will denote these circles by S0 and S1. (This is sharply in contrast with the
non-degenerate case of Newton’s Method in which the compactification to P2 resulted in a
dense set of points on each of the invariant circles having multiplier exactly one.)

Notice that every point in C×P that is not above Re(x) = 1/2 is superattracted to the
line x = 0 or the line x = 1, and consequently converges to one of the four roots, or to one
of the two circles S0 and S1. From this, we immediately know that N has no wandering
domains and that there are no attracting periodic cycles, other than the fixed points them-
selves. These are two questions that we have no idea how to answer, or even approach, in
the non-degenerate case, A,B 6= 0, but which are easy to answer in this degenerate case.

The points in C×P that are above Re(x) = 1/2 form a real 3-dimensional manifold
that is invariant under N.

In Chapter 6 we will show that these circles have local superstable manifolds W loc
0

and W loc
1 . By pulling W loc

0 and W loc
1 back under the Newton map we generate superstable
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“spaces” W0 and W1, which are not generally manifolds, but real-analytic spaces. The
space W0 will form the boundary between the basin W (r1) and W (r2), and W1 will form
the boundary between the basin W (r3) and W (r4). For this reason, we will call W0 and W1
superstable separatrices. Figure 4.2 shows an illustration of these separatrices.

r3

C

x

r4

P

re(x) = 1/2
y

r2

S1

W1

W0
S0

r1

Figure 4.2: Superstable separatrices in the degenerate case, A = 0.

The following symmetry will play a surprisingly important role in the last chapter of
this paper.

Proposition 4.1.1. (Axis of symmetry) Let τ denote the vertical reflection about the line
Bx+2y−1 = 0, that is: τ(x,y) = (x,1−Bx− y). Then, τ is a symmetry of N:

τ◦N = N ◦ τ.

Furthermore, N maps this axis of symmetry to the line y = ∞.

Below it will be convenient to denote the second component of N(x,y) by Rx(y). This
symmetry τ is illustrated by the dotted arrows in Figure 4.3.
Proof: This vertical symmetry about 2y + Bx− 1 = 0 is exactly the affine map that inter-
changes r1 with r2 and interchanges r3 with r4. Let F

(x
y

)
=
(P(x,y)

Q(x,y)

)
so that r1,r2,r3, and r4

are the roots of F . By Proposition 2.2.1, the Newton map NF◦τ for finding the roots of F ◦τ
is the same as N, since they have the same roots. By the transformation, Proposition 2.1.1,
NF◦τ = τ−1 ◦N ◦ τ. Hence:

τ◦N = τ◦NF◦τ = τ◦ τ−1 ◦N ◦ τ = N ◦ τ

Alternatively, one can just check computationally. Since τ does not change the x-
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τ

Figure 4.3: The symmetry τ.

coordinate, only check that τ
(

x2
2x−1 ,Rx(y)

)
=
(

x2
2x−1 ,Rx(τ(x,y))

)
:

1−B

(
x2

2x−1

)
−Rx(y)

=
(2x−1)(−Bx+1−2y)
(2x−1)(−Bx+1−2y)

−B

(
x2(−Bx+1−2y)

(2x−1)(−Bx+1−2y)

)

−
y(Bx2 +2xy−Bx− y)
(2x−1)(Bx+2y−1)

=
(1−Bx− y)(Bx2−2x+2xy+1− y)

(2x−1)(−Bx+1−2y)

=
(1−Bx+ y)(Bx2 +2x(1−Bx+ y)−Bx− (1−Bx+ y))

(2x−1)(Bx+2(1−Bx− y)−1)

= Rx(1−Bx− y)

The naturality mentioned above is the reason why this computation actually works.
The axis of symmetry Bx + 2y− 1 = 0 is mapped to the line y = ∞ by N because of

the factor Bx + 2y− 1 = 0 in the denominator of Rx. Since y = ∞ is invariant under N and
attracted to the points at infinity on the invariant circles it is in W0 and W1, so Bx+2y−1 = 0
is also in W0 and W1. �

Because this symmetry swaps r1 and r2 and swaps r3 and r4, it interchanges W (r1) with
W (r2) and interchanges W (r3) with W (r4).
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4.2 Computer exploration of N

In this section we will show computer images of the basins of attraction for the four com-
mon zeros of P and Q for B = 0.769−0.625i, and B = 0.887− .1371i. The separatrices W0
and W1 are clearly visible in these images forming the smooth boundary between pairs of
basins. The symmetry τ will also be evident, especially in slices along vertical lines.

According to our computer images, these two parameter values correspond to different
types of dynamics: In the first, both of the superstable separatrices W0 and W1 intersect the
critical value parabola C, and in the second case, the superstable separatrix W0 intersects
C, but W1 appears not to intersect C. More specifically, for B = 0.769− 0.625i there are
clearly clearly points in the green basin sharing a common boundary with points in the red
basin in Figures 4.4 and 4.5. This common boundary is W1∩C and the common boundary
between the blue basin and the gray basin is W0∩C.

For B = 0.887− .1371i, one cannot find any places where the green and red basins share
a common boundary in Figures 4.8 and 4.9, so there appears to be no intersection between
W1 and C. We do see many places where the blue and the gray basins share a common
boundary, corresponding to the intersection between W0 and C.

Case 1: B = 0.769−0.625i
The first kind of slice that we will be looking is that of the critical value parabola C,

i.e. C(x,y) = y2 + Bxy + B2

4 x2− B2

4 x− y = 0. Figure 4.4 shows an example of such a slice
and Figure 4.5 offers a zoomed in view of the region enclosed in the rectangle drawn in
Figure 4.4. The center of the symmetry τ is in the center of Figure 4.4, but outside of Figure
4.5. Notice how reflection across the center of Figure 4.4 is a symmetry interchanging the
basins of attraction.

The other type of one dimensional slice is along a vertical (complex) line, that is a
complex line of constant x. Figure 4.6 shows the vertical line through the point a that is
labeled from Figure 4.5, above, as well as the vertical lines through three inverse images
of a. We have places the center of the symmetry τ at the center of these images. Notice
how reflection across this point is clearly a symmetry of these images that interchanges the
basins.

Notice how the line x = a1 is divided into two regions in W (r1) and two regions in
W (r2). This is because we had chosen that a is a point on the superstable separatrix W0
separating W (r1) from W (r2). The vertical line at x = a2 and at x = a3 are also shown.
The line x = a2 is divided into three regions in W (r1) and three regions in W (r2). The line
x = a3 is divided into five regions in W (r1) and five in W (r2). This behavior is expected
and we describe it in detail in Chapter 8.

Figure 4.7 shows a similar sequence of vertical lines, but this time with the first line
chosen to contain the point b in Figure 4.5. In these vertical lines W1 forms a boundary
between W (r3) and W (r4).

Case 2: B = 0.8871−0.1371i
Figure 4.8 shows the intersections of the basins of attraction for W (r1), W (r2), W (r3),

and W (r4) with the critical value parabola C. Notice that there are clearly intersections of
the superstable separatrix W0 with C, these are just the boundary between blue and gray.
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W (r2)

W (r1)

W (r4)
W (r3)

W0∩C

W1∩C

Figure 4.4: The critical value parabola C for B = 0.769− 0.625i. The boundary between
the green and red basins is W1 ∩C and the boundary between the blue and gray basins is
W0∩C.
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W (r1)

W (r4)

W (r2)

W (r3)
a

b

W0∩C

W1∩C

Figure 4.5: Zoomed in view from Figure 4.4.
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W (r1)

W (r2)

W (r1)
W (r1)

W (r1)

W (r2)

W (r2)
W (r2)

N

N

NW0

W0

W0
W0

Figure 4.6: Vertical line through point a from Figure 4.5 and three inverse images of this
line. The boundary between the blue and grap basins is the intersection of W0 with these
vertical lines. Notice that there are many closed loops in W0 within these vertical lines. The
center of the symmetry τ is at the center of these images.
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W (r3) W (r4)
W (r3)

W (r4)

W (r3)

W (r3)

N

N

N

W1
W1

W1

W1 W (r4)W (r4)

Figure 4.7: Vertical line through the point labeled b in Figure 4.5 and three consecutive
inverse images of this line. The boundary between the green and red basins is the intersec-
tion of W1 with these lines. Notice how there are an increasing number of closed loops in
W1 within the repeated inverse images of the vertical line through b.
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However, we see no boundaries between the red basin and the green basin, indicating that
W1 might not intersect C. Figure 4.9 shows zoom-ins looking for intersections between W1
and C.

W (r4)

W (r2)

W (r3)

W (r1)

W0∩C

Figure 4.8: Critical value parabola C for B = 0.8871−0.1371i. The boundary between the
blue and the gray basins is W0 ∩C. We see no boundaries between the green and the red
basins, indicating that W1 might not intersect C.

As for the previous value of B, the vertical lines above points of intersection of W0 with
C and the vertical lines mapped to them by N contain many interestingly loops that are in
W0.

We cannot find any intersections of W1 with C, so in Figure 4.11 we display the inter-
sections of 4 vertical lines with W (r3) and W (r4) above points very near to the separator,
Re(x) = 1/2. Notice how W1 appears very bumpy, almost fractal, and how there are no
visible closed loops.
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W (r1)

W (r2)

W (r3)

W (r3)
W (r1)

W (r2)

Figure 4.9: Zoomed in views of C. There is no evidence of any boundaries between the
green and red basins, nor any points in the green basin at all, hence there is no evidence of
intersections between W1 and C.
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W (r1)

W (r2)

W (r2)

W (r1)

W (r2)

W (r1)

W (r2)

W (r1)

W0
W0

W0

W0

N

N

N

Figure 4.10: Vertical line through a point of intersection between W0 and C, from Figure
4.8, and three inverse images of this line. As for the previous value of B, repeated inverse
images of the vertical line through a point of intersection between W0 and C lead to an
increasing number of closed loops in W0 in each of these lines.
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W (r3)

W (r3)

W (r3)

W (r4)

W1

W1

W1

W1

W (r4) W (r4)

W (r3)

N

W (r4)

N

N

Figure 4.11: A vertical line through a point in the red basin, W (r3), within C, from Figure
4.8, and three inverse images of the vertical line. The common boundary between green
and the red basins is W1. Notice that there are no closed loops in W1 within any of these
lines.
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4.3 Parameter space Ω

Let Xr = {(x,y) ∈ C× P : Re(x) > 1/2} and Xl = {(x,y) ∈ C× P : Re(x) < 1/2}. As
mentioned earlier, both Xr and Xl are invariant under N. (The subscript r stands for “to the
right of 1/2” and the subscript l stands for “to the left of 1/2”.)

Figure 4.1 shows the case when both points of indeterminacy p and q are in Xl. In terms
of parameter B, the coordinates of p and q are p =

( 1
B ,0
)

and q =
( 1

2−B , 1−B
2−B

)
. It is easy to

check that p and q either are both in Xl, both in the separator Re(x) = 1/2, or both in Xr.
Let

Ω = {B ∈ C : |1−B|> 1}.

If we assume that B ∈Ω then both p and q are in Xl. Using the transformation properties of
the Newton Map under affine changes of variables (Proposition 2.1.1) one can check that
we can make this restriction without ignoring any conjugacy class of dynamics. Hence,
from this point on we will always assume that B ∈Ω, so that p,q ∈ Xl.

There is a decomposition Ω = Ωreg ∪Ωbif, where the “bifurcation locus”, Ωbif, is the
values of B for which there is a tangency between W0 and C or between W1 and C, and the
“regular locus”, Ωreg, is the complement of the bifurcation locus.

4.4 Statement of The Main Theorem

Let X∞
l be Xl after performing the sequence of blow-ups necessary to define N at p,q, and

all inverse images of p and q. Let W0 and W1 be the superstable separatrices of the invariant
circle in the lines x = 0 and x = 1.

The goal of this paper is to prove:

Theorem 4.4.1. Let W (r1) and W (r2) be the closures in X ∞
l of the basins of attraction of

r1 = (0,0) and r2 = (0,1) under iteration of N and let W (r3) and W (r4) be the closures in
Xr of the basins of attraction of r3 = (1,0) and r4 = (1,1−B).

• H1
(

W (r1)
)

and H1
(

W (r2)
)

are infinitely generated for every B ∈Ω.

• For B∈Ω if W1 intersects the critical value parabolaC(x,y) = 0 then both H1
(

W (r3)
)

and H1
(

W (r4)
)

are infinitely generated, otherwise H1(W (r3)) and H1(W (r4)) are

trivial.

For B ∈ Ωreg, the separatrices are genuine manifolds, and, as we will see in Chapter 6
the basins and their closures in X ∞

l and Xr have the some homotopy type. Hence:

Corollary 4.4.2. For B ∈Ωreg Theorem 4.4.1 remains true when replacing the closures of
each of the basins with the basins themselves.

Indeed, for B ∈ Ωreg, W (ri) is a manifold with boundary, hence the inclusion W (ri) ⊂

W (ri) is a homotopy equivalence.



Chapter 5
Compactification and resolution of points of
indeterminacy
Because the variable x evolves independently from y, it it natural to first compactify the
system as a rational map P

1×P
1, instead of the compactification to P

2 that was used for the
non-degenerate systems from the previous chapters. Unfortunately, this compactification
is not the end of the story because N has points of indeterminacy at four points: p =
(1/B,0),q = (1/(2−B),(1−B)/(2−B)),(∞,∞), and (∞,B/2).

We can ignore the points of indeterminacy at infinity by only considering N as a map
from C×P1 to itself. We lose compactness, but are able to avoid many of the difficulties
described in [35]. The Newton map naturally extends to the points at y = ∞ by (x,∞) 7→
(x2/(2x−1),∞).

What do we do about the points of indeterminacy p and q in C×P
1 and their inverse

images? To make the Newton Map a well-defined dynamical system, we need to perform
blow-ups at each of these points and at every inverse image of p and q.

To simplify notation, we will denote by X , the space C×P1. Before discussing points of
indeterminacy, notice that we can partition X into three invariant subsets Xl = {(x,y)|Re(x) <
1/2}, X1/2 = {(x,y)|Re(x) = 1/2}, and Xr = {(x,y)|Re(x) > 1/2}. (The subscripts “l” and
“r” are meant to indicate “left of 1/2” and “right of 1/2”.) The invariance of the subsets
follows directly from the invariance of the corresponding subsets in C under x 7→ x2

2x−1 , the
first component of N.

We denote the space obtained by this infinite sequence of blow-ups by X∞. This space
will presumably have a very complicated topology at any points where repeated inverse
images of the points of indeterminacy, p and q, accumulate. In [35] elaborate techniques
including Farey Blow-ups and Real-oriented Blow-ups are used to “tame” the topology at
these points.

Using the invariance of the three subsets Xl, X1/2, and Xr under N, we can think of N
as giving separate dynamical systems on Xl and on Xr. Understanding each of these two
systems is sufficient for a study of the topology of the basins of attraction for the four roots
r1,r2,r3, and r4 because none of the points in X1/2 are in these basins.

Because we assume that B ∈Ω, the two points of indeterminacy p,q ∈ Xl so all iterates
of N are well-defined for for every (x0,y0) ∈ Xr. The points of indeterminacy p,q ∈ Xl do
present a problem and we do need to do blow-ups at these points and all of their inverse
images, obtaining the space X ∞

l as the projective limit, on which we can iterate N.
The advantage of splitting up X this way is that in the space Xl, the inverse images of p

and q do not accumulate, instead they go to the “Ends” of Xl = {Re(x) < 1/2}×P1 without
accumulating. This makes the topology of X ∞

l manageable.
(Note for the reader: those who have a sense of humor sometimes refer to X ∞

l as the
“bad side” and Xr as the “good side”.)

Most of the material in this section and in the following section closely follow the works
of Hubbard and Papadopol [35] and Hubbard, Papadopol, and Veslov [30].
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5.1 Construction of X∞
l and N∞ : X∞

l → X∞
l .

In this section we will describe the sequence of blow-ups necessary to make N◦k well
defined for each k and the inverse limit that is necessary to make a dynamical system,
which we will call N∞ : X∞

l → X∞
l .

Substitution of the points p and q into C(x,y) yields 1
4(B− 1) and B2−7B+2

4B−8 , so values
of B at which these expressions are non-zero, neither p nor q is a critical value.

More generally, let S⊂Ω be the subset of parameter space for which no inverse image
of the point of indeterminacy p or of point of indeterminacy q is in the critical value locus
C. It will be easiest to first describe the construction of X ∞

l for parameter values B ∈ S, and
then explain the necessary modifications for special circumstance when B /∈ S.

It is relatively easy to show that the condition B ∈ S is generic, in the sense of Baire’s
Theorem.
Theorem 5.1.1. The set S is generic in the sense of Baire’s Theorem, i.e. uncountable and
dense in Ω.

Because of its computational nature, we will leave it for Appendix B.

Construction of X∞
l when B ∈ S:

Proposition 5.1.2. Let X 0
l be the space Xl blown up at the points p and q and let π0 : X0

l →
Xl be the corresponding projection.

• The mapping N extends analytically to a mapping N0 : X0
l → Xl.

• N0 maps the exceptional divisors Ep and Eq to the line x = 1
B(2−B) by isomorphisms.

Proof: We will show the calculation in some detail for p and just state the extension for q.
The definition of a blow-up and many examples are available in Appendix C.

We will work in the chart (x,m) 7→ (x,m(x− 1
B),m) ∈ Xl×P1. Denote the components

of the Newton map in Equation 4.1 by N1(x,y) and N2(x,y) so that N(x,y) = (N1(x,y),N2(x,y)).

