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ABSTRACT

Generic Properties of Lagrangian Systems and Conservative Diffeomorphisms

Radu Saghin

In this dissertation we study some generic properties of Lagrangian Systems

and symplectic diffeomorphisms.

In Chapter 3 we give a negative answer to a conjecture proposed by Mañé, we

give an example of a C1 open set U of Lagrangians on the n-torus such that for

any Lagrangian in U there exist a cohomology class c ∈ H1(Tn, R) which has at

least n different ergodic c-minimal measures. The minimizing measures are used in

the construction of orbits connecting different regions in the phase space (Arnold

diffusion), so understanding their structure should be helpful.

We also consider symplectic diffeomorphisms on compact manifolds. We prove

in Chapter 4 that if a symplectic diffeomorphism is not partially hyperbolic then

with an arbitrarily small C1 perturbation we can create a totally elliptic periodic

point inside any given open set on the manifold. As a consequence, a C1 generic

iii



symplectic diffeomorphism is either partially hyperbolic or it has dense elliptic

periodic points.

From this theorems we obtain some interesting corollaries:

(1) Any C1 robustly transitive symplectic diffeomorphism must be partially

hyperbolic.

(2) Any stably ergodic symplectic diffeomorphism must be partially hyper-

bolic.

The second corollary is a converse of the Pugh-Shub conjecture on stable er-

godicity for the symplectic case. Here a map f is stably ergodic if there exist a C1

open neighborhood U of f such that every C2 map in U is ergodic.
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CHAPTER 1

Introduction

One of the areas of interest in Dynamical Systems is concerned with the dynam-

ics of Hamiltonian and Lagrangian Systems. There is a natural duality between

them given by the Legendre transform, they actually represent the same problem

seen from two different points of view. These types of systems are modeling many

problems from different areas like mechanics, physics, chemistry and they have

been extensively studied.

In this dissertation we are particularly interested in the robust properties of

these systems, or the generic properties. A property is called generic if it holds for

a residual subset of systems in some given topology.

We consider smooth Lagrangians L : TM × S1 → R with the following prop-

erties

-convexity: ∂2L
∂v2 is positive definite;

-completeness: the corresponding Euler-Lagrange flow is defined on all R;

-superlinearity: lim‖v‖→∞
L(x,v,t)
‖v‖ = ∞ uniformly with respect to x ∈ M, t ∈ S1.

Here M is a connected compact Riemannian manifold, (x, v, t) are local coordi-

nates on TM × S1 and in these coordinates the Euler-Lagrange flow is given by
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the equation

d

dt

∂L

∂v
(x, ẋ, t) =

∂L

∂x
(x, ẋ, t).

One can extend the Aubry-Mather theory for twist maps of the annulus in this

setting and define the minimizing measures. Roughly speaking they are invariant

probability measures which minimize the action of L among the ones with a fixed

homology class (see [Ma3], [Mt]). They are also invariant measures minimizing

the action of L − c for some given closed 1-form c. The minimizing measures are

a useful tool in constructing orbits connecting different regions in the phase space

(the Arnold diffusion).

We can denote Mρ the set of minimising measures corresponding to the ho-

mology class ρ ∈ H1(M, R) and Mc the set of minimising measures corresponding

to the cohomology class c ∈ H1(M, R). Mañé asked how many (ergodic) measures

are in each Mρ,Mc for C∞ generic Lagrangians. He proved that once we fix a

homology class ρ (or a cohomology class c), then for a generic Lagrangian there is

a unique measure in Mρ (or Mc).

There are many possible ways to extend this results, and he proposed several

of them in [Ma3]. One naturally asks what happens for all the homology or

cohomology classes for generic Lagrangians. We give an example of an open set

of Lagrangians on the n-torus such that for every one of them we can find a

cohomology class c (depending on the Lagrangian) with at least n different ergodic

measures in Mc.
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Theorem 1. There exist a C1 open set U of autonomous Lagrangians on the

n-torus such that for each Lagrangian L in U there exist a cohomology class c ∈

H1(Tn, R) such that L has at least n different ergodic c-minimal measures.

This suggests that the best one can hope for is to prove that for a generic

Lagrangian, for every cohomology class c ∈ H1(M, R), there are at most as many

different ergodic minimising measures in Mc as the dimension of the first coho-

mology group of M . It is also conjectured that for a generic Lagrangian, for every

homology class ρ ∈ H1(M, R), there is a unique measure in Mρ (not necessarily

ergodic).

We also consider M to be a compact connected Riemannian even-dimensional

manifold together with a symplectic form (a non-degenerate closed 2-form). A

diffeomorphism on M is called symplectic if it preserves the symplectic form. Ex-

amples of symplectic diffeomorphism are area preserving diffeomorphisms, time 1

maps and Poincaré return maps of Hamiltonian flows. Symplectic maps belong to

the larger class of volume preserving diffeomorphisms, i. e. the diffeomorphisms

which preserve a volume form on the manifold.

A diffeomorphism f on M has a dominated splitting if there exists an invariant

splitting of the tangent bundle TM = A⊕B and an integer l > 0 such that

‖Df l(a)‖ ≥ 2‖Df l(b)‖,∀a ∈ Ax, b ∈ Bx, x ∈ M.

In this case we say that A dominates B (or A l-dominates B).
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In the case of symplectic diffeomorphisms the existence of a dominated splitting

is equivalent to partial hyperbolicity in the following sense: there is an invariant

splitting of the tangent bundle TM = A⊕B ⊕ C, with at least two of them non-

trivial, such that

-A is uniformly expanding

-C is uniformly contracting

-A dominates B and B dominates C.

The partially hyperbolic diffeomorphisms are supposed to have good statistical

properties. It is conjectured (Pugh, Shub) that among the volume preserving

partially hyperbolic diffeomorphisms the stable ergodic ones form a C1 open C2

dense subset. We give a converse of this in the symplectic case, we prove that a

stable ergodic map must be partially hyperbolic.

The existence of elliptic periodic points and the existence of a dominated split-

ting are mutually exclusive. We prove that C1 generically these are the only two

possibilities for symplectic maps.

Theorem 2. There exist an open dense subset U of the set of C1 symplectic

diffeomorphisms of the compact manifold M such that for any f ∈ U exactly one

of the following is true:

-f is partially hyperbolic

-f has at least an elliptic periodic point.
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There exist a residual R in the set of C1 symplectic diffeomorphisms of M such

that for any f ∈ R exactly one of the following is true:

-f is partially hyperbolic

-the elliptic periodic points of f are dense in M .

This is a consequence of a stronger result which we prove and which also led

us to some interesting corollaries:

Theorem 3. Suppose that f is a symplectic diffeomorphisms on M which is

not partially hyperbolic and U is a fixed open set in M . Then there is an arbitrarily

small C1 perturbation g of f such that g has an elliptic periodic point in U .

Corollary 1. Any C1-robustly transitive symplectic diffeomorphism must be

partially hyperbolic.

Corollary 2. If a symplectic diffeomorphism f has a neighborhood U in the C1

topology such that any C∞ map in U is ergodic (this is a form of stable ergodicity)

then f must be partially hyperbolic.

Corollary 3. The set of partially hyperbolic symplectic diffeomorphisms is

equal to the interior of its closure in the C1 topology.

The proof uses C1 perturbation results like Hayashi’s connecting lemma and

Franks lemma. Some of these results also hold for volume preserving diffeomor-

phisms, with partial hyperbolicity replaced by the existence of a dominated split-

ting.
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These results enrich the known picture of C1 generic symplectic (or volume

preserving) diffeomorphisms. We know that generically they are transitive, they

have dense (hyperbolic) periodic points, and every hyperbolic periodic point has

transverse homoclinic points dense on the manifold. Newhouse proved that in

the symplectic case C1 generically the diffeomorphisms either have dense quasi-

elliptic periodic points or they are Anosov (see [Ne2]). He used this to prove

that a structurally stable symplectic map must be uniformly hyperbolic. Our

result can be viewed as a generalization of this, the elliptic periodic points being

an obstruction to robust transitivity and stable ergodicity in the same way the

quasi-elliptic periodic points are for structural stability.

Similar results for general and volume preserving diffeomorphisms are obtained

in [BoDiPu]. These results are adapted for the symplectic case in [HoTa]. Also

in [BcVi1], [BcVi2] there are results about the Lyapunov exponents of almost all

the points (instead of the type of the periodic points) for generic symplectic and

volume preserving maps.



CHAPTER 2

Background

2.1. Lagrangian and Hamiltonian Systems

A Lagrangian is a smooth map L : TM × S1 → R, M being a compact

Riemannian manifold, with the following properties:

-the Hessian derivative on the fibers is positive definite (convexity);

-L has superlinear growth on the fibers:

lim
‖v‖→∞

L(x, v, t)

‖v‖
= ∞

uniformly with respect to x ∈ M, t ∈ S1.

-the corresponding Euler-Lagrange flow on TM is complete.

The Euler-Lagrange flow is given by the following differential equation:

d

dt

∂L

∂v
(x, ẋ, t) =

∂L

∂x
(x, ẋ, t).

If the Lagrangian is time-independent then we call it autonomous. In this case

the Euler-Lagrange flow is always complete. The example we keep in mind is the
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mechanical Lagrangian, given by the kinetic energy minus the potential energy

L(x, v) =
1

2
< A(x)v, v > −U(x)

where A(x) is positive definite.

The solution curves of the Euler-Lagrange equations can be found using a fixed

endpoints variational problem. For an absolutely continuous curve γ : [a, b] → M

we can define the action functional:

A(γ) =

∫ b

a

L(γ(t), γ′(t), t)dt.

The critical curves with fixed endpoints - γ(a) = x, γ(b) = y; x, y ∈ M fixed - are

solutions of the Euler-Lagrange equations.

Applying the Legendre transform we can get a Hamiltonian system on the

cotangent bundle of M .

Given an even dimensional manifold N with a symplectic form ω (non-degenerate

closed 2-form) one can define canonically a map J : T ∗N → TN using the formula

ω(J(c), v) = c(v),∀x ∈ N, c ∈ T ∗
xN, v ∈ TxN.

Then a Hamiltonian is a smooth map H : N × R → R and the corresponding

Hamiltonian system is given by the following equation:

ẋ = JdH(x, t)
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where the derivative of H is taken with respect to x. If H is time-independent

then the system is called again autonomous.

In the classical mechanical case the manifold N will be T ∗M and the Hamil-

tonian will be the sum of the kinetic energy and the potential energy. This is the

total energy and it is a constant of motion (a first integral).

2.2. Symplectic Diffeomorphisms

In what follows we will consider M to be a 2n-dimensional compact connected

Riemannian manifold and ω a symplectic form on M , i. e. a non-degenerate closed

2-form. Taking n times the wedge product of ω with itself we obtain a volume form

on M . A Cr diffeomorphism f of M , r ≥ 1, is called symplectic if it preserves the

symplectic form, f ∗ω = ω. The set of Cr symplectic diffeomorphisms of M will

be denoted Diff r
ω(M) and we consider it having the uniform Cr topology. In the

2-dimensional case this is the same with the set of area preserving Cr diffeomor-

phisms. In higher dimensions this is just a subset of the set of Cr volume preserving

diffeomorphisms (the volume form corresponding to ω). Examples of symplectic

diffeomorphisms are Poincaré return maps and time 1 maps of Hamiltonian flows.

