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Introduction

Let R(z) be a rational function. Assume that there exist constants C > 0 and
γ > 0 such that the following holds: For any critical point c, whose forward orbit
does not contain any other critical point, we have

(0.1) |(Rn)′(R(c))| ≥ Ceγn, for all n ≥ 0.

Then we say that the map R is Collet-Eckmann (CE). The number R(c) is often
referred to as the critical value.

A parameterisation of all rational functions of a fixed degree d ≥ 2, is given by

(0.2) R(z) =
P (z)
Q(z)

=
a0 + a1z + . . .+ adz

d

b0 + b1z + . . .+ bdzd
,

where ai, bi ∈ C for 0 ≤ i ≤ d. We assume that P (z) = a0 + a1z + . . . + adz
d and

Q(z) = b0 + b1z + . . . + bdz
d do not have any common zero and at least one of ad

and bd is non zero. Without loss of generality, we can assume that bd = 1. The
case ad = 1 can be treated in exactly the same way. Therefore, the set of rational
functions of degree d is a (2d+ 1)-dimensional complex manifold and a subspace of
the projective space P2d+1(C) with two charts corresponding to ad = 1 and bd = 1.
We will prove the following.

Theorem A. The set of Collet-Eckmann maps has positive Lebesgue measure in
the parameter space of rational functions for any fixed degree d ≥ 2.

The measure is, of course, dependent on the chart which is used. However, the
two measures corresponding to ad = 1 and bd = 1 are equivalent. There is also a
coordinate independent measure on the projective space P2d+1(C), induced by the
Fubini-Study metric (see [20], pp. 30-31). The Fubini-Study measure and Lebesgue
measure on the charts are mutually absolutely continuous.

It will be clear from the proof that the set obtained in Theorem A consists of
functions which have the property that for any critical point c there is a k > 0 such
that

(0.3) |(Rn)′(Rk(c))| ≥ Ceγn, for all n ≥ 0.

The existence of an absolutely continuous invariant probability measure (acip)
for a positive measure set of rational functions was first proved by M. Rees in the
famous paper [32]. Later we show, using results by Przytycki [30] and Graczyk and
Smirnov [18], that the same holds for the set of CE-functions obtained in Theorem
A.
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0.1. A brief historical background. In the early days in complex dynamics, at
the end of the 19th century, the local analysis of iteration of analytic functions was
developed. A main issue was to describe the local behaviour around fixed points
by conjugation. We say that a function f : U → U is (conformally) conjugate to
g : V → V if there exists a conformal map ϕ : U → V such that

(0.4) ϕ(f(z)) = g(ϕ(z)).

What one hopes for, is to find a simple function g conjugating f . Close to fixed
points this is especially interesting, since fixed points and their derivatives are pre-
served under analytic conjugation; the dynamics is translated into another, hope-
fully easier, coordinate system.

The idea of conformal conjugation was introduced by Schröder in 1871 [35], and
equation (0.4) is often referred to as the Schröder functional equation. Let z0 be a
fixed point, i.e. f(z0) = z0. One distinguishes between five types of fixed points:

• Superattracting: f ′(z0) = 0,
• Attracting: 0 < |f ′(z0)| < 1,
• Rationally Neutral: f ′(z0) = e2πiθ, θ ∈ Q,
• Irrationally Neutral: f ′(z0) = e2πiθ, θ /∈ Q,
• Repelling: |f ′(z0)| > 1.

In 1904 L. E. Böttcher [7] solved the Schröder equation in the superattracting
case, more precisely, when

f(z) = z0 + ap(z − z0)p + . . . ,

where p ≥ 2, then f is conjugated to g(z) = zp. In 1884 G. Koenigs [23] showed
that if

f(z) = z0 + λ(z − z0) + . . . ,

where |λ| 6= 1, λ 6= 0, then f is conjugated to the linear function g(z) = λz. In this
case we say that f is linearisable. The number λ is called the multiplier of f at z0.
The rationally neutral case was resolved by Fatou in [15] (and earlier by L. Leau,
in [25]), where he shows the existence of flower shaped petals (around z0), which
are invariant curves for the dynamics. In 1942 C. L. Siegel [36] was the first to find
a solution to the Schröder equation in the irrationally neutral case; if λ = e2πiθ,
where θ is Diophantine, then f is conjugated to an irrational rotation with angle θ,
i.e. g(z) = e2πiθz. That θ is Diophantine means that θ is badly approximable by
rational numbers; there are c > 0 and µ <∞ such that∣∣∣∣θ − p

q

∣∣∣∣≥ c

|q|µ
,

for all integers p and q 6= 0. G. A. Pfeiffer discovered in 1917 [29], the first example of
a polynomial f(z) = zλ+. . .+zd, where λ = e2πiθ such that f is not linearisable. H.
Cremer [12] continued his work and showed in 1938 that if |λ| = 1 and lim inf

n→∞
|λn−

1|1/n = 0, then f is not linearisable. For the quadratic polynomial

Q(z) = e2πiθz + z2,

precise conditions for the existence of a linearisation are known. Let pn/qn be the
rational numbers approximating θ according to the continued fraction expansion.
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A conjugation of Q with the function g(z) = e2πiθz exists if and only if

(0.5)
∑ log qn+1

qn
<∞.

The sufficiency of condition (0.5) was proved by A.D. Brjuno in 1965 [9], and the
necessity was established by J-C. Yoccoz in 1988 [38]. In [40], Yoccoz gave a new
proof of Brjuno’s Theorem. In the second part of the same paper he considers the
linearisability of the quadratic polynomial Pλ(z) = λz(1 − z). The main result is
that Pλ is linearisable if and only if every holomorphic function f(z) = λz+O(z2)
is linearisable, that is, if the condition (0.5) is satisfied. It is also shown that if Pλ
is not linearisable, then every neighbourhood of the origin contains periodic orbits.

In the beginning of the 20th century, great advances in global complex dynamics
was made. A decisive step made by Fatou and Julia ([15], [16], [17] and [22]) was the
decomposition of the Riemann sphere into a compact set J (f) and its complement
F(f), consisting of those points z, for which there is a neighbourhood U of z such
that fn

∣∣
U

is a normal family (that is, there is a subsequence nk such that fnk
∣∣
K

converges on compact subsets K ⊂ U in the spherical metric). The set F(f) is
called the Fatou set of f and its complement J (f), the Julia set. At the same time
Fatou and Julia, with help of Montel’s theorem, showed the important theorem that
the Julia set is equal to the closure of the repelling periodic orbits, leading to the
discovery of the dichotomy between these two sets: on the Julia set the dynamics
is chaotic and on the Fatou set it is stable.

The understanding of the structure of the Fatou set was completed in 1985 by
D. Sullivan [34], who proved that there can be no wandering domains. A wandering
domain is a component U of F(f) such that f i(U)∩f j(U) = ∅ whenever i 6= j. So,
by Sullivan’s Theorem, every component of the Fatou set is eventually periodic.

The chaotic behaviour on the Julia is strongly connected to the sensitive de-
pendence on initial conditions, which means that two close points repel each other
under iteration. Thus it is interesting to study the derivatives along orbits, es-
pecially critical orbits. This makes it natural to introduce Lyapunov exponents,
hyperbolicity, Collet-Eckmann maps, invariant measures etc. A function is hyper-
bolic if every critical point is attracted to an attracting cycle. The famous Fatou
conjecture states that the set of hyperbolic maps is open and dense in the space
of rational functions. It is still unsolved. It is also a major conjecture that the
Julia set of a rational function is either the whole Riemann sphere or has zero area.
A little easier problem might be the conjecture that the set of rational maps with
non-recurrent critical points and no attractive cycles, (so called Misiurewicz maps)
has Lebesgue measure zero in the parameter space.

The existence of rational functions for which the Julia set is the whole Riemann
sphere was shown in a nice manner by S. Lattés, [24]. Consider a lattice L in C,
consisting of all points n1w1 + n2w2, where n1, n2 ∈ Z and w1/w2 /∈ R. Since L is
invariant under multiplication by an integer, any map A(z) = λz for λ ∈ Z induces
an endomorphism of the complex torus T2 = C/L. The Weierstrass P-function,

P(z) =
1
z2

+
∑

ω∈L\{0}

(
1

(z − ω)2
− 1
ω2

)
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maps T2 onto Ĉ. It gives rise to a rational function f on Ĉ, which completes the
commutative diagram below.

C/L A−−−−→ C/L

P

y yP

Ĉ f−−−−→ Ĉ
If A(z) = 2z and w1 = 1, w2 = i then f in the above diagram is the rational

function

f(z) =
(z2 + 1)2

4z(z2 − 1)
,

where f has its Julia set equal to the whole Riemann sphere. This function is Lattés
example from 1918. In [6] J. Bernard studied the family

Qα,β(z) = α(z +
1
z
) + β,

for (α, β) near (− 1
2 ,
√

2), which are perturbations of the Lattès example Q− 1
2 ,
√

2(z).

He proves that (α, β) = ( 1
2 ,
√

2) is a Lebesgue density point for the set of points such
that Qα,β has an absolutely continuous invariant probability measure and positive
Lyapunov exponent.

Complex dynamics became very popular when B. Mandelbrot made computer
experiments, showing beautiful pictures of Julia sets. Even the most simple func-
tions can exhibit complicated and beautiful Julia sets, for example the quadratic
map fc(z) = z2 + c, giving rise to the so called Mandelbrot set, which consists of
those parameters c for which fnc (0) 9 ∞. The Mandelbrot set M looks very com-
plicated. Also, an equivalent definition of M is the set of parameters c such that
the corresponding Julia set Jc is connected. In 1982, A. Douady and J. Hubbard
showed in [14] that the set M itself is connected. For c in the complement of M , the
corresponding Julia set is a Cantor set. It is still an unsolved and famous problem
whether the boundary of the Mandelbrot set is locally connected or not. Extensive
work has been going on on this topic.

Let us give a quick glance on the quadratic family fa(x) = 1 − ax2, 0 < a ≤ 2,
−1 ≤ x ≤ 1, and related works. The quadratic family is by now dynamically well
understood. In the pioneering work [21] in 1981 by M. Jakobson, it is proved that
for a positive measure set of parameters a, fa admits an acip. M. Benedicks and L.
Carleson [4] gave another proof of this in 1985, where they proved subexponential
growth of the derivative at the critical value, for a set of parameters a of positive
Lebesgue measure. This, in turn, implies the existence of an acip. At the same time,
in 1986, M. Rees completed her well-known paper [32], which is a corresponding
theorem for rational functions on the Riemann sphere. In [5], L.S. Young and
M. Benedicks showed stability of the the acip:s for fa, with respect to translation
invariant small stochastic perturbations. Later, M. Benedicks and L. Carleson also
proved that the CE-condition holds for a positive measure set of parameters a, and
this was mainly developed for the purpose to complete their fundamental paper
[4], where they show that for a set of parameters of positive Lebesgue measure,
an attractor exists in families of Hénon maps. L.S Young and Q. Wang made an
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extensive work on the same subject in [37]. In [28], L. Mora and M. Viana extended
the Benedicks-Carleson method to more general perturbations of the quadratic
family and Hénon like mappings to prove a conjecture stated by J. Palis.

The famous real Fatou conjecture, states that the set of functions fa with pa-
rameters a such that fa has attracting periodic orbits, is open and dense in (0, 2).
This problem was solved by Graczyk and Świa̧tek in [19] and by Lyubich in [26].
Lyubich showed in [27] that the quadratic polynomials fa fall into two categories:
either fa contains an attractive cycle or it admits an acip. Recently A. Avila and
C. Moreira proved in [1] that the set ACE of parameters fulfilling the CE-condition
is almost the same as the set A admitting an acip, i.e. m(A \ACE) = 0 where m is
the Lebesgue measure. D. Sands [34] showed that the set of parameters a for which
fa(x) = 1 − ax2 is Misiurewicz, has measure zero. It is a natural conjecture that
the same is true for the rational functions.

In [39], J-C. Yoccoz gave an extensive survey on the subject concernering the
quadratic polynomial fa, families of Hénon maps and rational functions on the
Riemann sphere. He states a number of conjectures and finishes with a proof
of Jakobson’s Theorem on the existence of an acip for a positive measure set of
parameters a.

As mentioned in the beginning, in 1986 M. Rees proved in [32] that there exists
a positive measure set of ergodic rational functions, which admit an acip. This does
not a priori imply that the CE-condition holds. That the Collet-Eckmann condition
implies the existence of an acip follows rather easily from results of Przytycki,
Smirnov and Graczyk.

Corollary 0.1. The set of maps with an absolutely continuous invariant probability
measure, has positive Lebesgue measure in the space of rational functions for any
fixed degree d ≥ 2. Moreover, the number of ergodic components of the invariant
measure is bounded by 2d− 2.

To prove Corollary 0.1 we will use Theorem 1 in [18], which among other things
states that a rational map, which satisfies the first Collet-Eckmann condition (de-
fined below), can have neither Siegel discs, Herman rings, nor parabolic points (nor
Cremer points).

Definition 0.2 (According to [18]). We say that a rational function f satisfies the
first Collet-Eckmann condition (CE1) if there are constants C1 > 0 and λ1 > 1
such that for any critical point c whose forward orbit does not contain any other
critical point and belongs to or accumulates on the Julia set, the following holds:

|(fn)′(fc)| ≥ C1λ
n
1 .

In this thesis, in Theorem A it is proved the existence of a positive Lebesgue
measure set in the parameter space of CE-maps which also satisfies the first CE-
condition. Moreover, the positive measure set obtained consists of functions, which
have the property (0.3), that is, R cannot have attracting or superattracting peri-
odic orbits. Hence, such functions have neither Siegel discs, Herman rings, parabolic
cycles or (super-) attracting cycles. According to the Classification Theorem, the
Fatou set is empty and we have proved the following.
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Corollary 0.3. The set of rational maps which have its Julia set equal to the
whole Riemann sphere, has positive measure in the space of rational functions for
any fixed degree d ≥ 2.

In [30] F. Przytycki showed that if the CE-condition and some additional as-
sumptions are satisfied, then there exists an acip. Before stating the precise result
we have to define conformal measure. An α-conformal measure µ on the Julia set
J is a probability measure which has the property that for every Borel set B ⊂ J
on which f is injective we have

µ(f(B)) =
∫
B

|f ′|αdµ.

The number α is called the exponent of the conformal measure. Let C(f) be the set
of critical points for f and ν is the maximal multiplicity for fn at c ∈ C(f). The
precise statement by Przytycki is as follows (see also Theorem C in [30]):

Let f : Ĉ → Ĉ be a rational function and µ be an α-conformal measure on the
Julia set J = J(f) not having atoms at critical points. Assume that there are no
parabolic periodic points in J and that there exists C > 0 such that for every n ≥ 1
and for every c ∈ C(f)

(0.6)
∫

dµ

dist(x, fn(c))(1−(1/ν))α
< C−1.

Moreover, assume that there exists Λ > 1 such that

(0.7) |(fn)′(f(c))| ≥ CΛn, for all n ≥ 0,

whenever fk(c) is non-critical for all k > 0. Then there exists an f -invariant
probability measure on J absolutely continuous with respect to µ.

Before we turn to the proof of Corollary 0.1, we say that a rational map f is
expanding on its Julia set J (f), if there is a t ≥ 1 such that |(f t)′(z)| > 1 for
all z ∈ J (f). An equivalent definition is that there is a metric ϕ(z) smoothly
equivalent to the spherical metric, such that

ϕ(f(z))|f ′(z)| ≥ Aϕ(z),

for all z ∈ J (f) and for some A > 1, where f ′ is the derivative in the spherical
metric. Thus the Julia set of an expanding map contains no critical points.

Proof of Corollary 0.1. We have to prove that (0.6) is satisfied for our specific pa-
rameters which satisfy the CE-condition. By Corollary 0.3 the Julia set is equal to
the whole Riemann sphere.

If J = Ĉ then it is easy to construct a conformal measure. It is the standard
spherical area measure with exponent α = 2. It is easy to verify that the condition
(0.6) holds independently of n. This finishes the proof of the first part of Corollary
0.1.

The last statement in Corollary 0.1 follows from Theorem B in F. Przytycki [30]:
Let f be a rational map, not expanding on its Julia set, and let µ be an α-conformal
measure on J . Assume that for any critical point c, whose forward orbit does not
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contain any other critical point, we have
∞∑
n=0

|(fn)′(f(c))|−1 <∞.

Then the number of ergodic components of µ does not exceed the number of f -
critical points in J and of parabolic periodic orbits, (a parabolic cycle is the same
as rationally neutral periodic point and an f -critical point is a critical point whose
forward orbit does not contain any other critical point).

It is obvious that the functions obtained in Theorem A satisfy the conditions in
the Theorem above, since our α-conformal measure is the standard area measure
with exponent α = 2. Now, by Graczyk and Smirnov [18], as seen above, there are
no parabolic cycles. Since the number of critical points is bounded by 2d − 2 the
proof of the corollary is finished. �

Here one should mention the family Fa(z) = 1−a/z2. In [27], M. Lyubich showed
that the Julia set for Fa is the whole Riemann sphere for a positive measure set of
parameters a, and moreover, that for the same set of parameters, the critical orbit
is dense in Ĉ.

Other relevant results can be found in [18] if the Fatou set is non empty; Graczyk
and Smirnov proved that the CE-condition implies that Fatou components are
Hölder domains. A Hölder domain is a simply connected set Ω such that the
Riemann mapping ϕ(z) : D → Ω can be extended to a Hölder continuous function
in the closed unit disc. Also, the boundary of Fatou components of CE-maps has
Hausdorff dimension less than 2. If there is a fully invariant Fatou component,
then its boundary coincides with the Julia set (this is a standard result in complex
dynamics, see for example [11], p. 57). This fact applies to polynomials, since the
basin of attraction at infinity is fully invariant. So the Hausdorff dimension of the
Julia set for polynomial CE-maps is less than 2.

In [31] F. Przytycki showed that if a CE-map does not contain parabolic points
and has its Julia set not equal to the whole Riemann sphere, then the Julia set has
zero measure (see Theorem A in [31]).

In [10], S. van Strien and H. Bruin [10] showed that under the condition that
bn|Dfn(fc)| → ∞ for some sequence bn, satisfying

∑
k bk < 2 (for f rational on Ĉ),

then the derivative expands for almost every point x ∈ J (f) which does not lie in
the precritical set (i.e. ∪nf−n(Crit(f))). Their Theorem 1.2 immediately implies
that

lim sup
n→∞

1
n

log |Dfn(x)| > 0,

for almost every x ∈ J (f) not laying in the precritical set for the CE-maps con-
structed in Theorem A.

0.2. An outline of the proof of Theorem A. Theorem A will be a corol-
lary of Theorem B below, where we prove corresponding results for a real one-
dimensional perturbation of R(z) in any parameter direction. The starting func-
tion R(z) is Misiurewicz-Thurston, which means that all critical points are mapped
into a repelling periodic orbit. The perturbation is given as follows. Let u0 =
(a0, . . . , ad, b0, . . . , bd) be the coefficients of the unperturbed function R(z) above.
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Define any normalised direction v = (e0, . . . , ed, f0, . . . , fd−1), where {ei}di=0 and
{fi}d−1

i=0 are complex numbers such that
∑
i |ei|2 +

∑
i |fi|2 = 1. Note that we do

not make any perturbation of the coefficient bd. We make the following parameter-
isation in the direction v for real a:

(0.8) R(z, a) =
P (z, a)
Q(z, a)

=
(a0 + e0a) + . . .+ (ad−1 + ed−1a)zd−1 + (ad + eda)zd

(b0 + f0a) + . . .+ (bd−1 + fd−1a)zd−1 + zd
.

Thus R(z, 0) is the unperturbed function. This parameterisation can be viewed as
a real line in C2d+1 = R4d+2. For each parameter a we get a point in R4d+2, i.e we
have a map

(0.9) R 3 a 7→ u0 + va = u ∈ Rd ⊂ R4d+2,

where Rd is the space of all rational functions of degree d. The following theorem
is the main result of this thesis. Theorem A then follows by Fubini’s Theorem.

Theorem B. For any direction v define R(z, a) as in (0.8). Assume that all critical
points for R(z, 0) are strictly preperiodic. Then the set of parameters a for which
R(z, a) is Collet-Eckmann, has positive Lebesgue measure.

The approach to prove Theorem B is the method used by Benedicks-Carleson
(see [3] and [4]), where they prove corresponding results for the quadratic family
fa(x) = 1 − ax2 and families of Hénon maps. We will start with a given rational
function R with all critical points strictly preperiodic; in particular the postcritical
set is finite. These maps cannot have attracting periodic orbits, since the basin of
attraction for an attractive cycle always contains a critical point, which would imply
that the postcritical set is infinite. Rotation domains (Siegel discs and Herman
rings) are ruled out by the fact that the boundary of a rotation domain is contained
in the postcritical set (see eg. [11], p. 82). So each critical point must end up in
a repelling orbit. Obviously such functions satisfy the CE-condition. Also, R can
have no superattracting periodic points, and we conclude that the Julia set of R is
the whole Riemann sphere. We then show that in a neighbourhood of R there is
a set of parameters of positive measure such that the corresponding functions also
satisfy the CE-condition. We allow recurrence of the critical points according to
the following approach rate condition:

(0.10) dist(Rn(c), C(R)) ≥ e−αn, for all n ≥ 0,

for some small α > 0, and all c ∈ C(R), where C(R) is the set of critical points
for R. We will consider a small parameter interval ω0 ⊂ [0, a0], for some small
a0 > 0, and iterate the corresponding functions simultaneously. To get control of
the geometry we use strong distortion estimates of the derivatives, not only for
the absolute value, but also for the argument. An important result (Proposition
7.3) is that as long as the derivative grows exponentially with at least some “lower
exponent” γ0, the geometry is under good control. Then induction will be used to
show the existence of a set of positive measure such that (0.10) holds. Only deleting
parameters not satisfying (0.10) will slowly lower the expansion of the derivative,
i.e. the exponent γ in (0.1) will tend to zero. Therefore we will use induction over
time intervals of the type (n, 2n). First, we assume that at time n, (0.1) holds for
some γ > 0. After that we delete parameters not satisfying (0.10) in the interval
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(n, 2n). We then end up with a set for which the derivative grows with exponent
γ0 = γ/2. To restore γ, a large deviation argument of the type developed in [4] will
be adopted to get positive Lyapunov exponent, i.e. γ > 0 in (0.1). To handle the
problem with (finitely) many critical points, we use a method described in [2]. This
is explained in the last section. The idea is roughly that we consider parameter
intervals which are “good” for a single critical point up to time n and “good” for
the other critical points up to time α0n (where α0 is a small fraction), so that we
may use the binding information of the other critical points. To continue a single
critical orbit, we must delete parameters so that the binding information of the
other critical points can be used longer. The main idea is that the sets deleted in
this way differ very much in size compared to the partition elements of the actual
single critical orbit considered. Therefore we delete only whole partition elements
and in this way overcome the problem of destroying the partitions.

In [32], an example of a rational Misiurewicz-Thurston-map of degree d ≥ 2 is
given by

(0.11) fλ(z) = λ
(z − 2)d

zd
,

where 2 and 0 are the critical points which are iterated as below:

2 7→ 0 7→ ∞ 7→ λ.

Here λ is a fixed point, if λ = 2/(1− t), where td = 1. Also, f ′λ(λ) = dtd−1(1− t),
so fλ(z) above is Collet-Eckmann, if d|1− t| > 1, which is true if t 6= 1, td = 1.

1. Notations and definitions

1.1. The spherical metric. The spherical distance between z and w on Ĉ is
defined by

|z − w|σ = dσ(z, w) = inf
γ

∫
γ

|dt|
1 + |t|2

,

where the infimum is taken over all (continuous) curves γ from z to w. It is natural
to define the spherical derivative of a holomorphic function f to be

Dσf(z) =
∂σf(z)
∂z

= f ′(z)
1 + |z|2

1 + |f(z)|2
,

which coincides with expansion of f measured in the spherical metric. Note that the
spherical derivative satisfies the Chain Rule! Also, define the spherical derivative
w.r.t. the parameter a as

∂σf(z, a)
∂a

=
∂f(z, a)
∂a

1
1 + |f(z, a)|2

.

With these definitions we have, since the Riemann sphere is compact, a bound
on both the z-derivative and the a-derivative: there exist constants B and Γ such
that ∣∣∣∣∂σR(z, a)

∂a

∣∣∣∣ ≤ B,(1.1) ∣∣∣∣∂σR(z, a)
∂z

∣∣∣∣ ≤ eΓ,(1.2)
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for all z ∈ Ĉ. It follows that DσR(z) = 0 if and only if z is a critical point.
In this thesis most constants will be denoted C. These constants can differ from

time to time. For convention C means just “a constant”, so for example equalities
like 2C = C can appear.

Let C(f) be the set of critical points for a function f and define the postcritical
set P = P (f) of f to be the closure of the union of all strict forward orbits of the
critical points:

P (f) =
⋃

c∈C(f),n>0

fn(c).

