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Abstract of the Dissertation,

Dynamics of Quadratic Polynomials:
Geometry and Combinatorics of the Principal
Nest,

by
Rodrigo Alonso Pérez
Doctor of Philosophy
in
Mathematics
State University of New York
at Stony Brook

2002

In order to study the combinatorics of non-renormalizable recur-
rent quadratic polynomials, we supplement the definition of prin-
cipal nest with a frame system. This provides enough information
to describe the combinatorial type for every level of the nest. As
a consequence, we give necessary and sufficient conditions for the
admissibility of a type and prove that given a sequence of non-
renormalizable finite admissible types, there is a polynomial whose
nest realizes it. In particular, we give a classification of maximal
hyperbolic components of the Mandelbrot set according to combi-
natorial type.

In Chapter 4, we present some families of maps that are easily
described in terms of their frame descriptions. For any irrational p
we give infinite families of maps whose postcritical sets behave like
adding machines of variable stepsize and are semi-conjugate to the
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circle rotation of angle p. Then, for superattracting polynomials
(@ in a prime hyperbolic component we introduce the class of Q-
recurrent maps.

In Chapter 5, we develop the geometric properties of the last class.
The nest pieces of a QQ-recurrent polynomial f are shown to con-
verge in shape to the filled Julia set of (). From this result we can
deduce the exact rate of convergence of the principal moduli.

As a particular example, we give a complete characterization of
the family of complex quadratic Fibonacci polynomials: They are
precisely the set of (22 —1)-recurrent polynomials. This is a Cantor
set of Hausdorff dimension 0 possessing a natural dyadic structure.

In Chapter 6 we transfer the previous results to the parameter
plane. There, the paranest pieces around a ()-recurrent parameter
cg converge to K.

As a consequence of the parametric results, we obtain the follow-
ing auto-similarity result: Let ¢, co € OM be two parameters such
that f., has no parabolic points or Siegel disks. Then there ex-
ists a sequence of parapieces {Y1, Yo, ...} (most likely not nested)
converging to ¢; as compact sets, but such that ¥, — K, in
shape.
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Chapter 1

Introduction

We will consider quadratic polynomials f.(z) : z — 2> + ¢ with recurrent
critical orbit O = {0, ¢, f(c), ...} and study the behavior of O by means of the
principal nest. This is a collection of strictly nested domains (a subcollection
of the set of puzzle pieces) around the critical point 0, determined by the
combinatorics of . At every level there is a central piece surrounding 0 and
(possibly) some lateral pieces nearby enclosing portions of @. The number
of pieces in each level plus the way they map into pieces of the previous
level, provide most of the combinatorial information that distinguishes between
different behaviors.

Each level of the nest can be given the structure of a generalized quadratic
map. This idea opens the door for various analytic techniques, but does not
make full use of the structure of the underlying Julia set. For real polynomials,
this is not a problem since the invariant set is an interval. Because of this, the
structure of a nest level is given by just deciding whether each piece is on the
left or the right side of the critical point plus giving the orientation of its first
return map. Compare the discussion in Section 3.4.

For the complex case the situation is more involved as the nest pieces can
be scattered arbitrarily around 0. In this work, we provide the nest with the
extra structure of a frame system. This will give us a language to describe the
relative positions of pieces within a level and their interaction with previous
levels. We will exploit this construction to classify combinatorial types.

1.1 Historical background

One of the most sought for open problems in Complex Dynamics is the MLC
Conjecture stating that the Mandelbrot set is locally connected.

MLC was proved for quasi-hyperbolic parameters by Douady and Hubbard
(see [DH1]), and for boundaries of hyperbolic components by Yoccoz. Later,
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Yoccoz introduced his puzzle partition to prove MLC at finitely renormalizable
parameters.

The concept of puzzle originates in [BH] where the authors consider cubic
polynomials with one critical orbit escaping to oo. In this setting, appropriate
pull-backs of a chosen equipotential curve around the Julia set K will enclose
a nested collection of topological disks. Then, certain combinatorial properties
ensure that the intersection of these pieces shrinks to a single point x € K. This
proves that K is a Cantor set. The more refined version of puzzles given by
Yoccoz, is adapted to quadratic polynomials with both fixed points repelling;
in this case, the definition of the puzzle is more involved, as the pieces do not
enclose whole components of the Julia set.

The puzzle of Yoccoz decomposes a neighborhood of a quadratic Julia set
K, in pieces that map onto each other by f.. The pieces centered around 0 de-
fine a nested sequence of annuli (some degenerate) and Yoccoz showed that the
sum of their moduli goes to oo when the map is not infinitely renormalizable.
This result implies local connectivity of K. and can be translated to M, to
obtain MLC at the parameter c. In particular, this established combinatorial
rigidity for these maps.

In [L3], Lyubich introduced the principal nest as a tool to provide the first
examples of infinitely renormalizable parameters satisfying MLC. The nest
is well defined for recurrent critical orbits. A sequence of central pieces is
determined by consecutive first returns to the preceding level and such pieces
form non-degenerate annuli over whose moduli it is possible to exert better
control. The main result of [L3] states the following.

Theorem L1. (Lyubich) Let k(n) count the levels of the principal nest up
to level n, which are non-central. Then the moduli of the principal annuli grow
linearly:

H(n+2) = B - k(n) + C.

where the constant B depends only on the initial modulus.

This fundamental property of the nest lies at the heart of many analytic
results of Lyubich, including a proof of the Feigenbaum-Collet-Tresser Con-
jecture, the Theorem on the measure-theoretic attractor, density of real hy-
perbolic maps and local connectivity of infinitely renormalizable parameters
of bounded type.

A fundamental step in the proof of Theorem L1 is obtaining the result for
the particular case of Fibonacci combinatorics, which can be thought of as
the worst case of moduli growth. The defining behavior requires exactly one
lateral piece at every level of the nest, mapping directly onto the central piece



of previous level. !

The Fibonacci pattern of recursion comes closest to be renormalizable at
every level without actually being renormalizable. Because of this, it was
believed to possess a very wild recursion pattern and it was extensively studied
for some time. In [LM], the authors show that Fibonacci combinatorics are
rather tame. They prove that there is a unique real quadratic polynomial
x — 22 + cgp, with such behavior and compute the exact rate r = h‘TQ of linear
growth of its scaling factors.

The last result has a different interpretation when we regard z — 2% +cgy, as
a complex map. From the same paper it follows that the principal moduli for
this parameter grow exactly at a linear rate. Then, in [W], L. Wenstrom shows
that this growth has the same coefficient r. This result is a consequence of a
precise control on the shapes of central pieces. In fact, in [L1] Lyubich showed
that these pieces converge in shape to the filled Julia set of f_;. Wenstrom
translated this result to the Mandelbrot set M to obtain similar scaling results
around the parameter cg,. These include linear growth of the paramoduli with
rate 2r and hairiness of M at cg,. Our work has been greatly influenced by
those ideas.

1.13 Overview

The purpose of this work is to present a discussion of combinatorics in the
principal nest. The frame system will allow us to describe the itinerary of the
critical orbit within nest levels and is hence, an excellent tool to refine some
geometric results obtained from the study of the principal nest.

In Chapter 2, we introduce briefly the basic concepts of Complex Dynamics
and fix notation. In particular, we describe the puzzle construction of Yoccoz
and the principal nest according to Lyubich.

In Chapter 3 we define the frame system F associated to the nest. The
construction requires care in order to ensure that nest levels and frame levels
go hand by hand. Then we describe a labeling of frame cells and produce a
language to describe combinatorial types. The main geometric result of this
Chapter states that for an arbitrary sequence of admissible types there exists
a parameter whose frame types at every level are as given. A corollary of this
result is a classification of mazimal hyperbolic components of M according to
their combinatorial type.

!'The name Fibonacci is due to the fact that the corresponding combinatorics forces
the critical orbit to have closest returns to 0 exactly when the iterates are the Fibonacci
numbers.



In Chapter 4 we give some examples of maps with interesting combina-
torics. Both complex rotation-like maps and Q-recurrent maps are generaliza-
tions of the Fibonacci pattern.

Real rotation-like maps are constructed in [BKP]. For an irrational rotation
number p, there is a real polynomial whose postcritical set is conjugate to
certain adding machine of variable stepsize and admits a semi-conjugacy to
a rotation of the circle by angle p. The Fibonacci parameter corresponds to
the case when p is the golden ratio. For each rotation number, the Theorem
on admissible combinatorics allows us to construct an uncountable family of
complex maps whose postcritical set has an analogous behavior.

To define Q-recurrent maps, we fix first the superattracting map @ of
period m associated to a prime hyperbolic component of M. A map f is called
Q-recurrent if the sequence of its frames at every level has exactly the same
structure as the sequence of puzzles of (). In this manner, the combinatorial
behavior of the first return maps is essentially identical to the action of () on its
own Julia set. The key to further results is that every first return map g, turns
out to be the composition of the m previous returns: ¢, = ¢,—m ©...0 gp_1-

The last example of Chapter 4 is a real parameter whose frames mimic the
puzzle structure of the Chebyshev polynomial 22 —2. The main difference from
@-recurrent maps is that for every n, the first return g, is the composition of
all previous returns: g, = g1 0...0 g,_1. Due to this difference, the methods
of Chapter 5 cannot be used to establish convergence results. However, by
describing the combinatorics carefully, we can provide a kneading sequence
and show its admissibility; hence establishing the existence of a parameter
with such behavior.

Chapter 5 is devoted to the geometric properties of ()-recurrent maps.
Our first result is a complete characterization of complex quadratic Fibonacci
polynomials: They are precisely the set of (22 — 1)-recurrent maps. This is a
Cantor set, symmetric with respect to the real axis and intersecting it at one
point. It can be given a natural dyadic structure in terms of the bifurcation
of returns at each level.

For any @)-recurrent map f, the central nest pieces of f can be rescaled to
constant diameter, so that the first return maps g, induce functions G,,. The
main result of this Chapter is the fact that these rescaled maps converge to
the quadratic polynomial (). As a consequence, the shape of the nest pieces
approaches exponentially fast to the shape of the Julia set K.

This control over the shape of pieces allows us to obtain precise analytic
results. In particular, we can compute the exact rate of growth of the principal
moduli of f. In the case of Fibonacci parameters, the growth is linear. For any
other W-recurrent polynomial, the moduli grow exponentially at a rate that



depends only on the period of Q..

The dyadic structure of the set of Fibonacci parameters is a combinatorial
result belonging naturally to Chapters 3 and 5. Yoccoz’s Theorem implies
that they form a Cantor set, but we need to translate our results to the Man-
delbrot set M in order to estimate its Hausdorff dimension. This is done in
Chapter 6. There we show that the paranest pieces surrounding a ()-recurrent,
parameter also converge in shape to the filled Julia set of (). From this result
we can compute the rates of growth of paramoduli. This shows that the set
of Fibonacci parameters (or any other @Q-recurrent family) is a Cantor set of
Hausdorff dimension 0.

As a final application of the results in parameter space, we obtain the
following auto-similarity result: Let ¢1,co € OM be two parameters such that
fe, has no parabolic points or Siegel disks. Then there exists a sequence of
parapieces {1, Yo,...} (most likely not nested) converging to ¢; as compact
sets, but such that T,, — K, in shape.

An Appendix contains brief summaries of all the Complex Analysis tools
that are used. Finally, let us mention that some of the pictures were generated
with the PC program mandel.exe of Wolf Jung [J].



Chapter 2

Basics

2.1 Basic notions

In order to fix notation, let us start by defining the basic notions of complex
dynamics that will be used; we refer the reader to [DH1] and [Mi] for details
on this introductory material.

We focus attention on the quadratic family @ = {f. : z — 2? + ¢} depend-
ing on one complex parameter ¢ € C equal to the critical value. For every c,
the compact sets K. = {z | the sequence {f"(z)} is bounded} and J. = 0K,
are called the filled Julia set and Julia set respectively. They are perfect
sets with 2-fold symmetry around 0 and satisfy an important dichotomy: De-
pending on whether the orbit of the critical point 0 is bounded or not, J. and
K. are connected or totally disconnected. Thus, in the latter case, J. = K,
is a Cantor set. Moreover, when the critical orbit is bounded, K. is in fact
cellular. We define the Mandelbrot set as M = {c | ¢ € K_}; that is, the set
of parameters with bounded critical orbit; see Figure 1. M is also a perfect
set and cellular.

A component of int M that contains a superattracting parameter will be
called a hyperbolic component'. The boundary of a hyperbolic component
can either be real analytic, or fail to be so at one cusp point. The later kind
are called primitive. Actually, these boundaries closely resemble round circles
and cardioids. In particular, the hyperbolic component associated to z +— 22
is bounded by a true cardioid which we call the main cardioid.

The structure of M is extremely complicated. It contains small homeomor-
phic copies of itself, densely distributed around 0M. In fact, every hyperbolic
component H other than the main one is the base of one such small copy
M'. H is called prime if it is not contained in any other small copy. Prime
components attached to the main cardioid are called immediate components.

1Tt is conjectured that all interior components are hyperbolic.
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Any other prime component is also primitive. To simplify later statements, a
component that is both primitive and prime will be called maximal.

Figure 1: The Mandelbrot set.

2.2 External rays

The behavior of a polynomial near oo is very simple; we can treat f. as a
rational function f, : C — C for which f;!(co) = {oo}. Then, oo is just a
fixed critical point and a result of Bottcher yields a change of coordinates that
conjugates f. to z — 22 in a neighborhood of co. We can extend this map to
¢e : N. — C\ Dy where Dy, is the disk of maximal radius R > 1 on which
the extension is possible. The map ¢. can be normalized by the requirement
that the derivative of ¢, at co is 1.

It can be shown that N, = C\ K. and R = 1 whenever ¢ € M. Otherwise,
N, is the exterior of a figure 8 curve that is real analytic, symmetric with
respect to 0. When this is the case, R > 1 and K, is contained in the two
bounded regions determined by the curve.

Consider the system of radial lines and concentric circles in C\ Dg charac-
teristic of polar coordinates. Pulling these back by ¢., we obtain a collection of
external rays ry (6 € [0, 27)) and equipotential curves e, (here s € (1, 00)
is called the radius of e;) on N,.. These form two orthogonal foliations that
behave nicely under dynamics: f.(rg) = 729, fe(es) = e52. When ¢ € M, we say



that a ray ry lands at z € J,. if z is the only point of accumulation of ry on J..

A similar coordinate system exists around the Mandelbrot set. For ¢ ¢ M,
we define the map

Dur(c) = pe(0). (2.1)

In [DH1] it is shown that ®,, : C\ M — C\D is a conformal homeomor-
phism tangent to the identity at oo. This yields connectivity of M and allows
us to define parametric external rays and parametric equipotentials as
in the dynamical case. Since there is little risk of confusion, we will use the
same notation (ry, es) to denote these curves and say that a parametric ray
lands at a point ¢ € OM if ¢ is the only point of accumulation of the ray on
M.

For the rest of this work, all rays considered, whether in dynamical or
parameter plane, will have rational angles. These are enough to work out
our combinatorial constructions and satisfy rather neat properties. In order to
introduce our constructions, it will be enough to mention the following general
result about landing rays.

Proposition 2.1. If0 = %’ € Q, the external ray ry lands, both in the parame-
tric and the dynamical situations. In the dynamical case, the landing point is
preperiodic with the period and preperiod determined by the binary erpansion
of 0. A point in J. (respectively M) can be landing point of, at most, a finite
number of rays (respectively parametric rays). If this number is larger than 1,
each component of the plane split by the rays intersects J. (respectively M ).