In these coordinates we clearly have N1(x,m) =
1

B2
2 1

B−1 = 1
B(2−B) .

N2(x,m) =
m(x− 1

B)(Bx2 +2xm(x− 1
B)−Bx−m(x− 1

B))

(2x−1)(Bx+2m(x− 1
B)−1)

=
m
B (Bx−1)(Bx2 +2xm(x− 1

B)−Bx−m(x− 1
B))

(2x−1)(2m
B +1)(Bx−1)

=
m
B (Bx2 +2xm(x− 1

B)−Bx−m(x− 1
B))

(2x−1)(2m
B +1)

When restricted to the exceptional divisor Ep the mapping becomes

m 7→
m
B (B 1

B2 +2 1
Bm( 1

B−
1
B)−B 1

B−m( 1
B−

1
B))

( 2
B−1)(2m

B +1)
=

m( 1
B−1)

( 2
B−1)(2m+B)

=
m(1−B)

(2−B)(2m+B)
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If instead we had been working in the chart (y,m′) 7→ (m′y + 1
B ,y,m′), we would have ob-

tained a similar extension and the mapping on the exceptional divisor is: m′ 7→ (1−B)
(2−B)(2+m′B) .

This is consistent with the extension in terms of m since one is obtained from the other by
the change of variables m = 1

m′ .
Both of the expressions for N restricted to Ep are linear-fractional transformations,

hence N maps Ep to the line y = 1
B(2−B) by an isomorphism.

We now compute the blow-up at q in the coordinates (x,m) 7→ (x + 1
2−B ,m(x− 1

2−B)+
1−B
2−B ,m). Just as for the point p, N1(x,m) = 1

B(2−B) . We also have N2(x,m) =:

(m(x− 1
2−B)+ 1−B

2−B)(Bx2 +2x(m(x− 1
2−B)+ 1−B

2−B)−Bx− (m(x− 1
2−B)+ 1−B

2−B))

(2x−1)(Bx+2(m(x− 1
2−B)+ 1−B

2−B)−1)

=
(m(x− 1

2−B)+ 1−B
2−B)((x− 1

2−B)(Bx+(1−B)+m(2x−1))

(2x−1)(B+2m)(x− 1
2−B)

=
(m(x− 1

2−B)+ 1−B
2−B)(Bx+(1−B)+m(2x−1))

(2x−1)(B+2m)

On the exceptional divisor Eq, this map is:

m 7→
(1−B)(m−2+2B−B2)

B(2−B)(B+2m)

one can check that N also extends analytically to the one point on Eq that was not covered
by this chart (corresponding to m = ∞.)

Both of the expressions for N restricted to Ep are linear-fractional transformations,
hence N maps Ep to the line x = 1

B(2−B) by an isomorphism. �

We will denote the vertical line x = 1
B(2−B)

by V , since we use this line so frequently.
This is the vertical line that is tangent to C at its “vertex”.

Because we assume that B ∈ S, we assume that neither p nor q are critical values, each
has four inverse images under N0. Because we have blown-up at p and q, each of these
inverse images becomes a point of indeterminacy for N0. We can then blow-up at each of
these eight points obtaining the space X 1

l and the projection π1 : X1
l → X0

l . One can then
extend N0 to the exceptional divisors, obtaining N1 : X1

l → X0
l .

To make iterates N◦k of N well-defined for all k we must repeat this process for the k-th
inverse images, obtaining successive blow-ups πk : X k

l → X k−1
l for every k. The following

proposition describes the extension of N to these spaces:

Proposition 5.1.3. Denote by X k
l the space X k−1

l blown-up at each of these 2 · 4k k-th
inverse images of p and q.

• The mapping Nk−1 extends analytically to a mapping Nk : X k
l → X k−1

l .

• Suppose that z is one of the k-th inverse images of p or q and denote the exceptional
divisor over z by Ez. Then, Nk maps Ez to EN(z) by isomorphism.
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Proof: This entire construction is done as Proposition C.4.1 in the appendix. We summa-
rize the results here. As in Proposition 5.1.2 denote the first component of N by N1(x,y)
and the second component by N2(x,y). Then, in the coordinates (x,m) 7→ (x,mx,m) in a
neighborhood of Ez the mapping is given by:

m 7→
∂xN1 +∂yN1m

∂xN2 +∂yN2m

which is just the linear-fractional transformation induced from DN at z. Since DN is non-
singular at z, this gives an isomorphism from Ez to EN(z).

So long as B ∈ S, that is none of the k-th inverse images of p or of q are critical points,
the extension works in this same way at each of these 2 ·2k points. �

Hence, by repeated blow-ups we obtain a sequence of spaces and projections:

Xl
π0←− X0

l
π1←− X1

l
π2←− X2

l
π3←− X3

l
π4←− X4

l
π5←− X5

l
π6←− ·· · (5.1)

The extensions of the Newton map N to these spaces that we calculated in Propositions
5.1.2 and 5.1.3 we obtain another sequence of spaces and mappings:

Xl
N0←− X0

l
N1←− X1

l
N2←− X2

l
N3←− X3

l
N4←− X4

l
N5←− X5

l
N6←− ·· · (5.2)

However, we do not have a single space X ∞
l , nor a single mapping N∞ from this space

to itself. However, there is a standard procedure using Inverse Limits to create such a space
and mapping from a sequence of spaces 5.1 and the sequence of mappings like 5.2. That
is, we will let X∞

l be the inverse limit of the blown-up spaces and projections in sequence
5.1 and then use the sequence of extensions of the Newton maps 5.2 to define a mapping
N∞ : X∞

l → X∞
l which naturally corresponds to an extension of N.

There are two ways to describe the inverse limit, the first via a universal property and
the second via a construction. We will briefly describe both.

Definition 5.1.4. An Inverse system, denoted (Mi,σi), is a family of objects Mi in a cate-
gory C indexed by the natural numbers and for every i a morphism σi : Mi→Mi−1.

The Inverse Limit of an inverse system (Mi,σi), denoted by lim
←−

(Mi,σi), is an object X in
C together with morphisms αi : X →Mi satisfying αi−1 = σi ◦αi for each i satisfying the
following universal property:

For any other pair Y,βi : Y →Mi such that βi−1 = σi ◦βi, we have a unique morphism
u : Y → X so that for each i we have βi = αi ◦u.

For our uses, the category will always be analytic spaces and the morphisms holomor-
phic maps. One should notice that we have restricted the objects Mi to be indexed by the
natural numbers N. Inverse systems and inverse limits are typically defined for objects Mi

indexed by a filtering partially ordered set I, but we do not need this level of generality
here.

The following proposition gives a construction of lim
←−

(Mi,σi) as a subset of the product
space ΠiMi.
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Proposition 5.1.5. Given an inverse system (Mi,σi) indexed by N (i.e. σi : Mi→Mi−1), we
can construct the inverse limit as follows:

lim
←−

(Mi,σi) = {(m0,m1,m2,m3, · · ·)|mi ∈Mi and σi(mi) = mi−1}.

We define X∞
l = lim
←−

(X k
l ,πk). Using Proposition 5.1.5 we can state more concretely that

X∞
l = {(x0,x1,x2,x3, · · ·)|xi ∈ X i

l and πi(xi) = xi−1}.

We now need to extend the mappings Nk to a mapping N∞ : X∞
l →X∞

l using the sequence
of mappings 5.2.

We define N∞ : X∞
l → X∞

l by

N∞((x0,x1,x2,x3, · · ·)) = (N1(x1),N2(x2),N3(x3), · · ·).

Notice that Ni(xi) ∈ X i−1
l so that this definition makes sense.

Construction of X∞
l when B /∈ S:

For parameter values B /∈ S, the blow-ups done at p and q in Proposition 5.1.2 are exactly
the same, since we have seen that N extends to these blow-ups for any value of B. (It is
worth noticing that there is actually a critical point of N on both Ep and on Eq.)

However, special care needs to be taken when a k-th inverse image of p and of q is a
critical point of N critical points. We describe the process here, although leave some of the
details for the appendix.

The goal is to produce a space X k
l and a projection πk : X k

l → X k−1
l in such a way that

N extends to a map (without singularities) Nk : X k
l → X k−1

l . If we can create the spaces X k
l

and extensions Nk at every “level” k, we can use exactly the same process above to make
X∞

l and N∞ : X∞
l → X∞

l .
So, suppose for the moment that z is a k-th inverse image of p and that none of the n-th

inverse images of p for n < k were in the critical locus N−1(C). In this case, there is a
single exceptional divisor in X k−1

l above N(z). Because the z is critical, the extension of N
to Ez will map all of Ez (except for one point) to a single point in EN(z). (See Appendix,
section C.4). However, at the slope mker ∈ Ez which is in the kernel of DN, the extension to
Ez has another point of indeterminacy! Consequently, one has to blow-up this point on Ez,
obtaining a second exceptional divisor E ′z above mker. In Proposition C.4.2 from Appendix
C, we show that N extends to E ′z by an isomorphism from E ′z to EN(z). Figure 5.1 shows
this situation.

These two blow-ups above z are sufficient to extend N.
However, the fact that there are two exceptional divisors above z results in a further

complication at every point w that is mapped to z. Suppose that we have blown-up at
w. The extension of N to Ew has a point of indeterminacy at point that is mapped to
mker ∈ Ez. Because of this, one has to blow-up a second time above w to resolve this point
of indeterminacy. In fact, at every repeated inverse image of z one will have to blow-up at
least twice to resolve N.

There are further problems is an inverse image of z is again critical. At such a point,
one will have to do even more blow-ups to resolve N. A detailed description of this process
becomes rather tedious, and we will stop here.
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EN(z)

E ′z N (isomorphism)

Ez

EN(z)

N

Ez

mker

mker

Figure 5.1: Blowing up a point on an exceptional divisor.

5.2 The mappings from Ez to V

We saw in the previous section that N maps each exceptional divisor that was newly created
in X k

l to one of the exceptional divisors newly created in X k−1
l by either an isomorphism, or

a constant map. Since N maps each Ep and Eq isomorphically to the line V the composition
N◦k+1 maps each of the newly created exceptional divisors Ez in X k

l to V either by an
isomorphism, or a constant map. In summary:

Proposition 5.2.1. Let Ez be one of the exceptional divisors newly created in X k
l and let V

be the line x = 1/(B(2−B)). Then N◦k+1 maps Ez to V by an isomorphism, or a constant
map.

5.3 Homology of Xr and of X∞
l

Our eventual goal is to relate the homology of the basins of attraction for the four roots of
F to the homology of the spaces Xr and X∞

l and to the homology of a “separator” which
happen to be the superstable sets of the superattracting circles at x = 0 and x = 1. The
next section is devoted to these superstable spaces. (We say spaces because they may have
singularities for some values of the parameter B.) In this section, we will compute the
homology of Xr and X∞

l .
Given a set S, we will denote by Z(S) the submodule of the the product ZS where each

element has at most finitely many non-zero components.
We will often find it necessary to encode information about the generators of these

homology spaces within the notation describing them. For example, the module Z{[K]}

means the module Z that is generated by the fundamental class of [K].

Proposition 5.3.1. We have:

• H0(Xr) = Z
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• H2(Xr) = Z{[P
1]}

• Hi(Xr) = 0, for i 6= 0 or 2.

The homology of X ∞
l is much more complicated. Unfortunately homology does not

behave nicely under inverse limits.
Therefore, instead of directly using the fact that X ∞

l is an inverse limit to compute it’s
homology, we will write X ∞

l is a union of open subsets U0 ⊂U1 ⊂U2 ⊂ ·· · in such a way
that H2(Ui) = Z

(Li∪{[V ]}) where Li is the set of fundamental classes of exceptional divisors
contained in Ui and [V ] is the fundamental class of the vertical line V given by x = 1

B(2−B) .
Recall that the projection π : X ∞

l → Xl is continuous, we will create an exhaustion of
X∞

l by open sets U0 ⊂U1 ⊂U2 ⊂ ·· · as inverse images of open subsets in Xl.
Let Vk = Xl−

S∞
n=k{N

−n(p),N−n(q)}. Clearly Vk is an open subset of Xl, so we will let
Uk = π−1(Vk). It is also clear that U1 ⊂U2 ⊂U3 ⊂ ·· · and that

S∞
k=1 Uk = X∞

l .

Lemma 5.3.2. For each k, H2(Uk)∼= H2(X k
l )

Proof: Notice that Uk canonically isomorphic to X k
l −

S∞
n=k{N

−n(p),N−n(q)}. Removing
a discrete set of points from a 4 (real) dimensional manifold does not affect the second
homology. Hence, H2(Uk)∼= H2(X k

l ). �

Lemma 5.3.3. H2(X k
l ) ∼= Z(Lk∪{[V ]}), where Lk is the set of fundamental classes of excep-

tional divisors in X k
l .

Proposition 5.3.4. H2(X∞
l ) ∼= Z(L∪{[V ]}), where L is the set of fundamental classes of ex-

ceptional divisors in X ∞
l and [V ] is the fundamental class of the vertical line V .

Proof: Since X∞
l =

S∞
k=1 Uk and H2(Uk) ∼= H2(X k

l ) ∼= Z(L∪{[V ]}), we have that H2(X∞
l ) ∼=

lim
−→

(
Z(Lk∪{[V ]})

)
, which is clearly Z(L∪{[V ]}). �

In the generic case where none of the inverse images of p or q under N are in the critical
value parabola C, we can describe H2(X∞

l ) somewhat more explicitly:

Proposition 5.3.5. Let p = (1/B,0) and q = (1/(2−B),(1−B)/(2−B)) be the two points
of indeterminacy for N. If none of the inverse images of p or q under N are in the critical
value parabola C, we have

• H0(X∞
l ) = Z

• H2(X∞
l ) = Z{[V ]}⊕

(
L

Nk(x)=p Z{[Ex]}
)
⊕
(

L

Nk(x)=q Z{[Ex]}
)

• Hi(X∞
l ) = 0, for i 6= 0 or 2.

That is, the second homology of X ∞
l is generated by the fundamental class [V ] of the ver-

tical line V := {x = 1
B(2−B)}, from the original product {Re(x) < 1/2}×P1, and by the

fundamental classes of the exceptional divisors at the points of indeterminacy p and q and
at every inverse image of p and q.
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Proof: This is just a restatement of Proposition 5.3.4 using that when B ∈ S, only a single
blow-up is necessary at each k-th inverse image of p and of q for every k. �

We will need the following proposition about the intersection of classes in H2(X∞
l ):

Proposition 5.3.6. Let [V ] and [Ez] be the fundamental classes of a vertical line V and an
exceptional divisor Ez in H2(X∞

l ) then:

• [V ] · [V ] = 0, and

• [Ez] · [Ez]≤−1.

Proof: We have chosen the vertical line V so that points on it are never blown-up, hence
within X∞

l it has self-intersection number 0, just as it did in Xl .
If no points on the the exceptional divisor Ez have been blown-up, then it is a classical

result that [Ez] · [Ez] = −1. Otherwise, if points in Ez have been blown-up, it is a classical
result that each blow-up reduces [Ez] · [Ez] by 1, hence [Ez] · [Ez]≤−1. (See [24].)
�



Chapter 6
Superstable separatrices W0 and W1.
6.1 Superattracting invariant circles

Recall the invariant circles S0 and S1 in the lines x = 0 and x = 1 equidistant from r1 and
r2, equidistant from r3 and r4 respectively. Using that r1 = (0,0),r2 = (0,1),r3 = (1,0),
and r4 = (1,1−B) we have:

S0 = {(x,y) ∈ X∞
l : x = 0, |y|= |1− y|}

S1 = {(x,y) ∈ Xr : x = 0, |y|= |(1−B)− y|}.

Proposition 6.1.1. The invariant circles S0 and S1 have multiplier 0 in the x-direction and
they have multiplier 2 in the direction normal to the circle, within the invariant vertical
line.

Proof: The vertical lines x = 0 and x = 1 are superattracting in the x-direction, hence the
circles S0 and S1 within the lines are superattracting as well. Within these vertical lines, N
is the Newton’s method for finding the roots of the quadratic polynomial with roots r1 and
r2 (or r3 and r4), so the invariant circle is repelling with multiplier 2. �

In this next proposition we will show that these circles have local superstable manifolds.

Proposition 6.1.2. The invariant circles S0 and S1 have local superstable manifolds W loc
0

and W loc
1 .

More specifically, there are neighborhoods U0,U1 ⊂ C of x = 0 and x = 1 and subsets
W loc

0 ⊂ X∞
l , W loc

1 ⊂ Xr so that:

• N(W loc
0 )⊂W loc

0 and N(W loc
1 )⊂W loc

1

• W loc
0 is the image of some Φ0 : U0×S0→ X∞

l which is analytic in the first coordinate
and quasiconformal in the second.

• W loc
1 is the image of some Φ1 : U1×S1→ Xr which is analytic in the first coordinate

and quasiconformal in the second.

In the following proof we will use the theory of holomorphic motions and the λ-Lemma
of Mañe, Sad, and Sullivan [40], instead of the more standard graph transformation ap-
proach. The following argument is due to Sebastien Krief. A somewhat different stable
manifold theorem for the invariant circles in the non-degenerate case (A 6= 0) is proved us-
ing the λ-lemma in [35]. While points in the manifolds obtained in our proof are genuinely
attracted to the circles S0 and S1, the situation in [35] is much more complicated, with dense
sets of points that are not attracted to the invariant circles.