Now, let R(z) = P (z)/Q(z) be our starting rational CE-map, with strictly prepe-
riodic critical points. The degree d of R is defined by d = max(deg(P ),deg(Q)).
Write

R(z) =
P (z)
Q(z)

=
a0 + a1z + . . .+ adz

d

b0 + b1z + . . .+ bdzd
,

as in (0.2), where bd = 1. The procedure which will be used is to iterate different
parameters simultaneously. The set of parameters iterated will be a real parame-
terised line as in (0.8). We sometimes use the notation R(z, a) = Ra(z).

Denote by ci the critical points of R and let ki > 0 be the smallest integer such
that

(1.3) Rki(ci) = vi,

where vi lies on a repelling periodic orbit.

1.2. Acceleration of R. To make computations easier, we will replace R with an
appropriate iterate Rn such that the repelling cycles become repelling fixed points.
In addition, we can choose n such that ki = 1, 2 for all indices i in (1.3).

If we can prove that the CE-condition holds for Rn, clearly it also holds for R.
However, the coefficient bd for the accelerated function may not be 1 anymore and
the coefficients ai + eia and bi + fia will not be linear for the accelerated function
Rn. They will look like ai + ei(a) and bi + fi(a) instead, where ei(a) and fi(a) are
polynomials in a. The coefficient fd(a) is not necessarily zero anymore.

Definition 1.1 (Redefinition of R(z, a)). Let ci(a) be the critical points of the per-
turbed accelerated function Rna and let ci = ci(0). We will construct neighbour-
hoods U ′i (see Definition 1.2) around each ci and for z ∈ U ′i we redefine Ra such
that Ra(z) always means Rnki

a (z), where ki = 1, 2. For z /∈ U ′ = ∪iU ′i , by Ra(z)
we always mean Rna (z). Thus, with this definition, R(ci(0), 0) is a repelling fixed
point for all i.

Define
vl(a) = R(cl(a), a).

With this in mind we may drop the constant C in (0.1) and prove that there is a
constant γ > 0 such that

|(Rn)′(vl(a), a)| ≥ eγn, for all n ≥ 0 and all l,

for a positive measure set of parameters a.
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Let di be the degree of R at ci and define K = max(di). Choose one critical
point cl(a), and define

(1.4) ξn,l(a) = Rn(cl(a), a).

We shall often drop the index l in (1.4) to make notations simpler. By ξn(a) we
mean ξn,l(a) for some critical point cl(a) ∈ C(Ra).

Note that the newly defined R is of course not meromorphic on the boundary of
those U ′i which has that ki = 2. Here we make the following convention, namely
that whenever ξn(ω) crosses ∂U ′i we define ξn+1(a) = Rki(ξn(a), a).

1.3. Splitting of the critical points. Reparameterisation. If the multiplicity
of a critical point ci is higher than one, it may split into several critical points under
perturbation. Assume that every ci is split into the critical points cij(a), 1 ≤ j ≤
Ni, under the perturbation (0.8). The critical points for Ra in a neighbourhood of
ci ∈ C(R) are the zeros of R′(z, a) = 0. Hence the numerator N(z, a) of R′(z, a)
(in local coordinates, see Subsection 1.4), which is a polynomial in z and a, has to
satisfy

N(z, a) = 0.

Assume without loss of generality that (z, a) = (0, 0) is a solution. Let F (z, a) be
an irreducible factor of N(z, a). We now use the standard theory of the structure of
zero sets of irreducible polynomials, see eg. Theorem 1 in [8], p. 386. The solutions
set to F (z, a) = 0 is parameterised as below:

z = g(t),

a = tm,

where g(t) is analytic, for t in some neighbourhood U of 0. The number m ≥ 0 is
order of N(z, a) in the variable z. Since g is analytic, we have a convergent power
series

z = g(t) =
∞∑
j=0

cjt
j .

Now, taking any branch t = a1/m we get

(1.5) z = g(a1/m) =
∞∑
j=0

cja
j/m,

where aj/m is to be interpreted as (a1/m)j . The series (1.5) is a so called Puiseux
expansion of the curve with equation F (z, a) = 0.

For two different irreducible factors we get two corresponding solutions sets z1
and z2 as in (1.5);

z1(a) =
∞∑
j=0

cja
j/m,

z2(a) =
∞∑
j=0

cja
j/l.
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It follows that either the two series are equal or

z1(a)− z2(a) = cap/q +O(|a|(p+1)/q),

for some positive integers p and q, and c 6= 0.
Reparameterising the line a1/m for positive a with γ(a) = aeiθ for θ = arg(a1/m),

we see that g(aeiθ) is an analytic curve in a. Thus, for a suitable reparameterisation
of the perturbation R(z, a), replacing a with an for some suitable n, it follows that
all curves cij(a) are analytic and of constant multiplicity for 0 < |a| ≤ a0, for
sufficiently small a0 > 0. The sum of the multiplicities of cij(a) is the same as the
multiplicity of ci (of course). Define

(1.6) Ci(a) =
Ni⋃
j=1

cij(a).

It follows from above that the set Ci(a) is a union of solution sets called critical
stars, each one corresponding to an irreducible factor of N(z, a), (see Figure 1).

PSfrag replacements
ci

cij(a0)
cik(a0)

Figure 1. The critical points emerging from ci under perturbation.

Convention 1. Sometimes we shall drop the index i or ij, writing only c(a) for some
c(a) ∈ C(Ra). Also, recall that the points ci(a) are the critical points of Ra.

1.4. Local coordinates. We will now introduce the notion of local coordinates on
the Riemann sphere Ĉ = C ∪ {∞}. The reason for this is that we want to view
ξn(a) for a ∈ ω as a curve in a coordinate system where the metric is equivalent to
the spherical metric. Here ω is a parameter interval in [0, a0]. We now introduce
a number S such that if the spherical length of ξn(ω) reaches S then the curve is
immediately cut into pieces with equal lengths at most S, where S is a number to
be defined later. We also cut the parameter interval ω correspondingly. Later we
define how the partition is carried out in more detail. To ensure that we can use
one coordinate system for every whole curve ξn(ω), for any partition element ω,
the charts have to overlap each other. To do this, cover the Riemann sphere with
the two charts U1 = (z,B1) and U2 = (z−1, B2) where B1 = {z : |z| < ρ̃ + S̃} and
B2 = {z : |z| > ρ̃ − S̃} ∪ {∞}, for some suitable S̃ > 0 chosen such that ξn(ω)
cannot cross both B(0, ρ̃ + S̃) and B(0, ρ̃ − S̃), provided the spherical length of
ξn(ω) is less than S. Note that the spherical length is comparable to the length in
the local coordinate system where the curve segment ξn(ω) lies. We let ϕ : Ĉ → C,
be the local coordinates so that ϕ(z) = z̃, (so z̃ is z viewed in local coodinates).
If z ∈ Bc1 then ϕ(z) = 1/z and if z ∈ Bc2 then ϕ(z) = z. In the overlapping set
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B1 ∩ B2, there is an ambiguity of how to define ϕ. However, we will let the curve
ξn(ω) define ϕ here (see below). Also, we associate to each z̃ = z̃(z) an “indicator”
telling in what chart z lies, so that ϕ can be inverted. Define

ϕ(ξn(a)) = ξ̃n(a) =

{
ξn(a) if ξn(ω) ∩Bc1 = ∅,
ξn(a)−1 if ξn(ω) ∩Bc1 6= ∅.

For z̃ = ξ̃n(a), where a ∈ ω for some interval ω ⊂ [0, a0], define

R̃(z̃, a) = R̃a(z̃) = ϕ ◦Ra ◦ ϕ−1(z̃).

This gives the recursion formula

ξ̃n(a) = R̃(ξ̃n−1(a), a).

Thus R̃ is R viewed in local coordinates, so R̃ can (locally) be viewed as an analytic
function from C into itself. It is easy to verify that R̃′ satisfies the Chain Rule. We
use the same chart for an entire partition element ω, i.e. for all a, b ∈ ω we consider

R̃(ξ̃n(a), b) = ϕ ◦Rb ◦ ϕ−1(ξ̃n(a)),

where the coordinates ϕ and ϕ−1 are constant for all a, b ∈ ω. The curve ξ̃n+1(a),
a ∈ ω determines the coordinates uniquely.

It follows that R̃′ is equivalent to the spherical derivative, that is, R̃′(z̃, a) = 0
if and only if z̃ is a critical point. Also, ∂aR̃(z̃, a) is equivalent to the spherical
a-derivative.

Convention 2. Since we only deal with spherical derivatives or equivalent deriva-
tives, from now on R′ and R′′ always mean the first and second derivative respec-
tively in local coordinates and |z − w| always means the distance in the proper
coordinate system, unless otherwise stated. We also assume that the bounds (1.1)
and (1.2) are valid also when we refer to R′ or ∂aR. Obviously, there is also a
bound on R′′ and ∂aR

′ by the same reasoning. Choose the number ρ̃ above such
that

dist(C(R), {|z| = ρ̃}) ≥ 10ρ,
where ρ will be defined precisely in Subsection 1.7. The definition will ensure that
if the curve ξn(ω) with length at most S crosses the circle of radius ρ̃, then the
curve is far from a critical point.

We define neighbourhoods of the postcritical set P = P (R) by

Pδ2 =
N⋃
i=1

R(B(ci, δ2)), Pδ =
N⋃
i=1

R(B(ci, δ)) and Pδ′ =
N⋃
i=1

R(B(ci, δ′)),

where R is the accelerated function as in Definition 1.1. So Pη is a neighbourhood
of the repelling fixed points for R, η = δ2, δ, δ′.

With some for the whole thesis fixed 0 < τ < 1, we determine fixed constants
α, β, γ0, γ with the following relations (remember that K = max(di)):

τ < log λ/(24K + log λ) γ = (1− τ) log λ γ0 = γ/2 γ = γ/4

α ≤ min(γ/(1000K2), γ2/(4000K2Γ)), β = 5Kα.

(1.7)
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The number λ in (1.7) is the minimum of the expansion in Lemma 3.6, and all
multipliers µ = inf

a∈[0,a0]
= |R′(p(a), a)|, where p(a) is a repelling fixed point. The

quantity

γ = lim
n→∞

1
n

log |(Rn)′(v(a), a)|

is usually referred to as the Lyapunov exponent at v(a), and we will show that
γ ≥ (1 − τ) log λ −Kα > 0 in (0.1), for a positive measure set of parameter a in
an interval ω0 ⊂ [0, a0]. Hence Theorem A implies that the Lyapunov exponent is
positive for a positive measure set of parameters. We will in the inductive proof of
Theorem B need to have (0.1) satisfied with exponent γ.

Now we make some definitions about neighbourhoods of the critical points.

Definition 1.2 (Critical neighbourhoods). For integers ∆′ < ∆ set δ′ = e−∆′
, δ =

e−∆. Let a0 > 0. Let Di be the diameter of ∪a∈[0,a0]Ci(a) and let δ̃ = 10 max(Di).
Choose δ such that δ2 � δ̃ and r̃ such that δ̃ = e−r̃. Define

U ′i = B(ci, δ′), Ui = B(ci, δ), U2
i = B(ci, δ2), Ũi = B(ci, δ̃),

and put

U = ∪iUi, U ′ = ∪iU ′i , U2 = ∪iU2
i , Ũ = ∪iŨi.

Thus the parameter dependence is very small compared to the size of U,U ′ and U2.
The neighbourhood Ũ should be thought of as a border around the critical stars
Ci(a) such that outside Ũ the distance to the critical points Ci(a) are almost equal
and we view them a single one, and inside Ũ we have to deal with each critical
point in Ci(a) separately.

Definition 1.3 (Annular neighbourhoods). For any integer r ≥ ∆′ and a ∈ ω0 ⊂
[0, a0] we make the following definitions. If r̃ ≥ r ≥ ∆′ define

J ir = {z : e−r ≤ |z − ci| < e−r+1}.

For r = r̃ + 1 define

J ir(a) = {z : e−r ≤ inf
j
|z − cij(a)|, |z − ci| < e−r+1}.

For r > r̃ + 1 define

J ir(a) = {z : e−r ≤ inf
j
|z − cij(a)| < e−r+1}.

For simplicity, we will often drop the explicit parameter dependence and simply
write J ir = J ir(a) even if r > r̃. Define Jr = ∪iJ ir in any such case.

Assume that A(x) and B(x) are two expressions depending on some variable x.
By A ∼ B we mean that there is a (universal) constant C not depending on x, such
that

C−1B(x) ≤ A(x) ≤ CB(x),

for all x considered.
The classical definition of bound period, as in [3] and [4], is as follows:
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Definition 1.4 (Bound period). Assume z ∈ Jr(a) ⊂ U ′. Choose c(a) ∈ C(Ra)
nearest to z and put Ra(z) = z0. Define p = p(r, a) to be the greatest integer such
that

|Rj(z0, a)−Rj(v(a), a)| ≤ e−βj ,

for j = 0, . . . , p− 1, where v(a) = R(c(a), a).

Given a return z = ξn(a), the number p is called the bound period for the actual
return.

1.5. Free orbits, deep and shallow returns. After the bound period the free
orbit begins and stops when ξj,l(a) returns to U . This return is either essential or
inessential depending on the length of the curve ξj,l(ω), under the assumption that
the geometry is “good”.

Given a parameter a, we define the free return times of every single critical orbit
ξi(a) = ξi,l(a) where 1 ≤ l ≤ 2d − 2, to be ν0(a), ν1(a), . . . and its corresponding
bound periods p0(a), p1(a), . . ..

Definition 1.5. If ξνi(a) is a free return, and pi its bound period, then ξj(a) for
j = pi + 1, . . . , νi+1 is the called the free orbit. The length of the free orbits are
denoted by qi(a) = νi+1(a)− (νi(a) + pi(a)).

Definition 1.6. If ξn(a) returns into U \U2 then we speak of a shallow return and if
ξn(a) returns into U2 we speak of a deep return, with corresponding bound orbits
as above. The length of the free orbit following a deep return until the next deep
return is denoted by µ(a). For example, if νj(a) is the first deep return after a deep
return νi(a), then µi(a) = νj(a)− (νi(a) + pi(a)).

1.6. The partition of parameter intervals. In Subsection 5.2, we show that if
ξn,l(ω) returns into U , where ω is an interval in ω0 = [k0a0, a0], for some k0 < 1 close
to 1 (defined in Subsection 5.1), then the length of ξn,l(ω) is exponentially much
larger than the length of ci(ω). This means that the set Jr(a) depend insignifically
on the parameter a. In the following, we will have this in mind.

In the definitions below, we assume that the curves ξn,l(ω) satisfy the following
condition where n is a return time, i.e. ξn,l(ω) ⊂ U :

Definition 1.7 (Good geometry control). For an interval ω ⊂ [0, a0], we say that
ω ∈ Gn,l if

(1.8)
∣∣∣∣ξ′n,l(a)ξ′n,l(b)

− 1
∣∣∣∣ ≤ 1/100, for all a, b ∈ ω.

The above condition implies that the curve ξn,l(t), t ∈ ω, is indeed very straight,
and Gn,l stands for “good” geometry control.

Each critical orbit ξn,l(ω) gives rise to its own partition. We consider one critical
point at a time. For simplicity, let us drop the index l. Also, in the following we
assume that ω ⊂ ω0.

The partition for free returns ξn(ω) is carried out as follows, (no partition is
made during bound periods). Let ω = [a, b] and assume that ξn(ω) ⊂ U . We
have that ξn(a) ⊂ Jr0(a) for some r0 ≥ ∆. Take the smallest a1 > a such that
ξn(a1) ∈ Jr1(a1) where |r1−r0| = 1 (if there is no smallest such a1, take the infimum
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instead). Cut ω at a1. Take the smallest a2 > a1 such that ξn(a2) ∈ Jr2(a2) where
|r2−r1| = 1. Cut ω at a2 and so on. Either the sequence ak terminates at an = b for
some n or not. If not then it means that ξn(a′) = ci(a′) for some a′ ∈ ω. In this case
we get an infinite sequence ak terminating at a′. If a′ = b then do nothing more.
There are at most finitely many parameters a′k such that ξn(a′k) = ci(a′k). In all the
intervals (a′k, a

′
k+1) do the same procedure to determine a partition of (a′k, a

′
k+1).

This gives a partition of ω into disjoint intervals ωk such that ξn(ωk) ⊂ Jrk
(a) for

all a ∈ ωk.
There are some special cases here, namely that the curve ξn(ak) crosses the

boundary Jr(ak) for many consequtive ak for some fixed r (i.e. it is almost a
tangent to Jr(ak)). For instance, there is a sequence ωk such that ξn(ωk) has
length less than e−rk/(2r2k), where rk = r. If this is the case adjoin the set ωk to
an adjacent set ωk±1 until the length of ξn(ωk ∪ ωk+1 ∪ . . .∪ ωl) exceeds e−r/(2r2)
and view the curve ξn(ωk ∪ωk+1 ∪ . . .∪ωl) as a return into Jr(a′′), where a′′ is the
midpoint of ωk ∪ ωk+1 ∪ . . . ∪ ωl.

Now, we are ready to refine our partition. For simplicity, we drop the parameter
dependence for the sets Jr(a) and write instead only Jr.

Definition 1.8. A free return ξn(ω) ⊂ Jr is essential if the length of the curve is
larger than or equal to e−r/r2. Otherwise it is inessential.

Definition 1.9 (Generic partition of ω). Assume that ξn(ω) ⊂ Jr is an essential
(free) return for some r ≥ ∆. Cut the curve ξn(ω) into smaller curves of equal
length at most e−r/r2, and as close to e−r/r2 as possible. Cut the parameter
interval ω according to the partition of ξn(ω). For inessential free returns and
bound returns make no partition.

This defines a partition of ω corresponding to the orbit of the critical point ci(ω)
for free returns ξn,l(ω) ⊂ U , under the assumption that the curvature is small. We
will show in Section 7 that this is the fact for “good” returns. In particular, the
length of ξn,l(ω) ⊂ Jr, after partitioning ω, is between e−r/(2r2) and e−r/r2.

Now, we simply divide the parameter interval ω according to the partition of
ξn,l(ω) and then continue to iterate these smaller intervals. This procedure implies
that the partition becomes finer as the iterate n grows. We say that ξn,l(a) and
ξn,l(b) have the same history if ξj,l(a) and ξj,l(b) belongs to the same undivided
curve for j ≤ n.

We may now also speak of bound periods for a whole parameter interval ω ⊂
[0, a0]. Let A and B be two sets and define

d(A,B) = sup
x∈A

inf
y∈B

|x− y|

and let the Hausdorff distance between A and B be

HD-dist(A,B) = max(d(A,B), d(B,A)).

Definition 1.10 (Bound period for essential returns). Let ξn,l(ω) ⊂ Jr be an es-
sential return. Choose k such that HD-dist(ck(ω), ξn,l(ω)) is minimal. The bound
period p = p(r, ω) is defined to be the greatest integer p such that

|Rj(z, a)−Rj(w, b)| ≤ e−βj
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for j = 0, . . . , p− 1, for all a, b ∈ ω, and for all z, w ∈ K(ξn+1,l(ω) ∪ vk(ω)), where
K(E) is the convex hull of E and vk(a) = R(ck(a), a).

In the case of inessential returns, we will use the notion of host curve from [4]:

Definition 1.11 (Bound period for inessential returns). If ξn,l(ω) ⊂ Jr is an inessen-
tial return, it means that ξn,l(ω) is contained in a larger curve which has length
between e−r/(2r2) and e−r/r2. Also, it is possible to enlarge ξn(ω) in a way so that
it is is almost straight, i.e. such that (1.8) is satisfied. To do this, draw a straight
line L starting at ξn,l(b) and going through ξn,l(a), so that the length of L is equal
to e−r/(2r2). This divides L into two parts L1 and L2, where L1 has ξn,l(a) and
ξn,l(b) as its endpoints. The curve ξn(ω) = ξn,l(ω) ∪ L2 is called the host curve
for ξn,l(ω). Define ξn+1,l(ω) = ξn+1,l(ω)∪Ra(L2). The bound period for ξn,l(ω) is
then defined to the greatest integer p such that

|Rj(z, a)−Rj(w, b)| ≤ e−βj

for j = 0, . . . , p− 1, for all a, b ∈ ω, and for all z, w ∈ K(ξn+1,l(ω) ∪ vk(ω)).

Remark 1.12. We shall write K(ξn+1,l, vk(ω)) and never K(ξn+1,l, vk(ω)) in the
Definitions 1.10 and 1.11, that is, with ξn+1,l(ω), we mean the host curve in the
case of inessential returns, or the original curve in the case of essential returns.

We also need an additional condition on the partition elements, namely that

(1.9) |ξk,l(a)− ξk,l(b)| ≤ S,

for all a, b ∈ ω, all k ≤ n, where S = δ/C2. The only exception from this rule
is the very first iterates and during bound periods, (see Section 5 and Subsection
5.1). This, since during bound periods we have still very good distortion estimates
(see the Main Distortion Lemma). We determine the number C2 ≥ 1 in the proof
of the Main Distortion Lemma (there is also a condition in Lemma 4.3 on C2, not
depending on δ). It will be clear that C2 depends on the unperturbed function
R0 and not on δ. Therefore, we may choose δ so that S/eΓ ≥ δ/∆2 � δ2, where
|R′(z, a)| ≤ eΓ for all (z, a) ⊂ Ĉ × [0, a0]. During free periods, we have to cut
the curve ξn,l(ω) before it exceeds S in length to have control of the geometry. To
achieve this, we cut the curve, just before it exceeds S in equal number of pieces
and make a corresponding partition of the interval ω. If the length of ξn(ω) has
exceeded S during the bound period, then when the bound period has ended we
immediately cut the curve into equal pieces, such that (1.9) holds again for every
partition element.

Definition 1.13 (The partition). We say that an interval ω ∈ Pn,l if a and b has
the same history up to iterate n for all a, b ∈ ω and such that ω ∈ Gk,l (“good
geometry”, see Definition 1.7) for all return times k ≤ n and such that the length
in local coordinates of ξk,l(ω) is at most S for all k ≤ n, where k belongs to a free
time period or a return time.

In fact, we show inductively (Proposition 7.3) that the geometry is under good
control at all times as long as the derivative of Rn grows exponentially with at least
γ0 in (0.1). Also, since each critical orbit gives rise to its own partition we have
to be careful. However, in most lemmas we consider only one orbit at a time and
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assume that we can use the binding information of all the others. In Section 9 we
give an inductive method to handle this in detail.

1.7. The choice of δ′. Linearisation. The definitions of di and vi mean that we
have a Taylor expansion around ci which looks like

R(z) = vi + ti(z − ci)di +O(|z − ci|di+1).

We will now choose δ′ according to the rule that the Taylor expansion of R at ci is
valid up to a multiplicative constant say 1/100 in U ′ = ∪iB(ci, δ′), i.e.

99
100

≤ |R(z)|
|Ti(z)|

≤ 101
100

,

if |z − ci| ≤ δ′, where Ti(z) is the first order Taylor expansion of R at ci. We will
always assume that δ < δ′. We need more conditions on δ′. First, define a so called
“expansive” neighbourhood Nρ of the union of the repelling fixed points vi as

Nρ =
⋃
i

{z : |z − vi| ≤ ρ}

where ρ = (δ′)
β
Γ and such that |R′(z, a)| ≥ |λi| − ε for all (z, a) ∈ Nρ × ω, where

ε ≤ (|λi| − 1)/1000. Assume now that δ′ is chosen according to the rule above. A
return into U ′ \ U is called a pseudo return.

Moreover, in the neighbourhood Nρ the Schröder functional equation shall be
valid; i.e. that there exists conformal maps ϕt : Nρ → N ′

ρ, where N ′
ρ is a neigh-

bourhood of ϕt(p(t)), such that

(1.10) gt ◦ ϕt(z) = ϕt ◦Rt(z),
where gt(z) = λt(z−ϕt(p(t)))+ϕt(p(t)), and λt = R′t(p(t)). Also, ϕt(z) is analytic
in t which can be shown by identifying coefficients in the power series on each side
of (1.10) and noting that |λt| ≥ |λ| > 1 for all t ∈ [0, a0], (see eg. [11], pp. 31-32).
We may normalise ϕt(z) so as to fulfil ϕ′t(p(t)) = 1 and ϕt(p(t)) = p(t). So gt(w)
becomes

gt(w) = λt(w − p(t)) + p(t).

1.8. Exponential growth of derivatives, the basic assumption and the free
assumption. We need to show Theorem B for all critical points simultaneously,
for even if we choose one critical point, we need to use the expanding orbits during
the bound periods for the other critical points. To do this we make the following
setup where α0 = 2Kα/γ0.

