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Abstract

Three problems are studied. The first is: When is a given sequence the sequence
of numbers of periodic points for some map? Necessary and sufficient conditions
are found for this property, and these are used to address refined versions of the
question. The main results are that non-constant polynomials can never be realized
in this sense, and that quadratic recurrences can only be realized under a non-trivial
constraint.

The second is: When does a given sequence approximate the sequence of numbers
of periodic points for some map? Some tests are obtained and, inter alia, we show
that the sequence (n®logn) has this property if and only if s > 1.

In the third, the growth rate of the number of points of period n is compared
with the number of points of least period n. For either quantity having a finite
exponential growth rate, it is shown that the other’s growth is identical. However, for
either quantity having a positive polynomial growth rate, it is found that the other
cannot.

Generally, proofs of statements have only been included when, to my knowledge,

they are original. Exceptions to this are indicated clearly in the text.
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Notation

Throughout, C,R,R*,Z,Z* and N will denote, respectively, the complex num-
bers, reals, non-negative reals, integers, non-negative integers and natural numbers.

Sequences will usually be denoted by lower case letters. Thus, given a sequence
f and natural number n, the n-th term of f is f,. Often, we write (f,) for f, a
subsequence of which may be written as (f,,). Respectively, (0) and (1) are the zero
and unit sequences. Sometimes a sequence may be defined by listing its first few
terms, as in f = (1,3,1,3,1,3,...). Unless stated otherwise, it may be assumed that
a sequence f takes values in C.

For each pair of sequences f and ¢, the sequences f + g, f — ¢, fg and Jgf are
defined in the usual way: (f + ¢)n = fu £ gn, (f9)n = fngn and (f)n = g—z for each
n > 1; for 5 it is assumed that no term of g is 0.

The divisors of each integer are assumed to be positive.

We will, now and then, use the word ‘eventually’ which we now explain. A state-
ment S(n) about the natural number 7 is said to hold eventually if it holds for all n
sufficiently large. For example, 2" > 100 eventually. This word will also be applied
to statements in which reference to IN is implicit: for example, given two sequences
f and g, in saying ‘f = ¢’ we mean f, = g, for each n € N; in saying ‘f = ¢
eventually’ we mean f, = g, for all n sufficiently large. It is hoped that, phrases such
as ‘eventually equal sequences’ and ‘the sequence f is eventually 0’ will be clear.

All other notation, if not traditional, will be explained as needed.
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Chapter 1
Introduction

This work studies the combinatorial properties of periodic orbits. The setting studied
is that of arbitrary maps of countable sets, though the conclusions apply largely to
homeomorphisms of compact topological spaces. In order to state the problems, we
make some quick definitions here (these will be treated in greater detail in later
chapters), and describe some of the results in special cases.

Let 17" be a map from a set X to itself. For each n > 1, define

fao=#{lre X :T"(z) =z}

to be the number of points with period n under 7', viewed as a sequence f = f(T).
On the other hand, consider an arbitrary sequence ¢ of non-negative integers. A
natural question to ask is: When is ¢ of the form f = f(7T)? Say that ¢ € ER (‘¢
is exactly realizable’) if there is a pair (X,T) for which ¢ = f(7T'). It is also natural
to ask for a weaker form of realization: say that ¢ € RR (‘¢ is realizable in rate’) if

there is a pair (X, T) for which ¢, /f, — 1 as n — oc.

1.1 Structure of €R

In Chapter 2 necessary and sufficient conditions are given for membership of ER.
In order to gain further insight into the shape of £R, the following problem has

been studied. Given a natural class of non-negative integer sequences S, can sharp



statements be made about the members of S N ER? Some of the results proved in

this thesis are the following.

Example 1.1 1. If S comprises the polynomials, then S N &R consists of the

constant polynomials.

2. If S comprises the geometric progressions, then SNER consists exactly of those
progressions for which every prime dividing the common ratio also divides the

first term.

3. If § comprises sequences satisfying a second order linear recurrence with integer
coefficients and with a non-square discriminant, then SNER is one-dimensional

(in the sense that every element of it is a rational multiple of a single sequence).

These are proved in Corollary 2.4, Lemma 2.9, and Theorem 3.1 respectively.

A great deal of the work in Chapters 2 and 3 is concerned with more general
sequences. For linear recurrences that are sufficiently carefully chosen, the result
above may be arrived at very quickly (cf. Section 2.6 where the Fibonacci recurrence
is covered as motivation for the general case). The methods used for the second
order linear recurrence are very quadratic in nature: it makes sense to ask the same
question about higher-order recurrences, but different methods would be required to

answer it.

1.2 Structure of RR

The question of membership in RR is of course much softer than membership in
ER, but some strong conclusions can again be reached about how specific classes of
sequences intersect RR. Sequences with zeros cause some technical complications in

Chapter 5, so we simply record a few here results here.
Example 1.2 1. The sequences (s") and (n®) are in RR for each s > 1.
2. The sequence (n) is not in RR.

3. The sequence (nlogn) is in RR.



1.3 Comparing growth rates

Chapter 4 is concerned with the following type of question. Given a sequence f(T') €
ER, let g be the sequence whose n-th term is the number of points of least period n
under 7. Then what is the relationship between the growth rate of g and the growth

rate of f? The following results are taken from Theorems 4.1 and 4.2.

Example 1.3 For exponential and super-exponential rates, the following hold when

g > 0.
1. Llog fn — C € [0,00) if and only if +logg, — C € [0, 00).
2. If % log f,, — oo, then the set {% log g, } may have infinitely many limit points.

Example 1.4 Sub-exponential growth rates are more subtle.
1. For each s > 1, 7{—’; — 0 if and only if £ — 0.

2. For all C > 0 and s > 1, if i;—’; — C, then the set {2} must have infinitely

many limit points, including C

3. For all C > 0 and s > 1, if &2 — C, then the set {{2} must have infinitely

many limit points, including C.

1.4 Background examples

At several points an argument of the following shape is used. Given a candidate
sequence ¢ for membership in ER, ¢ may be rejected by finding a congruence or an
inequality that it fails. On the other hand, to accept ¢, the realizing pair (X, 7T’) must
be exhibited or infinitely many congruences and infinitely many inequalities must be
checked. It is therefore useful to have a small stock of well-known examples of pairs
(X,T) for which f = f(T) is known. These are standard: all the material below
may be found in LIND and MARCUS [8] (for the subshifts of finite type) and CHOTHI,
EVEREST and WARD [4] (for the group automorphisms).



Example 1.5 Given a matrix A € My(Z"), there is an associated subshift of finite
type (Xa,T4), which has exactly trace(A™) points of period n.

Two simple cases are worth mentioning:
1. f A= (aij) € Mk({O, 1}), then

Xa=A{ze{l,...,k}?: ay,,, = 1 for all j}

Tj+1
and T is the left shift on the closed subset X 4 of the compact space {1,..., k}2.

2. If A = (a;;) has a;; = 1 for all ¢ and j, then the full shift on k symbols is

obtained, and this has k™ points of period n.

Example 1.6 Let R = Z[ql_%_qs] be the smallest subring of the rationals in which the

chosen primes ¢y, ..., qs are invertible. Then, for each £ € R*, the automorphism

T:X =R — X = R dual to the automorphism z +— &z of R is a homeomorphism

of a compact space with [[;_, [£" — 1|, % €™ — 1| points of period n.

For example, if s = 1, ¢ = 2, and £ = —2, then this construction gives a pair
(X, T) for which there are [(—2)" — 1|5 x |(=2)" — 1] = |(—=2)™ — 1| points of period

n.



Chapter 2
Exact Realization

In this chapter simple combinatorial arguments are used to give necessary and suffi-
cient conditions for membership of £R. These are used to describe basic properties
of ER.

2.1 Preliminaries

2.1.1 Some basic facts about the Mobius function

Definition 2.1 The Mdbius function y is defined on the natural numbers by

1 ifn=1,
p(n) = 0 if n has a squared factor,

(—1)" if n is the product of r distinct primes.

Theorem 2.1 Mobius inversion formula. Let f and g be sequences. Then f, =
Ydin 9a for each n > 1 if and only if g, = > qp, (n/d) fa for each n > 1.

Proof. See, for example, HARDY and WRIGHT [6, Theorems 266 and 267]. a

Definition 2.2 A sequence ¢ is multiplicative if it is not identically zero and if
Omn = Om@, for each coprime pair m,n. A multiplicative sequence is completely

multiplicative if ¢, = ¢, P, for all m, n.



The following properties of y will be used (for their proofs see, for example, HARDY
and WRIGHT [6, Section 16.3]):

p is multiplicative. (2.1)

Yo p(d) =1 ifn=1, Ygnp(d) =0 ifn > 1. (2.2)

For each natural number n, the Euler totient e(n) is the number of natural numbers

not exceeding n that are coprime to n. We have

e(n) =Y _ p(n/d)d for each natural number n. (2.3)
din

If n > 1, and r is the number of distinct primes dividing n, then
> [u(d)| =2 (2.4)
dln

Notation 2.1 Given a sequence f let

fo:=3"u(n/d)fs for each n > 1, (2.5)
dln

and write f for the sequence whose n-th term is fn By the ‘if” part of Theorem 2.1,

a sequence f may be defined by specifying fn for each n > 1. Then

fn = Zfd for each n > 1. (2.6)
dn

2.1.2 Elementary properties of periodic points

Definition 2.3 Let X be a set and T be a map on X to itself. Suppose x € X. If
n is a natural number such that 7™(z) = z, then z is said to be periodic and to have

period n. If x is periodic, then the least period of z is the least natural number n
for which T™(z) = . The orbit O, of z is the set {T*(z):z € Z*}.

Lemma 2.1 Let X be a set and T be a map on X to itself. For eachn > 1, let
Fo:={x € X:x has period n}, G,:={x € X:z has least period n}. (2.7)
Suppose n is a natural number and x € X. The following hold:

10



(i) if x € F,, then the least period of x divides n;
(i) if z € Gy, then O, = {z,T(z),...,T" Y(x)};
(iii) Fy = Ugn Gn, the union being disjoint;

(iv) if x € Gy, then Oy C Gy;

(v) if x € Gy, then #0, = n;

(vi) if G, is a finite set, then n|#G,.

Proof. (i) Let = have period n. Suppose [ is the least period of z and, by the
division algorithm, let m, k € Z* be such that n = k + Im and k < [. Then

v =T"(z) =T (z) = T*(T")"(x)] = T*(a).

So, z = T*(x). But k < [ and [ is the least period of x. Thus, k = 0. Hence, n = Im,
proving (i).

(ii) Let = have least period n. By Definition 2.3, {z,T(z),...,T" ()} is a subset
of O,. To see that O, is a subset of {z,T(x),...,T" *(x)}, suppose T?(z) € O, for
some z € ZT. Let m,k € Z* be such that z = k + nm and k < n. Thus, T*(z) is
in {z,T(z),...,T" '(x)}. But, T%(z) = TF[(T™)™(z)] = T*(x) since x has period n.
This proves (ii).

(iii) The union is disjoint since each point in X has at most one least period.
The union is a subset of F,, because if djn and T%(x) = z for some z € X, then
T"(z) = (TY)"™?(z) = z. Also, F,, is a subset of the union because if T"(x) = x for
some z € X, then x has a least period which, by (i), is a divisor of n.

(iv) Let x have least period n. Take any k£ € {0,1,...,n—1}. By (ii), it is enough
to show that 7T%(x) has least period n. Now T"[T*(x)] = T*[T"(x)] = T*(z) since
n is a period of x. Thus, n is a period of T*(z). Let [ < n be the least period of
T*(x). So, T'[T*(x)] = T*(z) and, therefore, T"=*(T'[T*(x)]) = T™*[T*(z)]. Hence,
T T™(z)] = T"(x) and, since n is a period of z, we have T'(x) = z. But n is the least
period of x. Therefore, n < [. Since | < n as well, it follows that [ = n. Whence, n

is the least period of T*(z), which is the desired conclusion for (iv).

11



(v) Let x have least period n. By (ii), it is enough to show that the elements of
{z,T(z),...,T" ' (x)} are distinct. Suppose for a contradiction that T%(z) = T7(x)
for some ¢ and j with

0<i<j<n. (2.8)

So, T T (z)] = T™ *[T7(z)], which implies T"(z) = T *[T™(x)]. Since n is a period
of z, we have x = T77"(x). Here, j — 1 is positive by (2.8) and, since n is the least
period of z, we have j — ¢ > n. Thus, j > n. But j < n by (2.8). This contradiction
proves (V).

(vi) Define a relation ~ on G, as follows. For each pair z and y in G, let z ~ y
if and only if x € O,. To see that ~ is an equivalence let w,z and y be in Gy,. It is
reflexive since z € O, by Definition 2.3. It is transitive because if 21,2, € ZT with
w = T%(z) and z = T*(y), then w = T***(y). To show symmetry, let z € O,.
By (ii), pick an 7 with 0 < r < n and z = T"(y). Then 7" "(z) = T""[T"(y)] =
T"(y) = y since n is a period of y. Thus, y € O,, showing that ~ is symmetric.
Whence, ~ is an equivalence relation on G,,.

For each z € G, the equivalence class of z is {y € G,:y € O,}. This equals O,
by (iv). Also, #0, = n by (v). Thus, if G, is a finite set, then n|#G,, as stated in
(vi). O

2.2 The Basic Lemma

At the heart of our concern are the next definition and lemma.

Definition 2.4 A system is a pair (X,7) where X is a set and 7" is a map on X to
itself.

Let f be a sequence of non-negative integers. If there is a system (X, T’) such that
fn = #{z € X:x has period n} for each n > 1,

then f is exactly realizable. When a system (X, T') has this property with respect to
f, phrases such as ‘f is exactly realized by (X,T)" will be used.

Denote the set of exactly realizable sequences by ER.

12



Lemma 2.2 The Basic Lemma. Let f be a sequence of non-negative integers. Then

f 1s exactly realizable if and only if

A~

fn is a non-negative integer for each n > 1, (2.9)
n diwides f, for each n > 1. (2.10)

Proof. For the ‘only if’ part let f be exactly realizable. By Definition 2.4, choose a
system (X,T) such that, with the notation of (2.7), f, = #F, for each n > 1. Since
f is a sequence in Z*, the same holds for the sequence (#G,,) because G,, C F, for
each n > 1. Therefore, by Lemma 2.1(iii), f, = >4y, #G4 for each n > 1. Hence,

#G, = Y _pu(n/d)fy (by the ‘only if’ part of Theorem 2.1)
dn

= fu (by the notation of (2.5)).

This proves (2.9) since (#G,) is a sequence in Z*. By Lemma 2.1(vi), condition
(2.10) follows, and proves the ‘only if * part.

For the converse, we will in fact prove a stronger statement by exhibiting a realizing
system in which the map 7" is a homeomorphism of a compact space. This relates the

later work to dynamical systems, but raises a potential subtlety (see Remark 2.1(2)).

Definition 2.5 A dynamical system is a triple (X, 7,T) where (X, 7) is a compact
topological space and T: X — X is a homeomorphism of (X, 7).

Given a sequence f, in saying ‘f is exactly realized by a dynamical system’ the
following is meant: there is a dynamical system (X, 7,T’) such that the system (X, T)

exactly realizes f.
The stronger statement to be proved is the following lemma.

Lemma 2.3 If f is a sequence with fn € Z" and n|fn for each n > 1, then f is

exactly realized by a dynamical system.

In the proof of this lemma, use will be made of the notion of ‘compactification’, which

is now defined with an example.

13



Definition 2.6 Let (X,,7.) and (X,7) be topological spaces. Then (X,,7.) is a
compactification of (X, 7) if (X,, 7,) is compact and contains a dense subspace home-

omorphic to (X, 7).

Example 2.1 In illustration, let (X, 7) be a non-compact space. An example of this,
and one we will work with later, is (N, 2N), the space of the natural numbers with the
discrete topology. Let I be a non-empty set which does not intersect X, and adjoin
it to X forming the set X, = X U I. Define 7, to be all sets of the following types:

(I) U, where U is in T;
(I) U U I, where U is in 7 and X — U is compact in (X, 7).

Straightforward arguments show that 7, is a topology for X,, that (X,, 7,.) is compact
and that (X, 7) is a dense subspace of (X,,7,). For the case when I is a singleton,
details of these arguments may be found in, for example, in the proofs of Propositions
5.21 and 5.22 of CAIN [3]. These proofs, with very few and slight changes, will also
do for the general case. Thus, (X,,7,) is a compactification of (X, 7). When I is a
singleton it is usual to write I = {oo} and the compactification is called Alexandroff

or one-point. It will be called k-point when I = {001, ...,00,} has k elements.

Proof of Lemma 2.3. Let f be a sequence with fn € Z" and n|fn for each n > 1.

For each n > 1, write s,: = >, fz There are four cases:
(i) f has a positive term and is eventually 0;
(i) fl is positive and f is not eventually 0;
(iii) f; is 0 and f is not eventually 0;

(iv) f is the zero sequence (0).

For case (i), suppose f; is the last positive term of f. Let X = {1,2,...,s} and
define 7: X — X to be the product of the following cycles:

f1 cycles of length 1 (1)(2)...(s1);

14



f2/2 cycles of length 2 (s1+1,81+2)(s1+3,81+4)...(sa — 1, 89);
f3/3 cycles of length 3 (s94+ 1,804+ 2,80+3)...(s3 — 2,83 —1,53);

and so on, ending up with the fi /1l cycles of length [ below
(Sl,1+1,sl,1+2,...,Sl,1+l)...(81—l+1,...,81— 1,8[).

T is a well-defined bijection because each element of X appears in exactly one cycle.
Give X the discrete topology to obtain the space (X, 2%), of which, therefore, T is
a homeomorphism. This space is compact since X is finite. Whence, (X,2%,7T) is a
dynamical system by Definition 2.5.

It will now be shown that, for each n > 1, the number of points of period n equals
fn- We will then be done by Definition 2.4. Recall the notation of (2.7). In the
definition of 7', for each n there are fn /n cycles of length n. Hence, G, is a finite set
for each n, and #G,, = f,,. Therefore, using (2.6) and Lemma 2.1(iii), for each n > 1,

fo=3fo= 2 #Ga=#F,
djn dln
as desired. Thus, f is exactly realizable in case (i).
For (ii), let (N,,2N) be the one-point compactification of (N,2N), as explained
in Example 2.1. Here, N, = N U {occ}. Define a map 7: N, — N, by the product of
the cycles below:

Soo)(l)(Q)...(sl—l) (s1,81+1)...(s2—2,89— 1)

/ ~ l

/i cycles of length 1 fa/2 cycles?)f length 2

(82,82+1,82+2)...(83—3,83—2,83—12...

~

f3/3 cycles:)f length 3

and so on. In this definition of 7', if s; = 1, then it is assumed that the cycle of
length 1 is (00). Now, (N,,2N) is compact by Example 2.1. For the same reasons as
given in case (i), T is a bijection and f,, = #F,, for each n > 1. Hence, by Definitions
2.5 and 2.4, it will suffice to show that each of T and T~! sends elements of 2N to

elements of 2NV,

15



Recall the open sets of types (I) and (II) in Example 2.1. Let U € 2N be of type
(I). Thus, U is a subset of N. By the definition of T, the same goes for T'(U). Hence,
T(U) is in 2N and is, therefore, of type (I). So, T'(U) € 2.

For open sets of type (II), note that, as in any discrete space, the compact sets
in (N, 2N) are the finite subsets of N. Now let U U I be of type (II), so that U is a
subset of N and N — U is finite. We have

T(UUI)=TU)UTU)=TU)UI,

which must be shown to be in 2N. In fact, T(U) U I is a set of type (II) for the
following reasons: T(U) is a subset of N and, hence, in 2N; also, N — T'(U) is finite
since N — U is finite and T(N - U) =T(N) —=T(U) = N—-T(U); thus, N - T(U) is
compact in (N, 2N). So, T(U) U T is in 2N. We have shown that T sends open sets
to open sets. For the same reasons, the same holds for 7. Hence, (N,,2N,7T) is a
dynamical system exactly realizing f, which settles case (ii).

For (iii), let & > 1 be such that f; = --- = fr_; = 0 and f; # 0. Let (N,,2N) be
the fy-point compactification of (N, 2N). Here, N, = NU {o0y,..., oofk}. Define a
map T:N, — N, by the product of the cycles below:

(0015 -+, 00k) .- (00F, _gyyy---500F,)

~ >

Flk cycles:)f length &

\(152a"'ak+1)"'(fk+l_ka"'afk-i—l)a

v

~~

fry1/(k+1) cycles of length £ + 1

followed by fi4a/(k+ 2) disjoint cycles each of length k -+ 2 using the numbers fj,, +
1,..., fk+1 + fk+2, and so on. By exactly the argument used for case (ii), f is exactly
realized by (N,, 2N T).

