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Our main interest is using a computer to rigorously study ε-pseudo orbits for
polynomial diffeomorphisms of C2. Periodic ε-pseudo orbits form the ε-chain re-
current set, Rε. The intersection ∩ε>0Rε is the chain recurrent set, R. This set is
of fundamental importance in dynamical systems.

Due to the theoretical and practical difficulties involved in the study of C2,
computers will presumably play a role in such efforts. Our aim is to use computers
not only for inspiration, but to perform rigorous mathematical proofs.

In this dissertation, we develop a computer program, called Hypatia, which
locates Rε, sorts points into components according to their ε-dynamics, and inves-
tigates the property of hyperbolicity on Rε. The output is either “yes”, in which
case the computation proves hyperbolicity, or “not for this ε”, in which case infor-
mation is provided on numerical or dynamical obstructions.

A diffeomorphism f is hyperbolic on a set X if for each x there is a splitting of
the tangent bundle of x into an unstable and a stable direction, with the unstable
(stable) direction expanded by f (f−1). A diffeomorphism is hyperbolic if it is
hyperbolic on its chain recurrent set.

Hyperbolicity is an interesting property for several reasons. Hyperbolic diffeo-
morphisms exhibit shadowing on R, i.e., ε-pseudo orbits are δ-close to true orbits.
Thus they can be understood using combinatorial models. Shadowing also implies
structural stablity, i.e., in a neighborhood in parameter space the behavior is con-
stant. These properties make hyperbolic diffeomorphisms amenable to computer
investigation via ε-pseudo orbits.

We first discuss Hypatia for polynomial maps of C. We then extend to polyno-
mial diffeomorphisms of C2. In particular, we examine the class of Hénon diffeo-
morphisms, given by

Ha,c : (x, y) → (x2 + c− ay, x).

This is a large class of diffeomorphisms which provide a good starting point for
understanding polynomial diffeomorphisms of C2. However, basic questions about
the complex Hénon family remain unanswered.

In this work, we describe some Hénon diffeomorphisms for which Hypatia ver-
ifies hyperbolicity, and the obstructions found in testing hyperbolicity of other
examples.
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Chapter 1
Introduction and Background

We give relevant background on dynamical systems and the dynamics of polyno-
mial maps of C and polynomial diffeomorphisms of C2 in Sections 1.1, 1.2, and 1.3.
In Section 1.4, we give an overview of the remainder of the dissertation.

1.1 The Hénon family

Thirty years ago, Hénon [37, 38] initiated the study of the diffeomorphism Ha,c of
R2, defined by

Ha,c(x, y) = (x2 + c− ay, x)

because it exhibits the qualitative behavior of a certain Poincaré section of the
Lorenz differential equation. Since then, Ha,c has been widely studied as a dif-
feomorphism of R2 with a, c real parameters. About fifteen years ago, John H.
Hubbard began the study and promotion of Ha,c as a holomorphic diffeomorphism
of C2, allowing a, c to be complex. There are several motivations for studying the
complex Hénon family, which bring mathematicians with different backgrounds
into this field.

The complex Hénon family generalizes the quadratic family, Pc : C → C, de-
fined by Pc(z) = z2 + c. Many questions have been answered about the dynamics
of polynomial maps of C, and often an understanding of that area aids in at least
an intuitive understanding of the complex Hénon family. Hubbard and colleagues
tend utilize this approach ([43, 44, 42]). In this dissertation, we often describe Pc

behavior before describing Hénon family behavior, in order to explain the motiva-
tions and results from a simpler viewpoint.

On the other hand, the real dynamics are contained in the complex dynamics,
so we may learn about the real system of interest while utilizing the tools of
complex analysis. John Smillie, whose background is smooth dynamical systems
on Rn, and Eric Bedford, coming from classical several complex variables, have
made progress doing this ([3]), and have developed many fundamental tools for
the complex theory ([4, 5, 6, 7, 2, 8, 9, 10, 11]).

Other members of the field of several complex variables have become inter-
ested in the Hénon family. Nessim Sibony and Eric Bedford initiated the use of
pluripotential theory as a tool for studying the Hénon family, which was further
developed by Sibony and John Erik Fornaess in [23]. Another direction in complex
dynamics in several variables is the study of holomorphic self maps of CPn, which
has been largely developed by Hubbard and Papadopol ([45]) and Fornaess and
Sibony ([34, 33, 32, 30, 31, 28, 29, 27, 26, 25, 24]).

Hénon diffeomorphisms are fundamental to the dynamical study of polynomial
diffeomorphisms of C2. Polynomial diffeomorphisms of C2 necessarily have polyno-
mial inverses, thus are often called polynomial automorphisms. Friedland and Mil-
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nor ([35]) showed that polynomial automorphisms of C2 break down into two cat-
egories. Elementary automorphisms have simple dynamics, and are polynomially
conjugate to a diffeomorphism of the form (x, y) → (ax+b, cy+p(x)) (p polynomial,
a, c 6= 0). Nonelementary automorphisms are all conjugate to finite compositions
of generalized Hénon mappings, which are of the form f(x, y) = (p(x) − ay, x),
where p(x) is a monic polynomial of degree d > 1 and a 6= 0. A generalized Hénon
mapping f has inverse f−1(x, y) = (y, (p(y)− x)/a), and derivative[

p′(x) −a
1 0

]
,

with det(Df) = a.
To clarify the situation, one can define a dynamical degree of a polynomial

automorphism of C2. If deg(f) is the maximum of the degrees of the coordinate
functions, the dynamical degree is

d = d(f) = lim
n→∞

(deg(fn))1/n.

This degree is a conjugacy invariant. Elementary automorphisms have dynamical
degree d = 1. A nonelementary automorphism is conjugate to some automorphism
whose polynomial degree is equal to its dynamical degree. In this dissertation, we
restrict our attention to automorphisms f which are nonelementary. Without
loss of generality, we assume such f are finite compositions of generalized Hénon
mappings, rather than simply conjugate to mappings of this form.

Thus, the quadratic, complex Hénon family Ha,c(x, y) = (x2 + c − ay, x) rep-
resents the dynamical behavior of the simplest class of nonelementary polynomial
automorphisms; those of dynamical degree two. Most of the ideas in this disser-
tation are extremely general, but we shall often concentrate on the illustrative
examples Pc(x) = x2 + c and Ha,c(x, y) = (x2 + c− ay, x).

For more background in dynamics in one complex variable, see Milnor’s text-
book, [50]. For further reading on real dynamical systems, Katok and Hasselblatt
provide a comprehensive guide in [47], while Shub in [61] provides a good source
for classical theory. A basic textbook for analysis in several complex variables is
Hörmander’s, [40]. A recent survey of one and two dimensional complex dynamics
is given in Morosawa, et al, [53]. 1

1.2 Invariant sets of interest

The chain recurrent set, R, the nonwandering set, Ω, and the Julia set, J , are all
attempts at locating the points with dynamically interesting behavior. We define
these sets and describe their relationship.

1This dissertation was typeset with LATEX2ε. We recommend the recent [36]
for a comprehensive guide to typesetting mathematics with LATEX2ε.
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Figure 1.1: ε-recurrence

Definition 1.2.1. For a differentiable function f , the orbit of a point x0 under
f is the sequence of images x0, f(x0), f

2(x0), . . . under repeated application, or
iteration, of the function.

The chain recurrent set R

Chain recurrence is a useful notion for studying points which are recurrent, as well
as points which are approximately recurrent. For more information on using chain
recurrence in dynamics, consult [60].

Definition 1.2.2. An ε-chain of length n > 1 from p to q is a sequence of points
{p = x1, . . . , xn = q} such that |f(xk)− xk+1| < ε for 1 ≤ i ≤ n− 1.

Definition 1.2.3. A point p belongs to the ε-chain recurrent set, Rε, of a function f
if there is an ε-chain from p to p (Figure 1.1). Then the chain recurrent set is
R = ∩ε>0Rε.

Note the following facts about the chain recurrent set:

• For any ε, R ⊂ Rε.

• R is closed and invariant.

• If ε1 < ε2, then Rε1 ⊂ Rε2 .

We can decompose R into components which do not interact with one another.

Definition 1.2.4. A point q is in the forward chain limit set of a point p, R(p), if
for all ε > 0, for all n ≥ 1, there is an ε-chain from p to q of length greater than n.

Then put an equivalence relation on R by: p ∼ q if p ∈ R(q) and q ∈ R(p).
Equivalence classes are called chain transitive components.

Analogously we can define Rε(p) and ε-chain transitive components.
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Figure 1.2: Examples of Julia sets for Pc(x) = x2 + c

Definition 1.2.5. Given ε > 0, a point q is in the ε-forward chain limit set of a
point p, Rε(p), if for some n > 1, there is an ε-chain from p to q of length n.

Then put an equivalence relation on Rε by: p ∼ q if p ∈ Rε(q) and q ∈ Rε(p).
Equivalence classes are called ε-chain transitive components.

These are sets of dynamical interest which are very natural to study using a
computer.

The Julia set J

Definition 1.2.6. For a polynomial map f of C, the filled Julia set, K, is the set
of points whose orbits are bounded under f ; the Julia set, J , is the topological
boundary of K.

See Figure 1.2 for examples of Julia sets. Note that J is an invariant set for f .
To see more such pictures, download one of the many programs for drawing these
pictures, like Fractint for Windows, or FractalAsm for Macintosh (available at [1]).

Definition 1.2.7. For a polynomial diffeomorphism f , like Ha,c, there are corre-
sponding Julia sets:

• K+(K−) is the set of points whose orbits are bounded under f(f−1)
and K = K+ ∩K− is called the filled Julia set ;

• J± = ∂K± (the topological boundary)
and J = J+ ∩ J− is called the Julia set.

See Figure 1.3 for an drawing of J+ and J− for a Hénon diffeomorphism in R2.
Of course we cannot see all of a Julia set in C2, but methods for visually un-

derstanding it have been developed. Intuitively, one may try to merge Figures 1.2
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Figure 1.3: A sketch of J± ∩ R2 for a Hénon diffeomorphism

and 1.3 to imagine complexifying the curved lines of J+ and J− and inserting a
Pc-like Julia set in each of them. More precise ways of visualizing complex Hénon
Julia sets are discussed a few pages below.

Relating R, J, and Ω

Definition 1.2.8. A point p belongs to the nonwandering set, Ω, of a diffeomor-
phism f if for every neighborhood U of p, there is an n > 1 such that fn(U)
intersects U .

Theorem 1.2.9 ([6]). Let f be a polynomial diffeomorphism of C2, with d(f) > 1.
Then J ⊂ Ω ⊂ R ⊂ K and J is contained in a single chain transitive component
of R.

Theorem 1.2.10 ([6]). Let f be a polynomial diffeomorphism of C2, with d(f) >
1. Assume |detDf | < 1. Let Oj for j = 1, 2, . . . denote the sink orbits of f .

1. Ω is the union of J , all rotational domains, and all Oj.

2. R is the set of bounded orbits (in forward/backward time) not in punctured
basins, where if p is a sink, the punctured basin of p is W s(p)− p.

3. The chain transitive components are the sink orbits, Oj, and the set R−∪jOj.

Unstable manifolds and Connectivity of J

A useful strategy in the study of these two complex dimensional objects is to study
dynamically significant one complex dimensional invariant manifolds.
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Definition 1.2.11. A point p is periodic under a map f if there exists some integer
n, called the period of p, such that fn(p) = p.

Definition 1.2.12. Let f be a diffeomorphism of C2. If p is a periodic point of
period m, and the eigenvalues λ, µ of Dpf

m satisfy |λ| > 1 > |µ| (or vice-versa),
then p is a saddle periodic point. The large (small) eigenvalue is called the unstable
(stable) eigenvalue.

Definition 1.2.13. If p is a saddle periodic point for an invertible f , then the
stable manifold of p is W s(p) = {q : d(fn(q), fn(p)) → 0 as n → ∞}, and the
unstable manifold of p is W u(p) = {q : d(f−n(q), f−n(p)) → 0 as n →∞}.

Below are some basic properties of stable and unstable manifolds of saddle
periodic points for Hénon diffeomorphisms, which illustrate why they are useful.

Theorem 1.2.14. Let f be a polynomial diffeomorphism of C2, with d(f) > 1,
and p a saddle periodic point of f .

1. W u(p) (W s(p)) is biholomorphically equivalent to C, and on W u(p) (W s(p)),
f is conjugate to multiplication by the unstable (stable) eigenvalue of Dpf
([16]).

2. W u(p) = J+, and W s(p) = J− ([6]) .

3. Assume |a| ≤ 1. Then J is connected if and only if for some (equivalently,
any) periodic saddle point p, some (equivalently, each) component of W u(p)∩
(C2 −K+) is simply connected ([9]).

The last item above indicates that we can “see” the connectivity of J for a
Hénon diffeomorphism, H, simply by looking into an unstable manifold. Hubbard
has suggested a method for doing so, which we will explain below. This method has
been implemented by Karl Papadantonakis in FractalAsm ([41]). All of the com-
plex dynamics pictures in this dissertation not produced by programs of the author
were drawn using programs of Papadantonakis available at [1]. See Figure 1.4 for
an example.

To draw an unstable manifold, we need first to find a saddle periodic point.

Proposition 1.2.15 ([41]). When |a| 6= 1, except on the curve of equation
4c = (1 + a)2, the Hénon diffeomorphism H has at least one fixed point with
one expanding and one contracting eigenvalue.

Then we need to compute a linearizing coordinate γ.

Proposition 1.2.16 ([41]). Let p be a saddle fixed point of H. The unstable
manifold W u(p) has a natural parametrization γ : C → W u(p) given by

γ(z) = lim
m→∞

Hm

(
p +

z

λm
1

v1

)
,



7

Figure 1.4: A parametrized slice of K for a Hénon diffeomorphism

where λ1 is the unstable eigenvalue of DpH and v1 is the associated eigenvec-
tor. This parametrization has the property that H(γ(z)) = γ(λz), and any two
parametrizations with this property differ by scaling the argument.

Not only does γ give us a way to draw pictures of Hénon diffeomorphisms, but
this proposition suggests a way to compare these to pictures of polynomial maps
in one variable. Compute a repelling fixed point p of Pc, and its multiplier λ. A
γp : C → C which satisfies the functional equation Pc(γp(x)) = γp(λx) is called
a linearizing coordinate, and coloring a region in the z-plane based on γp(z) will
yield one dimensional pictures analogous to the unstable manifold pictures. One
can see an approximation to this kind of picture by zooming in very close to a
repelling fixed point in a standard Julia set picture for Pc.

To actually compute the unstable manifold picture, we must approximate γ by
choosing a large box T in C, (for example, of side length 100) and a value for m (say
10). The accuracy of such approximation is discussed in [41]. We then compute a
saddle fixed point p, and its unstable eigenvalue λ1 and eigenvector v1. Next, we
split the large box into pixels by putting a P × P grid on T . For each pixel Z, we
compute g(Z) = Hm(p + v1(Z/λm

1 )). We then choose a color for pixel Z based on
g(Z) ∈ C2. For example, if H100(g(Z)) < R, we may decide g(Z) ∈ K+ and color
it black. Otherwise, color according to which iterate Hn(g(Z)) first surpassed R.
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1.3 Hyperbolicity

Hyperbolicity in one complex dimension

In C, the condition of hyperbolicity reduces to expansion of tangent vectors over J .

Definition 1.3.1 ([50]). A rational map f of the Riemann sphere Ĉ is hyperbolic
if there exists a (continuous) riemannian metric µ, defined on some neighborhood
of J , such that the derivative Dzf at every point z in J satisfies

|Dzf(v)|µ > |v|µ
for every nonzero vector v in the tangent space TzĈ.

The following theorem gives two properties which characterize the condition
of hyperbolicity in one dimension. In this case, the behavior of the orbit of the
critical points of a map is the key to understanding the dynamics of the map.

Theorem 1.3.2 ([50]). A rational map of degree d ≥ 2 is hyperbolic iff every crit-
ical point with bounded orbit is contained in the basin of attraction of an attracting
periodic orbit. In fact, if f is hyperbolic then every point in the complement of J
is contained in the basin of attraction of some attracting periodic orbit.

Douady and Hubbard ([21]) developed a theory which gives a combinatorial
description of the dynamics of all hyperbolic quadratic polynomial maps. Using
results of Thurston, Hubbard and Schleicher to developed and implemented an
algorithm to find the c value for which a specified combinatorial behavior occurs
([22, 46]).

Many fundamental dynamical questions concern how the dynamics of Pc vary
with the parameter c. Douady and Hubbard ([21]) and others made substantial
progress toward understanding the parameter space for Pc. Many mathematicians
have contributed to this area of research, and many, though not all, questions have
been answered.

The Mandelbrot set is the set of all parameters c such that Jc is connected; see
Figure 1.5. In many ways, the Mandelbrot set provides a catalog of Julia sets. The
location of a c inside the Mandelbrot set reveals much more about the dynamics of
Pc than simply the fact that Jc is connected. The exterior of M consists entirely
of hyperbolic maps whose Julia sets are Cantor sets, and which are conjugate on J
to the one-sided 2-shift. These are easily understood. The cardioid and balls off of
the cardioid, and analogous components in baby Mandelbrot sets, are hyperbolic
connected components of the interior of M .

Mañé, Sad, and Sullivan ([48]) show that every connected component of the
interior of M is a region of structural stability, i.e., for any two maps, Pc1 , Pc2 ,
in such a component, there is a homeomorphism, ϕ, which conjugates them (i.e.,
Pc1 ◦ ϕ = ϕ ◦ Pc2) and which maps Jc1 to Jc2 . See Figure 1.6. Thus structural
stability is dense in the family of quadratic polynomials. It is conjectured, but in
fact remains one of a few substantial open problems in this area, that hyperbolicity
is dense in this family.
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Figure 1.5: The Mandelbrot set

Figure 1.6: Julia sets for Pc illustrating structural stability
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Hyperbolicity in a general setting

We first define hyperbolicity as a property of an invariant set, then discuss impli-
cations of a function being hyperbolic on various invariant sets.

Definition 1.3.3 ([54]). Let f be a C1 diffeomorphism of the compact manifold
M , and let Λ ⊂ M be a closed f -invariant set. Then Λ is hyperbolic for f if there
is a splitting of the tangent bundle, TxM = Es

x⊕Eu
x , for each x in Λ, which varies

continuously with x in Λ, a constant λ > 1, and a riemannian norm ‖·‖ such that:

1. f preserves the splitting, i.e., Dxf(Es
x) = Es

fx, and Dxf(Eu
x) = Eu

fx, and

2. Df(Df−1) expands on Eu(Es) uniformly, i.e., if w ∈ Eu
x then ‖Dxf(w)‖ ≥

λ ‖w‖, and if w ∈ Es
x then ‖Dxf

−1(w)‖ ≥ λ ‖w‖.

Remark. The above definition is independent of choice of norm.

Hyperbolicity can also be described using a cone field. To define a cone field,
we need a splitting TxM = E1x⊕E2x for x in Λ, and a positive real-valued function
ε(x) on M . Then define the ε(x)-sector Sε(x)(E1x, E2x) by

Sε(x)(E1x, E2x) = {(v1,v2) ∈ E1x ⊕ E2x : ‖v2‖ ≤ ε(x) ‖v1‖}.

Then Cx = Sε(x).

Theorem 1.3.4 ([54, 55]). Let f be a C1 diffeomorphism of the compact manifold
M , and let Λ ⊂ M be a closed f -invariant set. Then Λ is hyperbolic for f iff there
is a field of cones Cx in TxM for x in Λ, a constant λ > 1, and a riemannian
norm ‖·‖ such that:

1. Dxf(Cx) = Cfx, and

2. Dxf expands Cx and Dxf
−1 expands TxM −Cx, i.e., ‖Dxf(v)‖ ≥ λ ‖v‖ for

v in Cx, and ‖Dxf
−1(v)‖ ≥ λ ‖v‖ for v in TxM − Cx.

The field of cones x → Cx need not be continuous.

This cone field condition for hyperbolicity yields a natural way to study the
hyperbolic structure of a diffeomorphism using a computer.

Historically, a map is said to be hyperbolic if it is hyperbolic over its nonwan-
dering set.

Definition 1.3.5. Let f be a C1 diffeomorphism of the compact manifold M .

1. f is hyperbolic if it is hyperbolic on Ω.

2. f is Axiom A if it is hyperbolic and if periodic points are dense in Ω.

However, if we instead follow Conley ([19]) as in [60] and study maps for which
the chain recurrent set is hyperbolic, then we get Axiom A automatically.
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Definition 1.3.6. A map f : X → X is topologically transitive on an invariant set
Y if the (forward) orbit of some point p is dense in Y . This is equivalent to the
condition that given any two open sets U, V in Y , there is an N ≥ 0 such that
fN(U) ∩ V 6= ∅. A stronger condition is topologically mixing: for any pair of open
sets U, V there is an N > 0 such that fn(U) ∩ V 6= ∅ for all n > N .

Definition 1.3.7. Let Λ be a hyperbolic invariant set for a C1 diffeomorphism f
of a compact manifold M . We say Λ has local product structure if for some ε > 0,
W s

ε (p1) ∩W u
ε (p2) ⊂ Λ if p1, p2 ∈ Λ.

Theorem 1.3.8 ([60]). Let f be a C1 diffeomorphism of a compact manifold M .
If R is hyperbolic for f , then there are a finite number of (disjoint) chain transitive
components, R = R1∪· · ·∪Rm, such that each Rj is closed, invariant under f , the
periodic points are dense, and f is topologically transitive on Rj. Further, each Rj

has local product structure. Such sets are often called basic sets for f .

Hyperbolicity on an invariant set which either has local product structure or is
locally isolated gives Anosov’s shadowing lemma.

Corollary 1.3.9 ([60]). Let f be a C1 diffeomorphism of a compact manifold M .
If R is hyperbolic for f , then for γ sufficiently small there is a constant α and a
neighborhood U of R such that every (bi-infinite) α-chain in U is γ shadowed by a
(unique) point in R.

Shadowing is a very useful tool in the numerical study of diffeomorphisms, for
studying a single diffeomorphism and small perturbations of it. A related property
of hyperbolic diffeomorphisms is structural stability.

Theorem 1.3.10 ([60]). Let f be a C1 diffeomorphism of the compact manifold
M . If R is hyperbolic for f , then f is structurally stable on R, i.e., there is a neigh-
borhood N of f (in the C1 topology) such that for g ∈ N there is homeomorphism
φ which conjugates f to g (i.e., φ ◦ f = g ◦ φ) and maps R(f) onto R(g).

Shadowing and structural stability on R, plus the finite decomposition into
chain transitive components, suggest that the dynamics of a hyperbolic diffeomor-
phism can be completely described by a computer, i.e., with a finite amount of
data.

Hyperbolic polynomial diffeomorphisms of C2

In examining hyperbolic Hénon diffeomorphisms, we want characterizations which
involve the Julia set. Bedford and Smillie have shown that for hyperbolic Hénon
diffeomorphisms, there is a simple relationship among R, Ω and J .

Theorem 1.3.11 ([6]). Let f be a polynomial diffeomorphism of C2, with d(f) >
1. The following are equivalent:
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1. f is hyperbolic on its Julia set, J ;

2. f is hyperbolic on its nonwandering set, Ω;

3. f is hyperbolic on its chain recurrent set, R.

We say f is hyperbolic if any of the above three conditions hold.

Proposition 1.3.12 ([5]). Let f be a polynomial diffeomorphism of C2, with
d(f) > 1. If f is hyperbolic, then R and Ω are both equal to J union finitely many
attracting periodic orbits.

Thus for hyperbolic polynomial diffeomorphisms of C2, the chain transitive
components are J and the attracting periodic orbits, and thus the dynamical prop-
erties in Theorem 1.3.8, Corollary 1.3.9, and Theorem 1.3.10 apply to J .

In fact, we can say a bit more about J .

Theorem 1.3.13 ([5]). Let f be a polynomial diffeomorphism of C2, with d(f) >
1. If f is hyperbolic then f |J is topologically mixing.

Structural stability can also be strengthened for Hénon diffeomorphisms. Mañé,
Sad, and Sullivan ([48]) used holomorphic motions to prove structural stability
on all of C for polynomial maps of C. Buzzard and Verma ([17]) extended the
concept of holomorphic motions to two dimensions and showed that all maps in a
neighborhood of a hyperbolic polynomial diffeomorphism of C2 are conjugate via
a homeomorphism on J+ ∪ J− (not just J). See Figure 1.7 for an illustration of
structural stability on J .

The following is a partial analog to Theorem 1.3.2.

Theorem 1.3.14 ([5]). Let f be a polynomial diffeomorphism of C2, with d(f) >
1. Assume |Det(Df)| < 1. If f is hyperbolic, then the interior of K+ consists of
the basins of finitely many sink orbits, and the interior of K− is empty.

Oliva ([57]) describes a way to encode the dynamics of hyperbolic Hénon diffeo-
morphisms with connected Julia sets in a combinatorial model. However, a method
for giving a combinatorial description of all hyperbolic Hénon diffeomorphisms is
not yet known.

Previous descriptions of specific hyperbolic Hénon diffeo-
morphisms

There are two classes of Hénon diffeomorphisms proven to be hyperbolic, and both
have behavior which is essentially one dimensional.

Theorem 1.3.15 (Small perturbations of hyperbolic polynomials, [44]).
Let Pc(x) = x2 + c be a hyperbolic polynomial. There exists an A such that if
0 < |a| < A, then Ha,c is hyperbolic. In particular, Ha,c|J is topologically
conjugate to the function induced by Pc on the inverse limit lim

←
(J, Pc).
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Figure 1.7: Julia sets for Hénon diffeomorphisms illustrating structural sta-
bility
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Figure 1.8: A Hénon parameter space slice: the c-plane with a = .3. Presum-
ably, the inner dark set represents connected Ja,c’s, the slightly
larger set represents all non-Cantor Ja,c’s, and the exterior rep-
resents Cantor J ′a,cs.