Definition 1.14 (Exponential growth of derivatives). Let An(γ, l) be the set of pa-
rameters a such that

|(Rk)′(vl(a), a)| ≥ e(γ−Kα)k for all k ≤ n and

|(Rk)′(vl(a), a)| ≥ eγk for all k such that νj + pj ≤ k ≤ min(νj+1, n),

where νj = νj(a) are the returns times for a and pj the corresponding bound
periods. Recall vl(a) = R(cl(a), a). Define

En(γ, l) = An(γ, l)
⋂(⋂

k 6=l

Aα0n(γ, k)
)
.
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In the the following definition we give the important approach rate condition,
called the basic assumption.

Definition 1.15 (Basic assumption). Let B′n,l be the set of parameters such that

(1.11) |ξk,l(a)− c(a)| ≥ e−αk, for all k such that 0 < k ≤ n,

for all critical points c(a) ∈ C(Ra). Similar to the above definition, let

Bn,l = B′n,l
⋂(⋂

k 6=l

B′α0n,k

)
.

This condition Bn,l or B′n,l is called the basic assumption, and we will prove induc-
tively that the set ∩n,lBn,l has positive measure.

Also, to get positive Lyapunov exponent, it is crucial that the frequency of the
deep returns is bounded from below. The following definition reflects this.

Definition 1.16 (Free assumption). Set Fn,l(a) =
∑s
i=0 µi(a), where µi(a) are the

deep free periods, for some critical point cl(a). Let Fn,l be the set of parameters a
such that

(1.12) Fk,l(a) ≥ k(1− τ), 0 ≤ k ≤ n,

where 0 < τ < 1 is the constant in (1.7).

To be able to use induction in the proof of Theorem B, we will need to delete
parameters from the sets En(γ, l) and Bn,l respectively, so that, for a single critical
orbit, we may use the binding information from the other critical orbits for a long
time. For this purpose, we make the following definition:

Definition 1.17. Define

Bn,l,∗ = B′n,l
⋂(⋂

k 6=l

B′2α0,k

)
, and

En(γ, l, ∗) = An(γ, l)
⋂(⋂

k 6=l

A2α0(γ, k)
)
.

The choice of α0 comes from Lemma 6.3, where by the basic assumption p ≤
dir/γ ≤ Kαn/γ if n was a return time. Thus En(γ, l) and Bn,l are good parameters
for the orbit ξn,l(a) and we can use the binding information of all other critical
points in the next step, if n was a return time. In particular, the fact that a ∈
∩n,lEn(γ, l) means that Ra is Collet-Eckmann, if γ > 0.

Convention 3. To make notations simpler, by En(γ), we mean En(γ, l) for some
critical point cl(a). Also, by Pn, Fn, Bn and B′n, we mean Pn,l, Fn,l, Bn,l and B′n,l
respectively, for some index l. In the statements of all sublemmas, lemmas and
propositions, we keep the indices, but in the proofs we shall drop the indices.
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2. Some lemmas

We begin with the following lemma.

Lemma 2.1. Let un ∈ C be complex numbers for 1 ≤ n ≤ N . Then

(2.1)
∣∣∣∣ N∏
n=1

(1 + un)− 1
∣∣∣∣ ≤ exp

( N∑
n=1

|un|
)
− 1.

Proof. We will prove (2.1) by induction. The case N = 1 is trivial. Let

aN =
N∏
i=1

(1 + un) and bN = exp
N∑
n=1

|un|.

Note that 1 + x ≤ ex, for all x ∈ R, so |an| ≤ bn. Now, assume that (2.1) holds for
N = m, i.e. |am − 1| ≤ bm − 1. Then

|am+1 − 1| = |am(1 + um+1)− 1| ≤ |am − 1|+ |um+1||am|
≤ bm − 1 + |um+1||am| ≤ (1 + |um+1|)bm − 1 ≤ bm+1 − 1.

�

The following lemma deals with the behaviour of R′a near the critical points.
Recall that we consider Ra in local coordinates. In a neighbourhood of ci, the first
and second derivatives of Ra can be written

(2.2) R′a(z) = ϕ(z)
di−1∏
k=1

(z − ck(a)),

and

R′′a(z) = ϕ(z)
di−1∑
j=1

∏
k 6=j

(z − ck(a)) + ϕ′(z)
di−1∏
j=1

(z − cj(a)),

where 1/A ≤ |ϕ(z)| ≤ A for z ∈ U ′i , for some A > 0.

Lemma 2.2. Assume that z ∈ U ′i . Let c(a) ∈ Ci(a) be the nearest critical point to
z and put v(a) = Ra(c(a)). Then

(2.3) |R(z, a)− v(a)| ≤ C1|z − c(a)||R′(z, a)|,

for some C1 > 0, depending only on δ′. Moreover,

(2.4) C−1
1 |z − c(a)|d̃i−1 ≤ |R′(z, a)| ≤ C1|z − c(a)|d̃i−1

and

(2.5) |R′′(z, a)| ≤ C1|z − c(a)|d̃i−2,

where 2 ≤ d̃i = d̃i(z) ≤ di.
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Proof. Define z(t) = c(a) + t(z − c(a)), 0 ≤ t ≤ 1. Since c(a) is the nearest
critical point to z, we have |z(t)− cj(a)| ≤ 2|z − cj(a)| for all other critical points
cj(a) 6= c(a), where cj(a) ∈ Ci(a). Thus,

|R(z, a)−R(c(a), a)| ≤ |z − c(a)||R′(z(t), a)|

= |z − c(a)||ϕ(z(t))|
∏
j

|z(t)− cj(a)|

≤ |z − c(a)|2di−1A
∏
j

|z − cj(a)| ≤ C|z − c(a)||R′(z, a)|,

which proves (2.3).
To prove (2.4), since c(a) is nearest to z we can define d̃i so as to fulfil∏

k

|z − ck(a)| = |z − c(a)|d̃i−1.

It it obvious that 2 ≤ d̃i ≤ di, which proves (2.4), since 1/A ≤ |ϕ(z)| ≤ A. To show
(2.5), again assume that z is nearest to c(a). Then we get

|z − c(a)||R′′a(z)| ≤ C|z − c(a)|
[di−1∑
j=1

∏
k 6=j

|z − ck(a)|+
di−1∏
j=1

|z − cj(a)|
]

≤ C|z − c(a)|d̃i−1,

for some constant C > 0, which proves (2.5). Now take C1 as the largest constant
obtained for (2.3), (2.4) and (2.5). The lemma is proved. �

Remark 2.3 (Generic degree). In particular, |R′a(z)| ∼
∏
j e
−rj , where |z− cj(a)| =

e−rj whenever z ∈ U . If z = ξn(a) is a return into J ir (or Jr, J ir,r′ etc), then by
Definition 1.3 and Lemma 2.2 we get

|R′a(z)| ∼ e−(d̃i−1)r,

where 2 ≤ d̃i ≤ di. This fact will be used frequently in the rest of this thesis.
Of course, d̃i depends on z. However, we let d̃i(z) be constant on each partition
element.

The following lemma shows that we can use the expansion of the first bound
steps of the critical value if a (large) iterate returns into a neighbourhood of a
critical point. There is an analogue to this in [4].

Lemma 2.4 (Bound period distortion). Assume that z ∈ J ir(a) and a ∈ B′p,k. Let
ck(a) ∈ C(Ra) be nearest to z. Put z0 = Ra(z). Then, for 0 ≤ j ≤ p− 1,

(2.6)
∣∣∣∣ (Rj)′(z0, a)
(Rj)′(vk(a), a)

− 1
∣∣∣∣ ≤ ε0,

where p is the bound period, and vk(a) = Ra(ck(a)). The number ε0 → 0 as δ → 0.
In particular, there is a constant C0 close to 1 such that, during the bound period

we have

C−1
0 ≤ |(Rja)′(z0)|

|(Rja)′(vk(a))|
≤ C0.
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Proof. We use the notation R(z, a) = Ra(z). Set w0 = v(a) = Ra(c(a)), zn =
Rna (z0) and wn = Rna (w0). By Lemma 2.1 and the Chain Rule, (2.6) follows if

p−1∑
j=0

∣∣∣∣ R′a(zj)R′a(wj)
− 1

∣∣∣∣ =
p−1∑
j=0

|R′a(zj)−R′a(wj)|
|R′a(wj)|

≤ log(1 + ε0),

independently of p. Since z ∈ J ir(a) we have |z − ck(a)| ∼ e−r. By Lemma 2.2,
|z0 − w0| ≤ C1e

−d̃ir. Now define J = d̃ir/10(Kα + Γ), where Γ is as in (1.2) and
K = max(di). We divide the sum into two parts:

p−1∑
j=0

|R′a(zj)−R′a(wj)|
|R′a(wj)|

≤
J∑
j=0

|R′a(zj)−R′a(wj)|
|R′a(wj)|

+
p−1∑

j=J+1

|R′a(zj)−R′a(wj)|
|R′a(wj)|

.

In the first sum, we use that |zj−wj | ≤ eΓj |z0−w0|. Moreover, |R′a(zj)−R′a(wj)| ≤
C|zj−wj | ≤ CeΓj |z0−w0|, since |R′′(z)| is bounded. The definition of bound period
together with (1.11) gives an estimate to the first sum, namely

J∑
j=0

|R′a(zj)−R′a(wj)|
|R′a(wj)|

≤ C
J∑
j=0

e(K−1)αjeΓj |z0 − w0|

≤ C
J∑
j=0

e(α(K−1)+Γ)j−d̃ir ≤ Ce−
9
10 d̃ir ≤ Ce−

9
10∆.

In the second sum we use that |zj − wj | ≤ e−βj :
p−1∑
j=J

|R′a(zj)−R′a(wj)|
|R′a(wj)|

≤
p−1∑
j=J

Ce−(β−(K−1)α)j ≤
∞∑
j=J

Ce−αKj ≤ Ce−
9
10∆.

The lemma is proved. �

The following corollary shows that we have very good distortion estimates of
(Rja)

′ for fixed a, during the bound period. In fact, Lemma 2.4 implies that Rja,
j ≤ p − 1 is almost affine on the convex set K(ξn+1(ω), vk(ω)) (see below), for a
fixed parameter a.

Corollary 2.5. Assume that ξn,l(ω) ⊂ Jr, ω ∈ Pn,l, ω ⊂ Bn,l and let k be chosen
such that HD-dist(ξn,l(ω), ck(ω)) is minimal. Take any z0, w0 ∈ K(ξn+1,l(ω), vk(ω))
and any a ∈ ω. Put w0 = vk(a) = Ra(ck(a)), zj = Rja(z0) and wj = Rja(w0). Then

(2.7) C ′−1
0 |zj − wj | ≤ |z0 − w0||(Rja)′(u)| ≤ C ′0|zj − wj |,

whenever j ≤ p− 1, u ∈ γ(t) = z0 + t(w0 − z0).

Proof. We write

zj − wj = (z0 − w0)
∫ 1

0

(Rja)
′(z0 + t(w0 − z0))dt,

where the integral is the mean value of the derivatives of Rja. Note that the line
γ(t) = z0 + t(w0 − z0) is contained in K(ξn+1(ω) ∪ vk(ω)), which means that the
orbit Rja(γ(t)) of any point on γ(t) is bound to the orbit wj , j ≤ p− 1. By Lemma
2.4, (Rja)

′ changes arbitrarily little on γ(t) and we conclude that (2.7) holds.
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�

Remark 2.6. The number C ′0 in Corollary 2.5 is easily seen to be close to 1. There-
fore, from now on, we replace C ′0 with C0 so that the constant C0 can be used in
both Corollary 2.5 and in Lemma 2.4.

The following lemma will be used in connection with pseudo returns (see Section
1.7), and it will be used in Lemma 4.2, Lemma 4.3 and Lemma 6.5.

Lemma 2.7. Assume that z1 ∈ Pδ′ and z2 ∈ Pδ′ \ Pδ. For a, b ∈ [0, a0] we have

(2.8)
∣∣∣∣ (Rj)′(z1, a)(Rj)′(z2, b)

− 1
∣∣∣∣ ≤ 1/1000,

whenever Rk(z1, a), Rk(z2, b) ∈ Nρ, for 0 ≤ k ≤ j.
Moreover, assume that z ∈ J ir ⊂ U ′i , and put vi = R0(ci). Then

(2.9) |Rj0(R0(z))− vi| ≤ C|z − ci|di |(Rj0)′(vi)|.

whenever Rk0(z) ∈ Nρ, for 0 ≤ k ≤ j, where C only depends on ρ and the unper-
turbed function R(z) = R0(z).

Proof. Let a0 be such that

|ξj(a)− ξj(0)| ≤ δ4K ,

for all j ≤ N and all a ∈ [0, a0], where N is the upper bound on the number of
iterates such that RN (z, a) ∈ Nρ if z ∈ Pδ′ \ Pδ and a ∈ [0, a0]. Indeed, let |λ|
be the minimal multiplier of R(z, a), i.e. |λ| = min |R′(pi(a), a)| where pi(a) is the
repelling fixed point. Then

1 ≥ ρ ≥ (|λ| − ε)N |z − pi(a)| ≥ (|λ| − ε)Ne−∆,

where ε ≤ (|λ| − 1)/1000. So N ≤ C∆, where C only depends on |λ|.
We use the linearisation of Rt around p(t) according to Subsection 1.7 to get

(2.10) (Rnt )′(z) = (ϕ−1
t )′(gnt (ϕt(z)))(gnt )′(ϕt(z))ϕ′t(z),

where
gt(w) = λt(w − p(t)) + p(t).

The multipliers λt = R′t(p(t)) are analytic, so

λa = λ0 + cλ0a
l +O(al+1).

For small perturbations we get

λnt = (λ0 + cλ0a
l +O(al+1))n = λn0 (1 + cal +O(al+1))n ∼ λn0 (1 + ncal).

We get that ncal ≤ NC∆cal, which is very small if a ≤ a0 and a0 is very small
compared to δ. Therefore,∣∣∣∣λntλns − 1

∣∣∣∣ ≤ C

∣∣∣∣ 1 + nctl

1 + ncsl
− 1

∣∣∣∣ ≤ ε

can be fulfilled if a0 is small enough. Since ϕt is conformal, by continuity and (2.10)
we can get (2.8) if ρ is chosen appropriately.
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To prove (2.9), now note that z ∈ Jr. By the linearisation we get immediately
that gn0 (w) = λn0 (w − p(0)) + p(0). By the continuity of ϕ0 and Lemma 2.2, this
implies

|Rj0(R0(z))− vi| ≤ C|(Rj0)′(vi)||R0(z)− vi| ≤ CC1|(Rj0)′(vi)||z − ci|di ,

where C = C(ρ). This completes the proof of the lemma. �

3. The hyperbolic metric

In this section we introduce the hyperbolic metric and show how it leads to
the important so called Outside Expansion Lemma. The hyperbolic (or Poincaré)
metric on the unit disc D, is defined by

ρD(z)|dz| = 2|dz|
1− |z|2

,

for z ∈ D.

Lemma 3.1. Let f be a meromorphic function of degree at least 2. Assume that
f has finite postcritical set P , which consists of at least 3 points. Then there exists
an expanding metric ϕ(z) on Ĉ \ P such that

ϕ(f(z))|f ′(z)| > ϕ(z),

for all z ∈ Ĉ \ (P ∪ f−1(P )).

Proof. Let π : D → Ĉ \ P be the universal covering map. Since P consists of at
least 3 points, Ĉ \P is a hyperbolic domain and D is conformally equivalent to the
open unit disc. Now, consider a lift h−1 of f−1 to D induced by π, see below.

D
h−1

−−−−→ D

π

y yπ
Ĉ \ P f−1

−−−−→ Ĉ \ f−1(P )

Since f(P ) ⊂ P we get f−1(Ĉ \ P ) ⊂ Ĉ \ P . Since {f−k(P )}∞k=0 is dense in
the Julia set the last inclusion is strict. Thus, h−1(D) ⊂ D is also strict inclusion.
Hence, h−1 is strictly contractive w.r.t. the hyperbolic metric on D and thus h is
strictly expansive on D, by Schwarz Lemma. Hence f is strictly expansive on the
induced hyperbolic metric on Ĉ \ (P ∪ f−1(P )). �

Remark 3.2. The induced hyperbolic (or Poincaré) metric will be denoted by ϕ(z)
from now on. There is no obstruction to assume that P consists of at least 3 points
as can be seen from the examples (0.11), where the critical points 2 and 0 are
mapped as shown below:

2 7→ 0 7→ ∞ 7→ λ,

where λ is a repelling fixed point, and the postcritical set is P = {0,∞, λ}.

Using the metric ϕ on Ĉ \ P we will now construct a metric which is expansive
for the function R(z, u) for u sufficiently close to u0 (see (0.9)).
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Definition 3.3. Let R(z, u0) be the unperturbed function R(z) and let u be a pertur-
bation in any parameter direction defined in (0.9). Let the Jacobian in the metric
ϕ be defined by

Jϕ(z, u) = |R′(z, u)|ϕ(R(z, u))
ϕ(z)

, Jϕ(z) = Jϕ(z, u0).

Define

Jnϕ(z, u) =
n−1∏
j=0

Jϕ(Rj(z, u), u), Jnϕ(z) = Jnϕ(z, u0).

In particular,

Jnϕ(z, u) = |(Rn)′(z, u)|ϕ(Rn(z, u))
ϕ(z)

.

Lemma 3.4. Let D be a hyperbolic domain and let δ(z) be the distance from ∂D
to z. Then the induced hyperbolic metric ϕ(z) satisfies

1 + o(1)
δ(z) log 1/δ(z)

≤ ϕ(z) ≤ 2
δ(z)

,

as z → ∂D.

Proof. See [11], p. 13. �

In the following lemma we consider the unperturbed accelerated redefined func-
tion described in Definition 1.1. We distinguish between two types of critical points:
Denote by c′j the critical points not intersecting P , and for those intersecting P , by
c′′j . By the construction of the metric ϕ, and Lemma 3.4, it follows that ϕ has a
singularity at c′′j but not on c′j . The idea is to remove the singularity at c′′j , replacing
ϕ with a suitable constant there and redefine ϕ in the repelling neighbourhood Pδ′ .
Recall that the function R in Definition 1.1 maps all critical points onto repelling
fixed points.

Lemma 3.5. There is a metric ψ(z) which satisfies

Jψ(z) ≥ λ,

for all z /∈ P∪R−1(P ) and some λ > 1, (where λ does not depends on δ). Moreover,

lim
z→v

Jψ(z) = µ1/d,

where v is a repelling fixed point, |R′(v)| = µ, and d is the maximal degree of R at
some critical point c mapped onto v.

Proof. The Taylor expansion of R near c is

R(z) = v + t(z − c)d +O((z − c)d+1),

where we assume that d is the maximal degree of all such expansions for all critical
points c mapped onto v under R. In the neighbourhood Nρ of v we have

R(z) = v + µ(z − v) +O((z − v)2),
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where |R′(v)| = µ > 1. Define

A1 = Pδ′ \R−1(Pδ′),

A2 = R(Pδ′) \ Pδ′ ,
A3 = R2(Pδ′) \R(Pδ′).

Then R(A1) = A2 and R(A2) = A3. Let U ′′j be those components of R−1(Pδ′)
which have the property that there is a critical point c′′j ∈ U ′′j , such that c′′j also
lies in the postcritical set. Let A′′j be the annular components of R−1(A2) which
touch U ′′j , and put U ′′ = ∪jU ′′j and A′′ = ∪jA′′j . Also, assume that all the sets U ′j
are the preimages of Pδ′ under R in this proof.

We shall construct a continuous metric ψ(z), defined by

ψ(z) =



ϕ(z), if z /∈ R(Pδ′) ∪ U ′′ ∪A′′,
g(z), if z ∈ A2,

C ′|z − v| 1−d
d , if z ∈ Pδ′ ,

C ′′, if z ∈ U ′′,
h(z), if z ∈ A′′,

for some suitable C ′ and C ′′, where

g(z) = ϕ(z) + θ(z)(C ′|z − v|
1−d

d − ϕ(z)), and h(z) = ϕ(z) + θ1(z)(C ′′ − ϕ(z)),

for some continuous θ(z) and θ1(z), defined on A2 and A′′ respectively. Moreover,
0 ≤ θ(z) ≤ 1, for all z ∈ A2 and 0 ≤ θ1(z) ≤ 1, for all z ∈ A′′. The functions θ(z)
and θ1(z) shall satisfy the following boundary conditions:

θ(z) =

{
0, if z ∈ ∂R(Pδ′),
1, if z ∈ ∂Pδ′ .

θ1(z) =

{
0, if z ∈ ∂(R−1(R(Pδ′)) ∩A′′),
1, if z ∈ ∂(R−1(Pδ′) ∩A′′).

The existence of θ(z) and θ1(z) follows from Urysohn’s Lemma (see for example
[33], p. 39). Let

Jψ(z) = |R′(z)|ψ(R(z))
ψ(z)

.

We have to show that Jψ(z) ≥ λ > 1 for some λ only depending on δ′.
First, we consider Jϕ(z) on Pδ′ ∪ R−1(Pδ′). Clearly, Jψ(z) ≥ λ > 1 for z /∈

Pδ′ ∪R−1(Pδ′), since (Pδ′ ∪R−1(Pδ′))c is compact and both sides of the inequality

ϕ(R(z))|R′(z)| > ϕ(z)

are continuous. So,

(3.1) Jϕ(z) ≥ λ,

for all z ∈ (Pδ′ ∪R−1(Pδ′))c, for some λ > 1, only depending on δ′.
Let us show that ψ is expansive on U ′. First, take any z ∈ U ′j containing a

critical point c /∈ P . Then ϕ(c) is well defined, in fact ϕ(z) 6= 0 if z ∈ Ĉ \ P . We
have, by definition, that R(z) ∈ Pδ′ . By the definition of ψ we get

(3.2) Jψ(z) = |R′(z)|ψ(R(z))
ψ(z)

≥ C|z − c|d−1C
′|z − c|1−d

ϕ(z)
≥ CC ′

ϕ(c)
≥ λ > 1,
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if C ′ is chosen suitable (large enough). Note that C ′ only depends on the unper-
turbed function and the hyperbolic metric ϕ. Taking another critical point c1 6= c
mapped onto v under R, the Taylor expansion of R at c1 is

R(z) = v + t1(z − c1)d1 +O((z − c1)d1+1),

where d1 ≤ d. If c′′1 ∈ P then by the definition of ψ it is easy to check that (3.2)
holds if z ∈ U ′′1 , where U ′′1 ⊂ U ′′ is the neighbourhood of c′′1 . If c′1 is a critical point
outside P and c′1 6= c then by the fact that d1 ≤ d, it is again easy to conclude that
(3.2) holds in U ′1 containing c′1.

Assume that A′2 is a component of R−1(A2), so that A′2 is the annular neigh-
bourhood around a critical point c ∈ U ′. If z ∈ A′2 then R(z) ∈ A2 and we get,
again by the definition of ψ,

Jψ(z) = |R′(z)|g(R(z))
ψ(z)

≥ C|z − c|d−1 min(C ′|R(z)− v|1−d, ϕ(R(z))
max(C ′′, ϕ(z))

≥ λ > 1,

since we can choose δ′ so that C ′′ ≤ ϕ(z) for z ∈ U ′′ ∪ A′′, (this is possible since
ϕ(z) →∞ as z → P ).

If we take z ∈W ∪A′′′, where W is some component of R−1(U ′′j ) not containing
any critical point and A′′′ is the component of R−1(A′′j ) which touches W , then
|R′(z)| ≥ Cδ′ for z ∈W ∪A′′′, and R(z) ∈ U ′′ ∪A′′, where Cδ′ only depends on δ′.
By the definition of ψ we may choose C ′′ such that

Jψ(z) = |R′(z)|ψ(R(z))
ψ(z)

≥ Cδ′
min(C ′′, ϕ(R(z)))

ϕ(z)
≥ λ > 1,

since ϕ(z) ≥ C > 0 on W ∪ A′′′. Here C ′′ only depends on δ′, and (3.2) follows
directly.

Now, we prove that Jψ(w) → µ1/d, as w → v. Indeed, using the Taylor expan-
sion, we get for small z

Jψ(v + z) = |R′(v + z)|ψ(v + µz +O(z2))
ψ(v + z)

→ µ
C ′(µ|z|)−d+1

d

C ′|z|−d+1
d

= µ · µ
−d+1

d = µ1/d.

So, for example, Jψ(z) ≥ (µ− ε)1/d, for z ∈ Pδ′ \A1, where ε ≤ (µ− 1)/1000.
So far, we have proved that Jψ(z) ≥ λ > 1, if z /∈ (A1 ∪ A2) ∪ (P ∪ R−1(P )),

where λ only depends on δ′.
Let us show that ψ is expansive on the annular neighbourhood A2. Take any z

such that w = v + z ∈ A2. Since R(A2) = A3 ⊂ R(Pδ′)c we get

Jψ(w) = |R′(w)|ψ(R(w))
ψ(w)

= |R′(w)|ϕ(R(w))
g(w)

≥ |R′(w)| ϕ(R(w))

max(ϕ(w), C ′|w − v| 1−d
d )

.