2.3 Wakes and limbs

When ¢ # %, f. has two distinct fixed points. If ¢ € M, these can be distin-
guished since one of them is always the landing point of the ray ro. We call
this fixed point 3; note that it is always repelling, as it lies on J.. The sec-
ond fixed point, called «, can be attracting, indifferent or repelling, depending
on whether the parameter ¢ belongs to the region ¢ enclosed by the main
cardioid, to the cardioid itself or is outside.

The map ¢y : © — D given by ¢ — fl(a.) is the Riemann map of
normalized by 1y(0) = 0 and 9{(0) > 0. Since the cardioid is a real analytic
curve except at i, 1y extends to Q. The fixed point « is parabolic exactly at
parameters ¢, € OV of the form ¢, = ;" (e*™) where n € QN [0,1).

If n # 0, the Mandelbrot set M is separated in two pieces at these points.
More precisely, each c, is the landing point of two rays r;-(;) and 74+, in such
a way that M intersects both components of C\ (re-; U ¢, U rt+(n)3
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Definition 2.2. The closure of the component of C\ (rtf(,,) Ucey U rt+(,,)) that
does not contain O is called the n-wake and is denoted W,. The n-limb is
defined as L, = M NW,.

Definition 2.3. 73(75’) denotes the unique set of rational ray angles whose
behavior under doubling is a cyclic permutation with combinatorial rotation
number g.

If 73(]—’;) = {t1,...,1,}, then for any parameter c € L,,, the corresponding
point « splits K, in ¢ parts, separated by ¢ rays {r;,,...,r} that land at o.
The two rays whose angles span the shortest arc separate the critical point 0
from the critical value ¢; these two angles turn out to be ¢t~ (n) and t*(n).

2.4 Yoccoz puzzles

The Yoccoz puzzle is well defined for maps with both fixed points repelling;
that is, ¢ € L,/, for some p and ¢. If 0 is not a preimage of «, the puzzle is
defined at infinitely many depths and these are the parameters we will consider.
Since we describe properties of a general parameter, we will omit the subscript
and write f instead of f. and so on.

Let us fix the neighborhood U of K bounded by the equipotential of radius

2. The rays that land at o determine a partition of U \ {ry,...,r,} in ¢

connected components. We will call the closures YO(O), Yl(o), .. .Yq(g)l of these

components, puzzle pieces of depth 0. At this stage the labeling is chosen so

that 0 € YO(O) and f (K N Yj(o)) =KnN Yj(ﬁ)l; where the labels are understood

as numbers modulo ¢. In particular Yl(o) contains the critical value ¢ and the
angles of its bounding rays are precisely ¢~(2),¢*(2).

(n)

Now we can define the puzzle pieces Y, of higher depths as the closures

of connected components in fo(=™) <Uint Yj(o)> ; see Figure 2. At each depth

n, there is a unique piece which contains the critical point and we will always
choose the indices so that 0 € YO("). The resulting family ). of puzzle pieces
of all depths, has the following two properties:

e Any two puzzle pieces either are nested (with the piece of higher depth
contained in the piece of lower depth), or have disjoint interiors.

e The image of any piece Y;-(n) (n > 1) is a piece Yi("_l) of the previous
depth n — 1. The restricted map f : int Yj(") — int Yi("_l) is a 2
to 1 branched covering or a conformal homeomorphism, depending on
whether j = 0 or not.



These properties characterize ). as a Markov family and endow the puzzle
partition with dynamical meaning.

Note that the collection of ray angles at depth n consists of all f;"-preimages
of {r,,...,r,} under angle doubling. The union of all pieces of depth n is
the region enclosed by the equipotential €(2): Note also that any piece Y

eventually maps onto some piece of level 0. By further iterating it, Y will
map onto a region determined by the same rays as YO(O) and a possibly larger
equipotential. This means that there exists a 1 to 1 correspondence between
puzzle pieces and preimages of 0. Such distinguished point inside every piece
is called the center.

We will use the symbol P, to denote the collection of all puzzle pieces at
depth n. In order to describe its structure, we need a combinatorial model that
reflects the adjacency between pieces.

Definition 2.4. Given a set of puzzle pieces P, we consider the dual graph
['(P). It is an abstract graph whose set of vertices is in one to one correspon-
dence with the puzzle pieces of P and whose edges join vertices corresponding
to pieces that share an arc of external ray. We will regard I'(P) with its natural
embedding in the plane.

In the case P = P,, we call T'(P,) the puzzle graph of depth n. It has
two distinguished vertices; namely those containing the critical point and the
critical value. The verter that corresponds to the central piece YO("), will be
denoted &, and the vertex for the piece around the critical value f.(0) is n,.

Definition 2.5. The vertices &, and n, determine two partial orders on T',
as follows: We write a =,, b when there is a path from a to n, that passes
through b. We write a >, b when there is a path from a to &, that passes
through b or its symmetric image with respect to &,.

The following are natural consequences of the definitions; see Figure 2 for
reference.

Proposition 2.6. The puzzle graphs of f satisfy:

1. I'(Ry) is a g-gon whenever ¢ € Ly;,. Forn > 1, I'(P,) consists of 2"
q-gons joined by their vertices in a tree-like structure; i.e. the only cycles
on this graph are the q-gons themselves.

2. The graphs I'(P,) have 2-fold central symmetry around the critical vertex.
To be precise, removing &, and its edges, splits T'(P,) in two isomorphic
graphs A, and B, with A, containing n,. We define the graphs Puzz,
and Puzz! by including &, again into each of A, and B,, then adding
the corresponding edges to each.

10



Figure 2: Puzzle of depth 2 with its corresponding graph. Splitting the graph
at & we obtain the graphs Puzz, and Puzzj; both shaped like a bow tie and
isomorphic to Ty (P).

8. I'(Pny1) is completely determined by {I'(P,),n.}. In fact, both Puzz,_,
and Puzz; , are isomorphic to T'(P,) with &,11 € Puzzf+1 corresponding
to ny,.

4. There are two natural maps, D : T'(Py1) — T'(P,) induced by f, and
R:T(P,1) — T'(P,) induced by inclusion between pieces of consecutive
depths. Moreover, D 1is 2 to 1 except at £,41 and sends Puzz,irl onto

L(P,).

5. The map D : (I'(Pny1), >¢,,,) — (U(Pn), >n,) respects order. That is,
a>¢,.. b= D(a) »,, D(b).

Definition 2.7. Let T be a graph isomorphic to a subgraph of Ty 11 and T’
a graph isomporphic to a subgraph of T',,. Consider a map E : I' — T that
satisfies properties (1) and (2). E will be called admissible if it also respects
order in the sense of property (5).

Proof of Proposition 2.6: Properties (1), (4) and the first part of (2) are
obvious. Property (3) and the second part of (2) follow when we consider the
action of f on P, ;. By the symmetry, every piece of P, except the central
one has a symmetric partner and they both map in a 1 to 1 fashion to the same
piece of P,. This justifies the existence of A, and B,. Since there is a cyclic
permutation of pieces around «, f maps the central piece to a non-central one

11



containing the critical value, so we are justified in selecting A,, as the graph
containing 7,. The isomorphisms mentioned in (3) should be clear now.

To prove (5), let us construct a new graph I') with 2 to 1 central symmetry
by collapsing every g-gon into a single vertex. The order in I'(P,) is induced
by the order in the tree I';,. The corresponding map D' : I';,_; — I'}, isa 2 to
1 map on trees taking each half of I';, | ; injectively into a sub-tree of I'},. Thus
D' respects order and so does D. 0

2.5 Parapuzzle

The puzzle is a dynamical construction in the sense that it reflects some char-
acteristics of a given critical orbit. However, fixing a parameter ¢ and depth
n, there is a neighborhood of ¢ where every parameter has the same behavior
up to depth n. The parapuzzle encodes these similarities at every scale: For
every wake of M, we define a partition in pieces of increasing depths, with the
property that all parameters inside a given parapiece share the same initial
critical orbit pattern.

Definition 2.8. Consider a wake Wy, and let n > 0 be given. Call W™ the
wake W4 truncated by the equipotential e ) and consider the set of angles

Pa(E) = {t | 2"t € P(8)} (refer to Definition 2.3). The parapieces of Wy
at depth n are the closures of the components of W™\ {r, [t € Pa(£)}.

Note: Even though the critical value f,(0) is just ¢, it will be convenient to
write ¢ € A when A is a parapiece and f.(0) € V when V is a piece in the
dynamical plane of f..

We will also use the notation OBJ|c] to refer to any dynamical object OBJ
that is associated to a specific parameter c.

Definition 2.9. If the boundary of a dynamical piece A is described by the

same equipotential and ray angles as those of a parapiece B, we denote this
relation by 0A = 0B.

Definition 2.10. Consider ¢ € M with puzzles defined up to depth n. We
denote by CV,(c) € P,(f.) be the piece of depth n such that f.(0) € CV,(c).

A consequence of formula 2.1 is the well known fact that follows, a proof of
which can be found in [DH2] or [R]; also, see the Appendix for the definition
of holomorphic motions.
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Proposition 2.11. Let A be a parapiece of depth n in some wake W. Then
the family {c — CV,|c] | ¢ € A} is well defined; it determines a holomorphic
motion of the critical value pieces and {c — f.(0)} is a section with winding
number 1.

The ray angles that constitute 0 CV,[c| for a given parameter ¢, are com-
pletely determined by the orbit of f.(0) in the next n — 1 iterations, together
with the information about which wake contains c¢. Thus, we have the follow-
ing.

Corollary 2.12. Let ¢y € A, at depth n. Then, the combinatorial structure of
P,(f.) will remain unchanged for any other ¢ € A and only for those parame-
ters.

We can mention the following examples of combinatorial properties that
depend on the behavior of the first n iterates of 0. The fact that these objects
remain unchanged for ¢ € A follows from the above and will be useful to us in
the next chapters.

e The graph I'(P,(f.))-
e The combinatorial boundary of every piece of depth < n.

e The location in P,(f.) of the first n iterates of the critical orbit.

From the general results of [L4], we can say more about the geometric
objects associated to the above examples.

Proposition 2.13. Fach of the sets listed below moves holomorphically as c
varies i A:

e The boundary of every piece of depth < n.
e The first n iterates of the critical orbit.

e The collection of j-fold preimages of o and 3 (j < n).

In the case of the holomorphic motion {¢ — CV,(c)}, the proper section
{¢ — f.(0)} has winding number 1; refer to [D2] and Proposition 3.3 of [L4].
We can interpret this result as loosely saying that, as ¢ goes once around 0A,
the critical value f.(0) goes once around 0 CV,,. A consequence of this, which
we will exploit in Chapter 6, is the following.
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Proposition 2.14. Let r > 1. Suppose that for all 0 < r' < r, none of
the pieces f&' (CVn(co)) contains the critical value fo,(0). Then, for any fized
iterate 0 < s < r, the family {c — f2*(CV,(c)) | ¢ € An(co)} determines a
holomorphic motion in which the section {c — f2*(0)} has winding number 1.

Proof: It follows from Proposition 2.11 since f2* is univalent at CV,(c). O

2.6 Principal nest

The principal nest is well defined for parameters ¢ that belong neither to O
nor to a prime component. The first condition means that both fixed points
are repelling, while the second condition characterizes those polynomials that
do not admit an immediate renormalization (to be defined shortly). When ¢
is also recurrent, the nest is infinite. This conditions will justify themselves as
we describe the nest.

In order to explain the construction of the nest, we need a more detailed
description of the puzzle partition at depth 1 (use figure 3 for reference). As
a note of warning, the pieces of depth 1 will be renamed to reflect certain
properties of P;(f). That is, we will not use the symbols Yj(l).

P consists of 2g — 1 pieces of which ¢ — 1 are the restrictions of the pieces
Yl(o),YQ(O), .. .,Y;I(E)l to a lower equipotential. Such pieces cluster around «

and will simply be denoted Y3, Y5,...,Y,_1. The restriction of YO(O) however,
is further divided into the union of the critical piece YO(I) with ¢ — 1 pieces

2y, 2y, ..., 2441 around —a which are symmetric to the corresponding Y.
The indices are again determined by the rotation number of «, so that f(Z;)

is opposite to Yj; that is, f(Z;) = Yj(f:)l.

Note that f°9(0) € YO(O), so we face two possibilities. It may happen that
£91(0) € YV for all j, in which case we can find a thickening of Y," leading
to an immediate renormalization as defined by Douady and Hubbard; or
else, we can find the least £ for which the orbit of 0 under f°? escapes from
Y. In this case, f*9(0) € Z, for some v and we call kg the first escape
time.

We will define V? as the (kgq)-fold pull-back of Z, along the critical orbit,
so that 0 € Vy and f°*(VQ) = Z,. Since 0 € V and kq is the first escape

time, we see that f|V0 is a 2 to 1 branched cover but f°*¢~! is univalent on the

0
image f(Vy). V7 is the initial piece of the nest.
Note that Z, € YO(O) so VP € Yo(l); ie. int Yo(l) \ V9 is a non-degenerate
annulus. In fact, V) is the first central piece that is compactly contained in
.
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Figure 3: Puzzle Pi(f.) of depth 1, where ¢ = (0.35926...) +4(0.64251...) is the
center of the component of period 5 in Ly;s. The first escape is fo*(0) € Zs
and the pull-back Vy is shown in dotted lines. Note that f°*(0) € V. This
already creates the piece Vi € Vi around the central Fatou component (Vg is
not shown).

Now we can define the principal nest inductively. Suppose that the pieces
Ve 3 Vi 3 ...V have been already constructed. If the critical orbit does not
return to V" then the nest is finite. Otherwise, there is a first return time ¢,
such that f°(0) € V7 then we define V"™ as the critical piece that maps to
Vi under fobn.

It may happen that ¢, ,; = £,; this means that not only does 0 return to
Vi under f° but even deeper to V;*™ without further iteration. In this case
we say that the return is central and we call a chain of consecutive central
returns £, = £, = ... = £, a cascade of central returns. An infinite
cascade means that {/,} is eventually constant, so f°¢(0) € MNjen Vi By
definition, f°¢ : V™' — V{* is a simple renormalization of f; that is, a
2 to 1 branched cover of V' such that the orbit of the critical point is defined
for all iterates.

The return to Vj', however, can be non-central; in fact, it is possible to
have several returns to V§® before the critical orbit lands at Vj**! for the first
time. When the return is non-central, we complete the description of the nest
by introducing the lateral pieces V;* € V=" \ V{*. These encode the relation
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between different levels of the nest. Let O C K stand for the post-critical
set O = {f°(0)[j > 0}; then take a point z € O N V"' whose forward orbit
returns to V"', If we call r, (2) the first return time of z back to Vy'™*,
we can define V"(z) as the unique puzzle piece that satisfies z € V"(z) and
o1 (Vn(2)) = V=L, In particular, it is clear that V™(0) is just the same
as V" and that all the pieces created by this process are disjoint.

Definition 2.15. The collection of all pieces V*(2) for z € O NV 1 which
actually contain a point of the orbit of 0, s denoted V"™ and referred to as the

level n of the nest. The annuli V]'"' \ V{* are called principal annuli and
will be denoted A,,.

Figure 4: Relation between consecutive nest levels. The curved arrow repre-
sents the first return map g, : V;* — V3"~ " which is 2 to 1. The dotted arrows
show a possible effect of this map on each nest piece of level n+ 1. Each V}”J’l
may require a different number of additional iterates in order to return to this
level and map on V.