Definition 1.3.16. We say f exhibits one dimensional behavior if f |J is topolog-
ically conjugate to the function induced by f on the inverse limit lim

←
(J, f).

Definition 1.3.17. A horseshoe is a diffeomorphism f such that f |J is topolog-
ically conjugate to the left shift operator on Σ2 (the symbol space of bi-infinite
sequences of 0’s and 1’s). The horseshoe locus in the Hénon parameter space, H,
is the hyperbolic component of parameter space containing the set of horseshoes.

Since the full left shift on Σ2 is the inverse limit of the one-sided left shift,
horseshoes also exhibit one dimensional behavior.

Theorem 1.3.18 (Horseshoes, [56]). If |c| is sufficiently large compared to a,
then Ha,c is a horseshoe, thus hyperbolic.

See [53] for a proof of the above theorem. Horseshoes are topologically the
same as Smale’s Horseshoe, i.e., the Julia set is a Cantor set, and the dynamics
are well-understood.

Recent computer programs FractalAsm and SaddleDrop made by Karl Pa-
padantonakis, under the direction of John Hubbard, have generated pictures of
slices of the Hénon parameter space, {a, c ∈ C} = C2, holding a or c fixed and
drawing the other plane (programs available at [1], description in [41]). These
programs draw pictures of either the connectivity locus or the non-Cantor locus.
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They have revealed fascinating levels of detail. In Figure 1.8, the inner dark set
represents {a, c : Ja,c is connected }, and the slightly larger set represents {a, c : Ja,c

is not a Cantor set }.
Pictures produced by both programs suggest the dynamical behavior of complex

Hénon diffeomorphisms can be rich and varied. The accuracy of these pictures is
an interesting topic, see [41].

Motivating examples

Next we describe some basic examples of Hénon diffeomorphisms which do not
seem to exhibit one dimensional behavior. These diffeomorphisms have not been
successfully analyzed theoretically.

Example 1.3.19 (The alternate basilica). The Hénon diffeomorphism Ha,c

with c = −1.1875, a = .15, Figure 1.9, appears to be topologically conjugate to
the diffeomorphism with c = −1.24, a = .125. Ricardo Oliva ([57]) gave evidence
that the latter diffeomorphism is hyperbolic with a period two attracting cycle,
but is not conjugate to the inverse limit of the basilica, Figure 1.10 (c = −1, a
small). This seems to be one of the simplest Hénon diffeomorphisms which does
not exhibit one dimensional behavior.

Example 1.3.20 (The 3-1 map). The Hénon map with c = −1.17, a = .3,
Figure 1.11, is an interesting example because it appears to be hyperbolic with
two attracting periodic cycles, one of period three and one of period one. This is
not a phenomenon which appears for z2 + c. This map was also analyzed in [57].
This seems to be the simplest example of a Hénon diffeomorphism with more than
one attracting periodic cycle.

Example 1.3.21 (Loops in the horseshoe locus). We are also interested in
studying the topology of the horseshoe locus, H (Definition 1.3.17). Examining
SaddleDrop ([41]) one can discover that this topology seems quite complicated.

Using SaddleDrop, one can search for such loops in H. Hubbard and Papadan-
tonakis suggest as a first example the loop in the c = −3.5 plane passing through
a = .57 (9 o’clock), a = .52+.04i (12 o’clock), a = .47 (3 o’clock), and a = .52−.04i
(6 o’clock) ([1]). The parameters c = −3.5, a = .47 define a real horseshoe, cov-
ered by Theorem 1.3.18. Figure 1.12 illustrates Ha,c, c = −3.5, a = .57. All of the
pictures for this loop will look approximately like this one. The largest change in
the pictures can be seen by zooming in on the center of the left region. Figure 1.13
shows this zoom for the four selected maps on the loop, with top to bottom or-
der: a = .57 (9 o’clock), a = .52 + .04i (12 o’clock), a = .47 (3 o’clock), and
a = .52− .04i (6 o’clock). The vertical components seen in the topmost figure will
switch places upon moving around this loop, by passing through the real line.

Hubbard conjectures that there exists a surjection from the fundamental group
of H to Aut Σ2, where Aut Σ2 is the group of Automorphisms of Σ2 (the symbol
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Figure 1.9: A parametrization of W u(p) for Ha,c, c = −1.1875, a = .15. Black
is W u(p) ∩ K+. It appears that J is connected and H has an
attracting 2-cycle, but is not conjugate to the inverse limit of the
basilica.

Figure 1.10: A parametrization of W u(p) for Ha,c, c = −1.05, a = .05. Black
is W u(p)∩K+. It appears that J is connected and H is conju-
gate to the inverse limit of the basilica.
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Figure 1.11: A parametrization of W u(p) for Ha,c, c = −1.17, a = .3. Black
is W u(p) ∩ K+. It appears that J is connected and H has
attracting cycles of periods one and three.

Figure 1.12: A parametrization of W u
p for Ha,c, c = −3.5, a = .57. Black is

W u(p) ∩K+. J appears to be a Cantor set.
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Figure 1.13: A blow-up of the left region of Figure 1.12. All have c = −3.5;
top to bottom: a = .57, .52 + .04i, .47, .52− .04i.
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space of bi-infinite sequences of 0’s and 1’s). Hubbard and Branner demonstrate
the relationship between an element of Aut Σ2 and a loop in H in [13, 14], where
they show a similar result for cubic polynomials. Further, Blanchard, Devaney,
and Keen develop a result for higher degree polynomials in [12]. SaddleDrop will
compute the automorphism up to a certain depth for an inputed loop.

In addition to these examples, experience with zooming and further refinement
suggests that the behavior is often even more complicated than it appears on a
large scale first glance. Thus we learn that while pictures produced with this
program show fascinating structures previously unimagined, they also may fail to
clearly illustrate the complete dynamical picture. We cannot trust that what we
see at one level determines the structure at a finer level. Further numerical and
theoretical tools are needed to precisely clarify the situation.

Thus we are led to the conclusion that a reasonable approach to the problem of
understanding the dynamics of specific hyperbolic Hénon diffeomorphisms would be
to develop a computer program to determine the hyperbolic structure on R.

1.4 Overview of this dissertation: Hypatia

In this dissertation, we develop a computer algorithm which can locate an ε-chain
recurrent set, Rε, sort points into ε-chain transitive components, and investigate the
hyperbolicity of polynomial maps of C, or polynomial diffeomorphisms of C2. The
program is general enough to study a wide range of functions. We call it Hypatia,
after the word “hyperbolicity” and the name of an early female mathematician.
If the output is “yes”, then the computation has created structures which prove
the diffeomorphism is hyperbolic. If the output is “not for this ε”, then it includes
information on numerical and dynamical obstructions, and the user may try to
overcome these obstacles by lowering ε and re-testing. Appendix A explains how
to control round-off error to make the computation rigorous.

In our discussion of each step of the algorithm, we make an effort to separate as
much as possible the theoretical notions involved from the actual algorithm which
is employed in Hypatia.

In Chapter 2 we develop and study a method for modeling R and the chain
transitive components. We define a graph Γ, called the box-chain recurrent graph,
where the vertices of Γ are boxes in Cn, and its edges encode the box-dynamics.
We define the box-chain recurrent set, BΓ, as the union of the box vertices of Γ,
and a box-chain transitive component as the set BΓ′ for Γ′ a connected component
of Γ. We quantify how well the box-chain recurrent set and box-chain transitive
components approximate R and the chain transitive components, with explicit
estimates for for f = Pc or Ha,c. We then explain how Hypatia finds a box-chain
recurrent graph.

To investigate hyperbolicity, we first focus on polynomial maps of C. Since the
quadratic family is familiar, studying the case of Pc helps to verify the correctness
of the algorithm and its implementation. Also, as already mentioned, Pc has many
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similarities to the Hénon family, which eases the conversion from C to C2. In
Chapter 3 we describe a procedure for verifying hyperbolicity in one dimension.
There we define and study the notion of box-expansion, describe how Hypatia checks
for box-expansion, and prove that a box-expansive polynomial map is hyperbolic.
We also give several examples of using Hypatia to verify expansion for quadratic
and cubic polynomial maps.

In Chapter 4, we extend the algorithm in order to study polynomial diffeo-
morphisms of C2. We define and study the notion of box-hyperbolicity, describe
the procedure Hypatia uses to verify box-hyperbolicity, and show a box-hyperbolic
polynomial diffeomorphism of C2 is hyperbolic. We give examples of some Hénon
diffeomorphisms for which the program proves hyperbolicity. The memory required
to prove hyperbolicity for certain interesting examples of Section 1.3 is more than
currently available. We discuss this in Sections 4.4.3 and in Chapter 5, where we
show that to some extent these memory limitations are intrinsic to the problem of
studying Rε, rather than being dependent on our particular algorithm.

The code for Hypatia is in a combination of C and C + +. The source code can
be downloaded at [1]. The computations described in this dissertation were run
on a Sun Enterprise E3500 server with 4 processors, each 400MHz UltraSPARC
(though the multiprocessor was not used) and 4 GB of RAM. When computations
became overwhelming, memory usage was the limiting factor.



Chapter 2
The box-chain recurrent set
Recall that in general, a differentiable function f is hyperbolic if R is a hyperbolic
set for f , but for a complex polynomial (map or diffeomorphism), this is equivalent
to whether J is a hyperbolic set for f . Theorem 1.2.9 gives us that even when f
is not hyperbolic, J lies in a chain transitive component of R. Thus, we need to
find a cover of R, and decompose it into its chain transitive components.

In Section 2.1, we find a large box V which is guaranteed to contain Rδ, proving
Proposition 2.1.4.

We define the box-chain recurrent graph, Γ, the box-chain recurrent set, BΓ,
and box-chain transitive components, BΓ′ , in Section 2.2. We prove Theorems 2.2.6
and 2.2.9, quantifying how well BΓ approximates R, and how well the BΓ′ approx-
imate the chain transitive components.

Finally, we describe in Section 2.3 how Hypatia constructs all of these box-chain
recurrent objects, including a discussion of ways in which this procedure can be
enhanced to more efficiently find a good box-chain recurrent set.

2.1 Trapping regions for Rδ

It is useful for computer calculations to consider vectors in R2n, rather than Cn,
and use the following alternate metric.

Definition 2.1.1. Let ‖·‖∞ be the L∞ norm on R2n, so that for a vector x =
(x1, . . . , xn) ∈ Cn,

‖x‖∞ = max{|Re(xk)| , |Im(xk)| : 1 ≤ k ≤ n}.

Let N∞(S, r) be the open r-neighborhood about the set S in the metric d∞ induced
by ‖·‖∞, e.g.,

N∞(0, r) = {x = (x1, . . . , xn) ∈ Cn : |Re(xk)| < r and |Im(xk)| < r}.

We use the simpler notation |·|∞ for dimension n = 1.

This metric is uniformly equivalent to the euclidean metric on Cn, ‖·‖e, since

1√
2n
‖x‖e ≤ ‖x‖∞ ≤ ‖x‖e .

Neighborhoods are slightly different with respect to two uniformly equivalent
norms. However, the topology generated by them is exactly the same, thus they can
practically be used interchangeably. Similarly, the ε-chain recurrent set Rε depends
on choice of metric, but in effect, this will only mildly change the constant ε. It is
clear that the chain recurrent set R is exactly the same for any metric uniformly
equivalent to euclidean.

21
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The following makes precise the idea that for polynomial diffeomorphisms of
C2, infinity in the x direction is attracting, while infinity in the y direction is
repelling for f , and vice-versa for f−1.

Lemma 2.1.2. Let f be a polynomial diffeomorphism of C2, with d(f) > 1. Then
there is an R > 1 such that for R′ > R, there is an η0 > 0 such that if |x|∞ ≥ R′

and |x|∞ ≥ |y|∞, then ‖f(x, y)‖∞ ≥ |x|∞ + η0.
If f = Ha,c, then R = 1

2
(1 + |a|∞ +

√
(1 + |a|∞)2 + 4 |c|∞) and η0 = (R′)2 −

(1 + |a|)R′ − |c|.

A version of this lemma is given in [35] (also see [62]).

Proof. Assume f is a generalized Hénon mapping, f(x, y) = (z, x) = (p(x)−ay, x),
with deg(p) > 1. Let q(r) = p(r)− (1+ |a|∞)r. Then there is an R > 0 such that q
is monotone increasing on [R,∞), with q(R) = 0. Note if r > R, then q(r) ≥ rd−r,
thus the positive root R is at least one. Let R′ > R, and set η0 = q(R′). Then
η0 > 0. Let (x, y) ∈ C satisfy |x|∞ ≥ R′ and |x|∞ ≥ |y|∞. Then

|z|∞ ≥ |p(x)|∞ − |a|∞ |y|∞ ≥ |p(x)|∞ − |a|∞ |x|∞ ≥ |x|∞ + η0.

The case of Ha,c(x, y) = (x2+c−ay, x), follows immediately from these calculations.
If f = fm ◦ · · · ◦ f1, set η0 = η0(f1) + · · ·+ η0(fm).

Definition 2.1.3. Following [5], we define the “trapping regions”, for R′ large
enough that Lemma 2.1.2 holds, by:

V = {|x|∞ ≤ R′ and |y|∞ ≤ R′};
V − = {|x|∞ > R′ and |x|∞ > |y|∞};
V + = {|y|∞ > R′ and |y|∞ > |x|∞}.

The sets V, V ± were introduced to study K, K±, and if defined using R, satisfy
K+ ⊂ V ∪ V +, K− ⊂ V ∪ V −, and K ⊂ V ([5]). Choosing R′ larger than R
allows us to trap ε-pseudo orbits as well.

Proposition 2.1.4. Let f be a polynomial diffeomorphism of C2, with d(f) > 1.
Let η0 be as in Lemma 2.1.2 and let η = η0/2. Then Rη ⊂ V.

Proof. Given Lemma 2.1.2, we have f(V −) ⊂ V − and f(V −) ∩ N∞(V, η0) = ∅.
Thus if p ∈ V −, then p is not in Rη0/2, since the images f(xk) move by at least η0

out toward the x direction, and so the xk+1 coming back in by only η0/2 makes it
impossible for xn = p.

Similarly, we can look at the chain backward for p ∈ V + to get a contradiction
to η0/2-chain recurrence.

For polynomial maps of C, Lemma 2.1.2 and Proposition 2.1.4 apply easily to
to give:
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Corollary 2.1.5. Let f be a polynomial map of C of degree d > 1. Then there
exist R′ > 1, η > 0 such that Rη ⊂ V = {|x|∞ ≤ R′}. For Pc(x) = x2 + c, R′, η are
as in Proposition 2.1.4, except take a = 0.

To get an idea of the size of R, note that R = 2 for c = 2. Since the Mandelbrot
set is contained in {x : |x| ≤ 2}, for the parameters we are likely to be examining
we will have 1 ≤ R ≤ 2. For the Hénon map, the values of R are also close to this
range.

2.2 The box-chain recurrent graph

When we say box, we mean a neighborhood in the norm ‖·‖∞. That is, if (x1, . . . xn)
and (y1, . . . , yn) are vectors in Cn defining the extreme corners of the box, then we
write the box in R2n as

[Re(x1), Re(y1)]× [Im(x1), Im(y1)]× · · · × [Re(xn), Re(yn)]× [Im(xn), Im(yn)],

where all sides are of equal length

|Re(xk)− Re(yk)| = |Im(xk)− Im(yk)| = constant, 1 ≤ k ≤ n.

Definition 2.2.1. Let V = N∞(0, R′), for some R′ > 0. We denote a collection
of boxes Bk ⊂ V , of (minimum) side length ε by Vε = {Bk : 1 ≤ k ≤ M}, and
we denote the subset of V consisting of the union of the boxes by B = B(Vε) =
∪{Bk : Bk ∈ Vε}. If B(Vε) contains a set S, we say Vε is a box cover of S.

We will often discuss one subset of Vε at a time, and since the ordering is
unimportant we will avoid double subscripts and simply use {B0, B1, . . . , B`}.

Throughout this section, let f be a complex polynomial diffeomorphism of C2

(or map of C), with d(f) > 1.

Definition 2.2.2. Let Vε be a box cover of R for f . If δ satisfies 0 < δ < ε, then
the box-chain graph of Vε, Υ = Υδ, is the directed graph with vertex set VΥ = Vε,
and edge set

EΥ = E = {Bk → Bj : Bj ∩N∞(f(Bk), δ) 6= ∅}.

Then we let BΥ = B(Vε).

From a box-chain graph we cull a box-chain recurrent graph, Γ.

Definition 2.2.3. Let Vε be a box cover of R for f , and let Υδ be the box-chain
graph for Vε. The box-chain recurrent graph, Γ = Γδ, (of Υδ) is the (maximal)
subgraph of Υδ with vertices all of the boxes which are in cycles of Υδ, and an
edge set including precisely the edges in Υδ connecting the chosen vertices. The
box-chain recurrent set is BΓ.
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Note a box-chain recurrent graph is also a box-chain graph for the boxes in its
vertex set. Thus when the distinction is unimportant, we often just say box-chain
graph.

Also note that a smaller δ yields a smaller box-chain recurrent set. However,
we need this positive factor δ to prove Corollary 2.2.5, which is important in guar-
anteeing that that box-hyperbolicity implies a standard definition of hyperbolicity.

We first need a lemma on the size of the image of the boxes.

Lemma 2.2.4. Let Vε be a box cover of R for f . Let Υδ be a box-chain graph of
Vε. Then there exists r > 0 such that for ε′ = r + ε + δ, and for any Bk ∈ V, we
have:

1. the side length of the box Hull(f(Bk)) is less than or equal to r, and

2. if Bk → Bj ∈ EΥ, then for any xk ∈ Bk and any xj ∈ Bj, ‖f(xk)− xj‖∞ <
ε′.

For f = Ha,c, we may take r = ε2 + ε(2R′ + |a|∞), where R′ is as in Proposi-
tion 2.1.4. For f = Pc, set a = 0 in the above.

Proof. The second item follows immediately from the first item, and the fact that
there is an edge from Bk to Bj precisely when Bj ∩N∞(Hull(f(Bk)), δ) 6= ∅.

We prove the first item using the linearization of f to approximate it.
We assume f is a generalized Hénon mapping, f(x, y) = (p(x)−ay, x), p monic

of degree d > 1. Let B ∈ V and (z, w) ∈ B. The linearization of f at (z, w) is

Lz

[
x

y

]
= f

[
z

w

]
+ Dzf

[
x− z

y − w

]
=

[
p(z)− aw

z

]
+

[
p′(x) −a

1 0

] [
x− z

y − w

]
=

[
p(z)− p′(z)(x− z)− ay

x

]
.

Note Lz(z, ·) = f(z, ·). Next, we compute∥∥∥∥f

[
x

y

]
− Lz

[
x

y

]∥∥∥∥
∞

=

∥∥∥∥[
p(x)− ay

x

]
−

[
p(z)− p′(z)(x− z)− ay

x

]∥∥∥∥
∞

=

∥∥∥∥[
p(x)− p(z)− p′(z)(x− z)

0

]∥∥∥∥
∞

≤
d∑

k=2

∣∣p(k)(z)
∣∣

k!
|x− z|k .

If (x, y) is also in B, then |x− z|∞ ≤ ε. Since p is a polynomial, and z ∈ V =
N∞(0, R′), there exist Tk > 0, for 2 ≤ k ≤ d, such that

d∑
k=2

∣∣p(k)(z)
∣∣

k!
|x− z|k ≤

d∑
k=2

Tkε
k.
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Now we need to bound∥∥∥∥Lz

[
x

y

]
− Lz

[
z

w

]∥∥∥∥
∞

=

∥∥∥∥[
p′(z)(x− z)− a(y − w)

x− z

]∥∥∥∥
∞

= max{|x− z|∞ , |p′(z)(x− z)− a(y − w)|∞}.

If (x, y) is in B, then we also know |x− z|∞ ≤ ε, and |y − w|∞ ≤ ε, and since p is
monic of degree d, and (z, w) ∈ V = N∞(0, R′), we have:

|p′(z)(x− z)− a(y − w)|∞ ≤
∣∣dzd−1

∣∣
∞ |x− z|∞ + |a|∞ |y − w|∞

≤ d(R′)d−1ε + |a|∞ ε.

By Proposition 2.1.4, we have R′ > 1, hence the maximum needed above is the
latter value.

Finally, we put the above pieces together to compute, for any (x, y), (z, w) in B,∥∥∥∥f

[
x

y

]
− f

[
z

w

]∥∥∥∥
∞

=

∥∥∥∥f

[
x

y

]
− Lz

[
z

w

]∥∥∥∥
∞

≤
∥∥∥∥f

[
x

y

]
− Lz

[
x

y

]∥∥∥∥
∞

+

∥∥∥∥Lz

[
x

y

]
− Lz

[
z

w

]∥∥∥∥
∞

≤
d∑

k=2

Tkε
k + ε(d(R′)d−1 + |a|∞).

Hence, for r =
∑d

k=2 Tkε
k + ε(d(R′)d−1 + |a|∞), we have that the diameter of

the set f(Bk) in the metric ‖·‖∞ is less than or equal to r, hence the side length
of Hull(f(Bk)) is less than or equal to r.

Note r = r(f, ε). If f = fm ◦ · · · ◦ f1, then r1 = r(f1, ε), r2 = r(f2, r1), . . . , rm =
r(fm, rm−1). Set r = rm.

Corollary 2.2.5. Let Vε be a box cover of R for f . Let Υδ be a box-chain graph
of Vε. If η > 0 is sufficiently small and if x ∈ N∞(Bk, η) and f(x) ∈ N∞(Bj, η),
then there is an edge from Bk to Bj in Υ, i.e., Bk → Bj ∈ EΥ.

For f = Ha,c, we need η > 0 small enough that

η <
1

2

(
−(2(R′) + |a|∞ + 1) +

√
(2(R′) + |a|∞ + 1)2 + 4δ

)
,

where R′ is as in Proposition 2.1.4. For f = Pc, set a = 0 in the above.

Proof. Again we give the proof for f(x, y) = (p(x) − ay, x), p monic of degree
d > 1. Let (x, y) ∈ N∞(Bk, η) and f(x, y) ∈ N∞(Bj, η). Let (z, w) be a point in
Bk which realizes this minimum distance (since Bk is closed), i.e.,∥∥∥∥[

x

y

]
−

[
z

w

]∥∥∥∥
∞

< η.
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Then in order to guarantee that Bk → Bj ∈ EΥ, we just need∥∥∥∥f

[
x

y

]
− f

[
z

w

]∥∥∥∥
∞

< δ − η.

But examining the proof of Lemma 2.2.4, since (z, w) ∈ Bk, we see that we have∥∥∥∥f

[
x

y

]
− f

[
z

w

]∥∥∥∥
∞
≤

d∑
k=2

Tkη
k + ε(d(R′)d−1 + |a|∞).

Thus, we just need η to satisfy

d∑
k=2

Tkη
k + η(d(R′)d−1 + |a|∞ + 1)− δ < 0.

Let q(η) =
∑d

k=2 Tkη
k + η(d(R′)d−1 + |a|∞+ 1)− δ. We simply require η to be less

than the smallest positive root. Note for Ha,c, this yields

η <
1

2

(
−(2R′ + |a|∞ + 1) +

√
(2R′ + |a|∞ + 1)2 + 4δ

)
.

If f = fm ◦ · · · f1, we may take η = min{η1, . . . , ηm}.

Finally, we are ready to show that the box-chain recurrent set BΓ is a good
cover of the chain recurrent set, in the following sense.

Theorem 2.2.6. Let Vε be a box cover of Rη for f , where η is as in Proposi-
tion 2.1.4 (or Corollary 2.1.5). Let Υδ be the box-chain graph of Vε, and let Γ
be the box-chain recurrent graph for Υδ. Then for ε′ as in Lemma 2.2.4, and
δ′ = min(δ, η), we have

Rδ′ ⊂ BΓ ⊂ Rε′ . (2.1)

Note as ε → 0, both ε′ and δ′ tend to zero.

Proof. For the first inclusion, Rδ′ ⊂ BΓ, note by choice of δ′ we have Rδ′ ⊂
V ∩BΥ = BΥ. Suppose p ∈ Rδ′ . Then there exist x1 = p, x2, . . . , xn = p such that
‖f(xk)− xk+1‖∞ < δ′ for 1 ≤ k < n. Note that xk ∈ Rδ′ , for 1 ≤ k < n. Hence
each xk ∈ V ∩BΥ = BΥ as well. Then there are boxes Bk ∈ Υ such that xk ∈ Bk

for 1 ≤ k < n. Since ‖f(xk)− xk+1‖∞ < δ′, we have f(xk) ∈ N∞(Bk+1, δ
′). Since

δ′ ≤ δ, there is an edge in Υ from Bk to Bk+1.
Hence, p is in a box B1 which lies in a cycle of Υ, B1 → B2 → · · · → Bn−1 → B1.

Thus B1 ∈ VΓ, hence p ∈ BΓ.

For the second inclusion, BΓ ⊂ Rε′ , suppose p ∈ BΓ. Thus p lies in some box
B1 which lies in a cycle B1 → B2 → · · · → Bn−1 → B1 in Υ. Recall ε is the side
length of the boxes in the cover. Let x1 = xn = p, and xk be any point in Bk

for 2 ≤ k ≤ n − 1. Then by Lemma 2.2.4, since B1 → B2 → · · ·Bn−1 → B1 is
a cycle in Υ, we have ‖f(xk)− xk+1‖∞ < ε′ for 1 ≤ k ≤ n. Hence, p is ε′-chain
recurrent.
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From this we immediately get:

Corollary 2.2.7. Let Vε be a box cover of R for f . Let Υδ be the box-chain graph
of Vε, and let Γ be the box-chain recurrent graph for Υδ. Then R ⊂ BΓ ⊂ Rε′ ,
where ε′ is as in Lemma 2.2.4.

Now we discuss how Γ gives an approximation to the chain-transitive compo-
nents.

Definition 2.2.8. Given a box-chain recurrent graph Γ, let Γ′ be a connected
component of Γ, i.e., a maximal edge-connected subgraph. We call BΓ′ a box-
chain transitive component (with respect to Γ).