Proof: To simplify computations we will make the change of variables z(x) = x
x−1 and

w(y) = y
y−1 which conjugates the first coordinate of N to z 7→ z2 and places the invariant

40
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circle S0 at {z = 0, |w|= 1}. In the new coordinates (z,w), the Newton map becomes:

N
(

z
w

)
=

(
z2

w2+(Bw−Bw2)z−w2z2

1+(B−Bw)z+(Bw2+B−1−2Bw)z2

)
. (6.1)

and the critical value locus of N in these coordinates is just the image of C under the change
of variables, which we denote by C′. Because we are only interested in local properties of
N, we can restrict our attention to (z,w) ∈ Dε×P⊂ X∞

l where Dε is an open disc of radius
ε centered at 0.

Let

∆ε,δ = {(z,y) ∈ X∞
l : |z|< ε and 1−δ < |y|< 1+δ}

so that ∆ε,δ is an open neighborhood of S0. The boundary of ∆ε,δ consists of the vertical
boundary ∂V ∆ε,δ = {|z|= ε} and the horizontal boundary ∂H∆ε,δ = {|y|= 1±δ}.

We must choose ε and δ so that:

1. ∆ε,δ is disjoint from the critical value locus C′, and

2. N maps ∆ε,δ into D× P so that N(∂H∆ε,δ) is entirely outside of ∆ε,δ and so that
N(∂V ∆ε,δ) is entirely inside of |z|< ε.

Figure 6.1 shows a depiction of the second condition for (z,y) ∈ R×C.
The first condition is easy to ensure. The critical value locus C′ intersects the vertical

line z = 0 transversely at w = 0 and w = ∞. Because the intersection is transverse, we can
choose ε sufficiently small so that C′ intersects Dε×P outside of ∆ε, 1

2
.

Now, we must show that we can reduce ε and δ so that the second condition holds.
Because the first coordinate of N is just z 7→ z2, we need not make any further restrictions
to ensure that N(∂V ∆ε,δ) is entirely inside of |z|< ε. In the line z = 0, N(z,w) = w2, so by
continuity we can clearly choose ε and δ small enough that N(∂V ∆ε,δ) is entirely outside of
∆ε,δ.

Let Dε be the open disc |z|< ε in C for this ε. Conditions 1 and 2 on ε and δ are chosen
so that the following lemma is true:

Lemma 6.1.3. Suppose that D ⊂ ∆ε,δ is a complex disc which is the graph of an analytic
function η : Dε→ P. Then N−1(D)∩∆ε,δ is the union of two disjoint complex discs, each
given as the graph of analytic functions ζ1,ζ2 : Dε→ P.

Proof of Lemma 6.1.3: The locus N−1(D)∩∆ε,δ satisfies the equation N(z,w) ∈D, which
is equivalent to N2(z,w) = η(z2), because D is the graph of η. Because D ⊂ ∆ε,δ, D is
disjoint from C′, so ∂wN2(z,w) is non-zero in a neighborhood of N−1(D), and we can use
the implicit function theorem to solve for w = ζ1(z) and w = ζ2(z). There are exactly two
branches because N2(z,w) is degree 2 in w.

The graphs of ζ1 and ζ2 form the two complex discs N−1(D)∩∆ε,δ.
� Lemma 6.1.3.
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S0

N(∆ε,δ)

∂H(∆ε,δ)

N(∂H(∆ε,δ))

N(∂V (∆ε,δ))

∂V (∆ε,δ)

∆ε,δ

Figure 6.1: The Newton map N maps ∂H(∆ε,δ) outside of ∆ε,δ and N maps ∂V (∆ε,δ) inside
of inside of |z|< ε.

In the old coordinates (x,y), the line y = ∞ is invariant under N and attracted to the
point (0,∞) ∈ S0. The image of this line under the coordinate change is w = 1, which is
therefore invariant under N in the coordinates (z,w) and attracted to the point (0,1) ∈ S0.
Let D0 = {(z,w) : |z|< ε,w = 1}. This disc will form the first part of W loc

0 .
Since D0 ⊂ ∆ε,δ, satisfies the conditions of Lemma 6.1.3, letting D1 = N−1(D0)∩∆ε,δ

we obtain two complex discs in ∆ε,δ each of which is given by the graph of some analytic
function η : Dε→ P and each of which is mapped within D0 by N. These discs intersect S0
and ∞ and the first inverse image of ∞.

Because each of the discs in D1 satisfies the hypotheses of Lemma 6.1.3 we can repeat
this process, letting D2 = N−1(D1)∩∆ε,δ, which this lemma guarantees is the union of four
disjoint discs in ∆ε,δ, each of which is the graph of some analytic function η : Dε → P.
These four discs intersect S0 at the four inverse images of ∞.

Of course we can repeat this process indefinitely, obtaining Dn consisting of 2n disjoint
complex discs in ∆ε,δ, each of which is given by the graph of an analytic function. These
discs intersect S0 at the 2n inverse images of ∞.
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Let:

D∞ =
∞

[

n=0
Dn

which consists of a union of disjoint complex discs through each of the dyadic points D on
S0. Each of these discs is the graph of an analytic function from Dε to P, and every point
in D∞ is forward invariant to S0 under N.

Looking at D∞ a different way, D∞ prescribes a holomorphic motion:

φ : Dε×D → P

where φ(z,θ) is given by η(z) where η : Dε→ P is the analytic function whose graph is the
disc in D∞ containing θ ∈ S0.

By the λ-lemma of Mañe-Sad-Sullivan [40], φ extends continuously to a holomorphic
motion on S0, the closure of D .

φ : Dε×S0→ P

Then, the map Φ : S0×Dε→ D×P⊂ X∞
l given by (z,θ) 7→ (z,φ(z,θ)) is holomorphic in

z and quasi-conformal in θ. We let W loc
0 be the image of Φ. Clearly N(W loc

0 )⊂W loc
0 and

every point in W loc
0 is forward invariant to S0.

The existence of W loc
1 is an easy adaptation.

� Proposition 6.1.2.

Because the local superstable manifolds W loc
0 and W loc

1 are forward invariant under N,
we can define global invariant sets W0 and W1 by pulling back under N:

W0 =
∞

[

n=0
N−n(W loc

0 ), W1 =
∞

[

n=0
N−n(W loc

1 ).

Recall from Chapter 4 that we defined the “bifurcation locus” Ωbif ⊂Ω to be the set of
parameter values for which there is a tangency between W0 and C or a tangency between
W1 and C and that we defined the “regular locus” Ωreg = Ω−Ωbif.

One might expect that W0 and W1 are manifolds, since the inverse function theorem
gives that the pull-back of N−k(W loc

0 ) (or N−k(W loc
1 )) by N is “locally manifold” at points

where N−k(W loc
0 ) (or N−k(W loc

0 )) is disjoint from or transverse to the critical value locus
C. However, we do expect that there will be some values of the parameter B for which
there is a tangency between N−k(W loc

0 ) (or N−k(W loc
1 )) and C. Therefore, at B ∈ Ωbif W0

(or W1) will not be a manifold, but for B ∈Ωreg both W0 and W1 will be manifolds. Instead
of calling W0 and W1 manifolds in general, we will call them separatrices, and only call
them manifolds when B ∈Ωreg.

Proposition 6.1.4. The bifurcation locus Ωbif is residual in Ω in the sense of Baire’s The-
orem.
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Proof: This is relatively standard use of Baire’s Theorem, so we omit the details. �

Proposition 6.1.5. For every B, the separatrices W0 and W1 are real analytic subspaces of
X∞

l and Xr, each defined as the zero set of a single non-constant real-analytic equation in
an neighborhood of W0 and in a neighborhood of W1, respectively.

Proof: As in the proof of Proposition 6.1.2, we make the change of variables z = x
x−1 and

w = y
y−1 and in these coordinates

N
(

z
w

)
=

(
z2

w2+(Bw−Bw2)z−w2z2

1+(B−Bw)z+(Bw2+B−1−2Bw)z2

)
, (6.2)

with S0 is given by {z = 0, |w|= 1}. We will show that

φ(z,w) = lim
n→∞

(Nn
2 (z,w))1/2n

is well defined and converges on a neighborhood of W0 so that ω(z,w) = log |φ(z,w)| is a
non-constant real analytic function in a neighborhood of W0, vanishing on W0.

For every (z,w) ∈ W0, |Nn
2 (z,w)| converges to 1 because S0 = {|w| = 1} and hence

log |(Nn
2 (z,w))1/2n

| converges to 0. So, we only need to show that ω(z,w) is a non-constant
real analytic function in a neighborhood of W0. The proof will be reminiscent of the proof
of Böttcher’s Thoerem in one variable dynamics. (See Milnor [43, Section 9].)

Notice that ω is defined with the invariance property ω(N(z,w)) = 2 ·ω(z,w). Therefore
we can assume that |x| is arbitrarily small.

With these restrictions, the second coordinate of N can me written as:

N2(z,w) = w2 + zg(z,w)

with g(z,w) which is analytic in the neighborhood |z|< ε for an appropriately small ε.
We can write φ(z,w) := limn→∞(Nn

2 (z,w))1/2n as a telescoping product:

φ(z,w) = N2(z,w)1/2 ·
N2

2 (z,w)1/4

N2(z,w)1/2 ·
N3

2 (z,w)1/8

N2
2 (z,w)1/4 · · · (6.3)

so that the general term is of the form

Nn+1
2 (z,w)1/2n+1

Nn
2 (z,w)1/2n =

(
(Nn

2 (z,w))2 +Nn
1 (z,w) ·g

(
Nn

1 (z,w),Nn
2(z,w)

)

(Nn
2 (z,w))2

)1/2k+1

=

(
1+

z2n

(Nn
2 (z,w))2 ·g

(
z2n

,Nn
2 (z,w)

))1/2k+1

using that Nn
1 (z,w) = z2k .
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In order to define the power 1
2k+1 we need to check that we can restrict, if necessary, the

neighborhood of definition for φ(z,w) so that
∣∣∣∣

z2n

(Nn
2 (z,w))2 ·g

(
z2n

,Nn
2 (z,w)

)∣∣∣∣≤
1
2 . (6.4)

The only real difficulty is when (z,w) ∈W (r1) so that (Nn
2 (z,w))2 goes to 0. However,

there is a neighborhood U ⊂W (r1) of the line z = 0 in which the term in the numerator z2n

will be sufficiently small to make the entire term 6.4 small:
In [35], the authors perform blow-ups at each of the four roots, and observe that the

Newton map N induces rational functions of degree 2 on each of the exceptional divisors
Er1,Er2,Er3, and Er4 . Let’s compute the rational function s : Er1 → Er1 . In the coordinate
chart m = z

w , the extension to Er1 is obtained by:

s(m) = lim
w→0

m2w2(1+(B−Bw)mw+(Bw2 +B−1−2Bw)m2w2)

w2 +(Bw−Bw2)mw−w2m2w2

=
m2

1+Bm
,

since w = 0 on Er1 .
The rational function s(m) has m = 0 as a superattracting fixed point, so there is a

neighborhood of m = 0∈ Er1 within W (r1) so that for any point (z,w) in this neighborhood,
limn→∞

∣∣∣ z2n

Nn
2 (z,w)

∣∣∣ = 0. Pulling back this neighborhood under N we find a neighborhood
V ⊂W (r1) of the line z = 0 in which this limit is true.

So long as we restrict the points (z,w) ∈W (r1) to be within this neighborhood V and
restrict all other points (z,w) in X ∞

l so that
∣∣∣ z

w2 ·g(z,w))
∣∣∣ is less than 1/2, we can assume

that condition 6.4 holds.
Because Equation 6.4 is satisfied for every (z,w) ∈ Λ, we can use the binomial formula

to define the factors in the product 6.3 in Λ:

(1+u)α =
∞

∑
n=0

α(α−1) · · ·(α−n+1)

n! un, when |u|< 1.

Now that the terms in the product 6.3 are well defined, we check that the product con-
verges on the neighborhood Λ of S0. For this product to converge it is sufficient to show
that the corresponding series of logarithms converges. The general term in this series is:

log

∣∣∣∣∣∣

(
1+

z2n

(Nn
2 (z,w))2 ·g

(
z2n

,Nn
2 (z,w)

))1/2k+1
∣∣∣∣∣∣
≤

log2
2n+1 ,

using Equation 6.4 and the triangle inequality so that
∣∣∣∣1+

z2n

(Nn
2 (z,w))2 ·g

(
z2n

,Nn
2 (z,w)

)∣∣∣∣< 2.
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This is clearly sufficient for the series of logarithms to converge and hence for the
product 6.3 to converge to the analytic function on φ(z,w) on Λ. This way ω(z,w) =
log |φ(z,w)| is a real analytic function on Λ, and by the invariance properties of φ on ω(z,w)
is an analytic function on a neighborhood of W0.

The proof that W1 is the zero locus of a non-constant analytic function is very similar.
�

Understanding the topology of W0 and W1 will become very important to us since know-
ing their topology helps us study the topology of the basins of attraction for the four roots.
Two preliminary observations are:

Proposition 6.1.6. Every point in X ∞
l that is not attracted to r1 or r2 is on the separatrix

W0, i.e. X∞
l = W (r1)∪W (r2)∪W0.

Similarly, every point in Xr that is not attracted to r3 or r4 is on the separatrix W1, i.e.
Xr = W (r3)∪W (r4)∪W1

Proof: Every point in X ∞
l is attracted to the line x = 0. The only invariant sets on this

line are the two roots, r1, r2, and the invariant circle S0, hence the points that are not in
W (r1) or W (r2) are in W0. Similarly, every point in Xr is attracted to the line x = 1, and the
decomposition follows. �

Proposition 6.1.7. The fundamental classes [S0] and [S1] are non-zero in H1(W0) and
H1(W2), respectively.

Proof: The proof is the same for each circle, so we prove it for S0. If [S0] = 0, then there is
some 2-chain σ in W0 with ∂σ = W0. Every point in X∞

l is attracted to the line x = 0. Since
σ is a compact subset of W0, one can choose k so that Nk(σ) is within an arbitrarily small
neighborhood of S0.

The Newton map N maps S0 to itself by angle doubling, so Nk(S0) = 2kS0. Since
∂Nk(σ) = Nk(∂σ) = 2kS0, this would give that [S0] is torsion within this neighborhood.
However, small neighborhoods of S0 ⊂W0 are topologically S0×D and [S0] is not torsion
in H1(S0×D).∼= Z

{[S0]} �

Proposition 6.1.8. (Neighborhoods of W0 and W1) Within X∞
l and Xr there are neighbor-

hoods N (W0) and N (W1) of W0 and W1 that deformation retract onto W0 and W1.

Proof: Any A⊂M that is globally defined by the vanishing of a single non-constant real-
analytic function g : M→ R has this property:

Since g : M→ R is non-constant and real-analytic, the critical points of g cannot accu-
mulate, consequently we can choose a neighborhood N (A) so that the only critical points
of g in N (A) are actually in A. Similarly, the only critical points of g2 will have be on A.
Hence, the vector field −∇g2 will be zero on A, but it will have no zeros on N (A). Flow
along this vector fields provides a deformation retraction of N (A) onto A. �
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6.2 Mayer-Vietoris computations

By Proposition 6.1.6 we have that X ∞
l = W (r1)∪W (r2), and W0 = W (r1)∩W (r2). Because

of the neighborhood N (W0) that deformation retracts onto W0, we can use the Mayer-
Vietoris exact sequence to relate the homology of W (r1) and W (r2) to that of X∞

l and W0.
For a reference about the Mayer-Vietoris exact sequence, we recommend [9] and [28].

Denote the inclusions W0 ↪→W (r1) and W0 ↪→W (r2) by i1 and i2 and the inclusions
W (r1) ↪→ X∞

l and W (r2) ↪→ X∞
l by j1 and j2. We have:

0 → H4(W0)
i1∗⊕i2∗−−−−→H4(W (r1))⊕H4(W (r2))

j1∗− j2∗
−−−−→ H4(X

∞
l )

∂
−→

0 → H3(W0)
i1∗⊕i2∗−−−−→H3(W (r1))⊕H3(W (r2))

j1∗− j2∗
−−−−→ H3(X

∞
l )

∂
−→

0 → H2(W0)
i1∗⊕i2∗−−−−→H2(W (r1))⊕H2(W (r2))

j1∗− j2∗
−−−−→ H2(X

∞
l )

∂
−→

0 → H1(W0)
i1∗⊕i2∗−−−−→H1(W (r1))⊕H1(W (r2))

j1∗− j2∗
−−−−→ H1(X

∞
l )

∂
−→

0 → H0(W0)
i1∗⊕i2∗−−−−→H0(W (r1))⊕H0(W (r2))

j1∗− j2∗
−−−−→ H0(X

∞
l )→ 0

Recall from Proposition 5.3.4 that H2(X∞
l ) = 0 for i 6= 2,0 from this we obtain:

H4(W (r1))⊕H4(W (r2))∼= H4(W0), H3(W (r1))⊕H3(W (r2))∼= H3(W0).

and the exact sequence:

0 → H2(W0)
i1∗⊕i2∗−−−−→ H2(W (r1))⊕H2(W (r2))

j1∗− j2∗
−−−−→

H2(X
∞
l )

∂
−→H1(W0)

i1∗⊕i2∗−−−−→ H1(W (r1))⊕H1(W (r2))→ 0 (6.5)

since we can truncate the 0-th homology from Exact Sequence 6.5 because each of these
spaces is connected.