Under the condition that ¢ is recurrent, the principal nest has infinitely
many levels. Let us assume that ¢ is not periodic. Then it is called re-
luctantly recurrent if for some central piece V' there are arbitrarily long
sequences of univalent f.-pull-backs of V' along preorbits in the postcritical
set O. Otherwise, the parameter c is called persistently recurrent.
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Lemma 2.16. (see [L2],[Mal) If f. is persistently recurrent, O is a Cantor set
and the action of f., is minimal.

When f. is not renormalizable, c is reluctantly recurrent if and only if some
central piece V' has infinitely many quadratic-like pull-backs along a segment
of the critical orbit.

In particular, if ¢ is non-renormalizable but every level of the principal nest
has a finite number of pieces, then f, acts minimally on the postcritical set.
In this situation, we can name the pieces V" = {V{",V/*,..., V" } in such a
way that the first visit of the critical orbit to V;* occurs before the first visit
to V" if and only if ¢ < j.

Obviously, the value of 7,_1(2) is independent of z € V}; we will denote it
Tnk-

Definition 2.17. When V" is finite, we define the map:
Gn : U VZL — Vl)nfl,
V‘I’L
gwen on each V,* by Injyn = forn.
k

The map g, satisfies the properties of a generalized quadratic-like (gql)
map, i.e.:

o V" < 0.
o UVt E Vy~! and all the pieces of V" are pairwise disjoint.

® Gnjyn i Vi — Vy~!is a 2 to 1 branched cover or a conformal homeo-
k

morphism depending on whether £ = 0 or not.

Note that g, may be the result of a different number of iterates of f when
restricted to different V). However, since we use often the map g, restricted
to individual pieces, it is typographically convenient to introduce the notation

Definition 2.18. The map gy, = f7™* will be denoted gn .
k

Thus, g, x(V;*) = Vg* ' is a 2 to 1 branched cover or a homeomorphism
depending on whether £ = 0 or not.

From this moment, we will assume that the principal nest is infinite, ex-
cluding the possibility of an infinite cascade of central returns so that f is
non-renormalizable. This property is called combinatorial recurrence.
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2.7 Paranest

The paranest is also well defined around parameters ¢ outside the main cardioid
that are not immediately renormalizable. It consists of a nested sequence of
parapieces around c¢, encoding the combinatorial information of the principal
nest. When c is critically recurrent, the paranest is infinite.

Definition 2.19. The paranest piece A™(c) (for n > 0) is defined by the
condition 0A™(c) = Of.(Vy"), where Vi is the central piece of level n in the
principal nest of f..

The definition of principal nest, together with Proposition 2.14 imply that
when ¢ € A™(¢), the principal nests of f. and f. are identical until the first
return g,(0) to Vg* ! (creating V), and the relevant pieces move holomor-
phically as ¢’ moves in A™. Moreover, the set of initial Z,, iterates of 0 (recall
that g, = f°*) moves holomorphically without crossing piece boundaries.
This means that the entire combinatorial structure of the nest, up to level n,
remains unchanged.

In the notation of [L4], the family {g,[¢] : VI* — Vo' | ¢ € A™(c)} is
a proper DH quadratic-like family with winding number 1. The last property
follows from Proposition 2.14 since g, is the first return to a critical piece at
this level.

From Definition 2.19 it follows, since the central nest pieces are compactly
nested, that the pieces of the paranest are compactly nested as well. It follows
that int A® \ A"~! is a non-degenerate annulus. One of our concerns will be
to estimate its modulus or, as is usually called, the paramodulus.
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Chapter 3

Frame system

Let f. have an infinite principal nest. Although the nest categorizes the com-
binatorics of the critical orbit, it falls short of providing a complete picture
since it does not account for the relative positions between lateral pieces. In
contrast to the real case, where bounded orbits form an interval, the Julia
set of a complex polynomial displays a complicated structure that varies with
the parameter. For this reason, a record of the relative positions of nest pieces
must be preceded by a description of the combinatorial structure around them.

In this Chapter we enhance the principal nest with the addition of a frame
system. This provides the necessary language to locate the lateral nest pieces
and describe as a consequence, the behavior of the critical orbit. The idea is to
split a nest piece in smaller regions whose future behavior can be differentiated.

For convenience, let us summarize certain aspects of the construction before
giving it in detail. Recall that V) was defined in an intricate manner to
guarantee that Yo(l) \ V2 is a non-degenerate annulus. Because of this, and
since our purpose is that frame levels correspond to nest levels, we need to pay
individual attention to the construction of the first three frame levels. Figure
5 illustrates these initial steps. In particular, it is a good idea to keep in mind
our convention of distinguishing between puzzle depths and nest levels. In
accordance, frames will be also stratified in levels since their definition depends
on the same pull-backs as the nest. To distinguish between nest pieces and
frame pieces, the latter will be referred to as cells. As a final note of warning,
we will abuse our notation and use F;, to refer to the frame as well as to the
system of curves that it describes. In particular, we will use 0F, to describe
the union of curves that form the boundary of the union of all cells in F},. The
context will always make clear which meaning is intended.
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3.1 Frames

As we mentioned, some attention will be devoted to the construction of the
frames Fp, F} and F; so that the properties in Proposition 3.4 hold. After this,
the frames of higher level are defined inductively.

Consider the puzzle partition at depth 1 and recall that kg denotes the first
escape of the critical orbit to Z,. Figure 3 provides a useful reference. The
initial frame F} is the collection of nest pieces Fy = {Yo(l)} U {U?ZI{ZJ-}},
each of which is called a frame cell. Thus, I'(Fp) is a g-gon. The frame F; is
the collection of pull-backs of cells in Fy along the f°*%-orbit of 0.

From the definition, F} contains the central piece V that maps 2 to 1 onto
7, € Fy. The pull-back of any other cell A € Fj consists of two symmetrically
opposite cells, each mapping univalently onto A. We say that F} is a well
defined unimodal pull-back of Fj.

Lemma 3.1. All the cells of I are contained in Yo(l).

Proof: f°kq(Y0(1)) is an extension of YO(O) to a larger equipotential. Thus, it
contains all cells of Fyy and its pull-back by f°*¢ results in a proper map. O

Let A be the first return time of 0 to a cell of Fi. By Lemma 3.1, the
collection Fj of pull-backs of cells in F; along the f°*-orbit of 0 is well defined
and 2 to 1. Unfortunately, it does not cover every point of J; inside V. We
will give first some results about F and define afterward a complete frame of
level 2.

Lemma 3.2. The temporary frame F, satisfies:

1. All cells of F} are contained in V.

2. Vi is contained in the central cell of F.

Proof: First note that A = kq+ (¢—v) is the first return of 0 to YO(I) after the
first escape to Z,. We have kg < A < £y, where the second inequality is true
since VOO € Fi. Then the first return to F} occurs no later than the first return
to V0. By definition, fo*(V?) is just Y% extended to a larger equipotential.
Since all cells of F; are inside YE)(I) C fA(VY), the first assertion follows.

Now, Vj is central. By the Markov properties of )., either V! is contained
in the central cell C of F} or vice versa. However, both f°%(V}) and f°*(C)
belong to Fi. Since ¢, > A, the first possibility is the one that holds. This
proves property (2). O

Our intention is to extend F} to a frame that covers the intersection J;NV{ .
To do this, we just need to add the f°*-pull-backs of the pieces Z,. The union
of those pull-backs with the cells of F} is the frame F5.
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Figure 5: Both of these parameters belong to the left antenna of Ly3; they are
centers of components of periods 7 and 4. Above we can see that the structures
of the frames of levels 0 and 1 coincide between the two examples. Still, the
first return to Fy falls in each case on a different cell, producing dissimilar
frames of level 2. The pull-back of cells in Fy produces a preliminary frame
F}, shown in heavy line on the second row. The complete frame Fy, inside V
has 2(q — 1) additional cells (here ¢ = 3) in order to cover all of J; N V{.

21




After introducing the first frames and relating them to the initial levels
of the nest, we can give the complete definition of the frame system. The
driving idea of this discussion is that the internal structure of a frame F}, o,
represented by the graph I'(F,;2), provides a decomposition of J; N V{* that
helps to describe the combinatorial type of the nest at level n + 1.

Definition 3.3. For n > 0 consider the first return g,(0) € V§* and define
F, 3 as the collection of g,-pull-backs of cells in F,, 5 along the critical orbit.
The family F. = {Fy, F1, ...} is called a frame system for the principal nest
of f. and each piece of a frame is called a cell.

The dual graph T'(F,) (see Definition 2.4) is called the frame graph. As
in the case of the puzzle graph, we consider T'(F,) with its natural embedding
in the plane.

Let us mention now some properties of frame systems.
Proposition 3.4. The frame system satisfies:

1. Frames exist at all levels.

2. The union of cells Uciefn C; forms a cover of Ky, N V2,

3. The central cell of F,, contains the nest piece V3" *.

4. Each F, has 2-fold central symmetry around 0.

Figure 5 should help to clarify the definition of frames. In particular, it is
important to make the following observation. As follows from the comment
after Lemma 3.1, the union of cells in F;, covers exactly the intersection of K
with the nest piece V. This is because V can be described as the pull-back
of YO(O) under the first return map to Fj. Then, we can think of this union of
cells as a single piece, determined by the same rays as V', but cut off by a
lower equipotential.

Proof: F, and F} are easily seen to exist from their construction. Since
Fy covers the central part of K; between o and —c, there will definitely be
a return to it, creating F,. As we saw already, this frame is contained inside
VY, so its pull-backs are well defined as long as there are new levels of the
nest. In particular, this already proves claim 2. Since the principal nest is
infinite, the critical point is recurrent or the map is renormalizable. Either

case creates critical returns to central nest pieces of arbitrarily high level, so
F, 41 is defined.
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The piece Vy is actually the central cell of Fy. Now, the first return to F}
cannot occur later than the first return to V3, so the central cell C' of F; is of
lower depth than V;}; thus, V& C C. Afterwards, the depth from V"' to Vj*
increases by £,,_1, while the depth from F;, to F,,; increases £,,_s. Inductively,
since VO”_1 C F, and 4,_5 < {,_;, we obtain V' C F, 1.

Finally, each F;, is a well defined 2 to 1 pull-back of F}, 1, a cell C' belongs
to F,, if and only if its symmetric —C' € F,. O

Our next objective is to introduce a labeling system for pieces of the frame.
This will allow us to describe the relative position of pieces of the nest within
a central piece of the previous level. Unlike the case of unimodal maps, where
nest pieces are always located left or right of the critical point, the possible
labels for vertices of I'(F},) will depend on the combinatorics of the critical
orbit. Only after determining the labeling, it becomes possible to describe the
location of nest pieces in a systematic manner.

Observe that the structure of Fj, . is trivially determined once we know
F,, and the location of g,(0). A graphic way of seeing this is as follows. Say
that the first return g,_;(0) to V=2 falls in a cell X € F,,. Let L, and R, be
two copies of I'(F},) with disjoint embeddings in the plane. Now connect L,
and R, with a curve 7 that does not intersect either graph. Suppose that one
extreme of v lands at the vertex of L, that corresponds to X and the other
extreme lands at the corresponding vertex of R,, approaching it from the same
access.

Lemma 3.5. If we collapse v by a homotopy of the whole ensemble, the re-
sulting graph is isomorphic to T'(Fpi1).

Note: The above construction provides I'(F},;1) with a natural plane embed-
ding; see lemma 3.6 below.

A label at level n will be a chain of n+ 1 symbols taken from the alphabet
{01, ...,(g-1), 1, r, e b, t }. First, put the labels { '0’, '1’, ..., '(g-1)" } on
the cells of Fj, starting at the central piece YO(O) and moving counterclockwise.

Let o be the label of the cell that holds the first return of 0 to F, and, in
general, let o, denote the label of the cell in I'(F},) that holds the first return
of 0. In order to label I'(F,;1), assume that we know the number ¢ of pieces
in Fy, and the label sequence (q; 0o, .. .,0,—1) that identify the location of first
returns of 0 to levels 0,...,n — 1 of the nest. In particular, all frames up to
['(F,) have been successfully labeled.

Duplicate in L, the labels of I'(F,,), but concatenate an extra 'l' at the
beginning. Do a similar labeling on R, by concatenating an extra 'r' to the
duplicated labels. Note that the labels of the two vertices corresponding to
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Figure 6: The curve v joins two copies of the same frame graph approaching
the selected vertex from the same direction. The new frame graph is obtained
after v s contracted to a point.

X are ''o,, and 'r'o,,. The labels on I'(F,, ;) will be the same as those in the
union of L, and R, except that we change the label of the identified vertex,
to become '0'c,,.

Note: The above procedure does not give labels to the additional cells of F3
that do not come from a pull-back. These are the cells that are not drawn in
heavy line in Figure 5 Being cells of level 2, their labels should have 3 symbols
for consistency with the rest. The easiest way to do this is simply to impose
the labels 'etl’, 'et2’, ..., 'et(g-1)" and 'ebl’ ,’eb2’, ..., 'eb(g-1)" in their na-
tural order in the plane (‘et’ stands for extra piece on top and 'eb’ for extra
piece on bottom), then extend the labeling to higher levels as described.

Clearly, f induces a map f, : I'(F,11) — [, for n > 2, that acts by

forgetting the leftmost symbol of each label. This is the case also for the
induced map on the temporary frame Fj.

24



3.2 Properties of frame labelings

Under certain conditions, label sequences give a complete characterization of
the entire combinatorial structure. This is the content of Theorem 3.11. Before
stating it, we need to review some properties of the frame and its labels.

Lemma 3.6. The plane embedding of I' does not depend on the homotopy
class of the curve v in lemma 3.5.

Proof: Since we regard I' = I'(F,,) as embedded in the sphere, the exterior of
' is simply connected, so there is a natural cyclic order of accesses to vertices
(some vertices can be accessed from more than one direction). In this order,
all accesses to L,, are grouped together, followed by the vertices of R,,. O

It is important to mention that the resulting labeling of I'( F},) does depend
on the access to &, approached by . However, the final unlabeled graphs are
equivalent as embedded in the plane.

As we just mentioned, some vertices are accessible from oo in two or more
directions. These are precisely the vertices whose label contains the symbol '0’
(for n > 1). Since such a vertex represents a frame cell that maps (eventually)
to a central frame cell, the tail of a label with '0" at position j must be o;.
On the other hand, for every j there must be labels with a '0" in position j. It
follows that the set of labels of T'(F,) and the sequence (g; oy, -..,0,) can be
recovered from each other.

3.3 Frames and nest together

The definition of frame system was conceived to satisfy the properties of Propo-
sition 3.4. An extension of the argument used to prove those properties shows
that every piece V" of the nest is contained in a frame cell of level n + 1.
Moreover, we would like to extend the definition of frames so that each V"
can be partitioned by a pull-back of an adequate central frame. For this, we
must recall first that g, ;(V") = V5" D Fy1.

Definition 3.7. The frame F, \ is the collection of pieces inside an_2 obtained
by the gn—ok-pull-back of F;,_1. Elements of the frame F,, ; are called cells and
we will write F, o instead of Fy,, when there is a need to stress that a property
holds in F, j for every k.

If a puzzle piece A is contained in a cell B € F, , we denote B by @, 1 (A).

We have described already how to label F;,. The other frames F,, ; (k > 1),
mapping univalently onto F;,_;, have a natural labeling induced from that of
F,,_1 by the corresponding g,,_s x-pull-back.
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Let us describe now the itinerary of a piece V. Since V" C Va1, the map
gn—1 takes V* inside some piece anl(_jl) C V"2 Then, In-1,k1(5) takes g, 1(V})
inside a new piece Vk’;(_;) and so on, until the composition of returns of level
n—1

(9n—1:) © -+ © Gn—101(5) © In—1)lyp
is exactly gn; : V' — Vet Of course, k, is just 0, and we will write it
accordingly.