Theorem 2.2.6 and the definitions of these notions give us:

Theorem 2.2.9. Let Γ be a box-recurrent graph satisfying the hypotheses of The-
orem 2.2.6.

1. Let R′δ′ be any δ′-chain transitive component. Then there is a box-chain
transitive component, BΓ′ (with respect to Γ), such that R′δ′ ⊂ BΓ′.

2. Let BΓ′ be any box-chain transitive component (with respect to Γ). Then
there is some ε′-chain transitive component, R′ε′, such that BΓ′ ⊂ R′ε′.

We get immediately:

Corollary 2.2.10. Let Γ be a box-recurrent graph satisfying the hypotheses of
Corollary 2.2.7.

1. Let R′ be any chain transitive component. Then there is a box-chain transitive
component, BΓ′ (with respect to Γ), such that R′ ⊂ BΓ′.

2. Let BΓ′ be any box-chain transitive component (with respect to Γ). Then
there is some ε′-chain transitive component, R′ε′, such that BΓ′ ⊂ R′ε′.

Finally, we can conclude:

Corollary 2.2.11. Let Γ be a box-recurrent graph satisfying the hypotheses of
Theorem 2.2.6, or Corollary 2.2.7.

Then there is a single box-chain transitive component BΓ′ (with respect to Γ)
such that J ⊂ BΓ′.

Proof. By Theorem 1.2.9, we know J is contained in a single chain transitive
component of R. By Theorem 2.2.9, or Corollary 2.2.10, each chain transitive
component is contained in a single box-chain transitive component.

Remark. Note that if Γ′ is the connected component of Γ such that J ⊂ BΓ′ , we
can say V′ = VΓ′ is a box cover of J , and Γ′ is a box-chain graph of V′.

We observe also that more than one δ′-chain transitive component can be in
a box-chain transitive component. Also, an ε′-chain component may not actually
contain any chain recurrent points, hence a box-chain transitive component may
not contain any chain recurrent points. We will see examples of such components
in Section 3.6.
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2.3 Algorithm to build a box-chain recurrent graph

Hypatia’s algorithm to build a box-chain recurrent graph satisfying Theorem 2.2.6
starts with using Proposition 2.1.4 (or Corollary 2.1.5) to compute the constant
R > 1, then we choose an R′ slightly larger than R, for example, R′ = R+0.1, and
define V (and V ±) using R′. Then we know Rη ⊂ V , for η as in Proposition 2.1.4
(or Corollary 2.1.5).

After computing R′, Hypatia divides the box V = N∞(0, R′) into a grid of
2m × · · · × 2m = (2m)2n equally sized boxes, Vε = {Bk : 0 ≤ k ≤ 2mn}, with
side length ε = R′/2m−1. Then for some δ > 0 (like δ = ε/1000), it computes the
box-chain graph Υδ for Vε. To compute the edges, Hypatia uses interval arithmetic
(described in Appendix A) to compute a box Hull(f(Bk)) which contains f(Bk).
In order to find the box-chain recurrence graph Γ, we need a method for finding
all boxes that are in cycles of Υ.

Definition 2.3.1. A strongly connected component, or s.c.c., Γ′, of a graph Υ, is
a subgraph with vertex set W such that given any two vertices v, u in W , there is
a path of edges in Υ from v to u and a path from u to v; further, W is maximal
in that if W ′ ⊃ W , then there exists a pair of vertices u, w ∈ W ′ such that there
is no path from u to w in Υ. The edges of the s.c.c. are all those in Υ between the
vertices of Γ′.

Thus, all boxes which are in cycles in Υ will be in an s.c.c. of Υ. Hence, Γ is
the union of the s.c.c.’s of Υ. Hypatia employs an algorithm described in [20] to
decompose a graph Υ into its s.c.c.’s.

Definition 2.3.1 gives us immediately that:

Lemma 2.3.2. The s.c.c.’s of a box-chain graph, Υ, are precisely the connected
components of the box-chain recurrent graph Γ (of Υ).

Thus, if Hypatia employs this basic algorithm above, then all of the (strongest)
results of the previous section apply to Hypatia’s graphs, for example, BΓ satisfies
Rδ′ ⊂ BΓ ⊂ Rε′ , for some δ′, ε′ > 0.

Before implementing the algorithm to find a box-chain recurrent set, we can
make various additions which improve the performance by getting to a small Γ
more quickly and using less memory.

Subdivision

Rather than defining a (213)2n grid on V full of very tiny boxes, we go through a
refinement process to get smaller boxes from larger ones. That is, first define a
coarse, say (23)2n, grid on V . Compute the box-chain graph for this grid on V ,
then the s.c.c.’s of it. Call this level one. Now we can ignore all the boxes which
did not make it to an s.c.c. and put a, say (22)2n, grid on just the boxes in the level
one s.c.c.’s, and then compute a new transition graph and its s.c.c.’s to form level
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2m × 2m grid

s.c.c.’s

2k × 2k refinement

s.c.c.’s

Figure 2.1: Subdivision of box cover

two. Now we have the same s.c.c. boxes as we would have had if we had just put a
(25)2n grid on V , but we have saved time and memory by eliminating some larger
boxes in level one before getting down to the desired box size. See Figure 2.1 for
an illustration of a couple of levels of grids and s.c.c.’s.

Note that Theorem 2.2.6 and 2.2.9 still apply to the box-chain recurrent graph
computed with subdivision, since at any level the collection of boxes Vε satisfies
the hypotheses required.

Not only does this subdivision method help to find a good box-chain recurrent
set composed of small boxes more efficiently, but the tree structure given by the
nested boxes is useful for quickly computing things such as which boxes intersect a
given set (like the image of another box). This allows us to store the s.c.c.’s as an
array of vertices with adjacency lists of edge information, with no need to arrange
the vertices in any particular order in the array.

Eliminating boxes with iteration: the V -check

A very useful technique to eliminate quite a bit of the work of computing the new
box-chain graph at each level is to immediately eliminate boxes whose images lie
outside of V . Note by Proposition 2.1.4 and Corollary 2.1.5 that if a box Bk has
its entire image outside of V , then none of the points in the box are in R. But
then if any iterate of Bk is all outside of V , then Bk ∩ R = ∅. We use this fact
to eliminate some boxes before creating edges from or to them. That is, given a
set of s.c.c.’s, with a new (2m)2n grid of boxes in each old box, for each new box
Bk compute (using interval arithmetic, described in Appendix A), up to say 100,



30

forward images B1
k = Hull(f(Bk)), B

2
k = Hull(f(B1

k)), etc. If any of the images Bn
k

lies entirely outside V , then the box Bk does not contain any points of R, and so
can be deleted from the grid. After each new box has been checked, compute the
edges only for the remaining boxes, and then the s.c.c.’s for that graph.

For the Hénon family, we can also take advantage of invertibility. That is, it
follows from Lemma 2.1.2 that if an image of a box under H−1 lies outside of V ,
then it is not in R. Thus we can check forward and backward images of boxes.

Since a box-chain recurrent set found in this way still contains R, we have the
slightly weaker results of Corollary 2.2.7 and 2.2.10 in this case. Note we still have
Lemma 2.2.4 and Corollary 2.2.5.

The main computational limitation of Hypatia is in memory usage. Not having
to store edges corresponding to boxes which are eliminated with the “V -check” is
a big memory gain. In many instances, this check eliminates half or even three-
fourths or more of the new boxes.

Selective subdivision

We can concentrate our efforts on the boxes which are most preventing a successful
hyperbolicity test by allowing boxes of different sizes. Since Hypatia’s hyperbolicity
test treats all the points in each box the same, it is necessary to have the behavior
in each box varying by at most a small amount. Thus, we would like to refine
down to a certain reasonable box size, then somehow select only a small fraction
of the boxes to be subdivided further.

Before even attempting to prove hyperbolicity, we need the s.c.c.’s to separate
the Julia set from the sinks. That is, we need small enough boxes so that the
box-chain transitive component containing the Julia set is separate from each of
the box-chain transitive components for the attrating periodic orbits. So, it would
be helpful to have methods for more efficiently separating J from the sinks. We
discuss this issue further in Chapter 4 and Chapter 5.

Next, in an s.c.c. covering J and not the sinks there are two fundamentally
different ways in which a box could be obstructing a hyperbolicity test. One way
is that it could be a bit too close to the attracting periodic cycle, and we would
need to subdivide it to eliminate the part which is not hyperbolic. The other kind
of box would contain “mostly” points of R, but cover a region of R in which the
behavior of the points in the box is varying widely. We have tried many ways of
detecting which of these kinds of boxes most need to be subdivided. We discuss
specific tests we used for selective subdividing when we describe the hyperbolicity
testing in Chapters 3 and 4.



Chapter 3
Hyperbolicity in one complex dimension

3.1 Introduction: box-expansion

In this chapter, we describe the algorithm for proving hyperbolicity in one complex
dimension. Recall in Definition 1.3.1, we defined hyperbolicity for a polynomial
map f : C → C as uniform expansion over a neighborhood of J with respect to
a riemannian norm. The one dimensional algorithm to test expansion of a map
could prove a useful tool for the study of expansive maps of high degree or in higher
dimensions. In addition, some of the key elements of the two dimensional algo-
rithm for diffeomorphisms can be dealt with in isolation in this simpler setting. In
particular, in two dimensions we will build an approximate unstable and an approx-
imate stable line field, and use this one dimensional algorithm to attempt to build
a metric which is contracted on the stable directions, and another metric which is
expanded on the unstable directions. These metrics will then determine the cones
that we will use to verify the cone check for hyperbolicity (Theorem 1.3.4).

Throughout this chapter, let f : C → C denote a polynomial map of degree
d > 1, with Julia set, J , let V′ = {Bk} be a box cover of J , and let Γ′ be a strongly
connected box-chain graph for V′. Note by Corollary 2.2.11 and Proposition 2.1.4,
we have the existence of such a Γ′.

Hypatia attempts to construct a piecewise constant metric (not a continuous
one) under which a differentiable map f expands by a given L on the set J .

Definition 3.1.1. Call f box-expansive (with respect to Γ′) if there exist constants
{ck} and an L > 1 such that f is expanding on Bk ∈ V′ by L, in the norm
|·|k = ck |·|. That is, if for all k, j, such that Bk → Bj is an edge in Γ′, and for all
x in Bk, and for all v in TxC, we have |Dxf(v)|j ≥ L |v|k.

If f is box-expansive with respect to some Γ′, we say Γ′ and V′ are box-
expansive. We also sometimes say f is box-expansive on V′, or simply f is box-
expansive.

It is important to remember that showing box-expansion by L = 1 may be
instructive, but it is not enough to prove hyperbolicity.

In Section 3.3, we prove Theorem 3.3.3, showing that box-expansion implies
the standard definition of expansion. Thus, if Hypatia successfully defines a metric
showing f is box-expansive by some L > 1, then f is proven hyperbolic.

We give Hypatia’s algorithm for testing box-expansion by attempting to build
metric constants, {ck}, for a given L in Section 3.2. There we also give a character-
ization of box-expansion independent of the algorithm used to set the constants,
in Theorem 3.2.4.

In Section 3.4 we discuss how to find a good L to input into Hypatia’s algorithm.
We describe methods to add to this algorithm in order to improve the metric
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in Section 3.5. We list the results of running Hypatia on several examples in
Section 3.6.

3.2 Algorithm to build a metric showing box-expansion

Step 1: Hypatia first builds a minimum spanning tree for Γ′, and sets the constants
using the edges in the tree. A connected spanning tree for the directed graph Γ′

can always be built because it is strongly connected. The spanning tree in such a
case is called an arborescence ([20]). Such a tree has a root vertex, u = B0, such
that there are paths from u to all other vertices in the graph, and each vertex has
only one incoming edge. Now set this first constant c0 to be 1, so the metric is
just euclidean on the root vertex. Then Hypatia traverses the rest of the tree and
assigns constants to each vertex which depend on the previous constant as follows.
We are trying to construct a metric which f expands by L. Thus if ck has already
been chosen, and there is an edge from Bk to Bj, we want to define cj so that the
map f is expanding by L on points of Bk which map to Bj. Thus we need that
for every z in Bk, and every v in TzM ,

cj |Dzf(v)| = cj |Dzf | |v| =
cj

ck

|Dzf | |v| ≥ L |v| .

Hence define cj = ckL/ minz∈Bk
|Dzf | .

Notation: Let λk = minz∈Bk
|Dzf | . So we have cj = ckL/λk.

Since Dzf = 2z for Pc(z) = z2 +c, the minimum multiplier λk in a box is easily
calculated.

Step 2: Now we have a metric which f expands by L, but only on the edges in
the minimum spanning tree. To build a metric expanded by f on all of Γ′, Hypatia
begins at u and starts checking edges of Γ′ not in the spanning tree. Each time an
edge is examined, the metric must be adjusted. Sometimes there is an obstruction
to this adjustment, which means it is not possible to build such a metric. The way
to adjust the metric is simple. If checking an edge from Bk to Bj, redefine

cj = max{cj, ckL/λk}.

Then f expands on the new edge. However, if cj is increased, then all the vertices
reachable from Bj may also have to be re-defined to keep the metric expanding
by L. In summary, Hypatia adds an edge to the spanning tree from v to w, then
redefines the metric constant at w, then traverses every edge reachable from w that
is either in the spanning tree or has been previously checked, re-defining metric
constants in turn. If Hypatia finds a vertex y with a constant which is already big
enough, it does not search the edges emanating from y. Thus, the only obstruction
to the re-defining is: what happens if Hypatia travels away from w and comes back
through some node x and sees v? This means every constant on the path from v to
w and back to v has been increased (because we stopped the search if it was not).
Thus the constant at v cannot be increased again (an infinite loop of increasing
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would occur). Thus, this is a dynamical obstruction. So, Hypatia can only check
if cv is already big enough compared to cx. If so, the metric is fine and Hypatia
keeps going.

Hence, if Hypatia checks all the edges of Γ′ and is successful at building a metric
with the specified properties, then f is box-expansive, and thus by Theorem 3.3.3
it is hyperbolic. If Hypatia finds an obstruction, then f still may be hyperbolic,
but either L is too large, or the boxes Bk are too large.

Appendix B contains a pseudo-code description of the complete algorithm for
building a metric to achieve box-expansion by a given L, fExpands, listed as
Algorithm B.0.1.

Now that we have explained the algorithm in detail, we consider the implica-
tions of success or failure.

Lemma 3.2.1. Let B0, . . . , Bn−1, Bn = B0 be an n-cycle of boxes in Γ′, such that
consistent metric constants {c0, . . . , cn−1, cn = c0} can be chosen to show f box-
expands by L > 1 along the cycle. Then the multiplier of any pseudo orbit in the
cycle is greater than or equal to Ln.

Proof. Let xk ∈ Bk be any points in the boxes. Then by hypothesis, we know

ck+1 |f ′(xk)| ≥ ck+1λk ≥ Lck, k ∈ {0, . . . , n− 1}.

Thus,

|f ′(x0) · · · f ′(xn−1)| ≥ L
c0

c1

L
c1

c2

· · ·L cn−1

cn = c0

.

Cross cancellation and simplifying leaves only

|f ′(x0) · · · f ′(xn−1)| ≥ Ln.

Conversely:

Definition 3.2.2. Given λk = min{|Dzf | : z ∈ Bk}, the box cycle multiplier of a
cycle of boxes B0, . . . , Bn = B0 is the product λ0 · · ·λn−1.

Proposition 3.2.3. The Hypatia algorithm either shows that f is box-expansive
by L (with respect to Γ′), or it finds an n-cycle of boxes along which the box cycle
multiplier is less than Ln.

Proof. Consider what it means for Hypatia to not be able to show expansion using
this algorithm. The only obstruction to this algorithm working is if in checking an
edge (u, v), Hypatia finds a cycle of boxes u = B0, v = B1, . . . , Bn−1, Bn = B0, such
that, holding c0 fixed, to get each edge expanded by L the metric constants must be
increased along every edge in the cycle. That is, ck+1 = Lck/λk for 0 ≤ k ≤ n− 2,
and we have the failure c0 < Lcn−1/λn−1. But then

c0 <
Lcn−1

λn−1

=
L2cn−2

λn−1λn−2

= · · · = Lnc0

λn−1λn−2 · · ·λ0

.

Hence, λn−1λn−2 · · ·λ0 < Ln.
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These results combine to give a characterization of box-expansion, independent
of any algorithm used to find the metric constants.

Theorem 3.2.4. f is box-expansive (with respect to Γ′) by L iff for every n-cycle
in the graph, the product of the multipliers along any pseudo orbit in the cycle is
at least Ln.

Proof. The forward implication is Lemma 3.2.1. We show the contrapositive of
the reverse implication. Proposition 3.2.3 shows that if f is not box-expansive,
Hypatia will not show that f is box-expansive, but rather will find an n-cycle of
boxes B0, . . . , Bn = B0 with box cycle multiplier less than Ln. Since Bk is compact,
λk is realized by some point xk. Thus the pseudo orbit {x0, . . . , xn−1, x0} will have
multiplier less than Ln.

3.3 Box-expansion implies continuous expansion

In this section, we show box-expansion implies the standard definition of expansion,
by using a partition of unity to smooth out the piecewise constant norm given by
the collection of |·|k.

Lemma 3.3.1. Let f be box-expansive by L > 1 (with respect to Γ′). Then there
exists a τ > 0 such that if Bk, Bj ∈ V′, and z ∈ B′ ∩ N∞(Bk, τ) with f(z) ∈
N∞(Bj, τ), then for any v ∈ TzC, cj |Dzf(v)| ≥ Lck |v|.

Proof. Among other requirements given below, let τ > 0 be smaller than η from
Corollary 2.2.5. Then for z satisfying the hypotheses, there is an edge from Bk to
Bj in Γ′, i.e., Bk → Bj ∈ E′.

Note since we are working in one dimension, Dxf = f ′(x), hence box-expansion
gives for x ∈ Bk, cj |f ′(x)| |v| ≥ Lck |v|, thus simply cj |f ′(x)| ≥ Lck.

Since B′ is compact, V′ is finite, and f ′(x) is continuous, there is a d ≥ 0 such
that:

1. d = min{cj |f ′(x)| − Lck : x ∈ Bk, Bk → Bj ∈ E},

2. if τ < η is sufficiently small, then for any j, |x− z| < τ implies that
cj |f ′(x)− f ′(z)| < d.

Now z is not necessarily in Bk, but z ∈ B′, so suppose z ∈ Bm and x ∈ Bm∩Bk

such that |x− z| < τ . Then cj |f ′(x)− f ′(z)| < d; further, there is an edge
Bk → Bj, hence x satisfies cj |f ′(x)| − Lck ≥ d. But then combining these two
gives cj |f ′(z)| ≥ Lck. Thus cj |Dzf(v)| ≥ Lck |v|.

Definition 3.3.2. Let f be box-expansive (with respect to Γ′). Let τ > 0 be as
given by Lemma 3.3.1. Define a partition of unity on B′ by choosing continuous
functions ρk : C → [0, 1], for each box Bk ∈ V′, such that supp(ρk) ⊂ N∞(Bk, τ)
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and
∑

k ρk(x) = 1, for any x ∈ B′. Then we can define a continuous norm, |·|ρ, on
TB′C by

|v|ρ =
∑

k

ρk(x) |v|k = |v|
∑

k

ρk(x)ck.

Now we prove Theorem 3.3.3, by showing that if f is box-expansive, then f
expands the norm |·|ρ.

Theorem 3.3.3. Suppose f is box-expansive by L > 1 (with respect to Γ′). Then
there exists a continuous norm |·|ρ on TB′C which f expands by L, i.e., for all
x ∈ B′, and all v in TxC,

|Dxf(v)|ρ ≥ L |v|ρ .

Proof. Let |·|ρ , τ be as in Definition 3.3.2.
Thus τ is small enough that if x ∈ supp(ρk), then for any j such that f(x) ∈

supp(ρj), we have cj |Dxf(v)| ≥ Lck |v| , for any v ∈ TxC.
Then if we set

cx = max{ck : x ∈ supp(ρk)}, and cf,x = min{cj : f(x) ∈ supp(ρj)},

we know cf,x |Dxf(v)| ≥ Lcx |v| , for any v ∈ TxC.
Now we need only use the fact that

∑
k ρk(x) =

∑
j ρj(f(x)) = 1 to get the

result, for:

|Dxf(v)|ρ = |Dxf(v)|
∑

j

ρj(f(x))cj ≥ |Dxf(v)| cf,x

≥ Lcx |v| ≥ L |v|
∑

k

ρk(x)ck = L |v|ρ .

Thus if Hypatia verifies that a map is box-expansive on a cover of J , then the
map is expanding on J , thus hyperbolic.

3.4 Finding a good expansion amount

One weakness of Hypatia’s metric-building algorithm is that the amount of expan-
sion to test, L, must be inputed in advance. In addition, an L more appropriate
for a particular box cover yields a metric closer to euclidean.

The method for testing hyperbolicity of a diffeomorphism of C2 is based on
the one dimensional method. There we will be defining a cone field based on two
sets of metric constants, one set for stable/contraction and the other for unsta-
ble/expansion. If the constants are small the cones may be extremely thin, and it
would be difficult for the computer to verify that the map preserves the cone field,
since it must check that a cone is mapped inside another cone.
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Thus if we can develop methods to significantly improve the metric in one di-
mension, then in two dimensions we will be more likely to verify the diffeomorphism
is hyperbolic, because the cone field will be more numerically robust.

In running Hypatia it is easy to find behavior like the following. Suppose for
some c, Hypatia can build a metric with L = 1.2, but the resulting metric constants
range between 4.3× 10−18 and 0.6. Depending on the value of c, trying something
like L = 1.5 could improve the metric constants to be in the range 0.068 to 0.55.

Why do we see this behavior? Consider the example:

Example 3.4.1. Suppose there is a path of boxes B0, . . . , Bn such that (for sim-
plicity) all minimum multipliers λk are approximately the same value λ. Then
suppose we ask Hypatia to show box-expansion by some L < λ. It defines the
metric in the boxes of this cycle so that ck+1 ≥ Lck/λ, for 0 ≤ k ≤ n − 1. Thus
we get

c1 =
c0L

λ
, c2 =

c1L

λ
=

c0L
2

λ2
, . . . , cn =

c0L
n

λn
.

But since L < λ, large n leads to Ln � λn, hence cn � c0. Thus, if we try to
show expansion by a L which is “too small”, then the metric constants plummet
to small values.

In this section we show Proposition 3.4.3, which is an alternate version of
Theorem 3.2.4 giving a theoretical characterization of the largest L for which a
map is box-expansive. However we also show this is infeasible to compute. Then
we give an efficient method for finding an approximation to the optimal L.

3.4.1 An optimal, yet impractical solution

Definition 3.4.2. If B0, . . . , Bn−1, Bn = B0 is an n-cycle of boxes, then the average
(box) cycle multiplier is (λ0 · · ·λn−1)

1/n.

A cycle in a graph is called simple if is it composed of distinct vertices.

Proposition 3.4.3. Let L be the minimum average cycle multiplier over all simple
cycles in the graph Γ′. If L > 1, then f is box-expansive on Γ′ by L, but not by
any L > L.

Proof. Suppose to the contrary that f is not box-expansive on Γ′ by L. Then by
Lemma 3.2.1, there is an n-cycle B0, . . . , Bn−1, Bn = B0 whose box multiplier is less
than Ln. But then this cycle’s average multiplier is less than L. This contradicts
minimality of L.

Further, suppose f is box-expansive by some L. Now, the cycle multiplier of the
n-cycle with the minimum average multiplier L is Ln. Then by Proposition 3.2.3,
since f box-expands by L we can conclude Ln ≥ Ln. But then L ≥ L.

Thus, if we could simply compute the average cycle multiplier for each sim-
ple cycle, and note whether it is larger than 1, we could conclude the map was
hyperbolic.
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Figure 3.1: Graph illustrating Example 3.4.5

We might posit that we could efficiently compute the minimum average cycle
multiplier by considering best paths, as we would if simply trying to compute the
smallest cycle multiplier. Unfortunately, it seems necessary to compute the average
cycle multiplier along all of the simple cycles in order to find the minimum.

Definition 3.4.4. If B0, . . . , Bn is a path in the graph Γ′, then the path multiplier
is the product λ0 · · ·λn−1, and the average path multiplier is the n-th root of the
path multiplier.

Thus we ask: If Pk,j is the path from Bk to Bj with the smallest average path
multiplier of all paths from Bk to Bj, does the cycle containing a path from Bk to
Bj with the smallest average multiplier contain the path Pk,j? If this were true,
we could use it as a shortcut to compute the minimum average cycle multiplier.
However, the “average” prevents this shortcut from working.

Example 3.4.5. Consider the graph with three vertices {0, 1, 2}, and with the four
edges {(0, 1), (1, 2), (0, 2), (2, 1)}, shown in Figure 3.1. It has two cycles: 0 → 1 →
2 → 0 and 0 → 2 → 0. Suppose the vertex multipliers are: λ0 = 0.5, λ1 = 1, λ2 = 4
(as shown).

Comparing paths from vertex 0 to vertex 2, we see λ0 = 1/2 < (λ0λ1)
1/2 =

1/
√

2. So the smallest average path multiplier is along the path 0 → 2. However,
comparing average cycle multipliers we get (λ0λ2)

1/2 =
√

2 > (λ0λ1λ2)
1/3 = 21/3.

Thus the smallest average cycle multiplier is along the cycle 0 → 1 → 2 → 0. Thus
we must compute the average cycle multiplier along every simple cycle, and not
take shortcuts with paths.

Remark. A simple combinatorial argument shows that the number of simple cycles
in a graph (even a sparse graph) is exponential in N , the number of vertices in the
graph. Example 3.4.5 suggests that an algorithm to compute the smallest average
cycle multiplier in a graph will have to compute the average cycle multiplier for
each simple cycle separately.