Finally, for case (iv) let f=0.So, f=0hby (2.6). By Definition 2.4 and Lemma
2.1(iii), a dynamical system must be given for which #G,, = 0 for each n > 1. By
Lemma 2.1(v), this will be achieved if a dynamical system is exhibited in which no
orbit is finite: let o be irrational; consider the compact metric space (S', p), where

St = {w € C:|w| = 1} and p is the usual metric on C; define a homeomorphism T'

16



of (81, p) by T(w) = we?™ for each w € S*; Jacobi’s Theorem states that the orbit
of each point of S* is dense in (S, p). So, (S',p,T) is a dynamical system exactly

realizing f. Hence, Lemma 2.3 is proved and, therefore, so is the Basic Lemma. O

Remark 2.1 1. Let
ER: = {g: g is a sequence in Z* and n|g, for each n > 1}. (2.11)
The Basic Lemma is equivalent to saying
ER={f:f €ER}. (2.12)

By the Basic lemma and Theorem 2.1, there is the following natural bijection
between ER and ER. Let 1 ER — ER map each f € ER to f This map is well
defined by the ‘only if’ part of the lemma, and injective by the ‘if’ part of the
theorem. Surjectivity follows from the ‘only if’ part of the theorem and ‘if’ part
of the lemma, the inverse image of g € ER being that f for which f, =34, gd
for each n > 1. This surjectivity is equivalent to saying ER = { f :f € ERY.

2. A metric dynamical system is a triple (X, p, T) where (X, p) is a compact metric
space and T: X — X is a homeomorphism of (X, p). In Lemma 2.3, it would
be nice to make the stronger claim that the dynamical system exactly realizing
f is metric. To see that our proof is insufficient for this claim, consider the
system displayed for each of the cases (i) to (iv) into which f may fall. For case
(iv) the space involved is metric. For (i) the space is finite with the discrete
topology which, therefore, is metrizable. For (ii), the one-point compactification
is homeomorphic to {0,1,1/2,1/3,1/4,...} with the usual metric on the reals.
However, the topology in case (iii) is not metrizable because, on considering

elements of I, it is seen that the topology is not Hausdorff.

Nonetheless, there is a case (iii) sequence h which is exactly realized by a
metric dynamical system. To see this, define a case (i) sequence f by f =
(0,2,0,0,0,0,...) and a case (ii) sequence g by § = (1,2,3,4,5,6,...). Thus,
by (2.6), f = (0,2,0,2,0,2,...) and g = (1,3,4,7,6,12,...). Let h:= fg =
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(0,6,0,14,0,24,...). So, hi = 0. Also, h is unbounded. Hence, by (2.6), h is

not eventually 0. Therefore, h is a case (iii) sequence.

Let f and g be exactly realized by metric dynamical systems (X, p1,77) and
(Xa, p2, T»), respectively. Let X:= X; x Xy. Define a metric p on X by

p((w1,22), (Y1, 92)) = pr(@1,y1) + pa(x2,92)  for all (z1,22), (y1,92) € X.
Define T: X — X by
T(z1,22) = (T1(x1), To(xs))  for each (zq1,z9) € X.

It is a standard fact that (X, p,T) is a metric dynamical system. It is easy to
show that the system (X, T') exactly realizes h, as may be confirmed on reading
the second proof of Lemma 2.10(iii). Thus, A is exactly realized by a metric

dynamical system.

A natural question to ask is: Is each case (iii) sequence exactly realized by a
metric dynamical system? This query is appealing , but unimportant to the rest
of this work. After this remark our main concern will be with the arithmetic
and combinatorial properties of £R, and not with those of dynamical systems.
There are two ways of showing that a given sequence f is in ER: we can exhibit
a system which realizes f exactly or we can show that fn € Z* and n| fn for
each n > 1. From now on, dynamical systems will be used in the first of these

ways but they will not be mentioned otherwise.

2.3 Some easy corollaries of the Basic Lemma

Corollary 2.1 If f,g€ ER and fg =0, then f =0 or g =0.

Proof. The following more general fact will be proved: if f, g are sequences in R

with f, g>0and fg =0, then f =0 or ¢ =0. The corollary will then immediately

follow from the Basic Lemma.

Let f,g be in R with f,§ > 0 and fg = 0. So, f,g > 0 by (2.6). Suppose, for a

contradiction, that neither f = 0 nor ¢ = 0. Let k,[ be such that f;, g, > 0. Since

18



f >0, it follows from (2.6) that
= fa>> fu=fi
d|kl dlk
Similarly, gi; > ¢;. Hence, frgx > frg; > 0. This contradicts fg = 0 and we are
done. O

Corollary 2.2 A constant sequence in Z™ is ezactly realizable.

Proof. Suppose z € Z" and let f be the constant sequence (z). Two simple proofs
are given. The first uses the Basic Lemma, and the second uses Definition 2.4.

(I) Using (2.5), for each n > 1

fui=>"pln/d) fa =3 pn/d)z = 2" p(n/d),
din dln d|n

which, by (2.2), equals z when n = 1, and 0 otherwise. So, (2.9) and (2.10) hold.
Thus, f is exactly realizable by the Basic Lemma.

(IT) As required by Definition 2.4, it is easy to give a system which exactly realizes
f. For z = 0, use the irrational circle rotation described at the end of the proof to
the Basic Lemma. For z > 0, let X = {1,2,...,2} and T be the identity map on X.

Since, for each n > 1,

fn=2=#X =#{z € X:T"(z) = z},
we are done. O
Corollary 2.3 If f is exactly realizable, then so is zf for each z € Z™.

This is deduced easily using Corollary 2.2 with a later Lemma 2.10(iii). For positive
z, with a simple induction, it also follows from Lemma 2.10(ii). However, it is quickly
proved here using the Basic Lemma because it will help a little in the next result,
which is interesting enough not to postpone.

Proof. Suppose f € ER and z € ZT. Write (zAf)n for the n-th term of 5” For
each n > 1, we use (2.5) and obtain

(2F), =X zfan(n/d) = 2 Y fap(n/d) = 2f.
dln dln

Thus, since f satisfies (2.9) and (2.10), the same goes for zf. Whence, zf € ER by

the Basic Lemma. O
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2.3.1 Polynomials and £R

Corollary 2.4 No non-constant polynomzal is exactly realizable.

Proof. Suppose k is a natural number and ¢, ¢y, ..., ¢, are rational numbers (cf.
Remark 2.2 below) with ¢, # 0. Define a polynomial ¢ by

k

Oop=co+cin+---+cn” for each n > 1. (2.13)

Assume, for a contradiction, that ¢ is exactly realizable. Let ¢ > 0 be a common
multiple of the denominators of the ¢;’s. Then c¢ is a polynomial with integer coef-
ficients, which is exactly realizable by Corollary 2.3. So, it may be assumed that the
coefficients in (2.13) are all integers.

Using (2.10), it will be shown in turn that ¢; and ¢; must be 0. Let p be a prime.
By (2.5) and (2.13),

By = by — Gp = b’ + eop* + -+ ™ — (p + e + -+ apb),

which, by (2.10), is divisible by p®. Hence, p divides c;. Since this holds for each p,
we have ¢; = 0. Whence, £ > 2 because it is given that £ > 1 and ¢, # 0. Rewrite
(2.13) as

b = co+n2(co + csn+ - -+ cpnF2)  for each n > 1. (2.14)

Let ¢ be a prime distinct from p. By (2.5),

~

Gp2q = Pp2q — Ppg — Pp2 + by,

which, by (2.10), is divisible by p?q. Now, it is apparent from (2.14) that pq divides
bp2q — Ppg- Thus, p?q divides ¢,2 — ¢,, which, by (2.14), equals

co(l1 =1) + co(p* = p*) + c3(0° — p°) + - - - + e (p** — PF). (2.15)

Fixing p and letting ¢ — oo, it follows that ¢,> — ¢, = 0. Dividing the expression in
(2.15) by p?* and now letting p — oo, it is seen that ¢, = 0. However, it is given that

¢, # 0. This contradiction gives the result. O
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Remark 2.2 1. In (2.13), letting n take the values 1,2,..., k+1 in turn we obtain

k + 1 equations which may be written in matrix form as

N 1 1 12 1% Co
(ﬁg 1 2 22 2k C1
¢3 | =11 3 32 3* Cs
e I I B (S D LR (S o DL I e

Here, the square matrix is a Vandermonde and it is straightforward to show
(see, for example, NICHOLSON [10, page 135|) that its determinant is a non-
zero integer. So, it has an inverse with rational entries. Since ¢ takes values in
Z*, it follows that we could not have chosen the ¢;’s to be other than rational

in the proof of Corollary 2.4.

2. Can a non-constant polynomial and an exactly realizable sequence be eventually

equal? A basic fact helps answer this:
if (f,) is exactly realizable, then so is (f,x) for each K > 1. (2.16)

To see this, let (X, T) be a system exactly realizing f. Suppose K > 1 and let
kn:= fux for each n > 1. Therefore, (X, T¥) is a system and, for each n > 1,

kn=fux = {x€X:T"¥(z) =z} (by Definition 2.4)
= {z e X:(T")"(z) = z}.

Hence, (X, T%) exactly realizes k by Definition 2.4. This explains (2.16).

‘No’ is the answer to the above question: otherwise, suppose there is a poly-
nomial ¢ as in (2.13) and an exactly realizable sequence f such that ¢ = f
eventually; choose a natural number K such that f, = ¢, for each n > K;
then, the sequences (f,x) and (¢nx) are equal; since (f,x) is exactly realizable
by (2.16) and (¢,x) is a non-constant polynomial we have a contradiction of
Corollary 2.4.
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2.3.2 Multiplicative sequences and £R.

Recall Definition 2.2. By HARDY and WRIGHT [6, Theorem 265], if f is multiplica-
tive, then so is f. Thus, &R contains many multiplicative elements: choose any
multiplicative sequence ¢ in Z™; let fn: = n¢, for each n > 1, so that f is multiplica-

tive; the same goes for f, which, by the Basic Lemma, is in £ER.
Corollary 2.5 The unit is the only completely multiplicative element of ER.

Proof. Let f € ER be completely multiplicative. Condition (2.10) will be seen
to force the result. Recall the elementary fact that the first term of a multiplicative

sequence is 1. So, f; = 1. Fix a prime p and a natural number r. By (2.10) and (2.5),
plh=f-fh=f-1, (2.17)
pr|pr =Jfpr = fpr1 = (fp)r - (fp)r_l = (fp)r_l(fp - 1). (2.18)

By (2.17), p/f,. Hence, by (2.18), p"|f, — 1. This holds for each r and each p. Thus,
fixing p and considering large r, we see that f, = 1. Since this holds for each p and
f is completely multiplicative, it follows that f, = 1 for each n > 1. Since the unit

sequence (1) is in ER by Corollary 2.2, we are done. O

2.3.3 The Euler-Fermat Theorem

The Euler-Fermat Theorem says
2 =1modn forall z€ Z and n € N, where e is the Euler totient.

In a standard proof of this (see, for example, HARDY and WRIGHT [6, Section 6.3])
it is first shown that

r

27 =27 modp’ forall z€Z, r €N and primes p. (2.19)

The theorem then quickly follows from some basic properties of congruences and the
fact that e is multiplicative. The next corollary gives a quick route to (2.19), using

only the full shift of Example 1.5 and condition (2.10) of the Basic Lemma.
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Corollary 2.6 The Euler-Fermat Theorem.

Proof. By the comments above, we need just show (2.19). This is trivial if z = 0

or —1. For z < —1 the result easily follows from that for z > 1. So, let z € N. By

—

Example 1.5, the sequence (z") is exactly realizable. By (2.5), the p"-th term of (z7)
is 2" — 2~ which, by (2.10), is divisible by p. O

2.4 Positivity and divisibility
Notation 2.2 A sequence ¢ has positivity if gg > 0. A sequence ¢ of integers has
divisibility if n|¢, for each n > 1.

In this section we discuss the conditions under which sequences have positivity or
divisibility, so that we can make better use of the Basic Lemma. By that lemma, a
sequence of integers is exactly realizable if and only if it has positivity and divisibility.

Two elementary facts are:

if two sequences have positivity, then so does their sum; (2.20)

if two sequences have divisibility, then so do their sum and difference. (2.21)
These are clear on noting that, for arbitrary sequences f and g, we have the equality
ftg=Ff=*g, (2.22)

which is easily explained: for each n > 1, writing ( f/j-:\g)n for the n-th term of f + g,

we have

(f£g9h = Y un/d)(f£g)a (by (2.5))

din
= Y un/d)fa+ Y wn/d)ga= fu+ i (by (2.5)),
din dn

which verifies (2.22). For products of sequences, there are statements similar to (2.20)
and (2.21) as will be seen in Corollary 2.7. However, for products, there is no equality
similar to (2.22). To illustrate this, here is an example using sequences in ER: let

f=1(1,0,0,0,...) and g = (1,2,3,4,...); so f,g € ER by the Basic Lemma; also,
f=(1,1,1,1,...) by (2.6); since fg = g we have J/f\g = g; but fg = f; thus, E #* fg.
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Lemma 2.4 Let f and g be sequences. For natural numbers i and j write [i, ] for

their least common multiple.

Then

= Z f,g] for eachn > 1.

[i,5]=n

Here, (E)n 1$ the n-th term of the sequence f\g

Proof. For eachn > 1,

(o),

Zﬂ(n/d)fdgd (by (2.5))
Z,U, n/d Zfz ZQJ

ild jld

Zu (n/d) Y fig;

i,j]d

Z fz’gj Z p(n/d)

i,j|n dln;i,j|d
D figi Y. w(d)

h,jln dln;i,jl %

S fig Y uld)

ign ds

(by (2.6))

where the last equality is justified by the following:

dln and % is a multiple of 4, j < d|n and %

is a multiple of [z, 5]

& [Z”—J] is a multiple of d.

(2.23)

(2.24)

By (2.2), Zd|ﬁ u(d) is 0 when [4, j] is a proper divisor of n, and is 1 when [i, j] = n.
3y
Whence, the lemma follows by (2.24).

Corollary 2.7

(ii) If two sequences have divisibility, then so does their product.

Proof. Let f and g be sequences.

O

(i) If two sequences have positivity, then so does their product.

(i) Suppose f and ¢ have positivity. By Notation 2.2, f,,gn > 0 for each n > 1.

After a glance at (2.23), the result is clear.
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(ii) Let f and g have divisibility. Look at (2.23) and fix n,¢ and j with [7, j] = n.
By Notation 2.2, z|fZ and j[g;. Whence, ﬁ-gj is a multiple of 75 and, thus, a multiple
of [¢,j] = n. Hence, each term under the 3" is divisible by n. So, n| (J/”\g)n, showing
that fg has divisibility. (There is a different proof of this in Corollary 2.11.) O

Later, two proofs will be given showing that &R is closed under multiplication.

One of these proofs follows very simply from the above corollary.

2.4.1 Positivity

We give simple sufficient conditions for a sequence to have positivity. For each non-
negative integer r it is shown that the sequence (n!/r!(n—r)!) has this property, from

which, the same is deduced of the sequence (z") for each = > 1.

Lemma 2.5 Let ¢ be an increasing sequence with ¢ > 0. If n s a natural number
with ¢2n Z n¢n7 then &2717 é?n-}-l Z 0.

Proof. Let ¢ be an increasing sequence with ¢ > 0. Suppose ¢q, > n¢, for some
n € N. Then

bz = D p(2n/d)pa (by (2.5))

d|2n
= o+ Z p(2n/d)¢q
d|2n;d#2n
> Ga— 3 64 (since > —1and ¢ > 0)
d|2n;d#2n
n
> o — Z ¢r  (since no proper divisor of 2n exceeds n)
k=1
> ¢on — Ny, (since ¢ is increasing)

> 0 (since ¢op > nepy,).

Similarly, reasoning much as above,

Gomi1 = Gonyr + > p(2n+1]/d)gs > dont1 — D bk
d|2n+1;d#2n+1 k=1
2 ¢2n - n¢n 2 07

which proves the lemma. O
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Lemma 2.6 Let ¢ be a sequence with ¢ > 0. Suppose n > 1 is a natural number and

r 1S the number of distinct primes dividing n. If
On > (27 — 1) max{¢py: d|n,d # n}, (2.25)
then <;3n > 0.

Proof. Let ¢,n and r be as given and suppose that (2.25) holds. Then

~

S = ¢ut Y. n(n/d)éa (by (25))

d|n;d#n
> 6n— D |u(n/d)|ga (since ¢ > 0)
d|n;d#n
> - max{pwdind#n} Y |u(d)
d|n;d#1
Now, Y gnaz1 [#(d)| = 2" — 1 by (2.4). Whence, the lemma follows by (2.25). O

No use is made of the above lemma in this work. One can use it to show that if
x > 1519 then ¥4, p(n/d)z* > 0 for each n > 1. (The details seem immaterial
and are omitted.) This suggests Corollary 2.8, which we will deduce from the next

lemma.

Lemma 2.7 Let d € N and r € Z*. Define (f) by

(d) ) dlrid =)l ifr <d,
T 0 otherwise.
Then 3 g, (f) pu(n/d) >0, for allr >0 and n > 1.

Proof. For each given r € Z*, define sequences ), ¢ as follows:

fir) = (n) and ¢" =n—r foreachn>1.
T

Then, for all n and r, we see from (2.5) that the n-th term of f(?) is given by

R =Y f0umfd) = ¥ (f)mn/d). (2.26)

dln dln
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So, we need show that f(’"\) > 0 for each r € Z*. Let us proceed by induction on r.
Consider f@ first. For each n > 1,

= 3 (§)utwsa oy (220)

d|n

= Y un/d) > 0 (by(2:2),
dln

showing that f/@ > 0. As hypothesis of the induction assume that f(’”\) > 0 for a
fixed r € Z*. Then, for each n > 1,

—

(r+1f = (r+1)2<ri1>u(n/d) (by (2.26))

dln

=y (d) (d—r)u(n/d) (since (r + 1)(r_‘i1) = (f)(d —-7))

dln r

= the n-th term of f(’”/)g(’") (by (2.5))
= XY g7 (by (2:23))

[i.g]=n
- BYHe ¥ PP, (22)
d|n [i7j]:n;i7£n

where the second summand is read as 0 when n = 1. It is easily seen that this

—

summand is non-negative: by the induction hypothesis fi(T) > 0 for each ¢ > 1; gY)

does not appear in the summand; and, for each j > 2,

—

g = Y(d=r)u(j/d) (by (2.5))

djj
= Y dulj/d) ~r Z|j p(j/d)

e(j) —r.0 (by (2.3) and (2.2))

> 1
Hence, by (2.27),
e+ = NG = W6 by 26)
dn
~ =),



which is also easily seen to be non-negative: forn>r thls is clear by the induction
hypothesis; for n < r we have fn = 0 by (2.26). Thus, fnTH) >0foreachn > 1. In

other words, f(T“ > 0. This completes the induction step and proves the lemma. O
Corollary 2.8 Y, z%u(n/d) > 0 for all z > 1 and n € N.

Proof. For z =1 this is immediate by (2.2). Fix z > 1 and n € N. Writex =1+¢
where ¢ > 0. Then, for each 7 with 0 < 7 < n, the coefficient of ¢" in 3, z%p(n/d)
is Yan (f),u(n/d) Since, for each r, the latter sum is non-negative by Lemma (2.7),

we are done. O

Remark 2.3 Lemma 2.7 probably has a simple combinatorial proof, in which the

sum counts something and is therefore non-negative.

2.4.2 Divisibility

Necessary and sufficient conditions are given for a sequence to have divisibility. Some
simple consequences of these conditions are: only the zero sequence is common ER
and ER; two different elements of ER cannot be eventually equal; Corollary 2.7(ii)
has another proof; with the help of Corollary 2.8, geometric progressions in ER are

completely described.

Lemma 2.8 Let f be a sequence of integers. Then the next two statements are

equivalent.
() n|fn for eachn > 1.
(ii) For all natural numbers v, K and primes p with p/K
Pl forx — for-1k-
In (ii) the phrase ‘with pfK’ can be dropped.
Proof. A proof will be given which hinges on the following:

forie = for-1xk = fprd for all , K € N and primes p with p/K. (2.28)
dK
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(We will also give a second proof that (ii) implies (i), but without using (2.28).) To
see (2.28), let r, K and p be as given. By (2.6),
fox = frac= Y fa— Y fa
dlp" K dpr 1K
which equals the right hand side of (2.28) for the following reason: p and K are

coprime; hence, the set of divisors of p" K is the disjoint union of the sets
{d:d]p" 'K} and {p'd:d|K}.

This explains (2.28). To see that (i) implies (i), suppose n|f, for each n > 1. Let
r, K and p be given as in (ii). Thus, for each divisor d of K we have fprd divisible by
p"d and, therefore, by p". Hence, p" divides 3« prd. A glance at (2.28) shows that
(ii) follows.

For the converse let (ii) hold. Two arguments will be given for (i): (a) one by
induction on n and using (2.28); (b) one assuming a few basic facts about the function
L.

(a) As basis of the induction note that 1| f1. Suppose, as the induction hypothesis,
that n > 2 and that m|fm for each m with n—1 > m > 1. Fix a prime p that divides
n. Write n = p" K where r, K are natural numbers and p{K. Now, either K =1 or
K > 2.

Suppose K = 1. By (ii), p" divides fr — fyr-1. By (2.28), for — for-1 = fpr.
Therefore, p™ divides fpr. Since n = p", we have proved (i) when K = 1.

Now let K > 2. Write (2.28) as

Jork — for—1x = fer + Z fp’d,
d<K;d|K
from which we easily deduce that p"| fpr k: the left hand side is divisible by p" because
of (ii); for each proper divisor d of K we have n = p"K > p"d > 1; for such d we
know that p"d divides fprd by the induction hypothesis; so, the sigma sum is divisible
by p"; it follows that p"| fpr K-
For an arbitrary prime p with ord,(n) = r, we have shown that p’|fyrx = f.