We have two cases. If

ϕ(w) ≥ C ′|w − v|
1−d

d

then we get Jψ(w) ≥ λ directly from (3.1). If

ϕ(w) ≤ C ′|w − v|
1−d

d ,
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then we use Lemma 3.4 and the Taylor expansion around the fixed point v;

Jψ(w) ≥ |R′(v + z)|ϕ(R(v + z))

C ′|z| 1−d
d

≥ 1
2
|R′(v + z)| (−µ|z| log(µ|z|))−1

C ′|z| 1−d
d

=
1

2C ′
−1

|z|1/d log(µ|z|)
≥ λ > 1,

since |z| ≤ δ′. Here δ′ depends on C ′, so λ depends only on δ′.
Finally, if w ∈ A1 then, from the above calculations,

Jψ(w) = |R′(w)| g(R(w))

C ′|w − v| 1−d
d

≥ |R′(w)|min(ϕ(R(w)), C ′|R(w)− v| 1−d
d )

C ′|w − v| 1−d
d

≥ λ.

So, indeed, Jψ(z) ≥ λ > 1 for all z /∈ P ∪R−1(P ). �

Lemma 3.6. There exists a neighbourhood V of u0 and a λ > 1 such that

Jψ(z, u) ≥ λ,

for u ∈ V and for all z /∈ Pδ2 ∪R−1(Pδ2).

Proof. Let S(a0) = {u : |u − u0| ≤ a0} be the closed ball in the parameter space
R4d+2 of radius a0 (see (0.9)).

By Lemma 3.5

(3.3) ψ(R(z, u))|R′(z, u)| ≥ λψ(z),

holds if u = u0 and z /∈ P ∪ R−1(P ). By the continuity of both sides of (3.3),
for any z ∈ (Pδ2 ∪ R−1(Pδ2))c, there is a perturbation a1 = a1(z) > 0 such that
(3.3) holds whenever |u − u0| ≤ a1(z), for some slightly smaller λ. Of course,
a1(z) is continuous. Therefore, by the compactness of (Pδ2 ∪ R−1(Pδ2))c, there is
a perturbation 0 < a0 ≤ a1(z) for all z ∈ (Pδ2 ∪ R−1(Pδ2))c such that (3.3) holds
for all (z, u) ∈ (Pδ2 ∪R−1(Pδ2))c × S(a0), for some λ > 1, (This is possible if a0 is
sufficiently small compared to δ2, the radius of U2). The lemma is proved. �

Now, we are ready to prove the main lemma of this section. It will give uniform
expansion outside U2. We will often use the lemma with U2 replaced by U instead.
Of course, the lemma still holds in that case.

Lemma 3.7 (The Outside Expansion Lemma). If Rk(z, u) /∈ U2 (or U) for k =
0, . . . , j − 1 and Rj(z, u) ∈ P cδ′ then

|(Rj)′(z, u)| ≥ Cσλ
j ,

for some constant Cσ > 0, for u ∈ V , where V is the same as in Lemma 3.6. The
numbers Cσ and λ depend only on δ′, i.e. the unperturbed function.

Proof. It follows from Lemma 3.4 that

|(Rj)′(z, u)| = Jjψ(z, u)
ψ(z)

ψ(Rj(z, u))
≥ CσJ

j
ψ(z, u),

for some constant Cσ, only depending on δ′, since Rj(z, u) ∈ P cδ′ . If Rk(z, u) /∈
Pδ2 ∪R−1(Pδ2), for 0 ≤ k ≤ j − 1, Lemma 3.6 and Lemma 3.5 implies that

Jjψ(z, u) ≥ λj ,
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for some λ > 1, only depending on δ′, the perturbation a0 and R(z).
It may happen that w = Rk(z, u) belongs to some component of R−1(Pδ2) not

intersecting U2 or Pδ2 . Then R(w, u) ∈ Pδ2 . If Rk(w, u) ∈ Pδ′ , for 0 < k ≤ l−1, and
Rl(w, u) /∈ Pδ′ , then l ≥ N = N(δ2/δ′). This is easily seen from the linearisation
around the fixed point p(u). Put

µ = min
u∈V

|R′(p(u), u)| > 1,

where p(u) is a repelling fixed point, (ε ≤ (µ− 1)/1000). Put Ru(z) = R(z, u). For
some λ > 1, we get

|(Rl)′(w, u)| = |R′(w, u)||(Rl−1)′(Ru(w), u)| ≥ C(µ− ε)l−1 ≥ C ′(µ− ε)l ≥ λl,

if δ2/δ′ is small enough, since |R′(w, u)| ≥ C > 0 in any component of R−1(Pδ2) not
intersecting U2. Apply this argument for all intervals (kj , kj+lj), where Rkj (z, u) ∈
Pδ2 , Rk(z, u) ∈ Pδ′ for kj < k ≤ kj + lj − 1 and Rkj+lj (z, u) /∈ Pδ′ .

Obviously, Rk(z, u) /∈ R−1(Pδ2) ∪ Pδ2 for kj + lj ≤ k < kj+1. Since ϕ(z) tends
to ∞ as z → P we can make the neighbourhood Pδ′ so small so that z ∈ R(Pδ′)
and w /∈ R(Pδ′) implies ϕ(z) > ϕ(w). Note that this condition on δ′ comes only
from the unperturbed function R under sufficiently small perturbations. Since
Rkj+lj (z, u) ∈ R(Pδ′) and Rkj+1(z, u) /∈ R(Pδ′), we get

|(Rkj+1−(kj+lj))′(Rkj+lj (z, u))| ≥ λkj+1−(kj+lj).

Putting all these cases together, and using the Chain Rule it follows that

|(Rj)′(z, u)| ≥ Cσλ
j ,

for some λ > 1 and Cσ > 0. �

Lemma 3.8. If Rk(z) /∈ U2 (or U), for 0 ≤ k ≤ j − 1 then

|(Rj)′(z, u)| ≥ Cλj−1 inf
0≤k≤j−1

|R′(Rk(z, u), u)|,

for all u ∈ V . The constant C > 0 does not depend on δ.

Proof. Put Ru(z) = R(z, u). Let l ≤ j be the largest integer such that Rlu(z) ∈
U ′ \U2. Then Rl+1

u (z) ∈ Pδ′ . If Rju(z) ∈ P cδ′ , The Outside Expansion Lemma gives

|(Rj−l−1
u )′(Rl+1

u (z))| ≥ Cσλ
j−l−1.

If Rju(z) ∈ Pδ′ then ϕ(Rju(z)) blows up and we use the derivative instead. We have

|(Rj−l−1
u )′(Rl+1

u (z))| ≥ (µ− ε)j−l−1,

where µ = minu∈V |R′u(p(u), u)| > 1 and ε ≤ (µ−1)/1000. The Outside Expansion
Lemma can be used to estimate |(Rlu)′(z)|:

|(Rlu)′(z)| ≥ Cσλ
l.

Finally,

|(Rju)′(z)| = |(Rj−l−1
u )′(Rl+1

u (z))||R′u(Rlu(z))||(Rlu)′(z)|

≥ Cµj−l−1λl inf
0≤k≤j−1

|R′u(Rku(z))| ≥ Cλj−1 inf
0≤k≤j−1

|R′u(Rku(z))|,

for some λ > 1, since µ > 1. �
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4. Basic geometry

First, we give a general formula to estimate the curvature of a parameterised
curve (or, rather a point on the curve) γ0(s) iterated n times under a holomorphic
function f . Set fn(γ0(s)) = γn(s) and let κn(s) be the curvature of γn(s) at the
point s.

Lemma 4.1. For n ≥ 1,

κn(s) ≤
n∑
i=1

1
|(fn−i)′(γi(s))|

|f ′′(γi−1(s))|
|f ′(γi−1(s))|2

+
1

|(fn)′(γ0(s))|
|γ′′0 (s)|
|γ′0(s)|2

.

Proof. By the Chain Rule

(4.1) γ′n(s) =
d

ds
fn(γ0(s)) = f ′(γn−1(s))f ′(γn−2(s)) · . . . · f ′(γ0(s))γ′0(s).

Hence,

(4.2) γ′′n(s) =
n∑
i=1

f ′′(γn−i(s))γ′n−i(s)
∏
j 6=i

f ′(γn−j(s)) + γ′′0 (s)
n∏
j=1

f ′(γn−j(s)).

Substituting (4.1) into (4.2) gives

γ′′n(s) =
n∑
i=1

f ′′(γn−i(s))
i−1∏
j=1

f ′(γn−j(s))
[
γ′0(s)

n∏
k=i+1

f ′(γn−k(s))
]2

(4.3)

+ f ′(γn−1(s)) · . . . · f ′(γ0(s))γ′′0 (s).

For γn = xn + iyn the curvature κn satisfies

(4.4) κn =
|x′′ny′n − x′ny

′′
n|

|(x′n)2 + (y′n)2|3/2
=
|Im(γ′′nγ′n)|
|γ′n|3

≤ |γ′′n|
|γ′n|2

.

Substituting (4.1) and (4.3) into (4.4) we finally get the desired formula. �

Next, we give a uniform estimate of the curvature of γn(t) outside U . The
following lemma will be used in Lemma 4.3 to give expansion between two close
points iterated under Ra for fixed a.

Lemma 4.2. Let γ0(t) be a curve in Ĉ and put γn(t) = Rna (γ0(t)). Assume that
γk(t) /∈ U for 0 ≤ k ≤ n and let κj(t) be the curvature at the point t of γj(t). If
γj(t) ∈ P cδ′ then

κj(t) ≤ C3 +
κ(t)

|(Rja)′(γ0(t))|
,

if δ � a0, where κ(t) = |γ′′0 (t)|/|γ′0(t)|2, i.e. the upper bound for κ0(t). The
constant C3 does not depend on δ, (recall that we always have δ � δ′).

Proof. Since we look at the curvature at a specific point t, let us fix t for the
moment. The estimate of the curvature is partially a sum of terms of the form

(4.5) κj,k =
1

|(Rj−ka )′(Ra(γk(t)))|
|R′′a(γk−1(t))|
|R′a(γk−1(t))|2

.



THE CE-CONDITION FOR RATIONAL FUNCTIONS ON Ĉ 31

We will estimate the sum of all terms κj,k for k = 1, . . . , j. For z /∈ U ′ we have an
obvious bound on

|R′′a(z)|
|R′a(z)|2

≤ Cp,

depending on δ′ but not on δ.
So let us assume that δ ≤ |z − ci| = e−r ≤ δ′, i.e. z is a pseudo return and

∆′ ≤ r ≤ ∆. Put z = γl−1(t). We may use the Taylor expansion of R at a pseudo
return. Let Ti be the first order Taylor expansion of R around ci;

Ti(z) = vi + ti(z − ci)di .

Replace Ra(z) with Ti(z) in the expression (4.5). Lemma 2.2 gives

1
|(Rka)′(Raz)|

|R′′a(z)|
|R′a(z)|2

≤ C3
1

1
|(Rka)′(Raz)||z − ci|di

.

Put Ra(z) = z0. Let N be the greatest integer such that Rja(z0) ∈ Nρ, for 0 ≤ j ≤
N . Since z0 ∈ Pδ′ \ Pδ we have, by an argument identical to that in the beginning
of the proof of Lemma 2.7, that N ≤ C∆. Also, the difference

|RN (z0, a)−RN (z0, 0)| ≤ BNa ≤ BC∆a0

(recall B = sup |∂aR(z)|), can be made arbitrary small if a0 is sufficiently small
compared to δ. Now Lemma 2.7 implies

|(RNa )′(Raz)|e−dir ≥ (3/4)|(RN0 )′(z0)|e−dir ≥ 1
C
|RN0 (z0)− vi|

≥ 1
2C

|RNa (z0)− vi| ≥
ρ

4C
= C ′.

Thus for each pseudo return, we get that

κj,l =
1

|(Rj−l−Na )′(Ra(γl+N (t)))|
1

|(RNa )′(γl(t))|
|R′′a(γl−1(t))|
|R′a(γl−1(t))|2

≤ C ′

|(Rj−l−Na )′(Ra(γl+N (t)))|
.

Now, put zk = Rka(γ(t), t). Summing over all terms which correspond to pseudo
returns zki−1 and their corresponding periods N = Ni as above, we get by the
Outside Expansion Lemma,

κpseudo(t) ≤
∑
i

1

|(Rj−ki
a )′(zki

)|
|R′′a(zki−1)|
|R′a(zki−1)|2

≤ C ′
∑
i

1

|(Rj−Ni−ki
a )′(zNi+ki

)|

≤ C ′

Cσ

∑
i

λ−(j−Ni−ki).
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Finally, summing the terms corresponding to pseudo returns (m) and the other
terms (m′) separately, according to Lemma 4.1, the total curvature becomes

κj(t) ≤
∑

l∈(m)∪(m′)

1

|(Rj−la )′(zl)|
|R′′a(zl−1)|
|R′a(zl−1)|2

+
κ(t)

|(Rja)′(γ0(t))|

≤ Cp
∑
m

λ−m +
C ′

Cσ

∑
m′

λ−m
′
+

κ(t)
|(Rja)′(γ0(t))|

≤ C3 +
κ(t)

|(Rja)′(γ0(t))|
,

where C3 depends on δ′ but not on δ. �

Now, choose δ such that δ−1 � C3, and so that S = δ/C2 � C3. This relation
between S and C3 will be used in the following lemma where we prove that two
points repel each other under iteration of Ra for a fixed parameter a. The following
lemma is only used in Lemma 6.7.

Lemma 4.3. Let γ(t) = z0 + t(w0−z0), 0 ≤ t ≤ 1, and assume that Rka(γ([0, 1]))∩
U = ∅ for k = 0, 1, . . . , j − 1, |Rka(z0) − Rka(w0)| ≤ S for k = 0, 1, . . . , j and
Rja(γ([0, 1])) ⊂ P cδ′ . Then

(4.6)
∣∣∣∣ (Rja)′(γ(s))(Rja)′(γ(t))

− 1
∣∣∣∣ ≤ C

|Rj−1
a (γ(s))−Rj−1

a (γ(t))|
δ

≤ 1/20,

for any s, t ∈ [0, 1], where C does not depend on δ.
Moreover, if Rka(γ([0, 1]))∩U = ∅ for k = 0, 1, . . . , j−1 and |Rka(z0)−Rka(w0)| ≤

S for k = 0, 1, . . . , j, then

(4.7) |Rja(z0)−Rja(w0)| ≥ (15/16)|(Rja)′(γ(t))||z0 − w0|,

for all t ∈ [0, 1].

Proof. Put ζk = Rka(γ(s)) and ηk = Rka(γ(t)) for arbitrary s, t ∈ [0, 1] and let
γk(u) = ζk + u(ηk − ζk), 0 ≤ u ≤ 1. Using Lemma 2.1, we estimate

(4.8)
j−1∑
k=0

|R′a(ζk)−R′a(ηk)|
|R′a(ηk)|

.

Let κj,k(u) be the curvature of the curve Rj−ka (γk(u)). By Lemma 4.2, we have
κj,k(u) ≤ C3, if Rja(γ(t)) ∈ P cδ′ , since the curvature of γk(u) is zero. Since the
length of the curve Rj−ka (γk(u)) is less than S � C3, this means that

(4.9) |ζj − ηj | ≥ C|(Rj−ka )′(γk(u′))||ζk − ηk|,

for some C = C(δ′, δ) → 1 as δ/δ′ → 0 and u′ ∈ [0, 1]. So C is very close to 1 here,
take C = 31/32. By the Outside Expansion Lemma

|ζj − ηj | ≥ (31/32)|(Rj−ka )′(γk(u′))||ζk − ηk| ≥ (31/32)Cσλj−k|ζk − ηk|.

Let us see how the terms look like near the critical points. By Lemma 2.2,

|R′(ζk, a)−R′(ηk, a)| ≤ |R′′(γk(t), a)||ζk − ηk| ≤ 2C1e
−r(d̃i−2)|ζk − ηk|.
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The denominator in (4.8) is estimated from below, using Lemma 2.2, by

C|ηk − c(a)|d̃i−1 ≥ Ce−(d̃i−1)r.

So, for ζk, ηk ∈ U ′ \ U we get

|R′a(ζk)−R′a(ηk)|
|R′a(ηk)|

≤ C
|ζk − ηk|
e−r

≤ |ζk − ηk|
δ

.

For ζk, ηk /∈ U ′ we have a trivial estimate;

|R′a(ζk)−R′a(ηk)|
|R′a(ηk)|

≤ Cδ′ |ζk − ηk|.

Equation (4.8) becomes

j−1∑
k=0

|R′a(ζk)−R′a(ηk)|
|R′a(ηk)|

≤ C

j−1∑
k=0

|ζk − ηk|
δ

≤
j−1∑
k=0

|ζj−1 − ηj−1|λ−(j−k)

δ

≤ C
|ζj−1 − ηj−1|

δ
≤ C

S

δ
≤ 1/20,

if C2 is chosen suitable, since S = δ/C2. This proves (4.6). By (4.9) with k = 0,
(4.7) follows if Rja(γ([0, 1])) ⊂ P cδ′ .

We have to deal with the case Rja(γ([0, 1])) ⊂ Pδ′ . Then there is a largest integer
ñ ≤ j such that

Rña (γ([0, 1])) ∩ U ′ 6= ∅,
i.e. the last pseudo return. By the previous argument we have

|Rña (z0)−Rña (w0)| ≥ C|(Rña )′(γ(t))||z0 − w0|,

for C = C(δ/δ′) → 1 as δ/δ′ → 0. Remember that |Rña (z0)−Rña (w0)| ≤ S = δ/C2.
Put γ̂(t) = Rña (z0) + t(Rña (w0)−Rña (z0)). Since γ̂(t) ∩ U = ∅, by the definition on
S, both the argument and absolute value of R′a(γ̂(t)) changes not more than, eg.
1/20 if C2 is chosen appropriately. The curve γ̂(t) is also very close to the curve
Rña (γ(t)) since the curvature of Rña (γ(t)) is at most C3. Therefore,

|Rñ+1
a (z0)−Rñ+1

a (w0)| ≥ C|Rña (z0)−Rña (w0)||R′a(γ̂(t))|
≥ C ′|Rña (z0)−Rña (w0)||R′a(Rña (γ(t))|,

for all t ∈ [0, 1], where C ′ depends on S (C ′ → 1 as S/δ → 0). Therefore,

|Rñ+1
a (z0)−Rñ+1

a (w0)| ≥ C|(Rñ+1
a )′(γ(t))||z0 − w0|,

for all t ∈ [0, 1], where C = C(S). In the neighbourhood Nρ we use the linearisation
described in Subsection 1.7;

ϕa ◦Ra(z) = ga ◦ ϕa(z),

where ga(z) = λa(z − p(a)) + p(a) and ϕa is conformal. By the continuity of ϕa,
and Lemma 2.7, it is obvious that, for z, w ∈ Nρ,

|Rja(z)−Rja(w)| ≥ C|(Rja)′(z′)||z − w|,
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whenever Rka(z), R
k
a(w) ∈ Nρ, for all k ≤ j, and where z′ ∈ Rñ+1(γ(t)) ∈ Pδ′ \ Pδ.

Thus,

|Rja(z0)−Rja(w0)| ≥ C(δ/δ′)C(S)C(ρ)|(Rja)′(γ(t))||z0 − w0|
≥ (15/16)|(Rja)′(γ(t))||z0 − w0|,

if the constants δ, a0, ρ, S are chosen suitable. �

5. Initial distortion estimates

First, we estimate |ξ′n(a)| in the neighbourhood Nρ, where n is the very first
iterates, (see Subsection 1.7 for the definition of Nρ). In the following there will
be some conditions on Nρ, to get sufficiently good distortion estimates. However,
ρ still does not depend on δ. We will study one critical orbit at a time. Let

(5.1) x(a) = v(a)− p(a) = K1a
k +O(ak+1),

where k ≥ 0, v(a) is a critical value, i.e. R(c(a), a) = v(a) and p(a) is the re-
pelling fixed point for Ra such that R0(v(0)) = p(0), (the case k = 0 means that
v(a) = p(a), which is a trivial case). Around p(a) we use the linearisation by the
conjugation ϕa(z), described in Subsection 1.7. By the normalisation of ϕa(z) we
have ϕa(v(a)) = v(a)+ (v(a)− p(a))2 + . . .. Let ξ̃n(a) = ϕa(ξn(a)) = gna (ϕa(v(a))),
be the curve in the new coordinates. Since ϕa(p(a)) = p(a) we get

(5.2) ξ̃n(a) = λna(x(a) +O(x(a)2)) + p(a),

whenever ξn(a) ⊂ Nρ, where λa = R′(p(a), a). Also, λa is analytic in a so

(5.3) λa = λ0 + cλ0a
l +O(al+1),

for a ≤ a0. On the other hand, since ϕt is conformal there is an error εn(a) with
|εn(a)| ≤ ε, where ε = ε(ρ)0, such that

(5.4) ξn(a) = λnax(a) + p(a) + εn(a).

By the Chain Rule,

ξ′n(a) = (ϕ−1
a )′(ξ̃n(a))ξ̃′n(a) + ∂aϕ

−1
a (ξ̃n(a)).

If we can show that |ξ̃′n(a)| grows exponentially then ξ′n(a) and ξ̃′n(a) are compara-
ble; ∣∣∣∣ξ′n(a)ξ̃′n(a)

− (ϕ−1
a )′(ξ̃n(a))

∣∣∣∣ ≤ |∂aϕ−1
a (ξ̃n(a))|
|ξ̃′n(a)|

,

since ∂aϕ−1
a (z) is bounded from above. If we let N ′

ρ be such that |(ϕ−1
a )′(z) −

(ϕ−1
0 )′(p(0))| = |(ϕ−1

a )′(z)− 1| ≤ 1/1000 for all z ∈ N ′
ρ and all a ∈ [0, a0], then we

get

(5.5)
∣∣∣∣ξ′n(a)ξ̃′n(a)

− 1
∣∣∣∣ ≤ 2|∂aϕ−1

a (ξ̃n(a))|
|ξ̃′n(a)|

.

In particular, |ξ′n(a)| grows exponentially if |ξ̃′n(a)| does. By (5.2)

(5.6) ξ̃′n(a) =
(
n
λ′a
λa
x(a)(1 +O(x(a))) + x′(a)(1 +O(x(a)))

)
en log λa + p′(a).
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Definition 5.1 (Large annular neighbourhoods). We define annular neighbourhoods

Ω1 = Nρ \ Nρ/(2Λ),

Ω2 = Nρ/(2Λ) \ Nρ/(4Λ2),

Ω3 = Nρ/(4Λ2) \ Nρ/(8Λ3),

Ω = Ω1 ∪ Ω2 ∪ Ω3,

where Λ is the maximal multiplier |R′(p(a), a)|, over all repelling fixed points p(a)
and all a ∈ [0, a0].

This means that for any a ∈ [0, a0], if ξn(a) ∈ Ω1 then there are k1 ≥ 1 and
k2 ≥ 1 such that ξn+k1(a) ∈ Ω2 and ξn+k2(a) ∈ Ω3 and ξn+j(a) ∈ Ω for all
0 ≤ j ≤ max(k1, k2). That is, every critical orbit ξn(a) has to pass over all Ωi sooner
or later. These annular neighbourhoods will be used frequently in Subsection 5.1.

Let k′0 and N be such that for all a ∈ [k′0a0, a0], we have that ξN (a) ∈ Ω. By
(5.4) we get

ρ

16Λ3
≤ |λa|N |x(a)| ≤ 2ρ ≤ 1,

so

(5.7)
− log |x(a)|+ log(ρ/(16Λ3))

log |λa|
≤ N ≤ − log |x(a)|

log |λa|
.

Therefore, since x′(a) ∼ ak−1 we get

N
λ′a
λa
x(a) + x′(a) ∼ −k(log a)ak

λ′a
λa

+K1ka
k−1 ∼ x′(a),

if a is small and since λa 6= 0. If |ξ̃′N (a)| is large, then (5.7) and (5.5) gives

|ξ′N (a)| ≥ C|ξ̃′N (a)| ≥ C|x′(a)||λa|N ≥ Celog |x
′(a)|+N log |λa|

≥ Ce(k−1) log a+N log |λa| ≥ CeN(1− k−1
k ) log |λa| ≥ eγ

′N ,

for some γ′ ≤ (1/k) log |λa|. Since x′(a) is dominant in (5.6), (5.5) implies

(5.8)
∣∣∣∣ ξ′N (a)
λNa x

′(a)
− 1

∣∣∣∣ ≤ 1/2000,

whenever ξN (a) ∈ Ω, a ≤ a0 if a0 is small enough.
Now, we present the following lemma. Recall that the index l stands for a specific

critical “branch” cl(a) for a ∈ [0, a0] and vl = Ra(cl(a)).