To suggest the difficulty of running an exponential-time algorithm, consider an
example of a sparse graph with bound on out-degree d = 5, and N = 105 vertices
(which is a size Hypatia must work with for even the most simple maps). Thus the
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graph has 5(105) ≈ 1025 cycles. Suppose the computer can perform a billion (109)
operations per second (this is reasonable for present-day computers). Then if we
could examine each cycle in just one operation, it would take: 1025

109×60×60×24×365
≈

300, 000 years!

3.4.2 An approximate, efficient solution

In order to determine a good value for L, we need a good starting guess. We have
a lower bound of 1 for L.

For a polynomial map f , the Lyapunov exponent λ measures the rate of growth
of tangent vectors to J under iteration. A description of the one-variable case is
given in [59].

Theorem 3.4.6 ([15, 49]). For a polynomial map f of C of degree d > 1, λ ≥
log d, with equality iff J is connected.

This theorem implies that for degree 2 maps with connected Julia sets, L = 2
is an upper bound.

One straightforward way to obtain good values for L in some preset number of
steps M is a basic Bisection method. Keep track of loL, the most recent working
L, and hiL, the most recent failing L. Then lower L halfway to loL when box-
expansion fails, and raise it halfway to hiL when it succeeds. Start with loL = 1
and hiL = 2. shows that L = 2 is the upper bound for expansion on the unstable
directions).

The bisection process is described in detail in pseudo-code in Appendix B, as
Algorithm B.0.2.

An alternative to straight bisection is to utilize the information that Hypatia
already discovers in a test for box-expansion. Indeed, if box-expansion fails for
some L, then we realized in Proposition 3.4.3 that it is due to a cycle with average
multiplier L′ less than L. But we can easily adapt the algorithm fExpands to
compute and return the average multiplier of this bad cycle, L′. Then if L′ ≤ 1,
we know the map is not box-expansive on Γ′ and we can stop. Otherwise, on the
next pass instead of lowering by some arbitrary amount we may simply test by this
new average multiplier L′. Better yet, we can test by the minimum of L′ and L
minus some preset step size δ, in order to prevent increasingly small steps down.
Appendix B contains the pseudo-code for this improved algorithm, CheckCycles,
and a slightly modified fExpands, both listed under Algorithm B.0.3. In case of
failure to show expansion, fExpands stores the vertices in the bad cycle and
computes the average cycle multiplier.

Thus we can use this to quickly find within δ of the largest L for which f is
box-expansive. Indeed, we showed in Section 3.4.1 that finding the exact largest
L for which f is box-expansive on a given graph seems to be an exponential-time
problem. However here we find that we can get to within a preset approximation
of the best L in a reasonable number of steps, as we did with the bisection method.
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Proposition 3.4.7. Let L be the minimum average multiplier over all simple
cycles in the graph Γ′. If 2 ≥ L > 1 + δ, then the method CheckCycles shows
box-expansion by some L within δ of L, in (probably a lot fewer than) 1/δ trials of
fExpands.

Proof. Since we are looking for an expansion amount in the interval [1, 2], and
decrease by at least δ at each step, we perform at most 1/δ attempts. Suppose
one of these attempts is successful. That is, suppose Γ′ fails to box-expand by
some L0 ≤ 2, and thus outputs an average cycle multiplier of L1 < L0. Since L

is the minimum, L ≤ L1. Suppose Hypatia verifies successfully box-expansion by
L = min{L1, L0 − δ}. Then by Lemma 3.2.1 we have L ≥ L. Thus we have:

L0 > L1 ≥ L ≥ L = min{L1, L0 − δ}.

Thus, either we were very lucky and L = L1 and we have shown box-expansion by
exactly that amount, or L0 > L1 > L ≥ L0 − δ and we have shown expansion by
L1 within δ of L.

Remark. In actually running Hypatia, we of course cannot compute exactly the
average multiplier of a cycle, due to round-off error. We use interval arithmetic
(described in Appendix A) to “round down”, and set

L1 = Inf(([λ0, λ0] · · · [λn−1, λn−1])
1/n).

So, we use a number just slightly less than the average cycle multiplier to try and
show box-expansion.

Another note on the actual implementation, due to the recursive nature it is
easy for a bad choice of L to lead to constants which are so large or small that the
machine cannot distinguish them from 0 or ∞. Checks must be put in place in
the algorithms to flag such occurrences.

3.5 Building a better metric

In Section 3.4 we showed how to optimally (but perhaps in exponential time)
determine the best expansion amount, and how to approximately (and in bounded
time) determine a good expansion amount. That is the limit of what we can do to
improve the metric using only one expansion constant L.

However, suppose the minimum average cycle multiplier in the graph Γ′ is L,
but there is some other separate cycle in the graph with average cycle multiplier
L′ � L. Then using the basic algorithm, we would set all the constants based
on some L close to L. So just as in Example 3.4.1, we get constants plummeting
to small values along the cycle with the large average multiplier. Ignoring any
interaction between the two cycles for the moment, we could have defined better
metric constants by using the better expansion, L′, along the appropriate cycle.
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In this section we explore optimal (yet impractical) and approximate (and
reasonable) ways to build better metric constants by carefully determining an
appropriate expansion amount for each edge, rather than setting all the metric
constants based on the same L.

3.5.1 An optimal, yet very impractical solution

Our search for an optimal metric begins by realizing that for a cycle with the
average multiplier L, there is only one way to set the metric constants (up to
scaling) to get expansion on each edge by precisely L.

Lemma 3.5.1. Suppose B0, . . . , Bn = B0 is a cycle in the graph Γ′ with average
cycle multiplier L. Then for a given c0, setting ck = Lck−1/λk−1, 1 ≤ k ≤ n− 1,
gives expansion by L on every edge in the cycle.

Proof. The constants were set to force expansion by L on edges 0 → 1, . . . n− 1 →
n− 2. But then we automatically get expansion by precisely L on edge n− 1 →
n = 0, since

Lcn−1

λn−1

=
(L)2cn−2

λn−1λn−2

= · · · = (L)nc0

λn−1 · · ·λ0

= c0,

by definition of average cycle multiplier L = (λn−1 · · ·λ0)
1/n.

Thus if we want to set metric constants to optimize the expansion along the
edges, we see that we must start with the cycle in the graph with the smallest
average cycle multiplier, L. Once the metric is set along the vertices of this cycle,
to proceed our basic approach is to find a path in the graph which begins and ends
on the cycle, called a “handle”, and define the metric on the vertices in the handle.

Realize that this handle forms a new cycle, using part of the first cycle. This
new cycle has a larger average multiplier L′. If we were to use the previous algo-
rithm, and set the metric on the new boxes in the handle using L, then the metric
is set to get expansion by L across every edge in this new cycle, except for the
last one. On that last edge, with this metric the expansion is going to be large,
because it absorbs the extra expansion not used on the other handle edges. To fix
this, we would like to set the metric on the handle to get a uniform expansion.
The key to understanding how to set the metric on a handle is the following.

Definition 3.5.2. If B0, . . . , Bn is a path in the graph Γ′, and the metric constants
c0 and cn are set, then the relative path multiplier is (λ0 · · ·λn−1cn/c0)

1/n.

This definition makes sense because if the metric is set all along the path
B0, . . . , Bn, then the multiplier along the path is

λ0
c0

c1

λ1
c1

c2

· · ·λn−1
cn−1

cn

= λ0 · · ·λn−1
cn

c0

.

Thus we see immediately that the relative path multiplier is exactly what is
needed to define a metric along a path with constant expansion, and we get, parallel
to Lemma 3.5.1:
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Lemma 3.5.3. Suppose B0, . . . , Bn is a path in the graph Γ′, and the metric con-
stants c0 and cn have been determined. Let L′ be the corresponding relative path
multiplier. Then c1, . . . , cn−1 defined by ck = L′ck−1/λk−1, 1 ≤ k ≤ n − 1 yield a
metric under which the map expands by L′ along every edge in the path.

Proof. The constants were defined to force expansion by L′ on the edges B0 →
B1, . . . , Bn−2 → Bn−1. We need only check edge Bn−1 → Bn. But we see that

L′cn−1

λn−1

=
(L′)2cn−2

λn−1λn−2

= · · · = (L′)nc0

λn−1 · · ·λ0

= cn,

since by definition of the relative path multiplier, L′ = (λ0 · · ·λn−1cn/c0)
1/n.

In order to build an “optimal” metric, at each step, we want to set the metric
so that the expansion on each edge is the maximum possible, given the metric
set so far. The following inductive algorithm is a way to achieve this type of goal.
However, since it requires performing a task similar to finding the minimum average
cycle multiplier in a graph several times, it is perhaps an exponential algorithm.
We first demonstrate that this ideal algorithm is desirable, then later use it to
develop an approximate and feasible algorithm. We do not write the following in
pseudo-code since we are uninterested in coding this, but instead in a style more
conducive to theoretical study.

Algorithm 3.5.4. BestMetric(Γ′):
Step 1: Find the simple cycle in the graph Γ′ with the smallest average cycle

multiplier L. Define L1 = L. Pick an arbitrary box in the cycle, and set it’s
metric constant to 1. Define the rest of the metric on the cycle to achieve each
edge expansion exactly L1 (as in Lemma 3.5.1). Let V1 be the set of boxes in this
first cycle.

Step N ≥ 2: The input is a subset of boxes VN−1 which have metric constants
set on them. If VN−1 does not contain all of the vertices of Γ′, find the handle with
least relative path multiplier, with respect to VN−1. That is, find the handle HN =
(B0 → B1 → · · · → Bk) such that B0, Bk ∈ VN−1 but B1, . . . , Bk−1 /∈ VN−1, with
the smallest relative path multiplier. Note one cannot just consider simple handles
to get everything. Set LN equal to this smallest relative path multiplier. Since c0

is defined, set cj = LNcj−1/λj−1, 1 ≤ j ≤ k− 1. Define VN = VN−1 ∪{B0, . . . , Bk}.

We show this process successfully builds a metric which is expanding on ev-
ery edge in the graph by at least the original minimum average cycle multiplier,
precisely because of the careful order in which the constants were set.

Proposition 3.5.5. Given a graph Γ′ with smallest average cycle multiplier L, the
algorithm BestMetric builds a metric under which the map is expanding on every
edge by at least L. Specifically, the algorithm builds, in some number M steps, a
metric in which the map expands each edge by one of L = L1 ≤ L2 ≤ · · · ≤ LM .
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B0
Bi0

B1

Bi`+1
Bi`+m

Bk

Bi`−1

Figure 3.2: Diagram illustrating proof of Proposition 3.5.5

Proof. The proof is by induction. Lemma 3.5.1 shows that we can define the metric
constants on the cycle in Step 1. Now suppose we have successfully performed Step
N − 1 and we are working on Step N . We find the handle HN = (B0 → B1 →
· · · → Bk) such that B0, Bk ∈ VN−1 but B1, . . . , Bk−1 /∈ VN−1, with the smallest
relative path multiplier LN = (λ0 · · ·λk−1ck/c0)

1/k. We need to show LN ≥ LN−1.
We have a few cases here, depending on whether B0 and/or Bk are in VN−2. (In
case N = 2, consider VN−2 = ∅).

Case 1: The easy case is when both B0 and Bk are in VN−2. Then both c0

and ck were defined at the start of Step N − 1, so in that step HN was an existing
handle, and since it was not the minimum, LN−1 ≤ LN .

Other Cases: If one or both of B0 and Bk were not in VN−2, then since B0 and
Bk are in VN−1, on Step N − 1 the handle HN was not a separate handle, but part
of some handle H′ which overlapped HN−1. Notationally, there are three cases:
(1) B0, Bk /∈ VN−2, (2) B0 ∈ VN−2, Bk /∈ VN−2, and (3) B0 /∈ VN−2, Bk ∈ VN−2.
However they are all based on the same ideas, so we just demonstrate (3).

Suppose B0 /∈ VN−2 and Bk ∈ VN−2. Then HN−1 = (Bi0 → · · ·Bi`−1
→ Bi` =

B0 → Bi`+1
→ · · · → Bi`+m

), where the only box shared by HN and HN−1 is B0,
and H′ = (Bi0 → · · · → Bi` = B0 → B1 → · · ·Bk) is formed by the first part
of HN−1 attached to HN . See Figure 3.2.

Let L′ be the relative path multiplier of H′ from Step N − 1. Then L′ ≥ LN−1.
Now during Step N − 1, we defined the metric constants ci1 , . . . ci`−1

, c0 based
on LN−1. Hence,

c0 =
LN−1ci`−1

λi`−1

= · · · = (LN−1)
`ci0

λi0 · · ·λi`−1

.

But then by definition of relative path multiplier, we have

(LN)k = λ0 · · ·λk
ck

c0

= λ0 · · ·λkck

λi0 · · ·λi`−1

(Ln−1)`ci0

=
(L′)`+k

(LN−1)`
≥ (LN−1)

k.

Hence, LN ≥ LN−1.
Thus by induction, we can successfully define a metric in some number of steps

M , in which the map expands each edge by one of L = L1 ≤ L2 ≤ · · · ≤ LM .
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Figure 3.3: Graph, with box multipliers, for Examples 3.5.6, 3.5.7, and 3.5.8

Below is an example of setting the metric constants using BestMetric.

Example 3.5.6. Consider the graph shown in Figure 3.3, with six vertices V =
{0, 1, 2, 3, 4, 5, 6}, and edges

E = {(0, 1), (1, 2), (2, 3), (2, 5), (3, 0), (3, 4), (4, 1), (5, 6), (6, 0)}.

Suppose the vertex multipliers are (as shown): λ0 = 2, λ1 = 2, λ2 = 4, λ3 = 4, λ4 =
1/8, λ5 = 1/2, λ6 = 1/2.

There are three cycles, with average cycle multipliers,

L = (λ0λ1λ2λ5λ6)
1/5 = 22/5,

L′ = (λ1λ2λ3λ4)
1/4 = 21/2, and

L′′ = (λ0λ1λ2λ3)
1/4 = 23/2.

Since L < L′ � L′′, we expect that the optimal solution would prescribe setting
the constants first on the weak cycle 0 → 1 → 2 → 5 → 6 → 0, then the handle
2 → 3 → 4 → 1, and finally the handle 3 → 0.

We set c0 = 1, c1 = Lc0/λ0 = 2−3/5, c2 = Lc1/λ1 = 2−6/5, c5 = Lc2/λ2 =
2−14/5, c6 = Lc5/λ5 = 2−7/5, using the weakest cycle first.

Now there are two handles to choose from. The handle 2 → 3 → 4 → 1
has relative path multiplier (λ2λ3λ4c1/c2)

1/3 = 28/15, and the handle 2 → 3 → 0
has relative path multiplier (λ2λ3c0/c2) = 213/5. So the handle with the smallest
relative path multiplier. is the former. Set P ′ = 28/15, and c3 = P ′c2/λ2 = 2−8/3

and c4 = P ′c3/λ3 = 2−62/15.
Last we find handle 3 → 0 has relative path multiplier P ′′ = (λ3c0/c3) = 214/3.

See Figure 3.4.
Thus we have built a metric with edge expansions of L ≈ 1.32, P ′ ≈ 1.45, and

P ′′ ≈ 25.4.

This algorithm may well be exponential time, for the basic reason that the
algorithm just to find the cycle with the minimum average multiplier seems it
should take exponential time. Each attempt to find the handle with the next
largest relative multiplier is similarly difficult.
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Figure 3.4: Graph with optimal edge expansion.

3.5.2 An approximate, realistic solution

Since setting optimal metric constants is computationally not feasible, we wish to
find an algorithm which is an approximation.

A first idea would be to try setting constants along a random cycle and its
handles in a random order, then when an obstruction is found (i.e., a handle
with relative path multiplier less than one, or maybe less than the original cycle
multiplier), start over with a new cycle containing that weak path. However the
following example illustrates that, even if the weakest cycle is selected first, with
no way to order the handles a solution cannot easily be found.

Example 3.5.7. Consider the graph of Example 3.5.8, shown in Figure 3.3. Sup-
pose we are lucky and detect first the weakest cycle, 0 → 1 → 2 → 5 → 6 → 0,
with L = 22/5, and as in Example 3.5.6 set c0 = 1, c1 = Lc0/λ0 = 2−3/5, c2 =
Lc1/λ1 = 2−6/5, c5 = Lc2/λ2 = 2−14/5c2 = Lc5/λ5 = 2−7/5.

But, suppose we next detect the wrong handle: 2 → 3 → 0. Then the relative
path multiplier is L′′ = (λ2λ3c0/c2)

1/2 = 213/5. So we set c3 = L′′c2/λ2 = 2−3/5.
Then lastly we detect the handle 3 → 4 → 1. The relative path multiplier

is then L′ = (λ3λ4c1/c3)
1/2 = 2−1/2 < 1. Unfortunately, we have a relative path

multiplier less than one. See Figure 3.5.
Our strategy is that we should try to start over with a cycle involving this

bad path, say 1 → 2 → 3 → 4 → 1, and set c1 = 1, c2 = L′c1/λ1 = 2−1/2, c3 =
L′c2/λ2 = 2−2, c4 = L′c3/λ3 = 2−7/2.

But suppose we are very unlucky again and detect the handle 3 → 0 → 1
first. It has a relative path multiplier of M ′′ = (λ3λ0c1/c3)

1/2 = 25/2. So we set
c0 = M ′′c3/λ3 = 2−3/2.

Then lastly we detect the handle 2 → 5 → 6 → 0. The relative path multiplier
is then M ′ = (λ2λ5λ6c0/c2)

1/3 = 2−1/3 < 1. See Figure 3.6.
But if we take a cycle containing this bad handle, that is cycle 0 → 1 → 2 → 0,

and we are back where we started at the beginning of the example.

Thus we cannot just go about setting constants on cycles and handles in a
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Figure 3.7: Graph illustrating a good way of guessing edge expansion.

random order. But really this failed because the cycle multiplier of one of the
cycles was much larger than the other two, forcing one handle to have much larger
average multiplier than the other. In fact, the example below shows that for this
particular graph, if we had set the constants on the weaker two cycles in either
order, and then set the constants on the stronger cycle, we could have successfully
defined a metric.

Example 3.5.8. Consider again the graph of Figure 3.3, with the same box mul-
tipliers, and cycles of multipliers L < L′ � L′′. Suppose we start with the cycle
of multiplier L′ = 21/2, cycle 1 → 2 → 3 → 4 → 1, and set c1 = 1, c2 = L′c1/λ1 =
2−1/2, c3 = L′c2/λ2 = 2−2, c4 = L′c3/λ3 = 2−7/2.

Then suppose we next detect the handle 2 → 5 → 6 → 0 → 1, with relative
path multiplier K = (λ2λ5λ6λ0c1/c2)

1/4 = 23/8, and set c5 = Kc2/λ2 = 2−17/8, c6 =
Kc5/λ5 = 2−3/4, c0 = Kc6/λ6 = 21/8.

Then we would lastly detect the handle 3 → 0, and find its relative path
multiplier is K ′′ = (λ3c0/c3) = 233/8 > 1. See Figure 3.7.

Thus we have a metric with edge expansions of L′ ≈ 1.4, K ≈ 1.297, and
K ′′ ≈ 17.5. Note this minimum expansion is smaller than that of Example 3.5.6,
in which the cycles and paths were set in the optimal order.

This last example suggests that if we define the metric on cycles and handles
in approximately the right order, then we are likely to be successful. We next
describe an algorithm BetterMetric to do just that. Again we take advantage of
the fact that when the basic algorithm fExpands fails to show box-expansion by
some L′, it produces a cycle, badcycle with average multiplier L less than L′. In
this way we can detect cycles with average multipliers less than a given amount.

We first run the algorithm CheckCycles, which repeatedly calls fExpands to
find approximately the largest L for which the map is box-expansive for Γ′, and
a cycle badcycle of boxes with average multiplier less than L + δ (where δ was
some preset minimum step size). We know then that L is close to the maximum
expansion amount we could hope to use along that cycle. So, we mark the edges
(u, v) along badcycle with the expansion amount L0 = L. Then run a slightly
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modified fExpands with L1 = L + δ, trying to build a metric in which the map
box-expands by L1 on every edge in the graph except the marked edges, and using
L0 as an expansion amount on those edges. If this fails, it produces another cycle
(possibly attached to the first) with average multiplier less than L1. So, mark the
edges on that cycle with L0 and repeat. Each time start from scratch building a
metric, using L0 on edges marked with L0, and L1 on the rest. Eventually, we
have successfully built a metric using expansion by L0 on some edges, and L1 on
the rest (or in the extreme case, if L1 is really too large, we may have marked L0

on all the edges, but this is unlikely). 1

Next, try to build a metric expanding by L2 = L1 + δ on edges not marked,
and by L0 on marked edges. If this fails, we know since the previous step worked
that it produces a cycle with average multiplier between L2 and L1. So, mark the
edges in that cycle, which are not already marked with L0, with expansion amount
L1 (so it may be marking a cycle or a handle).

Continue as above, with some cycles marked from the first round with L0,
adding more cycles which need to be marked with L1, until a metric is successfully
built with a combination of L0, L1, L2. Repeat this process with L’s increasing
by δ for some preset number of steps, or until all the edges are marked with a
maximum expansion amount. In the end, a metric is built with edge expansions
by L, L + δ, L + 2δ, . . . , L + mδ. Our intuition suggests that such a metric is closer
to euclidean than a metric using only one L, and in fact we demonstrate evidence
of this collected by running this algorithm on z2 + c in Section 3.6.

The detailed pseudo-code for the algorithm BetterMetric is in Appendix B,
as Algorithm B.0.4.

Selective subdivision

Another use of this algorithm, besides improving the metric on the given graph, is
to determine another selective subdivision procedure (in addition to those already
described in Section 2.3). After BetterMetric is run, the boxes involved in edges
with edgeL set at L0 can be chosen to be subdivided. These are the boxes involved
in the weakest cycles, and so subdividing them should help improve the expansion
amounts. The results of this on some examples are discussed in Section 3.6 and
Section 4.4.3.

3.6 Examples of running Hypatia for polynomial maps

In this section, we give data and pictures on the results of running Hypatia on
some examples for Pc(z) = z2 + c and Pc,a(z) = z3 − 3a2z + c, using first just

1Actually, we often want the step size for L-increases smaller than the step size
used in CheckCycles for L-decreases, so we modify the algorithm to not use the
very first bad cycle.
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Figure 3.8: A box cover of R (= J and period 2 sink) for Pc, c = −1, for a
27×27 grid. Different s.c.c.’s are in different shades of gray. Note
the s.c.c.’s, skirting the inner edge of the cover of J . These will
disappear when the box size is decreased. Pc is box-expansive on
the cover of J .

the basic algorithm for box-expansion. We also describe one example of using the
improvement to build a better metric, for z2 − 1.

Examples for z2 + c

All of these examples have |c| < 2, so we used as the initial box V = N∞(0, 2.1,).
Also, we used the method CheckCycles, of Section 3.4.2, to try to show box-
expansion in each case.

Connected, Star-like Julia Sets

Example 3.6.1. The quadratic polynomial for c = −1 is called the basilica. This
map has a period 2 attracting cycle 0 ↔ −1. Shown in Figure 3.6 is a box cover
V′ of the chain recurrent set, composed of selected boxes from a 27 × 27 grid
in V . Each s.c.c. of the graph Γ is shown in a different color (shade of gray).
The s.c.c. covering the Julia set is a graph with 1,800 boxes and 14,000 edges
(i.e., B = 1,800, E = 14,000). This cover is box-expansive (by 1.14067). The
computation took only 8 MB of RAM and less than a minute of CPU time, which
is very manageable given that our equipment had 4 GB of RAM.

Example 3.6.2. A map with a period 3 attracting cycle is c = −.123 + .745i,
approximately the classic rabbit parameters. Shown in Figure 3.9 is a cover of
boxes from a 29 × 29 grid. The Julia set s.c.c. has B = 20, 000, E = 180, 000.

We found that the rabbit is box-expansive on this s.c.c. However, we could
show hyperbolicity more efficiently for this map. At the 28 × 28 grid, the Julia set
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Figure 3.9: A box cover of R (= J and period 3 sink) for Pc, c = −.123+.745i,
for a 29 × 29 grid. Different s.c.c.’s are different shades of gray.
Pc is box-expansive on the s.c.c. covering J .

s.c.c. fails to expand by L = 1, so we had Hypatia subdivide just the bad cycle
from the L = 1 check, which is only 12 vertices. Then we had a Julia set s.c.c. of
size V = 8,000, E = 71,000 on which the map is also box-expansive, (by 1.00508)!
Shown in Figure 3.10 is the 28 × 28 cover.

Example 3.6.3. The map with c = −1.31, we call the double basilica, has a
period 4 attracting cycle. Shown in Figure 3.11 is a cover of boxes from a 210×210

grid. The Julia set s.c.c. has B = 47,000, E = 328,000. The double basilica is
box-expansive (by 1.06758) on this cover.

All of the above basic examples in one dimension (i.e., up to period 4 star-like
Julia sets) finished computing their s.c.c.’s and verifying hyperbolicity in a small
number of minutes, using less than 200 Megs of RAM.

Example 3.6.4. One of the five-eared rabbits, c = −.504 + .563i, with a period 5
attracting cycle, is shown in Figure 3.12. The box cover shown is from a 210 × 210

grid, and yields an s.c.c. graph with B = 95,000, E = 842,000. The map is box-
expansive (by 1.0264) on this grid. The computation used less than 200 Megs of
RAM, but took about 250 minutes to verify box-expansion!

Example 3.6.5. A six-eared rabbit, c = .388 + .22i, naturally with a period 6
attracting cycle, is shown in Figure 3.13. The box cover shown is from a 211 × 211

grid, and yields an s.c.c. graph with B = 384,000, E = 3,600,000.
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Figure 3.10: A box cover of R for Pc, c = −.123 + .745i, for a 28 × 28 grid.
Subdivide 12 boxes and Pc is box-expansive on the resulting
s.c.c. covering J .