Whence, n|f,, proving that (i) implies (i).
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(b) The case n = 1 being trivial, fix an n > 2. Let n have canonical form

pi'py’ ... pim, where for each i = 1,2,...,m, each r; is a natural number and each p;

is a prime, the primes being distinct. Write D for the set
{pipk ... plm: I; = r; or r; — 1 for each i},
which is a subset of the divisors of n. By (2.5),

fo=Y un/d) fa= 3" p(n/d)fa, (2.29)

din deD

because if ¢ is a divisor of n and d is not in D, then n/0 has a squared factor, in
which case p(n/d) = 0 by the definition of p.

Since m distinct primes divide n, the set D contains 2™ elements. Half of these
are of the form pi* K where K is a natural number coprime to p;. For each K, each
element of this form can be paired off with p{* 'K which is also in D. Hence, by

(2.29), f, can be written as the sum of 27! terms of the form

n (/PP K) fyrage — p (n/py ' K) foiige (2.30)
Here,
p(n/pp'K) = p(pn/pK)
= u(p1)p(n/p*K) (since p is multiplicative by (2.1))
= (-1)u(n/p7*K) (by the definition of u),

which, with (2.30), shows that f, is the sum of terms of the form
:l:(fpilK - fp’l"l_lK)'

By (ii), each of these terms is divisible by pi'. So, pi' divides fn. This argument can
be repeated for each p; with i > 2. Therefore, n| fn This completes the second proof
that (ii) implies (i).

To justify the lemma’s last statement, let r, K be natural numbers and p be a
prime which may divide K. We show that (ii) implies the divisibility of fprx — fpr-1x
by p". Let (ii) hold. Write K = p*L where s € ZT, L € N and p/L. So,

prK —_ fpr—lK = fpr+sL —_ fp7‘+s—1L.
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By (ii), the right hand side is divisible by p"** and, hence, by p". Thus, p" divides
fork — fpr-1k- This establishes the lemma. 0

Remark 2.4 In Lemma 2.8 let us restrict f so that f > 0. Then, simpler and
prettier reasoning shows that (i) implies (ii): let (i) hold with this restriction, so that
f is exactly realizable by the Basic Lemma; suppose 7, K and p are given as in (ii);
define a sequence k by k, = f,x for each n > 1; by (2.16), k is exactly realizable; by
(2.10), p"|kyr; but

ky = kyp —kp1 (by (2.5))
= fprkx — fyr-1k  (by the definition of k),

showing that (ii) is necessary. It was after this easy argument was noticed that
Lemma 2.8 was suggested. This lemma will often help us, as illustrated by the next

four corollaries.
Corollary 2.9 Only the zero sequence is common to ER and ER.

Proof. The zero sequence is in ER by Corollary 2.2, and in ER by (2.11). Suppose
f is in each of £R and ER. Let K € N and p be a prime. Since f € ER we know
from (2.10) and Lemma 2.8 that p|f,x — fx. But p|fyx by (2.11). So, p|fk. Fixing
K and letting p — oo it follows that that fx = 0. This holds for each K. Whence,
f is the zero sequence. o

The next result shows that a new exactly realizable sequence cannot be obtained

from an old one by altering only finitely many terms.
Corollary 2.10 (i) An eventually constant sequence with divisibility is constant.
(ii) Two eventually equal sequences with divisibility are equal.

Proof. (i) Suppose that the sequence f has divisibility and that f = (z) eventually
for some integer z. Let K be a natural number and p be a prime. By the divisibility
of f and Lemma 2.8, p|f,x — fx. Since f,x = z for all large p, we see that p|z — fx
for all large p. Hence, fx = z. This holds for each K. So, f is constant.
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(ii) Suppose g and h are eventually equal sequences with divisibility. Thus, g — h
equals the zero sequence eventually and, by (2.21), g — h has divisibility. Hence, g —h
is the zero sequence by (i). So, g = h. a

Notation 2.3 For each prime p and natural numbers r, K let

S = forx = o1k
Corollary 2.11 Corollary 2.7(ii) has another proof.

Proof. Suppose f,g are sequences having divisibility, so that n| fn, gn for each

n > 1. Let p be a prime and r, K be natural numbers. Then,

(fDprx) = (f9)pk — (fg)p-1x (by notation 2.3)
= fok9prk — for-1kgyr-1x  (by definition of fg)
= (forx — for-1K)9prk + (Gprk — Gpr—1K) fpr—1K

= fiork19 K + 9prk1fr-1x  (by notation 2.3).

Since we are given that n| fn, gn for each n > 1, it follows from Lemma 2.8 that p”
divides both f,, k7 and gy, » k7. Hence, p™ divides (fg)p,r, k] by the last equality above.
So, by the same lemma, 7| (@)n for each n > 1. Hence, fg has divisibility, giving a
second proof of Corollary 2.7(ii). O

Corollary 2.12 Let f; and z be integers and define the sequence f by
fo=2""1f for eachn > 1. (2.31)
Then [ has divisibility if and only if fi is divisible by each prime dividing z.

Proof. For the ‘only if’ part, let f have divisibility. So, by Notation 2.2, n| fn for
each n > 1. Suppose p is a prime dividing z. Thus, p|fp. Now, by (2.5) and (2.31),

fp - fp - fl - (Zp_1 - 1)f1-
Hence, p|(2?~! — 1) f;. But p|z. Whence, p|f,, which proves the ‘only if’ part.
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For the ‘if’ part, let f; be divisible by each prime dividing z. Lemma 2.8 will be
used. Let p be a prime and r, K be natural numbers. Then, recalling Notation 2.3
and using (2.31),

fora) = fo [T =T (2.32)
o GO E i (259

Now, either p/z or p|z. If p[z, then we see from (2.19) and (2.33) that p"|fi,. k). If
p|z, then p|f; by our assumption. Therefore, by (2.32),

ordy (fipr i) = ordy (K ) 2 pIK =141 =p" 'K > 7.

So, again, p"|fip k|- Thus, by Lemma 2.8, n|fn for each n > 1. In other words, f has
divisibility, as required.

O

Second order recurrences in £R are the concern of Chapter 3. In some cases these

will reduce to the first order. Using Corollaries 2.12 and 2.8, first order recurrences

in ER can now be precisely and swiftly described.

Lemma 2.9 Let ¢ be a positive rational and f; € N. Define f by f, = cfn_1 for each
n > 2. Then [ is exactly realizable if and only if (i) ¢ € N and (ii) fi is divisible by

each prime diwviding c.

Proof. For the ‘only if’ part, let f be exactly realizable. Suppose ¢ = ¢;/cy
where ¢; and ¢y are coprime natural numbers. By the recurrence defining f, we have
fn = c"7Lf; for each n > 1. Also, by Definition 2.4, f is a sequence in Z*. Hence,
¢3! f1 for each n > 1. Since f; # 0, we have ¢, = 1 and so (i) holds.

Since f is exactly realizable, f has divisibility. On writing ¢ for z in Corollary
2.12, we have (ii).

For the ‘if” part let (i) and (ii) hold. By Corollary 2.12, f has divisibility. Thus,
by the Basic Lemma, we need just show that f has positivity. For each n > 1, using
(2.5) and f, = "7 i,

fo= > w(n/d)fo= ZH(”/d)Cdfqu = (fi/c) Z,u(n/d)cd,

dn dln din

which is non-negative by Corollary 2.8. O
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2.5 Algebra in &R

We now consider whether ER and ER are closed under the usual operations on
sequences. For 6'/7\3, the following facts are easily deduced from (2.11) and are merely

stated:

if f,ge ER with g > 0, then g is not in general in 5’1\2; (2.34)
if f,g€ &R, then f— §e ER if and only if f > g; (2.35)
if f,g€ &R, then f+§€ER; (2.36)

if 1) is a sequence in Z* and § € 5/7\3, then yg € ER.

For £R, here is the fact corresponding to (2.34): if f,g € ER with g > 0, then 5
is not in general in £R. Let us give examples of f,g € &R showing the different
ways 5 can fail to be in £R, even though g is a sequence in Z*. Let g be the
sequence (2,6,0,0,0,0,...), so that ¢ € ER by the Basic Lemma. By (2.6), g =
(2,8,2,8,2,8,...). In turn let f equal each of the following sequences:

(i) (2,14,0,0,0,0,...); (i) (20,4,0,0,0,0,...); (iii) (12,4,0,0,0,0,...).

Arguing as for g we see that f € ER. Write h for 5.

For (i), f = (2,16,2,16,2,16,...) by (2.6). Hence, h = (1,2,1,2,1,2,...). By
(2.5), h = (1,1,0,0,0,0,...). So, (2.9) holds for A, but not (2.10) because 2/hs.

For (ii), f = (20,24,20,24,20,24,...), so that h = (10,3,10,3,10,3,...) and
h = (10,—7,0,0,0,0,...). Hence, h fails both (2.9) and (2.10).

Finally for (iii), f = (12,16,12,16,12,16,...),h = (6,2,6,2,6,2,...) and h =
(6,—4,0,0,0,0,...). Here, h fails (2.9) but satisfies (2.10).

Lemma 2.10 (i) Let f,g € ER. Then f — g € ER if and only if f> 4.
(il) ER is closed under addition.

(ili) ER is closed under multiplication.

Each of these will be quickly proved using the work in Section 2.4. Then, (ii) and (iii)
are given second proofs which are better because they argue in a simple way from the

core ideas in Definition 2.4.
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Proof. (i) Let f,g € ER. Then,

f-g€e&R & f—ge&R (by (2.12)
7

(>

~»
|

>

which proves (i).

For (ii) and (iii), let f and g be exactly realizable. So, by the Basic Lemma, each
of f and g has positivity and divisibility. By (2.20) and (2.21), f + g also has these
properties. The same goes for fg, by Corollary 2.7. Thus, by the Basic Lemma, f+g
and fg are exactly realizable.

Second proofs of (ii) and (iii). Let f and g be exactly realizable. By Definition
2.4, choose systems (X;,71) and (Xs,T3) such that, for each n > 1,

fo=#{r e X1: TP (z) = x} and g, = #{r € Xo: T3 (z) = z}. (2.37)

For (ii), let X:= X; U X,. Since the elements of X; or X, can be relabelled, assume
that X; and X, are disjoint. Define T: X — X by

T(z) =

Tl(:v) ifx € Xl,
TQ(iE) ifx € XQ.

So, for each n > 1,
{re X:T'z) =2} ={z e X:T]'(x) =z} U{x € Xo: Ty (2) = z}.
The union here is disjoint since X; and X5 are disjoint. Hence, by (2.37),
#{lre X:T"(x)=z}=fo+go=(f+9g)n foreachn>1.

Therefore, by Definition 2.4, the system (X,7T) exactly realizes f + g. Whence,
f+ge&R.
For (iii), let X:= X; x X, and define a map 7: X — X by

T(l‘l,xg) = (Tl(l'l),TQ(.Tz)) for each ($1,LE2) e X.

35



So, for each n > 1,

{r e X:T"z) =2} = {(x1,22) € X:(TT(21), T3 (z2)) = (z1,22)}
= {(z1,20) € X: T (1) = 11, T5' (22) = (22)}
= {z e X1:TT'(z) =z} x {z € Xo: T3 (z) = z}.

Hence, by (2.37),
#{x e X:T"(x) =2} = fugn = (fg)n for each n > 1.

So, (X,T) exactly realizes fg by Definition 2.4. Thus, fg € ER. O

2.6 Fibonacci Sequences
Definition 2.7 A sequence f is Fibonacci if
for2 = foy1 + fn foreachn > 1. (2.38)

The Fibonacci sequence F satisfies (2.38) with F; = 0 and F» = 1. The Lucas
sequence L satisfies (2.38) with L; = 1 and L, = 3. Thus,

F=1(0,1,1,2,3,5,...) and L= (1,3,4,7,11,18,...).
A basic induction shows the following:
if f is Fibonacci, then f, = fiF,_1 + foF, for each n > 2. (2.39)

The next theorem shows that, up to scalar multiples, the Lucas sequence L is

unique amidst Fibonacci sequences: it is the only one in ER.
Theorem 2.2 Let f be Fibonacci with f; € Z+. Then f € ER if and only if fo = 3f;.

Proof. For the ‘if’ part let fo = 3f;. By (2.38),

f=£(1,3,4,7,...)= fL.
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By Corollary 2.3, it is enough to show that L € £R. Example 1.5 will be used. Let

10
01

The characteristic equation of A is x? = z+1. So, A2 = A+I. Thus, A"t? = A"T14 A"
and, hence, t,.9 = t,41 + t, for each n > 1. So, t and L both satisfy the recurrence
in (2.38). Also,t; =14+0=1=1L; and

1
1

1
} and t, = trace(A") for each n > 1.

ty = trace(A?) = trace(A+I) = trace(A) + trace(l) =1+2 =3 = L,.

Thus, t = L. Therefore, by Example 1.5, L € £R, proving the ‘if’ part.
Conversely, suppose f is in ER. Let p be a prime. By (2.10), p\fp = fp — fi-
Whence, by (2.39),
fi(Fp—1 — 1) + foF, = 0 mod p. (2.40)

This congruence holds with f; = 1 and fs = 3 because, in the ‘if’ part, the Lucas
sequence has been shown to be in £R. So,

F, 1 —1+43F, =0 mod p. (2.41)
Now, if we can show that

F,=1mod p for each p =2 mod 5, (2.42)

then we will be done: for p = 2 mod 5, we will have F,_; = —2 mod p by (2.41);
which with (2.42) and (2.40) will lead to fo, = 3f; mod p; the result will then follow
because 2 and 5 are coprime, so that, by Dirichlet’s Theorem there are infinitely many
p with p = 2 mod 5.

To see (2.42), let p = 2 mod 5. By HARDY and WRIGHT [6, Theorem 180],
F,12 =0 mod p. By (2.38), Fj42 = 2F,+ F, 1. So, 2F,+ F, 1 = 0 mod p, which we
subtract from (2.41) to obtain (2.42). O

Remark 2.5 1. The congruence in (2.41) involving the Fibonacci sequence is just

one of many that can be swiftly obtained. Since L € ER, condition (2.10) gives

> w(n/d)Ly=0modn for each n > 1.
dln
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Here, write n = p" where p is a prime and r > 1 to obtain
Ly = Ly mod p",
or write n = pq where p and ¢ are distinct primes to obtain
L,,+1=1L,+ L, mod pq,

and so on. It is likely that such congruences are known. They are not common-

place, however.

. It is fortunate that we have at hand a system which exactly realizes the Lucas
sequence L. Otherwise, to show that L € £R, we would have to verify directly
that L > 0, that n|lA/n for each n > 1, and then use the Basic Lemma. By
Lemma 2.5, it is easy to show that L > 0, as will be seen in the proof of
the converse to Theorem 3.1. (That theorem deals with the exact realizability
of quadratic recurrences which are more general than those in Theorem 2.2.)
However, it is difficult to see how one can directly show that n|ﬁn for each
n > 1. The Lucas sequence is one of a class of sequences giving such difficulty.
For this reason, in the proof of the converse to Theorem 3.1, we will again be

thankful that some systems are at hand.

. The exact realization of second order linear recurrences with integer coefficients
is fully discussed in Theorem 3.1. For third and higher order recurrences the
matter is unclear, but a basic and natural query in the Fibonacci vein is as

follows. Let r € N. Define a sequence f to be r-Fibonacci if

fosr = foor—1+ fosr—o+ -+ fn  foreach n > 1. (2.43)

Define the r-Lucas sequence L") to be the one satisfying this recurrence and
L{ = 2" — 1 for each 1 < n < 7. So, L is the unit sequence (1) and L® is
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the Lucas sequence L. Write

1 1 1 11
10
A= 0 ,
1 0
L 0 J

which is an 7 x r matrix whose entries are 0 or 1. Arguing as in the proof of
the “if’ part of Theorem 2.2, it can be shown that trace((4,)") = L{") for each
n > 1. Thus, by Example 1.5, L") € £R. Here is the basic query: Must each
exactly realizable r-Fibonacci sequence be a multiple of L(™? This is trivial for

r =1, and for » = 2 we have Theorem 2.2. For > 3 this question is of interest.

For each r € N, define the r-Fibonacci sequence F(™ to be the one for which
(2.43) holds, with F") =1 and F"” =0 for 1 <n < r—1. So, F@ is the
Fibonacci sequence F' of Definition 2.7. The divisibility properties of F' have
been extensively studied. This explains why, in (2.39), we chose to express
each 2-Fibonacci sequence in terms of F. Similarly, for » > 3, one can express
each r-Fibonacci sequence in terms of F(). However, we are unaware of similar

studies on F™ for r > 3.
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Chapter 3

When is a Quadratic Recurrence
Exactly Realizable?

A complete description is given of those members of £R that satisfy second order

linear recurrences with integer coefficients.

Theorem 3.1 Let fi, fo,a and b be integers with fo > f1 > 0 and fo > 1. Suppose

f1, fo are the first and second terms, respectively, of the sequence f for which

fnio=afni1+bf,  for eachn > 1. (3.1)
Write

H := 2bf1 — CLfQ + a2f1, (32)
A = a®+4b, (3.3)
A= (a+VA)/2, (3.4)
p o= (a—V/A)/2. (3.5)

Then f is exactly realizable if and only if the following conditions hold:
A >0 (3.6)
2| f2 = fi; (3.7)
if 2|a, b, then 4| fs; (3.8)
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if ords(a) =1 and fi is odd, then 4]b + 1; (3.9)
for each odd prime p, if pla,b, then p|fi; (3.10)
ifa <0, thenb > 0; (3.11)
ifa <0, then fo = A\f1; (3.12)
for each odd prime p, if p|b, then p|fs — afi; (3.13)
for each odd prime p, if p|A, then p|2fs — afi; (3.14)
fo> pfi; (3.15)
A is a square or H = 0. (3.16)

The proof of the ‘only if’ part of this theorem is in Section 3.1, and of the ‘if’ part is

in Section 3.2.

Example 3.1 To get used to conditions (3.6) to (3.16), it will help a little if we
deduce Theorem 2.2 from Theorem 3.1. Let f be a Fibonacci sequence with f; € Z™.
If fo < fior fo <1or fy ¢ Z, then Theorem 2.2 follows trivially. So, let us suppose
that fo € Z with fo > f; > 0 and fy > 1. Thus, by Definition 2.7, the hypotheses of
Theorem 3.1 hold witha =b=1,A =5 and u < 0.

For the ‘only if’ part of Theorem 2.2, let f € £R. Since A is not a square,
20f1 — afy + a*fi = 0 by (3.16). Therefore, 2-1- f; —1- fy + (1)2f; = 0. Thus,
f2 =31

For the converse of Theorem 2.2, let fo = 3f;. Then (3.6) holds since A = 5. Since
fo— f1 = 2f1, the same goes for (3.7). For (3.8) to (3.13) the ‘if’ part fails. Condition
(3.14) holds since A = 5 and 2f; — af; = 5f;. The same goes for (3.15) since p is
negative. Finally, for (3.16), H:=2bf1 —afy +a’fi =2-1- fi —1-3f1 + (1)?f; = 0.
So, f € ER by Theorem 3.1.

Example 3.2 In Theorem 3.1, suppose a? + 4b is not a square. Then, for f to be
exactly realizable, we must have 2bf; — af; + a®f; = 0 by (3.16). In other words
=455 (Note that a + 2b # 0 because it is given that f, > 1.)

In particular, for a = b = 1, it has been shown in Theorem 2.2 that f is exactly

the ratio % equals
realizable if and only if this ratio is 1/3.
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If a? + 4b is a square, then the same sharp conclusion of the last paragraph cannot
be made. To explain this, consider two sequences: (i) with f; = 1 and fo = 5; (ii)

with f; = fo = 3; each of which satisfies the recurrence
fonio = fos1 +2f, foreachn>1. (3.17)

Here, a = 1,b = 2 so that A = 9. Note that H = 0 and % = 1 for (i), while H # 0
and % = 1 for (ii). As soon as we exhibit systems exactly realizing the sequences in
(i) and (ii), our point will be made.

For (i), we use the subshifts of Example 1.5 and work much as we did for the ‘if’
part of Theorem 2.2. Let

Izll 0], A:[1 2] and t, = trace(A") for each n > 1.
01 10

The characteristic equation of A is 2?2 = x + 2. Hence, t and f both satisfy the
recurrence in (3.17). Also, it is easily checked that t; = 1 = f; and t; = 5 = fs.
Thus, t = f. Therefore, by Example 1.5, f € ER.

For (ii), it is straightforward to check that the sequence (|(—2)" — 1|) satisfies
(3.17) and that each of its first two terms is 3. Hence, f = (|(—2)" — 1|). Also, by
Example 1.6, the algebraic dynamical system S dual to x — —2x on the discrete
group Z[3] has |(—2)" — 1| points of period n. It follows that f is exactly realizable.

Before leaving this example, it is worth noting that there are infinitely many
possible values of the ratio % for sequences in ER satisfying (3.17): for the above
sequences in (i) and (ii), write f® and f09, respectively; for all ny,n, € N the
sequence (n; f® + ny f(9) satisfies (3.17) and, by Lemma 2.10, is in £R; it follows

that the set of possible ratios % contains the infinite set {% ni,ng € N}

Remark 3.1 Before proving necessity in Theorem 3.1, we give some notation, offer

a few comments on the hypotheses of the theorem and assemble useful facts.