We have extra information that deems this description more accurate. For

the sake of typographical clarity, we will write k; instead of k;(j). For i < r,
let @, be the cell in F), |, C Vk’;_l that contains

gn—l,ki 6...0 gn—l,k1 o gn—l(‘/;n)
and denote by A,;1, the label of @, 4,.

Definition 3.8. The itinerary of V" is the list of piece-label pairs:

X(V]n) = ([‘/]g_la )\n-l—l,k:l]’ [‘/Z;_l’ )\n+1,k2]’ ey [Vk'r:illa )\n-l—l,k:rfl]: [‘/()n_l; )\n—l—l,O])
(3.1)
up to the moment when V* maps onto |75

Note first of all that the last label, A, o, will start with '0" due to the fact
that VO"’1 is in the central cell of F;,. More importantly, the conditions

V;Z_l C gn-1(Prt1p)

(3.2)

must hold since we know that g, 14,_, ©---0gn 14 ©gn1(V}") C Ppy1s, and
gnfl,ki 6...0 gnfl,kl o gnfl(‘/]n) C Vn_l.

ki+1

Definition 3.9. When we specify the sequence of frame labelings up to a given
level n, the locations of the nest pieces and their (admissible) itineraries, we
say that we have described the combinatorial type of the map at level n. If
V" < 0o we say that the type is finite; refer to Lemma 2.16 and Definition
2.17.

Condition 3.2 will be called the frame admaissibility condition.

3.4 Real frames

Let us digress momentarily in order to compare the above definitions with
their counterparts in the real case.
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When the parameter c is real, all the pieces of the nest intersect the real
axis. Call I} the intersection of V;* with R. The combinatorial type of the
nest is determined by how many intervals are there left and right of I, the
sign (orientation) of each map gn; : I — I~ and the itineraries of all
I through intervals of the previous level. If we specify an arbitrary type,
the unimodal admissibility conditions are necessary so that the type can be
realized; these conditions require

e Since g,,—1 is supposed to take I,’C"1 onto I'~2, the order of the intervals
inside I,’;‘_l is preserved or reversed according to the orientation of g, 1 .

e Since gy,; : I) — Ig_l is supposed to be the composition of all g, ,
specified by the itinerary of I7, the sign of g,; must be the product of
signs of the gn 1k, when I is right of I’ and the negative of that sign
when I7 is to the left of I (or the other way, if g, o reverses orientation).

< - 6,15

n-2

In_l// .
0 N\

Figure 7: Illustration of the unimodal admissibility conditions. The map g, 1,
spreads the intervals of level n inside some intervals of level n — 1. Howewver,
the order of the right intervals is respected and that of the left intervals is
reversed. Note that the orientation of each left interval is also reversed and
that I§ maps to the leftmost position.

We note first that both conditions emphasize the fact that g, o is unimodal.
The first map g¢,—1, can mix left intervals with right intervals as in Figure 7,
but the order of the right intervals is preserved and the order of the left ones is
reversed (or vice-versa). The second condition specifies that the orientation of
each g, ; is the product of the orientations of all intermediate steps including
the fact that g,—1,0 has different orientations on each side of 0. The impor-
tant observation to make is that the simplicity of the unimodal admissibility
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conditions is due to the existence of a natural order on R. In the more gene-
ral case of complex polynomials, the order of intervals is replaced by relative
locations of nest pieces within a frame. The requirement that relative orders
are preserved is replaced by Conditions 3.2 and the rule of signs is replaced by
a compatible choice of labels.

3.5 Combinatorial classification

We are ready to state the main theorem of this Chapter. In loose language, it
states the existence within the quadratic family, of arbitrary admissible finite
combinatorial types.

Definition 3.10. We will say that two non-renormalizable polynomials are
weakly combinatorially equivalent if they have the same combinatorial
types at every level, so that they differ only by the orientation of their frames.

Note: The point g,(0) is contained in VJ*~'. In particular, it is possible to
apply the map ¢g,_; to it and, in fact, we could keep composing first return
maps of lower levels until the first return of the critical orbit to Vj*. This
argument shows that for weak combinatorially equivalent maps, g, is formed
by the same composition of previous levels first return maps and consequently,
the first returns to corresponding pieces happen at the same times. In the next
chapters we will make use of this property.

Theorem 3.11. Consider a finite combinatorial type of level n, together with
a parapiece A of parameters that satisfy it up to level n — 1. Let £ be the level
of the last lateral return prior to level n and let

1 if g, is a central return
T = n—~t . .
2 if gn 1s lateral.

Then there exist r parapieces inside A each consisting of parameters satisfying
the same weak combinatorial type to level n.

Moreover, for any such parapiece A, the first returns {g|c] | ¢ € A’} form
a full DH quadratic-like famaly.

Note: This property of accumulating powers of 2 during central cascades is
related to the phenomenon that makes Theorem L1 possible. Namely, the fact
that moduli grow linearly from lateral return to lateral return, even though
they decrease by half on each central return.
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Proof: We are already acquainted with the central symmetry of frames. It
is obvious that the dual graph of a frame can be symmetric only at its critical
vertex £. Because of this, the frame Fj,; cannot be symmetric around the
lateral cell C' where g,(0) € (Vi™'\ V{) falls, so the pull-back Fy.» cannot
have more than 2-fold symmetry around the origin.

By definition, the (possibly empty) sequence {g¢11,---,9n 1} is the begin-
ning of a cascade of central returns of length n — /. Therefore, the dual graph
of the frame F),,, has exactly (2"~¢)-fold symmetry around &,.

Let ¢ € A. Every map g,,—1 % takes its corresponding piece Vk"_1 onto VO"_Q.
Then the pull-back by g, 14 of any region inside V;'~? is well defined and
located inside Vk"_l. In particular, for every piece V;" listed in the type of level
n, the itinerary prescribes the sequence of returns g,_10, gn—1,k15- - - » Gn—1,k,, SO
the univalent pull-back of V"' under the composition (g, 14 ©---0 gn_14,)
is a well defined piece inside Vk’:_l. Let us name this piece Uj.

Clearly Uy C V"' because the itinerary of the critical piece VJ® begins
with the first return of 0 to level n — 1. As ¢ moves within A, this return
can be made to fall in Uj. All ¢ with this property form a parapiece A* € A
that can be described as the set of parameters for which the itinerary of U,
is as originally prescribed; i.e. Uy = V. For the rest of the argument we will
restrict ¢ to A*.

For j > 1, the g, 1,-pull-back of U} will be called Uj; however, g, 1, is 2
to 1, so we have to decide on a frame orientation before locating these pieces
inside F}, .

The combinatorial type of level n involves the label 0,5 that specifies the
cell in F,, ;o containing the first return g, (0). If this return is central there is no
choice: The return falls on the piece V§**! inside the central cell. Otherwise,
we need to recall the discussion above. After a (possibly vacuous) cascade of
central returns, there are 7 = 241 cells of F, 11k, that can be labeled with
On+2 and contain U]. This comes from the n—¢—1 choices of orientation taken
from level £+ 1 to n— 1. Assuming that the return g,(0) is lateral, there is one
more choice of orientation to make, so Fj, o has (2"4) cells that can host Uj.
Once this decision is made, the label orientation is determined and the rest of
the pieces U; are forcibly placed around the frame Fj, 5.

We have constructed pieces U; C V"' that follow the given itineraries. It
rests now to show that for some parameters ¢ € A*, the U; can be made to
coincide with the respective V}". This can be shown as follows. The itinerary of
V{* (and of 0) ends with the first return g, of 0 to VJ"~'. This return generates
a full family for ¢ € A* so we can choose a parapiece A** of ¢ such that
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The second return to Vy*~' is specified by the itinerary of U;. From this
observation we conclude that U; = V}* from the definition of nest. Also, this
second return generates a full family for ¢ € A**, so we can choose an even
smaller parapiece A*** of parameters c such that g,1(0) € U,. This argument
can be pursued till the end to obtain the parapiece A’ of values ¢ for which

every U; = V. O

Repeated application of Theorem 3.11 yields the following.

Corollary 3.12. Arbitrary infinite sequences of finite weak combinatorial types
can be realized in the quadratic family, as long as they satisfy the admissibility
condition at every level. The set of parameters satisfying the complete type is
the intersection of a family of nested sequences of parapieces, with 2™ of them
at every non-central level n.

Proof: This is clear, since each A contains at least one parapiece A’ that
satisfies the combinatorial type at level n. The collection of first return maps of
level n for parameters in A’ forms a full family, so we can apply Theorem 3.11
again. An arbitrary choice of orientation at every level gives an infinite nested
sequence of parapieces. Evidently, a parameter in the intersection satisfies the
prescribed combinatorics at every level.

Every level accounts for one dyadic choice of orientation. Although they
are not apparent during central cascades, the previous proof shows that they
accumulate to display 2" ¢ pieces of level n inside each of the 2¢ pieces of
(lateral) level £. O

The set of parameters that are combinatorially equivalent to a given one
cannot be completely characterized without some amount of analytical infor-
mation. Corollary 3.12 describes such set as a collection of nested sequences of
parametric pieces, but it does not say whether they intersect in single points or
in more complicated regions. The fact that the parapieces shrink to a unique
parameter amounts to combinatorial rigidity; this was the strategy of Yoccoz
to establish local connectivity in the case of non-renormalizable polynomials.
For such parameters, he showed that the sum of paramoduli is infinite, so the
set of parameters in the nested intersections of parapieces becomes a Cantor
set. In particular, if the type includes no central returns, every parapiece con-
tains exactly two pieces of the next level and the Cantor set has a natural
dyadic structure. Thus, for some precise sequences of combinatorial types, the
choice of frame orientations at every level may single out a unique parameter.
In the next Chapter we will discuss examples of parameters of this kind, with
particularly interesting behaviors.
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Note: It should be remarked that alternative classifications of combinatorial
properties are possible and indeed quite useful. Of particular notice is D.
Schleicher’s concept of internal addresses (see [LS]), describing a combinatorial
type in terms of an irreducible sequence of hyperbolic components encoding
the critical orbit information at increasing levels.

3.6 Maximal hyperbolic components

Consider an arbitrary combinatorial type up to some level n, with the property
that the last return is not central. Upon specifying a frame orientation, there
is a unique parapiece A consisting of parameters that satisfy the given combi-
natorics. Clearly, parapieces corresponding to different descriptions must be
disjoint.

If the return to level n + 1 is central, there is no need to orient the frame;
that is, there is a unique piece A’ C A of parameters featuring this central
return. When a parameter in A has an infinite cascade of central returns
starting at level n + 1, its combinatorial type will be completely determined
by the initial n levels. The unique sequence of nested parapieces A D A’ D ...
intersects in the set M’ of renormalizable parameters whose first n nest levels
are as prescribed. It is known that M’ is quasi-conformally homeomorphic to
M (see [DH1| and [L4]). In fact, this homeomorphism is given by straighte-
ning: For every ¢ € M’ the renormalized map g,[c| is hybrid equivalent to
some quadratic polynomial f; that is, there is a quasi-conformal map h that
realizes the conjugation ho g, = f oh and such that Oh = 0 on the small filled
Julia set of g,|c|.

Since the parameters of M’ have a well defined nest the renormalization
is not of immediate type. The base of such “small copy” of M is a primi-
tive hyperbolic component H. Since H is a quasi-conformal deformation of ©,
its boundary has a cusp point. Also, the parameters in H are exactly once
renormalizable. Therefore H is maximal (see definitions at the beginning of
Chapter 2).

The above discussion shows that any finite frame type is associated to a
maximal hyperbolic component of M. Conversely, each maximal copy of M
is encoded by the type of its frame, that is, by the associated graph I'(F},41)
or its label sequence. Note that the frame graph of level n' > n consists of a
bouquet of 2%~ copies of I'(F,41) with their central vertices identified. This
is illustrated in the right hand example in Figure 5.

From our point of view, the combinatorial information in these examples
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is finite, so the frame system cannot say much about the map. Therefore, the
next step in dealing with these maps should be to start a new frame system
associated to the renormalized small Julia set and try to keep control of the
moduli from one step to the next.
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Chapter 4

Examples

Let us start by introducing the Fibonacci parameter cg, = —1.8705286321 . . .
In [LM], the authors prove the uniqueness of the real quadratic Fibonacci
map f.,, and describe in detail its asymptotic geometry. The real parameter
cap € R is determined by either of the two following equivalent conditions:

1. The closest returns to 0 of the critical orbit occur exactly when the
iterates are the Fibonacci numbers.

2. For n > 2, each level of the principal nest consists of the central piece
Vy' and a unique lateral piece V*. The first return map of previous level
Gn1: Vg ! — V{2 interchanges the central and lateral roles:

gn—l(%n) & ‘/vlnilagn—l(‘/ln) = ‘/E)nil‘

Additionally, the first returns to Yo(l) and V happen on the third and
fifth iterates respectively.

These conditions turn out to be equivalent as we will see later.

We can omit a precise description of the frame for the Fibonacci parameter,
since it is a particular case in both the family of rotation-like maps and the
family of @Q-recurrent maps. To understand the critical orbit behavior, it is
enough to note that for f.., , every level of the nest has a unique lateral piece,
and so, in a way, every first return comes as close as possible to being central
without actually being central. This means that the map f., is not renor-
malizable in the classical sense, although its combinatorics can be described
as an infinite cascade of Fibonacci renormalizations in the space of gql maps
with one lateral piece.

The simplicity of this description opened the doors to many analytic re-
sults; it features for instance, as a decisive case in the proof of Lyubich’s
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Theorem L1; see [L3].

In this Chapter we will present both rotation-like and Q-recurrent maps as
two families of examples with interesting combinatorics described in terms of
the frame system. After this we show an example of a persistently recurrent
polynomial whose central nest pieces seem to converge in shape to an interval,
but where there is no bound on the number of compositions of first return maps
g; (j < n) that are required to create the first return map g,4;. Starting in
the next Chapter, we will attempt a detailed understanding of the asymptotic
properties of (-recurrent maps.

4.1 Rotation-like maps

Let S = (S, S1,...) be a strictly increasing sequence of numbers such that
SJ* L < 2. The S-odometer is a symbolic dynamical system (€2,7") defined as
follows For any nonnegative n there is a k such that Sy < n < Sg,;. Then
n = Sk +ny with ny < Si. By splitting further n; = Sy + no (with &' < k and
ny < Sg) and so on, we obtain the decomposition

n=dg-Sg+...+dy-Sp
where each d; is either 0 or 1. Letting d; = 0 for j > k, we get the sequence
(n) = (dg,dy,...) € {0,1}".
We use (N) to denote {(n) | n € N} and let 2 be the closure

J
Q=(N) ={we{0,1}"| ) w;S; < Sj1 for all j > 0}.
=0
The map T : (N) — (N) is given by T(n) = (n + 1). This map does
not always extend uniquely to €2. When there is an extension, the dynamical

system (2, T) obtained from the sequence S is called a S-odometer. It can
be described as an adding machine with variable stepsize.

Let us relate the above concept to interval dynamics. First, some definitions
related to Hofbauer’s towers; see [Ho].