Lemma 5.2. Let Nl be an integer such that ξNl,l(ω) ⊂ Ω, for some interval ω ⊂
[0, a0], (and ξk(ω) ⊂ Nρ for all k ≤ Nl). Then

(5.9) |ξNl,l(a)− ξNl,l(b)| ≥ Ce|λ0|Nl |x′l(a)||a− b|.
for all a, b ∈ ω, or, equivalently,

(5.10) |ξNl,l(a)− ξNl,l(b)| ≥ C ′ee
Nlγ

′
l |a− b|

for all a, b ∈ ω, where γ′l = (1/kl) log |λ0|.
Moreover,

(5.11)
∣∣∣∣ (RNl

a )′(vl(a))
(RNl

b )′(vl(b))
− 1

∣∣∣∣ ≤ 1/1000,
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for all a, b ∈ [0, a0], and

|ξNl,l(a)− ξNl,l(b)| ≥ C ′′e |(R
Nl
t )′(vl(t))||x′l(a)||a− b|,

for all t ∈ ω. The constants Ce, C ′e, C
′′
e only depend on the function x(a) = xl(a)

defined in (5.1).

Proof. Let a > b and a, b ∈ [0, a0]. In the following, we use that |p(a) − p(b)| =
O(|ak − bk|) and that N is so large such that ξN ([a, b]) ⊂ Ω:

|ξN (a)− ξN (b)| ≥ |ξN (a)− p(a)− (ξN (b)− p(b))| − |p(a)− p(b)|

≥ 7
8
|λNa x(a)− λNb x(b)| − |p(a)− p(b)|

≥ 3
4
|(λ0(1 + cal))Nx(a)− (λ0(1 + cbl))Nx(b)| − |p(a)− p(b)|

≥ 3
5
|λ0|N |(1 +Ncal)K1a

k − (1 +Ncbl)K1b
k| − |p(a)− p(b)|

≥ 3
6
|λ0|N |K1(ak − bk)(1 +Nc′al)| − |p(a)− p(b)|(5.12)

≥ 3
7
|λ0|N |K1(a− b)ak−1(1 +Nc′(k + 1)al)|.(5.13)

Using the right inequality in (5.7), since x(a) ∼ ak, we have N ≤ −k log a, so
al log a→ 0 as a→ 0. Thus, by (5.13) we get

|ξN (a)− ξN (b)| ≥ 3kK1

8
|λ0|N |a− b|ak−1

for all a, b ∈ [0, a0], if N is large. Also,

|ξN (a)− ξN (b)| ≥ 3
8
|λ0|N |a− b||x′(a)|.

Moreover, by (5.7) we get

|ξN (a)− ξN (b)| ≥ 3kK1

8
eN log |λ0|ak−1|a− b|

≥ 3kK1

9
e− log |x(a)|ak−1|a− b|

≥ 3kK1

10
e−(1− k−1

k ) log |x(a)||a− b|

≥ 3kK1

11
eN

log |λ0|
k |a− b|

We have proved (5.10) and (5.9), and we need to verify (5.11). By the analyticity
of λt we get that |λNt /λNs − 1| is very small if s, t ∈ [0, a0] and a0 is small enough.
Also, by the linearisation described in Subsection 1.7, we get that

(5.14)
∣∣∣∣ (RNt )′(v(t))
(RNt )′(p(t))

− 1
∣∣∣∣ ≤ ε

where ε is sufficiently small if ρ is chosen appropriately. Now, (5.11) follows. The
last inequality follows directly from (5.11). �
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Now, we come to a very basic result in this theory of dynamical systems, which
says that parameter and space derivatives are comparable as long as the space de-
rivative grows exponentially. We here follow an analogue of the following important
proposition in [4].

Define

Qn = Qn,l(a) =
∂Rn(vl(a), a)

∂a

/
∂Rn(vl(a), a)

∂z
,

where vl(a) is a critical value, i.e. vl(a) = R(cl(a), a) for some cl(a) ∈ C(Ra).

Proposition 5.3. Assume that a ∈ B′m−1,l, and that∣∣∣∣∂Rn(vl(a), a)∂z

∣∣∣∣ ≥ eγn, for n = 0, . . . ,m,∣∣∣∣∂R(z, a)
∂a

∣∣∣∣ ≤ B, for all z ∈ Ĉ,

where γ ≥ γ −Kα. Then for n = Nl, . . . ,m

|Qn,l(a)−QNl,l(a)| ≤ |QNl,l(a)|/1000,

where Nl is an integer such that ξNl,l(a) ∈ Ω, and such that ξk(ω) ⊂ Nρ for all
k ≤ Nl.

Proof. As usual, set Nl = N , ξn,l(a) = ξn(a) and vl(a) = v(a). First, we will use
(5.8) and prove by induction, that

|ξ′N+k(a)| ≥ eγ
′(N+k),

where γ′ = γ/k − ε, k is as in (5.1). Take ε = (γ − 1)/1000, which is possible if N
is sufficiently large. We get by equations (5.8) and (5.14) that

|ξ′N (a)| ≥ (1/2)|(RNa )′(v(a))||x′(a)| ≥ (1/2)eγN |x′(a)| ≥ eγ
′N .

So, assume that

|ξ′N+j(a)| ≥ eγ
′(N+j), for all j ≤ k.

We want to prove that

|ξ′N+j(a)| ≥ eγ
′(N+j), for all j ≤ k + 1.

First note that the basic assumption on a and Lemma 2.2 gives

(5.15) |R′(ξj(a), a)| ≥ C−1
1 e−αKj .

By the Chain Rule we have the recursions (remember the notation ξn(a) =
Rn−1(v(a), a))

∂Rn+1(v(a), a)
∂z

=
∂R(ξn(a), a)

∂z

∂Rn(v(a), a)
∂z

,(5.16)

∂Rn+1(v(a), a)
∂a

=
∂R(ξn(a), a)

∂z

∂Rn(v(a), a)
∂a

+
∂R(ξn(a), a)

∂a
.(5.17)
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Now, the recursion formulas (5.16) and (5.17), together with (5.15) and (5.8), gives

|ξ′N+k+1(a)| ≥ |R′a(ξN+k(a))||ξ′N+k(a)|
(

1− |∂aRa(ξN+k(a))|
|R′a(ξN+k(a))||ξ′N+k(a)|

)

≥ |(Rk+1
a )′(ξN (a))||ξ′N (a)|

k∏
j=0

(
1− |∂aRa(ξN+j(a))|

|R′a(ξN+j(a))||ξ′N+j(a)|

)

≥ eγ(k+1)eγ
′N

k∏
j=0

(1−B′eKα(N+j)e−γ
′(N+j))

≥ e(γ−γ
′)(k+1)eγ

′(N+k+1)
k∏
j=0

(1−B′e(Kα−γ
′)(N+j)) ≥ eγ

′(N+k+1),

if N is large enough, since γ′ ≥ 2Kα, (here B′ = BC1). The sum
∞∑
j=0

B′e−(γ′−Kα)(N+j) <∞,

and can be made arbitrarily small if N is large enough.
By the definition of Qn(a), we have

QN+n(a) = QN (a)
n∏
j=0

(
1 +

∂aRa(ξN+j(a))
R′a(ξN+j(a))ξ′N+j(a)

)
.

So,
|QN+n(a)−QN (a)| ≤ |QN (a)|/1000,

if N is sufficiently large. �

Remark 5.4. The number QN (a), for general a ∈ [0, a0] can be estimated by equa-
tion (5.8) and the fact that λNa /(R

N
a )′(v(a)) is very close to 1 (equation (5.14)), in

the following way; ∣∣∣∣QN (a)
x′(a)

− 1
∣∣∣∣ ≤ ε1,

where ε1 is small. If we want good argument distortion of an interval ω0 = [k0a0, a0],
i.e. the quotient QN (a)/QN (a0) is very close to 1 for all a ∈ ω0, then we must have

(5.18)
∣∣∣∣x′(a)x′(b)

− 1
∣∣∣∣ ≤ ε2,

for all a ∈ ω0, where ω0 is a sufficiently small interval at the right end of [0, a0] and
ε2 is small enough. Equation (5.18) gives an estimate of the number k0; it follows
from (5.1) that it is enough to have

|kk−1
0 − 1| ≤ ε3,

for some suitable ε3 = ε3(ε2). In Subsection 5.1 we define a starting interval ω0,
at the very right end of [0, a0], so as to fulfil (5.18) for all critical points. More
precisely, we have
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Corollary 5.5. If ω0 = [k0a0, a0], where k0 satisfies (5.18) for all critical points,
then

(5.19)
∣∣∣∣ QNl,l(a)
QNl,l(a0)

− 1
∣∣∣∣ ≤ 1/500,

for all a ∈ ω0 and all l, (if the εj:s are chosen suitable).

We also see that
1
2
|x′(a)| ≤ |QN (a)| = |ξ′N (a)|

|(RN )′(v(a), a)|
≤ 2|x′(a)|,

if a ≤ a0 for some sufficiently small a0 > 0. In particular, if x′(0) 6= 0 then
QN (a) = K2 + O(a) in a neighbourhood of a = 0, so the equation (5.19) is valid
in a whole interval [0, a0] instead of only a small ω0 at the very right end of [0, a0].
The parameter directions for which x′(0) 6= 0 are usually called non-degenerate.

5.1. The first return. Definition of ω0. Here we shall define the interval ω0 ⊂
[0, a0]. Also, we show that all critical orbits ξn,l(ω0) will grow to size S, before
leaving the repelling neighbourhood Nρ.

Assume that Ml is the first return time of [0, a0] into J∆−2 under ξn,l, i.e. Ml > 0
is the least integer such that

ξMl,l([0, a0]) ∩ J∆−2 6= ∅.
Let M = min(Ml) and assume that cl(a′) is a critical point which is mapped into
J∆−2, i.e. ξM,l(a′) ⊂ J∆−2, for some a′ ∈ [0, a0]. The curve ξM,l([0, a0]) has to
cross J∆−1. If there is more than one index l for which ξM,l(a) ⊂ J∆−2, for some
a ∈ [0, a0], then we choose the least a ∈ [0, a0] such that ξM,l(a) ⊂ J∆−2, for some
l. Then it follows that ξM,l([0, a])∩J∆−3 = ∅ for all indices l. Now redefine a0 such
that a0 = a for this smallest a. We now study the orbits ξn,k([0, a0]).

First, note that to every critical point cl(a0) there is a number Nl such that
ξNl,l(a0) ∈ Ω2, (see Definition 5.1. Also, compare with Nl in Lemma 5.2). Let us
construct the interval ω0 ⊂ [0, a0]:

SubLemma 1. There is a 0 < k0 < 1, such that ω0 = [k0a0, a0] has the following
properties: Every curve ξNl,l(ω0), has length at least S. Moreover, for every interval
ω ⊂ ω0, such that ξn(ω) ⊂ Ω (and ξk(ω) ⊂ Nρ for all k ≤ n), we have low argument
distortion, (1.8) is fulfilled.

Proof. As usual, let us drop the index l in the proof. By the definition of Ω2 in
Definition 5.1, there is an N < M such that ξN (a0) ∈ Ω2. Choose k′0 such that

(5.20) ρ/(8Λ3) ≤ |ξN (a0)− ξN (k′0a0)| ≤ ρ,

and ξN ([k′0a0, a0]) ⊂ Ω. Now, let k′0 ≤ k0 < 1 be so that

(5.21)
∣∣∣∣ξ′N (a)
ξ′N (b)

− 1
∣∣∣∣ ≤ 1/200,

for all a, b ∈ ω0 = [k0a0, a0]. By (5.8) and (5.1), (5.21) is fulfilled if

(5.22) |kk−1
0 − 1| ≤ ε3,

for some sufficiently small ε3. We choose the minimal k0 such that (5.22) is fulfilled
for every k corresponding to a critical point as in (5.1).
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The length L of the curve ξN (ω0) is

L = |ξ′N (a′)||a0 − a0k0| ≥ (1/2)|λ0|N |x′(a′)|a0(1− k0)

≥ (1/4)|λ0|NkK1(a0k0)k−1a0(1− k0) = (1/4)|λ0|NkK1a
k
0k
k−1
0 (1− k0).

Reversing the inequality (5.12) we get

(5.23) |ξN (a)− ξN (b)| ≤ 2|λ0|NK1(ak − bk),

if ξN ([a, b]) ⊂ Ω.
By (5.3) and (5.7), it follows that

(5.24)
∣∣∣∣λNaλNb − 1

∣∣∣∣ ≤ ε4,

for all a, b ∈ [0, a0] if a0 is small enough. Note that ε3 and ε4 are chosen such that
1/200 in (5.21) is fulfilled. Putting a = a0 and b = k′0a0 in (5.23), using (5.20) and
(5.24), we get

ρ/(8Λ3) ≤ |ξN (a0)− ξN (k′0a0)| ≤
8K1

3
|λ0|N |ak0 − (k′0a0)k|

=
8K1

3
|λ0|Nak0 |1− (k′0)

k|,

where Λ is the maximal multiplier over all repelling fixed points for Ra, a ∈ [0, a0],
as in Definition 5.1. Thus,

L

ρ/(8Λ3)
≥ 11k

3
|λa|N

|λ0|N
kk−1
0 (1− k0)
(1− (k′0)k)

≥ kk−1
0 (1− k0)
(1− (k′0)k)

.

So the length L of the curve ξN (ω0) is L ≥ S, since ρ � S = δ/C2, if δ is
small enough. Also, by (5.21), it is almost straight, i.e. it has bounded argument
distortion.

By the definition of k0, all critical orbits ξNl,l(ω0) of the interval ω0 = (k0a0, a0)
grow to size at least S before they leave the neighbourhood Nρ, if δ is small enough
compared to ρ.

It follows from the construction of ω0 that if ξNl,l(ω) ⊂ Ω for some ω ⊂ ω0, then
ξNl,l(ω) has small argument distortion for every l, i.e. (5.21) is satisfied. �

According to the partition rule, we cut the interval ω0 so that ω ∈ PNl,l means
that ξNl,l(ω) is of size at most S. Note that we do not delete any parameters from
ω0 until time M . However, the partition PNl,l may look different for different l.

Later we show that ∣∣∣∣ξ′Ml,l
(a)

ξ′Ml,l
(b)

− 1
∣∣∣∣ ≤ 1/100,

for all a, b ∈ ω ∈ PMl,l, ω ⊂ ω0, where Ml are the first return times for the orbits
of the sets cl(ω0) as above.
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5.2. The length of ci(ω) is very small compared to the length of ξn(ω).
We now deal with the problem that the critical points may move as the parameter
a moves, and therefore the sets Jr(a) moves (see Definition 1.3). We will always
assume that the parameter interval [0, a0] is chosen such that a0 � δ2. Let ω be
an interval in [0, a0]. The idea is that the exponential growth of the derivative will
imply that the part of the curve ξn(ω) which returns into U (call it ξn(ω′)) is almost
straight and also that the corresponding parameter interval is exponentially small
compared to the curve ξn(ω′), i.e. |ω′| � l(ξn(ω′)), where l(ξn(ω′)) is the length
of ξn(ω′). Let us assume that we have exponential growth of the z-derivative, i.e.
|(Rna )′(v(a))| ≥ eγn, for some γ ≥ γ0. The Mean Value Theorem, Remark 5.4 and
Proposition 5.3 implies that

l(ξn(ω′)) = |ω′||ξ′n(a)| ≥ (1/2)|ω′||x′(a)|eγn ≥ (1/2)|ω′|eγ
′n,

for some a ∈ ω′, where γ′ ≥ γ′0 = (1/k)γ0 (as in Lemma 5.2). Thus |ω′| ≤
2l(ξn(ω′))e−γ

′n. By the analyticity of ci(a), |ω′| ≥ Cl(ci(ω′)), where ci(ω′) is the
set of critical points for the parameters ω′ and a ∈ ω′. Thus,

l(ξn(ω′)) ≥ Ceγ
′nl(ci(ω′)).

Now, the basic assumption (1.11) will imply

(5.25) |ξn(a)− ci(a)| � |ω′|,

where a ∈ ω′ and ξn(ω′) ⊂ Ui. Indeed, since ξn(ω′) ⊂ Ui for some i we have
l(ξn(ω′)) ≤ 3δ, if ξn(ω′) is sufficiently straight, and therefore

|ω′| ≤ 6δe−γ
′n ≤ e−γ

′n � e−αn ≤ |ξn(a)− ci(a)|,

since α � γ′ and δ is small. Again, by the analyticity of ci(a), |ω′| ≥ Cl(ci(ω′)),
and we get

(5.26) |ξn(a)− ci(a)| � l(ci(ω′)),

if δ is sufficiently small. We have proved that the basic assumption (1.11) implies the
condition (5.26) as long as we have exponential growth of the derivative (ω′ ⊂ En(γ),
γ ≥ γ0) and control of the curvature.

Hence the parameter dependence for Jr(a) is neglectable on a local level, i.e.
if one looks only at ξn(ω′) and compare it with the corresponding critical points
ci(ω′).

5.3. The relative sizes of cij(ω) and cik(ω) . We assume in this subsection that
the interval ω0 is defined as in Subsection 5.1, i.e. ω0 = [k0a0, a0], where k0 is very
close to 1.

If ξn(ω′) is almost straight (and ω′ ⊂ ω0), we want to show that the sets cij(ω′)
and cik(ω′), for arbitrary i, j, k, are with a large amount of the relative sizes sepa-
rated from each other:

|cij(a)− cik(a)|
l(cij(ω′))

≥ 100,

for a ∈ ω′, j 6= k and where l(cij(ω′)) is the length of cij(ω′).
Since the critical points cij(a) are analytic functions of the parameter a, we have

(5.27) cij(a) = ci + kija
r +O(ar+1),
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for some r ≥ 1, (the case r = 0 means that the critical points do not move under
perturbation, and we can skip the definition of δ̃ (see (1.8)), everything is then much
easier). Let us, for simplicity, consider the largest critical star in the set Ci([0, a0]),
i.e. the smallest r in (5.27). The other (smaller) critical stars can be treated in a
similar way. Now, since δ̃ is defined in terms of the diameter of the sets Ci([0, a0]),
it follows that there is a constant C ′, only dependent on the unperturbed function
R(z) and the parameter direction, such that δ̃ ≤ C ′ar0, if a0 is small enough. Assume
that ξn(ω′) ⊂ Ũ , for ω′ ⊂ ω0. If the basic assumption allows a return into Ũ , then

e−αn ≤ δ̃ ≤ 2k−r0 C ′ar = Car,

for a ∈ ω0 = [k0a0, a0], since k0 is close to 1. By Proposition 5.3, Remark 5.4, and
since the length of ξn(ω′) is less than 2δ̃, we have

|x′(a)||ω′|eγn ≤ 2|ω′||ξ′n(a)| ≤ 4δ̃,

for some a ∈ ω′. By (5.27), l(cij(ω′)) ∼ |ω′|ar−1. So, since x′(a) ∼ ak−1 as in
Section 5,

l(cij(ω′)) ≤ Ce−γnδ̃ar−1a−(k−1) ≤ Ce−γnar−k.

The distance |cij(a)− cik(a)| is bounded from below by Cas, for some integer s ≥ 0
as shown in Subsection 1.3. Thus, if s− r + k ≥ 0,

|cij(a)− cik(b)|
l(cij(ω′))

≥ Caseγna−r+k ≥ Ce−nα(s−r+k)/reγn

= Ce(γ−α(s−r+k)/r)n ≥ 100,

if n is large enough, and if γ − α(s − r + k)/r > 0. If s − r + k < 0 then the
estimate is trivial. Since every critical branch cij(a) in the set Ci(a) gives rise to
corresponding numbers sij , rij , kij we can apply this argument to all critical points.
Let α be such that γ − α(sij − rij + kij)/r > 0 holds for all critical points.

6. Insignificant parameter dependence

We will in this section study the behaviour of a given orbit ξn,l(ω), between two
return times. We count on the parameter dependence and show that under certain
conditions, it is indeed insignificant. The last three lemmas of this section will be
used inductively in the proof of the Main Distortion Lemma.

Definition 6.1 (Endpoint-stretch). Given a partition element ω ∈ Pn,l, we say that
ω ∈ Sn,l(γ′) if

(6.1) |ξn,l(a)− ξn,l(b)| ≥ eγ
′n|a− b|.

for all a, b ∈ ω ∈ Pn,l.

The number γ′ is highly dependent on which critical point that is iterated. In
analogy with (5.1), let

xl(a) = K1a
kl +O(akl+1).

We call γ′0,l = (1/kl)(γ0 − ε), the “lower endpoint-stretch” exponent, where, eg.
ε = (γ0 − 1)/1000, and γ0 is as in (1.7).

We begin with the the following basic fact which will be used frequently in the
rest of this section.
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SubLemma 2. Assume that ω ∈ Pn,l, ω ⊂ En(γ, l) ∩ B′n,l for some γ ≥ γ0 and
that n is a return time. Then ω ∈ Sn,l(γ′l) where γ′l ≥ γ′0,l = (1/kl)γ0 − ε.

Proof. Certainly, the condition ω ∈ Pn means by definition that ω ∈ Gn, so the
curve ξn(ω) is indeed almost straight. By Proposition 5.3 and Lemma 5.2 we get
that the length L of ξn(ω) is

L = |ω||ξ′n(a)| ≥ (1/2)|ω||QN (a)||(Rn)′(v(a), a)| ≥ (1/2)|x′(a)|eγn

= (1/2)(K1a
k + . . .)eγNeγ(n−N) = eγ

′Neγ(n−N) ≥ eγ
′n,

where (1/k)γ − ε ≤ γ′ ≤ γ − ε. �

The main ingredient is that the condition ω ∈ Sn,l(γ′l) enables us to neglect the
parameter dependence for j ≤ (1 + σ)n for some fraction σ of the time. We let α
be sufficiently small and define σ so as to fulfil the following:

(6.2)
4Kα
γ′

≤ σ =
γ′

4 max(logB, logB′)
,

where γ′ = (1/2) min(γ′0,l) = (1/2) min((γ0 − ε)/kl) is half the lowest endpoint-
stretch exponent over all critical points, and

B = max |∂aR(z, a)| and B′ = max |∂aR′(z, a)|.
The left inequality in (6.2) ensures that given a return at time n, we may neglect

the parameter dependence during the bound period. The crucial fact is that the
expansion of the z-derivative will imply that the parameter dependence is always
neglectable!

Recall that we drop the index l and therefore we shall often only write ξn(ω)
instead of ξn,l(ω). Also, Sn(γ′) and γ′0 means Sn,l(γ′l) and γ′0,l respectively, for some
l.

Let N = min(N ′
k), where

N ′
k = min

a∈ω0,n∈N
{n : ξn,k(a) ∈ Ω2}.

(See Section 5, Definition 5.1 for the definition of Ω2). We choose a0 so small such
that

(6.3) e−(3γ′/4)N ≤ e−∆K10−10 = ε, and e−Nα ≤ e−2∆K .

This is possible if the perturbation is sufficiently small compared to δ = e−∆ (the
number 10−10 has no real significance, but it must be small). We also assume that
Cσ ≥ 1000ε.

Let us illustrate the meaning of the number ε. Assume that ω ∈ Pn ∩ Sn(γ′).
We have, in general,

|ξn+j(a)− ξn+j(b)| ≥ ||Rj(ξn(a), a)−Rj(ξn(b), a)|(6.4)

− |Rj(ξn(b), a)−Rj(ξn(b), b)||.(6.5)

The idea is that the parameter dependence (the term (6.5)) is much smaller than the
right hand side of (6.4). We estimate (6.5) by the trivial estimate |∂aR(z, a)| ≤ B,
for all (z, a) ∈ Ĉ× [0, a0], and by the fact that ω ∈ Sn(γ′):

|Rj(ξn(b), a)−Rj(ξn(b), b)| ≤ |a− b|Bj ≤ |ξn(a)− ξn(b)|e−γ
′n+j logB .
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Now, assuming that j ≤ σn and γ′ ≥ γ′, we get

e−γ
′n+j logB ≤ e−n(γ′+σ logB) ≤ e−(3γ′/4)n ≤ e−(3γ′/4)N ≤ ε.

The following lemma deals with the behaviour of a curve ξn(ω), which has re-
turned into U . We show that the curve ξn(ω) contracts with an amount equivalent
to the derivative of Ra. Recall that Jr means the annular neighbourhood defined
in Definition 1.3.

Lemma 6.2 (Critical step). Assume that ξn,l(ω) ⊂ Jr ⊂ U and ω ∈ Pn,l, ω ⊂
En(γ, l) ∩ Bn,l where γ ≥ γ0. For a, b ∈ ω, we have

C−1
0 |R′(ξn,l(a), a)||ξn,l(a)− ξn,l(b)| ≤ |ξn+1,l(a)− ξn+1,l(b)|

≤ C0|R′(ξn,l(a), a)||ξn,l(a)− ξn,l(b)|,(6.6)

if ∆ is sufficiently large.