1. Tt is assumed that the values of fi, fo,a and b are fixed. If these values are
at issue we write f(fi, f2,a,b) for f. The sequences f(1,a,a,b) and f(a,a® +

2b,a,b) are known as Lucas sequences. Respectively, these will be denoted by
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u(a, b) and v(a,b), or more simply by v and v when the values of a and b are

not at issue.

So, by definition, for each n > 1,

Upyo = QUpyy + buy, (3.18)

Unt2 = GUpy1 + bu,. (3.19)

2. We comment on the values taken by fi, fo,a and b in the statement of the
theorem. The most general related problem would be a discussion of the exact
realizability of f(f1, f2,a,b), where fi, fo,a and b are allowed arbitrary values
in C. However, there would still be the following simple reasons for continuing

with the given restrictions on f; and fs:

(a) By Definition 2.4, f; and f, must be non-negative integers and, by (2.5)
and (2.9), f2 = fo — fi > 0. This explains the inequality fo > f; > 0 in

the theorem.

(b) We omit f = 0 to reduce the clutter that would result from amending
claims such as (3.6), (3.11) and numerous others made in the proof. The
case fo = 0 is easily put aside: if f is exactly realizable, then f; = 0
because f2 = fo — f1 > 0. Conversely, if f; = 0, then f, by definition, is
the (exactly realizable) zero sequence.

We will not discuss the general problem referred to above. Some details
have been worked out and it appears that matters are little more interesting

than we are offering here.

3. The following congruences for the Lucas sequence v will be used:

(3.20)

26™/2 mod a2 if n is even .

{ nab™ Y/2 mod ¢® if n is odd,
Vp =

Let us prove these by induction. Since v; = a and vy, = a? + 2b, it is easily
checked that (3.20) holds for n = 1 and 2. For the induction step pick a natural
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number £ and assume that (3.20) holds for 1,2,...,k,k + 1. Arguing mod a?,

we will be done if we show that
Vpgo = (k4 2)ab®+D/2 for odd k, Vo = 2057272 for even k.
Now, for each odd £,

Vk+2 = QUgy1 + bUk (by (319))
= a[20*+Y72] 4 p[kab®1/2]  (by the induction hypothesis)
= (k+2)adF+V/2]

as desired. Similarly, for each even £,

Vg2 = af(k+1)ab*?] +b[26"%] (by the induction hypothesis)
— a2[(k + 1)bk/2] + 2b(k+2)/2 = 2b(k+2)/2,

and (3.20) is proved.

4. Tt is immediate from (3.3), (3.4) and (3.5) that

a=\+pu, (3.21)

b= -\, (3.22)

VA =X—p, (3.23)

M —a\—b=0=p>—au—>b. (3.24)

By (3.3), A and a are both odd or are both even. So, by (3.4) and (3.5), if A
is a square, then X\ and p are integers. Conversely, by (3.23), if A\ and p are

integers, then A is a square. In summary,

A is a square if and only if A\, i are integers. (3.25)

5. An easy induction argument proves each of the next three equalities involving
f- By (3.1) and (3.18),

fo=(fo —afi)un—1 + fiu, for each n > 2. (3.26)
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If b # 0, then, by (3.1), (3.18) and (3.19),
fn = (Huy + [fo — afi]v,)/2b  for each n > 1. (3.27)

Suppose b, A # 0 and let

o — Jo— uh
WA

Then, by (3.1) and (3.24), the following holds:

and f:= M~ Ja (3.28)

pvVA

if b, A # 0, then f, = aA™ + fu™ for each n > 1. (3.29)

. The first important work in the rich study of Lucas sequences was given in
Lucas [9]. A systematic survey is available in RIBENBOIM [11]. We need a few

basic facts about these sequences.

2"y, = > (Z) a" *A®=D/2 " for each n > 1. (3.30)
1<k<n; odd &k
Vo = 2 —2(—b)" for each n > 1. (3.31)
v, = amodp for each prime p. (3.32)
A
u, = (—) mod p for each odd prime p, (3.33)
p

where (f) is the Legendre symbol, which is defined as follows: for each odd

prime p and each integer z

+1 if pfz and y*> = 2z mod p for some integer y,

(;) =¢ —1 ifp/z and y*> # 2 mod p for each integer y, (3.34)
0 ifplz.

It is fortunate that we have the next lemma because it will be instrumental in the

proof of (3.16), which is the most interesting of the conditions in Theorem 3.1.

Lemma 3.1 If A is a non-square integer, then there are infinitely many primes p
. A _
with (;) = —1.
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Proof. The proof, for which we thank Graham Everest, uses some well-known facts:
the Chinese Remainder Theorem, Dirichlet’s Theorem, and a few identities involving
the Jacobi symbol. The details of these may, respectively, be found in Sections 5.7,
7.3 and 9.7 of APOSTOL [1].

Dirichlet’s Theorem states that for coprime natural numbers s and ¢ there exist
infinitely many primes p satisfying p = s mod t.

Let P and () be integers with ) = ¢1gs...gx where the ¢; are odd primes, not
necessarily distinct. The Jacobi symbol is defined by

(0)-0()

where £) is the Legendre symbol defined in (3.34). The following will be used:

0 (3)(3)- (38)

(=)
=

(iii) If (P, Q) = 1, then (&) () = (~1)(*-/2@-1/2;
(iv) If Py = P, mod Q, then () = (%)

W (&) (&) = (aa):

i) (&) = (~1y@-vr.

For the lemma, let A be a non-square integer. Write A = 2"d where r € Z™ and d
is odd. Throughout p will denote a large prime. Suppose for now that A > 0. The
case A < 0 is dealt with at the end. For each p

5)-(F) - 06 wo

_ (_1)r(p2_1)/8 <g> (by (ii)). (3.35)

Now, either (I) d is a square or (II) d is not a square. For (I), r is odd since A

)
is a non-square. Also, (g) = 1 by (3.34). Thus, by (3.35), (%) = (=1)r@*-1/8,
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which equals —1 for those p with p = 5 mod 8. Since 5 and 8 are coprime, there are
infinitely many such primes by Dirichlet’s Theorem. So, the lemma is proved when
A > 0 and d is a square.

Now suppose (II). Let k,d be odd numbers and ¢ be an odd prime such that
d = ¢*d with ¢ and d coprime. Choose a ¢ with

(g) - 1. (3.36)

(It is a basic fact that such a ¢ can be chosen, as argued in, for example, APOSTOL [1,
Th. 9.1].) Since ¢ and d are coprime, use the Chinese Remainder Theorem to choose
an S with

S = cmodgq, (3.37)
S = 1modd. (3.38)

Similarly, since 16 and d are coprime, choose an s with

s = 1 mod 16, (3.39)
s = Smodd. (3.40)

It is easy to see that s and 16d are coprime: by (3.36) and (3.34), ¢ is prime to g;
so, S is prime to ¢ by (3.37); since 1 is prime to d, it follows from (3.38) that S is
prime to cz; thus, S is prime to qcz and, hence, to q’“cZ = d; this last fact and similar
reasoning with (3.39) and (3.40), quickly shows that s and 16d are coprime. Hence,
by Dirichlet’s Theorem, there are infinitely many p for which

p = s mod 16d. (3.41)

For (II), it will suffice show that (%) = —1 for each p satisfying (3.41). Recall that
we are always working with large p. Using (3.35) and (iii), and working with p as in
(3.41),

A _ @ (P (_q)e-1/20d-1/2
-1y (2) ()

p
_ (%’) (since p = 1 mod 16 by (3.41) and (3.39))
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(by (iv); since p = S mod d by (3.41) and (3.40))

(
- (5)-0'Q) o
|

= —1 (since k is odd),

establishing the lemma for A > 0.
Finally, let A < 0. (For the purposes of Theorem 3.1, this part of the proof will
not be needed since A > 0 by (3.6).) With  and d as above, write —A = 2"d. Then

B)- (2)E) wo

_ (22 Ly vi
= (22 e o i (3.42)
= (=1)"@-D/s (g) (=1)P=D/2 " (by (3.35)). (3.43)

Suppose first that —A is a square. Then (_TA) = 1 by (3.34). The desired result
follows from (3.42) on taking p = 3 mod 4 and using Dirichlet’s Theorem.

Suppose now that —A is not a square. For d non-square, we know from case (II)
that (_TA) = —1 for p = s mod 16d. By (3.39), these p also satisfy p = 1 mod 16.
Thus, for d non-square, we are done by (3.42). Lastly, when d is a square, argue much
as in (I) by allowing p = 5 mod 8 in (3.43). This completes the proof of the lemma.
|

3.1 Proof of Theorem 3.1: necessity

Assume that f is exactly realizable.
Proof of (3.6). For a contradiction, suppose A < 0. Since A:= a? + 4b, we have
b# 0. By (3.4) and (3.5), A and p are complex conjugates. Hence, so are o and 3 by
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(3.28). Therefore, for each n > 1, we see from (3.29) that f, is the real part of

fo—nfi n—1
2 (B )

In this expression, we know that A is not real. Thus, if fo — uf; # 0, then f, takes
negative values which are disallowed by Definition 2.4. So, fo —uf; = 0. Here, f; and
f1 are real but p is not. Whence, f, = 0, which contradicts f, > 0 in the definition
of f. Thus A > 0, proving (3.6).

Proof of (3.7). By (2.10), 2 divides f5. By, (2.5) fo = fo — f1.

Proof of (3.8). Let 2|a,b. Arguing mod 4,

~

0=fs, = fai—fo (by (2.10) and (2.5))
= a’fy+abfi +bfs — fo (by the recurrence in (3.1))
= (b—1)f, (4]a* ab since 2|a,b)

fo (b—1is odd since 2|b),

establishing (3.8).

Proof of (3.9). Let ords(a) =1 and f; be odd. By (3.7), fa is odd. Therefore, by
(3.8), b is odd. So, b = £1 mod 4. In anticipation of a contradiction let us assume
that b = 1 mod 4. Arguing mod 4,

~

0=/fs = fi—fo (by (2.10) and (2.5))
= d’fy+abfi +bfa— fo (by (3.1))
= abfi +bfs — fo (since 2|a)
2bf1 +bfy — fo  (a =2 since ordy(a) = 1)

= 2fi+ fo— fo (we are assuming b = 1 mod 4)
== 2f1

Hence, 4|2f;. So, fi is even. This contradicts the fact that f; is odd. Thus, b = —1
mod 4, as claimed in (3.9).

Proof of (3.10). Let p be an odd prime dividing a and b. By (3.1), p|f,.2 for each
n > 1. In particular p|f,. Also, by (2.10), p|fp = fp — fi. Whence, p| fi, which settles
(3.10).

49



Proof of (3.11). Let a < 0. Therefore,

0<fi = fa—fo (by (29)and (2.5))
= afs+bfa—fo (by (3.1))
< (b—=1)fs (fs >0 by Definition 2.4, a < 0 by hypothesis).

Now fo > 0 by definition. So, b > 0, as desired.
Proof of (3.12). Let a < 0. By (3.11), b > 0 and so A := a® + 4b > 0. So, (3.29)
holds.

Also, by (3.21), (3.22) and (3.23), A+ u, Ay and g — A < 0, from which g < 0 and
-1<A/u<O.

Thus, we may divide (3.29) by u™ to obtain f,/u" = a(A/u)™ + 3 for each n > 1.
Since —1 < A/p < 0, it follows that f,,/u™ — 5 asn — oco. Since p < 0 and Definition
2.4 requires f > 0, we have § = 0. Hence, by the definition of 8 in (3.28), fo = \f;
as asserted in (3.12).

Proof of (3.13). Let p be an odd prime dividing b. So, by (3.1), fai2 = afy+1 mod p

for each n > 1. An easy induction shows that, for each n > 2,
f, =a""%f, mod p. (3.44)

In particular, p|a?=2f,— f,. Also, by (2.10) and (2.5), p|f, = f,—f1. So, pla?=2fo— fi.
Now, if pfa, then Fermat’s Little Theorem immediately establishes (3.13).

Suppose now that p divides a. We need show just that p divides f,. By (3.44),
p|fp, f2p and by (3.10) we have p|f;. Also, p\fgp = f1 — fp — fo + fop by (2.10) and
(2.5). Hence, p| fy proving (3.13).

Proof of (3.14). Let p be an odd prime dividing A: = a? + 4b. Consider separately
the cases p|a and pfa. Suppose p|a. Then p|A — a? = 4b. So, p|b. Hence, by (3.13),
p|fo and the result follows.

Now suppose p/fa. Recall the equality in (3.30) involving the Lucas sequence u.
We show the following: (i) au,—; = —2 mod p; (ii) u, = 0 mod p; (iii) by (2.10), the
condition p| fp gives the result.

Since p|A, we can write p — 1 for n in (3.30) to obtain

-1
2 2y, | = (p ) >a”2 = —a”? mod p.
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Multiplication through by 2a gives a2 'u,_; = —2a? ! mod p and, since p/a, 2, we
use Fermat’s Little Theorem to obtain (i).

As for (ii), (%) = 0 because p|A. Therefore, p|u, by (3.33).

Lastly, arguing mod p for (iii),

afy = afy—afi (by (2.5))
= a(fy —afi)up_1+afiu, —afi (by (3.26))
= (fo—afi)(~2)+afi(0) —af, (by (i) and (ii))
= af1 —2fs,

which settles (iii) because p|f,.
Proof of (3.15). By (3.6), A > 0. Consider in turn the cases (i) A = 0 and (ii)
A > 0.

For (i), we see from (3.14) that 2f, — af; is divisible by each odd prime. So,
2fs —afi = 0. Also, a = 2u by (3.5). Hence, fo — uf; = 0, agreeing with (3.15).

As regards (ii), the case is trivial when 0 > u because fo is positive and f; is
non-negative by definition. So, let p > 0. Since A > 0, we have A > u from (3.23).

Hence,
1>u/XA>0. (3.45)

Also, by (3.22), b # 0 because A\, u # 0. So, we can use (3.29) which, on division
through by A", gives

fo/ " =a+ B(u/N)"  for each n > 1.

This equality with (3.45) shows that f,/A\" tends to a as n tends to co. We must
have a > 0, otherwise, f will take negative values and conflict with Definition 2.4.
Whence, fo > uf; by (3.28) and we are done.

Proof of (3.16). Lemma 3.1, will be crucial to our proof. Let p be an odd prime.
Suppose A is not a square. Since A := a?+4b, we have b # 0 and (3.27) holds. Thus,

fo— f1 = (Hup + [fo — afi]vp — 2bf1)/2b.
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By (2.10) and (2.5), p|f, = f, — fi. So,
Hu, + [fo — afi]vp — 2bf1 = 0 mod p.

On using (3.33) and (3.32),

H (%) + [fe — afi]a — 2bf; = 0 mod p.

On recalling that H: = 2bf; — [f2 — afi]a, we have

#|(5) 1] =0moar (3.4

p

It is at this point that Lemma 3.1 is brought to bear: by supposition, A is not a
square; by that lemma, (%) = —1 for infinitely many p; hence, (3.46) holds only if

H = 0. We have shown that if A is not a square, then H = 0, which proves (3.16).

3.2 Proof of Theorem 3.1: sufficiency

Before arguing the converse we pause to make a comment and do some preparatory

work.

Remark 3.2 A perusal of the proof, so far, will reveal that in showing necessity we
have applied the conditions of the Basic Lemma, but not to their full strength: we
have, merely, asked that f, f4 > 0,4 f4 and that for each prime p we have p| fp, fgp.
One may suspect that, with conditions obtained so weakly, an argument for their
sufficiency may rely on a simple analysis of how the terms of f grow through its
recurrence in (3.1). In this sense our argument for the converse has been only partly

successful.

3.2.1 Preliminaries

Three lemmas are given. When A is a square or when H:= 2bf; — afy + a%f; = 0,
the divisibility conditions in the theorem have some basic consequences which will be

needed in the proof of the converse. These consequences are proved here in the next
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two lemmas, away from the main arguments in the hope that the latter do not get
lost amongst elementary details. The third lemma provides a congruence which will

be used to show that f has divisibility when a > 0,b # 0 and A is a positive square.

Lemma 3.2 Let A be a square, so that A and p are integers by (3.25). Let p be a
prime. Then the following hold:

if p| X, then plfa — pfr; (3.47)
if plp, then pIAfi — fo; (3.48)
if pIA — p, then plfa — pfi; (3.49)
if A, p, then plfi; (3.50)
if 2|1\, p, then 4] f2 — pfi. (3.51)

Proof. To see (3.47), let p|A. Consider odd p first. Then, working mod p,

0 = A b (since b = —Au by (3.22))
= f2 — af1 (by (313))
fo—ufi — Afi (since a = A+ p by (3.21))

= fo—pfi (since p|A),

Il

showing that (3.47) holds when p is odd. Now let p = 2. Then either 2|y or 2fu. If
2|y, then 2|a,b by (3.21) and (3.22). So, 4|f> by (3.8). Hence, 2|fy — pufi. Lastly, if
2fu, then 2| fy — ufi by (3.7). So, (3.47) is proved.

To see (3.48), simply write A for p, and p for A in the proof of (3.47).

For (3.49), let p|\ — p. If p = 2, then we just repeat the argument used for p = 2
in the proof of (3.47). Now consider odd p. Since A — p := /A, we know that p|A.
So, p|2fa — afy by (3.6). Thus, p divides [2f, — afi + (A — p) f1], which is exactly
2(fo — uf1) because a := A+ u. So, p|fa — pfi1, as stated in (3.49).

For (3.50), suppose p|A, u. Then pla, b by (3.21) and (3.22). Therefore, by (3.10),
for odd p we see that p|f;. For p = 2, we have 4|f, by (3.8), so that 2|f; by (3.7).
This proves (3.50) and, in fact, the last sentence proves (3.51) and, therefore, the

lemma. O
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Lemma 3.3 Suppose that
2bf; — afs +a’f; = 0. (3.52)

Then the following hold for each prime p:

if 4|a, then 2|f1; (3.53)
if p is odd and pla, then p|fi; (3.54)
if ord,(a) > 2 and ord,(a) — ord,(f1) > 1,

then ord,(bfi) > ord,(a) + 1. (3.55)

Proof. To see (3.53), let 4]|a. By (3.52), 4]2bf;. So, if 2/b, then 2|f;. If 2|b, then
2|f1 by (3.8) and (3.7).

For (3.54), let p be an odd prime dividing a. Then p|2bf; by (3.52). So, if p/b,
then p|fi. If p|b, then again p|f; by (3.10).

For (3.55), suppose p is a prime with ord,(a) > 2 and ord,(a) — ord,(f;) > 1.
Consider odd p first. By (3.52), a|2bf,. Hence, ord,(b) + ord,(f1) > ord,(a). So,
ord,(b) > ord,(a) — ord,(fi) > 1. Thus, p divides both a and b. By (3.13), p|fo.
Whence,

ord,(af, —a’f1) (by (3.52))
min[ord,(af2), ord,(a®f1)]
minford,(a) + 1, 20ord,(a)] (since p|fi, f2, a)

ord,(bf)

(AVARRAVARN!

ord,(a) +1 (since pla),
proving (3.55) when p is odd. Now let p = 2. By (3.53), 2|f;. Hence, 2|f; by (3.7).
So,

1+ OI‘dQ(b) + Ol"dg(fl) = Ord2(2bf1)

= ordy(afy —a’f1) (by (3.52))
> minfordy(a) + 1, 2ords(a)+1] (since 2|fs, a)
= ordy(a) + 1, (3.56)

which shows that ordy(b) > ordy(a) — orda(f1). Thus, ords(b) > 1 by the second of
the hypotheses in (3.55). Hence, 2 divides both a and b. By (3.8), 4|f,. Repeating
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the argument used in reaching (3.56),

1+ordy(bfy) = ordy(afs —a®f1)
> minfordy(a) + 2, 20ordy(a)+1] = ords(a) + 2,

so that ords(bf;) > ordy(a) + 1, which completes the proof of (3.55) and the lemma.
O

Lemma 3.4 Let K, m and r be natural numbers with 1 < m < r — 1. Then, for each

o

Proof. Suppose K, m,p and r are given as in the lemma. We must prove that p"=™

prime p,

pr—lK -1
m

) mod p" ™.
divides
0K -)@E -2 (7K ~m)
~(p 'K -1 K —2) .. (pF K —m)).

This is equivalent to proving that p"~™+or (™) divides
PK-1)(p'K-2)...(p"K —m)
—@TTK-1)(p" K =2)...(p" K —m).

Now, if ord,(m!) < m — 1, then we will be done: it will then follow that » — m +

ord, (m!) <7 — 1 and, arguing mod p"~™+"% (™) " we will have

3

f[(p’K—j)—

j=1 Jj=1

WK —j) = ﬁ (=) - ﬁ (—f) =0.

In fact, ord,(m!) < m — 1: this is immediate from the equation

ord,(m!) = (m = sm)/(p = 1),

where s,, is the sum of digits in m to base p. For a proof of this equation see, for
example, BACHMAN [2, Lemma 3.1]. a

With this preparatory work out of the way, we now prove the converse of Theorem
3.1.
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3.2.2 The cases in which the recurrence reduces to the first
order: a<0;b=0;A =0

Sufficiency is proved in each of three cases: when a is negative; when b is zero; when
A is zero. In each case the recurrence defining f reduces to one of first order and

Lemma 2.9 is used.