Consider a unimodal map f : I — I where I = [¢1, ¢p] and {0, ¢y, ¢, ...}
is the critical orbit. Let D; = [¢1, 0] and, for n > 2, define

D _ [Cn+1, Cl] O c Dn
T f(Dn) 0¢ D,
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The sequence S = (Sy, S1, . ..) of cutting times consists of those n such that
0 € D,,. Note that Sy = 1. It is easy to show that Si11 — Sk is also a cutting
time so we can define the kneading map () : N — N by the relation

Sok) = Sk+1 — Sk-

Lemma 4.1. If S is the sequence of cutting times of a unimodal map f, the
following characterization of € holds:

Q={we{0, 1N |wj=1=w=0frQG+1)<i<j-1}.

Also, if Q(k) — oo, then T extends uniquely to Q and is conjugate to the
action of f on its postcritical set.

See [BKP] for proofs.

In the case of the Fibonacci polynomial, the above definitions correspond to
the description of the critical orbit in Section 3 of [LM]. There it is shown that
(€2,T),,, is semiconjugate to the circle rotation by p = % Real rotation-
like maps, as defined in [BKP], are unimodal maps that generalize this be-
havior.

Let p € [0,1) \ Q with continued fraction expansion p = [ai,as,...] and
denote its convergents with % so that % =Y and Z—: = i
Theorem 4.2. [BKP] Consider the sequence ry starting with 11 = ¢ — 1 and
whose (k + 1)“ element is given recursively by rgi1 = Tk + agr1. Then the
S-sequence given by

Srk = gk
Sreti = G+ Dag forl <j<apq

1s realized as the sequence of cutting times of some quadratic polynomial. More-
over, the map

T,(w) = Y w;S;p (mod 1)

from  to the unit circle is well defined and continuous. This map satisfies
II,0T = R,0ll,, where R, is the rotation by angle p, and is 1 to 1 everywhere
except at the preimages of 0.

In terms of the principal nest, the behavior that characterizes rotation-like
maps is a succession of central cascades followed by one lateral escape. That
is, the critical orbit falls in V*~' starting a central cascade. After iterating
the first return map g for ay — 1 turns, we get a lateral return on Vls k. Next,
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gs,,1 creates a new cascade and so on. In particular, the Fibonacci map is the
special case of a rotation-like map where every central cascade has length 0.

Consider an arbitrary sequence ay, as, . . . of positive integers. We will cons-
truct now a Cantor set of complex rotation-like parameters with central cas-
cades of length a;—1. By theorem 3.11, it is only necessary to give an admissible
description of labeling sequences and to show that it models the combinatorics
mentioned above.

The initial labeling data for our map is ¢ = 2 and oy = "1, so rotation-like
maps will all be located in the 1/2-limb. Note also that on central return levels,
0k+1 = '0'0y. Therefore, we only need to specify the labels o,, for r, =" a;.

Let (71, 79,...) be a sequence of random chains of 'I"”’s and 'r'’s so that 7;
has length a; + 1. Set 0,, = 7’0" and o,, = 0,1 = 7'00...01". Now we can
define inductively o,, = 7;'0'0,,_, 1.

Proposition 4.3. The label sequence (q; 09,01, -..) defined above is admissi-
ble, it completely describes a combinatorial type and the corresponding map is
rotation-like.

Proof: The fact that the sequence of labels determines the type can be seen
to be true since there are no consecutive lateral returns. This implies that the
nest has exactly one lateral piece at those levels (and none elsewhere) so its
position within the frame is completely determined by o, .

As mentioned above, '0'c; (when k # r;) is an admissible label since it
corresponds to the central cell of Fi,;. Now consider what happens to the
central cell labeled '0'c,,_,_;. Since level r;_; corresponds to a non-central
return, F;,_, 41 has two preimages of that cell, labeled 'l0'c,,_, _; and 'r0'o,,_, 4
respectively. On consecutive central returns, we double the number of pull-
backs of such cells and thus, use all possible combinations of ’I' and ’r’ to label
them. A glance to the frame graph shows that these are the cells neighboring
the central one. An eventual lateral return must fall precisely in one of these
cells, and this is what happens when o,, = 7,'0'0,, _, 1. O

The real rotation-like maps studied in [BKP] correspond to a careful choice
of the 7; to ensure that the resulting parameter is real. This sequence of choices
can be determined for instance, constructing the kneading sequence. The com-
plex maps corresponding to other choices of 7;’s have the same weak combi-
natorial behavior, so the critical orbits of two maps with the same sequence
ay, ao, - .. are conjugate. In particular we obtain the following result.

Corollary 4.4. Given the sequence ai, as, ... there exrists an infinite family of
complex quadratic polynomials for which the postcritical set is conjugate to an
S-odometer and semi-conjugate to the circle rotation of angle p = [ay, as, . . ..
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4.2 ()-recurrent maps

The papers [L1] and [W] analyze an unexpected feature of the Fibonacci map.
If we rescale the central pieces V;* to regions V™ of fixed size, the g, induce
maps G, : Vr —s V1l On increasing levels, the criss-cross behavior that
determines cgp, in condition (2) at the beginning of this Chapter, approximates
with exponential accuracy the pattern of the critical orbit of P_;(z) = 22 — 1
(i.e. 0= —1+ 0+ ...). In fact, G, — P_; locally uniformly in the C*
norm. Also, since diam Vo< 1, it is shown that the rescaled pieces converge
in the Hausdorff metric to the filled Julia set of P_q, that is, V" — K_;.

In [W], Wenstrom translates this behavior to the Mandelbrot set and ob-
tains pieces of the paranest around cg, that asymptotically resemble K_1; see
Figure 1 of [W]. As consequences of this control on shape, he can compute the
exact rate of linear growth of the principal moduli and prove hairiness around
the parameter cgp,.

Q-recurrency greatly generalizes the above behavior. The general construc-
tion will be carried out here, while the next Chapter will focus on developing
all the geometrical properties of this combinatorial type.

First, let us fix the center ¢ of a prime hyperbolic component and its
associated polynomial Q(z).. The critical orbit is periodic (of least period
m) and Q°™ is the only renormalization of Q). Let us denote the orbit of 0
by O ={0— c— 25— ... = 2z, 1} and let the fixed point « of @) have
combinatorial rotation number IE)' All Q-recurrent parameters will be located
in the limb L, ,.

We will use f to refer to an arbitrary ()-recurrent map. For these para-
meters, the critical orbit O never lands on a cell that is a preimage of an 'etj’
or 'btj’ cell of Fy; therefore, it will be convenient to forget completely about
these cells and use the notation F, for the reduced frames. In what follows
we will save notation by restricting the use of “P,” to refer to the puzzle of )
and “V"”, “F!” for the nest and frames of the Q-recurrent map f.

We begin with the observation that I'(F}) is isomorphic to ['(F) since both
@ and f belong to the same limb. Let us label I'(F) with symbols 0" to 'g-1’
starting at the critical point piece and moving counterclockwise; in this way,
the labels match those of ['( Fp). Since P, is a 2 to 1 pull-back of P,, the graph
['(P,41) is just two copies of I'( P,) identified at 7, and we can start a labeling
procedure identical to that for frames. For @ € L,,, the label sequence starts
with (¢;'p’,...). Note that ['(P,) is symmetric, but we can specify a canonical
orientation by imposing that the label on 7, (corresponding to the critical
value) begins with the symbol 'I.

37



What we have produced is a labeling of the puzzle of ). To define Q-
recurrent maps, we just need to guarantee that the label sequence determining
the frame system of f matches the label sequence of (). If we can achieve this,
it is clear by an induction argument that ['(F)) will be isomorphic to I'(P,)
as embedded in the plane.

Definition 4.5. A critically recurrent polynomial z — z? + ¢ whose frame
system has the same label sequence (¢; p, 01,09, ...) as Q is called Q-recurrent
if it satisfies the following condition. For any n > 0 and 2 < k < m — 1, the
k™ return to V§* is the composition (gn ©...0 gnik 20 Gnik 1)

Observe that F] is symmetric so there are two choices for the homeomor-
phism identifying F;, with the puzzle of Q). Once we select a frame orientation,
we have an admissible label system.

Note: There is an annoying offset between nest levels and frame levels.
Because of it, V" is contained in the central cell of F},;; and contains in turn
the cells of Fj, o The notation suffers slightly when discussing return maps
to several consecutive levels; hopefully this complication is balanced by the
advantage of matching every frame level with the corresponding depth of the
puzzle of Q.

Proposition 4.6. For a Q-recurrent map every sufficiently high level n of the
nest has exactly m pieces Vg, Vi, ...,V 1. For any 0 < j < m —1, V" is
contained in the cell of F, | corresponding to the piece in P, that contains z;.

Proof: Choose N big enough so that the puzzle Py isolates every point of
O(Q) and let n > N. We will call L7 the piece of P, containing z;.

Consider the orbit of 0 under the composition g, 50...0¢,1m 3. According
to the label sequences, gntm—3(0) falls in the cell of F},_ o that corresponds
to L™, Next, gntm—4(gn+m—3(0)) falls in the cell of F!_ . corresponding
to L™, Continue in this manner, with Gntm—3—5 © - - - © Gnim—3(0) (where
0 < j < m — 2) falling in the cell of level n +m — 2 + j that corresponds to
L?]:{n*?ﬂ . At every step, we jump out one nest level and create in the process
(by adequate pull-backs) the nest pieces V™% V»tm=5 /"2 Note that
all these are lateral pieces since they are contained in a frame cell that is not
central. In fact, errzm_llﬂ is in the cell of F},,, ,.; that corresponds to
L?er_zﬂ; see figure 8.

The last map in this chain of compositions is g¢,_o. It brings the criti-
cal orbit very nearly to the center, inside V;**™. To see this, remember
that the definition of ()-recurrency requires that the composition of maps

Gn—20...0 Gnim-s : Vgt™ 2 — V™3 is the first return to V™™ ? i.e.
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Jn-20...0gpim-3 is exactly the map g,1m 2.

In summary, if a point of O falls in a piece V" (for j < m — 1), the next
return falls inside V;-’_fll. If it falls on a piece V,!_,, the next return falls m levels
deeper, inside V7"*™~! and is in fact, the first return to this piece. Repeating
this procedure at m — 1 consecutive levels creates various pieces of different
levels. Among these, the m—1 lateral nest pieces of level n, each corresponding

to a point z; (1 < j < m — 1) of the critical orbit of Q. O

Figure 8: In a Q-recurrent map there are m — 1 lateral pieces at each level,
where m is the period of 0 under ). Under successive first return maps, the
critical orbit jumps out to lower levels (as V""" goes inside Z-’Ei ) until at
step m — 1 it returns to the center. See also Figure 10.

Theorem 3.11 guarantees the existence of ()-recurrent maps. Observe that
a first consequence of proposition 4.6 is the fact that the itinerary of V* in the
nest of level n — 1 is (see Definition 3.8)

XV = (VA0 Mgl [V Angal) when 0<j <m —1

AV = (16 Aweal). (4.1)
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This hints to a similarity between the actions of ) and g,, that will be made
precise in the next Chapter, where we develop the asymptotic properties of
-recurrent maps and their principal nests.

4.3 Meta-Chebyshev

Consider the polynomial Pyrchen(2) = 2% — 1.87450961730020085 . . . This pa-
rameter was constructed with the requirement that the graphs I'(F)) are iso-
morphic to T'(P,(f_»)), where f o : 2z — 2? — 2 is the Chebyshev polynomial.
The motivation for this example is to determine what properties of ()-recurrent
polynomials will hold for parameters that imitate the behavior of more general
postcritically finite maps. In fact, the construction of Pyicpep is very similar
to that of ()-recurrent polynomials, except for the fact that the critical orbit
of f_o does not go back to the center. This means that the first return to
level n + 1 must be delayed until after the composition g; o ... 0 g,. At this
point, the critical orbit falls in YO(O) and the previous combinatorics impose no
restriction.

The parameter is chosen so that the first return to level n+1 occurs exactly
at this moment; that is g,,1 = g1 0 g2 0 ... 0 g, for all n. Also, the choice of
frame orientations that result in a real parameter imposes the label sequence
(2;71.110","1r0" " e’ lrreQY, . . ). By analogy with the critical orbit of @, every
nest has two lateral pieces and the itinerary of V;* includes an infinite number
of visits to Vi after the first return to V"',

If this combinatorial description is admissible, the results of Chapter 3
guarantee an uncountable set of complex parameters with the same combina-
torics. By a result of Yoccoz, there cannot be other real polynomials in this
class except Pyicheb-

To justify the existence of such map, consider the kneading sequence 6:
-+t 44—+

The checks are just an aid to construct the sequence by the following iterative
procedure: Start with the chain —++ — — Create a second, unchecked copy
inverting the symbol at the second to last mark. Concatenate this copy to the
right of the previous chain and put a check on the last symbol. Repeat.

The checks mark the first return moments to every level of the nest and
the first symbols are fixed by the requirement of having a real map (that is,
in Ly/5). Recall that the critical orbit of f 5 is 0= =2 =2 2 ... If
Pyichep s to replicate this behavior, every visit to a level n must fall on V)
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except for the first return to V" that should be located in the opposite side.
This justifies inverting the middle symbol at each step. Note that the first
returns occur at iterates 2, 3,5,10,20,40,..., i.e. doubling at each step after
the third.

In order to verify that this sequence is admissible, we just have to describe
the sequence €;¢€; ... of accumulated products of symbols in §. Then we have
to prove that for any m, the least ¢ such that €,.; # €, - € satisfies ¢, = —
The sequence of €; begins:

e i s e e e ity s sl

and the rule to construct it is as follows: Start with the chain ——— + — Make
a second unchecked copy and invert every symbol that appears to the left of
the second to last check. Concatenate this copy to the right of the previous
chain and put a check on the last symbol. Repeat.

This sequence starts with ———+ — and every mark will be on a — symbol.
It follows that there cannot be more that three + in a row so the admissibility
condition is satisfied. Thus, the kneading sequence 6 can be realized by a real
polynomial and Pyicpep €xists.

The methods we use to work with ()-recurrent polynomials are not enough
to prove corresponding results for Pyicpen- In particular, we will rely on the fact
that K¢ has a non-empty interior, which is not the case for K_,. Nevertheless,
the analogy is good enough that it is natural to ask the following.

Conjecture 1. There are suitable rescalings of the nest pieces of Pyicheb Such
that the functions induced from the first return maps converge to f_o and
such that the rescaled pieces converge to the interval [—2,2] in the Hausdorff
topology.
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Chapter 5

Asymptotics of ()-recurrency

This Chapter presents the geometric properties of ()-recurrent maps. Their
explicit relation to the combinatorics of ) gives control over the shapes of nest
pieces and this will yield very precise estimates of the analytic invariants of
the nest.

For reference, let us state again the fundamental relation between levels of
a (Q-recurrent nest:

Intm = 9Gn O --- O gnim—1 (51)
Onim (Vn—i-m’ Vn—l—m—l) — (Vn—l—m—l’ Vn—l) (52)

5.1 Complex Fibonacci maps

Definition 5.1. A complex polynomial map, or equivalently its corresponding
parameter, is said to be Fibonacct if the first return to each level of the nest
happens exactly when the iterates are the Fibonacci numbers.

Note: The first return to a level can be viewed as a close return in a combina-
torial sense; that is, a return to a small central piece. Since Lyubich’s Theorem
guarantees that central pieces decrease in size, the property in Definition 5.1
is equivalent to its metric analogue, property (1) at the beginning of Chapter
4.

Our first result is a classification of the Fibonacci behavior in the complex
case.

Definition 5.2. The set of all (2> — 1)-recurrent parameters is denoted Fibo .
Theorem 5.3. A parameter c is Fibonacci if and only if ¢ € Fibo.