Figure 3.11: A box cover of R (= J and a period 4 sink) for Pc, c = −1.31,
for a 210 × 210 grid. Pc is box-expansive on this cover.
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Figure 3.12: A box cover of R (=J and a period 5 sink) for Pc, c = −.504 +
.563i, for a 210×210 grid. Pc is box-expansive on the cover of J .

This example suggests the limits of the basic algorithm. Uniform subdivision
required a 211 × 211 grid in order to get separate s.c.c.’s for the Julia set and the
sink, but the memory used was 1.6 GB, and we could not run the hyperbolicity
testing. To get to this level took about 10 minutes.

Connected Julia sets from baby Mandelbrot sets

Example 3.6.6. The aeroplane, c = −1.755, has a period 3 sink. Shown in
Figure 3.14 is a box cover from a 211 × 211 grid, which forms an s.c.c. graph with
B = 43,000, E = 260,000. The map is box-expansive on this cover (by 1.05069).
The computation took less than 200 MB of RAM and 6.5 minutes.

Example 3.6.7. The map with c = −.1588 + 1.033i has a period 4 sink. A box
cover from a 213 × 213 grid is shown in Figure 3.15. The s.c.c. covering the Julia
set is size B = 687,000, E = 6,000,000.

This is another map which suggests the limits of the basic algorithm. Uniform
subdivision required a 213× 213 grid to resolve the sink from the Julia set, but this
took 1.7 GB of RAM, leaving insufficient memory for a hyperbolicity test. The
CPU time to get to this level is 13 minutes.

Cantor Julia sets

The following examples, with Julia sets homeomorphic to the cantor set, were also
computed using less than 200 MB of RAM in just a few minutes.



52

Figure 3.13: A box cover of J for Pc, c = .388 + .22i, for a 211 × 211 grid.
Insufficient memory for hyperbolicity test to be completed.

Figure 3.14: A box cover of J for Pc, c = −1.755, for a 211 × 211 grid. Pc is
box-expansive on this cover of J .
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Figure 3.15: A box cover of J for Pc, c = −.1588 + 1.033i, for a 213 × 213

grid. Insufficient memory for a hyperbolicity test.

Example 3.6.8. The map c = −.75 + .3i has a Cantor set for its Julia set, and
is relatively close to the basilica. The box cover from a 210 × 210 grid, shown in
Figure 3.6, yields a Julia set s.c.c. with B = 94,000, E = 771,000. This cover is
box-expansive (by 1.05303).

Example 3.6.9. A Cantor Julia set near the cusp of the Mandelbrot set is c = .3.
Shown in Figure 3.6 is a box cover from a 28× 28 of size B = 16,000, E = 150,000.

This is another example in which we used selective subdivision to show hyper-
bolicity quickly. The box cover from the 28 × 28 grid fails to be box-expansive by
L = 1 due to a bad cycle of length 1! We had the program subdivide just that box,
and again the resulting s.c.c. failed for L = 1 due to a length 1 bad cycle. But,
upon subdividing that one box, we found that the resulting s.c.c. is box-expansive
(by 1.00469)!

Table 3.1 summarizes the information in these examples.
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Figure 3.16: A box cover of J , for Pc, c = −.75 + .3i, for a 210× 210 grid. Pc

is box-expansive on this cover.

Figure 3.17: A box cover of J for Pc, c = .3, for a (mostly) 28 × 28 grid. Pc

is box-expansive on this cover.
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BetterMetric example

Now we will examine the effect of running the algorithm BetterMetric (described
in Section 3.5.2) on the basilica (c = −1, Example 3.6.1). As mentioned previously,
the box cover for the 27 × 27 grid (of Figure 3.6), of size B = 1,784, E = 13,856,
is box-expansive for L0 = 1.14067 (found using CheckCycles, see Section 3.4.2).
The associated metric has metric constants, ck, with minimum 0.019, average
0.049, and maximum 1. To get a better idea of this metric, we had Hypatia
create a picture of the box cover, with shading of each box according to the metric
constant for that box. Figure 3.18 shows the ranges of constants for each shade,
and Figure 3.19 shows the metric on this 27 × 27 box cover formed using L0. Red
boxes have very small metric constants (less than 0.1), while blue boxes have better
metric constants (larger than 0.1).

With the goal of raising the metric constants to get a metric closer to euclidean,
we tested the algorithm BetterMetric on this example. Figure 3.20 shows the
result of our efforts described below. Starting with the cover from the 27×27 grid,
we ran BetterMetric to try and set expansion by L1 = L0 + 0.05 = 1.19067 on
some edges. It succeeded in building an improved metric after calling BetterfEx-
pands 77 times, using L0 on 275 edges involving 155 boxes, resulting in a metric
of minimum 0.024, average 0.072, and maximum 1.

Instead of trying a larger L value, we had Hypatia subdivide only the 155 boxes
in the weakest (L0) cycles. The resulting s.c.c., of size B = 1847, E = 14, 157, is
box-expansive by L2 = 1.18067 (found with CheckCycles), with metric minimum
0.023, average 0.06, and maximum 1. We again used BetterMetric to try and set
expansion by L3 = L2 +0.05 = 1.23067 on some edges. It succeeded in building an
improved metric after calling BetterfExpands 71 times, using L2 on 368 edges
involving 267 boxes. The metric constants had minimum 0.03, average 0.094, and
maximum 1.

Finally, we repeated the above procedure, subdividing only the 267 boxes in
weakest (L2) cycles above, resulting in an s.c.c. of size B = 2,284, E = 17,146. This
s.c.c. is box-expansive by L4 = 1.22358 (found with CheckCycles), with metric
minimum 0.029, average 0.075, and maximum 1. We again used BetterMetric
to try and set expansion by L5 = L4 +0.05 = 1.27358 on some edges. It succeeded
in building an improved metric after calling BetterfExpands 193 times, using
L4 on 1676 edges involving 822 boxes. The metric constants had minimum 0.037,
average 0.111, and maximum 1.

Once we managed to raise the average metric constant above 0.1, we were
satisfied with the results and quit the run. Figure 3.20 shows the result of the
above procedure. Comparing to Figure 3.19, we can see where the boxes lie that
were subdivided: precisely those closest to the immediate basin of attraction of
the sink (i.e., near the points 0 and −1).
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0.7 < c ≤ 0.8

0.8 < c ≤ 0.9

0.9 < c ≤ 1

0.6 < c ≤ 0.7

0.5 < c ≤ 0.6

0.4 < c ≤ 0.5

0.3 < c ≤ 0.4

0.2 < c ≤ 0.3

0.1 < c ≤ 0.20 < c ≤ .011

.011 < c ≤ .022

.022 < c ≤ .033

.033 < c ≤ .044

.056 < c ≤ .067

.067 < c ≤ .078

.089 < c ≤ .1

.078 < c ≤ .089

.044 < c ≤ .056

Figure 3.18: A legend for the metric constant shading in Figures 3.19
and 3.20. Red is assigned to undesirable constants, with dark
red the worst, and blue is better constants, with dark blue the
best.



58

Figure 3.19: Shading illustrates the first box-expanded metric found for
Pc, c = −1, from a 27 × 27 grid. Red regions have very small
metric constants, while blue regions are more reasonable.

Figure 3.20: Shading illustrates an improved box-expanded metric, using
BetterMetric and selective subdivision of a 27× 27 grid. Note
the increase in the desirable blue regions, and decrease and light-
ening of red regions of small metric constants. Note also the
asymmetry. This is not dynamically significant, but an artifact
of the tree construction for assigning metric constants.
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Figure 3.21: A box cover of J for Pc,a, c = i, a = 0.1i for a 27× 27 grid on V .
Pc,a is box-expansive on this cover. Compare to Figure 3.6.

Examples for z3 − 3z2 + c

Hypatia is easy to adapt to study the cubic polynomial family, Pc,a(z) = z3−3z2+c.
For example, one can easily check that R = 2 suffices for |c| ≤ 2 and |a| ≤ (2/3)1/2.
Then use V = N∞(0, 2.1). This family of maps has two critical points, in this
parametrization at ±a. When a = 0, there is a clear correspondence between
z2 + c and z3 + c. Below, we examine analogs of the basilica, the rabbit, and the
double basilica.

Example 3.6.10. The cubic polynomial Pc,a, c = i, a = 0.1i is a small perturbation
of the analog of the quadratic polynomial z2− 1, the “basilica”, of Example 3.6.1.
This cubic also has a period 2 attracting cycle. Shown in Figure 3.21 is a box cover
of the chain recurrent set, of boxes from a 27 × 27 grid. Each s.c.c. of the graph
Γ is in a different shade of gray. The s.c.c. covering the Julia set is a graph with
1600 boxes and 21,000 edges (B = 1,600, E = 21,000). Pc,a is box-expansive on
this cover.

Example 3.6.11. The cubic Pc,a, c = .75i, a = 0.5i also appears to have an at-
tracting cycle of period two, but looks significantly different than the basilica.
This seems to be an analog of the alternate period two Hénon diffeomorphism of
Example 1.3.19. Shown in Figure 3.22 is a box cover from a 29 × 29 grid on V .
The Julia set s.c.c. is size B = 19,000, E = 360,000. Pc,a is box-expansive on this
cover.

Example 3.6.12. The cubic Pc,a, c = −.19 + 1.1i, a = 0.1i is a perturbation of a
direct analog of the double basilica (Example 3.6.3). This map has a period four
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Figure 3.22: A box cover of J for Pc,a, c = .75i, a = 0.5i for a 29× 29 grid on
V . Pc,a is box-expansive on this cover.

attracting cycle. Shown in Figure 3.23 is a box cover from a 210 × 210 grid on V .
The map is not box-expansive by L = 1 on this cover. However, subdividing only
one cycle of length four which has multiplier less than one yields a cover on which
the map is box expansive. The Julia set s.c.c. is size B = 60,000, E = 780,000.

Example 3.6.13. A direct analog of the rabbit (Example 3.6.2) is the cubic
Pc,a, c = −.54 + .54i, a = 0.1i. This map has an attracting cycle of period three.
Shown in Figure 3.24 is a box cover from a 29 × 29 grid on V . The Julia set s.c.c.
is size B = 19,000, E = 255,000. Pc,a is box-expansive on this cover.

Example 3.6.14. A seemingly rabbit-like cubic is Pc,a, c = −.44− .525i, a = .3i.
This map has an attracting period three cycle. Shown in Figure 3.25 is the box
cover for a 210 × 210 grid on V . The sink has separated from J , however the cover
is not hyperbolic because it contains one of the critical points, a = .3i. We then
subdivided only the boxes whose midpoints were heuristically in K, to get the box
cover shown in Figure 3.26. This box cover is box-expansive by the map, and the
Julia set s.c.c. is size B = 160,000, E = 250,000.

Example 3.6.15. A rabbit-like cubic which is clearly not conjugate to the previous
cubic rabbit is Pc,a, c = −.38125 + .40625i, a = 0.5i. This does have an attracting
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Figure 3.23: A box cover of J for Pc,a, c = −.19+1.1i, a = 0.1i for a 210×210

grid on V . Subdivide 4 boxes, and then Pc,a is box-expansive
on this cover.

Figure 3.24: A box cover of J for Pc,a, c = −.54 + .54i, a = 0.1i for a 29 × 29

grid on V . Pc,a is box-expansive on this cover.
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Figure 3.25: A box cover of J for Pc,a, c = −.44− .525i, a = .3i for a 210×210

grid on V . This cover contains a critical point, so the map is
not box-expansive on it.

Figure 3.26: A box cover of J for Pc,a, c = −.44− .525i, a = .3i for boxes of
side length 4/210 and 4/211. Pc,a is box-expansive on this cover.
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Figure 3.27: A box cover of J for Pc,a, c = −.38125 + .40625i, a = 0.5i for
a boxes of side length 4/29 and 4/210. Pc,a is box-expansive on
this cover.

cycle of period three, however the Julia set is disconnected. The quickest and
least memory-intensive method for separating the Julia set from the sink is to first
subdivide all boxes uniformly to obtain a 29×29 grid, and then subdivide only the
boxes whose midpoints seemed to be in K. Shown in Figure 3.27 is a box cover of
this hybrid grid on V . The Julia set s.c.c. is size B = 45,000, E = 867,000. Pc,a is
box-expansive on this cover.

Table 3.2 summarizes the data for these cubic examples.
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Chapter 4
Hyperbolicity in two complex
dimensions

4.1 Introduction: box-hyperbolicity

In this chapter, let f : C2 → C2 be a polynomial diffeomorphism with d(f) > 1,
and with Julia set J . Let V′ be a box cover of J , with B′ = B(V′), and Γ′ a
box-chain graph of V′ that is strongly connected. Note by Corollary 2.2.11 and
Proposition 2.1.4 we always have the existence of such a Γ′.

Hypatia uses (in spirit) the Newhouse cone field condition (Theorem 1.3.4) to
test for hyperbolicity.

Definition 4.1.1. Let Cu
k be an “unstable” cone field which is constant on each

box, Bk. Let the complements be the “stable” cones, i.e., Cs
k = C2 \ Cu

s . Then the
cone field determines (up to scaling) an indefinite Hermitian form, Qk : C2 → R,
such that Cu

k = {w : Qk(w) ≥ 0}, hence Cs
k = {v : Qk(v) < 0}.

Call f box-hyperbolic (with respect to Γ′ and {Qk}) if there exists a choice of
scaling for each Qk so that Df (Df−1) preserves and expands the unstable (stable)
cones with respect to {Qk}, i.e., if for every edge Bk → Bj in Γ′ and every z ∈ Bk:

1. If w ∈ Cu
k , then Dzf(w) ∈ Cu

j and Qj(Dzf(w)) > Qk(w);

2. If v ∈ Cs
j , then [Dzf ]−1 (v) ∈ Cs

k and −Qk

(
[Dzf ]−1 (v)

)
> −Qj(v).

If f is box-hyperbolic with respect to some Γ′ and some choice of {Qk}, we will
say Γ′ and V′ are box-hyperbolic. We also sometimes say f is box-hyperbolic on
V′, or simply f is box-hyperbolic.

Condition 2 in its most natural form would be stated in terms of the matrix
[Dfzf

−1] . But by the chain rule, for a diffeomorphism f , this is equal to [Dzf ]−1 .
For ease of notation we use the latter.

The function |Qk(·)|1/2 is not quite a norm on C2, since for example it is zero
on the boundary of the cones. However, in Section 4.3.2, we prove Theorem 4.3.10,
showing that box-hyperbolicity does imply the standard definition of hyperbolicity.

We explain Hypatia’s algorithm for testing box-hyperbolicity in detail in Sec-
tion 4.2. First we give a sketch. Hypatia starts by finding an approximately invari-
ant splitting, that is a pair of “unstable” and “stable” vectors, uk, sk, in each box,
Bk in the cover V′ of J , such that uk(sk) must be contained in any unstable (sta-
ble) box-constant cone field that is preserved by Df (Propositions 4.2.1 and 4.2.2).
Since the splitting is only approximate, it must define cones and use them to check
for box-hyperbolicity. It defines cones using the uk, sk as axes. To determine the
width of the cones and appropriate scaling constants for the Hermitian forms, it
attempts to build an “unstable” metric which is uniformly expanded by Df on
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the set of unstable directions, {Cuk}, and a “stable” metric which is uniformly ex-
panded by Df−1 on the set of stable directions, {Csk}. If successful, it then uses
the directions and their metrics to define the cones and Hermitian forms. Finally,
it checks whether the diffeomorphism preserves the cone field, and whether with
respect to the Hermitian forms, Df(Df−1) is expanding on the unstable (stable)
cones.

Just as in one dimension, Hypatia either proves Ha,c is hyperbolic, or provides
several types of information regarding which parts of the cover were obstructions
to a successful test. We give examples of results running Hypatia in Section 4.4,
describing the various information Hypatia gathers during the run.

4.2 Algorithm to show box-hyperbolicity

Below we describe in detail the steps which Hypatia follows in order to test box-
hyperbolicity.

4.2.1 Defining stable and unstable directions

The first step is to guess reasonable unstable and stable directions, uk and sk,
in each box Bk ∈ V′. To do so, we use a saddle periodic point, p. Recall if p
is a saddle periodic point of period m, then the eigenvalues λ, µ of Dpf

m satisfy
|λ| > 1 > |µ| (or vice-versa). The large (small) eigenvalue is called the unstable
(stable) eigenvalue.

For f = H, the diffeomorphism (x, y) → (x2 + c− ay, x) has two fixed points.
Note first that fixed points of H must be on the diagonal, i.e., x = y. Then the
fixed points are given by:

x± =
1

2

(
(1 + a)±

√
(1 + a)2 + 4c

)
.

Proposition 1.2.15 stated that except when |a| = 1 or on the locus 4c = (1+ a)2, a
saddle fixed point always exists for H. The eigenvalues of DxH for the fixed point
(x, x) are:

λ, µ = x±
√

x2 − a.

Choose a saddle periodic point, p, of period m. There is some box, call it B0,
which contains p. Compute the eigenvalues and eigenvectors of Dpf

m. Let u0 be
the eigenvector of unit length (i.e., corresponding to the unstable eigenvalue, and
s0 be the eigenvector of unit length corresponding to the stable eigenvalue. Thus
we have natural directions in the box B0.

Hypatia next finds a spanning tree of Γ′ using B0 as the root vertex. Since
Γ′ is strongly connected, a connected spanning tree called an arborescence ([20])
can be built using any vertex B0 as a root, so that there is one path in the tree
from B0 to any other vertex in the graph, and each vertex has only one incoming
edge. Now the root vertex B0 has an unstable direction u0. Define the rest of the
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unstable direction by pushing the images of u0 under Df across the tree. That is,
if Bk → Bj is an edge in the tree, and uk is defined, then define

uj = Dzk
f(uk) / ‖Dzk

f(uk)‖,

where zk is the center point of box Bk. Note we normalized so that all the unstable
direction have norm one.

Thus the directions {Cuk} are an approximation to an f -invariant unstable
line field. Since we want Df to preserve and expand the unstable cones, it makes
sense that successive images of u0 under Df would do the best job of finding the
preserved unstable line field. We see directly from the choice of uk that these
directions satisfy the following:

Proposition 4.2.1. Let uk be as above, i.e., if S is an arborescence of Γ′, with
root vertex B0, then

u0 = the unstable eigenvector of a saddle periodic point,

uj = Dzk
f(uk) / ‖Dzk

f(uk)‖, if edge Bk → Bj is in S.

Let Cu
k be any box-constant cone field preserved by Dzf , for each z ∈ Bk. Then for

each Bk, we must have uk ⊂ Cu
k.

Note that for edges Bk → Bm not in the spanning tree, Df does not map uk

to um. It is helpful in establishing invariance of the cone field if Df(uk) is close to
um, and Dzf does not vary greatly as z varies within one box. Thus the variation
of Df(uk) among boxes whose images hit the same box, as well as within each
box, is an indication of the likelihood of proving hyperbolicity with the box cover.

We define the stable directions similarly, keeping in mind that we want stable
cones expanded and preserved by Df−1. So we first compute the backward edges
of Γ′, i.e., those in the transpose of the graph. We build a spanning tree of (Γ′)T

with B0 as root vertex. Then, compute successive images of s0 under Df−1 along
the tree edges to define all of the sk. In this way we get an good approximation
to a stable line field, approximately preserved by Df−1. Again, the variation in
Df−1(sk) within a box, and among boxes whose inverse image hit the same box,
is also an indicator of how likely it is that f is box-hyperbolic on the cover. Note
there is a result corresponding to Proposition 4.2.1 for the stable directions as well:

Proposition 4.2.2. Let sk be as above, i.e., if S is an arborescence of Γ′, with
root vertex B0, then

s0 = the stable eigenvector of a saddle periodic point,

sk = Dzk
f−1(sj) / ‖Dzk

f−1(sj)‖, if edge Bk → Bj is in S.

Let {Cs
k} be any box-constant cone field which is preserved by Dzf

−1, for each
z ∈ Bk. Then for each Bk, we must have sk ⊂ Cs

k.

Remark. Propositions 4.2.1 and 4.2.2 imply that in order a computer program to
be able to check whether a box constant cone field is preserved by Df , it is helpful
to have an angle between each pair uk, sk which is not very small.
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4.2.2 Defining a metric on the directions

Consider the “unstable” directions {Cuk}. As we discussed above, Df does not
quite preserve the directions, so we take that into account. Let Pu

s be the projection
onto Cu with Cs as its Null space. Given the vectors u = (u1, u2) and s = (s1, s2)
in C2, the projection can easily be calculated, to get:

Pu
s

[
v1

v2

]
=

v1s2 − v2s1

u1s2 − u2s1

[
u1

u2

]
.

Let Φu
k,j = P

uj
sj ◦ Dzk

f denote the projection composed with Df , so that Φu
k,j

does map Cuk to Cuj, and if the unstable directions are a good approximation to
an unstable line field, then Φu is close to Df on these unstable directions.

Hypatia uses the same algorithm as in one dimension to try to build a metric
defined by constants {cu

k} under which Φu is box-expansive by some amount L > 1.
We will call the cu

k unstable metric constants. Define cu
0 = 1 in box B0, and on an

edge Bk → Bj, the constants must satisfy

cu
j ≥

Lcu
k∥∥Φu

k,j(uk)
∥∥ .

Since Φu is linear, and {uk} has norm one, if such constants can be built (using
the methods described in Chapter 3) then Φu is box-expansive by L on {Cuk}.
This is of course not always possible, but the intuition is that it should be possible
if the box cover is sufficiently small in the right places.

One way to define stable metric constants is to use the method analogous to
that for the unstable metric constants. That is, define Φs

k,j = P
sj
uj ◦Dzk

f , and try
to build constants {cs

k} so that

cs
j ≤

cs
kM∥∥Φs

k,j(sk)
∥∥ ,

for some M < 1. The the stable directions are definitely contracted by Φs.
Using this method, the stable and unstable metric constants in each box are

defined completely independently. We are going to use cu
k and cs

k in a box to define
the width of the cone, and if these constants are not of comparable size, then the
cone could be very thin and could cause difficulties in showing that Df preserves
the cone field. As we discussed in Section 3.4, the largest successful value for L will
define metric constants cu

k closest to euclidean, while an L that is too small can
define cu

k several orders of magnitude smaller than one. The same applies to M ,
though here we want the smallest M possible. Extremely small metric constants
give cones which are not robust. In fact, experience with Hypatia shows these
problems do arise. Thus finding appropriate values of L and M is crucial.

We use methods discussed in Chapter 3 to find good values for L and M . We
know that we want 0 < M < 1 and 1 < L. As in one dimension, Lyapunov
exponents give us some intuition. For a polynomial automorphism of C2, there are
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two Lyapunov exponents, λ±, which measure expansion and contraction of tangent
vectors.

Theorem 4.2.3 ([9]). Let f be a polynomial automorphism of C2 with d = d(f) >
1. Then λ+ ≥ log d, λ− ≤ − log d, and

λ+ + λ− = log(DetDf). (4.1)

Note that for Hénon diffeomorphisms, |Det(Df)| = |a|. Thus λ++λ− = log(a).
Since λ+ ≥ log d, we have the inequality: λ− ≤ log(a)− log d. In the case |a| < 1,
we have log(a) < 0, hence the inequality for λ− is stronger than the inequality
for λ+. Thus in general we expect stronger contraction than expansion of tangent
vectors under Hénon diffeomorphisms.

Equation 4.1 implies that a good rule of thumb for choosing L and M is LM =
|a|, thus find a good M and then try L = |a| /M , or vice-versa.

Defining stable metric in terms of unstable metric

We describe here an alternate method for defining the stable metric constant in
a box in terms of the unstable metric constant and some linear algebra involving
the stable and unstable directions, which could provide a more robust cone field.
Both methods are implemented in Hypatia currently, and we will compare them
on various examples in Section 4.4.

For this alternate method, we use the intuition that for a box-hyperbolic cover,
there is small variation in the various Df(uk) such that Bk has an edge to a fixed
box Bj. So Φ is close to Df . If we make the assumption that Φ = Df , then we
can compute cs

k in terms of cu
k , the directions uk, sk, and Det(Df).

Assumption: Suppose for the following calculations that Φ = Df , i.e., Df
preserves the stable and unstable directions. Then we have that for some complex
constants α, β,

Df(uk) = αuj, hence ‖Df(uk)‖ = |α| , and

Df(sk) = βsj, hence ‖Df(sk)‖ = |β| .

Consider an edge in the graph Bk → Bj, and suppose we have unstable metric
constants cu

k , c
u
j defined to give box-expansion by L > 1. Then we have

cu
j |α| > Lcu

k , hence
1

|α|
<

1

L

cu
j

cu
k

.

We want cs
k, c

s
j such that

cs
j |β| <

|a|
L

cs
k, hence |β| < |a|

L

cs
k

cs
j

,

showing contraction by M = |a| /L < 1, assuming |a| ≤ 1 (which can be achieved
by possibly switching H with H−1).



70

Now we can use the determinant of Df to relate all of these quantities. First,
we get

| det[Df(uk) Df(sk)]| = | det[αuj βsj]| = |α| |β| | det[uj sj]|

But for the complex Hénon family H(x, y) = (x2 + c − ay, x), note that
det(Df) = a. Thus we also get

| det[Df(uk) Df(sk)]| = | det(Df)| | det[uk sk]| = |a| | det[uk sk]| .

Combining the previous two equations, we get

|a| | det[uk sk]| = |α| |β| | det[uj sj]| , hence |β| = |a| | det[uk sk]|
|α| | det[uj sj]|

.

Finally then we relate the previous equation to the metric constants, to see
that we need

|a|
L

| det[uk sk]|
| det[uj sj]|

cu
j

cu
k

<
|a|
L

cs
k

cs
j

.

Thus in any box Bk, set

cs
k =

| det[uk sk]|
cu
k

.

With stable metric constants defined in this way, since we actually do not have
Df = Φ, we are not guaranteed that Φs contracts the stable directions. Hence
we must check for cone preservation and expansion. However for a box-hyperbolic
cover, intuition suggests that Df and Φ should be close enough that this method
should define more natural cones.

Both methods are implemented in Hypatia currently, and we will compare them
on various examples in Section 4.4.