The case a < 0

Let a < 0. Hence, by (3.12),
f2 = Af1. (3.57)
Note that (3.29) is valid here because b > 0 by (3.11) and the same, therefore, holds

for A =: a® + 4b. Our aim is to use Lemma 2.9. In turn it will be shown that:
(i) fa = Afn 1 for each n > 2;
(ii) f1 and A are natural numbers;
(iii) fi is divisible by each prime that divides A.

A simple way to see (i) is to use (3.57) and write fo = Af; in (3.29) to obtain
fn = A""1f; for each n > 1, and then use an easy induction.

By definition, f; > 0. By (3.57), f1 # 0 because fo > 0 by definition. So, f; is a
natural number. As for A, note first that, since a < 0, we have b > 0 by (3.11). Thus,
each of b, —a, fi, and f5 is positive. Hence, 2bf; — afs + a®f; is positive. So, A is a
square by (3.16), and A is an integer by (3.25). Since fo > f; > 0, it is apparent from
(3.57) that A > 0. Whence, A is a natural number, proving (ii).

Lastly, for (iii), let p be a prime dividing A\. Hence, p|b by (3.22) and p|fs by
(3.57). If p = 2, then p|f; by (3.7). For odd p we use (3.13) to obtain p|af;, so that
the result holds if pfa. In the case p|a we see from (3.10) that, again, p|f;.

So, f € ER by Lemma 2.9.
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The case b=0

Assume that b = 0. The following will be shown: (i) f, = af,—1 for each n > 2; (ii)
a and f; are natural numbers; (iii) for each prime p if p|a, then p|f;.
Since b = 0, it is seen by (3.13) that each odd prime divides fo — af;. Hence,

fo = afi. (3.58)

Thus, (i) holds by (3.1). Since, by definition, f, > 0 and f; > 0 we see from (3.58)
that (ii) holds. If p is an odd prime and pla, then p|f; by (3.10). If 2|a, then 2|f; by
(3.58). Hence, 2|f; by (3.7). So, (iii) holds and, by Lemma 2.9, f € ER.

The case A =0
Suppose A = 0. So, by the definition of A in (3.3),
a® + 4b = 0. (3.59)

Also, by (3.14), each odd prime divides 2fs — afi;. Whence, 2f, — af; = 0, which we
rewrite as
fo=(a/2) fi1. (3.60)

A straightforward induction using (3.1), (3.59), and (3.60), shows that f, = (a/2) fn—1
for each n > 2.

We now show (i) a/2 and f; are natural numbers, (ii) f; is divisible by each prime
that divides a/2.

By (3.59), 2|a. By (3.60), fi,a > 0 because, by definition, f, > 0 and f; > 0.
Hence, a/2 and f; are natural numbers, proving (i).

For (ii), let 2|(a/2). Then, by (3.60), 2|fs. So, by (3.7), 2|f;. Also, if an odd
prime p divides a/2, then p|b by (3.59). Therefore, p|f; by (3.10).

By Lemma 2.9, f € &R, disposing of the case A = 0.

3.2.3 Thecasea=0

Let a = 0. Thus, by (3.11), b is a natural number. The following will be shown:
f(f1, f2,0,1) is exactly realizable; using Lemma 2.5, Corollary 2.7(i) and the positivity
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of f(f1, f2,0,1), the positivity of f(f1, f2,0,b) will be deduced for each b > 2; finally,
f(f1, f2,0,b) will be shown to have divisibility by Lemma 2.8. The result will then
follow by the Basic Lemma.

Suppose b = 1. Then, f = (f1, fo, f1, fo,-..) by the recurrence defining f in (3.1).
Therefore, by (2.5), f= (f1, fo — f1,0,0,...). Now, by definition, fo > f; > 0. So,
f > 0. Also, by (3.7), 2|fo — f1. Hence, n|f, for each n > 1. By the Basic Lemma, it
follows that f is exactly realizable when b = 1.

Now consider b > 2. By (3.1),

f = (flanabflabeabela bzf?ab3f1ab3f27 . ')a

so that f is the product of the sequences
9:= (f1, f2, f1, f2, -+ -) and h:= (1,1,b,b,b% b* b3 B3, .. ).

It has been shown above that ¢ > 0. If we can show that h > 0, then we will be done
by Corollary 2.7(i). Lemma (2.5) will be used to show that & > 0. Note first that &
is increasing and h > 0 since b > 2. If n is odd with n # 3,5, then

hoy — nh, = b" 1 —nppn~D/2 (by definition of h)
b(n—l)/2[b(n—1)/2 . n]

v

2n=D/2 _p (since b > 2)

0 (since n is odd, n # 3,5).

A4

Similarly for each even n,
Bon — by, = b1 — np(=2/2 = p(n=D/2[pn/2 _ ) > 9n/2 _p > .

So, hop, —nh, > 0 forall n # 3,5. Thus, by Lemma 2.5, hy, > 0 for each n #6,7,10,11
and these few values of n are no exception to h> 0, as can be checked directly with
ease. For example, izlo =hig—hs—he+hy =b*—b>—1+1> 0 since b > 2. Hence,
f=o.

For the case b > 2, we now prove that n\fn for each n > 1. Lemma 2.8 will be
used. Let p be a prime and r, K be natural numbers. It is sufficient to prove each of

the following:
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(I) if p is odd and K is even, then p’|fy[b?" K-2)/2 — p@" " K=2)/2];

(IT) if p and K are odd, then p"| fy[p® K-1D/2 — ple" " K-1)/2],

(IT) if r > 2 and k is odd, then 27| fip, kj: = fo[b K-2/2 — p@K-2)/2);

(IV) if K is odd, then 2| fob%X—1 — fpE-1)/2,

For (I), let p be odd and K be even. If pjb, then we are done by (2.19) because

f2[b(pTK—2)/2 — b(pr‘lK—Q)/2] — %[(bKﬂ)pT _ (bK/2)p“1]_

Now let p|b. By hypothesis a = 0. So, by (3.13), p|f.. Hence,

ordp(fg[b(er_Q)/Q _ b(p"lK—Z)/Q]) > ordp(fQ[b(pT_lK_Z)/Q])
> 14+ ('K -2)/2
— pr—lK/2 Z pr—l > r,

proving (I).

For (II), assume that p and K are odd. The matter is trivial if f; = 0. Suppose
fi > 0. Then, since a = 0 and b > 0, we have 2bf, — afy + a?f; > 0. Thus, A is a
square by (3.16). But A:= a? + 4b = 4b. So, b is a square. If p/b, then we are done
by (2.19) because

Fu[p® K02 _ p T E=)/2] — bjl%[(bl(/z)lf — (K.

If p|b, then p|f; by (3.10), so that

ord,, (f1[p® F-D/2 — b(p"lK—l)/Q]) > ord,(fy [b(p"lK—l)ﬂ])
> 1+2[(p" 'K —1)/2] (bis a square)

Il
<,
|
=
\%
3

proving (II).
For (IIT), suppose r > 2 and K is odd. There are three cases: (i) 2/b and f; > 0;
(ii) 2/b and f, = 0; (iii) 2|b.
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For case (i), b is a square for the same reasons as given in (II). Note that

f[2,r,K] — %[(bK/Q)QT . (bK/Q)QT—1]'

Here, by (2.19), 2" divides the square bracketed expression on the right hand side.

SO; 2r‘f[2,1‘,K]-
For (ii), note that

g = 20— 65977

Here, by (2.19), 2! divides the square bracketed expression on the right hand side.
AISO, 2|f2 by (37) ThUS, QT‘fQ,T,K]-

For (iii), 4| f2 by (3.8). Therefore,
Ord2(f2[b<2rK72)/2 B b(QT_lK—Q)/Q]) ord2(f2 [b(2T—1K—2)/2])

> 24 (27K -2)/2=1+2"2K >,

AV

which settles (III).
Finally, for (IV), suppose K is odd. This is easy since fo = f; mod 2 by (3.7),
and b¥—! = p(K-D/2 mod 2. Hence, f has divisibility and the converse of Theorem

3.1 holds when a = 0.

3.2.4 The case a,A > 0,b # 0: proof of positivity

Suppose a, A > 0 and b # 0. The sequence f will be shown to have positivity in each
of the following three cases: a,b > 1; ¢ > 1,—1 >band 1 > y; a > 1,—1 > b and
p > 1. Lemma 2.5 will be used in all cases and Corollary 2.8 will also help in the

last.

Positivity when a,b > 1

Let a,b > 1. Lemma 2.5 will be used. By definition, f, > f; > 0. So, by (3.1), f is

increasing and non-negative. Now, for each n > 3,

fn = afnfl +bfn72 (by (31))
> fao1+ fa2 (sincea,b>1and f > 0) (3.61)

\%

Vv

2fn—2 (since f is increasing). (3.62)
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Using (3.62) repeatedly, for each even n we obtain

fon > 2fon-2 > 22 fon-1 2 2 fon6 > .. 2 22 f, > nfo. (3.63)
Also, for each odd n > 3,
2(n=3)/2f o (by repeated use of (3.62))

2 =3)/2(f o+ far1) (reasoning as for (3.61))

2 92(2f, + far1) (by (3.62))
2(n=3/2(3f) (since f is increasing)
nfo. (3.64)

f2n

vV IV IV IV

v

Since fo > f1 > 0, it follows by (3.63) and (3.64) that fo, > f, for each n > 1.
Therefore, f > 0 by Lemma 2.5.

Positivity when a>1,—-1>b,1 >

Suppose @ > 1,—1 > b and 1 > u. Lemma 2.5 will be used after it is shown that (i)
a>2—band (ii) f, > 2f,_1 for each n > 3.

Since A := a? +4b > 1 and —1 > b, it follows that a> > 5. Also, u =
[a - \/M] /2 < 1 implies a — 2 < Va2 + 4b, and the last inequality can be

squared since a2 > 5. Consequently, a > 1 — b and, since a is a natural number, we
have a > 2 — b. This proves (i).

A basic induction will now be used to show (ii). For n = 3,

fs == afs+bfi > (2—"0)fs +bfi (since a>2—b)
= 2fo+0b0(fi — fo) > 2fs (since 0 > b and, by definition, fo > f1).

Suppose that f, > 2f,_; for some r > 3. Then

fron = afe +0fia > (2-0)fr +0fr 1 =2fr +0(fr1 — fr)
> 2f, (since 0 > b and, by the induction hypothesis, f, > 2f,_1),

so that (ii) holds. By definition, fo > f; > 0. Thus, by (ii), f is non-negative and

increasing. By Lemma 2.5, we will be done as soon as it is noted that fy, > nf, for
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each n > 2. For each n > 2, repeated use of (ii) gives
f2n Z 2on—l Z 22f2n—2 Z e Z 2nfn Z nfn

Hence, f > 0.

Positivity whena>1,-1>b,u>1

Assume that ¢ > 1,—1 > band g > 1. By (3.23), A\=u+A > 14+ 1= 2. Also,
fa > pfi by (3.15). Now either fo < Af; or fo > Af1.

For fy < Af1, the use of (3.29) and (2.5) gives

fo = ad p(n/d)A*+ B> u(n/d)p  for each n > 1.
djn din

It is easy to see that this expression is non-negative for each n > 1: VA, X, and p
are positive while \f; — fo and f; — puf1 are non-negative; hence, by their definitions
in (3.28), o and § are non-negative; by Corollary 2.8, each of 3, u(n/d)A\* and
Yapn t(n/d)u® is non-negative because A, x> 1. Whence, f >0 when f, < \fi.

For fo > Afi, an easy induction shows that f, > Af,_; for each n > 2: let
fr > Afr_1 for some r > 2. Then

foor = afi+bf 1= A+ p)fy— Mifos (by (3:21) and (3.22))
= AMr+pfe — Aufr
> A+ Aufror — Aufr—1 (fr > Afr—1 by the induction hypothesis),

which equals Af,.. Consequently, since f; > 0 by definition, and A > 2 the sequence

f is non-negative and increasing. Also, for each n > 1,

fon > Afop—1 > )\2f2n—2 > > Ny > nfy.

So, by Lemma 2.5, f > 0 when fy > Af;. This completes our task in showing that f
has positivity when a > 0 and A > 0.

Remark 3.3 For the special case ¢ > 1,—1 > b and 1 = p, there is an argument

which is simpler than the one given just above. By (3.29) and (3.28),

Fui= Xulnfd) fa= EoL S /AN + B /). (369

dln dln dln
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We need show fn > 0 for each n > 1. This is trivial for n = 1. For each n > 2 note
the following: by (2.2), the second summand in (3.65) is 0; fo > f; by definition; we
are given A > 0; by (3.22), A = —b > 1 and, hence, 3, u(n/d)A* > 0 by Corollary
2.8. Thus, f > 0.

3.2.5 The case a, A > 0,b # 0: proof of divisibility

Let a,A > 0 and b # 0. We show that f has divisibility by exploiting (3.16). Our
task is divided into two: the case when A is a square and the case when H = 0. For
the former case, the proof is self-contained in the sense that there is no appeal to a
system exactly realizing f. This is untrue of our argument for the case H = 0. When
H = 0 it is easily seen that f = (fi;/a)v where v the Lucas sequence. Using Example
1.5, we exhibit a dynamical system exactly realizing v, from which the divisibility of

f is deduced. This is immediate when a divides fi, and less so otherwise.

Divisibility when A is a square

Suppose A is a square. Lemma 2.8 will be used. Let p be a prime and r, K be natural
numbers. It will be shown that p"|fipr k= forx — fpr-1x. By (3.29), (3.28) and
(3.23)

fo= B nN T M = )] foreachnz 1o (3.66)

Write g and h, respectively, for the sequences for which

Gn = (fo—pf)A"t and h, = (\fi — fo)u" ' for each n > 1. (3.67)

By (3.47), if p|A, then p|fs — ufi. Thus, by Corollary 2.12, we know that g has
divisibility. The same holds for h by (3.48). Using (3.66) and (3.67),

! - L[ (f2 = pfO)NETL 4 (Nf1 — fo)pu? K71
SRR UV R AT

_ ﬁ (9151 + B, i) - (3.69)

(3.68)
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Since g and h have divisibility, p"|gj.r k] + hjpr,x) Dy Lemma 2.8. Hence, by (3.69),
P"| fip,r,x) When pfA — p. So, we can suppose from now that p|A — p. By the binomial

theorem,

VI S (= P!

7- pTK 1 TK 1 ” .
= T+ Y (A —p) ( Z )upK“. (3.70)

=1

There is a similar expression for A"~ X~1 which, along with (3.70), we substitute into
(3.68). Then, some basic manipulation shows that f,, k] is the sum of two terms,

namely
I r—1gr_
F(p,r,K):: (/’Lp Kt _:u’p K l)fla

and

S(p,'r,K): = (f2 - /‘Lfl) . Zf;—llK,]_()\ . u)i_l (pr 1iI{ 1)L[/p7'71[(_1_z' ’

Here, for brevity, write ¢ », k) and oy, ) for the sums involving >} K1 and Zpr - v

L A (e ]

respectively. Define 0,1 1) to be 0 for each p. Thus,

Ser (fg - /,Lfl)[ er 0'(;,,,7-,1()] for all p,r and K. (371)

It will now be shown that p" divides each of F{,, k) and S, k). Consider Fy,, k)
first. Recall that we are working with those p that divide A — . If pfu, then p" | F{, , k)
by (2.19). If p|u, then p|\ as well. So, p|f; by (3.50). Hence,

ord, (Fip,r k) > ordp(uprflK_lfl) >SP K —1+1=p" 'K >r.

Now consider S(,, k). By (3.49), p|fo — pufi. Either (I) p|u or (II) p/u. For (I), let
p|p. Then, for each term < in g, k) We have ord,(¢) > i—1+p"K —-1—i=p"K —2.
Hence,

ord,((f2 — Nfl)g(p,r,K)) >1+p K—-2=p K—-1>r.

Thus, by (3.71), it remains to show that p"|(f» — pfi1)oprk)- This is trivial for
1 =r = K and each prime p since o(,1,1):= 0. If r =2, K =1 and p = 2, then we
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are done since 4|fo — pfi by (3.51). For all other triples (p,r, K) and for each term

o in o, k) We have ordy(o) > p"~'K — 2, which implies
ord,((f2 — ,ufl)o-(p,'r,K)) >1 —i—pT_IK —92= pr—lK —1>r

completing the argument that p| fp,, k] when p)|p.

For (II), let pfu. Since p|fy — pfi, the result holds for » = 1 and all K, p. So, let
r > 1. Again, since p|fo — puf1, it is enough to show that p"~'|gp . k) — O(pyr,k)- Note
that, since p|\ — u, we know that p"~! divides each term of O(pr k) for i > r. The

r—1

same holds for ¢, k). Hence, mod p"~*, we have ¢, k) — 0 k) congruent to

Ti()\ — )t Ker._ 1) T (pHK B 1) up’"_lK”] .

i=1 ¢ i

Our task will be done when we show that, for each i, the square bracketed expression
in the i-th term of this sum is divisible by p"~*: by (2.19), for each i with 1 <7 < r—1,

p"K—1—4

7

prlK—1—4

7

mod p";

and for all such ¢, by Lemma 3.4,

(p’K — 1) (p’"‘lK - 1) i
. = . mod p" "
7 3

on multiplying these congruences mod p”~*, the desired result follows. Thus, p" |Sip,r,K]

when pfu. Therefore, f has divisibility when A is a square.

Divisibility when H = 0 and a divides f;

Suppose H:= 2bf, — afy + a®>f1 = 0 and a|f;. Then, since neither a nor b is zero,
fi/a = (f2 — afi)/2b. Hence, by (3.27),

fn = f—vn for each n > 1. (3.72)

1
a
More will be shown than required. Using Example 1.5, it will be shown that the Lucas
sequence v is in ER. Since a|fi, the same will hold for f by (3.72) and Corollary 2.3.
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Recall the definition of v in Remark 3.1(1): v = f(a,a® + 2b,a,b); so, v satisfies
the recurrence in (3.1) with v; = a and vy = a* + 2b. Suppose a is odd. (The case of

even a is mentioned at the end.) Let

1
I = 0 and A=
01

(a—1)/2 1
b+(a®>—1)/4 (a+1)/2 |

Define a sequence t by t, = trace(A") for each n > 1. Since a, A > 1, the entries
in A are non-negative integers. It is easily checked that the characteristic equation
of Ais 2?2 = ax +b. So, A2 = aA + bl. Thus, A"*? = gA™"! + bA™ and, hence,
tnto = atpy1 + b, for each n > 1. Thus, ¢t and v both satisfy the recurrence in (3.1).
Also, t; =(a—1)/2+ (a+1)/2 =a = v, and

ty = trace(A?) = trace(aA + bI) = a trace(A) + b trace(I) = a® + 2b = v,.

Thus, t = v. Therefore, by Example 1.5, v € £R when a is odd. Working as above
a/2 1
b+a*/4 a/2
Whence, f has divisibility when H = 0 and al f;.

with the matrix

] , it will be seen that the same holds when a is even.

Divisibility when H = 0 and a does not divide f;

Suppose H = 0 and a does not divide f;. Lemma 2.8 will be used. Let p be a prime
and r, K be natural numbers. By (3.72),

for k)= fork — for-1k = év[me] for all p,r and K. (3.73)
a

Since it has just been shown that v has divisibility, we know, by Lemma 2.8, that
P"|vpr k] Therefore, by (3.73), in showing that p"| i, k], Wwe need think only of those
p for which ord,(a) > ord,(f1). (Since aff1, there are such p.) By (3.54), if p is odd
and ord,(a) = 1, then ord,(f;) > ord,(a). Hence, it is enough, by Lemma 2.8 and
(3.73), to prove the following:

(i) If orde(a) =1 and f; is odd, then for all 7 and K with K odd

21‘—1—1 "UQTK — Vor-1K. (374)
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(ii) If p is a prime with ord,(a) > 2 and ord,(a) > ord,(f1), then for all 7 and K

p'r—|—ordp(a)—ordp(f1) |UpTK — Upr-1K. (375)

Proof of (i). Suppose ords(a) = 1 and f; is odd. Fix an odd K. Note that 4|b+ 1 by
(3.9) and, therefore, 8|(b—1)(b+1) = b2 —1. On writing b’ —1 as (0¥ —1)(b* " +1)

for each » > 1, an easy induction shows that
21y — 1 (for each r > 2). (3.76)

Induction on r will be used to prove (i). For r = 1 we must show that 4|vex — vk.
By (3.20),

Vox — v = 205 — Kab =172 mod 4.