Proof: All (22—1)-recurrent maps have the same weak combinatorial type. As
was pointed out in the note after Definition 3.10, the first returns of high levels
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are just predetermined compositions of lower level ones. Thus, the number of
iterates until the first return to a piece V{* is independent of the parameter
¢ € Fibo . As it is known that the real parameter cg, € Fibo is Fibonacci, the
first direction of the assertion follows.

To show the converse, it is only necessary to observe that the first return
times in a Fibonacci nest are strictly increasing, so there are no central returns.
Therefore the first return map g¢,,.1 must be the composition of at least two
first return maps of the two preceding levels. If the nest does not have (22 —1)-
recurrent type, there must be more than one lateral piece at some level n. Then
the composition of maps generating g,,; will actually contain more than two
maps and the sequence {/,} of first return times grows faster than the sequence
generated by the recursion ¢,,.1 = ¢, + £,_1. This contradicts the assumption
that the map is Fibonacci. O

Although Yoccoz’s Theorem allows us to characterize Fibo as a Cantor set,
we must wait until next Chapter to show that the relevant parapieces shrink
exponentially fast, allowing us a complete description of the set Fibo as a
Cantor set of Hausdorff dimension 0 on which we can impose a natural dyadic
decomposition.

5.2 Shape

We want to study the shape of nest pieces in the following sense.

Definition 5.4. A sequence of compact sets {C; C C} is said to converge
in shape to a compact K if there exist rescalings C; = a; - C; (with a; € C)
such that {C;} — K in the Hausdorff metric.

The main Theorem of this Chapter is a vast extension of the result on the
shape of central pieces of f.,, found in [L1]. In order to give the statement,
we need to fix some notation.

Let @ = Q(z) be the center of a prime hyperbolic component and ¢y a Q-
recurrent parameter. Recall that f., is described by a dyadic choice of labels
('l and 'r') on every level. These frame orientations determine the sequence
of paranest pieces {A™} around cq. If ¢ € A™ is any nearby parameter, the
combinatorics of f. are identical to those of f., including the orientations of the
homeomorphic frames, at all levels j < n. In particular, for any ¢ € A™ we can
find a (unique) point s; in F corresponding to the fixed point a of Q). In what
follows, we do not include in the notation the fact that the objects described
depend on c. Let a; = * and define the complex rescalings Vi = Q- V] of the
central nest pieces of fc, up to level n. Then, the first return maps g; induce
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maps G; : V3 — V31 on rescaled pieces whose action on the rescaled frame
F'; 5 C V7 is isotopic to the action of @ on its own puzzle.

Theorem 5.5. Given € > 0, there is an N such that for every parameter
c € A" and level n > N, the maps Gn,Gpny1,--., Gy are all e-close to Q in
the C*t topology inside the ball of radius é

Corollary 5.6. The sequence of central nest pieces {Vi'} of f., converges in
shape to the filled Julia set K.

Proof of Corollary 5.6: The point o € Kg is fixed under G, and is
surrounded by V™. This rescaled nest piece also surrounds the critical point
0 which attracts every point in Kg \ Jg. Now, V" is the pull-back of V"~
under G,. By Theorem 5.5, G, is a small perturbation of ); since the rescaled
pieces in the sequence {V"*! V"2 1 have bounded diameter, they become
exponentially close to the regions in the sequence {Q°~*(V™"), Q°~2(V™),...}
converging to Kg. This yields the result. g

In particular, the central pieces of any complex quadratic Fibonacci map
look like K _1, although each one may be tilted at a bizarre angle (recall that
the V™ are rescaled by a complex number). Other examples can be seen in
Figure 9, showing puzzle pieces that approximate the behavior of different
periodic orbits of period 3.

Notice that, since the frames are defined by the same sequence of pull-backs
as the central nest pieces, the result of Corollary 5.6 holds also for frames; i.e.
the union of cells in F, converges in shape to Kg.

The proof of Theorem 5.5 depends on the convergence of Thurston’s map
on an appropriate Teichmiiller space (see the Appendix for definitions). Let
O = O(Q) and consider the surface S obtained by puncturing the plane at
the critical orbit of @; that is, S = C\ O. Since deformations are considered
only up to an isotopy that leaves O invariant, the structure of a puzzle-like
construction does not change. Thus, when h is a deformation in the class of
id, the deformation h(P(Q)) of the puzzle of @) can be isotoped back to the
puzzle P(Q) itself without changing its configuration and without moving O.

Thurston’s map is best described via the alternate description of 7Ty in
terms of Beltrami differentials. First we normalize every deformation A by an
affine change of coordinates ¢ so that poh leaves 0, c € O fixed. The Beltrami

coefficient u = %% determines a conformal structure associated to h.

Definition 5.7. The map 7 : Ts — Tg induced on equivalence classes of
conformal structures by the pull-back p — Q*p is called the Thurston map
associated to ().
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The action of 7 on a deformation class h is easy to describe. The class
7o ([h]) is represented by a deformation h such that the map Q, = ho Qo h!
is analytic. Because of conjugacy, @ replicates the critical orbit behavior
of @ in a neighborhood of A(O). In particular, one can specify a puzzle-like
structure around 71(0) which pulls back according to the same combinatorics as
Q. Since O is finite, and @°™ is not renormalizable, such a puzzle structure of
high enough depth will isolate all the elements of the critical orbit in individual
cells. We conclude that the isotopy class of h relative to punctures consists
of those Qp-pull-backs of h(Q) that keep the puzzle structure intact (however
deformed).

Figure 9: Consider the maps Qy : z — 2° — 1.75487... (the “airplane”) and
Qy 2z — 2% —(0.123...) +4(0.745...) (the “rabbit”), as displayed in the first
row. Both maps have critical orbits of period 3. The pictures in the se-
cond row show close-ups near 0 of two other Julia sets. On the left, a Q1-
recurrent map (c; = —1.87449300898719...). On the right, a Qo-recurrent map
(e = —0.023918090959967... 4+ 10.984732550113053...). In each case, there is
a central nest piece approxrimating the Julia set of the corresponding @Q);.
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Proof of Theorem 5.5: Let X be any finite collection of simply connected
compact subsets of C. By a multicurve I' around X we mean a system of
disjoint isotopy classes of simple closed curves in C \ X such that each curve
7; € T splits C in two regions, each enclosing at least two elements of X (i.e. ;
is non-peripheral). If f : C\ X — C\ X fixes every element of X, we denote
by F;l the multicurve consisting of the classes of f-preimages of elements
v; € T that are not peripheral. The multicurve I" is said to be f-stable if
r;tcT.

Given amap f : C — C fixing the critical orbit O of Q and an arbitrary f-
stable multicurve I' around O, we can construct the linear space R'' generated
by the curves of I, and an induced linear map fr : R& — RT given as follows.
If v; € T, let 7;,;% denote the components of f~*(v;) that are in the class of
7; € 7', Then

A 1
fr(w) =) i
4.k 1,9,k

where d; ; ;. denotes the degree of f\wk S Yigk — Vi

An obstruction to the convergence of Thurston’s map 7y is represented by
a f-stable multicurve around O, for which fp has an eigenvalue A\ > 1. In our
case, () is a polynomial so it represents the fixed point of its own Thurston
map. In particular, there are no obstructions to the convergence of 7¢; see
[DH3|.

Now, since () belongs to a prime hyperbolic component of period m, the
map Q°™ is a renormalization conjugate to z — 22. By hyperbolicity, the
central puzzle pieces of K¢ get arbitrarily close to the immediate basin of 0.
In particular, there is a finite depth so that 0 is the only point of O inside the
central piece. By further iteration, the same will be true of any point in O.

Let us choose a level k£ high enough so that the puzzle P, ; isolates all
the points in the critical orbit of (). Again, this is possible since QQ° is not
renormalizable. Then, any Q-stable multicurve I' can be represented with
curves that are constructed from segments of the arcs defining P;_;. In this
way, ' is described in terms of the structure of Py, for any level &' > k — 1.
Moreover, Fél is a multicurve around O that can be described in terms of the
combinatorial structure of Py ;.

Now consider f. with ¢ € A¥. Any Gj-stable multicurve I around the
pieces V}Hl can be described with segments of curves in the boundary of

the frame F}_,. Since F}_, is isomorphic to Py_;, there is a correspondence

between Gj-stable multicurves around |J; {173“1} and -stable multicurves
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around O. This means that the only possible obstructions for 7¢, must form
inside one of those pieces; that is, a multicurve realizing such obstruction would
intersect at least one of the pieces ij+1. Note that such multicurve cannot be

represented by curves that are close to the boundary of ﬁ,é_l.

By [L3], we know that the size of ~0k+2 with respect to ‘70“1 decreases
exponentially as £ — oco. Then, Koebe’s Theorem shows that Gy is exponen-
tially close to being quadratic; that is, it can be decomposed as G = DyoQp,,
where the maps Dy become linear and the deformations hj are given by iter-
ation of the Thurston map 7. Moreover, both @5, and G}, fix o and send 0
close to itself, so we can conclude that D — id. It follows that Gy rapidly
approaches QJp, .

Select any @-stable multicurve I'" around O. If there is a level k such that
[V does not intersect any of the pieces V;’”l, then I can be pushed to the

boundary of E .1 to represent a G-stable multicurve around the pieces 17;-’““.

Since I" is not an obstruction for @), we deduce that, outside the 17;-’““, the
map Gy, is isotopic to (). However, the only possible Thurston obstructions are
restricted to extremely small regions, then the distortion of hAj; goes to 0 and
the maps Gy, converge to () exponentially fast in a neighborhood of Kq\O. We
know that the Koebe space between V;"™ and V{ increases without bound, so
we can claim convergence of the maps G, in arbitrarily big neighborhoods of

K. O

Theorem 5.5 has broad implications since it provides excellent control of
the shapes of nest pieces. In the next Section, we use our knowledge on the
shape of the central pieces to compute the rate of growth of the principal
moduli.

5.3 Growth of annuli

Here we study the moduli of the principal annuli in ()-recurrent maps. For this
family, we can state a more precise version of Lyubich’s Theorem L1 on the
linear growth of moduli. The key ingredient in the proof is Theorem 5.5 giving
control over the shape of pieces, in conjunction with the extended Grotzsch
inequality as stated in the Appendix.

As a preparation for Theorem 5.9, we compute first the capacities of Kg
with respect to 0 and oo.

Lemma 5.8. Let Q = Q(z) be the center of a hyperbolic component with
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critical period m. Then cap,,(Kg) =0 and
m—1
capy(Kg) = —(m —1)In2 — Z In ‘Q"j(O)
7j=1

Proof: Kj is connected, so the Béttcher coordinate ¢ : C\ Kg — C\ D
sending 0 to oo is the Riemann mapping with derivative 1, so the first equality
is obvious.

The capacity of K¢ at 0 is simply capy(U), where U is the immediate basin
of attraction of 0. Consider the iterated polynomial Q° : U — U. It is a 2
to 1 map of a simply connected domain with fixed critical point. Therefore,
there is a map 9 : D — U such that

P(2%) = Q™ o ¥(2) (5.3)

and it is clear that cap,(Kg) = capy(U) = In[¢'(0)].

Equation 5.3 shows that ¢'(0) is the inverse of the quadratic coefficient
in the series expansion of Q°™(z). Since the constant term of Q°(z) is just
Q%7 (0), it is easy to find recursively that m = H;":’ll 2Q°7(0) and thus,

m—1
capy(Kg) =In¢'(0) = —(m —1)In2— > " In|Q(0)
j=1

0

Recall that capacity and modulus are invariants that vary continuously
with respect to the Carathéodory topology. Thus, given a sequence of topo-
logical disks around 0 converging in the Hausdorff topology to a set with
pinched points, the sequence of capacities will converge to the capacity of the
component of the limit set that contains 0. Similarly, for a sequence of annuli
with adequate convergence, the limit of moduli detects only the modulus of
the limit component that contains the limit closed geodesic.

Theorem 5.9. For any parameter ¢ € Fibo the principal moduli grow linearly

at the rate 102
lim Bn _ n—.
n—oo N 3

If Q@ = Q(z) is the center of a prime hyperbolic component with critical
period m > 3, the rate of growth is exponential

. Un
lim
n—o0 ,[,[,n+1

= Km,

where Ky, % as the period m of () increases.
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Proof: Fix a level N large enough so that the shape of rescaled nest pieces
is already close to the shape of K. In particular, cap, (V”) ~ cap ((KQ)O)
for all n > N, where (Kg), is the Fatou component of K containing 0.

We also require the lateral pieces are small enough to sit in the center of
their (almost pinched) regions, far away from the boundary. This is possible
since Theorem L1 forces shrinking and Theorem 5.5 locates the nest pieces in
positions that resemble the critical orbit of Q).

Theorem 5.5 also gives the recursion formula

In+m = 9n© --- O Gntm—2 © Gn+m—1-

On consecutive levels the first returns of a central piece V"™ fall inside
the pieces V"t Vyrt™m=t V™2 and V;"*™. From this, we obtain the annuli
relation

g;_'l_m (%n \ Vbn—l—m) — (Vbn—km \ Vz]n—l—m—kl) ]

In order to estimate the modulus of (Vg"t™ \ V7"*™*1) | let us split the re-

turn map gn+m|( e mama in the above mentioned composition of first re-
vty )

turns. First, gnim—1 is 2 to 1 on the annulus (Vg™ \ Vi) . Note that the
image of V""" is deep inside V;**™; in fact, these two pieces are separated
by a nested sequence of preimages of the central pieces V'™, ... V™=t
Due to the pinching of pieces near repelling points, most of the modulus of
Gnim—1 (Vg™ \ V@™ ) € V™ ! is concentrated in a region of Vg™
that resembles the immediate basin of the critical value of (). On this region,
On+m—2 1s injective.

The remaining returns ¢,.m-3,-- ., g, behave in a similar manner, essen-
tially preserving the modulus on regions around non-central pieces. We can
conclude that

1
mod (Vg™ \ V™) = 2 mod (V" \ Vg™*™) .
The right hand side can be extimated by applying the Extended Grotzsch

Inequality to the annulus (VO" \ VE)”J”") = (Von \ VO”“)U, . _U(Von+m—1 \ Von+m) ’
we obtain

—_

m—1

j=0

where eg ~ (m — 1) |capy(Kg)| = (m — 1) ‘(m —1)In2+ Z;ﬂ;ll In |on(0)|‘
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The recursive formula z,,,, = %(xmm,l + Tpym-2 + ...%,) + £¢ has an
asymptotic behavior that is ruled by the largest root of its characteristic poly-

nomial 1
zm—E(zm_1+zm_2+...+z+1). (5.4)

When m = 2, Q(z) = 2% — 1, the largest root of 2> — Z(z +1) = 0is 1 and
eg = In2. Consequently, the growth of the moduli is dominated by a linear

term p, ~ An 4+ B. The recursive relation j, < #2=+ 4+ #2=2 4 In 2 gives

If m > 3, the largest root k,, of 5.4 is strictly larger than 1. In fact, it
strictly increases to % as m — oo. The exponential growth of u, follows and
it is clear that eventually it does not depend on the value of £¢. |

Note: One should contrast the above result with [AM]. There, the authors
show that for almost every non-hyperbolic real parameter, the principal moduli
grow at least as fast as a tower of exponentials. The “slower” growth displayed
by @-recurrent polynomials has immediate geometric consequences.

Definition 5.10. We will say that a compact set K is hairy at a point c € K
if there is a sequence {€1,€,...} converging to 0, such that % (K—-¢)ND
becomes dense in D.