Proof. We want to use the fact that the parameter dependence is neglectable. So
first, we show that

(C0 − ε)−1|R′(ξn(a), a)||ξn(a)− ξn(b)| ≤ |R(ξn(a), a)−R(ξn(b), a)|
≤ (C0 − ε)|R′(ξn(a), a)||ξn(a)− ξn(b)|,(6.7)

for some very small ε > 0. Let γ(t) = ξn(a) + t(ξn(b) − ξn(a)). The length of the
curve Ra(γ(t)) for 0 ≤ t ≤ 1 is

L =
∫ 1

0

|R′(γ(t), a)|dt = |ξn(a)− ξn(b)||R′(γ(t′), a)|,

for some t′ ∈ [0, 1]. Note that

(6.8) |ξn(a)− ξn(b)| ≤ e−r/r2 � |ξn(a)− c(a)| ∼ e−r,

where c(a) is the nearest critical point to ξn(a). By (6.8), it is easy to verify
that R′a(γ(t)) changes very little, for 0 ≤ t ≤ 1, if ∆ is sufficiently large. In-
deed, looking at the formula for R′a in (2.2), we have | arg(R′a(γ(t))/R

′
a(γ(s)))| ≤

2Ni arctan(1/r2), where Ni is the number of critical points in the set Ci(a). Also,
it is obvious that |R′a(γ(t))|/|R′a(γ(s))| ≤ 2(1 − 1/r2)Ni , if ∆ is large. So, if ∆ is
large enough, we have ∣∣∣∣R′a(γ(t))R′a(γ(s))

− 1
∣∣∣∣ ≤ 1/100,

for all s, t ∈ [0, 1]. The curvature κ(t) of the curve Ra(γ(t)) is by Lemma 2.2 and
Lemma 4.1 for the case n = 1,

κ(t) ≤ |R′′(γ(t), a)|
|R′(γ(t), a)|2

≤ C3
1e
d̃ir,

since the curvature of γ(t) is zero.
If L is the length of Ra(γ(t)), then

κ(t)L ≤ |ξn(a)− ξn(b)||R′(γ(t′), a)|C3
1e
d̃ir ≤ e−r

r2
C1e

−(d̃i−1)rC3
1e
d̃ir ≤ C4

1

r2
,

which is very small if ∆ is large. Thus the curve Ra(γ(t)) is almost straight, and
therefore the length of the curve is almost the same as |R(ξn(a), a) − R(ξn(b), a)|,
so (6.7) holds.
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On the other hand, by Lemma 2.2 and the basic assumption Bn (the basic
assumption implies that r ≤ αn+ 1),

|R′(ξn(a), a)| ≥ C−1
1 e−(d̃i−1)r ≥ C−1

1 e−Kr ≥ Ce−Kαn.

By (6.1)

|R(ξn(b), a)−R(ξn(b), b)| ≤ B|a− b| ≤ Be−γ
′n|ξn(a)− ξn(b)|.

So, finally

|ξn+1(a)− ξn+1(b)| ≥ |R(ξn(a), a)−R(ξn(b), a)| − |R(ξn(b), a)−R(ξn(b), b)|

≥
(
(C0 − ε)−1|R′(ξn(a), a)| −Be−γ

′n
)
|ξn(a)− ξn(b)|

≥ C−1
0 |R′(ξn(a), a)|ξn(a)− ξn(b)|

since e−Kαn � e−γ
′n, if γ′ ≥ γ′0 > Kα, and n is large. The right inequality in (6.6)

is proved in the same way. �

The following two lemmas deal with the bound period. First, we show that
the bound period is bounded from above and below, and after that, we give an
estimate of the derivative after the bound period. Before presenting these two
lemmas, we give an estimate of the diameter of convex set K(ξn+1,l(ω), vk(ω)), if
ξn,l(ω) ⊂ Jr ⊂ U is a return, and if k is chosen such that HD-dist(ξn,l(ω), ck(ω))
is minimal. Assume that ω ∈ Pn,l, and ω ⊂ En(γ, l) ∩ Bn,l. By Lemma 2.2,
|ξn+1,l(s)− vi(s)| ≤ C1e

−rd̃i for all s ∈ ω.
In the case of an essential return in Lemma 6.2, by Lemma 2.2, we get

|ξn+1,l(a)− ξn+1,l(b)| ∼ |R′a(ξn,l(a))||ξn,l(a)− ξn,l(b)| ∼ e−rd̃i
e−r

r2
=
e−rd̃i

r2
.

Let us consider a host curve ξn,l(ω) = ξn,l(ω) ∪ L2, as in Definition 1.11 instead,
which has length e−r/r2. An easy argument very similar to that in the proof of
Lemma 6.2 shows that any two points z, w ∈ ξn,l(ω) has that

C−1|R′a(z′)||z − w| ≤ |Ra(z)−Ra(w)| ≤ C|R′a(z′)||z − w|,

where C is close to 1. This, together with Lemma 2.2, implies that the endpoints of
the curve ξn+1,l(ω) is separated from each other with at least e−d̃ir/r2. Altogether,
this means that we have the following:

SubLemma 3. Assume that ξn,l(ω) ⊂ J ir, ω ∈ Pn,l, ω ⊂ En(γ, l) ∩ Bn,l. Assume
that k is chosen such that HD-dist(ξn,l(ω), ck(ω)) is minimal. Then

(6.9) C−1 e
−rd̃i

r2
≤ diam (K(ξn+1(ω), vk(ω))) ≤ Ce−rd̃i ,

where C does not depend on δ and diam(X) stands for the diameter of the set X.

Lemma 6.3. Assume that ξn,l(ω) ⊂ Jr ⊂ U is a return and ω ∈ Pn,l, ω ⊂
En(γ, l) ∩ Bn,l, for some γ ≥ γ0. Then the bound period p = p(ω) ≤ (Kα/γ)n and

(6.10)
(d̃i − 1)r

Γ
≤ p ≤ d̃ir

γ
,
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where Γ = sup
z∈Ĉ

log |R′(z)|.

Proof. Let us consider the case of an essential return. If ξn(ω) is an inessential
return, we use the host curve ξn(ω). In that case the proof goes through in the
same way. Assume that ω = [a, b]. Set z = ξn(a), w = ξn(b) and let z0 = ξn+1(a)
and w0 = ξn+1(b). By Lemma 6.2 we have

(6.11) |z0 − w0| ≥ (1/C0)|R′(z, a)||z − w|.

By the definition of bound period, Corollary 2.5 and (6.11),

e−βj ≥ |Rja(z0)−Rja(w0)| ≥ (1/C0)|z0 − w0||(Rj)′(z0, a)|
≥ (1/C0)|(Rj)′(z0, a)||R′(z, a)||z − w|,

for j ≤ p − 1. By the definition of an essential return (or the host curve) we have
|z − w| ≥ e−r/(2r2). Since a ∈ En(γ), Lemma 2.2 and Lemma 2.4 gives

e−βj ≥ (1/C0C1)|(Rj)′(z0, a)|e−r(d̃i−1)e−r/(2r2) ≥ C0C1e
γje−rd̃i/(2r2).

Therefore,

eγje−(d̃i+(2/r) log r)r ≤ Ce−βj , for j ≤ min(p, n).

The basic assumption implies e−r+1 ≥ |z−ci(a)| ≥ e−αn, so r ≤ αn+1. This gives

j ≤ 1
γ

((d̃i + (2/r) log 2r)r − βj + logC) ≤ d̃ir + logC
γ

≤ d̃i(αn+ 1) + logC
γ

< n,

if n is sufficiently large, since γ > αd̃i. So, for sufficiently large r ≥ ∆

p ≤ (d̃i + (2/r) log 2r)r
γ + β

≤ d̃ir

γ
,

and the right hand side of (6.10) is proved.
On the other hand, at time j = p we have

(6.12) |Rp(z0, a)−Rp(w0, b)| ≥ e−βp.

for some z0, w0 ∈ K(ξn+1(ω) ∪ vi(ω)) and some a, b ∈ ω. By (1.2), Lemma 2.2 we
get

|Rp(z0, a)−Rp(w0, b)| ≤ |Rp(z0, a)−Rp(w0, a)|+ |Rp(w0, a)−Rp(w0, b)|
≤ |(Rpa)′(γ(t))||z0 − w0|+ |a− b|Bp.

By the right hand side of (6.10), which we just proved, and (6.2) we have p ≤
Kr/γ ≤ Kαn/γ ≤ σn. Since ω ∈ Sn(γ′), γ′ ≥ γ′0, we get

|a− b|Bp ≤ e−γ
′n+p logB ≤ e−n(σ logB−γ′) ≤ e−(3γ′/4)n � e−βn ≤ (1/4)e−βp.

Since the diameter of the set K(ξn+1(ω), vi(ω)) is at most Ce−rd̃i , we get |z0−w0| ≤
Ce−rd̃i . Let γ(t) = z0 + t(w0 − z0). We have

(6.13) |Rp(z0, a)−Rp(w0, b)| ≤ 2|(Rpa)′(γ(t))||z0−w0| ≤ 4C1e
Γpe−rd̃i +(1/4)e−βp,
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for some t ∈ [0, 1]. Finally, by (6.12) we have

p ≥ (d̃i − 1)r
Γ

,

since β � Γ. �

Definition 6.4 (Pseudo bound period). Assume that ξn(ω) ⊂ U ′ \ U , i.e. a pseudo
return. Then we define the pseudo bound period to be the largest integer p such
that ξn+j(ω) ⊂ Nρ, for all 0 < j ≤ p.

Lemma 6.5. Assume that ω ∈ Pn,l, ω ⊂ En(γ, l) ∩ Bn,l, for some γ ≥ γ0. If
ξn,l(ω) ⊂ U ′i \ U2

i (i.e. ξn,l(ω) is a pseudo return or a shallow return), then

|(Rp)′(ξn,l(a), a)| ≥ (|λi| − ε)p/(d̃i+1),

for all a ∈ ω, where p is its bound period, and where λi is the multiplier of the
repelling fixed point pi(a) (ε ≤ (|λi| − 1)/1000, provided δ is sufficiently small and
δ � a0). For general returns, i.e. if ξn(ω) ⊂ U , we have

|(Rp)′(ξn,l(a), a)| ≥ epγ/(d̃i+1).

Proof. First, we assume that ξn(a) ∈ U \ U2. By Lemma 6.3,

p ≤ Kr

γ
≤ K∆

γ
= C ′∆.

Now if |ω0| (or, rather a0) is sufficiently small compared to δ2, we have

|ξj(a)− ξj(0)| ≤ δ4K ,

for all j ≤ p ≤ C ′∆ and a ∈ ω0. This means that

e−βj + δ4K ≥ |ξn+j(a)− ξj(a)|+ |ξj(0)− ξj(a)| ≥ |ξn+j(a)− ξj(0)|
= |ξn+j(a)− vi|.(6.14)

Assume that z = ξn(a) ∈ J ir, i.e. |z − ci(a)| ∼ e−r. By the definition of bound
period we have

|Rp(z0, a)−Rp(w0, b)| ≥ e−βp,

for some z0, w0 ∈ K(ξn+1(ω) ∪ vi(ω)) and some a, b ∈ ω, as in Lemma 6.3. Let
γ(t) = z0 + t(w0 − z0). We can use precisely the same calculations from equation
(6.12) to equation (6.13) in Lemma 6.3. We have |z0 − w0| ≤ Ce−rd̃i , again by
(6.9). Therefore,

(3/4)e−βp ≤ |Rp(z0, a)−Rp(w0, b)| ≤ 2|(Rpa)′(γ(t))||z0 − w0|

≤ C|(Rpa)′(γ(t))|e−rd̃i ,

for some t ∈ [0, 1]. Now, using Lemma 2.4 we get

e−rd̃iDp−1 ≥ Ce−β(p−1) ≥ Ce−βp,

with Dk = |(Rk)′(Ra(z), a)|. This implies

e−r(d̃i−1) ≥ Ce−βp(d̃i−1)/d̃iD
(1−d̃i)/d̃i

p−1 .
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By the Chain Rule and Lemma 2.2,

|(Rp)′(z, a)| = |R′(z, a)|Dp−1 ≥ C−1
1 e−r(d̃i−1)Dp−1

≥ Ce−βp(d̃i−1)/d̃iD
1/d̃i

p−1 ,(6.15)

if p is sufficiently large, i.e. if ∆ is sufficiently large (see Lemma 6.3). By Lemma
6.3 we have e−βp ≤ e−βr/Γ ≤ e−β∆′/Γ ≤ ρ so ξn+p(a) ∈ Nρ, by (6.14). Thus the
bound period for shallow returns, ends before leaving the neighbourhood Nρ of the
repelling fixed points. Therefore we can use the multiplier λi to get

(6.16) |(Rp)′(z, a)| ≥ (|λi| − ε)p/(d̃i+1),

if ∆ is sufficiently large, (ε ≤ (|λi| − 1)/1000).
For pseudo returns, i.e. z = ξn(a) ∈ U ′ \ U , (so δ < |z − ci| ≤ δ′), we use the

Taylor expansion around ci;

R(z) = vi + (z − ci)di + . . . .

Assuming that |z − ci| ∼ e−r we get, for small perturbations, |Ra(z)− vi| ∼ e−dir.
By an argument similar to that of the beginning of the proof of Lemma 2.7, we get
p ≤ C∆. Thus, for small perturbations,

|Rp(z, a)−Rp(z, 0)| ≤ aBp ≤ aBC∆,

which can be made arbitrary small if a ≤ a0 is sufficiently small compared to δ.
Thus, by Lemma 2.7, with λi = R′(pi(0), 0), we get

|Rpa(Ra(z))− vi| ≤ 2|Rp0(Ra(z))− vi| ≤ 2(|λi|+ ε)pe−dir ≤ 2ρ ≤ 1,

which implies p ≤ dir/ log(|λi| + ε) ≤ dir/γ. Thus, we get the same upper bound
on p as in Lemma 6.3 and also, we can use the same estimate as in (6.16).

For general returns, if a ∈ En(γ) then (6.15) gives

|(Rp)′(z, a)| ≥ eγp/(d̃i+1).

�

In the following lemmas in this section, for every partition element ω, we roughly
prove that

|ξn+j(a)− ξn+j(b)| ∼ |(Rj)′(ξn(a), a)||ξn(a)− ξn(b)|,
for all a, b ∈ ω under the basic assumption and if the derivative has expanded
exponentially up to time n. These “inductive” lemmas will be used repeatedly in
the proof of the Main Distortion Lemma, which in turn, will give control of the
geometry, by Lemma 7.1. Let us start with the bound period:

Lemma 6.6 (Bound period). Assume that ξn,l(ω) ⊂ U and ω ∈ Pn,l, ω ⊂ En(γ, l)∩
Bn,l for some γ ≥ γ0. Then for all a, b ∈ ω

C ′−1
0 |(Rj)′(ξn,l(a), a)||ξn,l(a)− ξn,l(b)| ≤ |ξn+j,l(a)− ξn+j,l(b)|

(6.17)

≤ C ′0|(Rj)′(ξn,l(a), a)||ξn,l(a)− ξn,l(b)|,

for j ≤ p.
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Proof. The condition ω ∈ Pn implies by definition that (1.8) is fulfilled. By Sub-
lemma 2 we have ω ∈ Sn(γ′) for some γ′ ≥ γ′0. We have

|ξn+j(a)− ξn+j(b)| ≥ |Rj(ξn(a), a)−Rj(ξn(b), a)|
− |Rj(ξn(b), a)−Rj(ξn(b), b)|.

By Corollary 2.5,

|Rj(ξn+1(a), a)−Rj(ξn+1(b), a)| ≥ C−1
0 |(Rj)′(ξn+1(a), a)||ξn+1(a)− ξn+1(b)|.

Lemma 6.2, Lemma 2.2 and the basic assumption implies

|ξn+1(a)− ξn+1(b)| ≥ C−1
0 |R′(ξn(a), a)||ξn(a)− ξn(b)|

≥ Ce−(K−1)αn|ξn(a)− ξn(b)| ≥ e−Kαneγ
′n|a− b|

= e(γ
′−Kα)n|a− b|.

So, ω ∈ Sn+1(γ′1), where γ′1 = γ′ −Kα. This implies

|Rj(ξn+1(b), a)−Rj(ξn+1(b), b)| ≤ Bje−γ
′
1(n+1)|ξn+1(a)− ξn+1(b)|.

Therefore, we get

|ξn+j(a)− ξn+j(b)| ≥
[
C−1

0 |(Rj−1)′(ξn+1(a), a)| − e(j−1) logB−γ′(n+1)

]
(6.18)

· |ξn+1(a)− ξn+1(b)|.

The second term in (6.18) is less than ε when j ≤ σ(n+ 1), where σ is as in (6.2).
By Lemma 6.3,

p ≤ d̃ir

γ
≤ Kαn

γ
≤ Kαn

γ0
≤ σ(n+ 1),

by (6.2). Since, by Lemma 2.4, |(Rj−1)′(ξn+1(a), a)| ≥ C−1
0 eγ(j−1), which is much

greater than ε, we get

|ξn+j(a)− ξn+j(b)| ≥ C ′−1
0 |(Rj)′(ξn(a), a)||ξn(a)− ξn(b)|.

The other inequality is proved analogously. �

The following lemma show that points ξn(a) and ξn(b) repel each other during
the free period. During the free period, we have a uniform expansion from Lemma
3.8. So, assume that Rja(z) /∈ U for 0 ≤ j ≤ n0. For sufficiently large time periods
n0 we have

|(Rn0
a )′(z)| ≥ Cλn0 inf

0≤j≤n0
|R′a(Rja(z))| ≥ Cλn0e−∆K ≥ e(log λ−ε/2)n0 ,

where ε = (γ0−1)/1000. The condition Sn(γ′) enables us to go forward σn iterates
with insignificant parameter dependence. Therefore, we may choose the pertur-
bation a0 sufficiently small so as to fulfil σN ≥ n0, (see (6.3). This expansion is
much larger than the parameter dependence ε in (6.3), and we will get the endpoint
stretch condition satisfied at time (1 + σ)n, (a ∈ S(1+σ)n(γ′)). We can go on in the
same manner and until a return occurs.
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Lemma 6.7 (Free period). Assume that ω ∈ Pνj ,l, ω ⊂ Eνj (γ, l)∩Bνj ,l, for γ ≥ γ0

and |ξk,l(a)−ξk,l(b)| ≤ S for all a, b ∈ ω and all k such that νj+pj ≤ k ≤ m ≤ νj+1.
Take any i with νj + pj ≤ i ≤ m. If ξk,l(ω) ∩ U = ∅, for all νj + pj ≤ k ≤ m then

|ξm,l(a)− ξm,l(b)| ≥ (7/8)t|(Rm−i)′(ξi,l(a), a)||ξi,l(a)− ξi,l(b)|

for all a, b ∈ ω, where t ≤ log(m−i)/ log(1+σ) and σ is as in (6.2). If ξk,l(ω)∩U =
∅, for νj + pj ≤ k ≤ m ≤ νj+1 and ξm,l(ω) ⊂ P cδ′ , then

|ξm,l(a)− ξm,l(b)| ≥ Cσe
(99/100)(log λ)(m−i)|ξi,l(a)− ξi,l(b)|,

for all a, b ∈ ω.

Proof. Part I. The case i = νj + pj. We first show that ω ∈ Sνj+pj
(γ′1), for some

slightly smaller γ′1 > 0 instead of γ′ = (1/k)γ− ε. By Sublemma 2, Lemma 6.5 and
Lemma 6.6 we get

|ξνj+pj (a)− ξνj+pj (b)| ≥ C ′−1
0 |(Rpj

a )′(ξνj (a))||ξνj (a)− ξνj (b)|

≥ C ′−1
0 eγpj/(K+1)|ξνj

(a)− ξνj
(b)|

≥ C ′−1
0 eγpj/(K+1)eγ

′νj |a− b| ≥ eγ
′
1(νj+pj)|a− b|,

for some γ′1 ≤ γ′. Indeed, since p ≤ Kανj/γ, we have, eg. γ′1 ≥ γ′ − Kα ≥
γ′0−Kα ≥ γ′. We want to use the fact that the parameter dependence is neglectable
as long as n− i ≤ σi as in Lemma 6.6, where σ is as in (6.2). Indeed,

|Rn−ia (ξi(b), a)−Rn−ia (ξi(b), b)| ≤ |a− b|Bn−i ≤ ε.

For m ≤ νj+1, Lemma 4.3 implies

|Rm−ia (ξi(a))−Rm−ia (ξi(b))| ≥ (15/16)|(Rm−ia )′(ξi(a))||ξi(a)− ξi(b)|.

There are two cases. First, assume that m−i ≤ σi. We estimate |(Rm−ia )′(ξi(a))|
by Lemma 3.8;

|(Rm−ia )′(ξi(a))| ≥ Cλm−i inf
i≤j≤m

|R′a(ξj(a))|.

So, since ξj(a) ∩ U = ∅ for all i ≤ j ≤ m,

|R′a(ξj(a))| ≥ e−∆K ≥ 1010ε,

we get

|ξm(a)− ξm(b)| ≥ |Rm−i(ξi(a), a)−Rm−i(ξi(b), a)|
− |Rm−i(ξi(b), a)−Rm−i(ξi(b), b)|

≥ ((15/16)|(Rm−ia )′(ξi(a))| − e(m−i) logB−γ′1i)|ξi(a)− ξi(b)|
≥ (7/8)|(Rm−ia )′(ξi(a))||ξi(a)− ξi(b)|.

If ξm(ω) ⊂ P cδ′ then we estimate |(Rm−ia )′(ξi(a))| with the Outside Expansion
Lemma;

|(Rm−ia )′(ξi(a))| ≥ Cσλ
m−i ≥ Cσ ≥ 1000ε.

Thus,
|ξm(a)− ξm(b)| ≥ (7/8)Cσλm−i|ξi(a)− ξi(b)|.
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On the other hand, if m − i > σi then let n be such that n − i = σi. Now we
estimate |(Rn−ia )′(ξi(a))| with Lemma 3.8;

|(Rn−ia )′(ξi(a))| ≥ Cλn−i inf
i≤j≤n

|R′a(ξj(a))|

≥ Ce(n−i) log λ−∆K ≥ e(n−i)(log λ−ε/2),

if n − i = σi is sufficiently large, i.e. if i ≥ N for sufficiently large N , (ε = (γ0 −
1)/1000). Since σ is chosen such that the parameter dependence e(n−i) logB−γ′1i ≤ ε,
we get by the initial endpoint-stretch condition (5.10)

|ξn(a)− ξn(b)| ≥ |Rn−i(ξn(a), a)−Rn−i(ξn(b), a)|(6.19)

− |Rn−i(ξn(b), a)−Rn−i(ξn(b), b)|

≥ ((15/16)|(Rn−ia )′(ξi(a))| − e(n−i) logB−γ′1i)|ξi(a)− ξi(b)|
≥ (7/8)|(Rn−ia )′(ξi(a))||ξi(a)− ξi(b)|

≥ (7/8)e(n−i)(log λ−ε/2)eγ
′
1i|a− b|

≥ e(n−i)(log λ−ε)+iγ
′
1 |a− b| ≥ enγ

′
1 |a− b|,

since γ′1 ≤ log λ−ε (see after Definition 6.1). So the endpoint-stretch condition (6.1)
holds also at time n, i.e. ω ∈ Sn(γ′1). Repeating this argument gives a sequence of
times nk, with n0 = i, and exponents γ′k ≥ γ′1 such that

|ξnt(a)− ξnt(b)| ≥
t−1∏
k=0

((15/16)|(Rjka )′(ξnk
(a))| − ejk logB−γ′knk)|ξn0(a)− ξn0(b)|,

where jk = nk+1 − nk = σnk,. Thus, (recall n0 = i),

|ξnt
(a)− ξnt

(b)| ≥ (7/8)t
t−1∏
k=0

|(Rjka )′(ξnk
(a))||ξn0(a)− ξn0(b)|

= (7/8)t|(Rnl−n0
a )′(ξn0(a))||ξn0(a)− ξn0(b)|.

In the case ξm(ω) ⊂ P cδ′ , by the Outside Expansion Lemma we get

|ξm(a)− ξm(b)| ≥ (7/8)t|(Rm−i)′(ξi(a), a)||ξi(a)− ξi(b)|
≥ (7/8)tCσλm−i|ξn0(a)− ξn0(b)|

≥ Cσe
((99/100) log λ)(m−i)|ξi(a)− ξi(b)|.

Part II. The case νj + pj ≤ i ≤ νj+1. We only have to show that ω ∈ Si(γ′′1 ),
for some γ′′1 ≥ γ′0 − 2Kα ≥ γ′.