Here, b = —1 mod 4 by (3.9). Since K is odd, K = +1 mod 4. Also, ¢ = 2 mod 4

because ords(a) = 1. Consequently,
vo — Vg = 2(—1) — (£1)(2)(£1) = 0 mod 4,

proving that (3.74) holds for » = 1. As hypothesis of the induction, suppose that
(3.74) holds for a given r. To show that this supposition implies 2" 2|vgr+1x — vor g,

use (3.31) twice to obtain

Voyr+1g — Vorg = v%”K _ 2(_6)2TK _ [’U;r—lK _ 2(_b)2’f—1K]

= (UQTK — UQT—IK)(UQTK —+ UQT—IK)

—2(=b)" (=0~ 1],

Here, 2”2 divides the first summand by the induction hypothesis. For r = 1, the
second summand equals —2b% (b¥ + 1), which is divisible by 2'*2? because b = —1
mod 4. For r > 2 the second summand equals —26% ¥ (b2" 'K — 1) which, by (3.76),
is divisible by 2""2. Hence, 2""%|vgr+1x — vorg, which completes the induction step
and proves (i).

Proof of (ii). Let p be a prime with ord,(a) > 2 and ord,(a) > ord,(f;). For

brevity, write w, x and y, respectively, for the orders of p in a,b and f;. Thus, by our
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premises, w > 2 and w — 1 > y. By (3.53) and (3.54), y > 1. Also,z > w—y+1 by

(3.55). These simple facts are now displayed for ease of reference.

r > w—y+1 (3.77)
w—1 >y > 1 (3.78)

Let 7 and K be natural numbers. Recall that v satisfies the recurrence in (3.1) with
v; = a and vy = a® + 2b. So, for each triple (p,r, K), we can write v,r—1x as a linear
combination of products of powers of @ and b. For each (p,r, K) # (2,2,1), it will be
shown that each such product in vy—1x is divisible by p"**~¥. (It is a simple exercise
to verify that 22+“~¥|v,. It will then follow that p"**~¥|vu,—1f for each (p,r, K); and
on writing 7 + 1 for 7, we will have p"™'*% ¥|y,. ;e and so p" ™ ¥|v,r i, proving (ii).)
From now assume that (p,r, K) # (2,2,1). On writing out the first few terms of

the sequence v, some of which are:

v = @
vy = a®+2b;
vy = a4+ 3ab;
vy = a*+4a’b+ 2b%
vy = a +7a%b+ 14a®b? + Tab?;
vs = a®+8a%b + 20a*b? + 16a2b® + 2b*;
we quickly notice and, using (3.19), readily prove by induction that for odd n the

products involving ¢ and b in the summands of v, are

a®, a" %, o™ W, . abn/2, (3.79)
Similarly, for even n the corresponding products are
a®, a2, "', . b2 (3.80)

For odd n, the orders with respect to p of the entries in (3.79) are
nw, (n—-2w+z, m—YHw+2z, ... , w+(n—1)z/2. (3.81)
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Similar use of (3.80) for even n gives
nw, (n—2w+z, nm-—4HYw+2z, ... , nx/2. (3.82)

For n odd, as well as even, we see from (3.81) and (3.82), that the orders increase left

to right when x > 2w, and decrease when x < 2w. Thus, for odd p" 'K,
ord, (vyr-1g) > min [p" ' Kw,w + (p" 'K — 1)z/2], (3.83)
and for even p" 'K,
ord,(vyr-1g) > min (p" ' Kw,p" 'Kz /2). (3.84)
We now establish three inequalities, (excluding the case p =2,7r =2 and K = 1):
(a) PPiKw>r+w—y;
(b) w+ (p 'K —1)z/2 > r + w — y when p" 'K is odd;
(¢) p"*Kz/2 > r+w—y when p" 'K is even;

so that by (a), (b) and (3.83), we will have p" ™"~ ¥|v,—1x for odd p" 'K the same
will hold for even p"~'K by (a), (¢) and (3.84); and (ii) will then be proved.
For (a),

pr'Kw > rw (since K >1and p™! >r)
= (r—-Dw—-1)+r+w-1
> r4+w—1 (since w > 2 by (3.78) and r > 1)
> r4+w—y (because y > 1 by (3.78)).

As regards (b),

w+ (p 'K —1)z/2

v

w+p 'K —1 (asx > 2by (3.77) and (3.78))

\%

w+7r—1 (since K>1andp™~!>r)

v

w+7r—y (wehave y > 1 by (3.78)).
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Finally, for (c) let p" 'K be even. We first show that
p 'K —r—12>0. (3.85)

If r = 1, then K is even because p" 'K is even. In thiscase p" 'K —r—1=K -2 >
2—2=0.

Let r = 2. Here, we cannot have K = 1 because K = 1 would require p = 2 to
ensure that p" 'K is even, but the case r = 2,p = 2 and K = 1 is excluded from
the present discussion. Hence, when r = 2 we have K > 2 andso p" 'K —r — 1 =
pK —3>2x2-32>0.

Forr >3, wehave p’ ! >r+landsop™ 'K—r—1>p ! —r—12>0, proving
(3.85).

We can now see to (c):

P Kz/2 (r+1)z/2 (by(3.85))
= (r—1z/2+=x
r—1+zx (since z > 2 by (3.77) and (3.78))

r—l+w—y+1 (by (3.77))

v 1V

T+ w—y,

as desired. This proves (ii) and completes the argument that f has divisibility when
H =0 and a does not divide f;.

By the arguments in this subsection and Subsection 3.2.4, f is exactly realizable
in the case a, A > 0 and b # 0. It has been shown that the same holds of f in the
following four cases: a < 0; b = 0; A = 0; a = 0. Since these five cases are exhaustive,

the converse of Theorem 3.1 is established.
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Chapter 4

Growth Rate of orbits

In this chapter the growth in the number of points of period n is compared with the
growth in the number of points of least period n. As expected, these behave very
similarly for exponential growth rates, which is the case that arises most naturally
in dynamics (cf. [7, Sect. 4|, where Lind points out that if f, is the number of

points of period n under the automorphism of the 2-torus corresponding to the matrix
2 1 N
{ L1 ] , then foq is only 0.006% smaller than fs). On the other hand, we show below

that for other growth rates (polynomial and super-exponential in particular) the two

quantities may be forced to grow very differently.

4.1 Exponential growth rates

Theorem 4.1 Let [ be exactly realizable with f > 0. Write F and F, respectively,
for the sets { log fn:n € N} and {Zlog fa:n € N}.

(i) Let C be a non-negative real. Then, %log fn — C' if and only if % log f, = C.
(ii) F is bounded if and only if F is bounded.

(iii) If % log f, — oo, then F may have infinitely many limit points.
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Proof. (i) For the ‘only if’ part, let C' be a non-negative real and suppose that
%log fn — C. The proof relies on us being able to ‘sandwich’ the sequence (% log fn)
between the sequence (= log fn) and another in F.

For each n > 1, write L, := {d:d|n; if d'|n, then f; > fy} and choose an 7 in
L,. To see that n — oo as n — oo, let a natural number N be given. Write M for
max{fm: 1 <m < N}. Then, for each n > M and each m with 1 <m < N,

fn (since 1 € L, and n|n)

> n (since f >0 and, by (2.10), n|fn)

fa

v

> M (by our choice of n)
> fm (by the definition of M);

SO, fﬁ > fm and, hence, there is no m equal to n. Thus, n > N whenever n > M,
which proves that 7 — co as n — co. Therefore, since (+ log fa) converges to C, the
same holds for (= log fa)- (There is no a priori reason to assume that (+log fa) is a

subsequence of (1 log fn).) Now, for each n > 1,
1 A 1 A
—logfa < —logfu (f 2/ by (26))

= Liog (Zfd) (by (2.6))

n dn

1 ~
< —log (n max{ fy: d|n}) (n has no more than n divisors)
n
1 1 A
= —1 —1 :d
—logn + —log (max{fd |n})
1 n 1 s .. -
= —logn+ —-—logfi (by the definition of 7)
n n
1 1 o
< —logn+ —log fi (since 72 < n),
n n
so that from the first and last of these inequalities,
1 A 1 1 1 A
—log fn < —log fn < —logn + —log f.
n n n n

The result now follows because 1 logn converges to 0 and each of 2 log f, and 1 log f;

converges to C.
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For the converse, let %log fn — C. The argument is easy when C'=0: f > f by
(2.6); it is given that f >0, so that, by (2.10), fn > n for each n > 1; therefore,

1 1 A 1
—logn < —log f, < —log f, foreachn>1,
n n n

here, each of Llogn and 1 log f, converges to 0; hence, the same holds for 1 log f,.
Now suppose C' > 0. Let € € (0,C/3) and choose N such that,

eC9 < f, < eMCt9 for each n > N. (4.1)

For each real number x write |z] for the greatest integer not exceeding x. Let B be
an upper bound for F' and consider large n. On using (2.6) for each of the first three

steps below,

fo > fo o= fom X fa > fam Y fa

d|n;d#n din;d#n
[n/2]
> fu— >_ fr (no proper divisor of n exceeds [n/2])
r=1
N [n/2]
= fn - Z fr - Z fr
r=1 r=N+1
[n/2]
> f,— NeVB — > fr (B is an upper bound for F)
r=N+1
> fn _ NeNB _ (L"/QJ _ N)€|_n/2j(0+e) (fn < en(C’—}—e) by (41))
> fo— NeVB — (n/2 — N)eMC+9/2 (since n/2 > |n/2])
VB () /2
_— [1—N - —(n/2—N)f—]
> fn [1 . NeNBfn(Cfe) . (n/2 . N)efn(C’fiie)/?] (en(C—e) < fn by (41))

Using the first and last of the above chain of inequalities, taking logs and dividing
through by n gives

1 1 .
—log frn > —logfn
n n

1 1
> —log fn+ — log [1 _ NeNB-m(C—e) _ (n/2 — N)e—n(C—?)e)/Z] '
n n
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Now let n — oco. The bracketed expression converges to 1. By hypothesis %log fn—
C. Whence, %log fa = C, completing the proof of (1).

(ii) The ‘if’ part is clear since f > f by (2.6). For the converse let A be an upper
bound for F', so that f, < eA™ for each n > 1. Using (2.6),

n n
fa=Y)_fa<D fr < ZeAT < neA™ for each n > 1.
dn r=1 r=1

Here, taking logs and dividing through by n gives
1 1 an 1
—log f, < —logne™ = —logn+ A <1+ A foreachn > 1.
n n n

Thus, F'is bounded above by 1 + A.
(iii) For each r > 1 let n, = p,pr41 where p, is the r-th prime. Define fn = n2"°

for each n not of the form n,. For each n of the form n,, define fn as follows:

fnl = m2™,

an = ny2"?, fm = ng2%",

Fro = na2™, fag =15225 fog = ne2%,

for = 122", fre =822 fro =me2%0 fo = ngp2M0,

and so on. Since fn > 0 and n| fn for each n > 1, it follows, by the Basic Lemma,

that f is exactly realizable. By (2.6), for each n not of the form n,,
1 1 A 1
—log f, > ~log fn = —logn + n’log 2.
n n n

Hence, %log fn — 00 away from the n,’s. For each n of the form n,,

108 S = B[ty Sy ] (b (26))

T T

1 .
> 108 fy,, = log (pr12°7+1) > log (2°7+) > pry log2.

T PrPr41 Prpr+1
Hence, % log fn, — 0o as 7 — oo. Therefore, %log fn — 00 as n — .
For each natural number m there is a subsequence (n,,) of (n,) with fnrk =
n., 2"" % for each k > 1. Since ni log n,, 2™ — mlog2 as k — oo, it follows that
Tk

F has infinitely many limit points. O
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Remark 4.1 1. For the sequence f constructed in the proof of Theorem 4.1(iii),
we have %log fn tending to infinity independently of the definition of f along
the n,’s. In that proof retaining the definition of f off the n,’s and suitably
redefining f along the n,’s, it is clear that one can arrange for F' to have any

finite number of limit points that one wishes.

2. In Theorem 4.1, the condition f > 0 ensures that the various sets and sequences
are well defined. When f is allowed to take finitely many zero values, we can

write
F:={1log fu: fo > 0,n € N} and F:={llogfu: f, >0,n€ N}.

The theorem will then still hold because our concern is with all sufficiently large

n. The proof above will require a few minor changes.

What can be said of limn_,ooilog fn if f takes infinitely many zero values?
Consider two elementary examples: (a) let fi=1land f, =0forn > 1; (b)
let fp = 0 for each prime p, and fc = ¢2° when c is not a prime. By the
Basic Lemma, it is quickly seen that f is exactly realizable in each case. In
(a), f is the unit sequence (1). So, %log fn = 0. In (b), if p is a prime, then
fp = fl + fp = 2. Thus, %log fp = 0 as p — oo. However, if ¢ is composite,
then <log f. > 1log fe >log 2. Therefore, (L1log f,) has no limit in case (b).

It is natural to ask whether there is an exactly realizable sequence f, with f
taking infinitely many zero values and (% log f,) having a positive limit. It is

unclear whether this is a difficult question.

4.2 Polynomial growth rates

Theorem 4.2 Let f be exactly realizable. For each real number s write E, and Fy,

respectively, for the sets {% n € N} and {% n € N}
(i) For each s > 1, FE is bounded if and only if F, is bounded.
(ii) For each s > 1, ::—2 — 0 if and only if i—ﬁ — 0.
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(iii) Let C > 0 and s > 1 be given. If £—2 — C, then F, has infinitely many limit
points, including C.

(iv) Let C > 0 and s > 1 be given. If £—Z — C, then Fy has infinitely many limit
points, including C. Also, Fy is unbounded when % — C.

Proof. (i) By (2.6) and the Basic Lemma, f > f > 0. So, we need just worry about
upper bounds and the ‘if’ part is immediate. Fix s > 1 and let F be an upper bound
for F,. Then, for each n > 1,

Lo L Z fa (by (26)

nS

< —s Z Fd (since F is an upper bound for Fs)

= FY(d/n) = FY 1/(n/dy

dn
= FZ 1/d° (as d ranges over the divisors of n so does n/d)
dln

< 13’2 1/,
r=1

which is finite since s > 1. So, F} is bounded when F is bounded, proving (i).
Let us make a note of the simple fact just explained and used, and will use again:

o

> (d/n)* Z r® for eachn € N and s > 1. (4.2)
dln r=1

(ii) The ‘if* part is easy since f > f > 0. For the converse, fix an s > 1 and suppose

i—ﬁ — 0. (The case s = 1 is discussed later.) Write ¢ := >>°°, 1/r°. Let € > 0 be given

and choose natural numbers n; and ny such that, for each n > 1,

fn €

> = < , 4.3

n>n e <111 (4.3)
ny r

n>ny = f—'z< < (4.4)
k=11 L+1
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Then, for each n > max{n,ns},

0 < £—=|£— (by (2.6))
M fy fa
< 1«2—:1%1”%”15
= 1+t fj f: (by (4.4))
d\nd>n1
.
= 1it+1itd|n%;nlﬁ (by (4.3))
< Tttt (v (42)
= €.

Since € is arbitrary, by the first and last of these inequalities i—ﬁ — 0 as n — oco. This
proves (ii) when s > 1.

For the case s = 1, suppose fg” — 0. By (2.10), n|fn for each n > 1. So,
f = 0 eventually. Let N € N be such that f, = 0 for each n > N. By (2.6),
fn= Ydn fd < Zf;l f,« for each n > 1. Hence, f is bounded. So, fn—” — 0.

(iii) Let C' > 0 and s > 1 be given and suppose ﬁ—ﬁ — C. For each prime p and
each r € N the set 13’5 contains f”’". Also,

A~

for _ for — fpr—
. (by (2.5))

Jor fpr—1

prs p('r—l)sps

Now fix p and let 7 — oco. The result is that ;’;’;’; — C(1- ) So, C(1— —) is a limit
point of E, for each prime p. There are infinitely many prlmes. So, E has infinitely
many limit points.

Since C'(1— I%) — C as p — 00, we see that C is a limit point of F}. (An example

of a sequence in F, and converging to C' is (%) where p, is the r-th prime: using
(2.5),

Iy _fo _ S

Py PP

7



which converges to C' as r — 0.)

(iv) Let C > 0 and s > 1 be given and suppose 7{2—’; — C. Then, for all primes p

and ¢, the set F§ contains (Z{Z‘;s and
f oo+ Jo+ fp+ f
pqs _ Jpe q Sp 1 (by (2.6))
(pq) (pq)

~

Jra _}_&. 1 +fp+f1

(pg)* ¢ p* (pg)*

)

from which we see that if we fix p and let ¢ — oo, then (1%15 — C(1+ I%) So, F, has
infinitely many limit points.

Arguing as we did for (iii), C' is a limit point of F; (and (%T) is a sequence in Fj
converging to C).

Finally, for the last sentence of the theorem, let J;ﬂ — C where C > 0. By the
Basic Lemma, ff is a non-negative integer for each n > 1. Hence, C is a natural
number and fn = (Cn eventually. Choose N such that fn = Cn for each n > N.
Write

m(N,r) :=(N+1)(N+2)...(N+r) foreachr>1.

Then, for each r > 1,

fm(N ) 1 o
, - fa (by (2.6))
m(N,7) m(N,r) d"%\f,r)
1 r N
= m(N,r) kz::lo ’ % (since "Ev(—zi;? divides m(N, ) for each k)
" 1
B Ck:1m oo a8 T oo,
completing the proof of (iv) and the theorem. -

Remark 4.2 For the sake of completeness, let us deal with the statements in the

last theorem when s takes values other than those mentioned.

1. If s = 1, then (i) is false: define f by f, = n for each n > 1; f € ER by the

Basic Lemma; F} is bounded since F} = {1}; however, F} is unbounded by (iv).

As for (iii), Theorem 5.1(ii) shows that there is no exactly realizable sequence

f for which % has a positive limit.
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2. Now let s < 1. The facts are: (i) holds for 0 < s < 1 but not for s < 0; (ii)
holds for 0 < s < 1 but not for s < 0; (iii) is false for s = 0, but for 0 < s < 1 or
s < 0 we have (iii) trivially true because {2 cannot have a positive limit; (iv) is
trivially true for s < 1 because % cannot have a positive limit. The arguments,

being simple, are omitted.
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Chapter 5
Realization in Rate

The concern of this chapter is whether, given a sequence ¢ of non-negative real num-
bers, there is an exactly realizable sequence f which is like ¢ in the following sense:
¢, and f, are both positive or both 0 for all sufficiently large n; for ¢ not eventually
0, the ratio of the positive terms of ¢ and f tends to 1. To help discuss this, the next

definition gives some notation.

5.1 Definitions and basic properties

Definition 5.1 Let X and ¢ be an arbitrary pair of sequences in R*.

(i) Write X — ¢ when the following holds: if ¢ has infinitely many positive terms

and (¢y,,) is the subsequence of ¢ consisting of these terms, then Zfﬂ — 1 as

m — Q.

(ii) Write X —~ ¢ when there is an N € N such that, for each n > N, ¢, = 0 implies
that X, = 0.

(iii) Write X < ¢ when X — ¢ and X —~ ¢.
Some trivial consequences of this definition are:

¢ is eventually 0 if and only if X — ¢ for each X; (5.1)
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¢ is eventually 0 if and only if ¢ ~ X for each X; (5.2)
if ¢ is eventually 0 and ¢ — X, then X is eventually 0. (5.3)

For a flavour of how easy the arguments are for these, consider (5.1): for the ‘only if’
part, note that if ¢ is eventually 0, then ¢ fails the ‘if” part in the condition defining
—; for the ‘if’ part, choose X to be the zero sequence; we must have ¢ eventually
0, otherwise LLZ would be 0 for each m and the limit condition in Definition 5.1(i)
would fail. By (5.1), in discussing whether ‘X — ¢’ holds for X and ¢, it will from

now be assumed that ¢ is not eventually 0.

Notation 5.1 For each sequence ¢ of non-negative real numbers, which is not even-
tually 0, write ¢ for the subsequence of ¢ consisting of the positive terms of ¢. So,

@} is the n-th positive term of ¢.

Although trivial, the next lemma will be useful. It shows that just the one symbol
— could have been used to define <. However, two symbols have been preferred in

Definition 5.1(iii) because — is a simpler relation than —.
Lemma 5.1 (i) If x — &, then ¢ ~ X.

(ii) If X — ¢ and X —~ ¢, then ¢ — X.

(i) X < & if and only if X — ¢ and ¢ — X.

Proof. (i) Let X — ¢. If ¢ is eventually 0, then we are done by (5.2). Suppose ¢ is

not eventually 0 and let ¢ = (¢,,,). Since X — ¢, we see from Definition 5.1(i) that
Xnm
Pnm
large. Choose M € N such that

— 1 as m — oo. Since this limit is positive, X, is positive for all m sufficiently

Xn,, > 0 for each m > M. (5.4)

Now, suppose ¢, > 0 for some n > nj;. Then, since ¢T = (¢, ), there is an m with
n = N, > nyr. For such an m, we have m > M and, hence, X, is positive by (5.4).

Therefore, we have shown that
for each n > nys, we have X, > 0 if ¢, > 0. (5.5)
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Whence, by Definition 5.1(ii), ¢ —~ X.
(ii) Let x — ¢, X ~ ¢ and Xt = (X;,). By Definition 5.1(ii), choose N such that
for each n > N we have X, = 0 if ¢, = 0. Since X — ¢, the discussion leading to
(5.5) applies. Thus, if n is larger than each of N and nj;, then X, and ¢, are both
zero or both positive. Hence, there exist s,¢ € N such that j,,.+ = ny,.s for each

m > 1. Therefore,
s

: . P
lim — = lim —=
1—00 in m—00 Xnm

)

which equals 1 since X — ¢. So, ¢ ~— X by Definition 5.1(i), proving (ii).
(iii) By Definition 5.1(iii), X =< ¢ if and only if X — ¢ and X —~ ¢, which, by (i)
and (ii), hold if and only if X — ¢ and ¢ — X. O
The next fact will not be used until Lemma 5.7. It is placed here because it is

basic and will help a little more in getting used to the notation.