If K is hairy at c for any sequence of scaling factors {e;}, we say that it
satisfies hairiness at arbitrary scales.

By an observation of Rivera-Letelier ([R-L]), the construction of [W] can be
extended to prove hairiness of M at any critically recurrent non-renormalizable
parameter. The idea is as follows:

Since K, is connected, it contains a path from 0 to 3. This crosses every
principal annuli from one boundary component to the other. Choosing a high
enough level, we can rescale the annulus A,, to constant diameter containing
a hair that connects the outer boundary with a small neighborhood of 0. The
pull-backs by consecutive first return maps duplicate the number of hairs inside
deeper annuli and this collection of hairs is equidistributed around 0 (control
of geometry). The hairiness of K, is then translated to the parameter plane
to obtain the result.

Rivera-Letelier has announced a proof that the real quadratic Fibonacci
polynomial displays hairiness at arbitrary scales. The proof relies in an essen-
tial way on the linear growth of moduli, so it holds true for any parameter
in Fibo . Other @-recurrent polynomials miss this sharper property in account
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of the exponential growth of their principal moduli. It should be observed
that this same property creates a somewhat embarrassing difficulty; since the
moduli grow so fast, computer generated pictures fail to exhibit a convincingly
hairy picture. In order to do so, it would be necessary to reach deep levels of
the nest that may be out of the range of resolution of the software used.
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Chapter 6

Parameter space

One of the most amazing attributes of complex quadratic dynamics is the
replication of dynamical features in the parameter plane. For instance, the
structure of a limb L,/ reflects the initial steps of the critical orbit for any
parameter contained in it. In [T], Tan Lei showed that for a strictly preperiodic
parameter c, the Julia set of f. and the Mandelbrot set exhibit local asymptotic
similarity around c.

As we have mentioned, a result of similar nature appears in [W]| where
Wenstrom shows that the paranest pieces around the real Fibonacci parameter
chp are asymptotically similar to the central pieces in the principal nest of f,, .
Thus, A"(cg,) — K1 in shape and the author exploits this geometric result
to obtain hairiness of M around cgp,.

This Chapter discusses a generalization of the above results to the family
of all Q-recurrent parameters. Note that the maps () are dense in M and
that for each one we have an uncountable set of ()-recurrent parameters.

Theorem 6.1. Let Q = Q(z) be the center of a prime hyperbolic component
with critical period m, and let cg be a Q-recurrent parameter. Then the pa-

ranest around cq is infinite and the parapieces {AI(cq)} converge in shape to
the filled Julia set K.

This will require translating the corresponding result that we obtained in
the dynamical plane to the space of parameters. To do this, we need to intro-
duce certain auxiliary parapieces; describe in detail the boundary of AJ(cg)
and define a map M, : A"(cg) — C that “rescales” A™ to a compact set
close to K.

From the above result follow the possibility of computing the rate of growth
of the paramoduli. Since the paramoduli increase at least linearly, the set of
Q-recurrent parameters is a Cantor set of Hausdorff dimension 0.

Lastly, in Section 6.3 we exploit the result on shapes of parapieces to present
a new form of auto-similarity in the Mandelbrot set.
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For the rest of this Chapter, unless explicitly mentioned, we will fix a map
@ = Q(z) in the center of a prime hyperbolic component such that the critical
orbit has period m; also, cg will stand for a fixed ()-recurrent parameter.

6.1 Auxiliary parapieces

Consider the first return map g, 1 : V"' — V"% Given that V* € V"',
we can study the effect of g, ; on V}"; there, the condition of @)-recurrency
gives:

g1 (V") € Vet

Then, we can apply ¢,_o to obtain
In—20gn1(V") € gn—Z(Vzn_l) € Vén_z-
This procedure can continue further for a total of m — 2 steps:

Gn-m+20 - gn-1(V]") € Vi "%,

m

where in fact, this image is contained in a nest of intermediate pieces inside
V- mt2: see Figure 10. When we apply g,_m11, the piece V" ™2 maps onto
Va~™*1 50 the intermediate pieces mentioned will map onto the central pieces
Vg2 ypmmAs L V2 and the combined effect on V{* will be (recall De-

finition 2.18):

In-m+1 0 Ga1(VI") = gua (V") = V5. (6.1)
Since V* € V7', the following is well defined.

Definition 6.2. We denote by U™ € V" and F;,, C U™ the g, 1-pull-backs of
Vit and F,, C Vi, respectively. Compare Figure 10.

Note that F , is known once the nest structure up to level n is given.
However, if we assume (as is the case here) that the nest of our parameter
displays the Q)-recurrency type up to level n 4+ 1, we can say more. Since

9n+1(0) = gn-m+1 0. gn—10 gn(0), we must have
gn(0) € F; 5. (6.2)

Let us pass to the parameter plane. Our initial goal is to obtain a precise
control of the combinatorics inside relevant consecutive parapieces. In the first
place, A™ is the set of parameters that have the same nest combinatorics as
cg, up to the first return g, (0) to Vgt
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Figure 10: Construction of U and F;.,. The domain of g,—1 is V"'; in
particular, it maps VI inside V,*~'. Further maps gn_, gn_3, - - - take the cur-
rent ensemble inside the next piece of previous level, until V""", Note that
In-—mi1 takes V""" 2 onto the central piece Vy'™™*!, instead of a lateral one.
This maps the gray piece (the image of V") onto Vg"~*. Then, we can pull V’
back all the way to the piece U™ inside V*. Also, U™ has a frame F_ , which
is the corresponding pull-back of F) ., C V§*. Neither U™ nor Fy ., are drawn.

See also Figure 8.

Definition 6.3. We introduce two new auxiliary parapieces.

o A"™? s the set of parameters such that g,(0) falls inside the frame
Fp Ve

o ="t is the set of parameters such that g,(0) falls in VI € F), ;.

Each region =" is well defined as a parapiece since it represents the return
to a single piece of the puzzle. On the other hand, A"*? is actually the union
of several parapieces; nevertheless, it is convenient to regard it as a parapiece
to avoid longer descriptions. With this in mind, we are interested in the fact
that parapieces of consecutive levels can be described in terms of a single first
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return map. Because of formulas 5.2, 6.1 and 6.2, we have:

ceA" = g (0)eV! = g.a0)eVy™

ce AT? «—= g, (0)€F.,, < ¢,+1(0)€ F’ “mi2

ceZ! = g, (0)eV <= g,11(0)€Vy! (6.3)
ce A™! = g¢,(0)eU” <= g,41(0)€ V})

c€ AT = g,(0) € Fr, <= g.11(0) €

Since F; , C U" € V* € F,,; C V§"™!, we have the following parapiece
inclusions:
A" c APt @ M @ A2 C AT (6.4)

6.2 Shape and paramoduli

In order to prove Theorem 6.1, let us introduce the map M, : E* ! — C,
where =" ! belongs to the paraframe of the fixed parameter cg. Remember
that a, 5 = 2 is the rescaling factor that defines F'[cq] = an_s - F![cq)].

For c € H” 1, let

M, (c) = an—2 - gn—1(0)[c].
Proof of Theorem 6.1: From Table 6.3, when ¢ € A""! the first return
gn—1(0)[c] is in F!. We know that for n large, F![c] is exponentially close to
KQ.

Fix an £ > 0 and find n big enough so that both rescalings o, _s[c]- F!. = F!
and oy,_p - F are at most :-close to each other and to K. This means that
M, (A1) is a compact set e-close to K.

By definition, the parapiece Z"~! is the set of parameters ¢ for which
9n_2(0)[c] falls on the lateral piece V;*~2. Since this map is a first return,
Proposition 2.14 implies that the correspondence ¢ — g, 2(0)[c] is univalent
in 2", Moreover, V;"~2[c] is at a definite distance away from the central piece
Vi'~2[¢] for all ¢, so the image of Z*~! under ¢ — g,_5(0)[c] is uniformly far
from 0 and similarly for all further iterations up to the first return g, 1(0)[c].
Again, we can use Proposition 2.14 to obtain that M, is univalent in its entire
domain.

Since n is big, the modulus of the annulus (int Vy'™® \ F!)[c] is large for
every ¢ € =" 1. In particular, since ﬁT’b[c] has bounded diameter, this im-
plies that the distance between the point c,_s[c] - gn_1(0)[c] € OV ?[] and
the curve OF![c] is exponentially big for ¢ € 2" L. Let d,, be the minimum
of these distances over all c. Then, M,(0Z" ') and M, (OA™"!) are at least
a distance (d, —¢) ~ d, oo apart. We can conclude that the modu-
lus of M, (int Z"~! \ A™"1) is arbitrarily large and so will be the modulus of
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int =n—1 n+1
int 2"\ AT

We have shown that the map M,, is univalent in its domain and the modulus
of int 2" 1\ A?*! is big. Then, by the Koebe distortion Theorem, M, is
asymptotically linear in a neighborhood of A”*!. Since we got that M, (A"!)
is e-close to K¢, we can conclude the proof. 0

As an immediate consequence of this control over the shape of parapieces,
we can compute the rate of growth of principal paramoduli p,,.

Corollary 6.4. The annuli of consecutive parapieces in the nest of a (2% —1)-
recurrent map grow linearly at the rate

In 2
lim Hn _ 2n—.
n—oo 1 3
For any other Q-recurrent map (where Q has critical orbit of period m > 3)

the moduli grow exponentially at the rate

lim —2n
n—=00 lp41

= Km,

3

5 as the period

where K,, 1s the same constant as in Theorem 5.9, growing to
m of Q) increases.

Proof: First note that, although U™ is defined as a pull-back of V*, relation
6.2 shows that this piece is just g, (Vy"™).

Now, when ¢ € A", the first return g, (0) falls in V5*~1. For ¢ € A"+, ¢,,(0)
is in U™. From the previous result, ¢ — ¢,(0)[c] is an almost linear map taking
the annulus (A™\ A™*!) close to (V§'~'\ U")[cq]. Therefore

mod (A™ \ A"} ~ mod (V"' \ U") ~ 2mod (V5" \ V§'*).

The result follows from Theorem 5.9. O

6.3 Auto-similarity in the Mandelbrot set

The discovery that parapieces around cg, are similar to the Julia set of —1
revealed one more level of complexity in the structure of M since it relates
two seemingly different parameters by the dynamics they generate. In this
Section we use our results to take one further step. Having at our disposal
an infinite collection of superattracting parameters, we reveal an interesting
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relation between two arbitrary parameters on M whose combinatorics can be
completely dissimilar.

(Q-recurrency is not restricted to the Cantor sets described so far. As part
of the proof of the next Theorem, we will show that parapieces whose shape
approximates K¢ are dense on 0M. This requires relaxing the definition of
@-recurrency which assumes that the correct combinatorics start from level
0. Instead, we allow critical orbits that behave arbitrarily for several levels
before settling in the desired @)-recurrent pattern. This critical behavior is
referred to as generalized QQ-recurrency and its density in OM will follow from
the description. After this we may conclude the assertion of Theorem 6.5,
which can be interpreted as saying that the geometry of most Julia sets is
replicated near arbitrary locations of the boundary of M.

Theorem 6.5. Let ¢1,co € OM be two parameters such that f., has no in-
different periodic orbits that are rational or linearizable. Then there exists a
sequence of parapieces {1, Yo,...} (most likely not nested) converging to c;
as compact sets, but such that Y, — K, in shape.

Proof: It is not difficult to obtain the result of Theorem 5.5 in more gene-
rality. In fact, inside any ball B.(c) with ¢ € OM, we can find a system of
parameters for which the first return maps converge (after scaling) to a given
superattracting map Q.

To see this, simply consider a tuned copy of M contained in B,. All pa-
rameters in this copy M’, are renormalizable by the same combinatorics. In
particular, there will be parameters whose renormalization is hybrid equiva-
lent to a @)-recurrent map. For these parameters a high level of the frame will
contain a substructure whose graph is isomorphic to I'y(Q) and we can start
the same construction as in the proof of Theorem 5.5 to produce frame-like
structures whose graphs are isomorphic to [, (Q). Since the combinatorics is
prescribed by a polynomial, there can be no obstructions just as in the origi-
nal case. Then, the rescaled first return maps will converge to ) as before.
Moreover, we can translate the shape property to the parameter plane.

Note that this argument is equivalent to prescribing the itineraries of nest
pieces arbitrarily on the initial levels and then proving that they can be ad-
missibly extended on subsequent levels to match the pattern given in Formula
(4.1).

Now consider the filled Julia set of f,,. We know from [D1] that there is
a sequence {Q1, o, ...} of superattracting polynomials in a prime hyperbolic
component of M such that K., can be arbitrarily approximated by filled Julia
sets: Kg, — K,,. To fix ideas, let us choose subindices so that the Hausdorff
distance is disty (Ko, , Ke,) < 5

%.
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For any n, consider the ball Bi(c;) and locate a generalized @,-recurrent
parameter s,. By going to a deep enough level, we can find some parapiece
T, C B:i around s, whose shape is (ﬁ)-close to Kg,; that is, so that there is

a rescaling T, of Y, for which disty (Y, Kq,) < o=
Since Y,, C B1, the sequence {Y,} consists of parapieces that get arbi-

trarily small and converge to c;, while at the same time dist H(Tn, K.,) < %,

so T, — K, in shape. O
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Appendix

The theorems of previous chapters rely on several notions and results of com-
plex analysis. In this Appendix we will describe the necessary ideas on which

the text relies. For references and proofs of these results, the reader can consult
[A], [DH3] and [LV].

A Carathéodory topology

A sequence of pointed disks {(U,, z,)} is said to converge to the pointed disk
(U, z) in the Carathéodory topology if:

a. Ty —> T.
b. For every compact K C U there is an N such that forn > N K C U,.

c. If V 5 x is an open connected region and V' C U, for infinitely many n,
then V C U.

The interpretation of convergence in this topology is as follows. Consider
the complements C \ U, which are compact sets converging to X in the Haus-
dorff topology. To satisfy the above conditions, z ¢ X and U is the component
of C\ X that contains z.

We can describe a similar convergence for a sequence of annuli {4,}. In
this case, we require that C \ 4, — Y in the Hausdorff sense and that the
core geodesics 7, of the annuli A,, converge to a non-degenerate loop v C Y.
The Carathéodory limit will be the doubly connected component of C \Y
containing +.
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B Modulus and capacity as conformal invari-
ants

Let R C C be a doubly connected region in the plane. Consider the family I'
of curves v C R whose endpoints are on the boundary of R. Given a conformal
metric p on R, we can define the length of I' as L,(I') = inf,cp f7 pldz| and

the area of R as A,(R) = [ [, p*dzdy.
Definition B.1. The modulus of R is

2

mod(R) = sgp (LA’;%

where the supremum is taken over all conformal metrics p with non-degenerate
area: A,(R) # 0, c0.

It can be shown that the modulus is a conformal invariant. As a conse-
quence, we can give an alternative definition as follows. Consider the Riemann
map ¢ : R — S where S is the round annulus S = {1 < z < r}. Then
mod(R) = 2rInr.

Another conformal invariant, this time of topological disks, is the capacity
or conformal radius.

Definition B.2. Let U € C be a simply connected domain, z € U and
¢ : (D,0) — (U, z) the Riemann map from the unit disk to U that satis-
fies ©'(0) > 0. The eapacity of U with respect to z is

cap,(U) = In¢/(0).
Of interest to us, will be the following property of capacities and moduli.

Theorem B.3. Both capacity and modulus are quantities that vary conti-
nuously with respect to the Caratéodory topology.