We can repeat these calculations in Xr. We denote the inclusions W1 ↪→W (r3) and
W1 ↪→W (r4) by i3 and i4 and the inclusions W (r3) ↪→ Xr and W (r4) ↪→ Xr by j3 and j4.
Using that H2(Xr) = Z

{[P1]} and Hi(Xr) = 0 for i 6= 2,0, we get:

H4(W (r3))⊕H4(W (r4))∼= H4(W0), H3(W (r3))⊕H3(W (r4))∼= H3(W0).

and the exact sequence:

0 → H2(W1)
i3∗⊕i4∗−−−−→ H2(W (r3))⊕H2(W (r4))

j3∗− j4∗
−−−−→

Z
{[P]} ∂
−→ H1(W1)

i3∗⊕i4∗−−−−→ H1(W (r3))⊕H1(W (r4))→ 0

Lemma 6.2.1. The boundary map ∂ : Z{[P
1]}→ H1(W1) from exact sequence 6.6 satisfies

∂([P1]) = [S1]. In particular, ∂ is injective.

Proof: One can choose the vertical line x = 1 as the generator P of H2(Xr). Since W1
intersects this line transversely along S0, we have ∂[P1] = [S1]. �

In combination with exact sequence 6.6 we find:
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Corollary 6.2.2. The map

H2(W1)
i3∗⊕i4∗−−−−→ H2(W (r3))⊕H2(W (r4)) (6.6)

is an isomorphism and the sequence

0→ Z
{[P]} ∂
−→ H1(W1)

i3∗⊕i4∗−−−−→ H1(W (r3))⊕H1(W (r4))→ 0 (6.7)

is exact.

6.3 Replacement of W (ri) with W (ri).

In many cases one would prefer to make statements about the homology of the genuine
basins of attraction W (ri), instead of the closures of the basins W (ri).

Proposition 6.3.1. For the parameter values B in which W0 is a manifold, W (r1) is homo-
topy equivalent to W (r1) and W (r2) is homotopy equivalent to W (r2).

Similarly, for parameter values B in which W1 is a manifold, W (r3) is homotopy equiv-
alent to W (r3) and W (r4) is homotopy equivalent to W (r4).

Proof: This follows from the relatively standard fact that if M is a manifold with boundary,
then M and the interior of M are homotopy equivalent. �

Recall that Ωreg ⊂ Ω is the set of parameters B for which there are no tangencies be-
tween W0 and C and no tangencies between W1 and C. For these parameter values, both W0
and W1 are manifolds and hence:

Corollary 6.3.2. For every B ∈Ωreg, H∗(W (ri))∼= H∗(W (ri)) for i = 1,2,3, and 4.



Chapter 7
Morse Theory for W1 and W0
In this chapter we will use Morse Theory to prove that if W1∩C = /0, then W1 is homotopy
equivalent to S1 and we will also see why the same method fails to work for W0.

In general, W0 and W1 are not manifolds but merely real-analytic spaces. However, we
will only end up using Morse theory on W1 in the special case where W1∩C = /0 and hence
W1 is a genuine manifold.

Recall Short Exact Sequence 6.7 from Corollary 6.2.2:

0→ Z
{[P]} ∂
−→ H1(W1)→H1

(
W (r3)

)
⊕H1

(
W (r4)

)
→ 0.

By Lemma 6.2.1 we have that ∂([P]) = [S1], so that if W1 is homotopy equivalent to S1,
then H1(W1) ∼= Z{[S1]} = Image(∂). By exactness of the sequence, this will show that if
W1∩C = /0, then H1(W (r3)) = 0 = H1(W (r4)). Since W1 is a genuine manifold in this case,
Proposition 6.3.1 will give that H1(W (r3)) = 0 = H1(W (r4)), as well, which is part of the
third statement in Theorem 4.4.1.

7.1 Morse Theory for W1 and W0

Consider the function h : C×P→ R given by

h

(
x
y

)
=

∣∣∣∣
x

x−1

∣∣∣∣ (7.1)

which is chosen so that

h

(
N

(
x
y

))
=

∣∣∣∣∣

x2

2x−1
x2

2x−1 −1

∣∣∣∣∣=
∣∣∣∣

x2

x2−2x+1

∣∣∣∣= h

((
x
y

))2
. (7.2)

The extension of h to the exceptional divisors is given by extending x
x−1 in the standard

way (algebraically) then composing with the modulus | · |. The result is a C∞ function on
h : X∞

l →R.
We will consider the restriction of h to the super-stable separatrix W0 and W1 and use it

as a Morse function to study their topology.
There is a geometric description of the critical points of h: Notice that W0 and W1

intersect the critical value parabola C in real-analytic sets. Let K be the set of points in C
where W0∩C (or W1 ∩C) and the level curves of h|C are parallel. The critical points of h
are inverse images of points in K and repeated inverse images of points in K under N.

It is relatively easy to search for points in K for specific parameter values. Figures 7.1
and 7.2 show the part of the critical value parabolas for two different values of B, with the
level curves of h|C superimposed. Some of the points in K are marked for each of these
parameter values.
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S

k1

k2

k3

k4

Figure 7.1: Level curves of the Morse function h within the critical value parabola C. The
points labeled k1,k2,k3 and k4 are all in K, as well as any others. The critical point of h|C
is labeled S.



51

k1

k2

k3

Figure 7.2: Level curves of the Morse function h within the critical value parabola C. The
points labeled k1,k2, and k3 are all in K, as well as any others.
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Proposition 7.1.1. Let K be the set of points in C where W0∩C (or W1 ∩C) is parallel to
the level curves of h|C. Then, the set of critical points of h on W0 and W1 is

S∞
k=1 N−k(K).

Proof: Applying the chain rule to Equation 7.2 we find:

Dh

(
N

(
x
y

))
·DN

(
x
y

)
= 2h

(
x
y

)
·Dh

(
x
y

)
. (7.3)

Notice that
∣∣∣h
(x

y

)∣∣∣= 0 only when x = 0. Therefore, Equation 7.3 gives that if Dh
(x

y

)
= 0.

for a point
(x

y

)
on W0 then either:

1. Dh
(

N
(x

y

))
= 0 giving that

(x
y

)
is an inverse image (possibly an n-th inverse image)

of another critical point of h. Or,

2. DN
(x

y

)
is singular and Dh

(
N
(x

y

))
is 0 within the image of DN.

The condition in the second case says that (x,y) is on the critical points locus of N, and
that Dh(N(x,y)) is zero when restricted to the image of DN. Geometrically, this says that
the curve W0∩C is tangent to the level curves of h|C at N(x,y). �

It is also possible that there may be critical points of h|W0 that are some of the excep-
tional divisors Ez that were introduced in the construction of X ∞

l . We ignore this possibility
for the moment, and eventually we will restrict our attention to Morse Theory in Xr.

Notice that if h : W0→ R has no critical points, or if h : W1→ R has no critical points
(except at x = 0 and x = 1), then the negative gradient flow −∇h gives a deformation
retraction of W0 to S0 or the gradient flow ∇h gives a deformation retraction of W1 to S1.

Although we cannot find any specific values of the parameter B for which we can prove
that W1 does not intersect C, our computer calculations indicate that this may often be the
case. For example, this is probably the case in Figure 7.1, and clearly is not the case in
Figure 7.2. If W1 and C are disjoint, there are clearly no critical points of h:

Proposition 7.1.2. If there are no points of intersection between W1 and the parabola
C(x,y) = y2 +Bxy+ B2

4 x2− B2

4 x− y = 0, then W1 is homotopy equivalent to S1.

Corollary 7.1.3. If there are no points of intersection between W1 and the parabolaC(x,y) =
0, then the basins of attraction W (r3) and W (r4) for the roots r3 = (1,0) and r4 = (1,1−B)
have trivial first and second homology groups.

Proof: For H1(W (r3)) and H1(W(r4)) this is a consequence of our discussion at the be-
ginning of this chapter. For the second homology it is a consequence of the isomorphism
6.6.

We will never have this special situation in X ∞
l for the following reason:

Proposition 7.1.4. There are always critical points of h : W0→ R.
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Proof: First, notice that there is a unique critical point of h|C: Implicit differentiation of
C(x,y) = 0 gives

2y+B
dx
dy

y+Bx+
B2

2
x

dx
dy
−

B2

4
dx
dy
−1 = 0

which is equivalent to:
(

By+
B2

2 x−
B2

4

)
dx
dy

= 1−Bx−2y

Therefore the unique point of intersection between the line Bx+2y−1 = 0 and the parabola
C(x,y) = 0 is a vertical tangent to C and hence a critical point of h|C. This critical point is
labeled S in Figures 7.1 and 7.2.

The line L∞ = {y = ∞} is clearly within W0, and the line Bx+2y−1 = 0 is mapped to
L∞ by N, hence it is in W0 as well. Therefor, this critical point of h|C is actually in W0. By
Proposition 7.1.1, the inverse images of this point under N are critical points of h|W0. �

One might consider using further details about the critical points of h in order to study
the topology of W0 and W1 when there are intersections with the critical value locus, C, but
this seems like a difficult approach, especially since these spaces may have singularities,
and we will avoid it.

Instead, in the next chapters we will use linking numbers to prove that if W1 intersects
the parabola C(x,y) = 0, then the basins of attraction for the roots (1,0) and (1,1−B) have
infinitely generated first homology. We will also prove that the basins of attraction for the
roots at (0,0) and (0,1) always have infinitely generated first homology, as a consequence
of the fact that W0 always intersects the parabola C(x,y) = 0.



Chapter 8
Many loops in W0 and W1.
In this chapter we will show that intersections between W0 and the critical value locus C
lead to an infinite number of closed loops in W0 and that intersections between W1 and
C lead to an infinite number of closed loops in W1. In the chapter following this one we
will show that infinitely many of them are homologically distinct, finishing the proof of
Theorem 4.4.1.

8.1 The mapping on fibers

Denote the projective line in C×P above a fixed value of x by Px. Often we will informally
call such a set a “vertical line”. Notice that if x 6= 1/2 then NF maps Px to Px2/(2x−1) by the
rational map:

Rx(y) =
y(Bx2 +2xy−Bx− y)
(2x−1)(Bx+2y−1)

It is worth noticing that when x = 1
B and when x = 1

2−B , a common term cancels from the
numerator and denominator of Rx, giving Rx(y) = y

2 + 1−B
2(2−B) and Rx(y) = y

2 , respectively.
In this section, we will use the details of Rx to understand the topology of intersections

of W0 with vertical lines Px having Re(x) < 1/2 and the topology of intersections of W1
with vertical lines Px having Re(x) > 1/2.

Recall that X∞
l is the space C×P having Re(x) < 1/2, after the infinite sequence of

blow-ups that is necessary to resolve all iterates of N and that Xr is the space C×P having
Re(x) > 1/2, and that no blow-ups were necessary in Xr.

If a vertical line Px in Xl does not contain a point that we have blown-up, it naturally
corresponds to a subset of X ∞

l . Otherwise, if the vertical line Px does contain a point in Xl

that we have blown-up, then by the vertical line Px in X∞
l we mean the proper transform of

Px under the blow-ups. Hence, it is meaningful to discuss vertical lines X ∞
l .

Proposition 8.1.1. The critical values of Rx are the intersections of the critical value
parabola C with the line Px. There are two distinct critical values, except when x = 1

B(2−B) .

Proof: The critical value curve C(x,y) = 0 for N is exactly the image of the locus where
∂yN2(x,y) = 0. Hence, the critical values of Rx are just the points of intersection between
C(x,y) = 0 and Px. There are two such points of intersection, except when the the discrim-
inant (Bx− 1)2−B2(x2− x) = (B2− 2B)x + 1 = 0, that is, when x = 1

B(2−B) . This makes
sense because the vertical lines containing p and q and the exceptional divisors Ep and Eq

each map to the line x = 1
B(2−B) by isomorphisms. �

Re-stating the previous proposition in somewhat more topological terms:

Corollary 8.1.2. For vertical lines not at x = 1
B ,x = 1

2−B , i.e. not containing p or q, the
mapping Rx : Px → Px2/(2x−1) is a ramified covering map of degree 2 with two distinct
points of ramification.

54
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8.2 Intersection of W0 and W1 with vertical lines.

The goal of this section is to show that if there is an intersection of W0 with the critical value
parabola C(x,y) = 0 in X ∞

l , then the super-stable separatrix W0 divides certain sequences
of vertical lines into arbitrarily many simply connected domains and, otherwise, if there
is no such intersection then every vertical line in X ∞

l is divided into exactly two simply
connected domains by W0. We will also show that the same statement holds for Xr if we
replace W0 with W1. More formally:

Proposition 8.2.1. Let xi be the i-th iterate of x under x 7→ x2

2x−1 .
For x having Re(x) < 1/2:

• If W0∩{C(xi,y) = 0}= /0 for each i, then W0∩Px forms a simple closed curve divid-
ing Px into two simply connected domains.

• If there is some k with W0∩{C(xk,y) = 0} 6= /0, then W0∩Px forms a curve dividing
Px into at least 2k +2 distinct simply connected domains.

Similarly, for x having Re(x) > 1/2:

• If W1∩{C(xi,y) = 0}= /0 for each i, then W1∩Px forms a simple closed curve divid-
ing Px into two simply connected domains.

• If there is some k with W1∩{C(xk,y) = 0} 6= /0, then W1∩Px forms a curve dividing
Px into at least 2k +2 distinct simply connected domains.

Figure 8.1 illustrates this proposition.

The closed loops generated in W0 and W1 bounding the simply connected domains guar-
anteed by Proposition 8.2.1 will be used the next chapter to show that H1(W0) is always
infinitely generated and to show that if W1 intersects C, then H1(W1) is infinitely generated.

We prove Proposition 8.2.1 for X ∞
l , since it follows in a similar, although easier way for

Xr. The proof will require some build-up.

Lemma 8.2.2. For any choice of B, there are ε0 > 0 and ε1 > 0 so that if |x−0|< ε0, then
W0∩Px forms a simple closed curve and so that if |x−1|< ε1, then W0∩Px forms a simple
closed curve.

Proof: This is a direct consequence of Proposition 6.1.2 where we prove the existence of
W loc

0 and W loc
1 . �

Lemma 8.2.3. Let R : P→ P be a ramified covering map of degree d and let U ⊂ P be a
simply connected open subset of P containing the image of at most one point of ramification
of R. Then, R−1(U) consists of a finite number of disjoint simply connected domains.
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N

N

N

W0W0

W0

W0

Px2 Px3

Px1Px

Px3 ∩C

Figure 8.1: Forming many closed loops in W0. A sequence of vertical complex lines
Px,Px1 ,Px2, and Px3 , one mapped to the next by N. Because W0 intersects C in the line
Px3 , Proposition 8.2.1 states that these vertical lines are divided by W0 into at least 10,6,4,
and 2 simply connected domains.

Proof: Because U is a simply connected open subset of P, U is contractible. Let ct :
U × [0,1]→U be this contraction having c1(U) = u0, some base point in U . Recall that
contractions satisfy ct(u0) = u0 for all t.

If U does not contain the image of a ramification point, then R : R−1(U)→ U is a
genuine covering map, and by the homotopy lifting property this contraction lifts, providing
a contraction to R−1(U) to the points R−1(u0).

Otherwise, if U contains a ramification point, we can modify our contraction c so that
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the base point u0 is this ramification point. Then, the mapping C lifts over U − u0 and
clearly extends by continuity over u0 since it ct(u0) = u0 for all t.

Hence, R−1(U) consists of a collection of disjoint simply connected domains. The
number of these domains is bounded above by the degree d.
�

Let x1 =
x2

0
2x0−1 so that we have Rx0 : Px0 → Px1 . The symmetry 4.1.1 gives us two nice

properties: First, since the critical values of Rx0 occur at symmetric points, either W0∩Px1
contains both critical values or neither of them.

Second, Since the symmetry interchanges W (r1) with W (r2), any simply connected
domain in Px1 −W0 and its image under the symmetry are disjoint. Since the two critical
values of Rx0 are at symmetric points, such a domain can contain at most one of these
critical values. Therefore, the inverse image of a simply connected domain will be some
finite number of simply connected domains. The following lemma counts this number:

Lemma 8.2.4. Let x1 = x2
0/(2x0−1) and suppose that U is a simply connected domain in

Px1.

• If U contains one of the critical values of Rx0 , then R−1
x0 (U) is a single simply con-

nected domain.

• If U contains does not contain a critical value of Rx0 , then R−1
x0 (U) is two simply

connected domains.

Proof: Notice that Rx0 : R−1
x0 (U) → U is a ramified covering map of degree 2, so the

Riemann-Hurwitz formula applies giving, χ(R−1
x0 (U)) = 2χ(U)− k where k is the number

of critical values of Rx0 in U . (Here, k = 0 or k = 1.) Since U is a single simply connected
domain and R−1

x0 (U) is a finite union of simply connected domains, the Euler characteristic
just counts the number of domains. Hence, if U contains a critical value, k = 1, and there
are 2− 1 = 1 domains in R−1

x0 (U). Otherwise, if U does not contain a critical value, k = 0
and there are 2−0 = 2 domains in R−1

x0 (U). �

Corollary 8.2.5. Let x1 =
x2

0
2x0−1 . If W0 divides Px1 into m simply connected domains then

• If W0 ∩Px1 contains the critical values of Rx0 then W0 divides Px0 into exactly 2m
simply connected domain.

• If W0∩Px1 does not contain the critical values of Rx0 then W0 divides Px0 into exactly
2m−2 simply connected domains.

Proof: If W0 ∩Px1 contains the critical values of Rx0 , then none of the m domains in Px1
contain a critical value. By Lemma 8.2.4, each of these domains has two domains as inverse
image under Rx0 , and hence W0 divides Px0 into exactly 2m simply connected domain.