A point p ∈ M is a periodic point of period k for f if fk(p) = p. If all the

eigenvalues of Dfk(p) have the norm different than 1 then we will say that p is a

hyperbolic periodic point. In this case we have well defined stable and unstable

manifolds,

W s(p) = {x ∈ M, lim
l→∞

d(f l(x), f l(p)) = 0} and
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W u(p) = {x ∈ M, lim
l→∞

d(f−l(x), f−l(p)) = 0},

where d is the Riemannian metric on the manifold. In the case of symplectic maps

the eigenvalues come in pairs, λ is an eigenvalue of Dfk(p) if and only if λ−1 is an

eigenvalue, so the dimension of both the stable and unstable manifolds will be n

in our case. A point q ∈ W s(p) ∩W u(p) \ {p} is called a homoclinic point of p.

A splitting of the tangent bundle TM = A⊕B is called invariant if A and B

are invariant under Df . An invariant splitting TM = A⊕B is called dominated if

there is an l > 0 such that for any x ∈ M and any two unit vectors u ∈ Ax, v ∈ Bx

we have ‖Df l(u)‖ ≥ 2‖Df l(v)‖. We will also say that A dominates B. If we want

to emphasize the importance of l we say that A l-dominates B, or the splitting is

l-dominated.

A map f is called partially hyperbolic if there is an invariant splitting of the

tangent bundle of M , TM = A ⊕ B ⊕ C, with at least two of them nontrivial,

such that

(i)A is uniformly expanding: there exist α > 1 and C > 0 such that

‖Dfk(u)‖ ≥ Cαk‖u‖,∀u ∈ A, k ∈ N,

(ii)C is uniformly contracting: there exist β > 1 and D > 0 such that

‖Dfk(v)‖ ≤ Dβ−k‖v‖,∀v ∈ C, k ∈ N,

(iii)A dominates B and B dominates C.
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One can prove that a dominated splitting is continuous, so the angle between

the two subbundles is bounded away from 0, and a small C1-perturbation of a map

with a dominated splitting also has a dominated splitting. So the set of partially

hyperbolic maps is open in Diff1
ω(M). Also we make the remark that the property

of dominance is independent of the Riemannian structure on the manifold, but

two different structures can have different constants of dominance l. If B is trivial

then f is called uniformly hyperbolic or Anosov. This definitions can be extended

to an invariant subset N of M .

A periodic point p of f of period k is called elliptic if all the eigenvalues of

Dfk(p) are simple, non-real and of norm 1. Obviously the existence of an elliptic

periodic point is an obstruction for partial hyperbolicity. We will prove here that

the converse is also true generically, i.e. if a C1-generic symplectic diffeomorphism

is not partially hyperbolic then it has an elliptic periodic point (actually it has a

dense set of elliptic periodic points). Here we say that a property is Cr-generic if

it is true for a residual subset of Diff r
ω(M).



CHAPTER 3

Minimal Measures for Lagrangian Flows

3.1. Preliminaries

The holonomic measures for (autonomous) Lagrangians are defined as follows:

Let C l be the space of real-valued continuous functions on TM with at most linear

growth on the fibers with the topology given by the norm

‖f‖l = sup
(x,v)∈TM

|f(x, v)|
1 + ‖v‖

.

We consider the set of probability measures on TM with the corresponding weak∗

topology from the dual of this space. If we restrict to the set of probability measures

supported on closed absolutely continuous curves on the manifold and we take the

closure of this in the topology mentioned above we get the holonomic measures C̄.

This is a convex metrizable noncompact set (see [Ma3]). Any probability measure

µ invariant under the Lagrangian flow with
∫

TM
‖v‖dµ finite is also a holonomic

measure - one can just use the ergodic theorem and the fact that C̄ is convex and

is the closure of measures supported on closed curves.

The L-action of a probability measure is defined as

AL(µ) =

∫
TM

Ldµ.

12



13

The holonomic measures with minimal action are called minimal measures. If we

replace L by L − c where c is a closed 1-form on the manifold M we get the c-

minimal measures. They always exist and are invariant under the flow (see [Ma3]

or [Mt]).

The integral of an exact 1-form on a closed absolutely continuous curve van-

ishes. But every 1-form is in C l and the holonomic measures are in the closure of

the probability measures supported on closed curves, so by continuity the integral

of any exact 1-form on M vanishes for any holonomic measure. This shows that

the (L − c)-action and the c-minimal measures depend only on the cohomology

class of c.

One can define the α-function:

α : H1(M, R) → R , α(c) = −min
µ∈C̄

AL−c(µ).

This is finite, convex and has superlinear growth. Here c represents both a closed

1-form and its cohomology class. Then a holonomic measure µ is c-minimal if

AL−c(µ) = −α(c).

The convex dual of this is the β-function which can also be defined as follows:

For each holonomic measure µ the integral of any exact 1-form is 0, so one can
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define a linear functional on the cohomology group

hµ : H1(M, R) → R , hµ(c) =

∫
TM

c dµ.

Because of the duality between the homology and the cohomology we obtain the

rotation vector of the holonomic measure µ, denoted ρ(µ) ∈ H1(M, R), corre-

sponding to the linear functional hµ. For example if µ is the probability measure

supported on the closed curve γ : [a, b] → M then ρ(µ) is the integer homology of

γ divided by (b − a). The function ρ : C̄ → H1(M, R) is continuous. Then the

β-function is

β : H1(M, R) → R , β(r) = min
µ∈C̄,ρ(µ)=r

AL(µ).

This is again finite, convex and has superlinear growth.

The set of holonomic measures with the action in a bounded subset of R is

compact (in the topology given above). Any minimal measure is a limit of prob-

ability measures uniformly distributed along closed curves on M such that their

action is also converging to the minimal action (see again [Ma3] and [Mt]).

The set of holonomic measures minimising the action for L−c is denoted byMc

and the set of holonomic measures with rotation number r minimising the action

is denoted by Mr. An open question is regarding the number of different ergodic

measures in Mc and Mr for generic Lagrangians. Mañé proved that for a fixed

homology class r (or cohomology class c) for a generic Lagrangian, Mr (or Mc)

has only one element. We give an example with an open set of Lagrangians such
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that for each one of them there exists some cohomology class c such thatMc has at

least n different ergodic measures, where n is the dimension of the first cohomology

group. This shows that Mañé’s result can’t be extended for generic Lagrangians

for all cohomology classes. The corresponding question about homology is still

open:

Q1. Is it true that for a generic Lagrangian for every homology class r the set

Mr has only one element?

One could also ask how many different ergodic minimal measures are in every

Mc for all the cohomology classes c for a generic Lagrangian:

Q2. Is it true that for a generic Lagrangian for every cohomology class c the

set Mc contains at most n different ergodic measures (n = dimH1(M, R))?

The method we use in our construction is the following: we choose n mutually

disjoint subsets of the manifold M carrying the same (n−1)-dimensional homology.

We make the action small on these regions and large outside them such that the

c-minimal measures are supported on these subsets for c in the corresponding

(n − 1)-dimensional subspace of H1(M, R). Now if we look at the graphs of the

α functions restricted to each one of these regions we get n hypersurfaces (with

dimension n− 1) in an n-dimensional space, which will intersect in one point if we

choose the right Lagrangian. The intersection point corresponds to n c-minimal

measures with disjoint supports for the same cohomology class c and taking their

ergodic decomposition we get at least n different ergodic c-minimal measures.
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3.2. Proof of Theorem 1

Let L : TTn → R be a Lagrangian on the n−torus of the form

L(x, v) =
n∑

i=1

ai(x)v2
i + U(x) ; ai, U : Tn → R ; v =

n∑
i=1

vi
δ

δxi

∈ TxTn.

Let Ai be the strips on the torus with the n−th coordinate xn between 6i−1
6n

and

6i+1
6n

, Bi the strips with xn between 6i+2
6n

and 6i+4
6n

and C+
i , C−

i the strips between

Ai and Bi respectively Bi−1 and Ai.

On A0 let

U(x) = −δ < 0,

ai(x) = 2, i = 1, ..n.

On Aj, 1 ≤ j ≤ n− 1 let

U(x) = 0,

aj(x) = 1,

ai(x) = 2, i = 1, ..n, i 6= j.

Let U(x) = ai(x) = C > 0 large, i = 1, ..n on Bj and also let their partial

derivatives with respect to the nth coordinate be negative on C−
j and positive on

C+
j .

We divided the torus in n strips with low action (Ai), n strips with high action

(Bi), and the transition regions (C−
i , C+

i ).
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The projection along the n-th coordinate p : Tn → Tn−1 corresponds to the

cohomology map p∗ : H1(Tn−1, R) → H1(Tn, R). Let H = Im(p∗) (the range of

p∗). So we restrict our attention to the cohomology classes corresponding to the

first n− 1 coordinates.

For any L′ a Lagrangian C1 close to L one can define the α function on each

strip A′
i = Tn−1 × [6i−1

6n
− ε0,

61+1
6n

+ ε0] for ε0 > 0 small as follows: αi
L′(c) =

− infµ

∫
(L′ − c)dµ where the infimum is taken over the set of holonomic probability

measures µ supported in TA′
i. We used again the same notation (c) for both a

closed 1-form and its cohomology class in H. Another way to define αi
L′ is to

construct L′
i agreeing with L′ on Bi−1 ∪ C−

i ∪ Ai ∪ C+
i ∪ Bi and large on the rest

of Tn. For any c ∈ H and any curve in Tn there exist a curve in A′
i defined on the

same time interval and with the same projection on Tn−1 with smaller (L′
i − c)-

action because of the construction of L, L′ and L′
i. The new curve can be the same

as the initial one inside A′
i, have the n-th coordinate constant when the initial !

curve is in the transition regions around A′
i and just have the speed along the n-th

coordinate less than the speed of the initial curve for the rest of it. This implies

that for any c ∈ H there is a c-minimal measure for L′
i supported in A′

i (see the

proof of lemma 1). So αi
L′ is the α function of L′

i restricted to H.

For L given above and c = (λ1, λ2, ..λn−1) ∈ H we can compute

α0
L(c) = −min

µ

∫ (
−δ +

n∑
i=1

2v2
i −

n−1∑
i=1

λivi

)
dµ(x,v) =
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= δ −min
µ

∫ [n−1∑
i=1

(
2

(
vi −

λi

4

)2

− λ2
i

8

)
+ 2v2

n

]
dµ(x,v) = δ +

n−1∑
i=1

λ2
i

8

where minimum is attained for any invariant probability measure µ supported on

the
∑n−1

i=1
λi

4
δ

δxi
section of TA0;

αj
L(c) = −min

µ

∫ ( n∑
i=1

2v2
i − v2

j −
n−1∑
i=1

λivi

)
dµ(x,v) =

= −min
µ

∫ [ n−1∑
i=1,i6=j

(
2

(
vi −

λi

4

)2

− λ2
i

8

)
+

(
vj −

λj

2

)2

−
λ2

j

4
+ 2v2

n

]
dµ(x,v) =

=
n−1∑
i=1

λ2
i

8
+

λ2
j

8

where minimum is attained for any invariant probability measure µ supported on

the
∑n−1

i=1
λi

4
δ

δxi
+

λj

4
δ

δxj
section of TAj.

We chose the coefficients ai such that the shapes of the α functions for the strips

are paraboloids ’squeezed’ in one direction (different for different i’s) for i > 0 and

not squeezed but translated upward for i = 0. Thus it is easier to prove that all

the n graphs intersect. Now the next theorem will give the proof of Theorem 1.