We have just proved that

|ξi(a)− ξi(b)| ≥ (7/8)t|(Ri−νj−pj
a )′(ξνj+pj

(a))||ξνj+pj
(a)− ξνj+pj

(b)|,

where t ≤ log(i− pj − νj)/ log(1 + σ). To estimate |(Ri−νj−pj
a )′(ξνj+pj

(a))| we use
Lemma 3.8;

|(Ri−νj−pj
a )′(ξνj+pj

(a))| ≥ Cλi−νj−pj inf
νj+pj≤j≤i−νj−pj

|R′a(ξj(a))|.(6.20)
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We have that e−K∆ ≥ e−Nα as in (6.3), and therefore

|R′a(ξj(a))| ≥ e−K∆ ≥ e−j(K−1)α ≥ e−j(K−1)α,

since j ≥ N . Thus,

|ξi(a)− ξi(b)| ≥ (7/8)t|(Ri−νj−pj
a )′(ξνj+pj (a))||ξνj+pj (a)− ξνj+pj (b)|

≥ Ce(i−νj−pj)(log λ)−i(K−1)αeγ
′
1(νj+pj)|a− b|

≥ e(γ
′
1−Kα)i|a− b| = eγ

′′
1 i|a− b|,

where γ′′1 = γ′1−Kα ≥ γ′0−2Kα ≥ γ′. Hence the lemma is proved also for arbitrary
i ≤ νj+1. �

Finally, using the three Lemmas 6.2, 6.6 and 6.7, let us prove that a curve ξν(ω)
has indeed expanded between two consecutive returns.

Lemma 6.8. Assume that ξνj ,l(ω) ⊂ J ir, ω ∈ Pνj ,l, ω ⊂ Eνj (γ, l) ∩ Bνj ,l, where
γ ≥ γ0 and |ξk,l(a) − ξk,l(b)| ≤ S for all k such that νj + pj ≤ k ≤ νj+1. For the
next free return ξνj+1,l(ω) where a, b ∈ ω we have

|ξνj+1,l(a)− ξνj+1,l(b)| ≥ |ξνj ,l(a)− ξνj ,l(b)|er(1−2d̃iβ/γ)r2

≥ 2|ξνj ,l(a)− ξνj ,l(b)|.
Moreover, we have ω ∈ Sn,l(γ′), ω ⊂ An(γ, l), for all n such that νj ≤ n ≤ νj+1,
for some γ′ ≥ γ′ and γ ≥ γ.

Proof. By Sublemma 2, ω ∈ Sνj
(γ′), for some γ′ ≥ γ′0. An interval ξν(ω) in an

essential return position has length ∼ e−r/r2. Put

lνj
= |ξνj

(a)− ξνj
(b)| = k

e−r

r2
,

lνj+1 = |ξνj+1(a)− ξνj+1(b)|,
for some 0 ≤ k ≤ 1, and a, b ∈ ω, (the case k ≈ 1 means that we are considering an
essential return).

By Lemma 6.6 and Lemma 2.2

|ξνj+pj (a)− ξνj+pj (b)| ≥ kC
e−r

r2
|(Rpj

a )′(ξνj (a))|

≥ kC
e−rd̃i

r2
|(Rpj−1

a )′(ξνj+1(a))|.

By the definition of the bound period,

|Rpj−1(z0, a)−Rpj−1(w0, b)| ≥ e−βpj ,

for some z0, w0 ∈ K(ξνj+1(ω) ∪ vi(ω)) and some a, b ∈ ω. By Corollary 2.5

|Rpj−1(z0, a)−Rpj−1(w0, b)| ≤ |(Rpj−1
a )′(z0)||z0 − w0|+ |a− b|Bpj−1.

Since ω ∈ Sνj (γ
′), γ′ ≥ γ′0, by Sublemma 2, we get (with p = pj)

|a− b|Bp−1 ≤ e−γ
′n+p logB ≤ e−n(σ logB−γ′) ≤ e−(3γ′/4)n � e−βn ≤ (1/4)e−βp.

Therefore, by Lemma 2.4

(3/4)e−βp ≤ |(Rp−1
a )′(z0)||z0 − w0| ≤ |(Rp−1

a )′(ξνj+1(a))||z0 − w0|.
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Now, since the diameter of the convex set K(ξνj+1(ω) ∪ vi(ω)) is by bounded from

above by Ce−rd̃i (see (6.9)), we get |z0 − w0| ≤ Ce−rd̃i . Thus,

|ξνj+pj
(a)− ξνj+pj

(b)| ≥ kC
e−rd̃i

r2
|(Rpj−1

a )′(ξνj+1(a))|

≥ kC(3/4r2)e−βpj ≥ ke−2βpj .

By Lemma 6.7 and Lemma 6.3, (with qj as the free period)

|ξνj+1(a)− ξνj+1(b)| ≥ kC
e−r

r2
|(Rpj

a )′(ξνj
(a))|Cσe(99/100)(log λ)qj

≥ kC
e−βpj

r2
≥ kC

e−d̃iβr/γ

r2
≥ ke−2d̃iβr/γ .

Therefore,
lν′ ≥ lνe

r(1−2d̃iβ/γ)r2 ≥ 2lν .

To prove the last statement of the lemma, we use Lemma 6.2, Lemma 6.6 and
Lemma 6.7 to conclude that in any situation where νj ≤ n ≤ νj+1 we have

|ξn(a)− ξn(b)| ≥ C(7/8)t|(Rn−νj
a )′(ξνj

(a))||ξνj
(a)− ξνj

(b)|,

where t ≤ log(n − νj + pj)/ log(1 + σ) if n ≥ νj + pj and t = 0 if n < νj + pj .
Since ω ∈ Pνj and ω ⊂ Eνj (γ) ∩ Bνj we have, by Sublemma 2 that Sνj (γ

′) for
some γ′ ≥ γ′0. The basic assumption on ω and the condition ω ∈ Eνj

(γ), implies
ω ⊂ En(γ −Kα). Indeed, by Lemma 3.8,

|(Rνj
a )′(v(a))||(Rn−νj

a )′(νj(a))| ≥ eγνjCλn−νj inf
νj≤j≤n

|R′a(ξj(a))|

≥ eγνjCλn−νje−(K−1)αj ≥ e(γ−Kα)n,

if n is large enough. Note that γ0 −Kα ≥ γ according to (1.7). Therefore,

|ξνj (a)− ξνj (b)| ≥ C(7/8)t|(Rn−νj
a )′(ξνj (a))||(Rνj

a )′(v(a))|QN (a)|ω||
≥ C(7/8)t|(Rna )′(v(a))||x′(a)||a− b|

≥ C(7/8)te(γ−Kα)n|x′(a)||a− b| ≥ eγ1n|a− b|,

where γ1 ≥ γ − 2Kα ≥ γ0 − 2Kα, if n is sufficiently large. Therefore,

|ξn(a)− ξn(b)| ≥ eγ
′n|a− b|

where γ′ ≥ γ′0 − 2Kα ≥ γ′. �

7. Strong distortion estimates and geometry

This section is devoted to two main distortion estimates. We show strong dis-
tortion estimates, i.e. not only for the absolute value, but also for the argument.
Recall Proposition 5.3, which shows that parameter derivatives and z-derivatives
are comparable. The Main Distortion Lemma presented soon, gives a strong dis-
tortion estimate on the derivatives of Rn for different parameters, i.e. the quotient
(Rn)′(v(a), a)/(Rn)′(v(b), b) is very close to 1 for all a, b ∈ ω ∈ Pn. This implies
immediately Lemma 7.1, which shows that the tangent slope of the curve ξn(a)
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varies very little. This introduces the notion of argument distortion, i.e. low dis-
tortion of the argument of (Rn)′(v(a), a) which will imply low distortion of ξ′n(t)
for t ∈ (a, b) = ω ∈ Pn.

Lemma 7.1. Assume that ω is an interval in ω0, ω ⊂ An(γ, l) ∩ B′n−1,l for some
γ ≥ γ. Moreover, assume that

(7.1)
∣∣∣∣ (Rk)′(vl(a), a)(Rk)′(vl(b), b)

− 1
∣∣∣∣ ≤ 1/200,

for all a, b ∈ ω and Nl ≤ k ≤ n. Then

(7.2)
∣∣∣∣ξ′n,l(a)ξ′n,l(b)

− 1
∣∣∣∣ ≤ 1/100,

for all a, b ∈ ω.

Proof. By Proposition 5.3 and Corollary 5.5, we have

(QNl,l(a0) + ε(a))(Rn)′(vl(a), a) = ξ′n,l(a),

where |ε(a)| ≤ |QNl,l(a0)|/500. Equation (7.1) implies∣∣∣∣ξ′n,l(a)ξ′n,l(b)
(QNl,l(a0) + ε(a))
(QNl,l(a0) + ε(b))

− 1
∣∣∣∣ ≤ 1/500,

and hence (7.2) follows. �

Equation (7.2) gives precisely the control of geometry we need. The curvature
κn(a) of the curve ξn(a) is bounded by

κn(a) ≤
|ξ′′n(a)|
|ξ′n(a)|2

.

If (7.2) is satisfied the curvature may in principle be locally large, but in average,
the curvature must be low. We have the following;

(7.3) 1/100 ≥ | log ξ′n(a)− log ξ′n(b)| =
∣∣∣∣∫ 1

0

ξ′′n(γ(t))
ξ′n(γ(t))2

ξ′n(γ(t))γ
′(t)dt

∣∣∣∣,
for all a, b ∈ ω, for any partition element ω ∈ Pn.

We are ready to prove the following important lemma.

Lemma 7.2 (Main Distortion Lemma). Assume that ω ∈ Pνs,l, ω ⊂ Eνs
(γ, l)∩Bνs,l

for γ ≥ γ0. Moreover, assume that |ξk,l(a) − ξk,l(b)| ≤ S for all a, b ∈ ω and all
νs + ps ≤ k ≤ n, where νs ≤ n ≤ νs+1. Then

(7.4)
∣∣∣∣ (Rk)′(vl(a), a)(Rk)′(vl(b), b)

− 1
∣∣∣∣ ≤ 1/200,

for Nl ≤ k ≤ n.

Proof. By Lemma 2.1 is suffices to show that

(7.5)
∑
k

|R′(ξk(a), a)−R′(ξk(b), b)|
|R′(ξk(b), b)|

≤ log(1 + 1/400).

If (7.5) holds, then the lemma will follow from equation (5.11) and the Chain Rule.
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Let us first see how the terms look like near critical points, i.e when ξm(a), ξm(b) ∈
U ′i . Assume that ξm(ω) ⊂ Jr, (r ≥ ∆′). We have |ξm(a)− c(a)| ∼ |ξm(b)− c(b)| ∼
e−r. By Lemma 6.8 it follows that

|R′(ξm(b), a)−R′(ξm(b), b)| ≤ |a− b||∂aR′(ξm(b), a′)|

≤ B′e−γ
′m|ξm(a)− ξm(b)|,

(7.6)

where B′ = max |∂aR′(z, a)|. Also, since Kα� γ′,

e−r(d̃i−2) ≥ e−αm(d̃i−2) ≥ e−(K−2)αm � e−γ
′m.

Therefore,

|R′(ξm(a), a)−R′(ξm(b), b)|
≤ |R′(ξm(a), a)−R′(ξm(b), a)|+ |R′(ξm(b), a)−R′(ξm(b), b)|
≤ 2|R′′(z, a)||ξm(a)− ξm(b)|+ |a− b||∂aR′(ξm(b), a′)|

≤ 4C1e
−r(d̃i−2)|ξm(a)− ξm(b)|,

for some z on the line segment joining ξm(a) and ξm(b). The denominator in (7.5)
is also estimated from below using Lemma 2.2 again by

|R′(ξm(b), b)| ≥ C−1
1 e−(d̃i−1)r.

For the rest of this proof, set d̃i = d. In particular, near critical points, i.e. for
ξm(a), ξm(b) ∈ U ′ we have the estimate

|R′(ξm(a), a)−R′(ξm(b), b)|
|R′(ξm(b), b)|

≤ C
|ξm(a)− ξm(b)|

e−r
.

We have |ξk(a) − c(b)| ≥ δ′ when ξk(b) /∈ U ′. Now, by Lemma 6.8 we have that
ω ⊂ Sn(γ′) for some γ′ ≥ γ. This implies that, in general, the terms in (7.5) can
be estimated by

|R′(ξk(a), a)−R′(ξk(b), b)|
|R′(ξk(b), b)|

≤ C
|ξk(a)− ξk(b)|
|ξk(a)− c(b)|

,

where C does not depend on δ. So (7.5) holds if

(7.7)
∑
k

|ξk(a)− ξk(b)|
|ξk(a)− c(b)|

≤ ε,

for some sufficiently small ε only depending on δ′.
Now we can estimate the contribution from the bound orbits. Note first that

|ξνj
(a)−ξνj

(b)| ≤ e−r/r2 and that |(Ri)′(v(a), a)| ∼ |(Ri)′(z, a)| for |z−v(a)| small
if i ≤ p(a), by Lemma 2.4. By assumption we have ω ∈ Pνj

, and ω ⊂ En(γ) where
γ ≥ γ0, for every return νj , for j ≤ s. From the definition of the bound period,
Lemma 2.2 and Lemma 6.6 we have

|ξi(a)− ξi(b)| ≤ C0C1|(Ri−νj )′(ξνj
(b), b)||ξνj

(a)− ξνj
(b)|

≤ C0C1

|ξνj
(a)− ξνj

(b)|e−β(i−νj)

|ξνj
(b)− c(b)|

,
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for the nearest c(b) ∈ C(b). Moreover, if N0 > 0 is the smallest integer such that
ξνj+N0(ω) ∩ U ′ 6= ∅, then for i− νj ≥ N0

|ξi(b)− c(b)| ≥ ||ξi(b)− ξi−νj
(b)| − |ξi−νj

(b)− c(b)||

≥ e−α(i−νj) − e−β(i−νj) ≥ 1
2
e−α(i−νj).

If i− νj ≤ N0 then |ξi(b)− c(b)| ≥ δ′. So in any case
νj+pj−1∑
i=νj

|R′(ξi(a), a)−R′(ξi(b), b)|
|R′(ξi(b), b)|

≤ C

νj+pj−1∑
i=νj

|ξi(a)− ξi(b)|
|ξi(b)− c(b)|

≤ C

νj+pj−1∑
i=νj

|ξνj (a)− ξνj (b)|e−β(i−νj)

|ξνj
(b)− c(b)|e−α(i−νj)

≤ C
|ξνj

(a)− ξνj
(b)|

e−rj
,

where C = C(δ′). By Lemma 6.8,

2|ξνj (a)− ξνj (b)| ≤ |ξνj+1(a)− ξνj+1(b)|,

if δ is sufficiently small, summing over all returns νj we get

∑
j

νj+pj−1∑
i=νj

|R′(ξi(a), a)−R′(ξi(b), b)|
|R′(ξi(b), b)|

≤ C
∑
j

|ξνj
(a)− ξνj

(b)|
e−rj

≤ C
∑
r≥∆

max
j∈(r)

|ξνj
(a)− ξνj

(b)|
e−rj

≤ C
∑
r≥∆

1
r2
≤ εb,

where (r) is the j:s which have that ξνj
(ω)∩ Jr 6= ∅. Note that the constant εp can

be made arbitrarily small if δ is small. So the contribution to the sum (7.5) from
the bound periods only depends on δ.

To estimate the contribution from the free periods, assume that νj are the return
times for the parameters a and b for νj ≤ n = νl (the return times for a and b are
equal; νj(a) = νj(b) since a, b ∈ Pn). According to Lemma 6.7 we can estimate the
sum of |ξi(a) − ξi(b)| for νj + pj ≤ i ≤ νj+1 − 1 until a return occurs by the last
term times a constant:

νj+1−1∑
i=νj+pj

|ξi(a)− ξi(b)| ≤ C|ξνj+1−1(a)− ξνj+1−1(b)|.

We have |ξi(a)− ci(a)| ≥ δ for all critical points ci and for i = νj +pj , . . . , νj+1−1.
Again, by Lemma 6.8, 2|ξνj

(a) − ξνj
(b)| ≤ |ξνj+1(a) − ξνj+1(b)|, if δ is sufficiently

small, summing over all returns νj we get

s∑
j=0

νj+1−1∑
i=νj+pj

|ξi(a)− ξi(b)|
|ξi(b)− c(b)|

≤ C
|ξνl−1(a)− ξνl−1(b)|

δ
≤ εf ,
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where C does not depend on δ. Here εf is sufficiently small, if C2 is large enough,
since |ξj(a)− ξj(b)| ≤ S = δ/C2, for all j ≤ νl.

The lemma is proved for νj ≤ n ≤ νj+1 + pj+1. We have to deal with the case
when νj + pj < n < νj+1, for some j. For νj + pj < i < n, Lemma 6.7 gives

|ξn(a)− ξn(b)| ≥ Cσe
(99/100)(log λ)(n−i)|ξi(a)− ξi(b)|

as long as |ξn(a) − ξn(b)| ≤ S and if ξn([a, b]) ⊂ P cδ′ . Assume that νj was the last
return time. The contribution of the iterates after νj + pj is thus

n∑
i=νj+pj

|R′(ξi(a), a)−R′(ξi(b), b)|
|R′(ξi(b), b)|

≤
n∑

i=νj+pj

C|ξi(a)− ξi(b)|
δ

≤ C
|ξn(a)− ξn(b)|

δ
≤ C

S

δ
≤ εs,

where again εs is sufficiently small if C2 is chosen appropriately.
Finally, we have to show that if ξn(ω) ⊂ Pδ′ , then we still have strong distortion

estimates. However, in this case, the distortion cannot be estimated by the last
term in (7.7), since a contraction for a pseudo return depends on δ. Assume that
ñ ≥ νj + pj is the last pseudo return time, so ξñ(ω) ⊂ U ′ \ U . By Lemma 6.7 we
have

|ξn(a)− ξn(b)| ≥ (7/8)t|(Rn−ñ−1
a )′(ξñ+1(a))||ξñ+1(a)− ξñ+1(b)|

≥ (7/8)t(µ− ε)n−ñ−1|ξñ+1(a)− ξñ+1(b)|
where t ≤ log(n − ñ − 1)/ log(1 + σ) and µ is the minimal multiplier |R′(p(a), a)|
over all a ∈ [0, a0] and ε ≤ (µ− 1)/1000. It follows immediately that

n∑
j=ñ

|R′(ξj(a))−R′(ξj(b))|
|R′(ξj(b), b)|

=
|ξñ(a)− ξñ(b)|
|ξñ(b)− c(b)|

+
n∑

j=ñ+1

|R′(ξj(a))−R′(ξj(b))|
|R′(ξj(b), b)|

≤ S/δ + C
|ξn(a)− ξn(b)|

µ
≤ C

S

δ
≤ εpseudo,

which is small if C2 is chosen appropriately.
Choosing C2 such that εb+εf +εs+εpseudo is sufficiently small then (7.5) holds,

hence (7.4) holds, and the proof is finished. �

We end the geometry part of this thesis with the following important proposition:

Proposition 7.3. Assume that ω ∈ Pn,l and ω ⊂ En(γ, l) ∩ Bn,l for some γ ≥ γ0,
then ω ∈ Gk,l for all Nl ≤ k ≤ n. Moreover, if ω ∈ Pνs+1−1,l, ω ⊂ Eνs(γ, l) ∩ Bνs,l,
then ω ∈ Gνs+1,l.

Proof. The first statement follows directly from the Main Distortion Lemma and
Lemma 7.1. If ω ⊂ Bνs,l then ω ⊂ B′n,l for all n < νs+1, since e−ανs ≤ δ, by (6.3).
Also, Lemma 6.8 implies that ω ⊂ Aνs+1(γ, l) for some γ ≥ γ. Again, Lemma 7.1
and the Main Distortion Lemma implies ω ∈ Gνs+1 . �

So we have indeed control of the geometry whenever a partition element interval
ω has that |(Rna )′(vl(a))| grows exponentially for all a ∈ ω. Also, the second
statement ensures that given a “good” partition element ω ⊂ En(γ, l) for some
γ ≥ γ0, where n is a return time, we can ensure that the curve is straight at
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the next return, so we can indeed make partitions. This is a crucial fact about
the geometry in the whole thesis and we show in the following sections that the
measure of the set of parameters belonging to En(γ, l) has positive measure, where
γ = (1− τ) log λ.

8. Large deviations

We prove that the set ∩nFn has positive measure following [3], where the large
deviation method is developed, and [13], where an exposition can be found. Having
control of the geometry, the use of the large deviation argument will be very similar
to [4]. The main idea is that we start from a partition element ω ⊂ En(γ, l, ∗)∩Bn,l,∗
at time n, so that we may use the binding information of all other critical points
up to time 2n. In the time interval (n, 2n) we first delete those parameters not
satisfying the basic assumption (Proposition 8.2). Next, we delete those parameters
not satisfying the free assumption, and give an estimate of the measure of the set
deleted (Proposition 8.11). For the remaining parameters the exponent γ is restored
(Proposition 9.1).

Let us first estimate the measure of those parameters not satisfying the basic
assumption:

Lemma 8.1. Assume that ξν,l(ω) ⊂ Jr is an essential return and ω ∈ Pν,l, ω ⊂
Eν(γ, l) ∩ Bν,l, for some γ ≥ γ0. Let ν′ be the next return time. Let ω′ ⊂ ω be the
parameters not satisfying Bν′ . Then

|ω′|
|ω|

≤ e−(α/2)ν .

Proof. In view of Proposition 7.3, the tangent slope of ξn(t), for ν ≤ n ≤ ν′, is
under sufficient control until the next return time ν′. If ln is the length of the curve
ξn(ω), by Lemma 6.8

lν′(ω) ≥ e−2Kβr/γ ≥ e−2Kβαν/γ ,

if the length of ξn(ω) never exceeded S between the return times ν and ν′. By
strong argument distortion, the fraction which fails to fulfil the basic assumption
at each return, is equivalent to

m({a ∈ ω : |ξν′(a)− c(a)| ≥ e−αn})
m(ω)

≤ C
e−αν

′

e−2Kβαν/γ

≤ Ce−αν(1−(2Kβ/γ)) ≤ e−(α/2)ν .

If the length of ξn(ω) has reached size S for some ν ≤ n ≤ ν′, it means that ω
is partitioned into smaller elements ωj so that ∪ωj = ω. On each element ωj ,
we have that the fraction which fails to fulfil the basic assumption is less than
e−αν

′
/S ≤ Ce−αν . So in any case, (8.1) holds. �

In fact, by the uniform distortion of the a-derivative, repeating the Lemma 8.1
for every return we will get that the set satisfying Bn for all n can be estimated by

m

(⋂
n

Bn
)
≥ |ω0|

∏
n

(1− e−(α/2)n) > 0.
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Proposition 8.2. Assume that ω ∈ Pn,l, ω ⊂ En(γ, l, ∗) ∩ Bn,l,∗. Put ω = {a ∈
ω : a ⊂ B′2n,l}. Then ω ⊂ E2n(γ0, l) and the Lebesgue measure of m(ω) of the set ω
satisfies m(ω) ≥ m(ω)(1− Ce−(α/2)n).

Proof. We shall inductively construct the set ω, deleting those parameters from ω,
not satisfying the basic assumption at every return. Lemma 8.1 implies that the
measure of the set deleted between two consecutive return times ν and ν′ is less
than e−(α/2)ν , if the former return was essential. For inessential returns in (n, 2n),
the basic assumption is automatically fulfilled. To see this, we may consider the last
essential return ξν(ω) into, say Jr. By Lemma 6.8, the interval ξν′(ω) has length
at least twice the length of ξν(ω). Thus, since the return ν′ is inessential it means
that ξν′(ω) ⊂ Jr′ , where r′ ≤ r, which directly implies that ω ⊂ B′ν′ .

By the fact that ω ⊂ En(γ, i, ∗) ∩ Bn,i,∗, we can use the binding information
of all other critical points for all returns in the time interval (n, 2n). Also, since
p ≤ Kαn/γ � 1, the same exponent γ can be used during the bound periods.
Indeed, if p is the bound period following ν ∈ (n, 2n) and q the free period, we get
by Lemma 6.5 and the Outside Expansion Lemma

|(Rν
′−ν
a )′(ξν(a))| ≥ epγ/(K+1)Cσλ

q ≥ epγ(2K).

whenever a ∈ ω1 for some partition element ω1 ⊂ ω such that ω1 ⊂ B′ν,i ∩ Eν(γ, i),
for some γ ≥ γ0. We have consecutive free returns νj(a), where j ∈ (n, 2n), and
assume for simplicity that n = ν0. Inductively, using Lemma 6.5, removing the
parameters which do not satisfy the basic assumption, we get

|(Rνj
a )′(v(a))| =

j−1∏
k=0

|(Rνk+1−νk
a )′(νk(a))||(Rna )′(v(a))| ≥ eγn = eγjνj ,

where γj ≥ γ(νj/n) ≥ γ0. In general,

|(Rka)′(v(a), a)| ≥ e(γj−Kα)k,

for all k ≤ νj , by the basic assumption. So, indeed, at every return we have, for
any partition element ωj , that ωj ⊂ B′νj

∩ Aνj (γ, i), for some γ ≥ γ0. By the
assumption on ω, this implies that ωj ⊂ B′νj

∩ Eνj (γ, i). According to Proposition
7.3, the geometry is under good control, and we can go on to the next return until
time 2n. It follows that ω ⊂ E2n(γ0, i). �

Remark 8.3. Proposition 8.2 immediately implies that the partition elements in the
set ω satisfies ω ∈ G2n,l, i.e. we have good geometry control.