Otherwise, at most two of the domains in Px1 contain critical values of Rx0 . Each of
these two domains has a single domain as inverse image under Rx0 , while each of the
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remaining m−2 domains has 2 domains as inverse image, giving a total of 2+2(m−2) =
2m−2 domains in Px0
�

Proof of Proposition 8.2.1: Let xk be the k-th iterate of x0 under x 7→ x2

2x−1 . Suppose that
W0 divides the vertical line Px0 into m pieces. Because the line x = 0 is globally attracting
in X∞

l , there is some k so that |xk− 0| < ε0 Using Lemma 8.2.2, W0 ∩Pxk forms a simple
closed curve in Pxk and hence divides Pxk into only two simply connected domains.

Let xn be the last point in the sequence x1,x2, · · · ,xk having W0 ∩{C(xn,y) = 0} 6= /0
Repeated use of Lemma 8.2.5 gives the lower bound m ≥ 2n+1− 2n−1− 2n−2−·· ·− 2 =
2n+1− 2n + 2 = 2n + 2 The upper bound on the number of simply connected domains is
clearly 2n+1, so we have 2n +2 < m < 2n+1.

This proves Proposition 8.2.1 for X ∞
l . The proof is virtually identical for Xr. �

8.3 Sizes

Suppose that W0 ∩Px divides Px into 2m simply connected domains. By the symmetry, m
of these domains are in the basin W (r1) and m of them are in W (r2). Denote the domains
in W (r1) by U1, · · · ,Um and the domains in W (r2) by V1, · · · ,Vm. Let k be chosen so that
W0 forms a simple closed curve in Pxk (where xk is the k-th iterate of x under x 7→ x2

2x−1 .)
Denote by U the domain in Pxk within W (r1) and by V the domain in Pxk within W (r2).

Under the mapping Nk, each of the domains U1, · · · ,Um covers U with some degree
l1, · · · , lm and each of the domains V1, · · · ,Vm covers V with degree p1, · · · , pm. Then, the
following is true:

Proposition 8.3.1.

m

∑
i=1

li = 2k,
m

∑
i=1

pi = 2k

Proof: The sum ∑m
i=1 li counts the number of times that U is covered by ∪m

i=1Ui⊂ Px. Since
Px covers Pxk with degree 2k we must have ∑m

i=1 li = 2k. The proof for the second sum is
the same. �

Given a region Ui in W (r1) we will can assign size(Ui) = − li
2k and given a region Vi

in W (r2) we can assign size(Ui) = pi
2k . Where k, li, and pi are as in the above proposition.

This is well defined because given k1 and k2 as above, the li corresponding to k1 and the li
corresponding to k2 will differ by 2k1−k2 .

Corollary 8.3.2. Suppose that W0 ∩ Px divides Px into 2m simply connected domains:
U1, · · · ,Um ⊂W (r1) and V1, · · · ,Vm ⊂W (r1). Then:

m

∑
i=1

size(Ui) =−1,
m

∑
i=1

size(Vi) = 1
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γi
Ui

Figure 8.2: Example of a curve γi surrounding a simply connected domain Ui in some
vertical line. In the next chapter we will prove that curves of this form are non-trivial in
H1(W0) (or H1(W1)) by linking these curves with an object that is disjoint from W0 (or from
W1.)

8.4 Many loops in W0 and W1

Given a region Ui or Vi in some vertical line Px let γi be the curve in W0 bounding Ui. Since
γi is a subset of W0∩Px, it is a piecewise smooth curve. (This will be useful later when we
want to consider the class [γi] ∈ H1(W0).)

In the next chapter we will see that size(Ui) for such a region equals the linking number
for γi with an appropriate geometric object in X ∞

l . (This object will remain mysterious for
the moment.) These linking numbers will descend to the homology H1(W0), which will
allow us to show that if there is an intersection between W0 and C(x,y) = 0, then H1(W0)
is infinitely generated. The similar statement about simply connected domains in vertical
lines in Xr will be true as well.



Chapter 9
Linking numbers
The classical scenario is the linking of two oriented loops c and d in S3. The linking
number lk(c,d) ∈ Z is found by taking any oriented surface Γ with oriented boundary c
and defining lk(c,d) to be the signed intersection number of Γ with d. For example, in the
following diagram lk(c,d) = +2.

c

d

Γ

To see that lk(c,d) is well-defined in S
3, we can express this computation in terms of

homology, letting c and d be one-cycles and Γ a 2-chain with ∂Γ = c. (Because H1(S3) = 0,
[c] = 0, so the existence of Γ is guaranteed.) We can then consider [d] ∈ H1(S3,c) and
[Γ] ∈ H2(S3,c). We define lk(c,d) = [Γ] · [d], where · indicates the intersection product on
H∗(S3,c).

Suppose that Γ′ is some other 2-chain with ∂Γ′ = c, then ∂(Γ− Γ′) = [c]− [c] = 0,
and so (Γ−Γ′) forms a homology class in H2(S3). Since H2(S3) = 0 we must have that
[Γ−Γ′] = 0 and so the intersection number is [Γ−Γ′] · [d]= 0. Therefore: [Γ] · [d]= [Γ′] · [d],
giving that lk(c,d) is well defined.

The two properties that we used were that [c] = 0, so that there are 2-chains Γ with
∂Γ = 0 and that H2(S

3) = 0 to check that the linking number is independent of the choice
of Γ.

To summarize: if M is a 3-dimensional manifold with H2(M) = 0, let Z1(M) be the
1-cycles in M and B1(M)⊂ Z1(M) be the 1-boundaries in M. Given a 1-cycle d, let Bd

1(M)
be the 1-boundaries in M that are disjoint from d. Then, we have homomorphism, which
we write

lk(·,b) : Bd
1(M)→ Z

defined by lk(c,d) = [Γ] · [d], where Γ is a 2-chain with ∂Γ = c. Since we require that c be
disjoint from d, there is no ambiguity about this intersection number.

In this chapter we will build up the tools necessary to define some notion of linking in
X∞

l , which has an infinitely generated H2(X∞
l ). Making linking numbers well defined in this

space will be a major difficulty that we overcome in the next few sections.
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9.1 Linking in manifolds M with non-trivial intermediate homology.

Suppose that M = S
2×S

1, so that H2(M) = Z
{[S2]}. Let c be the equator of S

2 crossed with
some point on p ∈ S1 and let d be the copy of S1 above say the north pole of S2. Figure 9.1
shows these curves in S2× [−1,1], and it is left to the reader to identify the endpoints of
each interval, in order to visualize S2×S1.

d

c

d′

c

+

-

Figure 9.1: Linking in a weird space.

Let’s see that lk(c,d) is not well defined: Suppose that Γ1 is the northern hemisphere
of S2 crossed with p and that Γ2 is the southern hemisphere of S2 crossed with p. Choose
orientations for ∂Γ1 = c and ∂Γ2 = c.

Since Γ1 has intersection number 1 with d and Γ2 has intersection number 0 with d, we
see that lk(c,d) is not well-defined! This follows from the simple reason [S2] · [d] = 1.

Let d′ be the copy of S1 above say the north pole of S2 minus the copy of S1 above the
south pole of S2. This way, [d′] · [S2] = 0 so that Γ1 · [d′] = Γ2 · [d′] for any Γ1 and Γ2 having
boundary c. In this case, lk(c,d ′) = +1.

This is the same as showing that the curve c is homologically non-trivial in S2×S1 with
the two curves forming [d′] removed: [c] 6= 0 ∈ H1(S

2×S1−d′).

Linking kernel: LZp(M)

Suppose that M is a 3-dimensional manifold with H2(M) 6= 0. As in the previous ex-
ample, we can define a linking number, so long as the second argument d has [d] ·σ = 0 for
every σ ∈ H2(M). We define LZ1(M) ⊂ Z1(M) to be the sub-module of Z1(M) with this
property. As before, given d ∈ LZ1(M), we denote by Bd(M) the 1-boundaries in M that
are disjoint from d. Then, the map:

lk(·,d) : Bd
1(M)→ Z

given by lk(c,d) = Γ ·d is well-defined, i.e. independent of Γ.
In a manifold M of dimension m, one can define a linking number between boundaries

c of dimension n and cycles d of dimension p so long as n + p = m− 1. If Hn+1(M) = 0,
lk(c,d) = Γ ·d for an n+1-chain Γ with ∂Γ = c provides a well-defined linking number.

Otherwise, one must make a similar restriction as above restricting to d ∈ LZp(M) sat-
isfying [d] ·σ = 0 for every σ ∈Hp+1(M). We will then denote by Bd

n(M) the n-boundaries
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in M that are disjoint from d. We get

lk(·,d) : Bd
n(M)→ Z.

9.2 Linking kernel for X∞
l

Recall from Chapter 4 that except in the exceptional situation when one of the inverse
images of the points of indeterminacy is on the critical locus,

H2(X
∞
l ) = Z

{[V ]}⊕


 M

Nk(x)=p

Z
{[Ex]}


⊕


 M

Nk(x)=q

Z
{[Ex]}




Recall from Proposition 5.3.6 that each exceptional divisor [Ei] has [Ei] · [Ei]≤−1 and
that [V ] · [V ] = 0 so that if ω = a0[V ]+a1[E1]+ · · ·an[En], and satisfies ω ·σ = 0 for every
σ ∈ H2(X∞

l ) ai = 0 for all i 6= 0, that is, ω = a0[V ].
In summary, LZ2(X∞

l ) consists of only the 2-cycles that are homologous to multiples
of [V ]. The particular curves that we will consider here, i.e. the γi, have linking number 0
with [V ], since each of these curves is entirely within some vertical line. So, to show that
all of these curves are non-trivial, we will need to look elsewhere for something to link
with. We will do this by extending the definition of linking to linking with “positive closed
currents”.

9.3 Linking with currents

Just as distributions are defined as the topological dual of smooth functions with compact
support, currents are the topological dual of smooth differential forms of compact support.
In fact, naturally, the dual of A0

c(M) is the space of n-currents (or generalized n-forms), not
generalized functions as is usually stated.

More precisely, if we let An−q
c (M) denote the (n−q)-forms with compact support on a

smooth manifold M, the linear maps T : An−q
c (M)→C that are continuous are the currents

of degree q (or, as some say, the currents of dimension n−q) and are denoted by D q(M).
If M has a complex structure, one defines the currents of bi-degree (p,q), denoted D p,q(M)
as the topological dual of the (n− p,n−q)-forms with compact support An−p,n−q

c (M).
The reader who would like more background on currents should consult [24, section

3.1 and 3.2], or one articles on complex dynamics which outlines the basic properties of
currents and their use in dynamics, [36, 48, 47].

Throughout the remainder of this section we will only be interested in currents on 2-
dimensional complex surfaces and complex curves.

We will be interested in a very small sub-space of currents, the closed, positive (1,1)
currents T which, according to the ddc-Poincaré Lemma, are locally expressed as T =
ddcφ for a plurisubharmonic function φ.
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Reminder: An upper semicontinuous function g : U → R∪{−∞} is said to be subhar-
monic if for every x ∈ U and every r > 0 for which B̄(x,r) ⊂ U , and for every real val-
ued function h on B̄(x,r) that is harmonic on B(x,r) and satisfies h ≥ g on ∂B(x,r), it
holds that h ≥ g on B(x,r). Given a domain Λ ⊂ Cn, an upper semicontinuous function
g : Λ→ R∪{−∞} is said to be plurisubharmonic if for every line L, f |L is subharmonic
on Λ∩L.

We will try to avoid using many details about plurisubharmonic functions, but we will
occasionally need to use them to describe the geometry of closed-positive currents. Denote
by Z1,1

+ (M) the closed-positive (1,1) currents on M. Given a current T ∈ Z1,1
+ (M), and a

piecewise smooth 2-chain σ having ∂σ disjoint from the support of T , we have the pairing:

C2(M)×Z1,1
+ (M)→ R

defined by (σ,T ) =
R

σ T. It is a well known result that this depends only on the homology
class of σ.

Denote by LZ1,1
+ (M) the space of positive closed currents T having

R

σ T = 0 for every
σ ∈ H2(M). Given T ∈ LZ1,1

+ (M), let BT
1 (M) be the 1-boundaries in M that are disjoint

from the support of T . We can define a linking number with respect to T by:

lk(·,T) : BT
1 (M)→ R

by lk(c,T ) =
R

Γ T , where Γ is any 2-chain with ∂Γ = c. Since T ∈ LZ1,1
+ (M), we have that

R

Γ T =
R ′

Γ T for any other Γ′ with ∂Γ′ = c since
R

Γ−Γ′ T = 0. Since c is disjoint from the
support of T , there are no problems.

9.4 Finding an element of LZ1,1
+ (X∞

l )

In this section, we will find an element of LZ1,1
+ (X∞

l ) by successively determining elements
of LZ1,1

+ (Xl),LZ1,1
+ (X0

l ),LZ1,1
+ (X1

l ),LZ1,1
+ (X2

l ), · · · where X j
k is the space Xk after having

completed the blow-ups at level j. In the limit, we will find an element of LZ1,1
+ (X∞

l ),
which in the next section will be useful for linking.

Let L1 be the invariant line that goes through (0,0) and (1,0), i.e. y = 0 and L2 be the
invariant line that goes through (0,1) and (1,1−B), i.e. y+Bx−1 = 0. (To remember the
indexing, think that L1 contains r1 and L2 contains r2.) Note that we can use the Poincaré-
Lelong formula (see for example [24, p. 388] or [48] to express the fundamental classes of
these lines as positive-closed currents:

[L1] =
1

2π
ddc log |y|, [L2] =

1
2π

ddc log |y+Bx−1|

Notice that each of these lines intersects any given vertical line P with intersection number
1, or equivalently that

Z

P

[L1] = 1 =
Z

P

[L2]
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Hence, because [V ] is the sole generator of H2(Xl) we have that [L2]− [L1] ∈ LZ1,1
+ (Xl).

Now, suppose that we want to find an element of LZ1,1
+ (X0

l ), that is, a positive-closed
1-1 current that evaluates to 0 on every element of H2(X0

l )∼= Z
{[V ],[Ep],[Eq]}. In fact, we also

have that:
Z

Ep

[L1] = 1 =
Z

Ep

[L2]

Z

Eq

[L1] = 0 =
Z

Eq

[L2]

So, in fact [L2]− [L1] ∈ LZ1,1
+ (X0

l )
However, this luck will not continue. Let z be one of the two preimages-images of p

that is in the invariant line L1. Since L1 and L2 intersect at the single point p, z /∈ L2. This
results in the fact that

Z

Ez

[L1] = 1 6= 0 =

Z

Ez

[L2].

So that [L2]− [L1] /∈ LZ1,1
+ (X1

l ).
Consider the inverse images under N of the lines L1 and L2. The Poincaré-Lelong

formula gives

[N−1(L1)] =
1

2π
ddc log |N2(x,y)|,

[N−1(L2)] =
1

2π
ddc log |N1(x,y)+B ·N2(x,y)−1|

where N1(x,y) and N2(x,y) are the first and second components of the Newton map N.
Let’s check that [N−1(L2)]− [N−1(L1)] ∈ LZ1,1

+ (X1
l ).

This is slightly easier to prove if we instead work with [N−2(L1)] and [N−2(L2)], the
second inverse images of L1 and L2.

In general, if we denote by Nk
1(x,y) and Nk

2(x,y) are the first and second coordinates of
N2, then:

[N−k(L1)] =
1

2π
ddc log |Nk

2(x,y)|,

[N−k(L2)] =
1

2π
ddc log |Nk

1(x,y)+B ·Nk
2(x,y)−1|

Before proceeding, we will need the following lemma:

Lemma 9.4.1. For every k ≥ 0 we have
Z

V
[N−k(L1)] =

Z

V
[N−k(L2)]

Proof: The k-th inverse images N−k(L1) and N−k(L2) both have degree 2k in y, so they
each intersect a generic vertical line exactly 2k times. This intersection number coincides
with the integrals. �
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Suppose that Ez is one of the exceptional divisors in X 1
l . From Proposition 5.2.1 we

know that N l induces a ramified covering from Ez to V = P1/(B(2−B)) of some degree d
(which is possibly 0) where l = 1 or l = 2. Then we can compute the following:

Z

Ez

[N−2(L1)] =
Z

Nl(Ez)
[N2−lL1] = d

Z

V
[N2−lL1]

Z

Ez

[N−2(L2)] =
Z

Nl(Ez)
[N2−lL2] = d

Z

V
[N2−lL2]

and these are both equal because
R

V [N2−lL1] =
R

V [N2−lL2] by Lemma 9.4.1
Since H2(X1

l ) is generated by the fundamental classes of V , Ep, Eq, and those intro-
duced at the inverse images of p and of q, we conclude that [N−2(L2)]− [N−2(L1)] ∈

LZ1,1
+ (X1

l ).
There was nothing special about this situation; it generalizes to give the following

proposition.