Theorem 4. For L′ positive definite Lagrangian C1 close to L there exists a

cohomology class with at least n different corresponding ergodic minimal measures.

Proof. If |L− L′| ≤ ε then clearly for any c ∈ H we have |αi
L(c)− αi

L′(c)| ≤ ε

for all i = 0, ..n− 1.
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Lemma 1. For any c ∈ H and L′ C1 close to L we have

αL′(c) = max
0≤i≤n−1

αi
L′(c).

Proof. The set of holonomic probability measures in TTn contains the ones

supported in TA′
i so

αL′(c) ≥ αi
L′(c), i = 0, ..n− 1 ⇒ αL′(c) ≥ max

0≤i≤n−1
αi

L′(c).

On the other hand we can prove that there exist a holonomic measure µ supported

on TA′
i for some i such that AL′−c(µ) =

∫
(L′ − c)dµ = −αL′(c). For that it is

enough to show that for any closed curve in Tn there is a closed curve in an A′
i

with smaller average action. If the average action of the initial curves converges

to −αL′(c) the same will hold for the new ones (the action can’t get smaller) and

a limit measure (eventually for a subsequence, so the curves are inside the same

A′
i) will verify the requirement. This will imply that

αL′(c) ≤ αi
L′(c) ≤ max

0≤i≤n−1
αi

L′(c).

If the curve is in Bi−1 ∪C−
i ∪Ai ∪C+

i ∪Bi (around one single region of low values

for the Lagrangian) we can find such a curve in A′
i in the same way we did when

we defined αi
L′ .

If this is not the case (the curve moves from a region of low values of the Lagrangian

to another) then we can divide the curve in segments such that each one of them
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is in an Bi−1 ∪ C−
i ∪ Ai ∪ C+

i ∪Bi for some i.

We can also require that each such segment crosses completely one Bi for some i (it

moves from C+
i to C−

i+1 or backward). We construct again a curve in A′
i with the

same projection on Tn−1 and with the n-th coordinate constant where the initial

segment is outside Ai. Because of this the difference of actions of the two segments

will be at least the minimal action needed to cross Bi for c = 0. To estimate this

we use only the n-th coordinate and the potential for L and we find that it is

greater than

∫ b

a

Cγ′(t)2 + Cdt = C(b− a) +
C

b− a

∫ b

a

γ′(t)2dt

∫ b

a

12dt ≥

≥ C(b− a) +
C

b− a

[∫ b

a

γ′(t)dt

]2

= C(b− a) +
C

(b− a)9n2
≥ 2C

3n

where γ : [a, b] → [6i+2
6n

, 6i+4
6n

] is the projection on the n-th coordinate of the segment

crossing Bi.

To make the estimation for L′ suppose |L′ − L| < 1
2

and C ≥ 20n2.

If b−a ≤ 1 then the action needed to cross Bi for L′ can be at most with 1
2

smaller

so it is at least

−1

2
+

2C

3n
≥ −1

2
+

n

3
+ 13n > 13n.

because n ≥ 2 (we want at least 2 minimal measures).

If b− a > 1 then we use the fact that L′ ≥ L− 1
2
≥ C − 1

2
so the action needed is
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at least

(b− a)

(
L− 1

2

)
≥ C − 1

2
≥ 20n2 − 1 > 13n.

So in both cases the action needed to cross Bi is greater than 13n.

On the other hand for any c ∈ H and a, b ∈ A′
i there is a geodesic ξ : [0, 1] → A′

i

from a to b with length at most 2
√

n and such that c(ξ′) ≥ 0. The (L− c)-action

of this is

∫ 1

0

(L− c)(ξ(t), ξ′(t))dt =

∫ 1

0

U(ξ(t))dt +

∫ 1

0

n∑
j=1

aj(ξ
′(t))2

jdt−

−
∫ 1

0

c(ξ′(t))dt ≤ 1

2
+

∫ 1

0

3‖ξ′(t)‖2dt ≤ 1

2
+ 12n

where ε0 (who gives A′
i) is small enough so U < 1

2
and aj < 3, j = 1, ..n on A′

i. For

|L− L′| < 1
2

we get that the (L′ − c)-action of such a curve is at most 13n.

In conclusion, if we take C > 20n2 then we can complete the segment from

A′
i obtained by ’projecting’ the initial segment around Ai, to a closed curve inside

A′
i (by adding a geodesic as above to connect the endpoints) with less action that

the initial segment and defined on an interval larger with one unit. Doing that for

each segment we obtain a finite (the initial curve is absolute continuous) number

of closed curves inside ∪n−1
i=0 Ai with smaller total action. By dividing to a larger

time interval the average action will be again smaller than the initial one. But the

total average action is a convex combination of the average actions of the closed
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curves so at least one of them will have an action smaller (or equal) than the initial

curve Q.E.D. �

Remark. Actually L′ has to be C1 close enough to L so that the Lagrangian

is increasing as we move away from A′
i, which is true for L. This allows us to

construct the curves in A′
i with smaller action. Although C0 closeness may be

enough, the C1 condition makes the proof easier.

Lemma 2. There exist c ∈ H such that

α0
L′(c) = α1

L′(c) = · · · = αn−1
L′ (c) = αL′(c)

if |L− L′| < δ
6
.

Proof. Let T : Rn−1 ∼= H → Rn−1 ∼= H,

T (λ1, . . . , λn−1) =

(
λ1

(
1 +

α0
L′(c)− α1

L′(c)

2δ

)
, . . . , λn−1

(
1 +

α0
L′(c)− αn−1

L′ (c)

2δ

))

for c = (λ1, λ2, . . . , λn−1) ∈ Rn−1 ∼= H.

We will prove that T maps [
√

δ, 4
√

δ]n−1 to itself, this implying the existence of a

fixed point and consequently the claim.

First observe that |L−L′| < δ
6
⇒ |αi

L(c)−αi
L′(c)| < δ

6
for any 0 ≤ i ≤ n− 1 ⇒

α0
L(c)− αi

L(c)− δ

3
< α0

L′(c)− αi
L′(c) < α0

L(c)− αi
L(c) +

δ

3
⇒

⇒ 2δ

3
− λ2

i

8
< α0

L′(c)− αi
L′(c) <

4δ

3
− λ2

i

8
⇒
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⇒ 4

3
− λ2

i

16δ
< 1 +

α0
L′(c)− αi

L′(c)

2δ
<

5

3
− λ2

i

16δ
.

For λi ∈ [
√

δ, 4
√

δ] we have λi,
4
3
− λ2

i

16δ
and 5

3
− λ2

i

16δ
positive so

λi

(
4

3
− λ2

i

16δ

)
< λi

(
1 +

α0
L′(c)− αi

L′(c)

2δ

)
< λi

(
5

3
− λ2

i

16δ

)
.

The functions f(x) = x
(

4
3
− x2

16δ

)
and g(x) = x

(
5
3
− x2

16δ

)
map the interval [

√
δ, 4

√
δ]

to itself, so if λi ∈ [
√

δ, 4
√

δ] then T (c)i ∈ [
√

δ, 4
√

δ] for any 0 ≤ i ≤ n − 1 which

proves that indeed T maps [
√

δ, 4
√

δ]n−1 to itself. This concludes the proof of the

second lemma. �

Now suppose that for L′ close to L we have c′ ∈ H such that

α0
L′(c′) = α1

L′(c′) = · · · = αn−1
L′ (c′) = αL′(c′).

Then for any 0 ≤ i ≤ n− 1 there exist an ergodic invariant probability measure µi

supported on TA′
i such that AL′−c′(µi) = αi

L′(c′) = αL′(c′). Because the supports

of these measures are disjoint they must be different. They are also c-minimal

because they minimize the (L′ − c′)-action.

So for any L′ a Lagrangian C1 close to L we can find a cohomology class c

which has at least n ergodic c-minimal measures with disjoint supports. �

Remark. C1 close means that one can change not only the potential U , but

the entire Lagrangian, as long as the positive definiteness is preserved.
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Remark. We consider here the autonomous case and the cohomology class

with n ergodic minimal measure we obtain is in an (n − 1)-dimensional subspace

of the cohomology group. So maybe this result can be improved, at least for the

non-autonomous case.

Remark. The same construction could work for a manifold M of the type

S1 ×N , creating a cohomology class c with n c-minimal measures where n is the

dimension of H1(M). In the general case it is not always possible to pick the n

disjoint regions of low action with the same (n − 1)-dimensional homology. One

could take some non-disjoint regions and make sure that there are no minimal

measures supported on their intersection. Or one could get different results, for

example for a surface of genus 2 we can take two disjoint regions with the same

2-dimensional homology and thus get a curve of cohomology classes such that each

one of them has at least two different ergodic minimising measures.



CHAPTER 4

Generic Symplectic Diffeomorphisms

4.1. Preliminaries

Hyperbolicity and ellipticity are responsible for completely different dynamics

for symplectic diffeomorphisms. An hyperbolic map is on one hand chaotic - it

is transitive, it has sensitive dependence on the initial conditions - but on the

other hand it has good statistical properties (it is ergodic if it is smooth enough

- C1+α) and it has a Markov partition, and thus is similar to a subshift of finite

type. The Anosov maps are structurally stable and stably ergodic (again, if they

are smooth enough). It is also conjectured that among the partially hyperbolic

diffeomorphisms the stable ergodic ones form an open dense set in the C2 topology

(see [PgSh]). Here we give a partial answer to the converse of this for symplectic

diffeomorphisms, we show that a stronger form of stable ergodicity implies partial

hyperbolicity. The dynamics in a neighborhood of an elliptic periodic point are

different. We know from KAM theory that if the map is smooth enough then clos!

e to the elliptic point we have many invariant tori (possible a positive measure set)

on which the map is conjugated to a strongly irrational rotation. Also the elliptic

point is accumulated by other quasi-elliptic and hyperbolic periodic points, as well

as homoclinic points (see [Ze1]).

25
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If for a periodic point p of period k the tangent map Dfk(p) has exactly 2l

simple non-real eigenvalues of norm 1 and the other ones have norm different from

1, then we say that p is an l-elliptic periodic point. Sometimes it is also called

quasi-elliptic. S. Newhouse proved that a C1-generic symplectic diffeomorphism is

either Anosov or it has dense 1-elliptic periodic points (see [Ne2]). He concluded

from this that a symplectic diffeomorphism is structurally stable if and only if it

is uniformly hyperbolic. In dimension 2 the 1-elliptic periodic points are actually

elliptic. M.-C. Arnaud proved (see [Ar1], [Ar2]) that a C1 generic symplectic

diffeomorphism in dimension 4 is either hyperbolic, or partially hyperbolic, or it

has an elliptic periodic point (in our paper we consider hyperbolicity as a particular

case of partial hyperbolicity for simplicity). Our results generalize this for any

dimension.

We continue by mentioning some related results. C. Bonatti, L. J. Diaz and

E. R. Pujals obtained similar results for the case of general and volume preserv-

ing diffeomorphisms (see [BoDiPu]). V. Horita and A. Tahzibi extended their

methods for the symplectic case ([HoTa]). For general diffeomorphisms the ellip-

tic points are substituted by sinks and sources and the partial hyperbolicity by

the existence of a dominated splitting. Also the result is restricted to homoclinic

classes of hyperbolic periodic points, because transitivity is needed. For the case of

volume preserving maps the elliptic points are not stable under perturbations, an

arbitrarily small one can make them hyperbolic, so they get a weaker result with-

out the genericity: if a map doesn’t have a dominated splitting, with an arbitrarily
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small perturbation one can create periodic points with all the eigenvalues equal to

1. We can get our stronger result for symplectic diffeomorphisms because of three

reaso! ns: the elliptic points are stable under perturbations if there are no multiple

eigenvalues (which is a generic property) - this is not true for volume preserving

maps, but is true for sinks and sources for general diffeomorphisms; generically the

symplectic maps are transitive - this is true in the volume preserving case but not

in the general one; and only in the symplectic case the existence of a dominated

splitting implies partial hyperbolicity (see the Appendix).