4.2.3 Defining a cone field

In each box, Bk, define unstable cones, Cu
k , so that a vector w is in the unstable

cone if it is closer to uk than sk, relative to the unstable and stable metrics. That
is, w ∈ Cu

k iff cu
k

∥∥P uk
sk

(w)
∥∥ ≥ cs

k

∥∥P sk
uk

(w)
∥∥. Then the stable cones are just the

complements, Cs
k := C2 \ Cu

k .
Then we define the Hermitian form Qk : C2 → R, by

Qk(w) =
(
cu
k

∥∥Puk
sk

(w)
∥∥)2 −

(
cs
k

∥∥P sk
uk

(w)
∥∥)2

.

Thus the unstable cone, Cu
k is simply the set of vectors for which Qk is nonnegative,

and the stable cone Cs
k, is the set of vectors for which the form is negative.

Note that the ratio of the metric constants determines the angle width of the
cones. Thus if the constants cu

k and cs
k are several orders of magnitude different
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then the cones will be very thin, thus difficult for the computer to work with. This
explains the need to find good values of L and M to give get a reasonable pair of
constants in each box.

We can construct a Hermitian matrix, Ak, which encodes the information of Qk,
following standard linear algebra as in [39]. A Hermitian form Q defines a sesquilin-
ear form g : C2 × C2 → R, such that g(w,w) = Q(w), where we can recover g
using:

g(v,w) =
1

4
Q(v + w)− 1

4
Q(v −w) +

i

4
Q(v + iw)− i

4
Q(v − iw).

A sesquilinear form g can be represented by a matrix A so that g(v,w) = w∗Av,
with am,n = g(en, em) for an ordered basis {e1, e2}, like {(1, 0), (0, 1)}. Now g
Hermitian implies that A is also Hermitian, and the range of Q is R. Thus, Q(w) =
w∗Aw, where am,n = 1

4
Q(en + em)− 1

4
Q(en− em)+ i

4
Q(en + iem)− i

4
Q(en− iem).

We easily calculate that for u = (u1, u2), s = (s1, s2), if we set

b11 = (cu |s2| ‖u‖)2 − (cs |u2| ‖s‖)2, b22 = (cu |s1| ‖u‖)2 − (cs |u1| ‖s‖)2,

b12 = 1
4

[
(cu ‖u‖)2(|s2 − s1|2 − |s2 + s1|2 + i |is2 − s1|2 − i |is2 + s1|2)
− (cs ‖s‖)2(|u2 − u1|2 − |u2 + u1|2 + i |iu2 − u1|2 − i |iu2 + u1|2)

]
,

and b21 = b̄12, then anm = bnm/|u1s2 − u2s1|2.

4.3 Characterizing box-hyperbolicity

4.3.1 Checking box-hyperbolicity with Hermitian forms

To test box-hyperbolicity, we need to test whether Df (Df−1) expands the unsta-
ble (stable) cones, with respect to {Qk}. Below we give a condition in terms of
these Hermitian forms which is equivalent to box-hyperbolicity.

Let Bk → Bj be an edge in Γ′. The unstable cones are preserved by Dzf if
Qk(w) ≥ 0 implies Qj(Dzf(w)) ≥ 0. Note (Qj ◦ Dzf) is also a Hermitian form,
given by.

Qj(Dzf(w)) = w∗((Dzf)∗Aj(Dzf))w,

for z ∈ Bk.

Proposition 4.3.1. f is box-hyperbolic (with respect to Γ′ and {Qk}) iff ((Qj ◦
Dzf)−Qk) is positive definite for every edge Bk → Bj in Γ′ and every z ∈ Bk.

Proof. We begin by proving the reverse implication (⇐). Let z ∈ Bk and Bj be a
box such that there is an edge Bk → Bj. Then we have Qj(Dzf)(w) > Qk(w), for
all z ∈ Bk and all w ∈ C2.
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First consider the unstable cones. Suppose w ∈ Cu
k , so by definition 0 < Qk(w).

But then by hypothesis, we get

0 < Qk(w) < Qj(Dzf(w)).

Thus Dzf(w) ∈ Cu
j , so the unstable cones are preserved by Dzf , and we have

established Condition 1 of box-hyperbolicity.
Next we consider the stable cones. First, we show that stable cone preservation

follows from unstable cone preservation, since they are complementary. Indeed,
above we showed that Df preserves the unstable cones, i.e., Dzf(Cu

k) ⊂ Cu
j . Hence,

Cu
k ⊂ [Dzf ]−1(Cu

j ). But by definition, Cs = C2 \ Cu. Thus Cs
k ⊃ [Dzf ]−1(Cs

j) and
so the stable cones are preserved by Df−1.

Now let v ∈ Cs
j , so that

0 < −Qj(v) = −(Qj ◦Dzf)
(
[Dzf ]−1(v)

)
.

Then since we have stable cone preservation under Df−1, we also know that

0 < −Qk([Dzf ]−1(v)).

Combining this with the negative of the hypothesis establishes Condition 2 of
box-hyperbolicity, i.e.,

−Qk([Dzf ]−1(v)) > −Qj(v).

Now we prove the forward implication (⇒). Suppose f is box-hyperbolic (with
respect to Γ′, {Qk}), i.e., we have Conditions 1 and 2. Let Bk → Bj be and edge
in Γ′ and z ∈ Bk.

We consider w in each of three regions to show ((Qj ◦Dzf) − Qk) is positive
definite.

Case 1: Suppose w ∈ Cu
k . Then by definition 0 < Qk(w).

Since box-hyperbolicity implies the unstable cones are preserved by Df , we
have that Dzf(w) ∈ Cu

j , so 0 < Qj(Dzf(w)).
Then Condition 1 of box-hyperbolicity gives us

Qj(Dzf(w)) > Qk(w).

Case 2: Suppose w ∈ [Dzf ]−1(Cs
j), i.e., v = Dzf(w) ∈ Cs

j . Then by definition
Qj(Dzf(w)) < 0.

Now by stable cone preservation, we know w ∈ Cs
k, hence Qk(w) < 0.

Condition 2 of box-hyperbolicity says that

−Qj(v) < −Qk

(
[Dzf ]−1(v)

)
for all vectors v ∈ Cs

j , hence it applies to v = Dzf(w). Thus we get

−Qj (Dzf(w)) < −Qk(w),
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and negating yields
Qj(Dzf(w))−Qk(w) > 0.

Case 3: For the remaining w, we have w /∈ Cu
k and w /∈ [Dzf ]−1(Cs

j). Then
Qk(w) < 0 and Qj(Dzf(w)) ≥ 0. Hence,

Qj(Dzf(w)) ≥ 0 > Qk(w).

Thus we easily get Qj(Dzf(w))−Qk(w) > 0.

In implementation, Hypatia uses interval arithmetic (described in Appendix A)
to compute Hull({Dzf : z ∈ Bk}) each time it needs an inequality which is true for
Dzf for all z ∈ Bk. This direct use of interval arithmetic is fine in this situation,
however such usage has been carefully avoided in other parts of the algorithm due
to its tendency to introduce complications (see discussion of iteration of boxes,
Appendix A).

4.3.2 Box-hyperbolicity implies hyperbolicity

In this section we prove Theorem 4.3.10, showing that if f is box-hyperbolic, then
it satisfies a standard definition of hyperbolicity. Part of the proof is very similar
to the one dimensional analog, Theorem 3.3.3, proved in Section 3.3, in that we
use a partition of unity to smooth out a norm. But before we deal with the norm,
we verify the existence of a continuous splitting preserved by the map.

Lemma 4.3.2. If f is box-hyperbolic (with respect to Γ′ and some {Qk}), then
there exists a splitting of the tangent bundle TzC2 = Es

z ⊕ Eu
z , for each z in J ,

which varies continuously with z in J , such that f preserves the splitting, i.e.,
Dzf(Es

z) = Es
fz, and Dzf(Eu

z ) = Eu
fz. Further, for each z ∈ Bk, Eu

z ( Cu
k, and

Es
z ( Cs

k.

Proof. Newhouse and Palis (Theorem 1.3.4) show that a diffeomorphism f is hy-
perbolic if there is a field of cones Cz (not necessarily continuous) which is preserved
and expanded by Df , such that the complements are expanded by Df−1. In their
proof ([55]), they first show that the existence of a cone field preserved by Df
implies the existence of a continuous splitting preserved by f , with the unstable
(stable) directions lying inside the unstable (stable) cones. Box-hyperbolicity gives
a cone field preserved by Df . Thus we have cones Cz = Cu

k , if z is in box Bk (make
some consistent choice of box Bk containing z, for the benefit of points on the
boundaries of the closed boxes). Thus by the proof in [55], we have the existence
of the continuous splitting preserved by Df .

We will need to measure the difference between pairs of lines in C2, like Eu
z

and Es
z , or Eu

z and Eu
x . To do so, we view the set of lines through the origin in C2

as the projective space CP1 = Ĉ. Then the spherical metric on CP1 induces the
following metric.
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Definition 4.3.3. If v =
[
v1

v2

]
,w =

[
w1

w2

]
are vectors in C2, define the distance

between the directions Cv, Cw to be

σ(v,w) = sin−1

(
|v1w2 − v2w1|
‖v‖ ‖w‖

)
.

Note that σ(v,w) ∈ [0, π/2], and for any complex numbers α, β,

σ(v,w) = σ(αv, βw).

Think of this metric as measuring the angle between the complex lines, since it is
a number in [0, π/2].

We prove Theorem 4.3.10 in several steps. Lemmas 4.3.4 through 4.3.6 culmi-
nate in Definition 4.3.7 and Proposition 4.3.8, which combine with Lemma 4.3.2
to give the theorem.

Lemma 4.3.4. Let f be box-hyperbolic (with respect to Γ′ and some {Qk}). Then
there exist d1 > 0 and δ1 > 0 such that if z ∈ J ∩N∞(Bk, δ1), then σ(Eu

z , Cs
k) ≥ d1

and σ(Es
z , C

u
k) ≥ d1.

Proof. First, note that by compactness of J and the fact that the line fields are
contained in the interior of the cones, there exists a d0 > 0 such that

d0 ≤ min{σ(Eu
z , Cs

k) : z ∈ J ∩Bk} and d0 ≤ min{σ(Es
z , C

u
k) : z ∈ J ∩Bk}.

Let d1 = d0/2.
Next, by compactness of J and continuity of the splitting, there exists a δ1 > 0

such that for any x, z ∈ J with ‖x− z‖∞ < δ1, we have σ(Eu
z , Eu

x) < d1 and
σ(Es

z , E
s
x) < d1.

Now let z ∈ J ∩ N∞(Bk, δ1). Since z is not necessarily in Bk, let m be such
that z ∈ Bm, and x is a point satisfying x ∈ J ∩ Bm ∩ Bk and ‖x− z‖∞ < δ1.
Then σ(Eu

z , Eu
x) < d1 and σ(Es

z , E
s
x) < d1. Since x ∈ Bk we have σ(Eu

x , Cs
k) ≤ d0

and σ(Es
x, C

u
k) ≤ d0. Hence, σ(Eu

z , Cs
k) ≥ d0 − d1 = d1, and σ(Es

z , C
u
k) ≥ d1.

Lemma 4.3.5. Let f be box-hyperbolic (with respect to Γ′ and {Qk}). If Bk, Bj ∈
V′ and z ∈ J satisfies z ∈ N∞(Bk, δ1) and f(z) ∈ N∞(Bj, δ1), then σ(Eu

fz, C
s
j) ≥ d1

and σ(Es
fz, C

u
j ) ≥ d1.

Proof. This lemma follows directly from Lemma 4.3.4 applied to f(z) instead of z.

Lemma 4.3.6. Let f be box-hyperbolic (with respect to Γ′ and {Qk}).
Then there is a τ > 0 such that for any Bk, Bj ∈ V′ and any z ∈ J such that

z ∈ N∞(Bk, τ) and f(z) ∈ N∞(Bj, τ), we have

1. if w ∈ Eu
z , then Qj (Dzf(w)) > Qk(w);

2. if v ∈ Es
fz, then −Qk

(
[Dzf ]−1 (v)

)
> −Qj(v).
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Proof. Among additional requirements given below, let τ be less than η from Corol-
lary 2.2.5. Then for any z ∈ J such that z ∈ N∞(Bk, τ) and f(z) ∈ N∞(Bj, τ),
there is an edge in Γ′ from Bk to Bj, i.e., Bk → Bj ∈ E′.

Note that since J is compact, and by Lemmas 4.3.4 and 4.3.5, there exists
d2 ≥ 0 such that:

d2 ≤ min{Qj(Dxf(ux))−Qk(ux) : x ∈ Bk, Bk → Bj ∈ E′,ux ∈ Eu
x , ‖ux‖ = 1}.

Let ε = d2/3. By continuity of Dxf and the splitting, there is a τ < η small
enough that for any x, z ∈ J with ‖x− z‖ < τ , z ∈ N∞(Bk, τ), and f(z) ∈
N∞(Bj, τ), we have

|Qk(uz)−Qk(ux)| < ε,

|Qj(Dxf(ux))−Qj(Dxf(uz))| < ε, and

|Qj(Dxf(uz))−Qj(Dzf(uz))| < ε.

Then Qj(Dzf(uz))−Qk(uz) ≥ d2 − 3ε > 0.
Now since Q(w) is a Hermitian form, Q(αw) = |α|2 Q(w) for any α ∈ C. Thus

by linearity of Df , the above result for uz implies the same result for any w ⊂ Eu
z .

Hence we have Condition 1.
The proof of 2. is analogous. Let d3 > 0 satisfy:

d3 ≤ min{Qj(sfz)−Qk(Dzf
−1(sfz)) : x ∈ Bk, Bk → Bj ∈ E′, sfz ∈ Es

fz, ‖sfz‖ = 1}.

Let ε′ = d3/3. Then further restrict τ so that for any x, z ∈ J with ‖x− z‖ < τ ,
z ∈ N∞(Bk, τ), and f(z) ∈ N∞(Bj, τ), we have

|Qj(sfz)−Qj(sfx)| < ε′,∣∣Qk(Dxf
−1(sfx))−Qk(Dxf

−1(sfz))
∣∣ < ε′, and∣∣Qk(Dxf

−1(sfz))−Qk(Dzf
−1(sfz))

∣∣ < ε′.

Thus 2. follows from Qj(sfz)−Qk(Dzf
−1(sfz)) ≥ d3 − 3ε′ > 0.

Now we use a partition of unity to smooth Qk on the invariant line fields.

Definition 4.3.7. Let f be box-hyperbolic (with respect to Γ′ and {Qk}). Let
τ > 0 be as given in Lemma 4.3.6. Define a partition of unity on B′ by choosing
continuous functions ρk : C2 → [0, 1] for each box Bk ∈ V′, such that supp(ρk) ⊂
N∞(Bk, τ) and

∑
k ρk(z) = 1, for any z ∈ B′.

Let z ∈ J . Then we define Qz : Eu
z ∪ Es

z → R by

Qz(w) =
∑

k

ρk(z)Qk(w).

Note that Qz(w) is a continuous function of w since Qk is continuous within
each box Bk, and further a continuous function of z due to the partition of unity.
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Proposition 4.3.8. Let f be box-hyperbolic (with respect to Γ′ and {Qk}). Let
{Qz} be given by Definition 4.3.7. Then for any z ∈ J we have:

1. if w ∈ Eu
z , then Qfz (Dzf(w)) > Qz(w);

2. if v ∈ Es
fz, then −Qz

(
[Dzf ]−1 (v)

)
> −Qfz(v).

Proof. Let uz ∈ Eu
z be such that ‖uz‖ = 1. If we set

qu
f,z = min{Qj(Dzf(uz)) : f(z) ∈ supp(ρj)}, and

qu
z = max{Qk(uz) : z ∈ supp(ρk)},

then by Lemma 4.3.6 we know that qu
f,z > qu

z . Thus we need only use that the
partition functions sum to one to get

Qfz(Dzf(uz)) =
∑

j

ρj(f(z))Qj(Dzf(uz)) ≥
∑

j

ρj(f(z))qu
f,z = qu

f,z

> qu
z =

∑
k

ρk(z)qu
z ≥

∑
k

ρk(z)Qk(uz) = Qz(uz).

Hence 1. follows since Df is linear, and for any α ∈ C, Q(αw) = |α|2 Q(w).
Establishing 2 is analogous. Let sfz ∈ Es

fz be such that ‖sfz‖ = 1. If we set

−qs
z = min{−Qk([Dzf ]−1 (sfz)) : z ∈ supp(ρk)}, and

−qs
f,z = max{−Qj(sfz) : f(z) ∈ supp(ρj)},

then by Lemma 4.3.6 we know that −qs
z > −qs

f,z. Thus we need only use that the
partition functions sum to one to get

−Qz([Dzf ]−1 (sfz)) = −
∑

k

ρk(z)Qk([Dzf ]−1 (sfz)) ≥ −
∑

k

ρk(z)qs
z = −qs

z

> −qs
f,z = −

∑
j

ρj(f(z))qs
f,z ≥ −

∑
j

ρj(f(z))Qj(sfz) = −Qfz(v).

Definition 4.3.9. Let f be box-hyperbolic (with respect to Γ′ and {Qk}). Let
z ∈ J . We define the norm ‖·‖ρ on TzC2 using Qz and the spaces Eu

z , Es
z as a

basis, i.e., for w ∈ TzC2,

‖w‖ρ = max
(∣∣Qz(P

uz
sz

(w))
∣∣1/2

,
∣∣Qz(P

sz
uz

(w))
∣∣1/2

)
,

where P az
bz

denotes the projection onto Ea
z with Eb

z as its Null space.

Finally, we can show that a box-hyperbolic map f is hyperbolic with respect
to the norm ‖·‖ρ on TJC2.



77

Theorem 4.3.10. Let f be box-hyperbolic (with respect to Γ′ and some {Qk}).
Then f is hyperbolic over J , i.e., there exists a splitting of the tangent bundle
TzC2 = Es

z⊕Eu
z , for each z in J , which varies continuously with z in J , a constant

λ > 1, and a (continuous) riemannian norm ‖·‖ρ such that:

1. f preserves the splitting, i.e., Dzf(Es
z) = Es

fz, and Dzf(Eu
z ) = Eu

fz, and

2. Df(Df−1) expands on Eu
z (Es

z) uniformly, i.e.,

(a) if w ∈ Eu
z then ‖Dzf(w)‖ρ ≥ λ ‖w‖ρ, and

(b) if w ∈ Es
z then ‖Dzf

−1(w)‖ρ ≥ λ ‖w‖ρ.

Proof. We have 1. by Lemma 4.3.2. Let ‖·‖ρ be given by Definition 4.3.9. Let
z ∈ J . We show that 2. follows easily from Proposition 4.3.8.

First suppose w ⊂ Eu
z . Then Dzf(w) ⊂ Eu

fz. Hence ‖w‖2
ρ = Qz(w) and

‖Dzf(w)‖2
ρ = Qfz(Dzf(w)). Thus Condition 1. of Proposition 4.3.8 implies that

‖Dzf(w)‖ρ > ‖w‖ρ.

Now consider w ⊂ Es
z . Then Dzf(w) ⊂ Es

fz. Hence ‖w‖2
ρ = −Qz(w) and

‖Dzf(w)‖2
ρ = −Qfz(Dzf(w)). Then Condition 2. of Proposition 4.3.8 applied to

v = (Dzf
−1(w)) implies ‖Dzf

−1(w)‖ρ > ‖w‖ρ.
Finally, by compactness of J the strict inequalities imply the existence of some

constant λ > 1, proving 2.

4.4 Examples of running Hypatia for Hénon diffeomor-
phisms

The procedure used in two dimensions is much more complicated than in one, and
consequently offers more options to the user as it runs. We describe a generic
sample run first, then immediately following we present the detailed data for the
examples.

4.4.1 A generic run of Hypatia for a Hénon diffeomorphism

The early steps of Hypatia involve refining to obtain a good box cover of J . Given
values of a, c, it first computes an R′ so that V = N∞(0, R′) contains some η-chain
recurrent set, as given by Proposition 2.1.4. Then the user inputs n to put a
(2n)4 grid on V , for example n = 3. Hypatia will form the grid of boxes. Then it
performs the “V -check” of computing some forward/backward images of each box,
and eliminating any boxes which map entirely outside of V . Next it creates the
box-chain graph Υ, with vertices the remaining boxes and an edge from Bk to Bj

if a certain neighborhood of Ha,c(Bk) intersects Bj. It decomposes the transition
graph into its strongly connected components (s.c.c.’s), which are the subset of
vertices and edges such that for each pair of vertices u, v, there is a path from u
to v and from v to u. The union of these components is the box-chain recurrent
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graph, Γ, which is a cover of R. One of these graph components, Γ′, is a box cover
V′ for J , and yields the chain-transitive component containing J .

In a typical run, the above procedure will be repeated a few times. That is,
input an n (like n = 1) so that Hypatia will put a (2n)4 grid on each of the boxes
in Γ′, eliminate some of these new boxes with the “V -check”, form the box-chain
graph Υ, and finally decompose Υ into its s.c.c.’s to find a new box-chain recurrent
graph Γ′ representing J . Before checking hyperbolicity, this procedure should be
repeated until it is evident that the Julia set s.c.c. is separate from the s.c.c. for
the sink.

Uniform subdivision is not the quickest way to separate the Julia set from
the sink. Note that if p is in a sink basin, then for some m, the eigenvalues of
DHm(p)H ◦ · · ·DpH will have modulus less than one. Thus in order to expedite
this separation, we implement:

Option B: Subdivide box Bj if both eigenvalues of the matrix DzmH ◦
Dzm−1H ◦ · · · ◦Dz0H are less than one, where z0 is the center point of
the box, zj = Hj(z0), and for example, m = 3.

To visualize the boxes in Γ′ at any given step, you may ask Hypatia to draw
a picture of the cover. It uses the same method as FractalAsm, discussed in
Section 1.2, to draw in the plane a parametrization of an unstable manifold. In
Hypatia’s case, to determine the coloration of a pixel it checks whether the pixel
intersects some boxes of Γ. There are a couple of options for the user here as well.
One can choose for example just to color the boxes which hit Γ′ and leave the rest
white, or to assign different colors to each s.c.c. and color boxes accordingly. Since
the picture is a parametrization of a one complex dimensional manifold which does
not line up with the axes in C2, a pixel may hit more than one box, and in more
than one s.c.c. If the pixel hits more than one s.c.c., it is colored black or gray. One
more option allows the user to slightly lighten the pixels which are heuristically
found to be in K+. That is, the center point of the pixel is iterated some large
number of times, like 100, and if after that it is still inside V , it is guessed to be
in K+. In this way one can check visually how close the cover is to J . Figures 4.1,
4.2, 4.3 and 4.4 are examples of covers of J with each s.c.c. colored differently
(shades of gray), and an approximation to K+ lightened.

Once one is satisfied with the cover of J (for example, if there is a sink, and it
seems the sink s.c.c. is separate from the Julia set s.c.c.), it is time to begin box-
hyperbolicity testing. Here also there are options. The first step is always to set the
unstable/stable directions, {uk/sk}, in each box Bk. Recall (from Section 4.2.1)
that these are some forward/backward image under DH of the unstable/stable
eigenvector of DpH for the saddle fixed point, p. Before we ask Hypatia to try
and define a metric on the unstable/stable directions, we may ask it to take some
measurements on these directions, to get an idea of whether it might be possible
for Hypatia to prove box-hyperbolicity using these directions.

In order to measure the difference between directions, i.e., complex lines in C2,
we use the spherical metric of Definition 4.3.3.
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Figure 4.1: A box cover of R (= J and a fixed sink) for Ha,c, c = −.3, a = .1,
for a (27)4 grid on V . The lighter band on the cover of J is
approximately K+. The darkest spots in the cover of J show
another s.c.c. H is box-hyperbolic on this cover of J .
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Figure 4.2: A box cover of R (= J and a period 2 sink) for Ha,c, c =
−1.05, a = .05, for boxes of side length 2R/27 and 2R/28. Two-
tone shading on the cover of J illustrates approximately where
J lies. Note the s.c.c.’s skirting the inner edge of the cover of J ,
which would not be present for smaller box size. Hypatia could
not verify box-hyperbolicity of H on this cover of J .
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Figure 4.3: A box cover of R (= J and a period 2 sink) for Ha,c, c =
−1.1875, a = .15, for boxes of side length 2R/26 and 2R/27.
Two-tone shading on the cover approximately illustrates J . This
is the simplest cover which has separation of J from the sink. H
is not box-hyperbolic on this cover.

Figure 4.4: This box cover is a partial refinement of Figure 4.3. H is not
box-hyperbolic on this cover of J .
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To examine how suitable the directions {uk, sk} are in each box, we use:

Definition 4.4.1. For each box Bk in V′, let

Udiam[k] = diamσ{Dzj
H(uj) : there is an edge Bj → Bk}, and

Sdiam[k] = diamσ{[Dzj
H]−1(sj) : there is an edge Bk → Bj},

where zj is the center point of box Bj.

We do not measure the variation within one box, i.e., between DzH and Dzj
H

for different z in box Bj, since it seems that would be much smaller than among
images from different boxes.

Propositions 4.2.1 and 4.2.2 suggest that a clear separation between Udiam[k]
and Sdiam[k] is needed in order for a computer program to verify cone preservation
under DH, thus we must have

σ(uk, sk)− (Udiam[k] + Sdiam[k]) > 0

in each box Bk in order for it to be possible for Hypatia to prove box-hyperbolicity
using these directions. Figures 4.5 and 4.6 illustrate examples of covers for which
J is separate from the sinks, but the directions are unsatisfactory since there are
boxes Bk such that σ(uk, sk)− (Udiam[k] + Sdiam[k]) < 0. Boxes with this value
negative are colored black, otherwise shades of gray, with the lightest gray the
most positive. A precise legend for the shading is given in Figure 4.7.