Proposition 9.4.2. [N−(k+1)(L2)]− [N−(k+1)(L1)] ∈ LZ1,1
+ (X k

l )

Proof Let Ez any one of the exceptional divisors in X k
l . Using Proposition 5.2.1, there is

some d and some l≤ k+1 so that N l maps Ez to V by a ramified cover of degree d (possibly
with d = 0.) Then, just as in the discussion above:

Z

Ez

[N−(k+1)(L1)] =
Z

Nl(Ez)
[N−(k+1)+lL1] = d

Z

V
[N−(k+1)+lL1]

Z

Ez

[N−(k+1)(L2)] =
Z

Nl(Ez)
[N−(k+1)+lL2] = d

Z

V
[N−(k+1)+lL2]

and these are both equal, using Lemma 9.4.1.
Since Hk(X1

l ) is generated by the fundamental classes of V and the fundamental classes
of each of the exceptional divisors Ez we conclude that [N−(k+1)(L2)]− [N−(k+1)(L1)] ∈

LZ1,1
+ (X k

l ). �

Fundamental classes such as [N−k(L2)] and [N−k(L1)] probably seem quite abstract at
the moment. Because the inverse images of these lines are varieties in X ∞

l , which is a rather
complicated 2 complex-dimensional manifold, they are rather difficult to visualize. One
can actually see something in R

2: In the top of Figure 9.2 we show N−1(L1) (in gray) and
N−1(L2) (in black) in R2, with B = −0.3. In the bottom of Figure 9.2 we show N−2(L1)
(in gray) and N−2(L2) (in black). The points where these two curves cross are at the points
in indeterminacy, which are labeled. We hope that this will give the reader some idea about
these inverse images.

Since X∞
l = lim
←−

(X k
l ,π) and because ([N−(k+1)(L2)]−[N−(k+1)(L1)]∈LZ1,1

+ (X k
l ) it seems

that a limit as k→ ∞ of [N−(k+1)(L2)]− [N−(k+1)(L1)] will be an element of LZ1,1
+ (X∞

l ).
We must be careful to make clear what limit we are taking, but we do so below.
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Figure 9.2: Newton map in R2, B = −0.3. Top: N−1(L2) in black and N−1(L1) in gray.
Bottom: N−2(L2) in black and N−2(L1) in gray.



67

First, we choose to normalize [N−(k+1)(L2)] and [N−(k+1)(L1)] so that their integrals
over V are 1. By dividing by the degrees, we define:

λk
1 =

1
2k [N−k(L1)] =

1
2π

ddc 1
2k log |Nk

2(x,y)|,

λk
2 =

1
2k [N−k(L2)] =

1
2π

ddc 1
2k log |Nk

1(x,y)+B ·Nk
2(x,y)−1|

Both λk
1 and λk

2 are still positive closed currents because we have only divided by 2k.
We let

λ1 = lim
k→∞

λk
1 =

1
2π

ddc lim
k→∞

1
2k log |Nk

2(x,y)|,

λ2 = lim
k→∞

λk
2 =

1
2π

ddc lim
k→∞

1
2k log |Nk

1(x,y)+B ·Nk
2(x,y)−1|.

We will first check that these limits exist and define positive-closed 1-1 currents, and
then we will show that λ2−λ1 ∈ LZ1,1

+ (X∞
l ).

Proposition 9.4.3. The limits

G1(x,y) = lim
k→∞

1
2k log |Nk

2(x,y)|

G2(x,y) = lim
k→∞

1
2k log |Nk

1(x,y)+B ·Nk
2(x,y)−1|

exist and are plurisubharmonic functions in the basins of attraction W (r1) and W (r2),
respectively. Hence, λ1 = 1

2π ddcG1(x,y) and λ2 = 1
2πddcG2(x,y) are positive closed 1-1

currents on X∞
l , that is: λ1,λ2 ∈ Z1,1

+ (X∞
l ).

Proof: To see that G1(x,y) and G2(x,y) are well-defined and plurisubharmonic, we will
show that G1(x,y) and G2(x,y) coincide with the potential functions that were described
in [35, p. 21] and [36]. We will do this for G1(x,y), and leave necessary modifications for
G2(x,y) to the reader.

Supposing that (0,0) is a root, Hubbard and Papadopol [35] consider the limit

GHP(x,y) = lim
k→∞

1
2k log ||Nk(x,y)||

which they show exists and is a plurisubharmonic function on the basin of (0,0). The
reader should notice that GHP does not depend on the choice of the norm || · || that is
used to define it because any two different norms on a finite dimensional vector space
are equivalent by a finite multiplicative constant, which is eliminated by the multiplicative
factor of 1

2k . Therefore, we can use the supremum norm.
We will show that G1 = GHP on W (r1), to see that G1 is plurisubharmonic.
If |Nk

2(x,y)| ≥ |N
k
1(x,y)| for all (x,y) as k→∞, then the supremum norm coincides with

|Nk
2(x,y)| giving G1(x,y) = GHP(x,y). This condition is equivalent to the condition:

lim
k→∞

1
2k log

∣∣∣∣
Nk

2(x,y)

Nk
1(x,y)

∣∣∣∣≥ 0. (9.1)
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which will now show is a consequence of a standard result from the dynamics of one
complex variable.

In [35], the authors perform blow-ups at each of the four roots, and observe that the
Newton map N induces rational functions of degree 2 on each of the exceptional divisors
Er1,Er2,Er3, and Er4 . Let’s compute the rational function s : Er1 → Er1 . In the coordinate
chart m = y

x , the extension to Er1 is obtained by:

s(m) = lim
x→0

mx(Bx2 +2mx2−Bx−mx)
x2(Bx+2mx−1)

= lim
x→0

m(Bx+2mx−B−m)

Bx+2mx−1 = m(B+m)

since x = 0 on Er1 .
Since condition 9.1 is a limit, it suffices to check it in an arbitrarily small neighborhood

of the origin. In a small enough neighborhood, we can replace Nk
2 (x,y)

Nk
1 (x,y)

with s
(

x
y

)
obtaining

lim
k→∞

1
2k log

∣∣∣∣
Nk

2(x,y)

Nk
1(x,y)

∣∣∣∣= lim
k→∞

1
2k log |sk(m)|= Gs(m). (9.2)

where Gs(m) is the standard Green’s function from one variable complex dynamics associ-
ated to the polynomial s(m). This last equality is actually a delicate but well-known result
that was proved by Brolin [12]. A more friendly proof is available in [48, Section 9].

Having the last equality, it is a standard result, for example see Milnor [43] pages 95
and 96, that Gs(m) = 0 on the filled Julia set K(s) and that Gs(m) > 0 outside of K(s).

This justifies the replacement of the supremum norm from GHP by |Nk
2(x,y)|, and hence

gives that G1(x,y) = GHP(x,y). �

Corollary 9.4.4. Let s : Er1 → Er1 be the polynomial induced by the Newton map N and let
Gs : Er1 →R be it’s Green’s function. We have:

G1(x,y) = Gs

(y
x

)
− log

∣∣∣∣
1
x

∣∣∣∣ .

Proof: This just comes from the algebra:

G1(x,y) = lim
k→∞

1
2k log |Nk

2(x,y)|

= lim
k→∞

1
2k

(
log
∣∣∣∣
Nk

2(x,y)

Nk
1(x,y)

∣∣∣∣+ log |Nk
1(x,y)|

)

= Gs

(y
x

)
+ lim

k→∞

1
2k log |Nk

1(x,y)|

= Gs

(y
x

)
+ log |x|= Gs

(y
x

)
− log

∣∣∣∣
1
x

∣∣∣∣

Because Nk
1(x,y) = x2

2x−1 is conjugate to x 7→ x2 near x = 0. �
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9.5 Nice properties of λ2 and λ1:

In this section, we will prove some of the nice properties if λ2 and λ1. We will finish the
section by showing that λ2−λ1 ∈ LZ+

1,1.

Lemma 9.5.1. (Normalization) Suppose that Px is a vertical line that is divided into ex-
actly two simply connected domains U ⊂W (r1) and V ⊂W (r2) by W0. Then:

Z

V
λ2 = 1 =

Z

U
λ1 and

Z

U
λ2 = 0 =

Z

V
λ1

Proof: Because Nk
2(x,y) and BNk

1(x,y) + Nk
2(x,y)− 1 are of degree 2k in y, both λk

1
and λk

2 are normalized to that
R

V λk
1 = 1 and

R

V λk
2 = 1. Since the potential for λk

1 and λk
2

converge uniformly on compact subsets to λ1 and λ2, we have
Z

U
λ1 =

Z

U
lim
k→∞

λk
1 = lim

k→∞

Z

U
λk

1 = lim
k→∞

1 = 1.

and similarly for λ2. The proof that
R

U λ2 = 0 =
R

V λ1 is identical. �

Corollary 9.5.2. Suppose that Px is vertical line, then
R

Px
λ2 = 1 =

R

Px
λ1.

The currents λ1 and λ2 have nice invariance properties:

Lemma 9.5.3. (Invariance) Suppose that Γ ∈ Z2(X∞
l ), then

Z

N(Γ)
λ1 = 2 ·

Z

γ
λ1

Z

N(Γ)
λ2 = 2 ·

Z

γ
λ2

Proof The proof is the same for λ1 and λ2, so will will show it for λ1:
Z

N(Γ)
λ1 =

Z

N(Γ)
lim
k→∞

1
2k log |Nk

1(x,y))|=
Z

Γ
lim
k→∞

1
2k log |Nk+1

1 (x,y))|

=
Z

Γ
2 lim

(k+1)→∞

1
2k+1 log |Nk+1

1 (x,y))|= 2 ·
Z

γ
λ1

�

Proposition 9.5.4. (Support disjoint from W0) There is a neighborhood Θ of W0 in X∞
l

which is disjoint from the support of λ1 and disjoint from the support of λ2.

Proof: By construction, λ1 has support in W (r1) and λ2 has support in W (r2). We will find
a neighborhood, which we also call Θ, of W0 in W (r1) that is disjoint from the support of
λ1. Clearly similar methods will work in W (r2) and the desired neighborhood is the union
of the two.

Recall from Corollary 9.4.4 that

G1(x,y) = Gs

(y
x

)
− log

∣∣∣∣
1
x

∣∣∣∣ ,
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where Gs is the Green’s function associated to the polynomial s : Er1 → Er1 induced by N
at r1. Recall that s(m) = m(B + m) in the coordinates m = x

y on Er1 , so that m = ∞ is a
superattracting fixed point. (This is the standard situation for a quadratic polynomial.)

It is a standard result from one-variable dynamics, for example see [43] p. 96, that Gs

is harmonic outside of the Julia set J(s). In particular, Gs is harmonic in a neighborhood of
∞ (not including ∞). A related standard result that Gs has the singularity

G(m) = log |m|+O(1) as m→ ∞

We check that this singularity exactly cancels with− log
∣∣1

x

∣∣ coming from G1(x,y) = Gs
( y

x

)
−

log
∣∣1

x

∣∣:

G1(x,y) = log
∣∣∣
y
x

∣∣∣− log
∣∣∣∣
1
x

∣∣∣∣+O(1) as
∣∣∣
y
x

∣∣∣→ ∞

= log |y|+O(1) as
∣∣∣
y
x

∣∣∣→ ∞

Therefore, G1(x,mx) is harmonic on a neighborhood U of m = ∞, including the point ∞.
Choose θ > 0 so that if |m|> θ, then G1(x,mx) is harmonic.

Let Θ0 = {(x,y) ∈W (r1) such that | yx | > θ}. This is the open cone of points in W (r1)
with slope to the origin greater than θ. Since the invariant circle S0 is above m = ∞, Θ0 is
a neighborhood of S0 (within W (r1).)

By construction,

Θ =
∞

[

n=0
N−n(Θ0)

will be invariant under N and open. Because Θ0 is disjoint from the support of λ1, the
invariance properties for λ1 from Lemma 9.5.3 give that all of Θ must be disjoint from the
support of λ1.

Finally, since Θ0 contains a neighborhood of S0, and both W0 and Θ are invariant under
N, Θ forms an open neighborhood of W0. �

Corollary 9.5.5. Given any piecewise smooth chain σ ∈W0, we have that
R

σ λ1 = 0 and
R

σ λ2 = 0.

Proposition 9.5.6. λ1−λ2 ∈ LZ1,1
+ (X∞

l )

Proof: This proof will be along the lines of the proof from Proposition 9.4.2, but will be
even simpler, using the invariance of λ1 and λ2 shown in Lemma 9.5.3.

An element of H2(X∞
l ) is a linear combination of the fundamental class [V ] with a finite

number of fundamental classes of exceptional divisors Ez. By Corollary 9.5.2, we have
R

V λ1 =
R

V λ2.
Any exceptional divisor Ez was created during the blow-ups at some level k, and using

Proposition 5.2.1 there is some l so that N◦(k+1) maps Ez to V = P1/(B(2−B)) by a ramified
covering mapping of degree l, (possibly l = 0). Then:

Z

Ez

λ1 =
l

2k

Z

V
λ2 =

l

2k

Z

V
λ2 =

Z

Ez

λ1
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using that
R

V λ1 =
R

V λ2. Hence
R

Ez
(λ2−λ1) = 0 for any exceptional divisor Ez.

Since an element of H2(X∞
l ) is a linear combination of the fundamental class [V ] with

a finite number of fundamental classes of exceptional divisors Ez, we have shown that
λ2−λ1 ∈ LZ1,1

+ (X∞
l ). �

9.6 Linking with currents in X∞
l

We have infinitely many cycles γi in W0 and we now have (λ2− λ1) ∈ LZ1,1
+ (X∞

l ) with
which we can try to link them.

Proposition 9.6.1. Suppose that γi is a curve in a vertical line bounded by a simply con-
nected domain Ui. Then:

lk(γi,λ2−λ1) = size(Ui)

Proof of Proposition 9.6.1:
This will follow easily from Lemma 9.5.1 and the invariance properties of λ2 and λ1

that were proved in Lemma 9.5.3.
Recall that size(Ui) is defined as ± li

2k where k is such that Nk maps to a vertical line Px

that is divided by W0 into only two domains U ⊂W (r1) and V ⊂W (r2) and where li is the
degree of this mapping to U or V . The sign − if Ui is mapped to U and + if Ui is mapped
to V . Without loss in generality, suppose that Ui is mapped to U , and hence size(Ui) < 0.
Using Lemma 9.5.3 we have that:

Z

Ui

λ2−λ1 =
1
2k

Z

Nk(Ui)
λ2−λ1 =

1
2k

Z

liU
−λ1 = −

li
2k

Z

Ui

λ1 =−
li
2k = size(Ui)

where we are using that
R

U λ2 = 0 and
R

U λ1 = 1. �

Recall from Chapter 7 that W0 always intersects the critical value parabola C and from
Chapter 8 that such an intersection leads to sequences of vertical lines that are divided
into arbitrarily many simply connected domains. Hence, there are always regions Ui hav-
ing |size(Ui)| arbitrarily small, but non-zero. Consequently, there are always γi ∈ B1(W0)
having |lk(γi,λ2−λ1)| arbitrarily small, but non-zero:

Proposition 9.6.2. The image of the homomorphism:

lk(·,λ2−λ1) : Bλ2−λ1
1 (X∞

l )→ R

contains elements of arbitrarily small, but non-zero, absolute value.
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9.7 H1(W0) is infinitely generated.

Since H1(X∞
l ) = 0, every 1-cycle in X ∞

l is in fact a 1-boundary in X ∞
l . In particular,

Z1(W0) ⊂ B1(X∞
l ). By Lemma 9.5.4, the support of λ2− λ1 is disjoint from W0, giving

that Z1(W0)⊂ Bλ2−λ1
1 (X∞

l ). Hence, we can restrict lk(·,λ2−λ1) to 1-cycles in W0:

lk(·,λ2−λ1) : Z1(W0)→ R

Proposition 9.7.1. For every γ ∈ Z1(W0), lk(γ,λ2−λ1) depends only on [γ] ∈ H1(W0). In
other words, the linking number descends to H1(W0):

lk(·,λ2−λ1) : H1(W0)→ R

Proof: Suppose that γ1−γ2 = ∂σ, with σ ∈C2(W0). since the support of λ2−λ1 is disjoint
from W0,

R

σ λ2−λ1 = 0. Hence, lk(γ1,λ2−λ1) = lk(γ1,λ2−λ1). �

Corollary 9.7.2. The image of the homomorphism

lk(·,λ2−λ1) : H1(W0)→ R

contains elements of arbitrarily small, but non-zero, absolute value.

This gives us our desired result:

Corollary 9.7.3. The homology group H1(W0) is infinitely generated.

Recall the Mayer-Vietoris exact sequence 6.5 from Chapter 6:

H2
(

W (r1)
)
⊕H2

(
W (r2)

)
→ H2(X

∞
l )

∂
−→ H1(W0)→H1

(
W (r1)

)
⊕H1

(
W (r2)

)
→ 0

If Image(∂) = 0, or even if we knew that |size(∂(σ))| were bounded away from 0 for every
σ ∈H2(X∞

l ), we would be able to conclude that H1
(

W (r1)
)

and H1
(

W (r2)
)

are infinitely
generated. However, this is not the case.

Proposition 9.7.4. There are σ ∈ H2(X∞
l ) with |lk(∂(σ),λ2− λ1)| arbitrarily small, but

non-zero.

Proof: For every k, there exists some exceptional divisor E having Nk : E→V an isomor-
phism. This is easy to see for generic parameter values B ∈ S. In this case, any exceptional
divisor at a (k−1)-st inverse image of p will have this property, since, for generic B there
is a single exceptional divisor above each point that we have blown up, and N : Ez→ EN(z)
is always an isomorphism.

For the values of B /∈ S, which are non-generic, there may be many blow-ups done at
each (k− 1)-st inverse image of p. So, we take a detailed look at the sequence of blow-
ups from section 5.1 that was used to create X k−1

l from X k−2
l . One must check that for

each exceptional divisor E i
N(z) that occurs in the sequence of blow-ups at N(z), there is



73

an exceptional divisor in the sequence of blow-ups at z that maps isomorphically to E i
N(z).

Using this fact, one can always choose a sequence of exceptional divisors starting with Ep,
and working backward to find an exceptional divisor E above some (k−1)-st inverse image
of p with the property that Nk−1 : E→ Ep is an isomorphism. Since N : Ep→V is always
an isomorphism, E is the desired exceptional divisor.