Lemma 5.2 Let (n,,) be a subsequence of (n). If X — &, then (Xn,,) — (¢n,,)- The

same holds on writing < for —.

Proof. Let ¢* = (¢;,) and (#n,,)" = (#n,, ). Suppose X — ¢ so that, by Definition

5.1(i), 25;: — 1 as i — 0o. The same goes for ¢::zl

subsequence of (j;). Hence, (X,,) = (¢n,,), proving the first part.
For <, let X < ¢. So, by Lemma 5.1(iii), X — ¢ and ¢ — X. Hence, by the

as [ — oo because (n,,) is a

above, (Xp,,) — (¢n,,) and (¢n,,) — (Xn,.)- Thus, on using Lemma 5.1(iii) again,

Lemma 5.3 (i) Both — and ~ are reflezive.
(ii) Both — and —~ are transitive.
(iii) The relation < is an equivalence relation.

Proof. Let ¢, X and v be sequences in R*.
(i) For each ¢, choose N =1 in the definition of ~ to see that ¢ —~ ¢. For each

¢, we have ¢ — ¢ because 1 = $Z—m in the definition of —.
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(ii) Suppose ¢ — X and X — . We need show ¢ — ¢. Let " = (¢, ). Since
X — 1, we see from (5.3) that X is not eventually 0. Let x* = (X,,). By ¢ — X and
X — 1,

%—)1 as k— oo and (5.6)
Tk
Xnm
1[]——)1 as  m — o0. (5.7)

By (5.7), Xpn,, > 0 for all m sufficiently large. This has two consequences. Firstly,
since X* = (X,, ), there is an s € N such that (n,,,) is a subsequence of (ry); so, by
(5.6),

Pr

Nm

=1 as m— oo. (5.8)

Secondly, for all m sufficiently large,

¢nm — ¢nm . Xnm

Here, let m — oo and use (5.8) with (5.7) to see that f;:i—m — 1. So, ¢ — 1, showing

that — is transitive.
Now let ¢ —~ X and X — . By the definition of —~, choose N; and N, such that:

for each n > N; if X,, = 0, then ¢, = 0; (5.9)
for each n > Ny if ¢, = 0, then X, = 0. (5.10)

Let n > max{Ny, No} and suppose ¢, = 0. Then, X,, = 0 from (5.10). Hence, ¢, =0
from (5.9). So, ¢ —~ 1, proving (ii).
(iii) The easiest way to see this is to use Lemma 5.1(iii): symmetry is immediate;

since — is reflexive by (i) and transitive by (ii), the same goes for <. O

Definition 5.2 Let ¢ be a sequence of non-negative real numbers. Then ¢ is realiz-
able in rate if there is an exactly realizable sequence f such that f =< ¢.

Phrases such as ‘f realizes ¢ in rate’, ‘¢ is realized in rate by f’ and ‘fR¢’ will
mean that f € &R and f < ¢. Denote by RR the set of sequences which are

realizable in rate. Thus,

RR = {¢: ¢ is a sequence in R* and fR¢ for some f € ER}.
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By Lemma 5.3, the relation < is reflexive on sequences in R*. So, by Definition 5.2,
fRSf for each f € ER. Thus, ER C RR. Easy examples show that RR contains
elements which £R does not, and that there are sequences in R*™ which are not
elements of RR. In Section 5.4 some tests are given for membership of RR. By
Definition 5.2, RR contains non-integer sequences as well as integer sequences. A
basic question is: Are the non-integer sequences in R’R any more interesting than
the integer sequences? The answer is ‘No’, and is easily arrived at by the next lemma

and the corollary to it.

Notation 5.2 For each x € R write x for the nearest integer to z. In other words x

is the unique integer such that x — 1/2 < & <z + 1/2. Thus,

1 1
T < — for each z > 0. (5.11)
T 2z

Let ¢ be a sequence in R*. Write qﬁ for the sequence whose n-th term, (iﬁn, is the

nearest integer to ¢,. Since & = 0 when z = 0, we have ¢ ~ .

Lemma 5.4 Let f and ¢ be sequences in ZT and R™, respectively.

(i) Suppose ¢ is not eventually 0 and ¢+ = (¢y,,). If [ — ¢, then each convergent

subsequence of (¢,,) has its limit in N.
(ii) If f — &, then ¢ — ¢.
(iii) f =< ¢ if and only if (a) ¢ — & and (b) f =< ¢.
(iv) With ¢ as in (i), let ¢y, — 00 as m — co. Then, f < ¢ if and only if f < .

Proof. (i) Let f — ¢. So, by Definition 5.2(i),

Jrm
Prirn
Suppose (#y,, ) is a subsequence of (¢y,,) and that ¢,, — L asr — oco. Writing
Jrm, = (fnm, /P, )P, and, using (5.12), f,,. — 1.L = L as r — oc. Since f is a
sequence in Z*, we know L € Z*. Also, by (5.12), f,,, = 0 for at most finitely many
m. Hence, f,,, € N for all r sufficiently large. Thus, L # 0. So, L € N, proving (i).

—1 as m — oo. (5.12)
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(ii) Let f — ¢ and ¢ = (¢, ). Seeking a contradiction, suppose that ¢ v ¢. By
the definition of -—, it follows that 2:—’" — 1| 4 0 as m — oo. Choose ¢ > 0 and a
subsequence (¢n,, ) of (¢n,,) such that

\
S,

—1
G

>e foreach [>1. (5.13)

Thus, by (5.11), ¢n,, < 1/2¢ for each | > 1. By the Bolzano-weierstrass Theorem,

the bounded sequence (¢y,, ) has a convergent subsequence (¢"mzk) whose limit, by

(i), must be a natural number N, say. In that case, q}ﬁnml = N for all k£ sufficiently
k

drm

large. Hence — 1 as k — oo. This contradicts (5.13) and proves (ii).

By

(iii) First recalkl the simple fact that ¢ —~ ¢ for each ¢. So, by the definition of =,
we have ng — ¢ if and only if gb = ¢.

For the ‘only if’ part, let f < ¢. So, f — ¢ by the definition of <. Thus, (a)
follows from (ii). Hence, ¢ =< ¢ and, since < is symmetric, ¢ < ¢. Since both f < ¢
and ¢ =< ¢ now hold, the transitivity of < gives (b).

For the converse, let (a) and (b) hold. So, f < ¢ and ¢ =< ¢. Transitivity of =
implies f < ¢, proving (iii).

(iv) We are given ¢, — 0o as m — 0o. So, by (5.11),

O ‘
= -1 < —0 as m — oc.
P = 20n,,
Thus, ¢ — ¢. So, we can delete (a) in (iii) to obtain (iv). O

So, by (iv) of this lemma, there are ¢ for which (iii) can be written more simply.
Concerning (iii), let us quickly look at other cases of ¢. For ¢ not eventually 0, three

cases remain:
(I) ¢n,, < 1/2 for infinitely many m;
(IT) ¢,,, > 1/2 for all m sufficiently large, and (¢,,,) is bounded above;
(III) ¢y,,, > 1/2 for all m sufficiently large, and (¢y,,) is neither bounded nor tends

to infinity.
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Case (I) is dull since ¢ & ¢ and f £ ¢ for each f. So, (iii) holds trivially.
énm - ¢nm‘ S
sufficiently large. Thus, in (iii), we can write ‘q\%m — ¢n, — 0 as m — oo for

(a).

Finally, for (IIT), it is difficult to see how (a) can be replaced by a simpler condition.

For (II), let v be an upper bound. So, i

ﬁ:—m—l‘ for all m

Corollary 5.1 Let f € ER and ¢ be a sequence in RT. Then fR¢ if and only if
f”R(ES and ¢ — .

Proof. We have the proof as soon as we reread Lemma 5.4(iii) and Definition 5.2.
O

5.2 On being realized in rate uniquely

Given ¢ € RR, it is of interest to ask whether there is exactly one sequence realizing
¢ in rate. When this is true of ¢ we will say ‘¢ is realized in rate uniquely’. As
the next lemma shows, the question is easily answered for some sequences in RR.
However, the matter does not seem simple for unbounded sequences which do not

tend to infinity. For such sequences, we have examples to give but no detailed study.

Lemma 5.5 (i) Each bounded sequence ¢ in RR is realized in rate uniquely by

the exactly realizable sequence which equals c;ﬁ eventually.
(ii) If a sequence in RR tends to infinity, then it is not realized in rate uniquely.

(iii) RR contains sequences which are unbounded and not tending to infinity. Some

of these are not realized in rate uniquely and some are.

Proof. (i) Let ¢ be bounded and in RR. By Definition 5.2, choose f € ER with
f = ¢. Thus, f ~ ¢ and f — ¢ by Corollary 5.1.

Consider first the easier case of ¢ being eventually 0. Since f —~ q\ﬁ, the same holds
for f. Also, f has divisibilitty because f € ER. Hence, f = 0 by Lemma 2.10(i).
This proves (i) when ¢ is eventually 0.
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Suppose now that ¢ is not eventually 0 and let (¢)* = (y,,). Since ¢ is bounded,
SO is qb Let u be an upper bound for q5 Then, for each m > 1,
frim

1
U .

Fam = G| <

_1‘.

Here, let m — oo. The right hand side tends to 0 because f — ¢ Thus, fnm—gfﬁnm -0
asm — oo. But f and (;5 are integer sequences. Hence, f, = &nm for all m sufficiently
large. Combining this with f —~ g\b, it follows that f = qb eventually.

It remains to show that no other sequence realizes ¢ in rate. If g is such that gR ¢,
then ¢ = ¢ eventually by exactly the argument used for f. Hence, f = g eventually.
Also, each of f and ¢ has divisibility because each is in ER. By Lemma 2.10(ii),
f =g, proving (i).

(ii) Let ¢ € RR and suppose that ¢ tends to infinity. By Definition 5.2, choose
f € ER with f < ¢. Thus, f tends to infinity. On defining g by g, = f, + 1 for each
n > 1, it follows that ¢ < f. Since f < ¢ and < is transitive, we have g < ¢. Also,
g € ER by Corollary 2.2 and Lemma 2.10(ii). So, gR¢, by Definition 5.2. Hence, ¢
is not realized in rate uniquely.

(iii) Define f by f = (0,2,0,4,0,6,0,8,...). So, f € ER C RR by the Basic
Lemma. By (2.6), f, = 0 for odd n, and f, > f, > n for even n. Thus, f is a
sequence in R'R which is neither bounded nor tending to infinity. For an example of
such a sequence which is not in ER, define k by &, = 0 for odd n, and k,, = f,, + /n
for even n. Since ,’:272 — 1 as n — oo, and since f,, = k, = 0 for odd n, we have
f < k. By Definition 5.2, fREk. So, k € RR.

To see that f is not realized in rate uniquely, define h by he = 4 and h,, = fn for
n # 2. By (2.6), h, = f, = 0 for odd n. Thus, h ~ f. By (2.6) again, h, = f, + 2
for even n. So, for even n,

hn _ f"+2:1+3—>1 as n — oo.
In I I
Hence, h — f. Also, h € £R by the Basic Lemma. Therefore, hRf by Definition

5.2, showing that f is not realized in rate uniquely.

We now give an unbounded sequence, not tending to infinity, and realized in rate

uniquely. Define g{3 by <Z>n = n if n is an odd prime, and ngﬁn = 0 for all other n. By
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the Basic Lemma, ¢ € ER. So, ¢R¢. Using (2.6), the following table is obtained.

n|112|3[4|5]6|7[89]10|11 12|13 |14 |15 16
¢n|0|0|3[0[5]0][7]0]0] 0110 |13] 0] 0|0
G 0101305371035 (113 |13 7|80

Let YR¢. By Definition 5.2, ¢ € ER, v —~ ¢ and b — ¢. The following will be

proved:
(a) ok, = ¢, for all k > 0 and r > 1;
(b) for each fixed r > 1 we have 19, = ¢, for all k sufficiently large;
(c) U1 = ¢y and @Ep = ggp for each prime p;
(d) V. = ¢, for each composite c.

By (c) and (d), we will have ¢) = ¢ which, by (2.6), will prove that 1 = ¢.
(a) By (2.6), for each r > 1,

=Y du= Y ¢d+z¢d— 3 bat o (5.14)

d|2r d2rid fr d|2rid fr

If d|2r and d/r, then d is even. By definition, ¢4 = 0 for such d. So, the last sigma
sum in (5.14) is 0. Hence, @9, = ¢, for each r > 1, and a trivial induction leads to
(a).
(b) Let 7 > 1 be given. Suppose first that ¢, = 0. Thus, by (a), ¢9x, = 0 for each
k > 0. So, by ¥ —~ ¢, we have 1y, = 0 for all k sufficiently large. This proves (b)
when ¢, = 0. Now suppose that ¢, > 0. Using (a) and ¢ — ¢,
Yakr _ Yoy
Or Py
So, 9k, — ¢, as k — oco. Here, note that ¢ is a sequence in Z* and the same goes
for 1) since 1 € ER. Hence, (b) holds.
(c) By definition, ¢y = 0. Thus, by (b), 1+ = 0 for all k£ sufficiently large. Also,
by (2.6), Yor = Xo<i<k i for each k > 0. Therefore, by the positivity of 1,

—1 as k— oo.

i =0 for each > 0. (5.15)
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In particular, 0 = 1&1 = 1/32. So, 1&1 = qgl and 1ﬁ2 = quSQ. Suppose now that p is an odd
prime. By (b), choose k > 1 with

Gp =1ty = > Ya (by (26))

d|25p
= Z (77;2Z + @;Zip)
=0
_y Uy, (by (5.15)). (5.16)

I
o

i

Now, by the definition of ¢ and (2.6), ¢, = b1 + ép = p. So, by (5.16),
b= Tj}p + Z@Z}Zipa (517)
i=1

from which it is easily deduced that > , @;27:,, = 0: by the Basic Lemma, ﬁ >0
and 1/3211, =0 or 1&21-,, > 2'p for each ¢ > 1; in (5.17), since @Ep > 0, equality fails if
1&21-], > 2ip > p for some ¢ with 1 < i < &; so, 1&21-], = 0 for these ¢, with the result that
% thyip, = 0. Hence, p = ¢, by (5.17). Also, ¢, = p by definition. Thus, ¢, = v,
proving (c).

(d) For a quick contradiction, suppose (d) is false. Let ¢ be the least composite
number with 7,/36 #* (/30. Since QASC = 0 by definition, and ¢ > 0, we have zﬁc > 0. So,

djc = 120"' Z lﬁd (by (26))

d|c;d#c
e + > bu (by (c) and the definition of c)
d|c;d#e

Je+ 6. (using d, = 0 and (2.6))

> ¢, (since 9, > 0)
= Q'kac fOI‘ some k Z 1 (by (b))
> e (by (2.6)),

giving the falsehood that 9. > .. This proves (d). Thus, no sequence except ¢ can

realize ¢ in rate. O
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5.3 Algebra in RR

In this section we show how elements of RR may be combined.
Lemma 5.6 Let 0,19, ¢ and ¢ be sequences in R7.
(i) If 0 — 9 and ¢ — ¢, then 0¢p — V.

(ii) If 0 < 9 and ¢ < ¢, then ¢ < Jp.

(iii) RR is closed under multiplication.

(iv) 0 <9 if and only if 0 + ¢ — 9 + ¢ for each sequence ¢ in R™.

(v) If0 <9 and ¢ < @, then 0+ ¢ < 9 + .

(vi) RR is closed under addition.

Proof. (i) Suppose 6 — 9 and ¢ — . Let (d¢)" = (Un,,¢n,,)- Hence, 9,  is

positive for each m. Thus, (¥,, ) is a subsequence of 9. Since § — ¥, we have

Onpn

o — 1 as m — oo. By similar reasoning, the same goes for Zn—m. So,
nm nm

0 0
nm¢nm: ”m,¢nM_)1-1:1 as m — o0,
ﬁnmgpnm ﬁnm gOnm
showing that 6¢ — V.

(ii) Let 8 < 9 and ¢ < ¢. By Lemma 5.1(iii), the following hold:

0—19; 9—0; ¢~ p; @~ 0.

Pairing the first of these with the third, the second with the fourth, and using (i),
leads to 8¢ — J¢ and Y — 0¢. By Lemma 5.1(iii) again, the result follows.

(iii) Let 9, » € RR. By Definition 5.2, choose f,g € ER with f < 9 and g < ¢.
By (ii), fg < J¢. Also, fg € ER by Lemma 2.10(iii). Thus, by Definition 5.2, fg
realizes J¢ in rate. So, Yo € RR.

(iv) For the ‘only if’ part suppose # < ¢ and ¢ is a sequence in R*. By Definition
5.1(iii), # — ¥ and 6 ~ 9. Let (9 + ¢)* = (I, + ¢n,,) and write

enm +¢nm . 1‘ _ Hnm _'lgnm

= o D + B,

for each m > 1. (5.18)
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By Definition 5.1(i), we need show 1, — 0 as m — oco. Consider large m. First, let
m run through the zeros of (9,,,). Then, 6, = 0 because § —~ 9. Also, ¢,,, >0
because ¥, + ¢, > 0. Hence, by (5.18), ¢, = 0 for these m. Now let m run
through the positive values of (¥,,). By (5.18), for each m > 1,

0, — 9

Un,

9

nm_l

In,.

im

Ym <

I

m

which tends to 0 as m — oo because 6 — . Thus, ¥, — 0 as m — oo, proving the
‘only if’ part.

For the converse, let 6 + ¢ — ¥ + ¢ for each sequence ¢ in R*. With ¢ = 0 we
have 6 — ¢. Therefore, by the definition of <, we need just show that § —~ 1. This
is trivial for 9 eventually positive. Otherwise, let (9,,) be the subsequence of (¥,,)
consisting of the zero terms of (1J,). Suppose for a contradiction that § /A 9. Choose
a subsequence (0, ) of (6y,) such that 6, > 0 for each r > 1. Choose any sequence
¢ in R* with ¢,, =0, for each r > 1. Write

gnkr + ¢’Ilkr
’lg’nk,r + ¢’Ilkr

r.=

—1‘ for each r > 1.

Note that (J,, + ¢y, ) is a subsequence of (¥ + ¢)* because
Uy, + Oy, = Py, = Ony,, >0 for each r > 1.

Therefore, since 0 + ¢ — 9 + ¢, we require Xr — 0 as r — co. However, by the choice
¢nkr +¢nkr
0-t6n,,

6 ~ 19 and establishes (iv).

(v) Let 8 < 9 and ¢ < ¢. So, ¥ < 6 and ¢ < ¢ because < is symmetric. Using

of ¢, we have Xr = ‘ — 1‘ = 1 for each » > 1 . This contradiction proves

(iv), on each of these relationshps in turn, results in:
0+ —V+¢; V+¢—10+ g Y+ —0+¢; 0+¢—0+0¢.

Since — is transitive, the first and second of these imply 6 + ¢ — ¥ + ¢. Similarly,

the third and fourth imply 9 + ¢ — 6 4+ ¢. By Lemma 5.1(iii), the result follows.
(vi) Let f, g, and ¢ be as in (iii). By (v), f + g <9 + ¢. By Lemma (2.10)(ii),

f+g€ER. Thus, f+ g realizes ¥ + ¢ in rate. So, 9 + ¢ € RR. a
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Two simple facts involving —~, and similar to (i) of the above lemma, are: (a) If
6 ~ 9 and ¢ ~ @, then ¢ ~ Jp; (b) If @ ~ 9 and ¢ —~ ¢, then 6+ ¢ —~ I+ . Tt is
easy to see that (ii) of the lemma follows from (i) and (a), and (v) follows from (iv)
and (b).

Simple examples show that RR is neither closed under division nor under sub-
traction. Two not so simple ones are as follows: respectively, let 6, ¢, X and ¥ be
the sequences (2"), (n + 2"), (n?) and (n?); # € RR because § € ER by Lemma 2.9;
¢ € RR because R ¢; Corollary 5.2(ii) will show that X, € RR; however, Corollary
5.2(i) will show that ¢ — 0 = /X = (n) € RR.

5.4 Criteria for RR

The next lemma shows that each sequence in RR has many subsequences which are

also in RR. This unsurprising lemma will help in the proof of Theorem 5.1(ii).

Lemma 5.7 For each K € N and each sequence ¢ in R* write ¢!%1 for the sequence
(b, Poxc, B3k, Pukcs - - -). Suppose € RR and f realizes ¢ in rate. Then fI¥] realizes
S5 in rate for each K > 1.

Proof. Suppose fR¢ and K € N. By Definition 5.2, f € &R and f < ¢. By
(2.16), fIKl € ER. Also, fIKl < ¢lX] by Lemma 5.2. Hence, fIKIR#X! by Definition
9.2. O

Theorem 5.1 Let ¢ be a sequence in RT, not eventually 0 with ¢t = (¢y,,)-

(i) If for each natural number N there are d,n > N such that d|n,¢q > 0 and

¢, = 0, then ¢ is not realizable in rate.

(ii) Let ¢ > 0 and suppose that ¢, = cn,, for each m > 1. Then ¢ is not realizable

m rate.