After seemingly satisfactory directions are found, the next step of Hypatia is to
attempt to build a metric with respect to which DH is expanding (contracting) by
L (M) on the unstable (stable) directions. There are two options on how to set the
metric constants (as mentioned in Section 4.2.2). We recommend the first option
in the case of a diffeomorphism conjugate to the inverse limit of a polynomial
map with connected Julia set. In this case, the Jacobian determinant a is small
and strong contraction is expected. In this case, first find a good M using simple
bisection. This tend to runs fairly quickly in such cases. Then try inputting L =
|a| /M , and test whether the unstable directions are box-expansive by this L. If so,
Hypatia will test for cone preservation and expansion (as described in Section 4.3.1).
Thus, here we are setting the stable and unstable metric constants in each box
independent of one another. We use this method successfully in Examples 4.4.2
and 4.4.3.

An alternative, which seems could be appropriate for more general Hénon dif-
feomorphisms, is to first find a good L with bisection or CheckCycles, and then
define stable metric constants in terms of the unstable metric constants and the
determinant of DH (as described in Section 4.2.2). Then it seems the first likely
way to increase the chance of proving box-hyperbolicity is to find the best working
L to a high precision.

After successfully building a metric on the unstable/stable directions, Hypatia
tests for cone preservation and expansion using Proposition 4.3.1 and the Hermitian
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Figure 4.5: A box cover of J for Ha,c, c = −1.1875, a = .15, boxes of side
length 2R/26, 2R/27. Black boxes are definite obstacles to cone
definition. Dark gray boxes could prevent cone definition.

Figure 4.6: A refinement of Figure 4.5. The black and dark gray regions are
smaller; however, these spots still exist, preventing reasonable
cones.
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Figure 4.7: Legend for the shading of Figures 4.5 and 4.6, s = σ(uk, sk) −
(Udiam[k] + Sdiam[k]). Dark corresponds to obstructions to
defining a cone field preserved by Df .

forms defined in Section 4.2.3. Since the ratio of the metric constants determines
the angle width of the cones, even if [σ(uk, sk)−(Udiam[k]+Sdiam[k])] is bounded
away from 0, if the constants cu

k and cs
k are several orders of magnitude different

then the cones will be very thin, thus difficult for the computer to work with. This
reiterates the need to find good values of L and M to give get a reasonable pair
of constants in each box. Figure 4.8 illustrates the many boxes in which the cone
check failed for an example in which mink{σ(uk, sk)−(Udiam[k]+Sdiam[k])} > 0.1.

It is theoretically possible to use BetterMetric (Section 3.5.2) to improve
the metric on the unstable and/or stable directions, with the hopes that the re-
sulting cones would be more robust. However, in practice for a large graph this
runs pretty slowly (on average, fixing one edge multiplier per minute). Thus it
would take much longer than our patience would hold in order to improve a metric
considerably (examine one dimensional example of BetterMetric in Section 3.6).
However, after BetterMetric runs, it marks the boxes in the weakest cycles found,
which could be useful for later subdividing procedure We discuss this further in
Example 4.4.4.

After testing box-hyperbolicity and gathering the corresponding data, if the
cone check fails the user has several options for choosing which boxes to subdivide,
including many uses of the data collected in the box-hyperbolicity test:

1. All boxes, or

2. Option B: boxes seemingly in sink basin (evals. of DzmH◦Dzm−1H◦· · ·Dz0H
less than one), or
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Figure 4.8: The darkest shading in this box cover shows the boxes in which
the cone condition failed, Ha,c, c = −1.05, a = .05, for boxes of
side length 2R/27 and 2R/28.
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Figure 4.9: A FractalAsm picture of W u
p ∩K+ for Ha,c, c = −3, a = −.25

3. Boxes with (Udiam[k] < D) and/or (Sdiam[k] < D), e.g., D = .25, and/or

4. Boxes with [σ(uk, sk)− (Udiam[k] + Sdiam[k])) < δ], e.g., δ = 0, and/or

5. Boxes in which the cone check failed, and/or

6. Boxes found in weak cycles by BetterMetric.

4.4.2 Box-hyperbolic Hénon diffeomorphisms

In this section we give detailed data on examples for which Hypatia proved box-
hyperbolicity. Recall V = N∞(0, R′a,c) is a box neighborhood of 0 which contains
the chain recurrent set, R.

Example 4.4.2. The Hénon diffeomorphism Ha,c with c = −.3, a = .1 has an
attracting fixed point. Hypatia proved that this diffeomorphism is hyperbolic, by
using a cover of J from an evenly subdivided (27)4 grid on V , finding M first with
bisection, then using L = |a| /M . Figure 4.1 is the box-hyperbolic cover. See
Table 4.1 for all of the data for this example.

Example 4.4.3. The Hénon diffeomorphism Ha,c with c = −3, a = −.25 is a real
horseshoe, i.e., the Julia set is a Cantor set and Ha,c|J is conjugate to the full
2-shift. Hypatia proved this diffeomorphism is hyperbolic, by using a cover of J
from an evenly subdivided (27)4 grid on V , finding M first with bisection then
using L = |a| /M . Figure 4.9 is a FractalAsm picture. This kind of picture is
really the best to see a Cantor set. See Table 4.1 for all the data for this example.

4.4.3 Describing box covers which are not box-hyperbolic

Next we examine some examples which Hypatia cannot show are box-hyperbolic.
In some cases, the finest box cover we could compute using current computer
resources is not box-hyperbolic due to the dynamical obstructions of Proposi-
tions 4.2.1 and 4.2.2. In other examples, there are no obvious obstructions, but
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Table 4.1: Data from verifying hyperbolicity with Hypatia.

params. c −.3 −3

a .1 −.25

sink period 1 N/A (horseshoe)

box size 1.43/26 = 0.022 2.57/26 = 0.04

# Υ boxes (1000s) original 245 20

V-ck. kills 187 15

Υ size (1000s) boxes 59 4

edges 2,300 120

Γ′ size (1000s) boxes 32 2.4

edges 1,250 75

σ(u, s) (in [0, π/2]) min. 0.94 0.6

avg. 1.09 1.2

Udiam (in [0, π/2]) max. 0.015 0.13

avg. 0.03 0.023

Sdiam (in [0, π/2]) max. 0.0008 0.11

avg. 0.0003 0.01

σ(u, s)− (Udiam + Sdiam) min. 0.9 0.47

(in [0, π/2]) avg. 1.07 1.15

M (bisection) 0.05957 0.111328

cs
k (in (0, 1]) min. 0.034 0.046

avg. 0.152 0.096

L (= |a| /M) 1.67869 2

cu
k (in (0, 1]) min. 0.072 0.033

avg. 0.158 0.09

box-hyp? YES YES

runtime (minutes) 30 < 1

memory used (MB) 220 20
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Table 4.2: Data on subdivision for Example 4.4.4.

params. c −1.05

a 0.05

sink period 2

box size 1.78/26 = 0.03,

1.78/27 = 0.016

# Υ boxes (1000s) original 570

V-ck. kills 432

Υ size (1000s) boxes 141

edges 5,000

Γ′ size (1000s) boxes 88

edges 3,150

runtime thus far (minutes) 12

memory used thus far (MB) 500

still the box cone field constructed by Hypatia is not preserved by Df . In this
latter case, we explain a few questions whose answers might help in constructing
a cover which is more likely to be box-hyperbolic.

Example 4.4.4. The Hénon diffeomorphism Ha,c with c = −1.05, a = .05 appears
to be conjugate to the inverse limit of the basilica (c = −1), so has a period
two sink. Separating the sink from J required a (27)4 grid on V = N∞(0, 1.78)
if uniformly subdividing the boxes. Alternatively, subdividing uniformly up to
a (26)4 grid and then invoking Option B (to subdivide only boxes seeming to
be in the sink basin) also separated the sink from J , and used much less memory
(about half). After this, we went one step further and had the program (uniformly)
subdivide once more all of the boxes in the cover of J . Shorthand for this choice
of subdividing is:

Refine: n = 6, Option B (n = 1, m = 2), n = 1.

Figure 4.2 shows the s.c.c.’s created with this subdivision procedure. Table 4.2
contains the data on the s.c.c.’s.

The program then computed statistics on the directions {uk, sk}, which are
given in Table 4.3. From this data we see there is a definite separation between
the directions.

Thus, we next tested box-hyperbolicity for this box cover. First, we tried the
option of finding a good M with bisection, then testing L = |a| /M . Both metrics
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Table 4.3: Data on stable/unstable directions for Example 4.4.4.

params. c −1.05

a 0.05

σ(u, s) (in [0, π/2]) min. 0.51

avg. 0.99

Udiam (in [0, π/2]) max. 0.1

avg. 0.018

Sdiam (in [0, π/2]) max. 0.018

avg. 0.0023

σ(u, s)− (Udiam + Sdiam) min. 0.44

(in [0, π/2]) avg. 0.97

runtime thus far (minutes) 23

memory used thus far (MB) 530

build successfully, but unfortunately, the cone check failed on (less than) 2% of the
edges. Figure 4.8 shows the box cover, with dark shading on the boxes where the
cone check failed. Table 4.4 contains the data for the metrics and cone check.

Note that most of the memory usage is for computing s.c.c.’s, while most of
runtime is for hyperbolicity testing.

We then tried the alternative to defining the metric constants, in which a good
L is found first, then the stable metric is defined in terms of the unstable metric
and the directions: cs

k = |det[uk sk]| /cu
k . However, this failed dramatically. The

unstable directions failed to be box-expansive by L = 1.19771. The directions were
box-expansive by L = 1.19770, but this defined stable and unstable constants such
that the minimum ratio cu

k/c
s
k was 8.7×10−7. The cone check failed on nearly every

edge. We are perplexed that this method defines such thin cones. Intuitively, it
seems more reasonable than defining the metrics independently, at least in the case
of small Udiam and Sdiam.
Question: Why does the method for defining stable metric constants in terms of
the other information produce such extreme cones? Can it be fixed?

In an attempt to improve the metric, we ran BetterMetric on this cover,
just trying L1 = 1.2. After about nine hours, it had still not successfully built
a better metric, and had fixed 300 edge multipliers. Figure 4.10 is a picture of
which boxes were in these weakest cycles. The placement of these boxes in the
picture raises some interesting questions. Recall that a Hénon diffeomorphism has
two fixed points, and since this parameter has simply a period two sink, it has two
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Table 4.4: Data on first metric and cones for Example 4.4.4.

params. c −1.05

a 0.05

M (bisection) 0.041992

cs
k (in (0, 1]) min. 9.5× 10−5

avg. 0.004

L (= |a| /M) 1.1907

cu
k (in (0, 1]) min. 8.4× 10−4

avg. 0.012

box-hyp? NO

cone check failed (1000s) boxes 9 (out of 88)

edges 53 (out of 3,500)

runtime (minutes) 45

memory used (MB) 530

saddle fixed points. The “pinch” points of the Julia set in this unstable manifold
picture are precisely the points which also lie in the stable manifold for the other
saddle fixed point. Notice these boxes of weakest unstable direction expansion are
those near the sink basin and the stable manifold of the other saddle fixed point.
Hypatia’s algorithm used the first saddle fixed point’s eigenvectors to determine
the unstable and stable directions {uk, sk}. Thus perhaps this did not create
ideal conditions for points near the other saddle fixed point. However, consulting
Figure 4.8 shows that the cone check did succeed in this area. We wonder:
Question. Will developing a method to use both saddle points information im-
prove likelihood of box-hyperbolicity?

Example 4.4.5. Recall the Hénon diffeomorphism Ha,c, c = −1.1875, a = .15 of
Example 1.3.19. It appears to be hyperbolic with a period two attracting cycle,
but not exhibit one dimensional behavior.

We found the quickest subdivision procedure to separate the sink from J was
to:

Refine: n = 6, Option B (n = 1, m = 5).

Figure 4.3 shows the s.c.c.’s created with this subdivision procedure. Table 4.5
gives the data for this cover.

The program then computed the statistics on the directions {uk, sk}, given in
Table 4.3, and we see this data is quite unsatisfactory, with a large maximum
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Figure 4.10: The darkest shading in this box cover shows boxes Bk in cycles
with the weakest expansion on the unstable directions, {uk},
for Ha,c, c = −1.05, a = .05, with boxes of side length 2R/27

and 2R/28.
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Table 4.5: Data on subdivision for Example 4.4.5.

params. c −1.1875

a 0.15

sink period 2

box size 1.9/25 = 0.06, 1.9/26 = 0.03,

1.9/26 = 0.03 1.9/27 = 0.015

# Υ boxes (1000s) original 184 682

V-ck. kills 116 417

Υ size (1000s) boxes 68 265

edges 2,500 12,400

Γ′ size (1000s) boxes 53 182

edges 2,500 7,800

Sdiam, and a σ(u, s)− (Udiam + Sdiam) as small as −1.3. Figure 4.5 is shaded to
illustrate σ(u, s)− (Udiam + Sdiam) for each box.

It appears that the most worrisome places are in the sink basin, thus we had
the program subdivide again with Option B (n = 1, m = 5). Figure 4.4 shows
this finer box cover, and Table 4.5 gives some data for the cover. The program
computed the unstable and directions and their statistics, given in Table 4.6, but
unfortunately, we see that there are still many boxes in this cover with σ(u, s) −
(Udiam + Sdiam) negative. Thus by Propositions 4.2.1 and 4.2.2, the map is not
box-hyperbolic on this cover.

Figure 4.6 is shaded to illustrate σ(u, s) − (Udiam + Sdiam) for each box in
this cover.
Question What selective subdivision procedure would be most effective for elim-
inating boxes in which σ(u, s)− (Udiam + Sdiam) < 0?

Example 4.4.6. Another type of diffeomorphism from our list of motivating exam-
ples, Example 1.3.21, is a horseshoe. It seems rather difficult to find a horseshoe
not in the range of Theorem 1.3.18 which is in a large region of stability (thus
robust and easier to compute). Using the program SaddleDrop for exploration,
Hubbard and Papadantonakis suggest the example Ha,c, c = −3.5, a = .57 ([1]).

We tested this diffeomorphism with Hypatia, and the results were quite similar
to Example 4.4.5, i.e., bad direction statistics. Though the previous examples only
had bad Sdiam, whereas this example seems to have bad Udiam as well as Sdiam.
So again by Propositions 4.2.1 and 4.2.2, the map is not box-hyperbolic on this
cover.
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Table 4.6: Data on stable/unstable directions for Example 4.4.5.

params. c −1.1875

a 0.15

box size 1.9/25 = 0.06, 1.9/26 = 0.03,

1.9/26 = 0.03 1.9/27 = 0.015

σ(u, s) (in [0, π/2]) min. 0.04 0.044

avg. 0.94 0.92

Udiam (in [0, π/2]) max. 0.55 0.42

avg. 0.055 0.03

Sdiam (in [0, π/2]) max. 1.55 1.53

avg. 0.023 0.011

σ(u, s)− (Udiam + Sdiam) min. −1.31 −0.71

(in [0, π/2]) avg. 0.86 0.88

runtime (minutes) 55

memory used (MB) 900
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Table 4.7: Data on subdivision for Example 4.4.6.

params. c −3.5

a −.57

sink period N/A (horseshoe)

box size 2.9/27 = 0.022, 2.9/28 = 0.011,

# Υ boxes (1000s) original 200 457

V-ck. kills 141 315

Υ size (1000s) boxes 59 142

edges 2,600 6,500

Γ′ size (1000s) boxes 29 63

edges 1,300 3,000

For horseshoe diffeomorphisms, there is no sink. Thus there are fewer options
for selective subdivision. To study this diffeomorphism, we simply had the program
uniformly subdivide the boxes, testing first a (28)4 grid on V = N∞(0, 2.9), then a
(29)4 grid.

Table 4.7 contains the data on the s.c.c.’s for both box covers. Table 4.8
contains the data on the directions for both covers.
Question. What is the most effective selective subdivision procedure for a horse-
shoe Hénon diffeomorphism?

For comparison purposes, Table 4.9 lists side by side all the data for the smallest
box level tested for the diffeomorphisms of Examples 4.4.5 and 4.4.6.
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Table 4.8: Data on stable/unstable directions for Example 4.4.6.

params. c −3.5

a −.57

box size 2.9/27 = 0.022, 2.9/28 = 0.011,

σ(u, s) (in [0, π/2]) min. 0.014 0.008

avg. 1.04 1.06

Udiam (in [0, π/2]) max. 1.47 1.5

avg. 0.033 0.018

Sdiam (in [0, π/2]) max. 1.1 1.52

avg. 0.043 0.311

σ(u, s)− (Udiam + Sdiam) min. −.72 −0.95

(in [0, π/2]) avg. 0.97 1.01

runtime (minutes) 24

memory used (MB) 700
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Table 4.9: Data comparing Examples 4.4.5 and 4.4.6.

params. c −1.1875 −3.5

a 0.15 −.57

sink period 2 N/A (horseshoe)

box size 1.9/27 = 0.015, 2.9/29 = 0.0057,

1.9/28 = 0.00075

# Υ boxes (1000s) original 682 457

V-ck. kills 417 315

Υ size (1000s) boxes 265 142

edges 12,400 6,500

Γ′ size (1000s) boxes 182 63

edges 7,800 3,000

σ(u, s) (in [0, π/2]) min. 0.044 0.008

avg. 0.94 1.06

Udiam (in [0, π/2]) max. 0.42 1.5

avg. 0.03 0.018

Sdiam (in [0, π/2]) max. 1.55 1.52

avg. 0.023 0.311

σ(u, s)− (Udiam + Sdiam) min. −.71 −0.95

(in [0, π/2]) avg. 0.88 1.01

runtime (minutes) 55 24

memory used (MB) 900 700



Chapter 5
Analysis of Hypatia’s performance

In this chapter, we reflect on the process of using a computer to study the chain
recurrent set. In the first section we compute estimates, in the case of a Hénon
diffeomorphism with fixed sink, showing for what box size we can guarantee sep-
aration between the box-chain transitive components for the sink and J . We give
a conclusion for the thesis in Section 5.2.

5.1 Separating J from a fixed sink

Throughout this section, let H be a Hénon diffeomorphism, H(x, y) = (x2 + c −
ay, x), with an attracting fixed point p = (z, z). Our goal is to quantify box
size needed to get the fixed sink in a separate s.c.c. from J , which we reach in
Proposition 5.1.10. This quantification will be in terms of a, c, and the eigenvalues,
λ1 6= λ2, of DpH, and λ = max(λ1, λ2).

The example that motivates this analysis is:

Example 5.1.1 (The 3-1 map). Recall that the Hénon map with c = −1.17, a =
.3 is an interesting example because it appears to have has two attracting periodic
cycles, one of period three and one of period one. This is not a phenomenon which
appears in z2 + c. Unfortunately, we could not even begin hyperbolicity testing
on this map with Hypatia, because the algorithm to find the box cover failed to
separate the sinks from J before running out of the 4 GB of RAM available on our
computer.

In an attempt to find a good cover, we used our program to uniformly subdivide
all boxes to obtain a (27)4 grid on V , with box side length 2R/27 = 0.03. Then we
used Option B, which subdivided about half of the boxes, presumably those closest
to the sinks. At this point, the smallest boxes had side length 2R/28 = 0.015. The
s.c.c. graph Γ was composed of 944,000 boxes and 66,500,000 edges. This used
approximately 3.2 GB of RAM, thus it seemed we could not subdivide significantly
farther.

We also tried uniformly subdividing to obtain a (26)4 grid on V , then invoking
Option B twice, to get some boxes as small as above. However, this did not
significantly decrease the amount of memory used.

Shown in Figure 5.1 is the unstable manifold slice of the cover for a (27)4 grid
on V . We were initially surprised that we could not achieve this separation. This
example is what motivated the estimates of this section.

First we find a euclidean disk lying in the sink basin, to prove Proposition 5.1.7.
Second, we quantify where a region exists near the sink containing non ε-chain re-
current points, yielding Proposition 5.1.9. We use this to derive Proposition 5.1.10,
calculating a bound on the side length of boxes in the cover such that if boxes are

97
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Figure 5.1: A box cover of R for Ha,c, c = −1.17, a = .3, boxes of side length
2R/27 and 2R/28. Lighter gray is approximately in K+.

smaller than this bound, then the s.c.c for the fixed sink and the s.c.c. for J will
be different. Finally, we apply our estimates to the 3-1 map.

A dynamically significant norm

To quantify the dynamical notations of interest, we need to start with a metric
which respects the dynamics.

Definition 5.1.2. Note the Jacobian is

DpH =

[
2z −a
1 0

]
Suppose λ1 6= λ2 are the eigenvalues of DzH. Let λ = max(|λ1| , |λ2|). Note that
since p is a fixed sink, |λ| < 1. Let W = {v1,v2} be the basis of eigenvectors,
where we choose vj = (λj, 1). Then A = [v1 v2] is the change of basis matrix, i.e.,
if {e1, e2} is the standard basis in C2, then Aej = vj. Let ‖·‖e be the euclidean
norm in C2. Define the norm ‖·‖W by

‖u‖W =
∥∥A−1u

∥∥
e
.

We show below that H is contracting with respect to ‖·‖W in an neighborhood
of p.

First, we show this metric is uniformly equivalent to euclidean, and compute
the constants of equivalence.

Lemma 5.1.3. For all u ∈ C2,

C ‖u‖W ≤ ‖u‖e ≤ D ‖u‖W ,
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where C, D are positive constants given by

C =
|λ1 − λ2|√

2 + |λ1|+ |λ2|
, D =

√
2 + |a|+ λ2.

Proof. First, we compute C. Since we chose eigenvectors vj = (λj, 1), we have

A =

[
λ1 λ2

1 1

]
, and A−1 =

1

λ1 − λ2

[
1 −λ2

−1 λ1

]
.

Now let (x, y) be any vector in C2. Then∥∥∥∥[
x

y

]∥∥∥∥
W

=

∥∥∥∥A−1

[
x

y

]∥∥∥∥
e

=
1

|λ1 − λ2|
(
|x− λ2y|2 + |−x + λ1y|2

)1/2
.

Using the triangle inequality, we get

|λ1 − λ2|2
∥∥∥∥A−1

[
x

y

]∥∥∥∥2

e

= |x− λ2y|2 + |−x + λ1y|2

≤ |x|2 + |λ2|2 |y|2 + 2 |x| |y| |λ2|
+ |x|2 + |λ1|2 |y|2 + 2 |x| |y| |λ1| .

Observe the useful bound:

0 ≤ (|x| − |y|)2 implies 2 |x| |y| ≤ |x|2 + |y|2 . (5.1)

Applying this to the above, we get

|λ1 − λ2|2
∥∥∥∥A−1

[
x

y

]∥∥∥∥2

e

≤ |x|2 + |λ2|2 |y|2 + (|x|2 + |y|2) |λ2|

+ |x|2 + |λ1|2 |y|2 + (|x|2 + |y|2) |λ1|
= |x|2 (2 + |λ1|+ |λ2|) + |y|2

(
|λ1|2 + |λ2|2 + |λ1|+ |λ2|

)
.

Since the eigenvalues have modulus less than one, we conclude

|λ1 − λ2|2
∥∥∥∥A−1

[
x

y

]∥∥∥∥2

e

≤ (|x|2 + |y|2)(2 + |λ1|+ |λ2|).

Thus we see that we can set C by

C =
|λ1 − λ2|√

2 + |λ1|+ |λ2|
.

Next, we compute D. We do this in a parallel way to the above, using A instead
of A−1. We want D so that for all (z, w) in C2, ‖(z, w)‖e ≤ D ‖(z, w)‖W. Since
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A is invertible, we can instead consider all (x, y) ∈ C2 and let (z, w) = A(x, y).
Then we need D so that ‖A(x, y)‖e ≤ D ‖A(x, y)‖W = D ‖(x, y)‖e .

So let (x, y) be any vector in C2. Then∥∥∥∥A

[
x

y

]∥∥∥∥
e

=
(
|λ1x + λ2y|2 + |x + y|2

)1/2
.

Using the triangle inequality again, we get:∥∥∥∥A

[
x

y

]∥∥∥∥
e

≤ |λ1|2 |x|2 + |λ2|2 |y|2 + 2 |x| |y| |λ1| |λ2|+ |x|2 + |y|2 + 2 |x| |y| .

Then using Equation 5.1, we reduce this to:∥∥∥∥A

[
x

y

]∥∥∥∥
e

≤ |x|2
(
|λ1|2 + |λ1| |λ2|+ 2

)
+ |y|2

(
|λ2|2 + |λ1| |λ2|+ 2

)
.

Recall we defined λ = max(|λ1| , |λ2|). Also, note that det(DH) = a, thus
|λ1| |λ2| = |a|. Hence, we see we can set D by:

D =
√

2 + |a|+ λ2.

Remark. Since the eigenvectors are (λj, 1), the difference |λ1 − λ2| is the determi-
nant of A. This is small if the angle difference between the eigenvectors is small.
In this case, C captures that the metric is skewed far from euclidean, so only a very
small euclidean ball will fit inside a W-ball. Note also that D will be large only
when the eigenvalues are large. Thus D captures the strength of the contraction.

Estimating the size of the sink basin

Now that we know how to convert between the two norms, we are ready to take
some measurements in the sink basin. To do so, we will approximate H by its
linearization at p = (z, z). Recall that

Lp

[
x

y

]
= H

[
z

z

]
+ DpH

[
x− z

y − z

]
=

[
z2 + c− 2z(x− z)− ay

x

]
.

We first bound the error between H and Lp in the W-norm.

Lemma 5.1.4.

If

∥∥∥∥[
x− z

y − z

]∥∥∥∥
W

= r, then

∥∥∥∥H

[
x

y

]
− Lp

[
x

y

]∥∥∥∥
W

≤ r2

(
D2

C

)
.
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Proof. Let (x, y) ∈ C2 be such that∥∥∥∥[
x− z

y − z

]∥∥∥∥
W

= r.

It is easy to compute the quadratic error in approximating H with Lp in the
euclidean metric, since

H

[
x

y

]
− Lp

[
x

y

]
=

[
(x− z)2

0

]
.