Because Nk maps E isomorphically to V , it maps ∂([E]) to ∂([V ]). We can use the
invariance property from Lemma 9.5.3 to check that

lk(∂([E]),λ2−λ1) =
1
2k lk(∂([V ]),λ2−λ1) =

1
2k .

� Proposition 9.7.4.

9.8 H1
(

W (r1)
)

and H1
(

W (r2)
)

are infinitely generated.

The following idea will allow us to show that H1
(

W (r1)
)

and H1
(

W (r2)
)

are infinitely
generated, despite the fact that |lk(∂(σ),λ2−λ1)| can be arbitrarily small, but non-zero, for
σ ∈ H2(X∞

l ).
Recall from Proposition 4.1.1 that N has a symmetry of reflection about the line Bx +

2y−1 = 0 which exchanges the basins of attraction. Denote this involution by τ : X ∞
l →X∞

l .

Even and odd parts of Homology:
Notice that τ induces an involution τ∗ on H∗(X∞

l ),H∗(W0), and H∗(W (r1))⊕H∗(W (r2)).
Every homology class σ will have τ2

∗(σ) = σ and consequently the eigenvalues of σ are
±1.

We say that a homology class σ is even if it is in the eigenspace of τ∗ corresponding
to eigenvalue +1, and we say that σ is odd if it is in the eigenspace of τ∗ corresponding to
eigenvalue −1.

Because the Mayer-Vietoris exact sequence commutes naturally with induced maps, we
have a decomposition of the sequence 6.5 into even and odd parts:

(H2(W (r1))⊕H2(W (r2)))
ev→ Hev

2 (X∞
l )

∂
−→ Hev

1 (W0)→ (H1(W (r1))⊕H1(W (r2)))
ev→ 0

(H2(W (r1))⊕H2(W (r2)))
od→ Hod

2 (X∞
l )

∂
−→ Hod

1 (W0)→ (H1(W (r1))⊕H1(W (r2)))
od→ 0

We will only need the odd part of the homology.
The involution τ exchanges the currents λ2 and λ1:

Lemma 9.8.1. If σ is some piecewise smooth chain, then:
Z

σ
λ2 =

Z

τ(σ)
λ1 and

Z

σ
λ1 =

Z

τ(σ)
λ2. (9.3)
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Proof:
Recall the definition of λ2 and λ1:

λ1 =
i
π

∂∂̄ lim
k→∞

1
2k log |Nk

2(x,y)|,

λ2 =
i
π

∂∂̄ lim
k→∞

1
2k log |Nk

1(x,y)+B ·Nk
2(x,y)−1|.

Since precomposition with τ exchanges the line Bx + y− 1 with the line y = 0, clearly
Equation 9.8.1 holds. �

Corollary 9.8.2. For every [γ] ∈ H1(W0) we have:

lk(γ,λ2−λ1) =−lk(τ(γ),λ2−λ1)

Proof:
Suppose that σ is a piecewise smooth 2-chain with ∂σ = γ. Then we certainly have
∂(τ(σ)) = τ(γ). Lemma 9.8.1 gives:

lk(γ,λ2−λ1) =

Z

σ
λ2−λ1 =

Z

τ(σ)
λ1−λ2

= −

Z

τ(σ)
λ2−λ1 =−lk(τ(γ),λ2−λ1)

�

Proposition 9.8.3. If γ ∈ Hod
1 (W0) is in the image of the boundary map ∂ : Hod

2 (X∞
l )→

Hod
1 (W0), then lk(γ,λ2−λ1) = 0.

We will need the following lemma:

Lemma 9.8.4. For any exceptional divisor Ez we have

∂(τ∗[Ez]) =−τ∗(∂([Ez])) (9.4)

Proof: This proof will depend essentially on the explicit interpretation of the boundary
map ∂ from the Mayer-Vietoris sequence. In the following paragraph we closely paraphrase
Hatcher [28], p. 150:

The boundary map ∂ : Hn(X)→ Hn−1(A∩B) can be made explicit. A class α ∈ Hn(X) is
represented by a cycle z. By appropriate subdivision, we can write z as a sum x+y of chains
in A and B, respectively. While it need not be true that x and y are cycles individually, we
do have ∂x = −∂y since z = x + y is a cycle. The element ∂α is represented by the cycle
∂x =−∂y.

The details of the next two paragraphs depend heavily on Figure 9.3.
We use this explicit interpretation of ∂ to check Equation 9.4. Notice that τ∗[Ez] = [Eτ(z)]

consistent with the orientation that Ez and Eτ(z) have as Riemann surfaces. Therefore we
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V1 ⊂W (r1)

Ez

∂([Ez]) = [∂V1]

Eτ(z)

U1 ⊂W (r1)

∂([Eτ(z)]) =−[∂U2]τ

U2 = τ(V1)⊂W (r2)V2 ⊂W (r2)

Figure 9.3: Showing that ∂(τ∗[Ez]) =−τ∗(∂([Ez])).

have that ∂(τ∗[Ez]) = ∂([Eτ(z)] = [∂U1] = −[∂U2], where U1 is the oriented region of Eτz

that is in W (r1) and U2 is the oriented region of Eτz that is in W (r2).
Similarly ∂([Ez]) = [∂V1] = −[∂V2], where V1 and V2 are Ez ∩W (r1) and Ez ∩W (r2).

Because τ maps Ez to Eτ(z) swapping W (r1) with W (r2) we have:

τ∗(∂([Ez])) = [∂U2] =−∂(τ∗[Ez])

�

Proof of Proposition 9.8.3:
Since elements of the form [Ez]− [τ(Ez)] span Hod

2 (X∞
l ), we need only check that the images

of differences like this under ∂ have 0 linking number:

lk(∂([Ez]− [τ(Ez)],λ2−λ1) = lk(∂([Ez])−∂(τ∗([Ez])),λ2−λ1)
= lk(∂([Ez])+ τ∗(∂([Ez])),λ2−λ1) = 0

The last term is 0 by Lemma 9.8.4. �

Proposition 9.8.5. The image of lk(·,λ2−λ1) : Hod
1 (W0)→ R contains elements of arbi-

trarily small, but non-zero absolute value.

Proof of Proposition 9.8.5:
Recall from Proposition 9.7.2 that we can find 1-cycles γ that have lk(γ,λ2−λ1) arbitrarily
small, but non-zero. Notice that [γ− τ(γ)] is obviously odd, and using Lemma 9.8.4:

lk(γ− τ(γ),λ2−λ1) = lk(γ,λ2−λ1)− lk(τ(γ),λ2−λ1)
= lk(γ,λ2−λ1)+ lk(γ,λ2−λ1) = 2lk(γ,λ2−λ1).

Hence, by choosing γ so that lk(γ,λ2−λ1) is arbitrarily small, but non-zero, we can make
lk(γ− τ(γ),λ2−λ1) arbitrarily small, but non-zero with [γ− τ(γ)] ∈ Hod

1 (W0). �

Figure 9.4 illustrates the proof Proposition 9.8.5.
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U

γ

τ(γ)

τ(U)

Figure 9.4: Diagram illustrating the proof of Lemma 9.8.5.

Recall the last part of the exact sequence on the odd parts of homology:

→Hod
2 (X∞

l )
∂
−→ Hod

1 (W0)
i1∗⊕i2∗−−−−→

(
H1
(

W (r1)
)
⊕H1

(
W (r2)

))od
→ 0

where i1 and i2 are the inclusions W0 ↪→W (r1)and W0 ↪→W (r2) respectively.
As a consequence of Proposition 9.8.3, given any τ ∈

(
H1

(
W (r1)

)
⊕H1

(
W (r2)

))od
we

can define lk(τ,λ2−λ1) = lk(γ,λ2−λ1) for any γ∈Hod
1 (W0) whose image under i1∗⊕ i2∗ is

τ. As a consequence of Proposition 9.8.5 we know that there are τ∈
(

H1

(
W (r1)

)
⊕H1

(
W (r2)

))od

with arbitrarily small |lk(τ,λ2−λ1)|. This proves the the desired result:
Theorem 9.8.6. Let W (r1) and W (r2) be the the closures in X ∞

l of the basins of attraction

of the roots r1 = (0,0) and r2 = (0,1) under the Newton Map N. Then H1
(

W (r1)
)

and

H1
(

W (r2)
)

are infinitely generated.

Recall also:
Corollary 9.8.7. For parameter values B ∈ Ωr, we can replace W (r1) and W (r2) with
W (r1) and W (r2) finding that H1(W (r1)) and H1(W (r2)) are also infinitely generated.

9.9 Linking with currents in Xr

Much of the work in the previous few sections was to overcome the fact that H2(X∞
l ) is

infinitely generated in order to develop well-defined linking numbers. In contrast, H2(Xr)∼=
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Z
{[P]}, so it is relatively easy to find elements in LZ2(Xr).

However, one can also just mimic the work in the previous sections for Xr. If we define
λ3 and λ4 in a similar way as λ1 and λ2 were defined, then:

Proposition 9.9.1. Suppose that γi is a curve in a vertical line bounded by a simply con-
nected domain Ui. Then:

lk(γi,λ4−λ3) = size(Ui)

If W1 intersects the critical value locus C, then W0 divides vertical lines in Xr to arbi-
trarily many simply connected domains, and hence to domains of arbitrarily small size. As
in X∞

l , these linking numbers descend to the homology H1(W1) showing:

Proposition 9.9.2. If W1 intersects the critical value locus C(x,y) = y2 + Bxy + B2

4 x2 −
B2

4 x− y = 0, then H1(W1) is infinitely generated.

Since there is only one generator of H2(Xr), without going to odd and even parts, this
directly gives:

Theorem 9.9.3. If W1 intersects the critical value locus C(x,y) = y2 +Bxy+ B2

4 x2− B2

4 x−

y = 0, then H1
(

W (r3)
)

and H1
(

W (r4)
)

are infinitely generated.

where W (r3) and W (r4) are the closures in Xr of the basins of attraction of roots r3 = (1,0)
and r4 = (1,1−B) under N.

Corollary 9.9.4. For parameter values B ∈ Ωr, we can replace W (r1) and W (r2) with
W (r1) and W (r2) finding that H1(W (r1)) and H1(W (r2)) are also infinitely generated.

This is the last part of the “Main Theorem” from Chapter 4 that we needed to prove. �
Theorem 4.4.1.



Appendix A
The extension of NF to CP

2
Many of the methods used in [35] and some of the details from Chapter 1 of this disser-
tation rely upon extending NF to P2, the complex projective plane. This is easy to do in
either normalization, here we extend in Normalization 2.7. Let (X ,Y,Z) be homogeneous
coordinates on P2. The extension must satisfy the following for Z = 1

NF(X ,Y,1) =

(
2Y X2 +Y 2−2aY −b

4XY −1 ,
2XY 2 +X2−2Xb−a

4XY −1 ,1
)

=

(2Y X2 +Y 2−2aY −b,2XY 2 +X2−2Xb−a,1(4XY −1))

which we can write in homogeneous coordinates as:

NF(X ,Y,Z) =
(2Y X2 +Y 2Z−2aY Z2−bZ3,2XY 2 +X2Z−2XZ2b−aZ3,4XY Z−Z3)

where the subscripts indicate the first and second coordinates. To check that an extension
makes sense, one must see that this defines a continuous map in the two other coordinate
charts (1,y,z) and (x,1,z) on P2. We divide by the first coordinate and by the second
coordinate respectively to find how the mapping 2.8 is defined in these coordinates:

(
1,

2XY 2 +X2Z−2XZ2b−aZ3

2YX2 +Y2Z−2aYZ2−bZ3 ,
4XYZ−Z3

2YX2 +Y2Z−2aYZ2−bZ3

)
=

=


1,

2
(

Y
X

)2
+
(

Z
X

)
−2
(

Z
X

)
b−a

(
Z
X

)3

2
(

Y
X

)
−
(

Y
X

)2 ( Z
X

)
−2
(

Y
X

)(
Z
X

)2
−b
(

Z
X

)3 ,
4
(

Y
X

)(
Z
X

)
−
(

Z
X

)3

2
(

Y
X

)
−
(

Y
X

)2 ( Z
X

)
−2
(

Y
X

)(
Z
X

)2
−b
(

Z
X

)3


 .

Therefore, in the (y,z) coordinates, we have:

NF

(
y
z

)
=

1
2y+ y2z−2ayz2−bz3

(
2y2 + z−2z2b−az3

4yz− z3.

)

Similar work can be done to express NF in the coordinates (x,z), where x = X
Y and z = Z

Y
obtaining

NF

(
x
z

)
=

1
2x+ x2z−2xz2b−az3

(
2x2 + z−2az2−bz3

4xz− z3

)
.
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Appendix B
Proof of Theorem 5.1.1
Let S ⊂ Ω be the set of parameter values B for which no inverse image of the point of
indeterminacy p or the point of indeterminacy q is in the critical value locus C. Recall that
we are especially interested in B ∈ S because for these parameter values the sequence of
blow-ups described in section 5.1 is especially easy to describe.

Theorem 5.1.1 states:

Theorem. The set S is generic in the sense of Baire’s Theorem, i.e. uncountable and dense
in Ω.

This will follow as a corollary to:

Theorem. (Baire) Let X be either a complete metric space, or a locally compact Hausdorf
space. Then, the intersection of any countable family of dense open sets in X is dense.

See Bredon [9], Theorem 17.1 and Corollary 17.3, for example, for a proof.
Proof of Theorem 5.1.1:

Let Sn ⊂ C be the subset of parameter values B for which none of the n-th inverse
images of p or q under N are in the critical value locus C.

Lemma B.0.5. Sn is a dense open set in C

Proof: Let Rn be the set of B for which an n-th inverse image of p is in C and let Tn be the
set of B for which an n-th inverse image of q in C. We will show that Rn and Tn are finite,
showing that Sn = Ω− (Rn∪Tn) is a dense open set.

Lemma B.0.6. For each n, Tn is a finite set.

Proof: In terms of equations, B ∈ Tn if:

y2 +Bxy+
B2

4 x2−
B2

4 x− y = 0, Nn
1 (x,y) =

1
2−B

, Nn
2 (x,y) =

1−B
2−B

(B.1)

has a solution. Here, as in other parts of this paper, Nn
1 and Nn

2 denote the first and second
coordinates of Nn. By clearing the denominators in the second and third equations, con-
dition B.1 can be expressed as the common zeros of 3 polynomials P1(x,y,B), P2(x,y,B),
and P3(x,y,B) in the three variables x,y, and B. We will check that there are only finitely
many solutions to these three polynomials. It is sufficient to check that there is no common
divisor of P1(x,y,B),P2(x,y,B), and P3(x,y,B).

First, notice that P1(x,y,B) = y2 + Bxy + B2
4 x2− B2

4 x− y = 0 is irreducible. There are
many ways to see this, we used the computer algebra system Maple [13].

Hence P1 has a factor in common with P2 or P3 if and only if P1 divides P2 or P3. We
will show that this is impossible by examining the lowest degree terms of P2 and P3. If P1
divides P2 or P3, then the lowest degree term, −y, of P1 must divide the lowest degree term
of P2 or the lowest degree term of P3.
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Let’s check by induction that the lowest degree term of P2 is±1 for every n. To simplify
notation, let an(x,y,B) be the polynomial obtained by clearing the denominators from the
second equation in Equation B.1, specifically for the n-th iterate of N. (I.e. an is P2 for this
specific n.)

By clearing denominators of N1(x,y) = 1
2−B , we find a1(x,y,B) = x2(2−B)− 1(2x−

1) = 2x2−Bx2− 2x + 1, so a1(x,y,B) has constant term ±1. Now suppose that an(x,y,B)
has constant term ±1. By definition, an+1(x,y,B) is obtained by clearing the denominators
of an(N1(x,y),N2(x,y),B) = 0. Because the denominators of both N1(x,y) and N2(x,y)
have constant term±1 and because an(x,y,B) has constant term 1 we find that an+1(x,y,B)
has constant term ±1.

So, P2 has constant term ±1 for every n, hence P1 cannot divide P2, and we conclude
that there are no common factors between P1 and P2.

A nearly identical proof by induction shows that lowest degree term of P3 is also ±1
for each n. Hence P1 does not divide P3, and we conclude that P1 and P3 have no common
divisors.

To see that P2 and P3 have no common divisors, notice that P2(x,y,B) = 0 is an equation
for many disjoint vertical lines, while P3(x,y,B) = 0 stipulates that the n-th image of this
locus has constant y = 0. Since vertical lines are mapped to vertical lines by N, P2 and P3
can have no common factors.

Hence, P1,P2, and P3 are algebraically independent, so they have a finite number of
common zeros, giving that Tn is a finite set. � Lemma B.0.6.

Lemma B.0.7. Rn is a finite set.

Proof: Now we show that Rn, the set of B so that an n-th inverse image of p under N is in
C, is finite. In terms of equations, Rn is the set of B so that:

y2 +Bxy+
B2

4
x2−

B2

4
x− y = 0, Nn

1 (x,y) =
1
B

, Nn
2 (x,y) = 0 (B.2)

has a solution. Let Q1,Q2, and Q3 be the polynomials equations resulting from clearing the
denominators in Equation B.2.

The proof is the same as for Tn except that a different proof is needed to see that Q1
does not divide Q3. An adaptation of the proof that P1 does not divide P3 fails because the
lowest degree term of Q3 has positive degree in y. We will check that Q1 does not divide
Q3 and leave the remainder of the proof to the reader.