Other related results, obtained by J. Bochi and M. Viana (some of them an-

nounced before by R. Mañé), take into consideration the Lyapunov exponents of

almost all the points instead of looking at the types of the periodic points (see

[BcVi1], [BcVi2], [Ma2]). They prove that for a generic volume preserving dif-

feomorphism for almost all the points either all the Lyapunov exponents are equal

to 0 or their Oseledets splitting along the orbit is dominated. Also, a generic

symplectic diffeomorphism is either Anosov or almost all the points have 0 as a

Lyapunov exponent (with multiplicity at least 2).

In conclusion we state some of the known C1 generic properties of symplectic

diffeomorphisms. There exist a residual subset R of Diff1
ω(M) such that for any

f ∈ R we have:

1. The periodic points of f are dense in M .

2. Every periodic point of f is either quasi-elliptic or hyperbolic.

3. The hyperbolic periodic points of f are dense in M .
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4. The stable and unstable manifolds of hyperbolic periodic points of f intersect

transversally.

5. Every hyperbolic periodic point of f has homoclinic orbits.

6. The homoclinic points of f are dense in M .

7. The homoclinic points of a hyperbolic periodic point of f are dense in both the

stable and unstable manifolds of the periodic point.

8. The map f is transitive.

Property 1 is a direct consequence of the C1 closing lemma of Pugh and Robin-

son (see [PgRo]). Properties 2 and 4 were proved by Robinson (see [Ro]). Prop-

erty 3 is a direct consequence of property 1, because we cane make a periodic

point hyperbolic with a small perturbation if the period is large enough. An al-

ternate proof can use properties 1 and 2 and the fact that a quasi-elliptic periodic

point is generically accumulated by hyperbolic ones from KAM theory (see [Ne2]).

Property 5 was proved by Takens (see [Ta]). It is also a consequence of Hayashi’s

connecting lemma and the fact that Cr generically the stable (unstable) manifolds

accumulate on themselves, so also on the unstable (stable) manifolds - this proof

gives also property 7 (see [WeXi], [Xi]). Property 6 is a consequence of properties

3 and 5. Property 8 is another application of Hayashi’s connecting lemma and it

was proved by Bonatti and Crovisier (see [BoCr]).

The next lemma presents another generic property of symplectic (or volume

preserving) diffeomorphisms. The main consequence we use from it is the fact that
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there is an arbitrarily small C1 perturbation of f such that the set of homoclinic

points of (the continuation of) an hyperbolic periodic point x is dense in M .

Lemma 3. There exist a residual R ∈ Diff1
ω(M) (or in the set of volume

preserving diffeomorphisms) such that for any f ∈ R and any hyperbolic periodic

point x of f the set of corresponding homoclinic points is dense in M .

Proof. It is known that for a C1 generic symplectic (or more general volume

preserving) diffeomorphism for any hyperbolic periodic point y the set of homo-

clinic points of y is dense in both W s(y) and W u(y) - from property 7 above. We

need to prove that C1 generically W s(y) and W u(y) are dense in M for all hyper-

bolic periodic points y and we are done. We will use the fact that a C1 generic

symplectic (or volume preserving) diffeomorphism is transitive (property 8) and

the C1 connection lemma.

Let f be transitive, U ⊂ M be an open set, y a hyperbolic periodic point,

p ∈ W s(y) and Bk the ball of radius 2−k centered at p. Because f is transitive there

is an iterate of U intersecting B1: fk1(U)∩B1 6= ∅. Let U1 be an open set such that

U1 ⊂ cl(U1) ⊂ U ∩f−k1(B1). Now there is an iterate fk2(U1) of U1 which intersects

B2, so we can choose an open set U2 such that U2 ⊂ cl(U2) ⊂ U1 ∩ f−k2(B2) and

so on. Then cl(Uk) is a decreasing sequence of compact sets inside U so there is

a point yU in their intersection and its orbit accumulates on p. Because p is not

periodic, we can use the connection lemma to find an arbitrarily small perturbation

of f such that p is a positive iterate of yU and the positive orbit of p is unchanged,
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so yU ∈ W s(y). So the stable manifold of y intersects U and obviously this is also

true for! small perturbations (replacing y by its continuation).

Now let us denote by R(k, U) the set of diffeomorphisms with the property

that the stable manifold of any hyperbolic periodic point with period less than

k intersects U . From what we proved before and from the fact that for an open

dense set of diffeomorphisms there are finitely many periodic points of period less

than k we get that R(k, U) is an open dense subset of Diff1
ω(M) (or the volume

preserving diffeomorphisms). But there is a countable base of the topology so

taking the intersection over k ∈ N and U in the countable basis we get the residual

we are looking for. For W u(y) the proof is similar. �

4.2. A lemma from linear algebra

We present here a result we need from linear algebra. We will first give the

motivation of the result.

We consider R2n with the canonical symplectic structure given by the 2-form∑n
i=1 dxi ∧ dyi where xi, yi, i ∈ {1, 2, . . . , n} are the coordinates on R2n. The

norm of the vectors is the euclidean norm in R2n and the norm of matrices is the

norm of the corresponding linear operators on R2n. There exist local coordinates

φj : Vj → R2n, j ∈ J finite, M = ∪j∈JVj, such that ω has the canonical form:

ω = (φj)∗(
∑n

i=1 dxi ∧ dyi). These will be called symplectic coordinates. In these

coordinates the tangent map Dfx : TxM → Tf(x)M can be seen as a symplectic

matrix. For each x ∈ M we fix coordinates φj with j the smallest number such
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that x ∈ Vj and write Dfx using these coordinates at x and f(x). From now on

when we talk about l-dominance we use the euclidean norm in these coordinates.

We also use them when we talk about the di! stance between two functions, or the

size of a perturbation.

Now the question we ask is the following: suppose we have two unit vectors

u, v ∈ TxM and Ru doesn’t l-dominate Rv, ‖Df l
x(u)‖ ≤ 2‖Df l

x(v)‖. Obviously

we can perturb the tangent map along the first l iterates of x moving u in the

direction of v. Now using Frank’s lemma (see [Fr]) we can realize these purely

algebraic perturbations as the tangent map of a perturbation f ′ of f and get

that Df ′x
l(u) = cDf l

x(v) for some real constant c. This perturbation is supported

in an arbitrarily small neighborhood of the first l iterates of x and leaves these

iterates unchanged and the size of the perturbation is proportional to the size of

the algebraic perturbations of the tangent map. The question is how small will

this perturbation be. We prove that it depends only on l and on the upper bound

of the norms of the derivatives of f . If l is arbitrarily large then the perturbation

needed can be arbitrarily small.

For the 2-dimensional case or the non-symplectic case a proof can be found in

[Ma1], [Ma2].

Lemma 4. For any ε > 0, K > 0, there exist an l ∈ N such that if A0, A1, . . . , Al

are (symplectic, with determinant 1) 2n-dimensional matrices with ‖Ak‖ ≤ K, k ∈

{0, 1, . . . , l} and ‖Al−1 . . . A1A0(u)‖ ≤ 2‖Al−1 . . . A1A0(v)‖ for some unit vectors
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u, v ∈ R2n then there exist (symplectic, with determinant 1) matrices A′
0, A

′
1, . . . , A

′
l

with ‖Ak − A′
k‖ < ε, k ∈ {0, 1, . . . , l}, such that

A′
lA

′
l−1 . . . A′

1A
′
0(u) = cAlAl−1 . . . A1A0(v)

for some nonzero real number c.

Proof. We will define A′
j as compositions of Aj with symplectic matrices close

to the identity, which clearly will work in all the three cases. We give the proof

only for the case n ≥ 2.

We will choose l later in the proof. Denote AkAk−1 . . . A0 = Bk for all k ∈

{0, 1, . . . , l}. For every such k we will consider an orthonormal symplectic ba-

sis in R2n, {ek
1, . . . , e

k
n, f

k
1 , . . . , fk

n} such that Bk(u)
‖Bk(u)‖ = ek

1 and Bk(v)
‖Bk(v)‖ = ak1e

k
1 +

ak2e
k
2 + bk1f

k
1 for some ak1, ak2, bk1 ∈ R, a2

k1 + a2
k2 + b2

k1 = 1. We can also make this

choice such that ak2 and bk1 have the same sign. By symplectic basis we mean that

ω(ek
i , f

k
i ) = −ω(fk

i , ek
i ) = 1 and ω(ek

i , e
k
j ) = ω(fk

i , fk
j ) = ω(ek

i , f
k
j ) = ω(fk

i , ek
j ) = 0

for all i, j ∈ {1, 2, . . . , n}, i 6= j.

We divide the proof in two steps. In the first one we prove that if the angle

between the iterates of u and v is small at some point then we can use a small

rotation moving one into another. In the second step, if the angles between the

iterates of u and v are bounded away from 0, then at the first step we make a

small rotation of u toward v, then we make small perturbations along the orbit

contracting u and expanding v thus the new orbit of u will move toward v in long
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enough time, then we complete with another small rotation in the end to move

this new orbit of u to a multiple of Bl(v).

Step 1. If the angle between Bj(u) and Bj(v) is small enough for some j ∈

{0, 1, . . . , l} then we can construct a perturbation moving Bj(u) to the direction

of Bj(v) only at the j’th step: if aj1 > 0 let A′
j = RAj where R is a symplectic

linear map such that

R(ej
1) = aj1e

j
1 + aj2e

j
2 + bj1f

j
1

R(ej
2) = a−1

j1 ej
2

R(f j
1 ) = a−1

j1 f j
1

R(f j
2 ) = aj1f

j
2 − aj2f

j
1

and R leaves the other vectors of the basis unchanged. This map moves Bj(u) to a

multiple of Bj(v). If aj1 < 0 we can just replace Bj(v) by −Bj(v). Clearly ‖R−Id‖

tends to 0 as |aj1| tends to 1, so we can find α ∈ (0, 1) depending on ε and K such

that if |aj1| > α then ‖R − Id‖ < ε
K

so ‖A′
j − Aj‖ ≤ ‖R − Id‖‖Aj‖ < ε. Taking

A′
i = Ai for all i ∈ {0, 1, . . . , l} \ {j} we get the desired sequence of perturbation.