Thus, we can delete parameters not satisfying the basic assumption in the time
interval (n, 2n) and still have control of the geometry. We will now use the large
deviation argument to show that the set of parameters ω∩E2n(γ, l) is only a slightly
smaller set.

We define the notion of escape, which briefly means that a curve segment ξn(ω)
has reached the length S = δ/C2. The number C2 does not depend on δ, so we
may choose δ such that S/eΓ ≥ δ/∆2 � δ2, where eΓ = max |R′(z, a)|.

Definition 8.4 (Escape). We say that the curve ξn,l(ω) has escaped, or equivalently,
ω is in escape position if ξn,l(ω) has length at least S/eΓ = δ/(eΓC2).
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The notion of escape is already introduced in [4], and the above definition is an
analogue of that in [4]. The following lemma shows that the escape time is bounded
from above in proportion to the “depth” of the return.

Lemma 8.5. Assume ξν,l(ω) is an essential return and ω ∈ Pν,l, ω ⊂ Eν′(γ, l) ∩
Bν′,l, for γ ≥ γ0, where ν′ is the next essential return time after ν or the time when
ξν′,l(ω) has escaped, whichever comes first. Let q be the time spent on the first free
period and the following inessential returns until the next essential return or until
escape occurs. Then

q ≤ 3Kr
γ

≤ hr,

where h = 4K
γ0

.

Proof. The length of ξn(ω) must by definition not exceed S/eΓ, because then it
escapes. Assume first that no returns takes place at all after time ν. Since ω ⊂
Eν′(γ) ∩ Bν′ for γ ≥ γ0, Proposition 7.3 implies that the geometry is under full
control during the time period (ν, ν′) considered. By Lemma 6.6, Lemma 6.7 and
Lemma 3.8 implies

S ≥ e−r

2r2
|(Rp0a )′(ξν(a))|(7/8)t|(Rq0a )′(ξν+p0(a))| ≥ Ce−2βp0eq0(log λ)e−∆(K−1),

(8.1)

where p0 + q0 = µ and t ≤ log q0/ log(1 + σ). Thus (8.1) implies

logC − 2βp0 + (99/100)q0 log λ ≤ (K − 1)∆.

Since p0 ≤ d̃ir/γ ≤ Kr/γ we get

q0 ≤
4Kβr
γ log λ

+
(K − 1)∆

log λ
≤ 2Kr

γ
,

since β < 4 log λ, γ ≤ log λ and r ≥ ∆. Lemma 6.8, together with the strong
argument distortion, shows that the length lmj

of an inessential return ξmj
(ω)

enlarges by a factor at least e(1−2Kβ/γ)rj . Thus the length L after all inessential
returns satisfies

e−2βKr/γ
∏
j

erj(1−2Kβ/γ)+qj log λ ≤ L ≤ S

where qj are the corresponding free periods. This implies

∑
j

rj(1− 2Kβ/γ) + qj log λ ≤ 2Kβr
γ

.
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Assume that the number of inessential returns is s. The total time spent on inessen-
tial returns and its bound and free periods becomes

q =
s∑
j=0

pj + qj = p0 + q0 +
s∑
j=1

(pj + qj) ≤
Kr

γ
+

2Kr
γ

+
K

γ

s∑
j=1

(rj + γqj)

≤ 3Kr
γ

+
K

γ(1− 2Kβ/γ)

s∑
j=1

rj(1− 2Kβ/γ) + qj log λ

≤ 3Kr
γ

+
4K2βr

γ2
≤ 4Kr

γ
.

We used that β ≤ γ/(4K), which follows from (1.7), and γ ≤ log λ. �

If ξn(ω) is an escape situation then it will return with a length at least ∼ S. By
Proposition 7.3 and since δ2 � S, when the curve ξn(ω) has returned into U2, it
has very low argument distortion, i.e. it is almost straight, compared to δ2.

Now, let us return to the set ω ∈ Pn,l, ω ⊂ En(γ, l, ∗)∩Bn,l,∗ and put ω1 = {a ∈
ω : a ∈ B′2n,l}. The measure of parameters not satisfying the basic assumption
which are deleted every return, is exponentially small in terms of the return time
(Lemma 8.1). Therefore, the portion of a partition element ω ⊂ ω1 which has
consecutive essential returns to Jri−1 and Jri

in the time interval (n, 2n), is

(8.2) C
e−ri

e−2d̃i−1βri−1/γ
,

by Lemma 6.8, if no escape has taken place between the two returns. This is the
core of the geometry; that we can estimate the portion as in (8.2).

More generally, the subset ωs ⊂ ω that has a specific history, i.e. specific essential
returns to Jr1 , Jr2 , . . . , Jrs

, starting at Jr0 can be written

m(ωs)
m(ω)

:= ϕs ≤ Cs
s∏
i=1

e−ri

e−2d̃i−1βri−1/γ
,

where m(E) is the Lebesgue measure of E.
Assume ξn(ω)∩U 6= ∅. Then a part P1 of ξn(ω) lies inside U and the other part

P2 lies outside U . We now make the following convention. If P2 is smaller than
δ/(2∆2) then we just adjoin P2 to P1. Otherwise cut P2 off and iterate it further.
It will grow to size S, and hence escape, rapidly during the pseudo bound period
(see Definition 6.4) because(

δ

∆2

)d̃iβ/γ

= e−
d̃i∆β

γ e−
2d̃iβ log ∆

γ = e−∆(
d̃iβ

γ + 2 log ∆
∆ ) � S = e−∆/C2,

if ∆ is sufficiently large.
Fix r1+r2+. . .+rs = R for the moment. Let us calculate the number of possible

combinations of the sequence r1, r2, . . . , rs for s and R fixed, i.e. the number of
possibilities of dividing the number R into s parts ri ≥ 0. This number is the same
as the number of possibilities of putting s−1 balls in R+ s−1 boxes, with at most
one ball in each. If we, for a start, neglect the fact that every curve returned into Jr
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is divided into r2 smaller sets for each essential return, the number of combinations
is thus (

R+ s− 1
s− 1

)
.

Using Stirling’s formula for large R and that R ≥ s∆ ≥ ∆ we get

1√
2π

(R+ s− 1)R+s−1e−R−s+1

RRe−R(s− 1)s−1e−s

√
R+ s− 1
R(s− 1)

≤ C
RR+ R

∆
(
1 + 1

∆

)(1+ 1
∆ )R

RR
(
R
∆

)R/∆
≤

(
C1/R∆1/∆(1 +

1
∆

)1+
1
∆

)R
≤ 2(1 + η(∆))R,

if ∆ is large enough, where η(∆) → 0 as ∆ →∞. Since the critical set is finite the
total number of combinations of the returns νi(a) is estimated by

C(1 + η(∆))R
s∏
i=1

r2i ≤ Ce
1
16R(1 + η(∆))R.

Definition 8.6. Let ωn,l(a) ∈ Pn,l be the set of parameters laying in the same
partition element as a, for the first n iterates.

Definition 8.7 (Escape time). If ξν,l(ων,l(a)) is an essential return into U2 then de-
fine El(a, ν) = {inf k > 0 : ων+k,l(a) is in escape position and k ≥ p(a)}. El(a, ν)
is called the escape time.

According to Lemma 8.5, if the number of essential returns is s before escape
takes place, then the escape time is

E(a, ν) = El(a, ν) ≤
s∑
i=0

hri = hR+ hr0

if ν is a return time into Jr0 .
For R =

∑s
i=1 ri let As,R be the set of parameters a ∈ ω, which have a specific

starting return ν(a) into Jr and after that have s essential returns without escaping
until the (s+ 1):st return. By the above calculations we have at most (1 + η(∆))R

possibilities, i.e. the interval ω is at most divided into (1 + η(∆))R intervals. Let
ω̂s be the largest one. We can rewrite the fraction ϕs as

(8.3) ϕs ≤ Cse−
7
8

∑s
i=1 ri+2d̃i−1βr0/γ = Cse−

7
8R+2d̃0βr0/γ .

The fraction |ωs| of |ω| not escaping after s essential returns starting at r0 with
R =

∑s
i=1 ri is thus estimated by

(8.4) |As,R| ≤ |ω̂s|(1 + η(∆))ReR/16.

We want to make an estimate of the escape time for a given return ν0 into Jr0 .
Assume that E(a, ν0) = t. Then t ≤ hR + hr0, so R ≥ t

h − r0, where h = 4K/γ0.
Summing over all possible combinations of sequences ri satisfying R ≥ t

h − r0 we
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get from (8.3) and (8.4)

m({a ∈ ω : E(a, ν0) = t}) =
∑

R≥ t
h−r0,

s≤R/∆

|As,R| ≤
∑

R≥ t
h−r0,

s≤R/∆

|ω̂s|(1 + η(∆))ReR/16

≤ |ω|
∞∑

R= t
h−r0

R/∆∑
s=1

(1 + η(∆))ReR/16Cse−
7
8R+2d̃0βr0/γ

≤ |ω|
∞∑

R= t
h−r0

CR/∆ − 1
C − 1

eR(− 3
4+η(∆))+2d̃0βr0/γ

≤ Ce(
t
h−r0)(η(∆)− 3

4 )+2d̃0βr0/γ ≤ Ce−
3t
4h +( 3

4+
2d̃0β

γ )r0 .

Since 2d̃0β/γ is small we get with t ≥ 2hr0 an estimate for large escape times;

(8.5) m({a ∈ ω : E(a, ν0) = t}) ≤ Ce−
t

3h .

We have 2hr0 = 6Kr0/γ ≤ 6Kr0/γ0 ≤ 6Kαν0/γ0. Since ι = 6Kα/γ0 is small we
get that so the estimate (8.5) holds for t ∈ (ν0(1 + ι), 2n), assuming that n ≤ ν0 ≤
2n.

Assume νi(a) ∈ U2 are deep returns for i = 1, . . . , s. Their corresponding escape
times are E(a, νi). We want to estimate the sum of all escape times in time intervals
of the type (n, 2n). Define

Tn(a) = Tn,l(a) =
s(a)−1∑
i=0

El(a, νi(a)),

where s(a) = s is the largest integer such that n ≤ ν0(a) < ν1(a) < . . . < νs−1(a) ≤
2n, where νk(a) are essential deep returns after escape has occurred. We assume
that all s escape periods have ended before time 2n, so by definition E(νs−1, a) ≤
n− νs−1.

Remark 8.8 (Blind escapes). If there is a deep return νs(a) ≤ n, which does not
escape until after 2n, then we delete those parameters if E(a, νs) > ιn. According
to (8.5), those parameters correspond to an exponentially small fraction of the
interval ωνs(a). If E(a, νs) ≤ ιn, (ι = 6Kα/γ0) then this escape time will normally
not be counted in the sum Tn(a). However, we simply disregard from these “blind
escapes”. It will make very little difference at the end, by the fact that we may
choose τ ≥ 100ι, see (1.7).

We will estimate
1
ω

∫
ω

eθTn(a)da,

for some suitable θ. Choose θ = 1/(6h), (remember h = 4K/γ0). Then θ > τ , (see
(1.7)). The shallow returns into U \ U2 are treated in the usual manner but we do
not speak of escape times from such situations. We do this since shallow returns
do not deteriorate the expansion of the derivative (see Lemma 6.5). If ωn(a) is in
escape position then the escape time stops and the free escape orbit begins until
it returns to U2 again. Since the escape time is larger than the bound period by
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definition, the sum of all free escape orbits in the time interval (n, 2n) is at least
n−Tn(a). If we let M be the first return time for a given critical orbit ξM,i(ω), let
m ∈ N be such that 2mM = n. Then

(8.6) F2n,l(a) ≥
m∑
k=0

2kM − T2kM,l(a).

Note that, by definition Tn,l(a) is constant on each component of Pn,l.

Lemma 8.9. Let ω ∈ Pn,l, ω ⊂ En(γ, l, ∗) ∩ Bn,l,∗. Put ω′ = {a ∈ ω : a ∈ B′2n,l}.
Moreover, assume that ω ∈ Pν,l for some ω ⊂ ω′, and some n ≤ ν ≤ 2n, where
ξν,l(ω) is an essential deep return into J ir. Then∫

{a∈ω:2hr≤El(a,ν)≤n−ν}
eθEl(a,ν)da ≤ Ce−r/3|ω|,

∫
{a∈ω:El(a,ν)≤2hr}

eθEl(a,ν)da ≤ Cer/3|ω|.

Proof. By (8.5)∫
{a∈ω:2hr≤E(a,ν)≤n−ν}

eθE(a,ν)da ≤
∑
t≥2hr

Ce−
t

3h eθt|ω| ≤ C ′e−t(
1
3h−θ)|ω|

= C ′e−tθ|ω| ≤ C ′e−r/3|ω|,

since θ = 1/6h. The last integral follows directly. �

Lemma 8.10. Let ω ∈ Pn,l, ω ⊂ En(γ, l, ∗) ∩ Bn,l,∗. Put ω = {a ∈ ω : a ∈ B′2n,l}.
Then ∫

ω

eθTn,l(a)da ≤ eτ
2n|ω|.

Proof. Let s = s(a) be the largest integer such that νs(a) < 2n and let ω0 be the
subset of ω such that every a ∈ ω0 has escaped precisely s times, for some fixed s.
For every parameter a ∈ ω0, ωs ⊂ . . . ⊂ ω1 ⊂ ω0 is a nested sequence of parameters
following a for s consecutive deep essential returns after escape situations. So
ξνk

(ωνk
(a)) are essential deep returns after escape situations.

Since Tn(a) =
∑s
i=0E(a, νi) and E(a, νi) is constant on ωi−1 but not on ωi we

get ∫
ωs

eθTn(a)da = eθ
∑s−2

i=0 E(a,νi)

∫
ωs−1

eθE(a,νs−1)da.

The set ωs−1 is a union of sets ωs−1,r where ξνs−1(ω
s−1,r) ⊂ Jr, i.e

ωs−1 =
∞⋃

r=2∆

ωs−1,r.
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In the following equations we use that ξνs−1(ωνs−1(a)) has length O(δ) ∼ S (since
it has escaped before the deep free return). So by Lemma 8.9∫
ωs−1

eθE(a,νs−1)da ≤ |ωs−1|+
∞∑

r=2∆

∫
ωs−1,r

eθE(a,νs−1)da

= |ωs−1|+
∞∑

r=2∆

[∫
{a∈ωs−1,r:2hr≤E(a,νs−1)≤n−νs−1}

eθE(a,νs−1)da

+
∫
{a∈ωs−1,r:E(a,νs−1)≤2hr}

eθE(a,νs−1)da

]
≤ |ωs−1|+ C

∞∑
r=2∆

(e−r/3 + er/3)|ωs−1,r|

≤ |ωs−1|+ C
∞∑

r=2∆

(e−r/3 + er/3)
e−r

δ
|ωs−1|

= |ωs−1|(1 + Ce−∆/3)) = |ωs−1|(1 + η(∆)),

where η(∆) → 0 as ∆ →∞.
To calculate the integral over ωs−2 instead we note first that the set ωs−2 is also

a union of ωs−2,r, i.e.

ωs−2 =
∞⋃

r=2∆

ωs−2,r.

For each r the set ωs−2,r is again a union of sets of the type ωs−1 on which E(a, νs−2)
is constant. Hence,

∫
ωs−2,r

eθ(E(a,νs−1)+E(a,νs−2))da =
∑

ωs−1⊂ωs−2,r

eθE(a,νs−2)

∫
ωs−2,r∩ωs−1

eθE(a,νs−1)da

≤
∑

ωs−1⊂ωs−2,r

eθE(a,νs−2)(1 + η(∆))|ωs−1|

= (1 + η(∆))
∫
ωs−2,r

eθE(a,νs−2)da.

Thus, ∫
ωs−2

eθ(E(a,νs−1)+E(a,νs−2))da =
∞∑

r=2∆

∫
ωs−2,r

eθ(E(a,νs−1)+E(a,νs−2))da

= (1 + η(∆))
∞∑

r=2∆

∫
ωs−2,r

eθE(a,νs−2)da

= (1 + η(∆))
∫
ωs−2

eθE(a,νs−2)da

≤ (1 + η(∆))2|ωs−2|.
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Repeating this argument s times we get finally∫
ω0
eθTn(a)da ≤ (1 + η(∆))s|ω0| ≤ eτ

2n|ω0|,

for some suitable τ > 0 with θ > τ if ∆ is sufficiently large. We used also that
s < n. Since this is valid for all such sets ω0, the lemma follows. �

We can now show that the set of parameters in ∩nFn, has positive Lebesgue
measure.

Proposition 8.11. Assume that ω ∈ Pn,l, ω ⊂ En(γ, l, ∗) ∩ Bn,l,∗. Put ω = {a ∈
ω : a ∈ B′2n,l}. Then

m({a ∈ ω : Tn,l(a) > τn}) ≤ e−τ(θ−τ)n|ω|.

Proof. We have

eθτnm({a ∈ ω : Tn(a) > τn}) ≤
∫
{a∈ω:Tn(a)≥τn}

eθTn(a)da

≤
∫
ω

eθTn(a)da ≤ eτ
2n|ω|,

by Lemma 8.10. So

m({a ∈ ω : Tn(a) > τn}) ≤ e−θτneτ
2n|ω| = e−τ(θ−τ)n|ω|.

�

9. Conclusion and proof of Theorem B

The following proposition follows an analogue in [13]. Roughly one can say that
once the basic and free assumption holds, then the original exponent γ is restored.

Proposition 9.1. Assume that ω ∈ P2n,l and ω ⊂ En(γ, l, ∗)∩Bn,l,∗. If, in addition
ω ⊂ B′2n,l ∩ F2n,l, then ω ⊂ E2n(γ, l) ∩ B2n,l, i.e.

|(Rka)′(vl(a))| ≥ e(γ−Kα)k,

for all k ≤ 2n.

Proof. Fix any a ∈ ω. First we estimate |(Rpa)′(z)| for z = ξj(a) ∈ Jr for some
j ≤ 2n. Since p ≤ 2Kαn/γ ≤ α0n < n, Lemma 6.5 gives

|(Rpa)′(z)| > eγp/(K+1).

For simplicity put m = 2n. Now, let pi be the bound periods, µi as the free deep
periods and νi as the free deep return times, where ν0 = 0 and ν1 = M , the first
return time. The Outside Expansion Lemma, Lemma 6.5 and the Chain Rule gives

|(Rma )′(v(a))| = |(Rm−νs
a )′(ξνs

(a))|
s−1∏
i=0

|(Rνi+1−νi
a )′(ξνi

(a))|

≥ |(Rm−νs
a )′(ξνs

(a))|Cs
s−1∏
i=0

epiγ/(K+1)eµi log λ.
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If m − νs > ps then |(Rm−νs
a )′(ξνs(a))| ≥ epsγ/(K+1)|(Rm−νs−ps

a )′(z)|. The basic
assumption implies |R′a(ξm(a))| ≥ C−1

1 |ξm(a)− c(a)|d−1 ≥ e−(K−1)αm. Lemma 3.8
implies

|(Rm−νs
a )′(ξνs

(a))| ≥ Cepsγ/(K+1)e(m−νs−ps) log λe−(K−1)αm.

If m− νs ≤ ps instead then

|(Rm−νs
a )′(ξνs

(a))| ≥ e−(K−1)αm.

So in any case

|(Rma )′(v(a))| ≥ Cseγ
∑

i pi/(K+1)elog λ
∑

i µie−(K−1)αm

= Cseγ(m−Fm(a))/(K+1)eFm(a) log λe−(K−1)αm.

We have pi ≥ C ′∆ (see Lemma 6.3) so m− Fm(a) ≥ sC ′∆ and therefore

Cseγ(m−Fm(a))/(K+1) ≥ es logC+γs∆/(K+1) ≥ 1

if ∆ is large enough. Thus, if a ∈ F2n

|(Rma )′(v(a))| ≥ eFm(a) log λe−(K−1)αm

≥ em((1−τ) log λ−(K−1)α) ≥ eγm,

where γ = (1− τ) log λ−Kα. �

Proof of Theorem B. We will use induction over time intervals of the type (n, 2n).
To start the induction, choose the first return as in Subsection 5.1, which gives

a starting interval ω0, where |ω0| � δ, and such that tangent slope distortion is
very low. Therefore, ω0 ⊂ EM (γ, l) for all l and γ ≥ γ = (1 − τ) log λ, where
ξM,l(ω) ⊂ J∆−1 for some partition element ω ∈ PM,l. Also, λ here is the minimum
of the expansion in Lemma 3.6 and all µ1/di

i , where µi = sup
a∈[0,a0]

|R′(pi(a), a)|, and

pi(a) are the repelling fixed points. Thus we can use binding information until time
M/α0 is reached for all critical orbits ξn,l(a), a ∈ ω0.

We now give an inductive method of how to handle finitely many critical points.
We use the ideas described in [2]. Assume that we have constructed sets Ωk =
En(γ, k) ∩ Bn,k of Lebesgue measure |ω0|(1 − Ce−n), for all k and for some n,
such that m(∩kΩk) ≥ 1/2. Before continuing the orbit of cl(a), we have to delete
parameters in Ωl, so that we can use binding information of the other critical points
up to time 2n. Consider the set

Eα0n,k = Aα0n(γ, k) \A2α0n(γ, k)

for k 6= l which is a union of finitely many intervals which are deleted during the
time interval (α0n, 2α0n). We shall show that intervals in the sets Eα0n,k are very
much larger than the partition elements in Pn,l. Indeed, if lα0k is the length of the
curve ξα0j,k(ω1), (the orbit of some critical point ck(a)) and n ≤ j ≤ 2n, where
ω1 ∈ Pα0j,k, ω1 ⊂ Aα0n(γ, k), k 6= l. Then by Proposition 5.3

lα0j(ω1) ∼ |ω1||(Rα0j
a )′(vk(a))| ≤ |ω1|eΓα0j
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Assume now that this ω1 is deleted, i.e. ω1 ⊂ Eα0n,k. We delete only parameter
intervals which covers some whole partition element fully. This means that

lα0j ≥
e−r

2r2
≥ e−2αα0n,

if ω1 ∈ Bα0n. Thus, the size of the partition elements of Eα0n,k can be estimated
by

|ω1| ≥ Ce−2αα0n−Γα0n = Ce−α0n(2α+Γ).

On the other hand, to estimate the size of the partition elements Pn,l of En(γ, l),
we use Proposition 5.3 to get

S ≥ ln(ω2) ∼ |ω2||(Rna )′(vl(a))| ≥ |ω2|eγn,

for some ω2 ⊂ En(γ, l), ω2 ∈ Pn,l. So

|ω1|
|ω2|

≥ Cen(γ−α0(2α+Γ)) � 1,

since γ > α0(2α + Γ), (follows from (1.7)). Thus intervals in the sets Eα0n,k are
very much larger than the partition elements Pn,l. Therefore the partition Pn,l
will not be damaged, we will only delete whole elements which intersect Eα0n,k for
some k 6= l. In particular, if Eα0n,k only partly covers some partition element in
Pn,l then delete the whole partition element. Thus we delete a little more than
necessary, but this fraction is very little by the fact that |ω1| � |ω2|. This ensures
that the new set

En(γ, l, ∗) ∩ Bn,l,∗
consists of whole partition elements in Pn,l for which we can use binding information
of all critical points up to time 2n. With Ω = ∩Ωk, note that(

(En(γ, l) ∩ Bn,l) \ (En(γ, l, ∗) ∩ Bn,l,∗)
)
∩ Ω = ∅.

Now, in view of (8.6), by Proposition 8.2 and Proposition 8.11 we get

m
(
(F2n,l ∩ B2n,l) ∩ (En(γ, l, ∗) ∩ Bn,l,∗)

)
≥ m(En(γ, l, ∗) ∩ Bn,l,∗)(1− e−τ(θ−τ)n)(1− Ce−(α/2)n).

Proposition 9.1 gives

m(E2n(γ, l)) ≥ m(En(γ, l, ∗))(1− e−C4n) > 0,

for some C4 > 0, for every l. Thus, if Ñ is the number of critical points, the measure
of the set deleted from Ω is at most

Ñe−C4n.

Applying the above procedure to every time interval (n, 2n) we get

m

( Ñ⋂
l=1

∞⋂
n=0

An(γ, l)
)
≥ |ω0|

∏
n

(1− Ñe−C4n) > 0.

The proof of Theorem B is finished. �
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[35] Ernst Schröder. Über iterierte Funktionen. Math. Ann., 3:296–322, 1871.

[36] Carl L. Siegel. Iteration of analytic functions. Ann. of Math. (2), 43:607–612, 1942.
[37] Qiudong Wang and Lai-Sang Young. Strange attractors with one direction of instability.

Comm. Math. Phys., 218(1):1–97, 2001.
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