The x-axis, y = 0, is one of the invariant lines of N and it intersects the basins W (r1),
W (r3) and the separator Re(x) = 1/2. Therefore it is disjoint from the two basins W (r2)
and W (r4). By definition, Q3(x,y,B) is the equation for the n-the inverse image of the x-
axis. So, for a given B, the locus Q3(x,y,B) = 0 is also disjoint from the two basins W (r2)
and W (r4).

For every B, the critical value parabola C goes through the four roots r1, r2, r3, and r4,
so it intersects all four basins of attraction. By definition, C is the zero locus Q1(x,y,B) =
0. Therefore, if Q1 divides Q3, there is a component of the zero locus Q3(x,y,B) = 0
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intersecting all four basins W (r1), W (r2), W (r3) and W (r4) for every B. This is impossible,
so Q1 cannot divide Q3.
� Lemma B.0.7.

Because Rn∪Tn is finite Sn = Ω− (Rn∪Tn) is an open-dense set.
� Lemma B.0.5.

Since Sn is a dense open set in Ω for each n and S = ∩∞
n=0Sn, so it follows from Baire’s

Theorem that S is uncountable and dense in the parameter space Ω.
� Theorem 5.1.1.



Appendix C
Blow-ups of complex surfaces at a point.
Blow-ups are explained in [24, pp. 182-189 and 473-478] and in the introduction of [30],
where some nice examples are computed. In this dissertation, we will only need blow-ups
of complex surfaces M at individual points.

C.1 Blowing up C
2 at a point

The first situation in which one considers doing blow-ups is to make a rational mapping
R : C

2→ C
2 well defined at a point of indeterminacy. Suppose that R has (0,0) as a point

of indeterminacy. One can try to extend R to the blow up of C2 at (0,0):

C̃
2
(0,0) =

{
(z, l) ∈ C

2×P
1 : z ∈ l

}
(C.1)

where we consider P1 to be the space of directions in C2.
The same definition, but a slightly different perspective, is obtained by considering

C̃2
(0,0) ⊂ C2×P1 as the hypersurface defined by the equations

z1l2 = z2l1 z2l1 = z1l2

where z = (z1,z2) are Euclidean coordinates in C2 and l = [l1, l2] are the corresponding
homogeneous coordinates on P1.

There is a natural projection ρ : C̃2
(0,0) → C2 given by ρ(z, l) = z. The set E(0,0) =

ρ−1((0,0)) is referred to as the exceptional divisor.
A standard check shows that the blow-up is independent of the choose of coordinates,

so the blow-up of a complex surface M at a point z is well-defined.
A rational map R : C

2→C
2 can be lifted to a new rational mapping R̃ : C̃

2
(0,0)−E(0,0)→

C
2 be defining R(x, l) = R(x) for x 6= 0. The exceptional divisor E(0,0) is a closed subset of

C̃2
(0,0) of real-codimension 2, so one can try to extend R̃ by continuity. If the indeterminacy

in R at (0,0) was reasonably tame, R̃ extends to all of E(0,0) by continuity. This happens,
when the definition of R at (0,0) depends only on the direction of approached to (0,0). Oth-
erwise, there will be points of indeterminacy of R̃ on E(0,0) at which R̃ cannot be extended,
and one can try further blow-ups at these points to resolve these new points of indetermi-
nacy. The extension of R̃ to E(0,0) is analytic except at any new points of indeterminacy
because E(0,0) is a space of complex co-dimension 1.

C.2 Examples:

The quickest way to understand blow-ups is to do a few. In this section we work through
some of these easiest cases.
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Example 1. R(x,y) =
(

1, x
y

)
.

The second coordinate of R is indeterminate at (0,0), so we blow up there. It is often
easiest to do computations in local coordinates. Suppose (x,y) are the standard coordinates
on C

2. There are two coordinate charts on C̃
2
(0,0) given by (x,m)→ (x,xm,m) and given by

(m,y)→
(
my,y, 1

m

)
.

In the first chart, we have R̃(x,m) = R(x,xm) =
(
1, x

xm

)
for x 6= 0. Clearly, we can

extend to x = 0 by continuity, defining R̃(0,m) =
(
1, 1

m

)
. In the second chart, we have

R̃(m,y) = R(ym,y) =
(

1, ym
y

)
for y 6= 0. Clearly, we can extend to y = 0 by continuity,

defining R̃(m,0) = (1,m).
Therefor, the extension R̃ : C̃2

(0,0)→ C2 maps E(0,0) isomorphically to the line x = 1.

Example 2. R(x,y) =
(

1+ y
x ,

x
y

)
.

This time, both coordinates of R are indeterminate at (0,0). Computing R̃ in both local
coordinates, we find:

• R̃(x,m) = R(x,xm) =
(
1+ xm

x , x
xm

)
for x 6= 0, which extends by continuity to

R̃(0,m) =
(
1+m, 1

m

)
.

• R̃(m,y) = R(my,y) =
(

1+ y
my ,

my
y

)
for x 6= 0, which extends by continuity to

R̃(m,0) =
(
1+ 1

m ,m
)
.

So, this time R̃ : C̃2
(0,0)→C2 maps E(0,0) to the curve x = 1+ 1

y by isomorphism.

Example 3. R(x,y) = (2x+ y2 +1,2y+1).

This mapping R has no points of indeterminacy in C, but we can still do a blow-up at
(0,0) to see what happens.

• R̃(x,m) = R(x,xm) = (2x+(xm)2 +1,2xm+1) for x 6= 0, which extends by continu-
ity to R̃(0,m) = (1,1).

• R̃(m,y) = R(my,y) = (2my + y2 + 1,2y + 1) for y 6= 0, which extends by continuity
to R̃(m,0) = (1,1).

Because R does not have a point of indeterminacy (0,0) R̃ collapses E(0,0) to the point
R((0,0)) = (1,1).
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Example 4.

Suppose that we have already blown-up C2 at (1,1) obtaining C̃2
(1,1) and the extension

R1 : C̃
2
(1,1)→ C

2 of R(x,y) = (2x+ y2 +1,2y+1).
We can also instead think of R1 as a map from C̃2

(1,1) to C̃2
(1,1), but each of the points

mapped by R to (1,1) becomes a point of indeterminacy. In this case the only inverse
image is (0,0). To resolve the indeterminacy at (0,0) we can blow up again obtaining a
map R2 : C̃2

(1,1),(0,0)→ C̃2
(1,1) in the following way:

In a neighborhood of (0,0) we can use the original coordinates (x,y) from C2 as if they
are now coordinates on C̃2

(1,1).

• R2(x,m) = R1(x,xm) =
(

2x+(xm)2 +1,2xm+1,
2x+(xm)2

2xm

)
for x 6= 0, which extends

by continuity to R2(0,m) =
(
1,1, 1

m

)
.

• R2(m,y) = R1(my,y) =
(

2my+ y2 +1,2y+1, 2my+y2

2y

)
for y 6= 0, which extends by

continuity to R2(m,0) = (1,1,m).

where the third coordinate is expressed in both extensions in the same chart on E(1,1) = P1.
Hence, because we had already blown up at (1,1) we now have that R̃ maps E(0,0) to E(1,1)

by an isomorphism.

Example 5.

For this final example, suppose that R(x,y) = (x2 +1,y2 +x2 +1) and suppose again that we
have already blown-up at (1,1) obtaining R1 : C̃2

(1,1)→C2 extending R(x,y) = (x2 +1,x2 +

y2 +1). If we then decide to blow-up at (0,0) we can obtain a map R2 : C̃2
(1,1),(0,0)→ C̃2

(1,1)

in the following way:
In a neighborhood of (0,0) we can use the original coordinates (x,y) from C2 as if they

are now coordinates on C̃2
(1,1).

• R2(x,m) = R1(x,xm) =
(

x2 +1,x2 +(xm)2 +1, x2

x2+(xm)2

)
for x 6= 0, which extends

by continuity to R2(0,m) =
(

1,1, 1
1+m2

)
.

• R2(m,y) = R1(my,y) =
(
(my)2 +1,(my)2 + y2 +1, (my)2

(my)2+y2

)
for y 6= 0, which ex-

tends by continuity to R2(m,0) =
(

1,1, m2

1+m2

)
.

where the third coordinate is expressed in both extensions in the same chart on E(1,1) = P1.
Hence, because we had already blown up at (1,1) we now have that R2 maps E(0,0) to E(1,1)

the degree 2 rational map: m 7→ 1
1+m2 .
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C.3 Effect of blow-ups on homology

When we did a blow-up at 0 ∈ C2, we obtained C̃2
(0,0) =

{
(x, l) ∈ C2×P1|x ∈ l

}
which

may be familiar to the reader, it is the “canonical line bundle” over P1. In any case, it
is easy to check that C̃2

(0,0) has the homotopy type of the exceptional divisor P1. Hence,

H2
(
C̃2

(0,0)

)
= Z

{[E(0,0)]}, while the other homology groups of C̃2
(0,0) are trivial, the same as

those of C2. (Here, and elsewhere Z{[N]} will mean the module Z that is generated by the
fundamental class [N].)

This follows from the general fact:
Proposition C.3.1. If M is a complex surface and x is any point in M, then the blow-up M̃x

has the following homology:

• H2(M̃x)∼= H2(M)⊕Z{[Ex]}

• Hi(M̃x)∼= Hi(M) for i 6= 2
Proof: This is simply a matter of doing a Mayer-Vietoris computation and using a knowl-
edge of the homology of C̃

2
(0,0).

Let φ : C
2→M be some chart with φ(0) = x. If Bε is the open unit ball of radius ε in

C2 centered at 0, let U = φ(B2ε) and let V = M−φ(Bε). Then, U ∪V = M, and U ∩V has
the homotopy type of S3.

If we blow up U at φ(0), obtaining Ũ , we have that Ũ ∪V = M̃x and Ũ ∩V still has the
homotopy type of S3. Using that Ũ has trivial homology, except in dimensions 0 and 2, the
Mayer-Vietoris exact sequence gives:

0→ H4(V )→ H4(M̃x)→ Z→ H3(V )→ H3(M̃x)→ 0→ Z
{[Ex]}⊕H2(V )→ H2(M̃x)→

0→ H1(V )→ H1(M̃x)→ Z→ Z⊕H0(V )→ H0(M̃x)→ 0

We easily obtain that H2(M̃x) ∼= H2(V )⊕Z{[Ex]} ∼= H2(M)⊕Z{[Ex]}, using that H2(V ) ∼=
H2(M) since V has the homotopy type of M with a single point removed. Checking that
∂ : H4(M̃x)→ H3(Ũ ∩V )∼= Z is surjective, we see that Hi(M̃x)∼= Hi(M) for i 6= 2. �

Although we will not prove it here, it is a general fact that the fundamental class [Ez]
has self-intersection number −1. If further blow-ups are made, each time a point on Ez is
blown up, the self intersection number [Ez] · [Ez] decreases by 1. (See [24], for proof.)

C.4 Repeated blow-ups

The following propositions help to clarify the sequence of blow-ups from Section 5.1. One
might think of this sequence of blow-ups as a very difficult process but the blow-ups at
inverse images of the points of indeterminacy p and q are relatively easy to compute. The
blow up at one of these inverse images will depend on whether DN is non-singular, singular
but non-zero, or zero. (The case where DN = 0 never occurs in the sequence of blow-ups,
but it does occur when we blow-up one at one of the roots ri.)
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Proposition C.4.1. Suppose M is a complex surface that has already been blown up at z
and suppose R : M̃z→M is a rational map. If R(w) = z and DR(w) is non-singular, then R
extends to a rational map R̃ : M̃z,w→Mz mapping Ew to Ez via an isomorphism.

As in the last two examples, we consider R : M̃z→ M̃z and every inverse image of z becomes
a point of indeterminacy of R. (In particular w is a point of indeterminacy of R.)
Proof: Suppose that z = (z1,z2) and let (x1,x2) be a system of coordinates centered at w.
Since R(w) = z and DR(w) is non-singular, R has a Taylor series expansion centered at w:

R
(

x1
x2

)
=
(

z1
z2

)
+

[
∂x1R1 ∂x2R1
∂x1R2 ∂x2R2

](
x1
x2

)
+

(
S1(x1,x2)
S2(x1,x2)

)

where S1(x1,x2) and S2(x1,x2) are of degree 2 and higher in x1 and x2.
We compute the extension of R to M̃z,w in the chart (x1,m)→ (x1,mx1,m):

R̃
(

x1
m

)
=




z1 +∂x1R1x1 +∂x2R1mx1 +S1(x1,mx1)
z2 +∂x1R2x1 +∂x2R2mx1 +S2(x1,mx1)

∂x1R1x1+∂x2R1mx1+S1(x1,mx1)
∂x1R2x1+∂x2R2mx1+S2(x1,mx1)




for x1 6= 0. If DR is non-singular, we can factor out x1 from the numerator and denominator
of the third component. Then, the mapping from Ew to Ez is given by the third coordinate,
with x1 = 0:

m 7→
∂x1R1 +∂x2R1m
∂x1R2 +∂x2R2m

which is a non-degenerate linear-fractional transformation, since DR is non-singular. Hence
it is an isomorphism from Ew to Ez. (To be entirely precise, one must also check the
extension in the other chart (m,x2)→ (mx2,x2,m) to be sure that the map extends to Ew at
the one point not covered in this chart. We leave this for the reader.)
�

Proposition C.4.2. Suppose M is a complex surface, R : M̃z→M is a rational map, R(w) =
z and that DR(w) is singular but non-zero. Let mk be the slope in Ew corresponding to the
kernel of DR(w).

Then:

• R extends to a rational map R̃ : M̃z,w→Mz mapping all of Ew−mk to a single point
on Ez. The point mk becomes a point of indeterminacy of R̃.

• If the second derivative D2R is non-singular, a further blow-up at mk allows for an
extension of R̃ to Emk mapping Emk isomorphically to Ez.

Proof: Suppose that z = (z1,z2) and let (x1,x2) be a system of coordinates centered at w.
We will compute the blow-up in the charts (x1,m) 7→ (x1,mx1,m) as we did in the proof
of Proposition C.4.1. (We assume that ∂x1R2 or ∂x2R2 is non-zero, otherwise a similar
computation would have to be done in the other chart (m,x2)→ (mx2,x2,m).)
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We can then factor x1 from the numerator and denominator and then, the mapping from
Ew to Ez is given by the third coordinate, with x1 = 0, that is:

m 7→
∂x1R1 +∂x2R1m
∂x1R2 +∂x2R2m

Since DR is singular, the numerator is a multiple, λ, of the denominator, hence R̃ maps
every m ∈ Ew to λ ∈ Ez except for mk, the point in Ew corresponding to the kernel of
DN(w), which is a point of indeterminacy.

Blowing up at mk we compute the extension of R̃ in a neighborhood of Emk . For this
proof, we assume that mk is in the image of the coordinate chart (x1,m)→ (x1,mx1,m) that
we used to compute the extension to Ew. (Otherwise, another chart will do.) We use the
chart (x1,n)→ (x1,nx1 +mk,n)→ (x1,x1(nx1 +mk),nx1 +mc,n) = (x1,nx2

1 + x1mk,nx1 +
mk,n) in a neighborhood of Emk . In this extension, we find

∂x1R1x1 +∂x2R1(nx2
1 + x1mk)+S1(x1,nx2

1 + x1mk)

∂x1R2x1 +∂x2R2(nx2
1 + x1mk)+S2(x1,nx2

1 + x1mk)

The extension to Emk is given by in the limit as x1→ 0. We find:

lim
x1→0

∂x2R1nx2
1 + x2

1S1(1,mk)

∂x2R2nx2
1 + x2

1S2(1,mk)
=

∂x2R1n+S1(1,mk)

∂x2R2n+S2(1,mk)

which is non-constant so long as either S1(1,mk) 6= 0 or S2(1,mk) 6= 0. Therefore it provides
an isomorphism from Emk → Ez. �

Proposition C.4.3. Suppose M is a complex surface and suppose R : M̃z→M is a rational
map. If R(w) = z, DR(w) = 0, and D2R is non-singular, then R extends to a rational map
R̃ : M̃z,w→Mz mapping Ew to Ez via rational map of degree 2.

Proof:
Suppose that z = (z1,z2) and let (x1,x2) be a system of coordinates centered at w. R has

a Taylor series expansion of the form

R
(

x1
x2

)
=
(

z1
z2

)
+

(
S1(x1,x2)
S2(x1,x2)

)
+

(
T1(x1,x2)
T2(x1,x2)

)

where S1(x1,x2) and S2(x1,x2) are of degree 2 in x1 and x2 and T1(x1,x2) and T2(x1,x2) are
of degree 3 and higher in x1 and x2.

We compute the extension of R to M̃z,w in the chart (x1,m)→ (x1,mx1,m):

R̃
(

x1
m

)
=




z1 +S1(x1,mx1)+T (x1,mx1)
z2 +S2(x1,mx1)+T2(x1,mx1)

S1(x1,mx1)+T1(x1,mx1)
S2(x1,mx1)+T2(x1,mx1)



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for x1 6= 0. To understand the extension to Ew, we must extend to x1 = 0. As usual, the only
difficulty is in the third coordinate:

S1(x1,mx1)+T1(x1,mx1)

S2(x1,mx1)+T2(x1,mx1))

To extend this to x1 = 0 we factor out x2
1 from the numerator and denominator, obtain-

ing:

S1(1,m)+T1(x1,mx1)/x2
1

S2(1,m)+T2(x1,mx1)/x2
1

this extends to m 7→ S1(1,m)
S2(1,m) , which is a non-degenerate rational map of degree 2, since S is

non-degenerate. �
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