Step 2. Now we can suppose that |ak1| ≤ α for any k. Then we get that

| ak1ak2

a2
k2+b2k1

| ≤ α
1−α2 and | ak1bk1

a2
k2+b2k1

| ≤ α
1−α2 for all k. For a σ > 1 we can consider the

symplectic linear map Tk such that

Tk(e
k
1) =

1

σ
ek
1
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Tk(e
k
2) = (σ − 1

σ
)

ak1ak2

a2
k2 + b2

k1

ek
1 + σek

2 + (σ − 1

σ
)

ak1bk1

a2
k2 + b2

k1

fk
2

Tk(f
k
1 ) = (σ − 1

σ
)

ak1bk1

a2
k2 + b2

k1

ek
1 + σfk

1 − (σ − 1

σ
)

ak1ak2

a2
k2 + b2

k1

fk
2

Tk(f
k
2 ) =

1

σ
fk

2

and all the other vectors of the basis are unchanged. This map has the property

that TkBk(u) = 1
σ
Bk(u) and TkBk(v) = σBk(v). Also ‖Tk − Id‖ tends to 0 as σ

tends to 1 uniformly with respect to ak1ak2

a2
k2+b2k1

and ak1bk1

a2
k2+b2k1

on compact sets, so there

exist a σ0 > 1 depending on ε and K such that if 1 ≤ σ ≤ σ0 then ‖Tk − Id‖ < ε
K

as long as | ak1ak2

a2
k2+b2k1

| ≤ α
1−α2 and | ak1bk1

a2
k2+b2k1

| ≤ α
1−α2 . From now on we fix σ = σ0. Let

A′
k = TkAk, k ∈ {1, 2, . . . , l − 1}. For δ = 1 − α the angle between u and u + δv

is small enough so we can find a symplectic map R such that R(u) = u + δv and

‖R− Id‖ < ε
K

(see the first step of the proof of the lemma). Let A′
0 = A0R.

From the construction of the perturbations we have that

A′
l−1 . . . A′

1A0(u) = σ−(l−1)Al−1 . . . A1A0(u),

A′
l−1 . . . A′

1A0(v) = σl−1Al−1 . . . A1A0(v),

and consequently

A′
l−1 . . . A′

1A
′
0(u) = σ−(l−1)Al−1 . . . A1A0(u) + δσl−1Al−1 . . . A1A0(v),
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or A′
l−1 . . . A′

1A
′
0(u) = σ−(l−1)Bl−1(u) + δσl−1Bl−1(v). If we choose l such that

σl−1 > 2
δ

and we use the hypothesis of non-dominance, ‖Bl−1(u)‖ ≤ 2‖Bl−1(v)‖,

we get that the angle between Bl−1(v) and A′
l−1 . . . A′

1A
′
0(u) is small enough so

there exist a symplectic map R′ such that R′A′
l−1 . . . A′

1A
′
0(u) = cBl−1(v) for some

real number c and ‖R′ − Id‖ < ε
K

. Now if we let A′
l = AlR

′ then we get the

conclusion of the lemma.

�

Remark. The lemma is also true for the odd dimensional case (not for sym-

plectic matrices). The proof is easier, the perturbations required are restricted to

a two dimensional subspace.

Definition. For a fixed K > 0 we define a decreasing function e : N → R as

follows: given an l ∈ N, then we define e(l) to be the smallest positive number

such that for any sequence of 2n-dimensional symplectic matrices A1, A2, . . . Al

with ‖Ak‖ ≤ K, k ∈ {1, 2, . . . , l} and any two unit vectors u, v ∈ R2n such

that ‖Al−1 . . . A2A1(u)‖ ≤ 2‖Al−1 . . . A2A1(v)‖ there exist symplectic matrices

A′
1, A

′
2, . . . , A

′
l with ‖Ak − A′

k‖ ≤
e(l)
2

, k ∈ {1, 2, . . . , l}, such that

A′
lA

′
l−1 . . . A′

2A
′
1(u) = cAlAl−1 . . . A2A1(v)

for some nonzero real number c. The lemma says that liml→∞ e(l) = 0.

In the same way for a given symplectic manifold M with fixed symplectic charts

and for a fixed K > 0 we define a decreasing function E : N → R as follows: for
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any l ∈ N we define E(l) to be the smallest positive number such that for any

f ∈ Diff1
ω(M) with ‖Dfx‖ ≤ K, ∀x ∈ M in the given charts and any two unit

vectors u, v ∈ TxM for some x ∈ M such that ‖Df l
x(u)‖ ≤ 2‖Df l

x(v)‖ there exist

a perturbation f ′ of f of size E(l)
2

supported on an arbitrarily small neighborhood

of {x, f(x), . . . f l(x)} such that f ′k(x) = fk(x), 1 ≤ k ≤ l and Df ′lx(u) = cDf l
x(v)

for some real number c. Because of the Frank’s lemma mentioned above we also

have that liml→∞ E(l) = 0.

4.3. Lyapunov filtrations for the invariant manifolds of hyperbolic

periodic points

For a measure preserving diffeomorphism almost all the points of the manifold

have well defined Lyapunov exponents and a corresponding Oseledets splitting that

give the exponential rate of expansion of the vectors in the tangent bundle under

the tangent map. More specific, if f ∈ Diff1(M) preserves a measure µ then for

µ-almost every point x ∈ M there exist real numbers λ̂1(x) < λ̂2(x) < · · · <

λ̂k(x)(x) and an invariant splitting TxM = E1(x) ⊕ E2(x) ⊕ · · · ⊕ Ek(x)(x) with

dim E1(x) + dim E2(x) + · · ·+ dim Ek(x)(x) = dim M such that

lim
|l|→∞

log ‖Df l
x(u)‖

l
= λ̂i(x),∀u ∈ Ei(x), i ∈ {1, 2, . . . k(x)},

and for any two disjoint subsets I and J of {1, 2, . . . , k(x)} we have

lim
|l|→∞

1

l
log ∠(⊕i∈IE

i
f l(x),⊕i∈JEi

f l(x)) = 0.
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Such a point x is called Lyapunov regular, the real numbers λ̂i, i ∈ {1, 2, . . . , k(x)}

are called the Lyapunov exponents of x and Ei
x, i ∈ {1, 2, . . . , k(x)} are called

Lyapunov subspaces. The splitting it is also called the Oseledets splitting. The

dimension of each Ei
x, mi(x), is called the multiplicity of λ̂i(x).

The Lyapunov regular points x ∈ M also have invariant forward and back-

ward Lyapunov filtrations : {0} = B0
x ⊂ B1

x ⊂ B2
x ⊂ · · · ⊂ B

k(x)
x = TxM

and {0} = A
k(x)+1
x ⊂ A

k(x)
x ⊂ A

k(x)−1
x ⊂ · · · ⊂ A1

x = TxM such that for every

i ∈ {1, 2, . . . , k(x)} we have:

lim
l→∞

log ‖Df l
x(v)‖

l
= λ̂i(x),∀v ∈ Bi

x \Bi−1
x ,

lim
l→∞

log ‖Df−l
x (u)‖

l
= λ̂i(x),∀u ∈ Ai

x \Ai+1
x .

In this case Bi
x = ⊕i

j=1E
j
x and Ai

x = ⊕k(x)
j=i Ej

x. Forward and/or backward Lyapunov

filtrations may exist for other points on the manifold which are not Lyapunov

regular.

Every periodic point is Lyapunov regular. For example, if x is a periodic point

of period p then the Lyapunov exponents are of the form λ = log |γ|
p

where γ is

an eigenvalue of Dfp
x and the Lyapunov subspaces of the Oseledets splitting are

given by the direct sum of the corresponding (generalized) eigenspaces. If we have

different eigenvalues of the same norm (as is the case of complex eigenvalues) then

the number of exponents is smaller then the number of eigenvalues.
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We consider λ1(x) ≤ λ2(x) ≤ · · · ≤ λdim M(x) be the Lyapunov exponents

λ̂i(x) of a regular point x repeated with multiplicity mi(x). Also define Λi(x) =

λi(x) + λi+1(x) + · · · + λdim M(x) and the corresponding Λ̂i(x) = mi(x)λ̂i(x) +

mi+1(x)λ̂i+1(x) + · · · + mk(x)(x)λ̂k(x)(x). Λi(x) (or Λ̂i(x)) is actually the maximal

exponential growth of the n− i+1-dimensional (or mi(x)+mi+1(x)+ · · ·+mk(x)-

dimensional) volume under Df .

In the symplectic case the Lyapunov exponents come in pairs. If λ is an expo-

nent with multiplicity m then −λ is also an exponent with the same multiplicity

m. If the dimension of the manifold M is 2n, then when we count the eigenvalue

with their multiplicity we will denote them λ−n ≤ λ−n+1 ≤ · · · ≤ λ−1 ≤ 0 ≤ λ1 ≤

λ2 ≤ · · · ≤ λn and we have λ−i = −λi,∀i ∈ {1, 2, . . . , n}.

The following lemma proves that the points on the stable manifold of a hy-

perbolic periodic point have a forward Lyapunov filtration and the points on the

unstable manifold have a backward Lyapunov filtration, with the same exponents

as the ones of the periodic point. As a consequence the homoclinic points will have

both forward and backward Lyapunov filtrations.

Lemma 5. Given an hyperbolic periodic point x for the diffeomorphism f of

the compact manifold M with Lyapunov exponents λ̂1 < λ̂2 < · · · < λ̂k and corre-

sponding Lyapunov subspaces E1, E2, . . . Ek then for any point p on the unstable

manifold of x we have a filtration of the tangent space {0} = Ak+1
p ⊂ Ak

p ⊂ Ak−1
p ⊂

· · · ⊂ A1
p = TpM (all the inclusions here are strict) which is invariant under Df
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and satisfy the following:

lim
l→∞

Aj
f−l(p)

= Ek ⊕ Ek−1 ⊕ · · · ⊕ Ej = Aj
x,

lim
l→∞

− log ‖Df−l
p (u)‖

l
= λ̂j,∀u ∈ Aj

p \Aj+1
p ,

and for any j ∈ {1, 2, . . . , k} and any basis {u1, u2, . . . ud(j)} of Aj
p we have

lim
l→∞

− log ‖
∧d(j) Df−l(u1 ∧ u2 ∧ · · · ∧ ud(j))‖

l
= Λ̂j

(the d(j) dimensional volume of Aj
p decreases under backward iterates with an

exponential rate of Λ̂j).

Similarly for any point q on the stable manifold of x we have a filtration {0} =

B0
q ⊂ B1

q ⊂ B2
q ⊂ · · · ⊂ Bk

q = TpM again invariant and satisfying

lim
l→∞

Bj
f l(p)

= E1 ⊕ E2 ⊕ · · · ⊕ Ej = Bj
x,

lim
l→∞

log ‖Df l
p(v)‖

l
= λ̂j,∀v ∈ Bj

p \Bj−1
p ,

and for any j ∈ {1, 2, . . . , k} and any basis {v1, v2, . . . vd′(j)} of Bj
p we have

lim
l→∞

log ‖
∧d′(j) Df l(v1 ∧ v2 ∧ · · · ∧ vd′(j))‖

l
= Λ̂k − Λ̂j+1.

Proof. First we observe that it is enough to define this filtrations on small

local stable and unstable manifolds of x and extend them later by invariance. So

we suppose p and q are on W u
ε (x) respectively W s

ε (x) for some small ε and inside
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a chart around x. If the map is linear or C1 conjugated to a linear map in a

neighborhood of x the proof is trivial. In general we denote Aj
x = Ek ⊕ Ek−1 ⊕

· · ·⊕Ej ⊂ TxM and for any y close to x we denote Aj
x(y) the translation of Aj

x to

TyM using the given chart. We define Aj
p = liml→∞ Df l

f−l(p)
Aj

x(f
−l(p)). Now one

can prove that this is well defined and verifies the required properties using some

cone fields in a neighborhood of x.

So let us define the cones

Cj,ε
x = R{a + ε′b, a ∈ Aj

x, b ∈ Bj
x, ‖a‖ = ‖b‖ = 1, ε′ < ε} =

= {a + b, a ∈ Aj
x, b ∈ Bj

x, ‖b‖ < ε‖a‖}.