(iii) If ¢ is unbounded and there is an | > 1 such that (;’n—m > [ for all m sufficiently

large, then ¢ is not realizable in rate.
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(iv) For each n > 1 write o, for the sum of the divisors of n. Define a sequence f

byfn:n(%jforeachnzl. If(a)qASEOand(b)g:—:%O as m — 0o, then

(c) f realizes ¢ in rate.

(v) For eachn € N, let

q§ ) - Zdln;éd<0 qASd if qASd < 0 for some d diwviding n,
v 0 otherwise.

Define a sequence f by

; { n(%) ifén>0,

0 otherwise.

Suppose ¢ is eventually positive. If ¢, = O(o,) and o, = o(¢n), then f realizes

¢ in rate.

Proof. (i) The contrapositive will be proved. Let ¢ € RR. It will be shown that
there is an N € N such that for all d,n > N we have ¢4 = 0 if d|n and ¢, = 0. The

argument is forced by the elementary fact that
fEER, f=0"forsomen e N = f;=0 for each d dividing n, (5.19)

which is easy to see: let f € ER, f, = 0 for some n and d|n; so, >4, fs=0by (2.6);
by (2.9), f5 = 0 for each § dividing n; hence, 261d fs = 0 since each divisor of d is a
divisor of n; and since fy = 344 f5 by (2.6), we have proved (5.19).

Turning to ¢ € RR, choose f € ER with f < ¢. Choose N such that,

for each n > N, we have f, and ¢, both 0 or both positive. (5.20)

Suppose now that d,n > N with d|n and ¢, = 0. Thus, f, = 0 by (5.20). Hence,

fa =10 by (5.19) and, since d > N, we see from (5.20) that ¢4 = 0. This proves (i).
(ii) Suppose ¢ > 0 and that ¢, = cn,, for each m > 1. For a contradiction,

assume ¢ € RR. By Definition 5.2, choose an f € £R such that f — ¢ and f —~ ¢.

There are two cases: (I) ¢ = (¢n) eventually; (II) ¢ has infinitely many zero terms.
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Consider case (I) first. It will be seen that the conditions f — ¢ and (2.10) are

the source of a contradiction. Using (2.5), for each prime p and r > 1,

Q I

P plp
Since f — ¢, we know J;% — 1 as n — o0. So, fixing p and letting r — oo, we have
’;’: — ¢ — ¢/p. Now, by (2.10),
for ¢ — ¢/p, and on allowing p to go to infinity, we see that ¢ is an integer which is

J;ff is an integer for each r > 1. Thus, the same goes

divisible by each p. So, ¢ = 0, contradicting the premise that ¢ > 0. Whence, for case
(I), ¢ is not realizable in rate.
For (II), let K € N and note first that

X 1= (¢, bk, b3k, Pk, --.) (as in Lemma 5.7)
= c¢K(Oorl,0o0r2 0Oor3, 0or4,...). (5.21)

This sequence cannot equal (cKn) eventually, for the following reasons: by our as-
sumption, f realizes ¢ in rate; therefore, by Lemma 5.7, fI&! realizes ¢¥! in rate; on
noting that cK is positive and using the verdict on (I), we cannot have ¢l&] = (cKn)
eventually.

Thus, by (5.21), ¢/X has infinitely many zero terms. But, fIK] ~ ¢lKl since fIK
realizes ¢! in rate. So, fX! has has infinitely many zero terms. Therefore, using
(2.6) and (2.9) on the exactly realizable sequence fIX] we see that fl[K](: fx) =0.
This holds for each K. So, f = 0. Since f — ¢ by assumption, it follows that ¢ is
eventually 0. However, by hypothesis, ¢ is not eventually 0. This contradiction shows
that ¢ is not realizable in rate in case (II), and establishes (ii).

(iii) With ¢ and [ as given, suppose for a contradiction that ¢ € RR. By Definition
5.2, choose f € ER with f— ¢ and f —~ ¢. Since, by (2.6) and (2.9),

Jom _ Jom T o Frm T
P Mm Pnn  Mm Pnn

for each m > 1, (5.22)

it will suffice to show, as we shall below, that {f—s > 1 for infinitely many m: it will
then follow, by (5.22), that L’:—m > 1.1 =1 > 1 for infinitely many m; hence, it will
be false that 22 — 1 as m — oo, contradicting f — ¢ and proving (iii).

nm

94



Since f — ¢ and ¢ is unbounded, the same holds for f. Hence, f has infinitely
many positive terms by (2.6) and (2.9). Again by (2.6) and (2.9), f ~ f. Also, since
f — ¢ and —~ is transitive, it follows that f ~ ¢. Thus, off the n,,’s we can have f
positive only finitely many times. Whence, fnm is positive for infinitely many m, and
for these m we see from (2.10) that JZL—;" > 1.

(iv) Let f and o be as given and suppose that (a) and (b) hold. In order, let us
verify that f € ER, f —~ ¢ and f ~ ¢. The result will then follow by Definition 5.2.
For each n > 1, we have f;" = (%"), which is a non-negative integer by (a). Hence,
by the Basic Lemma, f € £R.

Let ¢, = 0 for some n > 1. By (2.6), ¢ = Xy $4 = 0. Therefore, by (a) and
the definition of f, we have ¢4 = 0 = f,; for each d dividing n. Using (2.6) again,
fu=Zan fa=0. Thus, f ~ ¢.

For each n > 1,

o=l = [D_d (%) — ¢4 (by (2.6) and the definition of f)

dln

di\ éd 1 On
< Yal[P) -2 <y - =T,
< 2d(%)-%]=x05-3

! "”(;;"’“m ‘ < 2annm , which, by (b), tends to 0 as m tends to infinity. So, f — ¢,

Hence,

proving (iv).

(v) Let ¢ and f be as given. Suppose that ¢ is eventually positive, ¢, = O(o,)
and o, = 0o(¢,). Define ¢ by

- (;Aﬁn if (;Aﬁn is non-negative,

¥n = { 0 if qAﬁn is negative.
It will first be shown that 1) < ¢ and then, using (iv), that ¢ is realized in rate by
f. Since < is transitive, the result will then follow. By (2.6) and the definitions of 1
and ¢,

wn=2¢d=2qﬁd+¢5n=¢n+q’sﬂ for each n > 1.

dln dln
Therefore, since ¢ is eventually positive,

Yh | _dn_tu o

- — for all n sufficiently large.
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Here, since ¢, = O(0,) and o, = o(¢y), it follows that i—: — 1 tends to zero as n
tends to infinity. Thus, ¢/ < ¢ as claimed.

By the definition of ¢, we have ¢ > 0 and ¥ > ¢. Hence, (iv)(a) holds for .
Also, by (2.6), ¥ > ¢. So, ¢ must be eventually positive because it is given that ¢ is.
Thus, o, = o(4,,) because o, = o(¢,). Hence, (iv)(b) holds for . It is easy to check
that f, =n (32—") for each n > 1. So, by (iv), f realizes v in rate. O

We are now quite well placed to discuss whether some familiar sequences are in

RR.

Corollary 5.2 Let ¢ and s be positive real numbers.
(i) (en®) € RR for 0 < s <1; (en®) € RR for s > 1.
(i) (cs™) € RR for s > 1.

Before the proof, we should mention that it is because of dullness and not difficulty

that some values of s are not referred to in this lemma. Two elementary facts are:

given ¢ > 0, then (¢) € RR if and only if ¢ € Z™; (5.23)
if € RR and ¢, — 0, then ¢ is eventually 0. (5.24)

In (5.23), the ‘if’ part holds because ER contains all constant sequences in Z*, and
ER C RR. For the ‘only if’ part, Corollary 5.1 requires (¢) — (c¢). This holds only
if ¢ = c. Hence, c€ Z™.

For (5.24), let ¢ € RR and ¢, — 0. So, ¢ is eventually 0, and Corollary 5.1
requires ¢ — ¢. By, (5.3), ¢ is eventually 0.

Thus, by (5.23), the case s = 0 is dull for (i) of this lemma; the same goes for (ii)
with s = 0 or 1. By (5.24), we know what happens when s < 0 in (i); the same goes
for (ii) with 0 < s < 1.

Proof. For (i), let ¢ = (en®). So, (n,,) = (m) in the notation of Theorem 5.1.
With s = 1, ¢ is a special case of Theorem 5.1(ii). For 0 < s < 1, Theorem 5.1(iii)
can be used because ¢ is unbounded and _'5 — oo as n — oo. This proves the first

part of (i).
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Let s > 1. It will be shown that (a) and (b) of Theorem 5.1(iv) hold. (The
argument given here for (a), also works for s > 0.) Since ¢ is multiplicative, the same
goes for q§ by (2.1). Thus, on checking that (;31 = ¢ > 0, it will suffice to show that

~

¢pr > 0 for each prime p and 7 > 1. Now

A

¢pr = ¢p’r - ¢pr71 (by (2.5))
= ¢p —cplrV = Cp(r_l)s(ps —1)>0 (since ¢> 0 and s > 0).

So, ¢ > 0, showing that (a) holds. For reference we record the fact just proved:

—_—

(n®) >0 for each s > 0. (5.25)

To see that (b) of Theorem 5.1(iv) holds, write

On On 1

s plte-0/2  ops—1/2 (5.26)
By HARDY and WRIGHT [6, Theorem 322],
o, =0 <n1+‘5) for every positive 6. (5.27)

Writing § for (s — 1)/2 and recalling that s > 1, we see from (5.26) and (5.27) that
Zn— 0. Hence, by Theorem 5.1(iv), ¢ is in RR.
(ii) Let s > 1. Then, Z= < ;—i — 0 as n — oo. Also, (597‘) = 0(277) > 0 by

Corollary 2.8. Hence, by Theorem 5.1(iv), (¢s™) is in RR. O

Corollary 5.3 Let r € N,c> 0 and s > 1. Then (cn®[logn]") is realizable in rate.

Note that one cannot expect a proof through some simple use of Lemma 5.6(iii):

for each r the sequence ([logn]”) is unbounded and g,

W%OO&STL%OO;SO,

([log n]™) is not realizable in rate by Theorem 5.1(iii). The proof of this corollary uses
a basic fact about the Mangoldt function A, which is defined on the natural numbers
by

logp if n = p™ for some prime p and some m > 1,
A(n) =

0 otherwise.
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So, A > 0. Basic reasoning shows (see APOSTOL [1, Theorem 2.10], for example) that

logn =Y A(d) foreach n> 1. (5.28)
d|n

Proof. Theorem 5.1(iv) will be used. Let ¢ = (cn’[logn]”) and ¥ = (logn). By

(5.25), (cn) = ¢(n®) > 0. By (5.28) and the Mébius inversion formula of Theorem

2.1, 1& = A > 0. We may view ¢ as a product of  + 1 sequences, r of which are

(logn). Then, using Corollary 2.7(i), a simple induction shows that ¢ > 0. Thus, (a)

of Theorem 5.1(iv) holds.

For (b) of Theorem 5.1(iv),

On . On nloglogn
cnéllogn]”  nloglogn cnéllogn]r

for each n > 2.

Here, the end fraction tends to 0 as n — oco. Hence, the desired result will follow
if we can be sure that the middle fraction is bounded. This is indeed the case: by
HARDY and WRIGHT [6, Theorem 323|, a more precise fact is that
lim sup S —— e’,
n—soo nloglogn

where 7y is Euler’s constant. Thus, by Theorem 5.1(iv), (¢n®[logn]") is in RR. O

Remark 5.1 In Lemma 5.3, consider the general case when r and s are allowed to
be real numbers. Since the sequence (cn®) has been fully discussed, let us assume that
r is not 0. For ¢ to continue to be well defined, suppose that for each r < 0 we have

chosen an r; € R" and defined [log1]" to be ;. The following are easily deduced:

(I) if s > 1, then for each r we have o — 0 asn — oo

(IT) if s =1, then for each r > 0 we have = — 0 as n — oo;

(III) for all other values of 7 and s, the sequence ¢ fails to be realizable in rate by
Theorem 5.1(iii) or by (5.24).

Thus, for the values of r and s referred to in (I) and (II), it is of interest to know
whether ¢, = O(0y). If so, then Theorem 5.1(iv) will be of use. By the argument in
Lemma 5.3, the stronger fact is that ngS > 0 when r € N and s > 1. For other r and

s, the interest remains.
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Example 5.1 So far, part (v) of Theorem 5.1 has not been used. Whenever it could
have been used, we have had ¢ > 0 and part (iv) of the theorem has done the job.
It would be nice to illustrate Theorem 5.1(v) with an example of a familiar sequence
¢ for which qgn is negative for infinitely many n. This seems difficult. However, as
will now be shown, pertinent examples are easily contrived using familiar sequences.
Let 1 be any sequence which is eventually positive, with ¢ > 0 and o, = o(¢),). As
Corollary 5.3 shows, an example of such a v is (nlogn). Using 1, a sequence ¢ will
now be constructed, which obeys the conditions of Theorem 5.1(v) and for which ¢,

is negative for infinitely many n. Define ¢ by

-n for n € {2%2,2%,26 ..},
Gn =1 U+, +2n forne {28,2%,25 ..}, (5.29)
1/3n otherwise.

After some basic work, it is found that
T A
> o =
i=1

Using (2.6), let us show that ¢ > 1. Write n for the order of 2 in n, and T for the set
{2,22,23 ..}. If nis odd, then ¢, = 1, because ¢, = 1, for such n. If 7 > 1, then

%ZZ@ = Y </A5d+Z$2i
izl

d|n dln;dgT

D1 Yo if r is even,

. . 5.30
Yor+1 + ortl 4 E£:1 Poi  if 7 is odd. ( )

> 3 1/§d+§:1/§2i (by (5.29) and (5.30))

dn;dg T

= Un.

So, ¢ > 1. Thus, ¢ is eventually positive since v is, and o,, = o(¢,,) since o, = o(¢,).
The next task is to show that ¢, = O(0,). By (5.29),

0 for 1 € {0, 1},
=13 22424...42"  foriie{2,4,6,...}
+22 424+ ... 420t forne {3,5,7,...}.

But 1 +2+422+--- 42" < g,. Thus, ¢, < 0,. Whence, by Theorem 5.1(v), ¢ is

realizable in rate.
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5.5 Remarks

This miscellany of comments is mainly about Theorem 5.1. Here, (i), (ii), (iii), (iv)

and (v) refer to the various parts of that theorem.

(1)

With the reasoning of Example 5.1 still fresh in our minds, we can quickly
answer the following about (v): Given that ¢ is eventually positive, does not

the O condition follow from the o condition? With v as in that example, define

a new ¢ by
—n? for n € {2224 26 ..},
b =1 D+ o +4n?  forn € {21,235},
7,/Ain otherwise.

Working much as in Example 5.1, it is found that ¢ is eventually positive and

¢22n

that o, = 0(¢,). However, it is an easy task to see that ;2
2 n

— 00 as n — OQ.

The variety of examples is now sufficient for us to note that, for a sequence ¢,

there is no simple connection between ¢ being in R'R and qg being non-negative:
for ¢ defined in (5.29), it has been shown in Example 5.1 that ¢ € RR and
that (in is negative for infinitely many n;

€ RR and ¢ > 0 for each ¢ € ER; by the proofs to Corollaries 5.2 and 5.3,

there are similar sequences which are not in ER;

(n) € RR by (ii), and (n) > 0 by (5.25);

(ii) gives easy examples of sequences ¢ for which ¢ € RR and qg 2 0.

Simple examples show that each ‘if, then’ statement in the theorem fails to have
a converse.

For (i): define ¢ by ¢, = 0 if n is a prime or 1, and ¢, = n otherwise. By (ii),
¢ € RR. However, the ‘if’ part fails in (i).

For (iii): define ¢ by ¢, = 1 if n is a prime, and ¢, = 0 otherwise. For each
N € N there is a prime p > N with ¢, > 0 and ¢,2 = 0. So, by (i), ¢ € RR.

But, the ‘if’ part in (iii) fails since ¢ is bounded. A second example is the
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sequence (2n) which, by (ii), is not in RR. For (2n), the condition involving [

fails.

For (iv): there are sequences in ER for which (c) and (a) hold without (b).
For each ¢ € ER, both (c) and (a) hold: (a) holds by (2.9); by (2.10), fu:=
n(%) = n(
realizable sequence realizes itself in rate, we have (c). However, the limit in (b)
is infinite for each bounded ¢ in ER. Less dull is o itself: 6 = (n); so that

o € ER by the Basic Lemma; but the limit in (b) is 1. Also, there are ¢ in ER

‘2’") = qAﬁn for each n > 1; hence, f = ¢; and since each exactly

n

;Z—’") is oscillating: for example, define qgn to be n when

n is not a prime, and 0 when n is a prime; thus, ¢ € ER by the Basic Lemma;

for which the sequence (

using (2.6), for each prime p,

1 1 2
o _1+p g4 o _1Ep+p
¢p 1 ¢p2 1+ p2
which, respectively, tend to infinity and 1 as p tends to infinity, showing that (b)
does not hold. Incidentally, this example shows that sequences in RR cannot

simply be thought of as fast or slow compared to o.

For (v): for the sequence ¢ just mentioned, (/31 > 0. So, ¢ is eventually positive.
The O condition holds for ¢ but, as just explained, the o condition does not.
The sequence o fails the converse for the same reasons, as will each sequence in

ER which is bounded and eventually positive.

The converses to (iv) and (v) may fail in other ways but these have not been

been studied.

By the comments to (iv) and (v) in part (3) of this remark, there are sequences
in RR but the theorem cannot tell us that they are. The theorem is similarly
inadequate for sequences not in RR. Consider, for example, the Euler totient e.
For e, it is easy to see that (i) and (ii) are of no use. Although e is unbounded,
note that for each prime p we have % = ﬁ which tends to 1 as p tends to
infinity. Thus, (iii) is of no use.
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To see that e € RR, let f € ER. Then, for each r > 1,
Jor  fer for 9

ey  2r—2r-1  or

Here, 1;2: is a non-negative integer by the Basic Lemma. Hence, % cannot tend

to 1 as r tends to infinity. So, f v e. Since this holds for each f € ER, we see,
by Definition 5.2, that e ¢ RR.

In (iii), the condition ‘/ > 1’ cannot be weakened. There is an unbounded ¢

with (;;m > 1 for all m sufficiently large, but with ¢ realizable in rate. To see

this, define f and ¢ as follows:

fn = n when n is a prime, and 0 otherwise; (5.31)

¢n = fn — 1 when n is a prime, and ¢,, = f, otherwise. (5.32)

By the Basic Lemma, f is exactly realizable. From now let n > 1. By (2.6) and
(5.31),
fn = the sum of the distinct primes dividing n. (5.33)

So, f is unbounded and, by (5.32), the same goes for ¢. Now consider the
5.3

)
fraction j-. Using (5.32) and (5.33),
n_.n_ _n

on  fo—1 n—1

For composite n, suppose k£ > 1 and that p; < ps < --- < pp are the distinct

for prime n,

> 1. (5.34)

primes dividing n. Then,

n n

— = — (by (5.32
5 T (by (5.32))
Hf:lpi k k
> Zk b (n > Hi:1pi and, by (5-33)7 fn= D ic1 pz’)
i=1Pi
P '
> lkpk (%, p; > p¥ 'py and 5, p; < kpy)
k—1 k—1
= 57 5y
kK — k —
So, 4~ > 1 for composite n, which, with (5.34), shows that 5o > 1 for each
n > 2.
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It is left to note that ¢ € RR. In fact, by (5.32) and (5.33), it is clear that
fRo: (’;—Z = 1 for composite n; for prime n we have (’;—Z = -7 which tends to 1
as n tends to infinity; thus, f < ¢; since f € ER we are done by Definition 5.2.
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Chapter 6
Open problems

Several natural open problems are suggested by the work above.

6.1 Exact realization constraints

Can £R be completely described by the homeomorphisms of a single compact metric
space? In other words, in the language of Chapter 2: Does a compact metric space
(X, p) exist such that f € ER only if there is a homeomorphism 7" of (X, p) for which
(X,T) exactly realizes f? The natural candidate for X is a Cantor set: it is clear
that too many restrictions on the space X may impose further constraints on &R
that are outside the scope of this work (in the spirit of, for example, SHARKOVSKII
[12] and HALL [5]).

6.2 General recurrences and Exact realization

Is there a proof of Theorem 3.1 which is less exclusively quadratic in nature? Even for
linear recurrences with integer coefficients, it is impossible to see how the conditions
in that theorem can be generalised. For such recurrences, Remark 3.2 offers more
hope. By that remark, if f satisfies (3.1), then necessary and sufficient conditions for
f to be in ER are: f, f1 > 0,4\f4 and p|fp, f2p for each prime p. These conditions

allow some sensible although naive conjectures for higher order linear recurrences
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with integer coefficients. For general recurrences, the problem apppears intractable.

6.3 Other sequences in Z*

There are many other natural classes of sequences in Z*. For example, if u is an
elliptic divisibility sequence in the sense of Morgan Ward [13], it would be interesting

to discover when |u| can lie in ER.

6.4 Realization in rate of slow sequences

One mystery of RR, of course, is its lower edge. An open problem is this: Is
(nloglogn) in RR? More generally, if ¢ € RR with £2 — oo, then is (nlog(£2)) €
RR?
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