C Grotzsch inequality
The following result (and its quantitative version) is essential to estimate the
modulus of an annulus that is split in subannuli.

Theorem C.1. Extended Grotzsch Inequality: Let K C C be a simply
connected compact set and denote intg K the component of its interior that
contains 0.
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a. Consider two topological disks 0 € U C intg K C V. Then
mod(V \ U) > mod(K \ U) + mod(V \ K).

b. Let {U,} and {V,,} be two sequences of nested topological disks satisfying

e 0 €U, Cinty K and diamU, \,0
e K CV, and dist(K,0V,) / oc.

Then the deficit in the Grotzsch inequality tends to

lim (mod(Vn \ U,) — mod(K \ U,) — mod(V, \ K)) =

n—o0
| cap, (intg K)| + | capy, (K)|-

An important observation is the fact that equality in (a) is achieved if and
only if 0K C V' \ U maps to a centered circle under the Riemann map.

D Koebe distortion Theorem

Definition D.1. Given an analytic univalent map ¢ between regions U and
V, the distortion of @y is defined as:

: 2160,
Dist(yg) = sup .
(o) zyer £o(Y)

Koebe’s Theorem provides great control of the distortion when there is
enough space between U and V.

Theorem D.2. Let U and V be two topological disks with U \ V. Then there
is a constant C such that for any univalent map o(U) =V,

Dist(¢) < C.

Moreover, C =1+ O(e”™dV\Y)) s the modulus goes to co.
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E Teichmiiller space

The Teichmiiller space of a Riemann surface carries a great deal of structural
information. Here we focus in the case that the surface S is the complex plane
punctured at a finite set 0. Then, the Teichmiiller space 75 can be described
as a quotient of the space of quasiconformal deformations of S (i.e. the family
of maps {h : S — C|h is a qc homeomorphism}), where two deformations
hy and ho are identified if and only if there is a conformal change of coordinates
¢ : C — C such that poh, is isotopic to hs relative to the puncture set hy(O).

Note: The coordinate changes ¢ are affine maps, so the deformation of O
within a class is determined up to translation and complex scaling. Therefore,
we can normalize a deformation A by requiring that h fixes two distinguished
points in O. These could be, for instance, the critical point and critical value
of @ in the case that O is the postcritical set of a hyperbolic map Q.

It is fundamental to consider an alternate description of 7g in terms of
Beltrami differentials. Fix two almost complex structures on S determined
by their Beltrami coefficients u% and l/j—f. Assume that they are related by
v =h'p, where b : S — S is a quasiconformal self homeomorphism of S
which is homotopic to id relative to O. Then, the straightening maps h, and
h, are two quasiconformal deformations of S in the same equivalence class in
Ts.

Conversely, we can associate to a deformation h the almost complex struc-
ture h*o = %Z—i where o is the standard structure. It is easy to verify that
this correspondence lifts to the equivalence classes where it induces a bijection.

F Holomorphic motions of puzzle pieces

Definition F.1. Let X, C C be an arbitrary set and A C C a simply connected
domain with * as a base point. A holomorphic motion of X, over A is a
family of injections hy : X, — C (A € A) such that for each fized x € X,,
hx(x) is a holomorphic function of A and h, = id.

For every A € A we write X to denote the set hy(X.).

Holomorphic motions are extremely versatile because of their regularity
properties. The motion can always be extended beyond X, and is transversally
quasi-conformal. This is the content of the A-lemma.

Theorem F.2. [Sl], [MSS] (the A-lemma) For every holomorphic motion
hy : X, — C, there is an extension to a holomorphic motion Hy : C — C.
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The extension to the closure hy : X, — C is unique. Moreover, there is a
function K(r) approaching 1 as r — 0 such that the maps hy are K(r)-quasi-

conformal, where r = da(x, ) is the hyperbolic distance between * and \ in
A.

We are interested in the case when the holomorphic motion is defined over
a parapiece A of M. In agreement with the notation used in the main body of
this work, we use c instead of A to denote parameters in A. When an object is
defined for any ¢ € A, we express its dependence on the parameter by writing
OBJ[c].

As mentioned in Corollary 2.12, A can be interpreted as the set of pa-
rameters for which a certain combinatorial behavior holds, up to a return g(0)
of the critical orbit to some central piece V. In particular, this description
provides a natural base point for A. Namely, the superattracting parameter
co for which g.,(0) = 0. The little M-copy associated to A can be defined as
the set of parameters for which the iterates {g.(0), g2*(0), ...} remain in V|[c]
(refer to Section 3.6).

The dynamics in the region N, (defined at the beginning of Section 2.2)
is always conjugate to z — 22, so varying the parameter ¢ € C provides a
holomorphic motion of any specified ray or equipotential. When c is restricted
to A, the combinatorics require that some rays land together, enclosing the
boundary of Vc|. Since the intersection 0V N K is a collection of preimages
of the fixed point o and these vary holomorphically with ¢, there is a natural
holomorphic motion of 0V'[¢y] over A. This can be extended to a holomorphic
motion A, : V[cg] — V¢].

The holomorphic motion of a puzzle piece can be viewed as a complex
1-dimensional foliation of the bi-disk

v=_JVideC

cEA

whose leaves are the graphs of the functions ¢ — h.(p) for every p € V]co].
Under this interpretation we will write {¢ — Vc] | ¢ € A} to refer to the
motion.

Definition F.3. A correspondence ¢ — ¢(c) such that ¢(c) € V|c| determines
a section ¢ : A — 'V of the holomorphic motion h. It is said to be a proper
holomorphic section if it maps OA into the torus 6V =, con OV[c].

We say that a proper section {c — ¢(c)} has winding number n if the
curve ¢(0OA) has winding number n with respect to the vertical generator of
the 1-dimensional homology of 0V.
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In the case ¢(c) = g¢.(0), this return map determines a proper section
since ¢.(0) € Vlc] for all ¢ and ¢ € 0A = ¢.(0) € 0V[c|]. Each return map
ge : g1 (V) — V is a quadratic-like map and the associated map

ge: U —Y,

where U = |Jg.'(V]c]), is called a DH quadratic-like family. We can

interpret intuitively the fact that a family has winding number n as saying
that, as ¢ goes once along 0A, the point ¢.(0) goes n times around the (moving)
boundary of the piece V[c|.

An immediate consequence of extending the holomorphic motion of 9V|[¢y],
is the fact that {g. | ¢ € A} is a full family; that is, there is a homeomorphism
Hyb : M —s A from a neighborhood M of M to A with the following proper-
ty: For every parameter ¢ € M, guyn(r) is hybrid equivalent' to z — 2% + ¢'.
This of course, justifies the existence of the small M-copy associated to A.

Isee Section 3.6

64



Bibliography

[A] L.V. Ahlfors. Lectures on Quasiconformal Mappings.
Wadsworth, (1987).

[AM] A. Avila and G. Moreira. Statistical properties of unimodal maps: The
quadratic famaly.
arXiv: math.DS/0010062. Submitted.

[B] B. Branner. Cubic polynomials: Turning around the connectedness locus.
In: Topological Methods in Modern Mathematics. Proceedings of a Sym-
posium in Honor of John Milnor’s Sixtieth Birthday.

Publish or Perish, (1993), 391-427.

[BH] B. Branner and J. H. Hubbard. The iteration of cubic polynomials. Part
II: The patterns and parapatterns.
Acta Math., 169, (1992), 229-325.

[BKP] H. Bruin, G. Keller and M. st. Pierre. Adding machines and wild at-
tractors.
Ergod. Th. & Dynam. Sys., 17 (1997), 1267-1287.

[D1] A. Douady. Does the Julia set depend continuously on the polynomial?
In: Complex Dynamical Systems. AMS Proc. Symp. Appl. Math., 49,
(1994), 91-138.

[D2] A. Douady. Chirurgie sur les applications holomorphes.
In: Proc. ICM, Berkeley, (1986), 724-738.

[DH1] A. Douady and J. H. Hubbard. Etude dynamique des polynomes quadra-
tiques complexes I € I1.
Publ. Math. Orsay (1984-85).

[DH2] A. Douady and J. H. Hubbard. On the dynamics of polynomial-like
maps. )
Ann. Sci. Ec. Norm. Sup., 18 (1985), 287-343.

65



[DH3] A. Douady and J. H. Hubbard. A proof of Thurston’s characterization
of rational functions.
Acta Math., 171 (1993), 263-297.

[F] K. Falconer. Fractal Geometry;, Mathematical Foundations and Applica-
tions.

John Wiley, (1990).

[GLT] P. J. Grabner, P. Liardet and R. F. Tichy. Odometers and systems of
enumeration.
Acta Arithmetica, 70 (1995), 103-123.

[Ho] F. Hofbauer. The topological entropy of the transformation z — ax(1—x).
Monatsh. Math., 90, (1980), 117-141.

[Hu| J. H. Hubbard. Local connectivity of Julia sets and bifurcation loci: Three
theorems of J.-C. Yoccoz.
In: Topological Methods in Modern Mathematics. Proceedings of a Sym-
posium in Honor of John Milnor’s Sixtieth Birthday.
Publish or Perish, (1993), 467-511.

[J] W.Jung. PC software mandel.exe; available at:
http://www.iram.rwth-aachen.de/~jung/indexp.html

[LS] E. Lau and D. Schleicher. Internal Addresses of the Mandelbrot Set and
Irreducibility of Polynomials. Preprint IMS at Stony Brook, # 1994/19.

[LV] O. Lehto and K. J. Virtanen. Quasiconformal Mappings in the Plane.
Springer Verlag (1973).

[L1] M. Lyubich. Teichmiller space of Fibonacci maps.
Preprint IMS at Stony Brook, # 1993/12.

[L2] M. Lyubich. Combinatorics, geometry and attractors of quasi-quadratic

maps.
Ann. of Math., 140, (1994), 347-404.

[L3] M. Lyubich. Dynamics of quadratic polynomials, I-I1.
Acta Math., 178 (1997), 185-297.

[L3’] M. Lyubich. Geometry of quadratic polynomials: Moduli, rigidity and
local connectivity.
Preprint IMS at Stony Brook, # 1993/9.

66



[L4] M. Lyubich. Dynamics of quadratic polynomials, I1I. Parapuzzle and SBR
measures.
In: Géométrie Complexe et Systémes Dynamiques. Volume in Honor of
Adrien Douady’s 60th Birthday. Astérisque 261, (2000), 173-200.

[LM] M. Lyubich and J. Milnor. The Fibonacci unimodal map.
J. Amer. Math Soc., 6 (1993), 425-457.

[MSS] R. Mané, P. Sad and D. Sullivan. On the dynamics of rational maps.
Ann. Sci. Ec. Norm. Sup., 4, (1983), 193-217.

[McM] C. T. McMullen. Complex Dynamics and Renormalization.
Princeton University Press, (1994).

[Ma] M. Martens. Distortion results and invariant Cantor sets of unimodal
maps.
Ergod. Th. & Dynam. Sys., 14, (1994), 331-349.

[Mi] J. W. Milnor. Dynamics in One Complex Variable.
Vieweg, (1999).

[R-L] J. Rivera-Letelier. Personal communication.

[R] P. Roesch. Holomorphic motions and puzzles (following Shishikura,).
In: The Mandelbrot set, theme and variations, edited by Tan Lei, LNS
274, Cambridge, (2000).

[S1] Z. Slodkowsky. Holomorphic motions and polynomial hulls.
Proc. Amer. Math. Soc., 111, (1991), 347-355.

[Sm| D. Smania. Puzzle geometry and rigidity: The Fibonacci cycle is hyper-
bolic.
Preliminary version, (2002).

[T] L. Tan. Similarity between the Mandelbrot set and Julia sets.
Commun. Math. Phys., 134, (1990), 587-617.

[W] L. Wenstrom. Parameter scaling for the Fibonacci point.
Preprint IMS at Stony Brook, # 1996/4.

67



Index

F; (temporary frame), 20

F,, (frame of level n), 22

F} ., (auxiliary frame), 53

F, r (lateral frames), 25

G, (rescaled first return map), 43
I? (interval in a R-nest), 26

L,, (left copy of I'(F},)), 23

Lyjq (2-limb), 8

M, (c) (paranest rescaling map), 55
P, (Puzzle of depth n), 10

R,, (right copy of I'(F,)), 23

S (Riemann surface C\ O), 62
U™ (auxiliary piece), 53

V" (central nest pieces), 14

V" (lateral nest pieces), 15

Wy/q (B-wake), 8

q

Y;(") (puzzle pieces of depth n), 9

Y; (pieces of level 1 around «), 14

Z; (pieces of level 1 around (), 14

A™? (auxiliary parapiece), 53

Fibo (complex quadratic Fibonacci
maps), 42

I (dual graph), 10

[' (multicurve), 45

7' (preimage by f of a multicurve
I), 45

®,, (Riemann map of C\ M), 8

@, 1(A) (the cell in F, ; that con-
tains A), 25

F, (rescaled frame), 43

17]-” (rescaled nest piece), 43

Ertl (auxiliary parapiece), 53

a (o fixed point), 8
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B (B fixed point), 8

@ (main hyperbolic component), 8

x(V") (itinerary of V"), 26

= (equivalence of boundaries), 12

£, (time of 1% return to level n), 14

N, (critical value vertex), 10

Km (exponential rate of growth), 48

Ang; (label of @, ), 26

CV,, (critical value piece), 12

Puzz® (temporary puzzle graphs),
10

cap,(U) (capacity of U at z), 59

mod (modulus), 59

F. (frame system), 22

O (critical orbit), 1

P(2) (primary rays of W,/,), 9

Ts (Teichmiiller space of S), 62

V" (level n of the nest), 17

0, (frame label of level n), 23

&, (critical point vertex), 10

cun (real Fibonacci parameter), 33

gn, (1% return map of V), 17

Tnk (1% return of V" to V1), 17

re(2) (rays bounding W), 8

Beltrami coefficient, 44

capacity, 59
Carathéodory topology, 59
cascade

of central returns, 15
cell

of a frame, 22
combinatorial type, 26



finite, 26
component
hyperbolic, 6
immediate, 6
maximal, 6
prime, 6
primitive, 6

distortion, 61

equipotential, 7
parametric, 8

family
DH quadratic-like, 64
full, 64
Fibonacci, 33
real quadratic map, 33
first escape time, 14
frame
admissibility condition, 26
labels, 23
system, 22

generalized qc map, 17
Grotzsch inequality, 60
graph

dual, 10

frame, 22

puzzle, 10

hairiness, 50

at arbitrary scales, 50
holomorphic motion, 62
hybrid equivalence, 31

initial frame, 20

Julia set, 6
filled, 6

kneading map, 35
Koebe
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distortion theorem, 61
limb, 8

main cardioid, 6
Mandelbrot set, 6
meta-Chebyshev, 40
modulus
of an annulus, 59
multicurve, 45
stable, 45

obstruction, 46

paramodulus, 18
paranest, 18
parapuzzle, 12
piece
itinerary, 26
lateral, 15
puzzle, 9
principal
annuli, 16
nest, 14
proper holomorphic section, 63
puzzle, 9

Q-recurrency, 38
quadratic family, 6

ray, external
parametric, 8
rays, external, 7
recurrence
combinatorial, 17
persistent, 16
reluctant, 16
renormalization, 15
immediate, 14
return
central, 15
rotation-like, 34



S-odometer, 34
shape

convergence in, 43
straightening, 31

Teichmiiller space, 61
the A-lemma, 62
Thurston map, 44

unimodal admissibility conditions, 27

wake, 8
weak combinatorial equivalence, 28
winding number, 63
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