All this cones are positively strictly invariant, i.e. cl(Df(Cj,ε
x )) ⊂ Cj,ε

x . For ε =

0, δ > 0 fixed, by replacing eventually f by a power of f we have that any

vector in Cj,0
x expands under Df by a factor between eλ̂j−δ and eλ̂n+δ and the d(j)

dimensional volume of the d(j) dimensional subspaces in Cj,0
x (which in this case

is only Cj,0
x ) expands under

∧d(j) Df by a factor between eΛ̂j−δ and eΛ̂j+δ. Then

we can find ε > 0 such that:

λ̂j − δ < log
‖Df(u)‖
‖u‖

< λ̂n + δ,∀u ∈ Cj,ε
x ,

Λ̂j − δ < log
‖
∧d(j) Df(u1 ∧ u2 ∧ · · · ∧ ud(j))‖

‖u1 ∧ u2 ∧ · · · ∧ ud(j)‖
< Λ̂j + δ,
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∀u1, u2, . . . , ud(j) linearly independent, span{u1, u2, . . . ud(j)} ⊂ Cj,ε
x .

Because f is C1, we can construct a strictly invariant continuous cone field Cj,ε
y

for y on a small neighborhood of x extending Cj,ε
x and having the properties men-

tioned above. For l large enough Aj
x(f

−l(p)) ⊂ Cj,ε
f−l(p)

and because the cones are

contracting in a neighborhood of x we get that Aj
p is well defined and obviously

liml→∞ Aj
f−l(p)

= Aj
x. Also Df−lAj

p = Aj
f−l(p)

⊂ Cj,ε
f−l(p)

for all large enough l so

λ̂j − δ ≤ lim
l→∞

log ‖Df−l(u)‖
−l

≤ λ̂n + δ,∀u ∈ Aj
p,

Λ̂j − δ ≤ lim
l→∞

log ‖
∧d(j) Df−l(u1 ∧ u2 ∧ · · · ∧ ud(j))

−l
≤ Λ̂j + δ

for any basis u1, u2, . . . ud(j) of Aj
p.

Taking the limit for δ → 0 we get the desired equality for the d(j) dimensional

volume and

λ̂j ≤ lim
l→∞

log ‖Df−l(u)‖
−l

≤ λ̂n,∀u ∈ Aj
p.

We can see from definition that Aj+1
p ⊂ Aj

p so for any vector u = ud(j) ∈ Aj
p \

Aj+1
p we can chose vectors u1, u2, . . . ud(j)−1 such that {u1, u2, . . . ud(j+1)} is a basis

for Aj+1
p and {u1, u2, . . . ud(j)} is a basis for Aj

p. Now using the fact that the

exponential volume growth on Aj
p and Aj+1

p under Df−1 is −Λ̂j respectively −Λ̂j+1

we get that the exponential volume growth under Df−1 on the subspace spanned

by {ud(j+1)+1, . . . ud(j)} must be at least −Λ̂j + Λ̂j+1 = −mjλ̂j. But we know that

the exponential growth of the vectors ud(j+1)+1, . . . , ud(j) under Df−1 is at most
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−λ̂j and mj = d(j) − d(j + 1). From this we can conclude the required relation

from the lemma.

For the subspaces Bj
q for q on the stable manifold of x the proof is similar. �

Remark. This result can be extended for the partially hyperbolic periodic

points - we can allow some zero Lyapunov exponents and consider the points on

the strong stable and strong unstable manifolds.

4.4. The main perturbation result

We say that a splitting TM = A⊕B has index k if the dimension of A is k.

Proposition 1. Suppose f ∈ Diff1
ω(M), x ∈ M is a hyperbolic periodic point

for f and λi+1(f, x) − λi(f, x) > δ > 0. Also suppose that f does not have a

l-dominated decomposition of index n− i. Then there is a perturbation of f of size

less than E(l), say g, and y ∈ M a hyperbolic periodic point for g arbitrarily close

to x such that Λi+1(g, y) < Λi+1(f, x)− δ
2

and λn(g, y) ≤ λn(f, x).

Proof. First we remark that if f doesn’t have a l-dominated decomposition

of index n − i then the same must be true for any other function in a small

C1 neighborhood of f . Indeed, if this is not true, we can find a sequence of

diffeomorphisms fn converging to f with l-dominated splittings of index n− i. For

a subsequence the corresponding subbundles will converge to invariant subbundles

for f and by taking the limit we get that this must be also a l-dominated splitting,

which is a contradiction.
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The strategy is the following: first we make an arbitrarily small perturbation

f1 of f in order to create dense homoclinic points for (the continuation of) x using

Lemma 3. We can choose the perturbation small enough so that the continuation

of x and its new Lyapunov exponents are arbitrarily close to the old ones and there

is no l-dominated splitting of index n− i. Let H(x) be the set of homoclinic points

of x which is dense in M . Then we use Lemma 5 to define the invariant subbundles

A and B for the points in H(x) corresponding to the Lyapunov exponents greater

or equal to λi+1(f1, x) (using the backward iterates) respectively smaller or equal

to λi(f1, x) (using the forward iterates). If A l-dominates B, then we can extend

these subbundles by continuity to the whole manifold M and get an l-dominated

splitting, which is a contradiction.

So we can suppose that A doesn’t l-dominate B, which means that there exist

a homoclinic point p of x and unit vectors u ∈ Ap, v ∈ Bp such that ‖Df l
1p(u)‖ <

2‖Df l
1p(v)‖. Now we can use Lemma 4 to create a perturbation f2 of f1 of size

less than E(l)
2

moving the vector u to a multiple of Df l
1p(v). The perturbation is

supported on an arbitrarily small neighborhood of the first l iterates of p, and it

doesn’t change the orbit of p, so we can suppose that the orbit and the Lyapunov

exponents of x are unchanged and p is still an homoclinic point of x. Also A

is unchanged for the backward iterates of p and B is unchanged for the forward

iterates of f l
1(p) = f l

2(p) so we have the vector u ∈ Ap ∩Bp for f2. Without loss of

generality we’ll denote f2 = f .
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In order to finish the proof, we want to close the orbit of p with another

arbitrarily small perturbation supported on a small neighborhood of x and thus

get the desired hyperbolic periodic orbit with smaller Λi+1. In the end we have a

perturbation of size E(l)
2

and finitely many arbitrarily small perturbations, so the

total the size of the perturbation will be smaller than E(l).

The next lemma shows how to close the orbit of the homoclinic point p of x.

Lemma 6. For any p an homoclinic point for the periodic hyperbolic point x

of f ∈ Diff r(M) (or Diff r
ω(M), where ω is either a symplectic or a volume form)

there exist an arbitrarily small Cr perturbation of f in Diff r(M) (or Diff r
ω(M))

supported in an arbitrarily small neighborhood of x such that p becomes a periodic

point.

Proof. Let V be a neighborhood of f in Diff r(M) (or Diff r
ω(M)). We know

that there is a small neighborhood U of x where fk is C0-conjugated to the linear

map Dfk(x) on a neighborhood of the origin, where k is the period of x. By

shrinking eventually the neighborhood we can suppose that the orbit of p inter-

sected with U is inside the ε-stable and ε-unstable manifolds of x for some small

ε > 0. Let y = f s(p), z = f−t(p), s, t > 0 be a forward and a backward iterate

of p contained in U . Using the perturbation lemma (see for example [Ne2]) we

can find small neighborhoods Uy ⊂ Ûy ⊂ U of y such that Ûy ∩ f(Ûy) = ∅ and

for any y′ ∈ Uy there exist f ′ ∈ V with f ′(y) = f(y′) and f ′ = f outside Ûy.

In the same way we can find neighborhoods Uz ⊂ Ûz ⊂ U of z using f−1. Now
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because of the conjugacy to the linear map th! ere is a point y′ ∈ Uy such that a

forward iterate of y′, say fa(y′) is in Uz. Now let g ∈ V be a function such that

g(y) = f(y′), g(fa−1(y′)) = z and g = f outside Ûy ∪ f−1(Ûz) as before. Then p is

a periodic point for g. Obviously U can be taken arbitrarily small. �

We observe that the perturbation we made consists basically of two transla-

tions,on small neighborhoods of a positive and a negative iterate of p. Also the

new orbit of p spends an arbitrarily long time in the neighborhood of x because

we can take as many iterates of p (positive and negative) as we want before mak-

ing the required translations. So the period of p for the perturbation gN will be

2N + k where k is the number of iterates away from x (which is fixed) and 2N is

the number of iterates close to x (which can be arbitrarily large). By changing the

notation we can suppose that gj
N(p),−N ≤ j ≤ N − 1 are the iterates of p close

to x. Furthermore for some s, t < N we have that gs
N(p), gs+1

N (p), . . . g2N+k−t
N (p)

is a segment of the orbit of the homoclinic point for f . We remark that p ac-

tually depends on N , but gN
N (p) and g−N

N (p) don’t. Because gj
N(p),−t ≤ j ≤ s

are in an arbitrarily small neighborhood and ! f is C1, using another small per-

turbation we can suppose that DgN(gj
N(p)) = Df(f j−s(gs

N(p))), 0 ≤ j ≤ s and

DgN(g−j
N (p)) = Df(f t−j(g−t

N (p))), 1 ≤ j ≤ t (using the coordinate chart around

x). In other words, for N positive iterates of p under gN the derivative is the

same as for N iterates of the homoclinic point under f situated on a local unstable

manifold of x and similarly for the negative iterates. Because of this we can define
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Agj
N (p), 0 ≤ j ≤ s as the pulled back of Ags

N (p) and Bg−j
N (p), 0 ≤ j ≤ t as the pushed

forward of Bg−t
N (p) under DgN and we have the relations:

−λn(f, x) ≤ lim
N→∞

log ‖Dg−N
N,gN

N (p)
(v)‖

N
≤ −λi+1(f, x),∀v ∈ AgN

N (p),

−λn(f, x) ≤ lim
N→∞

log ‖DgN
N,g−N

N (p)
(u)‖

N
≤ λi(f, x),∀u ∈ Bg−N

N (p).

Also if vn, vn−1, . . . , vi+1 is an orthonormal basis for AgN
N (p) we have

lim
N→∞

log ‖
∧n−i Dg−N

N,gN
N (p)

(vn ∧ · · · ∧ vi+1)‖
N

= −Λi+1(f, x).

Now we will estimate Λi+1(gN , p). We know that

Λi+1(gN , p) ≤
log ‖

∧n−i Dg2N+k
N,p ‖

2N + k
.

We want to choose a convenient basis {e−n, e−n+1, . . . , e−1, e1, . . . , en} of TpM such

that ej expands on the first N iterates of DgN with an exponential rate close to

λj(f, x) and consequently ej1 ∧ ej2 ∧ · · · ∧ ejn−i
expands on the first iterates of DgN

with an exponential rate not much bigger than λj1(f, x)+λj2(f, x)+· · ·+λjn−i
(f, x)

(the reason we get an estimation only from above for the volume growth is because

the angles between vectors may decrease, but that’s all what we actually need).

For simplicity from now on we denote λj = λj(x, f).