We then convert to the W-norm, using Lemma 5.1.3 twice, to get∥∥∥∥[
(x− z)2

0

]∥∥∥∥
W

≤ 1

C

∥∥∥∥[
(x− z)2

0

]∥∥∥∥
e

=
1

C
|x− z|2

≤ 1

C
|x− z|2 + |y − z|2 =

1

C

∥∥∥∥[
x− z

y − z

]∥∥∥∥2

e

≤ D2

C

∥∥∥∥[
x− z

y − z

]∥∥∥∥2

W

=

(
D2

C

)
r2.

Next, we show that in the W-norm, the linearization moves points closer to p
by a linear contraction.

Lemma 5.1.5.

If

∥∥∥∥[
x− z

y − z

]∥∥∥∥
W

= r, then

∥∥∥∥Lp

[
x

y

]
−

[
z

z

]∥∥∥∥
W

≤ λr.

Proof. Since p is fixed,

Lp

[
x

y

]
−

[
z

z

]
= DpH

[
x− z

y − z

]
.

Now to work with DpH, note that since the columns of A are the eigenvectors
of DpH, we have

A−1DpHA =

[
λ1 0
0 λ2

]
.

We use this to compute that∥∥∥∥DpH

[
x− z

y − z

]∥∥∥∥
W

=

∥∥∥∥A−1DpH

[
x− z

y − z

]∥∥∥∥
e

=

∥∥∥∥[
λ1 0
0 λ2

]
A−1

[
x− z

y − z

]∥∥∥∥
e

≤ λ

∥∥∥∥A−1

[
x− z

y − z

]∥∥∥∥
e

= λ

∥∥∥∥[
x− z

y − z

]∥∥∥∥
W

= λr,

where recall λ = max{|λ1| , |λ2|}.
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Now we can combine the above two lemmas to estimate H in the sink basin.

Lemma 5.1.6.

If

∥∥∥∥[
x− z

y − z

]∥∥∥∥
W

= r, then

∥∥∥∥H

[
x

y

]
−

[
z

z

]∥∥∥∥
W

≤ λr + r2

(
D2

C

)
.

Proof. This follows immediately from Lemmas 5.1.4 and 5.1.5 and the triangle
inequality.

We now have the tools we need to estimate the euclidean size of the sink basin.

Proposition 5.1.7. Let

τ =
|λ1 − λ2|2

(2 + |λ1|+ |λ2|)(2 + λ2 + |a|)
.

Then the euclidean disk centered at p of radius rp = τ(1 − λ) is contained in
the immediate sink basin of p.

Proof. Note C2/D2 = τ .
We first show that the W-disk centered at p of radius sp = (1 − λ)(C/D2),

DW(p, sp), is contained in the sink basin. For, if ‖(x− z, y − z)‖W = r ≤ sp, then
by Lemma 5.1.6, ∥∥∥∥H

[
x

y

]
−

[
z

z

]∥∥∥∥
W

≤ λr + r2(D2/C) ≤ r.

Thus H maps the disk DW(p, sp) into itself, and every point in it closer to p in the
W-norm. Thus this disk is contained in the immediate sink basin.

Now we simply use Lemma 5.1.3 to convert to a euclidean statement. Let
rp = sp C. Then if ‖(x− z, y − z)‖e ≤ rp, we have

‖(x− z, y − z)‖W ≤ 1

C
‖(x− z, y − z)‖e ≤

rp

C
= sp.

Thus, De(p, rp) ⊂ DW(p, sp) ⊂ {immediate sink basin}, and

rp = Csp = (1− λ)
C2

D2
= (1− λ)τ.

Separating the box-chain transitive components

We now investigate the box-chain transitive components of the chain recurrent
set. First, given ξ sufficiently small, we compute a region Aξ, contained in the
immediate sink basin in which the contraction toward the fixed point makes a
jump of more than ξ. This will imply that Aξ is not in the ξ-chain recurrent set
with respect to the W-norm, and hence this region separates ξ-chain components.
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Lemma 5.1.8. Let ξ > 0 be small enough that

ξ <
(1− λ)2

4

C

D2
.

Then, in the W-norm, the ξ-chain transitive component that contains the sink is
separated from the ξ-chain transitive component of any other invariant set by a
distance of (1− λ)C/D2.

Proof. Define Aξ by

Aξ =

{[
x

y

]
: r− <

∥∥∥∥[
x

y

]∥∥∥∥
W

< r+

}
,

where

r± =
C

2D2

(
(1− λ)±

√
(1− λ)2 − 4ξD2/C

)
.

We show that if (x0, y0) ∈ Aξ, it is not ξ-chain recurrent with respect to ‖·‖W.
Note that r± are the roots of the polynomial

q(r) = (D2/C)r2 − (1− λ)r + ξ.

Thus ξ < C(1− λ)2/4D2 is precisely the condition that needs to hold in order to
be positive. Thus for r ∈ (r−, r+), we have q(r) < 0.

Now let (x, y) ∈ Aξ, so that r = ‖(x, y)‖W ∈ (r−, r+). Then by Lemma 5.1.6
and the triangle inequality, we get∥∥∥∥[

x

y

]
−H

[
x

y

]∥∥∥∥
W

≥
∥∥∥∥[

x

y

]
−

[
z

z

]∥∥∥∥
W

−
∥∥∥∥[

z

z

]
−H

[
x

y

]∥∥∥∥
W

≥ r −
(
λr + r2

(
D2/C

))
= ξ − q(r) ≥ ξ.

To finish the proof, we show that this ξ distance between a point and its
image is enough to block ξ-chain recurrence, since we are in a region of strict
contraction. Suppose (x0, y0) ∈ Aδ, with ‖(x0, y0)‖W = r. Let n ∈ N and
{(x1, y1), . . . , (xn−1, yn−1)} be any points s.t. ‖(xj+1, yj+1)−H(xj, yj)‖W < ξ, for
0 ≤ j ≤ n − 1. To show ‖(x0, y0)−H(xn−1, yn−1)‖W ≥ ξ, we will first show
inductively that for 0 ≤ j ≤ n− 1,∥∥∥∥[

xj

yj

]
−

[
z

z

]∥∥∥∥
W

≤ r, hence by Lemma 5.1.6,

∥∥∥∥H

[
xj

yj

]
−

[
z

z

]∥∥∥∥
W

≤ λr + r2(D2/C).

(5.2)
We have (5.2) for j = 0 already. Now let 0 < j < n− 1, and suppose we know

(5.2) for (xj, yj). Then, by choice of (xj+1, yj+1), we get∥∥∥∥[
xj+1

yj+1

]
−

[
z

z

]∥∥∥∥
W

≤
∥∥∥∥[

xj+1

yj+1

]
−H

[
xj

yj

]∥∥∥∥
W

+

∥∥∥∥H

[
xj

yj

]
−

[
z

z

]∥∥∥∥
W

≤ ξ + λr + r2(D2/C) = q(r) + r ≤ r.
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Thus induction verifies (5.2). In particular, this statement holds for j = n− 1.
But then∥∥∥∥[

x0

y0

]
−H

[
xn−1

yn−1

]∥∥∥∥
W

≥
∥∥∥∥[

x0

y0

]
−

[
z

z

]∥∥∥∥
W

−
∥∥∥∥H

[
xn−1

yn−1

]
−

[
z

z

]∥∥∥∥
W

≥ r − λr − r2(D2/C) = ξ − q(r) ≥ ξ.

This lemma leads directly to:

Proposition 5.1.9. Let

τ =
|λ1 − λ2|2

(2 + |λ1|+ |λ2|)(2 + λ2 + |a|)
.

Let η > 0 be small enough that η < τ(1 − λ)2/4. Then the η-chain transitive
component containing the sink is separate from the η-chain transitive component
of any other invariant set.

In particular, there exists a connected set Sη in the immediate sink basin which
lies in C2 \ Rη, i.e., the complement of the η-chain recurrent set.

Proof. Note C2/D2 = τ .
We simply convert Lemma 5.1.8 to euclidean estimates, using Lemma 5.1.3.

Let η = ξC, so that

η = ξC <
(1− λ)2

4

C2

D2
=

(1− λ)2

4
τ.

Define the set Sη to be simply the set Aξ, from the proof of Lemma 5.1.8. Let
(x0, y0) ∈ Sη, and let n ∈ N and {(x1, y1), . . . , (xn−1, yn−1)} be any points such that∥∥∥∥[

xj+1

yj+1

]
−H

[
xj

yj

]∥∥∥∥
e

< η, 0 ≤ j ≤ n− 1.

Then ∥∥∥∥[
xj+1

yj+1

]
−H

[
xj

yj

]∥∥∥∥
W

< η/C = ξ.

Thus by Lemma 5.1.8,∥∥∥∥[
x0

y0

]
−H

[
xn−1

yn−1

]∥∥∥∥
e

≥ C

∥∥∥∥[
x0

y0

]
−H

[
xn−1

yn−1

]∥∥∥∥
W

≥ Cξ = η.

Thus, (x0, y0) is not in Rη.

Now we apply the estimates of Proposition 5.1.9 to guarantee when the Julia set
s.c.c. will be separated from the s.c.c. for the fixed sink, to prove Proposition 5.1.10.
Recall the box-chain transitive components are precisely the s.c.c.’s.
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Proposition 5.1.10. Suppose Vε is a box cover of R, corresponding to a box-chain
recurrent graph Γδ. Let M > 1 be such that δ < ε/M . Let

τ =
|λ1 − λ2|2

(2 + |λ1|+ |λ2|)(2 + λ2 + |a|)
,

ζ =
(1− λ)2

4
τ, and

κ =
[
1 + 1/M + max

(
1, (1− λ)

√
τ + 2 ‖p‖∞ + |a|∞

)]
.

If ε < 1
2

(
−κ +

√
κ2 + 4ζ

)
, then the box-chain transitive component of Γ contain-

ing J will be different from the box-chain transitive component of Γ containing the
sink p.

Proof. Note C2/D2 = τ .
We show that the s.c.c.’s will separate if ε > 0 is small enough that ε2 + εκ < ζ.
To find such ε, let q(ε) = ε2+εκ−ζ. Then the roots of q are (−κ±

√
κ2 + 4ζ)/2.

Both roots are real, with one positive and one negative. We seek ε > 0 small
enough that q(ε) < 0, which is the same as ε smaller than the positive root (−κ +√

κ2 + 4ζ)/2.
Now, by Proposition 5.1.9, for η < (τ(1− λ)2/4) there will be a connected set

Sη = Aξ in the immediate sink basin which lies in C2 \ Rη.
Recall that Theorem 2.2.6 calculates an ε′ such that B ⊂ Rε′ . It specifies that

ε′ = δ + ε + r, where r is computed in Lemma 2.2.4 as r = ε2 + ε(2R′ + |a|∞).
Examining the proof of Lemma 2.2.4, we see that in order to apply this to Aξ, we
can use a slightly better estimate for r, so instead of ε′ we get

ν = ε/M + ε + ε2 + ε max
(
1, 2R+ + |a|∞

)
,

where R+ is a bound on the box-norm, ‖·‖∞, of a point in Aξ, which we calculate
below. Then for B = B(Vε), we get B ∩Aξ ⊂ Rν . Hence if ν ≤ η, then Rν ⊂ Rη.
But since Sη = Aξ, by Proposition 5.1.9, we get

Sη ∪B ⊂ Sη ∪ Rη = ∅.

Thus the cover does not intersect Sη.
Now since DW(p, sp) is mapped into itself by H, there will be no edges from

boxes inside DW(p, sp) to those outside of DW(p, sp). Since Sη ⊂ DW(p, sp), the
s.c.c. containing the sink will not be part of the s.c.c. containing J , whenever the
box size ε is small enough that ν ≤ η < (τ(1− λ)2/4). To maximize the box side
length ε, we use the bound that η < (τ(1− λ)2/4).

We need to compute that R+, a bound on the norm of a point in Aξ, with
respect to ‖·‖∞, is

R+ = (1− λ)
√

τ/2 + ‖p‖∞ .

Substituting this value of R+ into the definition of ν, and requiring ν < (τ(1 −
λ)2/4) will finish the proof.
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To compute R+, we use that Aξ in the W-norm is centered at the point p, and

has outer radius r+ = C
2D2

(
(1− λ) +

√
(1− λ)2 − 4ξD2/C

)
. But at the maximum

η = ξC, the discriminant is zero, so we have r+ ≤ C
2D2 (1 − λ). Converting to the

euclidean norm, we have a bound of Dr+ ≤ C
2D

(1− λ) =
√

τ(1− λ)/2. Now since
the box-norm is less than euclidean, we get that if (x, y) ∈ A, then ‖(x, y)‖∞ ≤√

τ(1− λ)/2 + ‖p‖∞ =: R+.

Remark. In the above proposition, one does not need all boxes of size ε, but rather
just the boxes in the immediate sink basin, computed in Proposition 5.1.7. Thus
a selective subdivision procedure targeting the sink basin could be advantageous
for speeding up separation.

One dimension

Finally, note that all of the work of this section applies to Pc(z) = z2 + c, in the
case of an attracting fixed sink p with multiplier λ = |P ′c(p)|. In this case, we do
not need the W-norm, so take τ = C = D = 1. Then conclude that the disk
De(p, (1− λ)) is in the sink basin and for δ < (1− λ)2/4 the set:

Aδ = {z : r− < |z − p| < r+},

where

r± =
1

2

(
(1− λ)±

√
(1− λ)2 − 4δ

)
,

is in C \Rδ. Then we see that in order to guarantee separation of J from the sink,
for

κ = (1 + 1/M + (1− λ) + 2 |p|)) , and ζ = (1− λ)2/4,

we need boxes of side length ε satisfying

ε <
(
−κ +

√
κ2 + 4ζ

)
/2.

The 3-1 map

We now apply our estimates to the (c = −1.17, a = .3) example, to determine how
much smaller the boxes would need to be to get separation of J from the fixed
sink. Table 5.1 shows the values of the constants involved in the estimates.

Thus, we would need a box side length less than 0.00004 to get just the fixed
sink separated from J . But this is several orders of magnitude smaller than the best
we could compute with current resources (0.015). Also, note that the guaranteed
euclidean disk contained in the sink basin is only of radius 0.0034. But visually
inspecting this example using FractalAsm suggests the immediate basin seems
much larger.
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Table 5.1: Constants for sink/J separation estimates for Example 5.1.1.

p = (−0.612,−0.612)

λ1 = −.885

λ2 = −.34

λ = .885

τ = 0.029871571

τ(1− λ) = 0.0034352307

κ = 2.5448759

ζ = 9.876288× 10−5

ε < 3.880793× 10−5

5.2 Conclusions

The motivation for this thesis was to write a program testing hyperbolicity of
a complex Hénon map using basic computer-friendly notions, such as the chain
recurrent set, and the cone field condition to check for hyperbolicity. We had
some measure of success in this. The program verifies hyperbolicity for some
diffeomorphisms.

One goal for this project was the exploration of the behavior of certain complex
Hénon diffeomorphisms which cannot be described in terms of one dimensional
phenomena, as described in Section 1.3. Unfortunately, the diffeomorphisms for
which we can verify hyperbolicity are not of this type.

We found that one of the key issues which determines success or failure of the
hyperbolicity test is a clear separation of the sinks from the Julia set, in fact more
separation is needed than we had originally guessed. For example, as discussed in
Example 4.4.4, Figure 4.8 shows that most of the places where the cone check failed
were those closest to the sink basin. Another indicator is Example 4.4.5, in which
Figures 4.5 and 4.6 show that the boxes in which the unstable and stable directions
were not separated enough to define cones preserved by the diffeomorphism were in
the sink basin. Also, merely getting the box cover refined sufficiently that the sink
s.c.c. was separate from the Julia set s.c.c. was surprisingly difficult, as discussed
in Example 5.1.1, Figure 5.1. This example shows the limitations of finding the
chain recurrent set.

Developing a finer cover with subdivision of all boxes leads to exponential
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increase in computer resources. The alternative is choosing only a small fraction
of the boxes to be subdivided, and hoping that the right choice will help eliminate
undesirable boxes from the cover. However, as discussed in Section 4.4.3, it is
not clear which boxes to choose, or that subdividing only a few boxes will even
eliminate enough boxes to make a difference in the cover.

This work demonstrates that computer programs can be useful in rigorously
describing behavior of hyperbolic complex Hénon diffeomorphisms. The approach
we adopted is straightforward. Our work suggests that either new approaches or
significantly greater computer resources are required to verify hyperbolicity of the
motivating examples of Section 1.3. We look forward to exploring other techniques.



Appendix A
Interval arithmetic
In order to genuinely prove dynamical properties, Hypatia uses a method of con-
trolling round-off error in the computations, called interval arithmetic (IA). This
method was recommended to us by Warwick Tucker, who used it in his recent
computer proof that the Lorenz differential equation has the conjectured geometry
([64, 63]).

In fact we use IA not only to control error, but take advantage of the structure
of this method in the algorithm of Hypatia. We thus give a very brief description
of IA below, and refer the interested reader to [63, 51, 52, 18].

On a computer, we cannot work with real numbers, but rather we work over the
finite space F of numbers representable by binary floating point numbers no longer
than a certain length. For example, since the number 0.1 is not a dyadic rational,
it has an infinite binary expansion. So the computer cannot encode exactly this
number. Instead, the basic objects of arithmetic are not real numbers, but rather
closed intervals, [a, b], with end points in F. We denote this space of intervals by
IF. So to encode the number 0.1, IA use the idea of directed rounding:

x ∈ [↓x↓ , ↑x↑] ,

where ↓x↓ is the largest number in F that is strictly less than x (i.e., x rounded
down), and ↑x↑ is the smallest number in F that is strictly greater than x (i.e., x
rounded up).

If the user is interested in a computation involving real numbers, then IA
performs the computation using intervals in IF which contain those real numbers,
and gives the answer as an interval in IF which contains the real answer.

Consider for example the operation of addition of two intervals [a, b], [c, d] ∈ IF.
IA defines addition by:

[a, b] + [c, d] = [↓a + c↓ , ↑b + d↑] .

Hence if x ∈ [a, b] and y ∈ [c, d], then x + y ∈ [a, b] + [c, d].
The other operations are defined analogously:

[a, b]− [c, d] = [↓a− d↓ , ↑b− c↑]
[a, b]× [c, d] =

[ymin(ac, ad, bc, bd)
y ,

xmax(ac, ad, bc, bd)
x]

[a, b]÷ [c, d] = [a, b]×
[y1/d

y ,
x1/c

x]
, if 0 /∈ [c, d].

In higher dimensions, IA operations can be carried out component-wise, on
interval vectors. Given X a number in Cn, or an interval vector in R2n = Cn,
we denote by Hull(f(X)) the interval vector computed by IA which contains the
image of X under a polynomial map or diffeomorphism, f .

In the main body of the dissertation, we almost never mention explicitly how we
are using interval arithmetic, despite the fact that one must think carefully about
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how to use IA in each situation. It tends to create problems with propagating
increasingly large error bounds if not handled carefully. For example, iterating a
polynomial map or diffeomorphism like Pc or Ha,c on an interval vector which is
not very close to an attracting period cycle will give a tremendously large interval
vector after only a few iterates. That is, if B = [a, b] × [c, d] is an interval vector
in C, and one attempts to compute a box containing P 10

c (B) by:

for (j = 1) to (j = 10) do
B = Pc(B)
j = j + 1

then the box B will likely grow so large that its defining bounds become machine
∞, i.e., the largest floating point in F. Similarly, one would also never want to try
to compute:

DBnH ◦ · · · ◦DB1H ◦DB0H(u),

for a vector u ∈ C2, since the entries would blow up.
Hypatia uses IA for all of its rigorous computations. The IA routines were all

provided by the PROFIL/BIAS package, available at [58].



Appendix B
Pseudo-code

The algorithm fExpands below is described in Section 3.2. Here we provide its
pseudo-code.

Algorithm B.0.1.

fExpands(Γ′, L):
do SpanTree(vertex 0 of Γ′)
for every edge (u, v) in the graph Γ′

if (Check[u][v] = 0) then (if edge not in spanning tree)
set Check[u][v] = 1
if (FixMetricEdge(u,v,u,L) = 0) then return 0

return 1 (successful)

SpanTree(v):
set Color[v] to Gray
for each vertex w in Adjacency list of v do

if Color[w] is White
set Check[v][w] = 1 (to note that we’ve checked edge (v, w))
set cw = Lcv/λv

do SpanTree(w)
set Color[v] =Black

FixMetricEdge(a, b, u, L):
if (cb ≥ Lca/λa) then return 1 (edge (a, b) OK )
else if (b = u) then return 0 (cannot increase cu, so fails)
else

set cb = Lca/λa (increase cb)
for each w in adjacency list of b do

if (Check[b][w] = 1) then
if (FixMetric(b,w,u,L) = 0) then return 0

return 1 (if get here, it worked)

The Bisection method is mentioned in Section 3.4.2. Below we give pseudo-
code for it.

Algorithm B.0.2.

Bisection(Γ′)
set L = 2; hiL = 2; loL = 1
for k = 0 to k = M do

if (fExpands(Γ′, L)=1) then (try raising L)
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set hiL = L; loL = L; L = (hiL + L)/2
else (try lowering L)

set hiL = L; L = (loL + L)/2
increment k = k + 1

Below, a slightly modified fExpands (needed in Section 3.4.2) stores the bad
cycle, in case of failure to expand, and computes the product of the multipliers
along the cycle as it unravels the recursive function calls after the failure.

Algorithm B.0.3.

CheckCycles(Γ′, δ):
set L = 2
while (L > 1) do

if (fExpands(Γ′, L) = 1) then return 1 (i.e., expansion successful)
else if (multiplier ≤ 1) then return 0 (cannot show box-exp. on Γ′)
else (try to show box-exp. by lower L)

set L = min(multiplier, L− δ)
return 0 (if reached this, unsuccessful. maybe δ too large)

fExpands(Γ′, L):
do SpanTree(Vertex 0 of Γ′)
for every edge (u, v) in the graph Γ′

if (Check[u][v] = 0) (i.e., if edge not in spanning tree)
set Check[u][v] = 1
if (FixMetricEdge(u,v,u,L) = 0) (found bad cycle and multiplier)

compute n = length(badcycle)
set multiplier =(multiplier)1/n

return 0
return 1

FixMetricEdge(a, b, u, L):
if (cb ≥ Lca/λa) then return 1. (edge (a, b) is OK )
else if (b = u) then (cannot increase cu, so fails)

put b in badcycle (or edge b → u, and set multiplier = λb

return 0
else

set cb = Lca/λa (i.e., increase cb)
for each w in adjacency list of b

if (Check[b][w] = 1) then
if (FixMetric(b,w,u,L)=0), then do

put a in badcycle (or edge a → b)
set multiplier = multiplier∗λa

return 0
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return 1 (if get here, it worked)

BetterMetric is first used in Section 3.5.2. Here is the pseudo-code descrip-
tion:

Algorithm B.0.4.

BetterMetric(Γ′, L0):
initialize edgeL[u][v]= 0 for all edges (u, v)
set edgeL[u][v]= L0 for edges in badcycle
set M = some cap for number of attempts
set k = 0 and full=0
set loL=L0 and L =loL + δ
while (k < M and full= 0)

if (BetterfExpands(Γ′, L) = 0)
for each edge (u, v) in badcycle do

if (edgeL[u][v]= 0) then set edgeL[u][v]=loL
else (metric built! )

print/store information on new metric constants
if (edgeL[u][v] 6= 0 on all edges) then set full= 1

(all edges marked, so stop)
else set loL = L and L = L + δ (try larger L)

increment k = k + 1

BetterfExpands is exactly the same as fExpands, except that it calls Bet-
terSpanTree and BetterFixMetricEdge. The only difference in these last two is
that we replace each instance of using L on edge (u, v) to compute the metric
with:

if (edgeL[u][v] 6= 0) then use edgeL[u][v]
else use L
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sion. I. Astérisque, (222):5, 201–231, 1994. Complex analytic methods in
dynamical systems (Rio de Janeiro, 1992).

[26] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimen-
sions. In Complex potential theory (Montreal, PQ, 1993), pages 131–186.
Kluwer Acad. Publ., Dordrecht, 1994. Notes partially written by Estela A.
Gavosto.

[27] John Erik Fornæss and Nessim Sibony. Classification of recurrent domains for
some holomorphic maps. Math. Ann., 301(4):813–820, 1995.

[28] John Erik Fornaess and Nessim Sibony. Complex dynamics in higher dimen-
sion. II. In Modern methods in complex analysis (Princeton, NJ, 1992), pages
135–182. Princeton Univ. Press, Princeton, NJ, 1995.

[29] John Erik Fornæss and Nessim Sibony. Oka’s inequality for currents and
applications. Math. Ann., 301(3):399–419, 1995.

[30] John Erik Fornaess and Nessim Sibony. Fatou and Julia sets for entire map-
pings in Ck. Math. Ann., 311(1):27–40, 1998.



116

[31] John Erik Fornæss and Nessim Sibony. Hyperbolic maps on P2. Math. Ann.,
311(2):305–333, 1998.

[32] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimen-
sion. In Several complex variables (Berkeley, CA, 1995–1996), pages 273–296.
Cambridge Univ. Press, Cambridge, 1999.

[33] John Erik Fornæss and Nessim Sibony. Dynamics of P2 (examples). In Lami-
nations and foliations in dynamics, geometry and topology (Stony Brook, NY,
1998), pages 47–85. Amer. Math. Soc., Providence, RI, 2001.

[34] John Erik Fornæss and Nessim Sibony. Some open problems in higher dimen-
sional complex analysis and complex dynamics. Publ. Mat., 45(2):529–547,
2001.

[35] Shmuel Friedland and John Milnor. Dynamical properties of plane polynomial
automorphisms. Ergodic Theory Dynamical Systems, 9(1):67–99, 1989.

[36] George Grätzer. Math into LATEX2εThird edition. Birkhäuser Springer, 2000.
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complex hénon mappings. Journal of Experimental Mathematics, to appear.

[42] John Hubbard, Peter Papadopol, and Vladimir Veselov. A compactification
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