We start by supposing that the Lyapunov subspaces at x are orthogonal (this

can be done by a change of coordinates, a change of basis doesn’t change the
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eigenvalues or the Lyapunov exponents). Then we choose an orthonormal basis

{e′−n, e
′
−n+1, . . . , e

′
−1, e

′
1, . . . , e

′
n} of TgN

N (p)M such that it agrees with the backward

Lyapunov filtration for f :

lim
l→∞

log ‖Df−l(e′j)‖
−l

= λj and

lim
l→∞

log ‖
∧n−j Df−l(e′n ∧ e′n−1 ∧ · · · ∧ e′j+1)‖

−l
= λn + · · ·+ λj+1 = Λj+1

if λj+1 > λj (this can be done using Lemma 5). Also if e′j, . . . e
′
k are the vectors

corresponding to a (possible multiple) exponent then the pull back under Df of the

subspace generated by this vectors will converge to the corresponding Lyapunov

subspace at x. Now if a Lyapunov exponent λj is simple then we take ej =

Dg−N
N (e′j)

‖Dg−N
N (e′j)‖

. If λj−1 < λj = · · · = λk < λk+1 then we take {ej, ej+1, . . . , ek} to be an

orthonormal basis of Dg−N
N (span{e′j, . . . , e′k}). Then this basis of TpM is ’almost’

orthonormal, 〈ej, ek〉 is small for large N , and satisfies our requirements.

Now {ej1 ∧ ej2 ∧ · · · ∧ ejn−i
: − n ≤ j1 < j2 < · · · < jn−i ≤ n} is a basis for∧n−i TpM which is again ’almost’ orthonormal (for the dot product induced by

the one on TpM) so it is enough to estimate ‖
∧n−i Dg2N+k

N (ej1 ∧ ej2 ∧ · · · ∧ ejn−i
)‖.

Suppose now that we have ε > 0 fixed.

First case: ej1 ∧ ej2 ∧ · · · ∧ ejn−i
6= ei+1 ∧ ei+2 ∧ · · · ∧ en. Then for large enough N

we have

log ‖
n−i∧

DgN
N (ej1 ∧ ej2 ∧ · · · ∧ ejn−i

)‖ < N(λj1 + · · ·+ λjn−i
+ ε) ≤ N(Λi+1 − δ + ε)
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and furthermore

log ‖
n−i∧

DgN+k
N (ej1 ∧ ej2 ∧ · · · ∧ ejn−i

)‖ < N(Λi+1 − δ + ε) + K

where K is a constant which doesn’t depend on N .

In order to evaluate the last N iterates we consider an orthonormal basis

{ē−n, ē−n+1, . . . , ē−1, ē1, . . . , ēn} of Tg−N
N (p)M which agrees with the forward Lya-

punov filtration for f : liml→∞
log ‖Df l(ēj)‖

l
= λj (this can be done again using

Lemma 5). Then we get that

lim
l→∞

log ‖
∧n−i Df l(ēj1 ∧ · · · ∧ ējn−i

)‖
l

≤ λj1 + · · ·+ λjn−i
≤ Λi+1.

So for large enough N we have ‖
∧n−i DgN

N (ēj1 ∧ · · · ∧ ējn−i
)‖ < eN(Λi+1+ε) for any

−n ≤ j1 < j2 < · · · < jn−i ≤ n. But

{ēj1 ∧ · · · ∧ ējn−i
: − n ≤ j1 < j2 < · · · < jn−i ≤ n}

is again an orthonormal basis of
∧n−i Tg−N

N (p)M which has dimension (n
n−i) so

‖
∧n−i DgN

N |T
g−N
N

(p)
‖ < (n

n−i)e
N(Λi+1+ε). Taking the log and combining with the

inequality for the first N + k iterates we get

log ‖
n−i∧

Dg2N+k
N (ej1 ∧ ej2 ∧ · · · ∧ ejn−i

)‖ < 2N(Λi+1 −
δ

2
+ ε) + K ′
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for all large enough N where K ′ again doesn’t depend on N . Dividing by 2N + k

and taking N sufficiently large we get

log ‖
∧n−i Dg2N+k

N (ej1 ∧ ej2 ∧ · · · ∧ ejn−i
)‖

2N + k
< Λi+1 −

δ

2
+ ε

if ej1 ∧ ej2 ∧ · · · ∧ ejn−i
6= ei+1 ∧ ei+2 ∧ · · · ∧ en.

Second case: the estimation for ei+1 ∧ ei+2 ∧ · · · ∧ en. As in the first case we get

for large enough N that

log ‖
n−i∧

DgN+k
N (ei+1 ∧ ei+2 ∧ · · · ∧ en)‖ < N(Λi+1 + ε) + K.

We know that there is a unit vector u ∈ span{ei+1, ei+2, . . . , en} = Ai+1
p such that

DgN+k
N (u) ∈ Bg−N

N
(p) = span{ē−n, ē−n+1, . . . , ēi}. This implies that DgN+k

N (ei+1 ∧

ei+2 ∧ · · · ∧ en) is inside the subspace of
∧n−i Tg−N

N
(p)M generated by all ēj1 ∧ ēj2 ∧

· · · ∧ ējn−i
different from ēi+1 ∧ ēi+2 ∧ · · · ∧ ēn. In the same way we did for the

first case we get that the norm of
∧n−i DgN

N restricted to this subspace is bounded

from above by (n
n−i)e

N(Λi+1−δ+ε) for large N . Again combining this two and taking

N sufficiently large we get

log ‖
∧n−i Dg2N+k

N (ei+1 ∧ ei+2 ∧ · · · ∧ en)‖
2N + k

< Λi+1 −
δ

2
+ ε.

To conclude, we have the inequality for all the elements of the basis, which is

’almost’ orthonormal, so by taking N big enough we get the inequality for any
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unit vector (in
∧n−i TpM):

log ‖
∧n−i Dg2N+k

N ‖
2N + k

< Λi+1 −
δ

2
+ 2ε

which implies that Λi+1(gN , p) < Λi+1(f, x)− δ
2
+2ε. Now we can do the same thing

for a slightly larger δ and arbitrarily small ε, so eventually we get Λi+1(gN , p) <

Λi+1(f, x)− δ
2
.

The proof of the second inequality of the proposition is similar, but we don’t

have to take the two separate cases. It is enough to remark that the exponential

rate of growth of any vector is bounded from above by λn around x so it’s enough

to take N large and we get λn(gN , p) < λn(f, x) + ε. But again ε can be chosen

arbitrarily small so with another small perturbation we get λn(gN , p) ≤ λn(f, x).

As a last remark because the period of p is arbitrarily large we can easily make

sure that the point p is actually hyperbolic, so it doesn’t have zero Lyapunov

exponents. �

Corollary 4. Suppose f ∈ Diff1
ω(M) doesn’t have a dominated decomposition

of index n− i. Then there is an arbitrarily small C1 perturbation g of f such that

g has a periodic point x with λi = λi+1.

Proof. We denote by Per(g) the set of hyperbolic periodic points of g. Suppose

that the result is not true, so there exist a C1 neighborhood V of f and a δ > 0 such

that for any function g ∈ V and any x ∈ Per(g) we have λi+1(g, x)− λi(g, x) > δ.

We also let Λi+1(g) = inf
x∈Per(g)

Λi+1(g, x), Λ = lim infg→f Λi+1(g). This imply
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that there exist gn → f , xn ∈ Per(gn) such that Λi+1(gn, xn) → Λ. We can

suppose that gn ∈ V for all n > 0.

We will denote d the C1 distance on Diff1
ω(M) using the fixed symplectic

charts. Now for any l ∈ N there exist nl > l such that gnl
doesn’t have a l-

dominated splitting of index n− i (otherwise we can pass the decomposition to the

limit and get one for f). We also know that λi+1(gnl
, xnl

)− λi(gnl
, xnl

) > δ so we

can apply the proposition to find hl ∈ Diff1
ω(M), d(hl, gnl

) < E(l), yl ∈ Per(hl)

such that Λi+1(hl, yl) < Λi+1(gnl
, xnl

)− δ
2
. Because E(l) → 0 as l →∞ we get that

hl → f . Also

lim
l→∞

Λi+1(hl) ≤ lim
l→∞

Λi+1(hl, yl) ≤ lim
l→∞

Λi+1(gnl
, xnl

)− δ

2
= Λ− δ

2

which is a contradiction. �

Remark. One case in which λi = λi+1 is when the corresponding eigenvalues

are complex conjugate. Periodic points of this type are used in [BoDiPu] to

construct sinks or sources in the case of general diffeomorphisms or periodic points

with all the eigenvalues of modulus 1 for volume preserving diffeomorphisms in the

absence of dominance.

4.5. Proof of Theorem 3

Now we will give the proof of Theorem 3.
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Proof. (Theorem 3) We will use the proposition to prove that for any open set

U in M we can find an arbitrarily small perturbation of f with an elliptic periodic

point in U .

So let’s fix an open set U in M . Lemma 7 from the Appendix shows that for

symplectic diffeomorphisms the existence of a dominated splitting is equivalent to

partial hyperbolicity, so we know that there are no dominated splittings for f .

We define the decreasing function L : R+ → N as follows: for any ε > 0 we let

L(ε) to be the largest integer such that all the perturbations of f of size at most

ε don’t have a L(ε)-dominated decomposition. Because for any l > 0 there are no

sequences of diffeomorphisms with l-dominated splittings converging to f , there is

a neighborhood Vl of f such that no function in Vl has an l-dominated splitting.

This proves that limε→0 L(ε) = ∞.

For any g ∈ Diff1
ω(M) we define λn(g) = inf

x∈Per(g)∩U
λn(g, x) and λ =

liminfg→fλn(g). Because of the C1 closing lemma λ must be finite. If λ = 0

we are done, an arbitrarily small perturbation will make all the Lyapunov expo-

nents of a periodic point zero and consequently we get an elliptic periodic point

(making sure there are no multiple eigenvalues). So we can suppose that λ > 0.

There exist fk → f (in the C1 topology), xk ∈ Per(fk) ∩ U , such that λk
n :=

λn(fk, xk) → λ. Our goal is to use the proposition several times to construct a

sequence of perturbations gk, still converging to f , and having some periodic points

yk ∈ Per(gk) ∩ U with limk→∞ λn(gk, yk) ≤ (1− α)λ which is a contradiction. We

will choose α > 0 later.
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Suppose that d(f, fk) = εk for εk > 0 small. This means that fk doesn’t have

any L(εk)-dominated splitting. We denote fk = fk1, xk = xk1. There exist an

i1 ∈ {−1, 1, 2, . . . , n− 1} such that

λi1+1(fk1, xk1)− λi1(fk1, xk1) <
λk

n

n
= δ1

Applying the proposition we can construct fk2 ∈ Diff1
ω(M), d(fk2, fk1) < EL(εk),

with xk2 ∈ Per(fk2) ∩ U such that

Λi1+1(fk2, xk2) < Λi1+1(fk1, xk1)−
δ1

2
,

λn(fk2, xk2) ≤ λk
n.

Also

d(fk2, f) ≤ d(fk2, fk1) + d(fk, f) < εk + EL(εk).

We will denote φ(ε) = ε+EL(ε) and then we can rewrite this as d(fk2, f) < φ(εk).

If λn(fk2, xk2) ≤ (1 − α)λk
n then we stop and take gk = fk2 and yk = xk2.

Otherwise there exist a j2 ∈ {i1 + 1, i1 + 2, . . . , n− 1} such that

λj2(fk2, xk2) < λj2(fk1, xk1)−
δ1

2n
≤ λk

n −
δ1

2n
.

So

λk
n ≥ λn(fk2, xk2) > (1− α)λk

n > λk
n −

δ1

2n
> λj2(fk2, xk2)
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if α < 1
2n2 (remember that δ1 = λk

n

n
). This implies that there exist i2 ∈ {j2, j2 +

1, . . . n− 1} such that

λi2+1(fk2, xk2)− λi2(fk2, xk2) >
δ1

2n2
− αλk

n

n
=

λk
n

2n3
− αλk

n

n
= δ2.

Because d(fk2, f) < φ(εk) we get that fk2 has no L(φ(εk))-dominated splitting.

Applying again the proposition we get that there is an fk3 ∈ Diff1
ω(M), with

xk3 ∈ Per(fk3) ∩ U such that

Λi2+1(fk3, xk3) < Λi2+1(fk2, xk2)−
δ2

2
,

λn(fk3, xk3) ≤ λn(fk2, xk2) ≤ λk
n

and d(fk3, fk2) < EL(φ(εk)). We observe again that

d(fk3, f) ≤ d(fk3, fk2) + d(fk2, f) < φ(εk) + EL(φ(εk)) = φ2(εk).

Again if λn(fk3, xk3) ≤ (1 − α)λk
n then we let gk = fk3 and yk = xk3 and we stop.

Otherwise, again under the condition that α is sufficiently small, there will be a

gap of size at least δ3 = δ2
2n2 − αλk

n

n
between λi3+1(fk3, xk3) and λi3(fk3, xk3) for

some i3 > i2 and we apply again the proposition to lower Λi3+1 by at least δ3
2

for a

perturbation fk4 and a hyperbolic periodic point xk4 in U . The distance from fk4

to f will be less that φ3(εk). We can repeat this argument and in the end α can

be chosen sufficiently small (depends only on n) such that after a finite number of
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such perturbations (at most n) we actually lower λn by αλk
n. So we can find indeed

gk ∈ Diff1
ω(M), d(gk, f) < φn(εk) where εk = d(fk, f) → 0, and! yk ∈ Per(gk) ∩ U

such that λn(gk, yk) ≤ (1− α)λk
n. Then

lim
k→∞

λn(gk, yk) ≤ lim
k→∞

(1− α)λk
n = (1− α)λ.

We also know that limε→0 L(ε) = ∞, liml→∞ E(l) = 0 so limε→0 φ(ε) = 0 and

furthermore limε→0 φn(ε) = 0 which shows that gk converges to f in Diff1
ω(M) and

we are done because we reached a contradiction. �

4.6. Proof of Theorem 2 and its corollaries

Proof. (Theorem 2) It is true that the set of partially hyperbolic diffeomor-

phisms in Diff1
ω(M), let’s denote it PH, is open and the set of diffeomorphism

with elliptic periodic points, denoted E , is also open. Now if f is not in PH then

we apply Theorem 3 and get that f must be in the closure of E . This proves that

U = PH ∪ E is open dense. For the second part, if we denote by Eδ the set of dif-

feomorphisms with δ-dense elliptic periodic points, applying Theorem 3 for a finite

number of open subsets one can prove that PH ∪ Eδ is open dense in Diff1
ω(M),

so taking R their intersection for δ = 1
k
, k ∈ N we get the result. �

A map f is called C1 robustly transitive if there is a C1 neighborhood of f such

that every map in this neighborhood is transitive. An example is any the Anosov
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map. It is known that the existence of an elliptic periodic point is an obstruction

for C1 robust transitivity. So as a simple consequence we get Corollary 1.

A C2 map f is called stable ergodic if there is a C1 neighborhood of f such

that every C2 map in this neighborhood is ergodic. Again this is true for Anosov

maps. Using the fact that Diff2
ω(M) and Diff∞

ω (M) are dense in Diff1
ω(M) in the

C1 topology (see [Ze2]) we can get Corollary 2.

The proof of Corollary 3 is by contradiction.

Remark. Theorem 3 is true also for the volume preserving diffeomorphisms,

with the partial hyperbolicity replaced by the existence of a dominated splitting.

The proof is similar to the symplectic case.
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APPENDIX

Dominated Splittings for Symplectic Diffeomorphisms

In this appendix we prove that for a symplectic diffeomorphism the existence

of a dominated splitting implies partial hyperbolicity.

Suppose we have a symplectic structure on a 2n-dimensional vector space V , i.

e. there is a non-degenerate skew symmetric bilinear functional on V ×V denoted

ω. Two subspaces A and B of V are called skew orthogonal if ω(a, b) = 0,∀a ∈

A, b ∈ B. A subspace A is called symplectic if ω restricted to A is non-degenerate.

The skew orthogonal complement of a subspace A is Aω = {v ∈ V : ω(a, v) =

0,∀a ∈ A}. We have that (Aω)ω = A and if the dimension of A is d then the

dimension of Aω is 2n− d. A subspace is symplectic if and only if A ∩ Aω = ∅. If

A = Aω then we say that A is a Lagrangian subspace. The Lagrangian subspaces

are the maximal subspaces such that ω restricted to them is trivial (or they are a

subset of their skew orthogonal complement).

Lemma 7. If f ∈ Diff1
ω(M) has a dominated splitting, then it is partially

hyperbolic. More precisely, say that A⊕B is an invariant splitting of TM , dim A =

i ≤ n and A l-dominates B for some l then there is a splitting C⊕D of B such

that dimD = i, dimC = 2n−2i, C and A⊕D are symplectic and skew orthogonal,

A is uniformly expanding, D is uniformly contracting, and A l′-dominates C, C

60
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l′-dominates D for some l′ ≥ l. In particular if i = n then C = 0 and f is

hyperbolic.

Proof. We define C = Aω ∩B, D = Cω ∩B. We remark that A and B must

be continuous because of the dominance, so C and D also must be continuous.

There exist M > 0 such that for any x ∈ M and any two vectors u, v ∈ TxM we

have |ω(u, v)| ≤ M‖u‖‖v‖. We divide the proof in two cases.

First case: i < n. For any x ∈ M there are vectors b1, b2 ∈ Bx with ω(b1, b2) 6=

0. Using the continuity of B and the compactness of M we can find an m > 0

such that for any x ∈ M there are two vectors bx
1 , b

x
2 ∈ TxM such that ω(bx

1 , b
x
2) ≥

m‖bx
1‖‖bx

2‖. Then if we take bx
1 and bx

2 to be unit vectors and any other unit vector

ax ∈ Ax we get

m ≤ ω(bx
1 , b

x
2) = ω(Dfkl(bx

1), Dfkl(bx
2)) ≤ M‖Dfkl(bx

1)‖‖Dfkl(bx
2)‖ ≤

M

22k
‖Dfkl(ax)‖2 or ‖Dfkl(ax)‖ ≥

√
22km

M
,∀x ∈ M, ax ∈ Ax.

Here we used the dominance hypothesis. Now if we take k large enough so that

22km
M

> 1 we get that A must be uniformly expanding.

For any x ∈ M and a1, a2 ∈ Ax we have

ω(a1, a2) = lim
k→∞

ω(Df−k(a1), Df−k(a2)) = 0
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because A is expanding so ω restricted to A is trivial. Then A ⊂ Aω and the

dimension of C = Aω ∩B must be 2n−2i. Now A ⊂ (A⊕C)ω and the dimension

of (A⊕C)ω is i so A = (A⊕C)ω and consequently C∩Cω = ∅ so C is symplectic.

Also we know that A ⊂ Cω and the dimension of Cω is 2i so the dimension of

D = Cω ∩B must be i. From construction we have that C and A ⊕D are skew

orthogonal. Also the fact that C is symplectic implies that also A⊕D is symplectic

and ω restricted to D is trivial.

What is left now to prove is that D is uniformly contracting and C dominates

D. As we remarked before A, C and D are continuous, M is compact and C,

A ⊕D are symplectic, ω restricted to A and D is trivial, so there exists m > 0

such that for any any x ∈ M, u ∈ Ax (or Dx,Cx) there exist v ∈ Dx (or Ax

respectively Cx) such that ω(u, v) ≥ m‖u‖‖v‖.

Suppose we have x ∈ M, d ∈ Dx. As we saw before we can find a ∈ Ax such

that ω(a, d) ≥ m‖a‖‖d‖. Then

m‖a‖‖d‖ ≤ ω(a, d) = ω(Df−k(a), Df−k(b)) ≤ M‖Df−k(a)‖‖Df−k(d)‖

So ‖Df−k(d)‖ ≥ m
M

‖a‖
‖Df−k(a)‖‖d‖ and because A is uniformly expanding if we take

k large enough we get that D must be uniformly contracting.

We know that A l-dominates C because C ⊂ B. So let’s take x ∈ M, d ∈

Dx, c ∈ Cx, ‖c‖ = ‖d‖ = 1. As before we pick a ∈ Ax, ‖a‖ = 1, ω(a, d) ≥
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m‖a‖‖d‖ = m. Then

m ≤ ω(a, d) = ω(Df−kl(a), Df−kl(d)) ≤ M‖Df−kl(a)‖‖Df−kl(d)‖.

There exist c′ ∈ Cx, ‖c′‖ = 1 such that

ω(Df−kl(c), Df−kl(c′)) ≥ m‖Df−kl(c)‖‖Df−kl(c′)‖.

From the fact that A l-dominates C we get that ‖Df−kl(a)‖ ≤ 2−k‖Df−kl(c′)‖.

Combining this two inequalities we get

‖Df−kl(a)‖ ≤ 2−k

m‖Df−kl(c)‖
ω(Df−kl(c), Df−kl(c′)) =

=
2−k

m‖Df−kl(c)‖
ω(c, c′) ≤ 2−k

m‖Df−kl(c)‖
M‖c‖‖c′‖ =

2−kM

m‖Df−kl(c)‖

and furthermore

‖Df−kl(d)‖
‖Df−kl(c)‖

≥ 2km2

M2

which proves that C also dominates D if we take again k large enough and we are

done.

Second case: i = n. In this case we only have to prove that A is uniformly

expanding and B is uniformly contracting. For any x ∈ M we have that either ω

restricted to Bx is trivial or ω restricted to Bx is not trivial, and as in the proof

of the first case we get that Ax is expanded so ω restricted to Ax must be trivial.

If we take any x ∈ M and a ∈ Ax, because ω restricted to Ax or to Bx is trivial,
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we can find an b ∈ Bx such that ω(a, b) 6= 0 and vice-versa. These observations,

together with the continuity of A and B and the compactness of M , show that

there must be again an m > 0 such that for any x ∈ M and for any a ∈ Ax

(b ∈ Bx) there exist b ∈ Bx (a ∈ Ax) such that ω(a, b) ≥ m‖a‖‖b‖. Now let’s

suppose that A is not unifor! mly expanding, so for any large k there exist x ∈ M

and a ∈ Ax such that ‖Dfkl(a)‖ < 2. From the dominance condition we get that

Bx must be contracting, ‖Dfkl(v)‖ < 21−k,∀v ∈ Bx. We know that we can find

b ∈ Bx such that ω(a, b) ≥ m‖a‖‖b‖. Then we get

m‖a‖‖b‖ ≤ ω(a, b) = ω(Dfkl(a), Dfkl(b)) ≤ M‖Dfkl(a)‖‖Dfkl(b)‖ <

< 21−kM‖Dfkl(a)‖

and from here we find that ‖Dfkl(a)‖ > 2k−1 m
M

. But we can take k arbitrarily

large so 2k−1 m
M

becomes larger that 2 and we get a contradiction. The proof that

B is uniformly contracting is similar. In particular in this case we get that A and

B must be Lagrangian. �


