Arithmetic Dynamical Systems

A thesis
submitted to the School of Mathematics
of the University of East Anglia
in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy

Richard Craig Miles
March 3, 2000

(© This copy of the thesis has been supplied on condition that anyone who consults
it 1s understood to recognise that its copyright rests with the author and that no
quotation from the thesis, nor any information derived therefrom, may be published

without the author’s prior consent.



Abstract

The main objects of study in this thesis are Z% actions by automorphisms of com-
pact abelian groups, which arise in a natural arithmetic setting. In particular, to
a countable integral domain D and units ¢;,...,¢; € D we associate a Z%-action
by automorphisms of the compact abelian group D. This generalises the ‘S—integer
dynamical systems’ introduced by Chothi, Everest and Ward, where d = 1 and D is a
ring of S—integers in an A—field. Familiar dynamical properties such as expansiveness
and entropy are investigated in this setting, together with the emerging theory of
expansive subdynamics introduced by Boyle and Lind. Homoclinic points are also

examined. The main results are as follows.

1. Using results of Lind, Schmidt and Ward, an explicit entropy formula is given

which applies whenever D is an integrally closed domain (Theorems 3.3.4 and 3.3.8).

2. The well-known expansiveness criteria for toral automorphisms, involving the
eigenvalues of associated integer matrices has been generalized by Schmidt, using
complex affine varieties. This result is extended further using closed points of associ-

ated integral schemes, giving a valuation theoretic characterization of expansiveness

(Theorem 4.2.4).

3. The results of recent joint work with Einsiedler, Lind and Ward concerning expan-
sive subdynamics is considered using methods from algebraic geometry. This includes

a novel classification of expansive subdynamics using valuations (Theorems 4.3.4 and

4.3.10).

4. Homoclinic points are investigated for both expansive and non-expansive systems.
Using the work of Lind and Schmidt, the effect of certain algebraic properties, like
integrality, i1s examined. There is a complete classification of homoclinic groups for

S—-integer dynamical systems (Theorem 5.2.1).

Generally speaking, proofs are only included for results which the author considers
original. Wherever collaboration has been involved this is indicated clearly in the text.
Some algebraic results which are needed are well known, but not readily available in

the literature: for these proofs have been included.
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Chapter 1

Introduction

1.1 Overview

Algebraic Z% actions, that is actions of Z? by continuous automorphisms of compact
metrizable abelian groups, have revealed themselves to be intimately linked with com-
mutative algebra. Indeed, to every such action, we may associate a countable module
M over Ry = Z[uf', ... ,uéﬁl] — the ring of Laurent polynomials in d commuting vari-
ables. Using this association, dynamical properties can then be interpreted in terms
of the algebraic properties of M. This framework for the study of such actions was
introduced by Kitchens and Schmidt [13] and is developed in [17], [18], [28], [29], [31],
and Schmidt’s monograph [30], which provides an overview of the resulting theory.

The aim of this thesis is to investigate a subclass of such dynamical systems,
namely arithmetic dynamical systems. An arithmetic dynamical system may be de-
fined simply by stipulating that M, the module above, is an Rj—algebra with no zero
divisors (that is, M is an integral domain). An equivalent, more natural definition will
be given in the next section. Although the approach taken will be mainly algebraic
in nature, the underlying theme is entirely dynamical.

The algebraic manifestation of dynamical behaviour has at its core the duality
theory of locally compact abelian groups, and an introduction to this may be found
in [25]. For a more sophisticated treatment, using Fourier analysis, consult [27]. The

most relevant results of this theory are summarized in the next section. Amongst



xLonZ[]] | x3onZ[}] | x:on Q
Mixing ? Yes Yes Yes
Entropy log 2 log 2 log 2
Expansive 7 Yes No No
Growth rate of log 2 log 2 0
Periodic points
Non-trivial Yes No No
homoclinic points ?

Table 1: Three basic arithmetic dynamical systems.

these is the duality between discrete countable abelian groups and compact metrizable
abelian groups, and this is the foundation for understanding dynamical properties in
terms of their algebraic counterparts. In fact it is this duality which determines the
correspondence between algebraic Z% actions and countable Ry modules. A more
natural definition of an arithmetic dynamical system also arises from this dual point
of view, and one of the aims of this thesis is to relate dynamical properties directly
to the algebraic data which defines the system.

Although arithmetic dynamical systems arise as a natural subclass of algebraic
ones, the motivation for their study lies in [4]. Examples such as those given in
Table 1 exibit a suprising range of dynamical behaviour. Together, they illustrate
another agenda of this work which, roughly speaking, is to ‘fix’ an action, ‘perturb’
the space and compare the resulting dynamical systems. The dynamical information
in Table 1 of course refers to the actions and groups dual to those given. The results
come mainly from [4], with the exception of the homoclinic point information which
follows from Theorem 5.2.1 of Chapter 5. To make similar comparisons for more
complex examples requires a good deal of the machinery contained in [30], and some
commutative algebra. However, for arithmetic dynamical systems whose underlying
ring is a Krull ring (see Section 1.6) in an A—field (in the sense of Weil [39]), there is a
convenient description of the dual group and the action (see Section 1.6 and Example
1.8.1). This makes more direct study of the dynamics possible. Unfortunately this

description does not extend to other integral domains, or even Krull rings, and this



makes certain results which we would like to generalize from [4] intractable. For
example, topological questions about the distribution and growth rate of periodic
points for arithmetic dynamical systems seem no easier to answer than in the more
general algebraic case. On the other hand, algebraic interpretations of measurable
properties, like ergodicity and mixing, are assembled relatively easily.

After some preliminaries, which make up the remainder of this chapter, ergodicity
and mixing are discussed, in Chapter 2. In Chapter 3 attention is turned to entropy,
and practical methods are given for its calculation through both general techniques
and examples. Chapter 4 explores expansiveness and the extent to which some of
the results from [4] extend to arbitrary arithmetic dynamical systems. Also consid-
ered here are some implications of recent joint work with Einsiedler, Lind and Ward
[6] concerning expansive subdynamics. We conclude with a chapter on homoclinic

behaviour including some further applications of [6].

1.2 Measure theory

A detailed introduction to measure theory may be found in [12]. Let X be any set.
A o-algebra is a collection B of subsets of X which satisfies the following.

1. X € B.
2. Be B= X\ BeB.
3. If B; € Bfor all j € N then U;;B]-EB.

A measure is a map p : B — Ry such that p(@) = 0 and u(U;Z, B;) = 2.2, pu(B;)
whenever By, By, Bs,... is a sequence of pairwise disjoint subsets of X which are
members of B. If y(X) = 1 then the measure p is called a probability measure and
the triple (X, B, ) is called a probability space.

If X is a topological space then the o—algebra generated by the open sets is called
the Borel o—algebra, usually denoted by B(X). If X is a compact metrizable abelian

group then there exists a unique translation invariant measure px : B(X) — [0, 1]
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called Haar measure. Translation invariance is the property that for all B € B(X)
and z € X

px(z+ B) = px(B).

Since in this thesis we will only be dealing with compact abelian groups, the presence
of the unique Haar measure and the probability space (X, B(X), ux) is implied by
the context and rarely referred to directly.

Finally, a measure preserving Z%-action on the probability space (X, B, u) is an
action 7' : n — Ty, of Z? by invertible transformations 7, : X +— X, such that for
all n € Z% the transformation 7, is measurable (that is T_,(B) € B for all B € B)
and measure preserving (that is p(7T_n(B)) = p(B) for all B € B). Whenever it is
useful, measure preserving Z% actions will be distinguished from algebraic ones by
using Roman letters to denote the former, and Greek letters to denote the latter.

If o :n+— ay is an algebraic Z%action on the compact metrizable abelian group

X, then for each n € Z? there is a probability measure j, : B(X) — R, given by
in(B) = ux(a_a(B)) B eB,
Now, for each x € X and B€ B

nlan(z) + B) = ix(e + an(B)
— ix(aca(B))
= ,Mn(B)a

SO [iy 1s translation invariant, which means it is equivalent to Haar measure. It follows

that o is a measure preserving Z% action.

1.3 Duality theory

As is standard, all topological groups are assumed to be Hausdorff. Let X be a locally
compact abelian group. A continuous homomorphismy: X — S={z € C: |z| = 1},

is called a character of X. The set of all continuous characters of X forms a group
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which is referred to as the dual group of X, denoted by X. Let r > 0, C' a compact
subset of X and U, = {z € C: |1 — z| < r}. Define

N(C,r) :{76)?:7(1:) € U, for all z € C}.

The family of sets N(C,r) and their translates form a base for a topology on X
called the compact open topology. Once X has been furnished with the compact
open topology, X is itself a locally compact abelian group. Moreover there is a
topological isomorphism between X and the dual group of X. This fact is known as
the Pontryagin duality theorem. The isomorphism just described can be interpreted

to mean that, for all z € X and v € X

v(z) = z(7).

This gives rise to the ‘pairing’ notation (z,v) = y(z) = z(~). Proofs of these results,
along with the following, may be found in [27] or [25].

1. Let Y be a closed subgroup of X. The set
YL:{'yE)?:@:,’y}:lforall:CGY}

is a closed subgroup of )?, the annihilator of Y. Moreover, there are natural

isomorphisms
)/}%)?/YL and Y+ %)7/?/.
2. Suppose X is compact. Then X is connected if and only if X is torsion free.

3. The group X is compact and metrizable if and only if X is countable. Note

also that any countable locally compact abelian group is discrete.

4. It X and Y are locally compact abelian groups and % : X — Y is a continuous
homomorphism then there is an induced dual map LE .Y — X defined by

(P(x),7) = (2, 9(7)) z€X, y€Y

which is a continuous homomorphism. If v is surjective then 77//)\ is injective. If

¥ 1s both an open mapping and injective then 77//; is surjective.
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5. If { Xy }aea is a family of compact metrizable groups then

[[x-B%

AEA AEA

and if { X, }.ea is a family of countable discrete groups then

-1
AEA AEA
6. Suppose {X;};>1 is a family of countable discrete groups and that for each j > 1
there is an injective homomorphism ¢; : X; — X,;;1. Then the dual group of
inj im(X;, ;) is proj lim()?j, '1:/)\])

1.4 Arithmetic dynamical systems

Suppose that D is an integral domain (always assumed to be countable) and k is its
field of fractions. If D is endowed with the discrete topology then the group X = D
is compact and metrizable. Furthermore, given units &;,...,&; € D we may define a

Z%-action @ : n — ay on D by
an(a) = Ma (1)

where a € D, n = (ny,...,ny) € Z%and " = £ -+ €74, Dual to each automorphism
an there is a continuous automorphism ay of the compact abelian group X and
hence a corresponding Z%-action « : n + ap on X. The dynamical system (X, «a) =
(XP aP8) where ¢ = (&,...,&) € D%, is an arithmetic dynamical system.

As already mentioned the theory of algebraic Z-actions is fundamental to the
study of arithmetic dynamical systems. The main framework for this is as follows. Let
X be a compact metrizable abelian group, d > 1 and « : n — oy an action of Z? by
automorphisms of X. Let Ry denote the ring of Laurent polynomials Z[uf',. .., ujﬁl].

A typical element f € R; has the form

F=Y ci(n)u

neZd
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ni

where ¢s(n) € Z and u® = u}*---u}? for all n = (ny,...,ny) € Z% Note that

¢s(n) =0 for all but a finite number of n € 7% Under the action

[ra= c¢/n)an(a) a€X, [€ER,

nezd

the dual group X becomes an Rj—module. By definition we have

—~ n

an(a) =u"-a

for every n € Z% and a € X. Conversely, if M is a countable R;—module then there

M

is a natural action & : n — @y by Z% on M given by

&;M(a) =u"-a
where n € Z? and @ € M. Dual to this action there is an action of Z? by automor-

phisms of the compact group X = J/\Z, this being

oMin — oM
where for each n € Z%, oM is the automorphism dual to @y . In the next section we

will consider how arithmetic dynamical systems exist as a subclass of algebraic ones.

1.5 Commutative algebra

Let R be a commutative ring with 1. The set of all prime ideals of R will be denoted
by Spec R. This is a multifaceted object upon which, for example, a natural topology
may be defined. However such features will not be considered at this stage. Given
any ideal p € Spec R the supremum of the lengths, taken over all strictly decreasing

chains of prime ideals

pP=Poop1o-Op

is the height of p. The Krull dimension of R is the supremum of the heights of all

prime ideals in R.



A multiplicative subset S of R is one which contains 1 and has the property that
a,be S=abes.

For example, if p is a prime ideal of R then R\ p is multiplicative. We can define an

equivalence ~ on S x R by
(s,a) ~ (s',d") & r(s'a—sd')=0

for some r € S. The notation S™'R will be used to denote the set of equivalence
classes and a/s for the equivalence class of (s,a). When S contains no zero divisors,

the ring R may be embedded in S~'R by identifying « € R with a/1. Upon defining

the set S™'R becomes a commutative ring with zero 0/1 and multiplicative identity
1/1. This ring is referred to as the localization of R with respect to S. Note that if
0 € S then S™'R = {0/1}. If S is the complement in R of a prime ideal p C R then
instead of writing S™'R we write R, and call R, the localization of R at p. Note
that if R is an integral domain then any localization of R is a subring of the field of
fractions of R. If A is the localization of a commutative ring at a prime ideal then it
is a local ring (that is, A has a unique maximal ideal). For a local ring A we often
denote its maximal ideal by m4.

Let M be an Rg;—module. The annihilator of an element a € M is the ideal ann(a)
of Ry given by

ann(a) ={f € Ry : f-a=0}.

This should not be confused with the definition arising in Section 1.3. An ideal
p € Spec Ry is said to be associated with M if p = ann(a) for some a € M. If p is the
only element in Spec R, associated with M then we say that M is associated with p.
If M is Noetherian then [15, Chapter 5, Section 6] shows that the set of prime ideals
associated with M is finite. When M is an integral domain we can in fact say a little

more.



Lemma 1.5.1 Let D be an integral domain and &y, ..., ¢; units of D. The substi-
tution map 0¢ : Ry — D defined by 0¢(f) = f(&1,...,€4) is a homomorphism under
which D becomes an Ry—algebra and hence an Rg—module. Moreover, D is associated

with pe, the kernel of 0.

Proof. 1t is readily verified that 6 is a homomorphism and so D becomes an R;-
algebra and hence an R;—module in a natural way. That is, for each f € R; and
a€ D weset f-a=0:f)a. Let 0 # a € D and suppose that f € R, has 8:(f)a = 0.
Since D is an integral domain, it follows that 6;(f) = 0 and so f € pe. Hence p¢ is
the annihilator of a and, since a was arbitrary, the only ideal in Spec R; associated

with D is pe. O

It is clear that every arithmetic dynamical system is algebraic. Furthermore, under
the identification of D as an Rg—module, the natural action of Z? on D coincides with
the Z%-action given by (1). Conversely, suppose that M is an Ry-algebra which is an
integral domain. Then there is a ring homomorphism 6 : Ry — M and 0(uq), ..., 0(uq)
are units of M. If

£=(0(u1),...,0(uq)) € M

then the pair (XM,oz(M’g)) defines an arithmetic dynamical system. It is impor-
tant to note that not all R;—modules which are integral domains give rise to arith-

metic dynamical systems. For example, if M = Z[\/2] and 7 is the non-trivial
element of Gal(Q(v/2)|Q), then M becomes a Z[u*']-module by setting, for each
f=Y ercnt” € Z[u*'] and a € M,

fa = Z cnt"(a).

neZ

However this does not give M a Z[u*']-algebra structure because
(uV2)1 = —V2 # V2 = V2(ul).

We have seen that to any arithmetic dynamical system, a single element of Spec Ry

may be assigned and it therefore makes sense to call this the associated prime of the
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arithmetic dynamical system in question. The existence of this associated prime is
extremely important and the first of many consequences of this is considered below.
This result will prove to be useful in Chapter 3. Before stating it, the following
definition is necessary. Let M be a Noetherian R;—module and suppose that there is

a chain of submodules
{0} =NoC Ny C---CN,=M (2)

such that, for allz = 1,...,s, N;/N;,_1 = R;/p; for some prime ideal p; which contains
an associated prime of M. Then (2) is called a prime filtration of M. By [30,
Corollary 6.2] the existence of such a chain is guaranteed for all Noetherian R,

modules. However, if M has only one associated prime then the following also holds.

Lemma 1.5.2 Let p € Spec Ry and let M be a Noetherian Ry—module associated
with p. Then there exist integers 1 < r < s and submodules

{0} =NoCNyC---CN,=M (3)

such that for « = 1,...,s we have N;/N;_y = Ry/p; for prime ideals p C p; C Ry.
Hence (3) is a prime filtration of M. Furthermore, we may arrange that the filtration
hasp, =p fore=1,....r andp; D p fori=r+4+1,...,s.

Proof. See [30, Proposition 6.1]. O

If k1s a field and &,...,&; € k™, then there is a minimal subring of & containing
&1, ..., &4 as units, which will be denoted by Re. If §; : Ry — k is the substitution map
then it is easily seen that Re = 0¢(R4). Hence Rg is also the minimal sub—R,—algebra
of k. We will frequently compare various arithmetic dynamical systems of the form
(XP, a(D’g)), where D varies over subrings of k containing R¢. Note that by Lemma

1.5.1 every member of the family of arithmetic dynamical systems
{(XP,aP9): D is a subring of k containing R}
has the same associated prime.
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Finally, it should be remarked that generators for the ideal p; are not always easy
to find. For many examples however, the following observations are useful. Let k be a
field and &, ..., &, elements of k such that &,...,&;_1 are algebraically independent
over F', the prime subfield of k. Set R = Z or R = F, according to the characteristic
of k. Suppose that {; is integral over A = R[{;,...,{;-1] and let f € A[X] be a monic
polynomial of minimal degree such that f(£;) = 0. By [23, Theorem 9.2] since A is
an integrally closed domain (that is integrally closed in its own field of fractions) f
is actually the minimum polynomial for ¢; over F(&1,...,€4-1). Using the division
algorithm we establish that A[¢,] = A[X]/(f(X)). Now if uy,...,uq are independent
variables over R, f may be considered as a polynomial in these d variables in a natural

way. With f considered as such we have

Aléd) = Rlua, ..., uql/(f).

Let B = Rlus,...,uq]/(f). Since Re is equal to the localization of A[¢,] with re-
spect to the multiplicative subgroup generated by {{i,...,&q}, it follows that R is
isomorphic to the localization of B with repect to the multiplicative subgroup S of

B generated by {uy,...,us}. Here the u;’s are of course identified with their images

in B. By [23, Theorem 4.2]
ST'B = Rlui',..ug' /().

where (f) is now taken to be the ideal in R[u¥', ... u%'] generated by f. Hence if k
has characteristic zero then Re = Ry/(f). That is, f generates the ideal p;.

1.6 Valuations, absolute values and Krull rings

Valuations and valuation rings have proved useful in the study of algebraic number
theory, function theory and algebraic geometry. They also have a role to play in the
study of arithmetic dynamical systems. Let G be a totally ordered abelian group

whose ordering is preserved under the group operation. That is, for any ¢4, 92,93 € G

G < g2=> g1+ 93 < g2 + gs.
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A valuation on an integral domain D is a map v : D — G U {oo} such that for all
a,be D

1. v(ab) = v(a) + v(b).
2. v(a+b) > min{v(a),v(b)} (ultrametric property).
3. v(a) =00 & a=0.
Any such valuation has a tmique extension to the field of fractions of D given by
v(a/b) = v(a) — v(b)

where a,b € D. Hence it is usual to consider valuations defined on fields. A valuation
on a field k is discreteif G = Z and a discrete valuation is normalized if its value group
is set precisely to Z. Two valuations v, w on k are equivalent if v(a) > 0 = w(a) > 0
for all @ € k. If K|k is a field extension then a valuation w on K is said to extend a
valuation v on k if w|; = v. Corresponding to each equivalence class of valuations on

k, there is an associated subring of k& given by
D,={a€ k:v(a) >0}

where v is any representative of the equivalence class. Such a ring is referred to as a

valuation ring. Every valuation ring has a unique maximal ideal given by
m, ={a € k:v(a) > 0}.

For a more thorough description, see [5, Chapter 1]. An absolute value on k is a real

valued function |- |: k + R4 such that, for all a,b € k
1. |a| > 0, with equality if and only if @ = 0.
2. |la+0b] < la| + 18]
3. |ab| = |al|b|.

12



More generally, a norm on a commutative ring R is a map |- | : R — R, which for
all a,b € R satisfies (1), (2) and |ab| < |a]|b|. If | - | only satisfies (2), |ab| < |a||b| and
la| > 0 for all a,b € R, then it is called a partial norm. Two absolute values | - |; and
| - |2 on k are equivalent if |a|y > 1 = |a|; > 1 for all a € k. Any discrete valuation

gives rise to an absolute value by setting
| ’ |v =0 (4)

where 0 < ¢ < 1. Note that if absolute values |- |, and |- |, arise from discrete
valuations v and w in this way, equivalence of v to w implies and is implied by
equivalence of | - |, to | - |,. Given any absolute value | - | on k there is a unique
completion (up to equivalence of absolute values) of k with respect to |- |, into which
k can be embedded. For example, R is the completion of Q with respect to the usual
archimedean absolute value. Other complete fields arising in a similar way, but with
respect to different absolute values on @, all turn out to be fields of p—adic numbers,
where p is a rational prime. This is essentially Ostrowski’s Theorem [26]. A concise
and updated proof of this result, along with other details concerning the process of
completion, may be found in [5] or [7].

Recall that an integrally closed domain is an integral domain which is integrally
closed in its field of fractions. All valuation rings are integrally closed domains (see
[23, Theorem 10.3]) and this property is of course enjoyed by all intersections of
valuation rings in a given field. The following describes a particularly important class
of such integrally closed domains.

Let D be an integral domain and k its field of fractions. Suppose that {D)}rea
is a family of discrete valuation rings with D = (1,., Dy, and with the property that
for each a € k* there are at most a finite number of A € A such that vy(a) # 0, where
vy is the normalized discrete valuation corresponding to R, (this latter condition is
sometimes called the finite character property). Then we call D a Krull ring. By
[23, Theorem 12.3], for each height 1 prime ideal p, the localization of D at p is a
discrete valuation ring in k£ and if P is the set of all height 1 prime ideals of D then
{Dp}pep is a defining family for D. In fact [23, Theorem 12.3] shows that {Dy},ep

is the minimal defining family for D, in the sense that any other family of discrete
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valuation rings of k defining D contains {Dp}pep and if P’ C P then

DS () Do

peP peP’

Hence, every Krull ring has a canonical defining family.

Examples 1.6.1

1. Let k be an A-field in the sense of Weil [39] (that is, a finite algebraic extension
of Q or of F,(t) — the field of rational functions over a finite field of characteristic
p). Given any equivalence class of absolute values on k, by the above, there is
a unique embedding of k into a complete field (which itself corresponds to
this equivalence class). Following Weil [39] such an embedding will be called
a place of k. If k has zero characteristic, the places which arise from distinct
discrete valuations on k are called finite, and the remaining places are termed
infinite. If k has characteristic p, all places correspond to discrete valuations.
To describe the ‘infinite’ places of such a field, first consider the valuation v.,
on F,(¢) which is defined as follows. For any element f/g € F,(t) set vo.(f/g) =
deg(g) —deg(f). The equivalence class to which this valuation belongs gives rise
to a place of F,(t) which is referred to as the infinite place of F,(t). The infinite
places of k are those which correspond to valuations on k& which extend v.,. All
other places in the positive characteristic case are called finite. Irrespective of
the characteristic of &, [39, Chapter 3] shows that the number of infinite places
is always finite. Let S be any collection of finite places of k£ and let D) denote
the valuation ring in k& which corresponds to A € S. If P is the set of all finite
places of k and S is a proper subset of P, then {D, : A € P\ S} is a defining
family for a Krull ring Dg, referred to as the ring of S—integers in k. If S = P

then by convention we set Dg = k.

An arithmetic dynamical system (X7, a!”9) for which D is a ring S-integers
and ¢ is given by a single unit of D is an S—integer dynamical system. Dynamical

systems of this type were introduced in [4] and have received further treatment

in [37] and [38].
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2. Any Dedekind domain D is a Krull ring (see [5, Theorem 2.4.5]). Each non-zero
prime ideal of D is of height 1. Hence, if P is the set of all non-zero prime ideals

of D then {D, : p € P} is the minimal defining family for D.

3. If D is a unique factorization domain then D is a Krull ring. Let k£ be the field
of fractions of D. FEach height 1 prime ideal of D is principal and generated
by an irreducible 7 € D. In addition D, is a discrete valuation ring in k.
Moreover, if P denotes the set of all irreducibles of D then {D¢) : 7 € P} is
the minimal defining family for D.

Often it will be necessary to consider how Krull rings behave under certain ring
extensions. The following results and many others concerning the fundamental prop-

erties of Krull rings may be found in [8, Chapter 1] or [23, Section 12].

Proposition 1.6.2 Lel D be a Krull ring with field of fractions k and K|k a finite

algebraic extension. Then the integral closure of D in K is again a Krull ring.

Proposition 1.6.3 Let D be a Krull ring and {t; : y € J} a family of algebraically
independent indeterminates over D. Then the polynomial ring D[t; : j € J] is a Krull

ring.

Given any Krull ring D, the canonical defining family for D is obtained by local-
izing D at each of its height 1 prime ideals. However there are often other defining

families for D which can be useful.

Proposition 1.6.4 Suppose that D is a Krull ring with field of fractions k and let
K|k be a finitely generated extension. If D is integrally closed in K then il may be
expressed as the intersection of a family of discrete valuation rings of K with the

finite character property.

Proof. Let ty,...,%, be a transcendence base for K over k. The rings A; =
Dlt1,...,t,] and Ay = D[], ... 17! are Krull rings by Proposition 1.6.3. If B,

and B, denote the respective integral closures of A; and Ay in K, then Proposition

1.6.2 shows that these too are Krull rings. Let {Dy : A € A1} and {D, : X € Ay} be
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their respective canonical defining families of discrete valuation rings of K. Suppose
that n € By N By. Denote the common field of fractions of A; and A, by L. Since
A; and Aj are integrally closed in L, [23, Theorem 9.2] shows that the minimum
polynomial for n over I has coefficients in Ay N A;. But A1 N Ay = D and so this
means n € D. Thus By N By = D which implies

D= ﬂ D,.
AEAUAS

Clearly also { Dy : A € A; U Ay} has the finite character property. O

Theorem 1.6.5 (Mori-Nagata integral closure theorem) If D is a Noetherian inte-
gral domain with field of fractions k, then the integral closure of D in k is a Krull

ring.

Proof. See [8, Theorem 4.3]. O

Amongst the most well-studied of Krull rings are those lying in A-fields, as de-
scribed by Example 1.6.1(1). The dual groups of such rings have a particularly nice
description, provided by the S—adele ring, where S is the set of finite places of k defin-
ing Dg as in Example 1.6.1(1). For any place A of k, let k) denote the completion
of k at A and |- |, the corresponding absolute value. For finite A there is a maximal

compact subring of k) given by

ry={y € ki lylh <1}
The S-adele ring k° is defined as follows

kS = {z = (z)) € H ky : xy € ry for all but a finite number of A € S}
AT

where T' is the union of S with the set of infinite places of k. Let U be a finite subset

of T' containing all infinite places of k, and define

kS(U) = Hk)\ X H 7).

AeU AET\U
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The topology on k° is the smallest topology in which each set of the form k°(U) is
open in k°. Notice that k%(U) is locally compact with the usual product topology and
we thus induce a locally compact ring structure on k°. For a thorough description
consult [34] or [39]. It is also worth noting that if S is finite then £ is just a product
of fields with the usual product topology. There is a natural way to embed the ring
Ds as a subring of k% by means of the homomorphism ¢ : Dg — k° defined by
#(z) = (z,z,z,...), the canonical embedding. This embedding is used to describe the
dual group of Ds. In particular ¢(Ds) is a discrete subgroup of & (so that there is a
local isomorphism between &k and k°/¢(Ds)), kS 2 &5 and ¢(Ds)*t = ¢(Ds) = Ds.
By duality we have a natural isomorphism, D = k°/¢(Ds).

We conclude this section by introducing two types of valuation which will be of
use in Chapter 4. The first example highlights how certain ‘unexpected’ discrete
valuations can arise on integral domains which are not Dedekind. It also illustrates
how the finite character property can break down. The second gives an example of a

non-discrete valuation.

Example 1.6.6 Consider the field Q(¢) and its subring D = Z[t], where ¢ is an
indeterminate over Q. The height 1 prime ideals of D are given by the irreducibles
of D and the other non-trivial prime ideals have height 2 and are maximal. They are
of the form (p, f) where p is a rational prime and f is a polynomial whose reduction
modulo p is irreducible (see [32, Example 1.4.4]). Since D is a unique factorization
domain, it is easily seen that the localization of D at each of its height 1 prime
ideals is a discrete valuation ring of Q(¢). In particular, the localization of D at p,
where p is a rational prime, gives rise to a discrete valuation which extends v, the
p-adic valuation on Q. However, there are other discrete valuations on Q(¢) which
are extensions of v,. Let j € N and T} be an element of the complete field Q, which
is transcendental over Q and has v,(7};) = 5 (by a simple cardinality argument there
exist such 7} for arbitrary j € N). Suppose that f € D is a monic polynomial whose
reduction modulo p is irreducible. The field K = Q(f) may be embedded in Q, by
sending f to 7. Restricting v, to the image of K in Q, gives a discrete valuation v on
K. Since Q(t)|K is a finite extension, by [5, Theorem 2.3.3] there exists an extension

w of v to Q(¢). Let D, denote the valuation ring in Q(¢) which corresponds to w.
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By construction Z[f] is contained in D,, and because ¢ satisfies

it is integral over Z[f]. Since valuation rings are integrally closed domains, it follows
that D is contained in D,,. If m,, denotes the maximal ideal of D, then m,, N Z[{]
contains both p and f. Hence m, NZ[t] = (p, f). Also, w(f/p') = j — i, and so
f/pt € Dy, for0<:<jand f/p' € D, for i > j. This shows that different choices of
J yield genuinely distinct valuation rings. Hence we have an infinite family of distinct
valuations {w; : y € N} for which w;(p) # 0. Thus, this family does not have the

finite character property.

Example 1.6.7 Suppose that D, is a discrete valuation ring and k& is its field of
fractions. For any real number A > 0 there is a valuation on the integral domain D, [t],
where ¢ is an indeterminate over k, defined as follows. For f = znez+ a,t™ € D,[t],

a, € D, define vy : D,[t] = RU{oo} by
o(f) = min{o(a) + n}.

This valuation extends in the usual way to k(¢). If D) denotes the valuation ring in

k(t) corresponding to vy, then note that kN Dy = D,.

1.7 Algebraic geometry

This section is intended to give a brief introduction to the language of modern alge-
braic geometry, which will be used in Chapter 4. Detailed introductions can be found
in [10] or [32]. Let X be a topological space. A sheaf O of rings (always assumed to
be commutative) on X is a collection of rings and homomorphisms which satisfy the

following.
1. For every open subset U/ C X there is an associated ring O(U).

2. For every inclusion V' C U of open subsets of X there is a ring homomorphism

puv : O(U) — O(V). These homomorphisms are called restriction maps.
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3. O(@) is the trivial ring consisting of 1 element.
4. It U is an open subset of X then pyp is the identity map.
5. f W C V C U are open subsets of X then ppw = pyw - puv.

6. If U is an open set, {U\} an open covering of U/ and s € O(U) is such that
puu,(s) =0 for all A, then s = 0.

7. If U is an open set, {U,} an open covering of U/ and if for each A there are

elements sy € O(U,) with the property that, for any A,

PUL U, (83) = puanv,) (Su)
then there exists s € O(U) such that pyy,(s) = s, for each A.

If Ox is a sheaf of rings on X and 2 € X is a point of X then Ox , denotes the stalk
of X at z, which is the direct limit of the rings Ox(U) as U ranges over all open
sets containing z, via the appropriate restriction maps. The pair (X, Ox) is called a
ringed space. If for each x € X the stalk Ox . is a local ring then (X, Ox) is a locally

ringed space.

Example 1.7.1 Let k& be a countable field and A a subring. The Zariski space of
valuation rings of k having centre in A is the set of all valuation rings of £ which
contain A, denoted by Zar(k, A). If A C B then clearly Zar(k, B) C Zar(k,A). A
topology may be introduced on Zar(k, A) by defining the open sets to be arbitrary

unions of sets of the form
Zar(k, Alay, ..., a,])

where ay,...,a, € k. Note that a finite intersection of sets of this type is again of
this type and hence this does indeed define a topology. To make Zar(k, A) into a
locally ringed space, for any non-empty open set U define O(U) = (g R. 'V C U
then (e R is a subring of (., R and hence the restriction maps are induced by
inclusions. Also, for any R € Zar(k, A) the stalk of Zar(k, A) at R is simply R, which

is a local ring.
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A morphism of ringed spaces ¢ : (X, Ox) — (Y, Oy) consists of a continuous map
¢ : X — Y and a collection of homomorphisms ¢y : Oy (U) — Ox(4»~'U) for which

the following diagram commutes

pUv

Oy (U) Oy (V)
wl lm

Py=1Uy=1V

Ox(¥11) Ox(¥V)

for all open subsets V' C U of Y. Often, when no confusion can arise, the notation
Y1 X — Y is also used for such a morphism. Given any x € X there is an induced

homomorphism from Oy ;) to Ox , given by composing the direct limit of the maps
77ZJU : Oy(U) — Ox(@/)_lU)

(where U ranges over all open neighbourhoods of (z)) and the inclusion of
inj limO(y~'U) into Ox,. When dealing with locally ringed spaces, we say that
Y 1s a morphism of locally ringed spaces, provided that the pre-image of the maximal
ideal of Ox , under this induced map, is equal to the maximal ideal of Oy (). The
morphism @ is an isomorphism if the map between the topological spaces X and Y
is a homeomorphism and each of the ¢yy are isomorphisms.

Let R be a commutativering and X = Spec R. For any ideal a of R, let V(a) C X
be the set of all prime ideals which contain a. The Zariski topology on X is given by
taking the closed sets to be all sets of the form V(a). Lemma 2.1 of [10, Chapter 2]
shows that finite unions and arbitrary intersections of sets of the form V' (a) are again
of that form, verifying that this is a well defined topology. There is a natural structure
sheaf Ox of rings on X defined as follows. For a € R, let a = (a), D(a) = X \ V(a)
and denote the localization of R with respect to the set {a’ : j € Z,} by R,. If
a,b€ R and D(a) C D(b) then by [32, 2.2(2)], for some j € Nand c € R

a’ = be.
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Hence, for every pair of elements a,b € R with D(a) C D(b) there is a natural
homomorphism ppe)p(a) : B = R, given by

N e
PO®OD@)\ 3 | = i

For an open set U C X, define A(U) ={f € R: D(f) CU} and

OU) = {(fa)aerw) : fa € Ra and ppyp(ay(fs) = fo whenever D(a) C D(b)} .

If V. C U are open subsets of X then A(V) C A(U) and a map pyyv : O(U) — O(V)
may be defined by

pPUvV ((fa)aEA(U)) - (fa)aEA(V)-

Theorem 2.3.1 of [32] shows that the sets O(U) and maps pyy define a sheaf of rings
Ox on X. This is referred to as the structure sheaf on X and (X,Ox) is called
the spectrum of R. We will be particularly interested in the case where R is an
integral domain with field of fractions k. Here, for non-trivial U, the ring O(U) may
be identified with the subring of £ given by ﬂpeU Ry.

An affine scheme is a locally ringed space which is isomorphic, as a locally ringed
space, to the spectrum of some ring. A scheme is a locally ringed space where every
point has a neighbourhood which, with the restricted topology and restricted sheaf,
is an affine scheme. In general, if (X, Ox) is a scheme and Y is an open subset of X
endowed with the subspace topology, then the pair (Y, Ox|y) is an open subscheme
of (X,Ox). A morphism of schemes ) : Y — X is a closed embedding if every € X
has an affine neighbourhood U such that »~!(U/) C Y is an affine subscheme and s

is surjective. In such a case the scheme (Y, Oy) is called a closed subscheme of X.

Example 1.7.2 Let R be a commutative ring and a an ideal of R. Let X = Spec R
and Y = Spec R/a. The canonical map from R to R/a induces a morphism of schemes
Y : Y +— X which is a closed embedding. Under this morphism Y is homeomorphic to
the closed subset V (a) of X. Furthermore, for each p € Y the induced homomorphism
from Ox 4 to Oy, corresponds to the natural map from Ry, to (R/a)p, which is
a surjection. This means each of the homomorphisms ¢y is surjective. Thus Y is a

closed subscheme of X.
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Example 1.7.3 The affine d-space over C is the set A% of all d-tuples of elements
of C. Let A be the polynomial ring C[t1,...,t4]. For each ideal a C A define

Ve(a) ={z € AL : f(z) =0 for all f € a}.

The Zariski topology on A% is given by taking the closed sets to be all sets of the
form Vi(a) (see [10, Chapter 1]). An affine complex variety is any closed set of the
form Vo (p) where p € Spec A. Denote the set of all such (non-empty) varieties by X.
For a closed subset Y of A% let V(Y) be the set of varieties which are contained in
Y. Taking the closed sets to be all sets of the form V(Y) defines a topology on X.
Moreover, [10, Proposition 2.6, Chapter 2] shows that X is homeomorphic to Spec A
and the set of closed points of X (corresponding to the maximal ideals of Spec A) is
homeomorphic to A%. Hence the space X, together with the structure sheaf inherited
from Spec A, is an affine scheme. Let

d

W= Vela))

7=1
where a; = (¢;), 7 = 1,...,d. Then W is a closed subset of A% and the complement
of V(W) in X is an open subscheme of X isomorphic to Spec C[t',... t¥']. Closed

subschemes of this spectrum will be of importance in Chapter 4.

1.8 Examples of arithmetic dynamical systems

Example 1.8.1 Let £ be an A-field, S a set of finite places of k, Dg the ring of
S—integers in k and &;,...,&; units of Dg. The identification of X = l/)\g and the
quotient ring k°/¢(Ds), as given in Section 1.6, allows a useful realization of the
action dual to that given by (1). Let T be the union of S with the set of infinite
places of k. Clearly for each a € Dg and n € Z*?

dom(a) = ¢(£%a) = (£%a, EPa,. . ).

Let n € Z% and B, : k° — k° be defined by



where x = (z))rer € k5. Then

Buls(ps) = dan.

Suppose that 7 : k% — k%/¢(Ds) is the quotient map and ) : Ds — k°/¢(Ds) is the
canonical isomorphism described in Section 1.6. Upon defining g, = 7B, the self

duality of k&% means that

£ 16(Ds) 22w k5 (D)

commutes. Many aspects of the dynamics of the original system can be analysed

using the action B ‘n — Bn on k°. This will be very useful in the sequel.

Example 1.8.2 Let D be the ring of integers in the field Q(y/17). By [5, Theorem
3.1.3], D is a free Z-module with basis (1, HQﬂ) The unit € = 4 —+/17 € D induces
an automorphism & of D (and hence an arithmetic dynamical system). Let a be the
corresponding dual automorphism. Since there is a natural isomorphism ) : D s Z2,

the map
B = pay = gl

is an automorphism of T2 For a precise description of 3 consider the following. Let

a + HQﬂb € D, a,b € Z, and notice that
1 1 1 1 1 1
a<a+ %ﬁg —¢ (H%ﬁb) _ 50— 8h+ %ﬁ(gb—za).

Thus B may be calculated as follows. For each (z,y) € T? and (a, b) € Z* we have,

(B(z.y).(a,b)) = ((z.,y),¢a) " (a,b))
= ((z,y),(5a — 8b,3b — 2a))
_ p2mi(Baz—8br+3by—2ay)

= ((5z — 2y, -8z + 3y), (a,b)).
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Hence 3 is given by the matrix

5 =2
()
Alternatively, this dynamical system may be studied using the techniques of the
previous example. If P is the set of all finite places of Q(v/17) then D = Maep D
This is the ring of S—integers in Q(v/17) defined by S = @. The infinite places of
Q(\/ﬁ) are given by | - | — the usual absolute value on R restricted to Q(\/ﬁ) and
| - |70 — the absolute value defined by

| lroo = [7()] o0,

where 7 is the non-trivial element in Gal (Q(v/17)|Q). If k., and k. denote the

respective complete fields then

-~

D = (koo X kroo)/9(D)

and for each n € Z the automorphism Bn D koo X koo F> koo X kroo, defined in Example

1.8.1, is given by
(.’L’l,l’g) — ((4 — \/ﬁ)n;z:l, (4 — \/ﬁ)n.’lig),
where (21, 22) € koo X kroo.

Example 1.8.3 Let (X, a) = (X7, a”9) be the arithmetic dynamical system gen-
erated by the data D = Z[é]) & = 2 and & = 3. If S is the set consisting of the
2—adic and 3—-adic places of Q then D is equal to the ring of S—integers in Q. Hence

X 1is isomorphic to
Y= (RxQ x Q) /4(Z[3)

where ¢ is the canonical embedding. Furthermore, Example 1.8.1 shows that for each
n = (ny,ny) € Z* ay may be identified with the automorphism of ¥ which is given
by

1

(21,29, 3) + S(Z[]) = (271321, 2" 3™ 29, 2" 3" 23) + ¢’(Z[é])

6

where (21,22, 23) + ¢(Z[]) € Y.
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Example 1.8.4 The well known example by Ledrappier [16] is given by the shift
action of Z2 on the compact subgroup of FZ* consisting of elements (Zmy.m,) Which,

for all my, my € Z, satisfy the relation

Lrmq,my + Lmq+1,mo + Tmq,ma+l = 0.

The resulting dynamical system is algebraic and in [30] the corresponding dual R,—
module is identified as M = Ry/(2,1 4 uy + uz). Consider the subring D = Fy[t, #]
of Fy(t). Set

i=—t—1land &=t (5)

to obtain an arithmetic dynamical system. It is readily verified that R, = D and
pe = (2,1 4+ u1 + ug). Hence there is an isomorphism ¢ : D — M and

a;(Dé)
D D
¥ \1/)
~M
On
M

commutes for all n € Z% Thus Ledrappier’s example can also be interpreted as an

arithmetic dynamical system.

Example 1.8.5 Let D be a Krull ring for which P, its set of height 1 prime ideals,
is countably infinite, and let k be its field of fractions. Write P = {p1,p2,...}
and denote by Q the probability space {0,1}" equipped with the product measure
tt, = (p, 1 — p)¥ for some p € [0,1]. Let w = (w;) € Q and define

D(w) ={a € k :vy,(a) > 0 for all z > 1 such that w; = 0}.

For each w # (1,1,1,...), D(w) is a Krull ring with defining family {D,, : w; = 0}.
If w=(1,1,1,...) then clearly D(w) = k. If p =1 then p,~almost surely w; = 0 for
all © > 1, and hence D(w) = D. At the other extreme, if p = 0 then p,~almost surely
D(w) =k. If 0 < p <1 then D(w) is a ‘random ring’ with D C D(w) C k.
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Upon fixing units &1,...,&; € D (which of course are also units of D(w) for any

w € Q) there is an uncountable family of arithmetic dynamical systems given by
{(XP@) o P8y, € O},

In [36] such a family is considered with D = Z[1] and ¢ = 2. The author shows
that each of its members has a distinct dynamical zeta function and entropy log 2.
In Chapter 3 it will be shown that for any family of this kind, the entropy of each

member is the same. Further work on such ‘random’ examples arising from Krull

rings in A—fields may be found in [37] and [38], for the case d = 1.

The following example illustrates several techniques which may be employed in a

more general setting.

Example 1.8.6 Let ¢ be an indeterminate, D = Q[t, 1], &, = ¢ and & = 3 — L.
Then (X, a) = (X7, a!P9) is an arithmetic dynamical system. It is readily verified
that

= Q[fl ) 2 - Q[uiﬂvuéﬂ]/p

where u; and uy are independent variables and p € Spec Q[uf', uf'] is generated by

the polynomial 3 — u; — uy. Since Q[ui', us'] = @, Q, it follows that
Qi '] = 0 = (0°/9(Q)*
where S is the set of all finite places of Q (given by the set of rational primes).

Furthermore D pt C Quf', uf']. For a realization of this compact group, notice

that the image of p in @, Q is precisely the set of elements of the form

b= (bmhmz) = (3am17m2 — Omi—1,my — am17m2—1) (6>
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where @ = (G, my) € @72 Q. Now given © = (2py my) € Q7

(2,8) = ] (@msimas brsyims)

my,m2

- | | <$m1,m273am1,m2 - aml—l,mg - am17m2—1>

my,m2

= H <3$m17m27 am17m2><_$m17m2 3 am1—17m2><_$m17m27 am17m2—1>

my,m2

= H <3xm17m27 Clmhmz><_xm1+1,m2 5 am17m2><_$m17m2+17 am17m2>

my,m2

= | | <3$m17m2 — Tmy4+1,my — $m17m2+17am17m2>‘

my,m2

If (x,b) =1 for all such b then for all (mq,m;) € Z?

3xm17m2 — Tmi4+1,me = Tmymotl = 0.

Therefore D is isomorphic to

o~

2
Y = {($m17m2) € QZ : 3$m17m2 — Tmy+l,me — Lmgymae+l = 0 for all my, Mg € Z}

Under the identification of Q[uE!', uf']/p with D, for each n € Z? multiplication by
™ on D becomes multiplication by u™ mod p. Moreover, under the indentification of
Q[uE', ut'] with B,. Q, multiplication by u™ corresponds to the map which sends
(am) € P2 Qto (Gmin). On @Z2 the map dual to this is that which sends (z,) € @Z2
t0 (m4n). Consequently o may be identified with the restriction of the Z*-shift on
@Z2 to Y.

An alternative interpretation of this example may be obtained by using direct and
inverse limits, as follows. Consider the arithmetic dynamical system (X7T¢, a(R‘f’g)).

Since pe = (3 — uy — uz) € Spec Ry, it follows that
Rg = BQ/(S — Uy — UQ).
Therefore oF¢€) may be interpreted as the Z?-shift on the compact group

Y ={(xmym,) € TZ . 3Tmymy — Tmy+1,my — Tmyme+1 = 0 for all mqy,my € Z}.
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The dynamical system (X7, a{”9)) may be constructed using this as a building block.
Notice that D is isomorphic to inj lim( Re, ©;) where for each j > 1, t; is multiplication
by j + 1. Dually this gives D proj lim(Y, L//)\j), where for each j > 1, ;Zj Y = Yis
given by

¢j(($m17m2)) = ((-7 + 1)$m17m2)'
Thus D may be identified with the subgroup of T#*N consisting of elements (2, my ., )

which, for all my,my € Z and 5 € N, satisfy the relations

Sxm17m27j - xm1+17m27j - xm17m2+17j = 07
Tmy,ma,j — (] + 1)$m17m271+1 = 0.
D, . .
For each n = (ny,ny) € Z2, alPd corresponds to the automorphism of this group

given by

(xml 7m27j) = ($m1+nl yma+n2 7.7)

This construction is perhaps a little more cumbersome than the first, but in certain

circumstances, which will become apparent later, it will be most useful.
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Chapter 2

Ergodicity and mixing

2.1 Conditions for ergodicity and mixing

Let X be a compact abelian group, B(X) the o—algebra of Borel sets of X and px
the normalized Haar measure on X. Suppose that o : n + ay is a Z% action by
continuous automorphisms of X. Recall that « is also a measure preserving Z%-
action on the probability space (X,B(X), px). The action « is ergodic if and only
if for any B € B(X) with an(B) = B for all n € Z% ux(B) = 0 or ux(B) = 1.
The automorphism ay is ergodic if and only if for any B € B(X) with an(B) = B,
px(B) =0 or px(B) = 1. The action « is said to be (strongly) mixing if for any
B,C € B(X),

lim px (BN an(C)) = px(B)ux(C),

n—oo

where n — oo means ‘leaving finite sets’.
For arithmetic dynamical systems both ergodicity and mixing have straightforward
algebraic interpretations deducible from the following result, which deals with the

more general algebraic case.

Proposition 2.1.1 Lel X be a compact metrizable abelian group and suppose thal

a:n— oy is a Z-action by automorphisms of X. Let M = X be the corresponding
dual R;—module.
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1. For any n € Z% the following are equivalent.

(a) oM is ergodic.
(b) No prime ideal p associated with M contains a polynomial of the
form u'™ — 1 with 1 > 1.

2. The following conditions are equivalent.

(a) oM is ergodic.
(b) No prime ideal p associated with M contains a set of the form
{um—1:n€Z withl>1.

3. The following condilions are equivalent.

(a) &M is mizing.

(b) oM is ergodic for all non-zero n € Z°.

Proof. This is part of [30, Proposition 6.6]. O

Corollary 2.1.2 Let (X,a) = (XP,aP9) be the arithmetic dynamical system aris-

ing from units &1,...,&q in the integral domain D.
1. Forn € Z* the automorphism ay is ergodic if and only if €™ # 1 for all | > 1.
2. « is ergodic if and only if given | > 1 there exists n € Z% such that €™ # 1.

3. «a is mizing if and only if €* # 1 for all non-zero n € 7.

Proof. 1. Let D be considered as an Rj;—module under the map 0; : Ry — D.
Lemma 1.5.1 shows that D is associated to p;. Now given n € Z condition 1(b) of

Proposition 2.1.1 is equivalent to
Oc(u™ —1) # 0 & ™ # 1 for all [ > 1.

2. Part 2(b) of Proposition 2.1.1 is the same as saying that given [ > 1 there exists
n € Z% such that f¢(u™ — 1) # 0. Hence the result follows.
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3. By part 3 of Proposition 2.1.1 « is mixing if and only if a4, is ergodic for all
non-zero n € Z% which by the above implies and is implied by ™ # 1 for all [ > 1
and non-zero n € Z% Equivalently ¢® # 1 for all non-zero n € Z<. a

Given any field k and &,...,&; € k*, the property that ¢* # 1 for all non-
zero n € Z% is determined only by the choice of &,...,&;. Hence, if the arithmetic
dynamical system (X%e, olFet)) is mixing then so are all dynamical systems of the
form (XP,a(P€)) where D is any integral domain containing &, ..., &, as units. This
observation should be compared with the results given in Table 1. A similar statement
is true for ergodic properties.

If o 1s a Z—action by automorphisms of a compact abelian group then it is well-
known that ergodicity and mixing are equivalent. For an arithmetic dynamical system

this is clear from Corollary 2.1.2 since conditions 1 and 3 are equivalent if d = 1.

Example 2.1.3 Let D = Z[¢], &4 =2, & =8 and (X, a) = (XP alP9) the corre-
sponding arithmetic dynamical system. Since 2!8' = 24 £ 1 for all [ > 1 it follows

that «a is ergodic. Moreover, for any [ > 1, ny,ny € Z,
imginz — ollm+3m) — 1 & ny = —3n,.

Hence a(y, n,) is ergodic if and only if ny # —3ns, so a is not mixing.

Example 2.1.4 In the above example, if instead of & = 8 we set & = 3, then

1En? # 1 for all non-zero (ny,ny) € Z? and hence the corresponding action is mixing.
This dynamical system was introduced in Example 1.8.3 and despite its simplicity, it
can be used to illustrate many important properties of arithmetic dynamical systems,

typical in a more general setting. Here it appears as a special case of the following.

Example 2.1.5 Let k be a field and &;,...,{; € £*. Suppose that foreach 1 < j <d
there is a discrete valuation v; on k such that v;(&;) # 0 and v;(&;) = 0 for all 7 # j.
Then any arithmetic dynamical system of the form (X,a) = (X7, aP9) where

R¢ C D C k, is mixing. This is because if n = (ny,...,n4) € Z% is non-zero then for
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some 1 <3 <d

v;(€") = an;(&)
= n;vi(¢;)
£ 0.

If a were not mixing then this would contradict Corollary 2.1.2.

Example 2.1.6 Ledrappier’s example can also be handled by the above. Using the
description provided by Example 1.8.4, this example is seen to correspond to the
arithmetic dynamical system generated by the data D = F[t, ﬁL G =—-t—-1
and ¢, = t, where t is an indeterminate over Fy. Set v; and vy to be the normalized
discrete valuations corresponding to the valuation rings Fy[{];41) and Fy[t](), repec-

tively. Then v1(&) = 1, v1(&2) = 0, va(&) = 1 and vy(&) = 0. Therefore the above

shows that Ledrappier’s example is mixing.

2.2 Higher order mixing

Let T : n + Ty, be a measure preserving Z%-action on the probability space (X, B, )
and r > 2. The action T' is mixing of order r (or r—mixing) if for all By,..., B, € B,

r r
lim 7 ﬂ T_n,(Bj) | = H w(Bi).
ni,n] GZd and ni—n]—mx) i:l i:l

for all ¢,5=1,...,r1#J

A non-empty set F' € Z%is mixing for T if for all collections {B, : n € F'} C B, that

is all collections of sets in B which can be indexed by F,
lim 41 (ﬂ T—m(Bn)> = [ #(Bu).
’ ner nekl

Otherwise F'is said to be non-mixing.
If T is r-mixing then every subset of Z? of cardinality r is mixing for 7. Hence, if

T is mixing of all orders then every finite non-empty subset of Z?is mixing for 7. If F
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is a finite subset of Z% with cardinality » > 2 which is non-mixing for 7' then 7" is not
mixing of order r. Finally, if £ is non-mixing for 7" and £ D F then E is non-mixing
for T'. Section 27 of [30] deals with many aspects of higher order mixing for algebraic
Z%-actions and this will be useful for what follows. For example, from the general
algebraic case it is easily deducible that for an arithmetic dynamical system whose
underlying ring has characteristic zero, mixing is equivalent to mixing of all orders. In
the positive characteristic case however, a more complicated picture of mixing arises,
and although it will be demonstrated how one may identify particular non-mixing
sets, a general technique for finding the exact order at which a given action fails to
be mixing remains elusive.

Given any p € Spec Ry, the ring R;/p is an integral domain. Hence R;/p has a
well defined characteristic which is either zero or some rational prime p. Denote this
characteristic by p(p). Now suppose that p is such that aff/P | the natural action on
]m (see Section 1.4), is mixing. By [30, Theorem 27.3] if p(p) = 0 then af/P is
mixing of all orders. If p(p) # 0 then af/P is mixing of all orders if and only if p is
generated by p(p¢) (considered as an element of R;). Furthermore, [30, Theorem 27.2]

shows that for a general countable R;—module M, the action o™

is r—mixing if and
only if af/? is r-mixing for each prime ideal p associated with M. The implications

of some of these results are collected in the proposition below.

Proposition 2.2.1 Let D be an integral domain, &1, ..., & units of D and (X, ) =

(XP, aP8) the corresponding arithmelic dynamical system.
1. For each r > 2 the action « is r—mizing if and only if &®¢/?¢ is r—mizing.

2. Suppose that « is mizing. If D has zero characteristic then « is mizing of all

orders. If D has characteristic p > 0 then a s mizing of all orders if and only

if pe = (p).

Hence the only mixing arithmetic dynamical systems which fail to be mixing of
all orders are those for which the underlying ring D is of characteristic p > 0 and

pe # (p) (equivalently, D has positive characteristic and pg is non-principal).
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If M is a countable R;—module it is also true (by [30, Theorem 27.2]) that a finite
non-empty set F' C Z%is mixing for o™ if and only if it is mixing for a%/? for every
prime ideal p associated with M. Therefore, for an arithmetic dynamical system
(X,a) = (XP alP9) such a set is mixing for aP¥) if and only if it is mixing for

oftel/be Tet f = Y omezacf(m)u™ € Ry, p be a rational prime and define

S,(f) ={n € Z": c;(n) # 0 mod p}.

It turns out (see [30, Example 27.1(2)]) that for an action of the form a = aff/P,
where (p) C p € Spec Ry, the set S,(f) is non-mixing for a for all f € p with
f # 0 mod p. Thus for an arithmetic dynamical system whose underlying ring has
characteristic p, if the associated prime pg strictly contains the prime ideal (p) then
for every f € pe with f # 0 mod p, the set S,(f) is non-mixing.

Example 2.2.2 Let D = Fs[t, 2%157 m, #] Set &1 =2+ 1 and & = % to
obtain a mixing Z2 action a = o/”%) on D. Tt is readily checked that the associated
prime pg € Spec R, contains the height 2 prime ideal p = (3,uy + uy — uy' + 1).
Since Ry has Krull dimension 3, and because D is not a field, ps cannot be maximal.

Therefore p; cannot be of height 3, which implies p; = p. It follows that the set
Sa(uz +ur — ul_l +1) ={(1,0),(0,1),(-1,0),(0,0)}

is non-mixing for a. Hence « is not r—mixing for all r > 4. However, the methods

described above fail to determine whether « is mixing of order 3.

It should be noted that in general the family {S,(f) : f € pe} is not neces-
sarily sufficient to describe all sets which are non-mixing for a(P%). Further more
involved procedures for identifying other non-mixing sets may be found in Section 28
of [30]. However the problem of finding all non-mixing sets for algebraic Z% actions
on compact, zero-dimensional abelian groups is currently an open one, even when the
corresponding dual module has a single associated prime, as is the case for arithmetic

dynamical systems.
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Chapter 3
Entropy

In this section we take a close look at the entropy of arithmetic dynamical systems
and give methods for its calculation with both general techniques (developed from
[18]) and examples. It turns out that the entropy of an arithmetic dynamical system
arising from units in an integral domain D, is closely related to the trancendence
degree of the field of fractions of D over its prime subfield. Also given is an explicit
entropy formula for arithmetic dynamical systems whose underlying ring is an in-
tegrally closed domain. When this ring is not integrally closed, it is shown that in
many cases a bound for the entropy still exists. Noteably, these results can be applied
without manipulating complicated R;—module filtrations. Finally, it is shown that if
£1,...,¢&4 € k are fixed and every element of & is algebraic over the field of fractions
of R¢, then arithmetic dynamical systems arising from subrings of k£ containing the

integral closure of R in k all have the same entropy.

3.1 Preliminaries

There are several ways that entropy may be defined for algebraic dynamical systems
and [30, Section 13] shows how these definitions coincide. Here the topological defini-
tion will be used. Let o : n — ay be a Z-action by automorphisms of the compact

metrizable abelian group X. Given an open cover U of X, set N(U) equal to the least
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cardinality of a subcover of U. It may be shown that
log NUV V) <log N(U) 4 log N(V) (7)

for all open covers U and V of X. Here U V V denotes the join of U and V. which is
the open cover defined by

UVY ={UNV:UcU,V eV}

The property (7) will be referred to as subadditivity. For every rectangle () =
H?ﬂ{bia---vbi +1; — 1} C Z% set (Q) = min;—__41; and let |Q| denote the car-
dinality of (). Define the entropy of a with respect to the open cover U by

h(a,U) = lim LlogN ( \/ a_n(U)).

(@)= Q] nezd

This limit may be shown to exist using subadditivity. The entropy of the action « is
h(e) = sup h(a,U)
u

where U ranges over all open covers of X.

In principle the entropy of any algebraic Z%action may be calculated using the
methods exposed by Lind, Schmidt and Ward in [18]. In particular, for a Noetherian
Rs—module M, the authors give a formula in terms of the associated primes of M
and their multiplicities. Central to this is a quantity introduced by Mahler [20, 21] in

a completely non-dynamical context, the Mahler measure. For a polynomial f € R,

it is defined by M(f) = 0 when f =0 and

M(f) = exp ( [ o If(Z)|dZ>

otherwise. Here dz denotes integration with respect to the normalized Haar measure
on S? and f is interpreted naturally as a function on S%. When M is Noetherian,
recall that there are only finitely many prime ideals associated with M. Let those
which are principal be generated by polynomials fi,..., f, € R;. Given any prime
filtration of M the multiplicity of each prime ideal (f;), 1 < ¢ < r, depends only on M
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(see [18, Proposition 6.9]). Let these corresponding multiplicities be ¢1,...,¢,. The
Lind, Schmidt, Ward entropy formula is

M) = 3 e log M(,)| 5

i=1

However, if M is not Noetherian, although in theory the entropy of the corresponding
dynamical system may still be calculated [30, Proposition 18.6], this may involve
the Mahler measure of infinitely many polynomials. Fortunately, for an arithmetic
dynamical system, this problem is easily overcome by Lemma 1.5.1.

As already indicated the results of Lind, Schmidt and Ward are implicit in what
follows. The following are taken from [30, Chapter 5] (see also [18]).

Proposition 3.1.1
1. Let p,q € Spec Ry and suppose that p C q. If h(afe/P) < oo then h(afe/1) = 0.
2. Let p € Spec Ry. Then

h(aRalv) |[logM(f)| if p=(f) is principal.
0 if p is non-principal.

3. Let X be a compact metrizable abelian group and let o« be a Z*—action by auto-

morphisms of X.
(a) If Y is an a—invariant subgroup of X then
h(a) = h(aX/Y) + h(ay) (the addition formula).

(b) If {Y;};>1 is a decreasing chain of closed a—invariant subgroups

of X such that ﬂJZl Y, = {0} then

h(a) = sup h(aX/YJ).

i1
Note that the entropy formula (8) follows from parts 2 and 3(a) above.
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3.2 Completely positive entropy

Completely positive entropy is a property of certain measure preserving Z% actions on
probability spaces, usually defined using the measure theoretic definition of entropy
(see [30, Section 13]). Since every algebraic Z%action may also be regarded as a
measure preserving Z%-action on a probability space, it is not surprising that there
is an algebraic formulation of completely positive entropy. Because the measure
theoretic definition of entropy has not been introduced, it seems sensible to use the
algebraic formulation here. However, it must be remarked that equivalence of the
following to the usual definition of completely positive entropy is by no means trivial.
A proof of this equivalence may be found in [30, Theorem 20.8]. Let « be an action
of Z? by automorphisms of the compact abelian group X, and M the corresponding
dual Rj;-module. Then « has completely positive entropy if and only if the action
offe/P has positive entropy for all p € Spec Ry associated with M. As an immediate

consequence, we have the following.

Proposition 3.2.1 For an arithmetic dynamical system the properties of positive

entropy and completely posilive entropy are equivalent.

Proof. Follows from Lemma 1.5.1. g

3.3 Main results

We begin with another easy consequence of Lemma 1.5.1.

Proposition 3.3.1 Let D be an integral domain, &, ..., &5 units of D and (X, a) =
(XP PO the corresponding arithmetic dynamical system. If ps = {0} then h(a) =

oo,

Proof. Both R¢ and D/R¢ may be regarded as R;—modules with respective natural
Z-actions afe and aP/F¢. Note that j%\g = l/j/]%gL and D/R; = R}, so that by the

addition formula
h(a) = h(aR‘f) + h(aD/R‘f).
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But h(afie) = h(afta/Pe). The result follows by part 2 of Proposition 3.1.1. O

Proposition 3.3.2 Let (X,a) = (XP,aP8)) be an arithmetic dynamical system.
Then « has positive entropy (equivalently, completely positive entropy) if and only if

it is mixing and its associated prime is principal. Furthermore, if a is mixing and

pe = (f) for some 0 £ f € Ry then

cl[logM(f)| if there is a Noetherian submodule of D for which

h(a) pe occurs in a prime fillration with mazimal
a) =
multiplicity ¢ say,

00 otherwise.

Proof. Let D be considered as an Rg;—module via the map 6. By [30, Theorem 19.5]
and Proposition 2.1.1, k(af¢) > 0 if and only if af¢ is mixing and p is principal.

Since D is countable it is possible to select a chain
N1CN2CN3C"‘

of Noetherian submodules of D such that | J,5; N; = D. 1f p; = {0} then the previous
result shows that h(a) = oco. Hence assume that pe # {0}. By the entropy formula
(8), for each j > 1 there exists an integer ¢(j) > 1 such that

h(a™) = c(j)h(a’).
Moreover by part 3(b) of Proposition 3.1.1,

h(a) = sup h(a™7) = sup c(j)h(a™). (9)

i1 i1

The first part of the proposition now follows. Suppose that « is mixing and pe = (f)
for some non-zero f € Ry. If there is a Noetherian submodule N of D for which
pe occurs in a prime filtration with maximal multiplicity ¢ say, then without loss of

generality we may set N; = N. In such a case (9) implies that
h(a) = ¢ h(a™) = | log M( ).
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If there is no such submodule then the desired result again follows by equation (9). O

The constant ¢ appearing above will be referred to as the multiplicity constant for
the dynamical system (X,a) = (XP aP9). Note that ¢ depends on both D and
the choice of ¢&. Later it will be shown how the existence of this constant can, in
many cases, be determined simply by considering field extensions, instead of module

filtrations.

Example 3.3.3 Suppose that D is an integral domain of positive characteristic p,
€1,...,& are units of D and (X,a) = (XP,aP9) is the corresponding arithmetic
dynamical system. If « is not mixing or p¢ is non-principal then h(a) = 0. Clearly
0:(f) = 0 for all f € R; with p|f. Therefore (p) C pe. Hence if pg is principal,
(p) = pe. Since M(p) = p, it follows that h(a) = oo or h(a) = clog p for some integer
c>0.

Let D be an integral domain and k its field of fractions. Suppose that k has finite
transcendence degree over its prime subfield. If the characteristic of £ is non-zero
then this degree will be denoted by tp. If the characteristic of &k is zero then we set
tp =1+ tr.deg.(k|Q). If k£ has infinite transcendence degree over its prime subfield

then we simply write {p = oc.

Theorem 3.3.4 Lel (X,a) = (XP,aP8)) be a miving arithmetic dynamical system
arising from units &, ...,&; in the integral domain D. If d > tp then h(a) = 0. If
d < tp then h(a) = co when p; is principal and h(a) = 0 when pg is non-principal.

Proof. A proof is given for the case char(D) = 0. The proof for the non-zero
characteristic case follows a very similar line of argument. First suppose d > tp. If
at least one of &,...,&; is transcendental over Q then (after some relabelling) we
may assume &y, ..., &, are algebraically independent over @, where 1 < e < d—2 and

e is maximal. Both of the sets {&,..., &, &1}, {&1, ... &, Ecqn} are algebraically

+1 +1
e ue—}—l]

and g € Z[ui', ..., uf' uEl,] such that 6¢(f) = 0¢(g9) = 0. Because of the algebraic

independence of 1, ..., £ we may obtain a factor of f, f’ say, which lies in p¢ but has

dependent over Q. Hence there exist non-zero polynomials f € Z[uE',... u
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no factor in Z[uF', ... uF']. Similarly g has a factor ¢’ say, in pe which has no factor in
ZuE',...,uF']. Now f’ and ¢’ are coprime which shows that pe cannot be principal.
If none of &,...,¢; are transcendental over QQ then again p, must be non-principal.
Thus in both cases by Proposition 3.3.2 it follows that A(a) = 0. Now suppose that
d < tp. If pe is non-principal then the result follows immediately, so assume that
pe is principal. If no subset of {{1,..., &} is algebraically independent over Q then
Q(&,...,&) is an algebraic extension and hence there must be some element of D
which is transcendental over Q(&;,...,&;). Now suppose that at least one of &,..., &,
is transcendental over Q. With appropriate relabelling we may assume that &,..., &,
are algebraically independent over Q, where 1 < e < d and e is maximal. If e = d then
it is clear that p; = {0} and thus h(a) = co. If this is not the case then e < d < tp.
This means again that there must be some element of D which is transcendental over

Q(&1,...,&). Let n be such an element. For each integer ¢ > 1 set

Ni = ZZ:RC{ . 77j.
7=0

Then for 2 > 1 we have
Ni/Ni—l o~ Rd . 772 /(ZRC[ . 77]) N (Rd . 772)
7=0

=~ Rq-n'/{0} = Rq/pe.

Hence for all 2 > 1 it follows that N; is a submodule of D for which p, arises via a
prime filtration with multiplicity ¢. Since « is mixing and p; is principal, Proposition

3.3.2 shows that h(a) = oco. O

If d = tp then the range of possible entropies is more interesting, as the following

examples show.

Example 3.3.5 (d = tp = 2 and zero entropy) Let ¢ be an indeterminate over Z,
D = Z[t, ], & = 2 and & = 3. This gives a mixing dynamical system (X,a) =
(XP aP8) | Here the associated prime p; is generated by the polynomials u; — 2

41



and uy — 3 which means it is non-principal. Proposition 3.3.2 implies that h(«a) = 0.
Note that for this dynamical system, such a result is to be expected because (X, «)

is simply an infinite direct product of copies of a zero entropy system.

Example 3.3.6 (d = {p = 3 and finite, non-zero entropy) Let ¢; and ¢ be two

algebraically independent indeterminates over Z and let

1

1 1
D - Z[tl, tg, 1_1% )

2 ) 42 2 ]
2437 2125

If we take & = 1 — 43, & = t2 + 3 and & = {3 — {3 — 5 then we obtain a mixing

arithmetic dynamical system. Here

1 1 1 ]
29 42 7 42 2 *
1-37 2437 2 —13—5

Re = L[5, 5,
Hence D may be expressed explicitly as a Noetherian R3—module in the following way
D:Rg'1—|—R3't1—|—R3't2—|—R3't1t2.

Now let ag =0, a1 = 1, ay = 11, az = ty, aqg = t113 and for 0 < ¢ < 4 define

N, = XZ: Rs - a;
=0
then for 1 <1 <4 we have
N;/Ni1 = Rs-a;/(Ni-1 N Rs - a;)
Rs - a;
Rs/pe.

1%

12

Thus No C Ny C --- C N4 is a prime filtration of D. The multiplicity of p¢ in this

filtration is clearly 4. Moreover, the prime ideal p, is principal and is given by
pe = (us +us +ur + 1),
Therefore by Proposition 3.3.2
h(a) = 4|log M(usz + us + uq + 1)|.
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In fact the Mahler measure of the polynomial us + u, + u; + 1 has been calculated by
Smyth in [33] (see also [2]):

27?2

Mi(us + s +up + 1) = exp (75(3)>

where ( is the Reimann zeta function. Thus, for this dynamical system we have

_14((3)

72

h(a)

Example 3.3.7 (d = tp = 2 and infinite entropy) Let Q denote the algebraic closure
of Q and ¢ be an indeterminate over Q. Let D = QJt |, &g =tand & = —t — 1
to obtain a mixing Z*-action. Note that pg is principal and is generated by the

1
) 124t

polynomial uy +u; +1 € Ry. Let p1, po, ... be a sequence of distinct rational primes,

and for each 7 > 1 define

Ni=Y Ry /b
7=1
Then for 2 > 1,

Ni/Nioi = Ry-\/p;i
Ry /pe.

Clearly N1 2 Ry /pe and so for all ¢ > 1, N; is a submodule of D for which p, arises

in a prime filtration with multiplicity ¢. Proposition 3.3.2 gives h(a) = oo.

The final theorem in this chapter limits the range of possible entropies for many
arithmetic dynamical systems. Although Proposition 3.3.2 gives a formula for the
entropy of any such system, the multiplicity constant appearing there may be difficult
to calculate. However, the following helps in this respect, not only by establishing
its existence without having to handle complicated module filtrations, but in many

cases realizing it explicitly as the degree of an appropriate field extension.

Theorem 3.3.8 Let (X,a) = (XP,a\P€)) be a mizing arithmetic dynamical system
generated by units &1,...,¢&; in the integral domain D. Suppose that d = tp and
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pe = (f) is principal. Let k be the field of fractions of D and Fy the field of fractions
of Re. Then

h(e) < deg(k[F¢)[log M(f). (10)
Moreover, if D is an integrally closed domain then equality holds.
To prove the theorem we need the following lemmas.

Lemma 3.3.9 Letl k be a field, &, ..., € k* and k be considered as an Rq—module
via the map O¢. Suppose that N is a submodule of k with the property that for any
a € k there exisls 0 # ¢ € Rg such that ca € N. If pg is non-zero then h(a*/N) =0,

Proof.  For a non-trivial case assume that « is mixing and N # k. Since k/N is

countable we may select a chain
N1CN2CN3C"‘

of Noetherian submodules such that U]->1 N; =k/N. Let j € N be fixed and suppose
that = : k — k/N is the natural map. Let b € N, and a € k be such that 7(a) = b.

By assumption there exists 0 # ¢ € Re such that ca € N. That is, there is some
f € Ry such that 0¢(f)a € N. Hence

7(0e(f)a) = Ogyn = (70e(f))b = Opyn-

Therefore f € ann(b). Furthermore 0:(f) = ¢ # 0 and this means ann(b) 2 p.
Therefore the associated primes of Nj; all lie strictly above pe. Using the assump-
tion pe # {0} it follows that h(af4/P¢) < oo and Proposition 3.1.1 part 1 yields
h(aR4/P) = 0 for each p € Spec Ry associated with N;. The Lind, Schmidt, Ward

entropy formula then gives h(a™1) = 0. Thus, by part 3(b) of Proposition 3.1.1 we
have h(a*/N) = 0. O

Lemma 3.3.10 Let D be an integral domain and L ils field of fractions. If a is

algebraic over L then there exists ¢ # 0 in D such that ca is integral over D.
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Proof. See [15, Chapter 9, Section 1, Proposition 1]. O

Proof of Theorem 3.3.8. Since d = p and p; is principal, using the proof of Theorem
3.3.4, we see that the extension k|F is algebraic. If k|F¢ is not finite or pe = {0} then
(10) holds trivially. For the moment supppose that deg(k|F¢) = n for some n € N.

Let aq,...,a, be a basis for k over F;. Every element of k¥ may be written in the form
bl bn
—ay+ -+ —ay
(8] Cp,

where by,...,b,,c1,...,¢, € Re. Alternatively we may write this as

blai+---+ba,
c

where b},...,b/.c € Re. Consider the R;—module

U n)

(11)

N:Rd-CLl—I---'—I-Rd-CLn.

Since N is a free module associated with pe, the multiplicity of p, in any prime

filtration of N must be n. Therefore
Ma®) = nh(afal)
= nllogM(f)].
Now consider the R;—module k/N. From (11) it is clear that for any a € k\ N there

exists 0 # ¢ € Rg such that ac € N. By Lemma 3.3.9 it follows that h(a*/N) = 0.
Therefore by the addition formula

h(a*) = h(a*™) + h(a™)
— nllogM(f)]. (12
Also, the addition formula shows that h(a?) < h(a*) and so the required inequality
(10) follows.
Now suppose that D is an integrally closed domain. If k|F¢ is finite, then (12)

gives an expression for h(a*). If k|F; is not finite then, since k is countable, there

exists a chain
Fe=koCki Chky C---
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of subfields of k£ such that U;)il ki = k, deg(k;|F¢) < oo for all j € N and
deg(k1|Fe), deg(ks|F), deg(ks| Fe), . .

is a strictly increasing sequence of positive integers. By repeatedly applying the above
arguments to each of the fields k; and using part 3(b) of Proposition 3.1.1 it follows
that h(a*) = oco.

Since D is an integrally closed domain it must contain the integral closure of R,

in k. Denote this by R¢. Application of the addition formula gives
h(af€) = h(a®) — h(a*/Fe).

Using Lemma 3.3.10 and Lemma 3.3.9 we find that h(ak/ﬁ‘f) = 0 and thus

However

and so this forces h(aD) = h(ak). O

The assumptions that the associated prime p; is principal and that the action is
mixing are not particularly restrictive since if either is not the case then Proposition
3.3.2 shows that the entropy of the dynamical system is zero. It should be remarked
that not only does this theorem determine the existence of the multiplicity constant,
but also gives a maximum possible value for it, namely deg(k|F¢). Also, if k is
finitely generated over its prime subfield then, with the assumption that d = tp,
the extension k|F¢ is necessarily finite. Hence for any arithmetic dynamical system
(X,a) = (XP,aP9) where the field of fractions of D is finitely generated over
its prime subfield, using the results of this section we are able to give finitely many
possible values for k(). Moreover, when D is an integrally closed domain we can
now give a precise value for h(a). Table 2 provides a summary for this case. Note
that the fields k and F appearing in this table are as defined in Theorem 3.3.8. The

entry in this table which is missing is an entropy value for the case p = {0} and
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h(a)
« not mixing or | @ mixing and | ¢ mixing and pg = (f)
pe non-principal | pe = {0} non-zero
d<ip 0 o) 00
d=tp 0 00 deg(k|Fe)|log MI(f)|
d > tp 0 - 0

Table 2: Summary of entropy values in the integrally closed case.

d > tp. This is because it is impossible for the homomorphism 6 : Ry — D to have
a trivial kernel when d > tp, &1,..., & necessarily being algebraically dependent.

In light of Theorem 3.3.8, consider again Example 3.3.6. Here Fy = Q(t7,3) and
k = Fe(t1,12). The minimal polynomial for ¢; over F; is X* 4+ £; — 1 and the minimal
polynomial for 5 over F¢(ty)is X?—¢&;+3. Hence by the tower law for field extensions,
deg (k|F¢) = 4. Since D is a unique factorization domain it is an integrally closed

domain and so Theorem 3.3.8 may be applied to give
h(a(D’g)) = 4|log M(us + uz + uq + 1)|.

In [4] the authors give an entropy formula which applies to arithmetic dynamical
systems arising from a single unit in a ring of S-integers in an A-field k. One
consequence of this formula is that if S’ is a set of places of £ containing S, then the
arithmetic dynamical system which arises from the ring of S’—integers and the same
unit, has the same entropy as the original one (a result which has its origins in [19]).
The following corollary to Theorem 3.3.8 shows that an analogue of this result exists

in a much more general setting.

Corollary 3.3.11 Let k be a field, &,...,&; € k* and F¢ the field of fractions of
Re. If k| F¢ is an algebraic extension then for any subring D of k containing R — the

integral closure of Re in k,
h(a Py = h(aRed),

Let k be a field, &, ...,& € k™, F¢ the field of fractions of Re and suppose that

k|F¢ is a finite algebraic extension. By the Mori-Nagata integral closure theorem, the
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integral closure of R¢ in F¢ is a Krull ring. Hence by Proposition 1.6.2 the integral
closure of R¢ in k is also a Krull ring. Denote this ring by D. If P is the set of height
1 prime ideals of D and & C P then Ds = mpeP\S Dy is an integrally closed subring
of k containing D. Hence Corollary 3.3.11 shows that

h(a!Ps8)) = p(alP9),
Furthermore if &’ C P contains § it is now easily seen that
h(a\Ps8)) = p(alPse)),

This observation generalizes the analogous one for S—integer dynamical systems, dis-

cussed previously.

Example 3.3.12 Let ¢ be an indeterminate over Q and let k = Q(¢). Set & =t + 2
and & = —3t — 5. Notice that * # 1 for all non-zero n € Z? and so all arithmetic

dynamical systems arising from subrings of k£ containing R, are mixing. Since D =

Re = Z[t,%, _31_5] is a unique factorization domain, it is integrally closed in its
own field of fractions, which is of course k. Let P be the set of height 1 prime ideals
of D (recall that these are given by the irreducibles in D, because D is a unique

factorization domain). Define

S = {(p) : p is a rational prime} U {(#* — 1)}.

Then Ds = Q[t, 1 L_]. By the above h(a(Ps€)) = h(a(P9), But

) 3420 —3t—57 31

D = Ry/p:
= Rd/(U2—|—3u1—1)

Using [33, Theorem 1] we calculate M(ug + 3u; — 1) = 3. Thus
h(aPs9)) =1og 3.

An important condition of Corollary 3.3.11 is that the extension k|F} is algebraic.

The example below illustrates why.
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Example 3.3.13 Let ¢ be an indeterminate over Q and let k = Q(¢). If £ = 5 then
Re = Z[%] and so Fy, the field of fractions of R, is simply Q. Also every element of
k\ Fy is trancendental over F; and hence Ry, the integral closure of Rg in k, is the
same as the integral closure of Rg in F¢ which is clearly Re. Since pe = (uy — 5) it
follows that

h(a(ﬁﬁvf)) — h(a(RﬁvE))
— h(Ole/(ul_5))
= |logM(u; —5)|
= 5.

However the ring D = Z[1,1] C k contains R¢ but has tp = 2. Therefore by Theorem
3.3.4, because d = 1 < 2 and p; is principal,

h(oz(D’g)) = 0.
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Chapter 4

Expansiveness

4.1 Algebraic characterization

The dynamical property of expansiveness for Z-actions by homeomorphisms of com-
pact metric spaces has been the subject of extensive study. For example, it is well
known that there are no expansive homeomorphisms of the torus T [35, Section 5.6].
Recently, there has been interest in expansive actions by groups other than Z. For
example, Morris [24, Theorem 2.9] has shown that a Z%-action by homeomorphisms
of T cannot be expansive. Studies of countable group actions by automorphisms of
compact metrizable groups have yielded some interesting algebraic consequences of
expansiveness. Although the definition of expansiveness is usually given in terms
of a metric, it is actually a topological property [35, Corollary 5.22.1]. Let X be a
compact metrizable group, G a countable group and « : G +— Aut(X) a G—action by
automorphisms of X. Then « is expansive if and only if there is a neighbourhood N
of the identity 1x in X such that

ﬂ ay(N) ={1x}

9€G
where a, is the image of ¢ in Aut(X).

The property of expansiveness, for dynamical systems (X, «) as defined above,

receives analysis in [13]. Here the authors highlight an important connection between

expansiveness and the descending chain condition. This is the condition that any
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descending chain
XD>OXiDXyD:---

of closed a—invariant subgroups of X eventually becomes stationary. When the count-
able group (G is abelian and finitely generated [13, Theorem 5.2] shows that the de-
scending chain condition is implied by expansiveness, and if X is zero dimensional
then the converse also holds.

For an algebraic Z-action, conditions for expansiveness can be expressed in terms
of the dual module and its associated primes. This result originally appeared in [29]
(see also [30, Proposition 5.4 and Theorem 6.5]). Before stating it, the following

definition is required. For any ideal a of R; the complex variety of a is
Ve(a) = {z € (C*)*: f(z) = 0 for all f € a}.

Theorem 4.1.1 Let (X, ) be an algebraic Z-action and M the corresponding dual
Rg-module. Then « is expansive if and only if M is Noetherian, with associated
primes Py, ...,p, say, and for any (z1,...,2z4) € U;:1 Ve(pj), |zi| # 1 for some
i€ {l1,...,d}.

4.2 Arithmetic characterization

To contextualize the arithmetic characterization of expansiveness in the general case,
it is useful to consider first the situation for dynamical systems of the form (X a(D’g))
where D is a ring of S—integers in an A—field. Recall that in this situation, the adelic
description of the dual group of D is available, as given in Section 1.6. Also there is

a convenient description of the action, given by Example 1.8.1.

Proposition 4.2.1 Lel Dg be a ring of S—integers in an A—field k. Let T denote the
union of the finile places S and the infinite places of k. If (X, a) = (XPs, aPs9) s
the dynamical system arising from unils &y,...,¢&q in Dg then o is expansive if and

only if for any X € T, |&i|x £ 1 for some i € {1,...,d}.
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Proof. Recall that X = k%/¢(Ds) and that there is a local isometry between X
and k°. Hence it is enough to check expansiveness of the action B:n+— By, as defined
in Example 1.8.1. First suppose that for any A € T' there is some 7 € {1,...,d} such
that ||y # 1. Note that this means 7' is necessarily finite and so £ is a finite product
of fields. Hence if Uy = {x\ € ky : |z\|xn < 1} then U = HAeT U, is a neighbourhood
of zero in k. Let * = (x)) be any non-zero element of U, then for some A\ € T
we have z) # 0. But for such a A there is some 7 € {1,...,d} such that |&]\ # 1.

Therefore there exists n = (nq,...,n4) € Z% such that

1Pz = &IV &l @

> 1.

That is {"zy ¢ U,. Hence Bn(x) ¢ U. This shows that U is an expansive neigh-
bourhood of zero. Now suppose that there is some A € T with |§]y = 1 for all
i = 1,...,d and let U be any neighbourhood of zero in k%. Then there exists a
non-zero ¥ = (x)) € U with z) = 0 for those A with |&]\ # 1 for some ¢ € {1,...,d}
and z, # 0 otherwise. Hence for all A € T and n € Z%, |¢"z,|x = |za|». This means

Bn(”c) € U for all n € Z% Thus 3 is non-expansive. O

When comparing Proposition 4.2.1 and Theorem 4.1.1, there are obvious similar-
ities. In fact it can be shown that in the situation above, the points of the complex
variety Vi(pe) correspond to the infinite places of the A-field in question, restricted
to 1ts minimal subfield containing &;,...,&;. The Noetherian condition of Theorem
4.1.1 is taken care of by the finite places appearing in Proposition 4.2.1 and the details
of this will become apparent when the general case is considered. However there is a
problem that occurs in the general case which is not highlighted by Proposition 4.2.1.
Because the set of all discrete valuations of an A—field k satisfy the finite character
property, given ¢y, ...,¢; € k, there can only be finitely many A for which |&]y # 1
for some ¢ € {1,...,d}. Hence, if for any A € S there exists ¢ € {1,...,d} such that
|&i]n # 1, this means that S must be a finite set. When this is the case it can be
shown that Dg is a finitely generated ring (that is, finitely generated over F, or Z,

depending on the characteristic). The importance of this is manifest in the following.
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Lemma 4.2.2 Let A be a Noetherian ring and B an A—algebra. Then B is a Noethe-
rian A-module if and only if every element of B is integral over A and B is finitely

generated as an algebra over A.

Proof. See [15, Chapter 9, Section 1]. O

Hence in the general case, if we wish to find a set of absolute values which play
the part of the set S above, to get a true analogue of Proposition 4.2.1 this set
must detect when the underlying ring D is finitely generated. Unfortunately, it does
not seem that there is such a set for an arbitrary integral domain D, even if non-
discrete valuations are also considered. Therefore, attention is now restricted to
finitely generated integral domains. Theorem 4.1.1 and the lemma above show that
this restriction is not unreasonable, since no choice of ¢ will generate an expansive
action if D is not finitely generated.

Suppose that D is a finitely generated integral domain with field of fractions k.
Let {Dy : X € Sp} be the family of discrete valuation rings of & which do not contain
D, and for each A € Sp let |- |, be an absolute value representing the equivalence
class corresponding D) (as given by (4)). Thus, when D is a ring of S—integers, Sp

corresponds to S.

Proposition 4.2.3 Lel D be a finitely generated integral domain and &, . .., &5 unils
of D. Then D is a Noetherian Ry—module under the map 0¢ : Ry — D «f and only if
for any A € Sp, |&|x £ 1 for some i € {1,...,d}.

Proof. By Lemma 4.2.2, D is a Noetherian R;—module under the map 6 if and only
if the extension R C D is integral, that is if and only if R and D have the same
integral closure in k, the field of fractions of D. By [23, Theorem 10.4] the integral
closure of a subring of & is the intersection of all valuation rings of & which contain
that ring. By applying the Mori-Nagata integral closure theorem, it follows that the
integral closure of D in k is simply the intersection of all discrete valuation rings of
k which contain D. Denote this ring by A. Since R¢ is a Noetherian ring the same
theorem may be applied to show that the integral closure of R in F¢ (the field of
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fractions of Re¢) is a Krull ring. Denote this ring by B. If L is the algebraic closure
of F¢ in k then since k is finitely generated over F, it follows that L|F¢ is a finite
extension. Hence by Proposition 1.6.2 the integral closure of B in L is a Krull ring, C'
say. Note that (' is also the integral closure of R¢ in k and so (' is the intersection of
all valuation rings of £ which contain R¢. However, by Proposition 1.6.4, C' may be
expressed as the intersection of discrete valuation rings of & which contain C' (which of
course also contain Re¢). Therefore it follows that C' is the intersection of all discrete
valuation rings of k& which contain R;. Let A4 be the family of all discrete valuation
rings of k£ which contain A and A¢ the family of all discrete valuation rings of & which
contain C'. Since A¢ is necessarily contained in A4, it follows that A = C if and only
if A4 is contained in Ag. Furthermore, because Ay is also equal to the family of
discrete valuation rings of k£ which contain D, it follows that A = C if and only if
Re is not contained in D) for all A € Sp. If |&]y # 1 for some ¢ € {1,...,d} then
it is clear that R is not contained in D). Conversely, if R¢ is not contained in D)
then there is some a € R¢ such that |a|y > 1. However, a may be written in the
form a =37 . eané™, where ay € Z or ay € F, depending on the characteristic of £,

an = 0 for all but finitely many n = (n1,...,nq4) € Z% and £* = €1 --- 4%, Therefore
|afy < max {[an[5[¢"]3} -
neZd

If the characteristic is positive then |ay|y = 1 and if the characteristic is zero then
lan|y < 1. In either case, for some n € Z? we must have ||y > |aly > 1. This can
only happen if |£;| # 1 for some 7 € {1,...,d}. O

Let k be a field and &;,...,&; € k*. Suppose that 8, : Rq — k is the substitution
map and pg is the associated prime. For any z € Vi(pe) there is a corresponding real

valued function | - | : R¢ — Ry, defined as follows. For each a € R; choose some
fa € le(a). Set



This is well defined because if we choose ¢, € 9§_1(a) with f, # ¢., then since
fa = ga + h for some h € pg,

9a(z) = [u(z) + I(2)

Note that in general |- | is not an absolute value because potentially |a| = 0 for some
non-zero a € Re. However, | - | still has the status of a partial norm. If the family of
all such partial norms is {|- |y : A € Sy} then for an arithmetic dynamical system,

Theorem 4.1.1 can be restated in the following way.

Theorem 4.2.4 Lel (X, a) = (XP,aP9) be an arithmetic dynamical system arising

from units &1, ...,&; in the finitely generated integral domain D. Then « is expansive

if and only if for any X\ € Sy U Sp, & £ 1 for some i € {1,...,d}.

Proof. Use Theorem 4.1.1 and Proposition 4.2.3. g

In the general case, as well as emulating the role of the infinite and finite places
for S—integer dynamical systems, the sets Sy and Sp have a rich structure. Let A =
Clut!, ... ,udﬂ] and X = Spec A. By definition, the points of Sy parameterize the
variety Vo(pe) and this in turn corresponds to the set of closed points of X contained in
V(ag), where ag is the ideal generated by p¢ in A. Hence Sy may be thought of as the
set of closed points of the affine scheme, Spec A/a;. For any z = (21,...,24) € (C*)?
let m, € X be the maximal ideal of A generated by uy — 2z1,...,uq — z4. Then the

condition that
AE Sy = |&]y #£ 1 for some ¢ € {1,...,d}
is equivalent to
m, & V(ag) for all z € S

Let Y be equal to the set Sp together with an additional element 5, called the generic
point of Y. Define a subset of Y to be open if it contains 5. It is readily checked that
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this defines a topology on Y. Let k denote the field of fractions of D and set D, = k.
For each open set U C Y let

Oy(U) = () D».
AeU
For open sets V' C U there is an inclusion Oy (U) C Oy (V) and hence a natural
injective homomorphism pyy : Oy(U) — Oy (V). It is readily checked that this
defines a sheaf of rings Oy on Y, and that (Y, Oy) is a locally ringed space. Moreover
(Y, Oy) is a scheme because each A € Y has a neighbourhood isomorphic to Spec D,.

The set of closed points of this scheme clearly corresponds to Sp and the condition

that
AESp = |&|\# 1 for some i € {1,...,d}
is equivalent to
Re ¢ Oy, for all X # 1.

We now apply Theorem 4.2.4 and the above discussion to some arithmetic dynamical

systems.

Example 4.2.5 Let k£ be an A-field and &,...,&; € k*. If for every infinite place
Aof k, &)y # 1 for some @ € {1,...,d}, then there is precisely one ring of S-
integers Dg C k, for which the arithmetic dynamical system (X, a) = (XPs, a(P59)
is expansive. To see this, note that by assumption &;,...,&; must be units of Dg.
Hence S must contain the set of finite places A of k for which |&]y # 1 for some
i € {1,...,d}. Furthermore, this inclusion must be strict otherwise Proposition 4.2.1

would be violated.

Example 4.2.6 Let D = Z[t*!, #M], where ¢ is an indeterminate and a, b are non-
zero integers. Set ¢ = ¢ and ¢ = at + b. Here D is simply the intersection of all
discrete valuation rings in Q(¢) for which &; and &, are both units. Hence Sp is exactly

the set of A for which either |£1]y # 1 or |&3]y # 1. Suppose that A € Sy corresponds
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to the point in (C*)? with first co-ordinate x +y+/—1, where x,y are real. If ||, = 1
then |t[y = 1 which implies

4yt =1. (13)

If [£2]n = 1 then |at 4 b[y = 1 and therefore (az + b)? + a?y* = 1. Hence if (13) also
holds then

y2:2a2—|—262—|—2a262—a4—b4—1

for some real y. This means that the arithmetic dynamical system (XD,oz(D’f)) is

non-expansive for those a, b which satisty

2a% + 20 + 2420 —a* = b — 1 > 0. (14)
Since the quartic equation

Xt =2+ 1)X? + b6 -2 +1=0

has roots X = £(b+ 1), X = £(b — 1), it follows that for a given b € Z the choices
of a for which (14) holds are

a=b—1,bb+1,—b—1,—b —b+l.

In particular, once b is chosen, there are only finitely many choices of a which, with the

defining data D = Z[t*, at1+b]7 & =t and & = at + b, will generate a non-expansive

arithmetic dynamical system.

Example 4.2.7 Let D = Z[t, 1z, preg)s

& = MTH'I We claim that (XP, alP€)) is non-expansive. First note that |¢;], = 5 for

where ¢ 1s an indeterminate. Set ¢&; = 5 and

all A € Sy and so we need to look at Sp to detect non-expansiveness. By Example
1.6.6 there is a non-archimedean absolute value |- |\ on Q(%), the field of fractions of
D, which extends the 3—adic absolute value on Q and has |£2]y = 1. Since |-|) extends
the 3-adic absolute value, we also have |£1|y =1 and D ¢ D,, that is A € Sp. Hence

by Theorem 4.2.4 this arithmetic dynamical system cannot be expansive.
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Example 4.2.8 Let D = Z[1*', 1=, L] If & = ¢* and & = 2t> — Tt 4 3 then the
arithmetic dynamical system (X7, a(P€)) is expansive. First consider Sp. Let Y be

the scheme obtained by adjoining a generic point to Sp and

YT = {)\ EY:Z[t]COK,\}
Y, = {AeY:Z[}]C Oy}

Note that Y] and Y; are open subschemes of Y and Y = Y; U Y,. For each X € Y7,
let my denote the maximal ideal of Oy, y. Similarly for A € Y3. If X; = Spec Z[{]
and X, = Spec Z[%], then there are morphisms v : Y] — X; and ¢y : Y5 — X,
given by A — my N Z[{] and A — m, N Z[}], respectively. For any open set U
in X, notice that Ox,(U) is a subring of Oy, (¥;'U) and hence there is a natural
injective homomorphism from Ox, (U) into Oy, (47'U). Similarly for X,. The values
of |1, -y |€a]lx, A € Sp may be established by considering the images of ¥; and
Y2 in X and X3, respectively. By looking at the generators of D we establish that
¥1(Y1) is contained in

Pr=A{(1), (2t = 1),(t =3),(2,1 = 3),(3,2t = 1), (p,t = 3), (p, 2t — 1)}

and 12(Y3) is contained in

Pr={(3)2=9,(1-),21-3).6.2=3),(n1 =3 (2= )}

In both cases p is any rational prime, not equal to 2 or 3. By considering each of these
ideals in turn, it can be seen that for any A € Sp, either [&]y # 1 or |&2|\ # 1. For
example, consider p = (2,1 — %) € P, and notice that & can be written in the form
a/b, where a € p and b € Z[}] \ p. This means that if D) is any discrete valuation
ring for which my N Z[}] = p, then

213 = la/blx = laly[b]3" = |afy > 1.

A similar approach can be used with all other elements of P, and F;.
Now consider Sy. Suppose that A € Sy corresponds to the point in (C*)? with
first co-ordinate = + y+/—1, where z,y are real, and that both |& [y = 1 and |&], = 1.

58



This implies that

and
(22 —2y* — Tz +3)* + y*(4a — 7)* = 1. (16)
Combining (15) and (16) yields
242° — 70z +49 =0

which has two real solutions strictly greater than 1. Thus z* > 1 and so (15) has no

real solution for y, which is a contradiction. Therefore there can be no A € Sy with

both [£1]y =1 and |&;], = 1.

4.3 Expansive subdynamics

Suppose that o : n —+ ay is an expansive algebraic Z%action on the compact abelian
group X. We aim to investigate the ‘expansive subdynamics’ of a. To this end, the
approach introduced by Boyle and Lind [3] will be followed. This involves considering
subsets of R? and their intersections with Z?. For ease of notation the intersection of

a given subset F of R? with Z? will be written Fy. For any real number > 0 define
T d - . <
= (v R i v w] <)

where || - || is the Euclidean norm on R% Geometrically, F" can be thought of as the
thickening of F' by r (see Figure 1). A subset F of R? is called expansive for a if
there is some r > (0 and a neighbourhood N of 0x such that

ﬂ an(N) = {OX}

nEF£

If F' fails to meet this condition then F' is called non-expansive for a. Particular

attention will be paid to linear subspaces of R%. Let G, = Gy, be the Grassmann
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Figure 1: A thickened line in R2

manifold of /~dimensional subspaces of R% The elements of G; will be called -
planes. The topology of G; is given by stating that two [-planes are close if their
intersections with the unit sphere are close in the Hausdorff metric. Following Boyle

and Lind, let

Ei(a) = {F € G;: F is expansive for a}

N/ (o) = {F € G;: F is non-expansive for a}.

Example 4.3.1 Consider the arithmetic dynamical system generated by the data
D = Z[], &1 = 2 and & = 3. Proposition 4.2.1 shows that (X, a) = (XP, alP9) is
expansive. Recall that there is a local isomorphism between X and the product of

fields
Y =RxQxQs

and that « can be studied via the lifted action given by multiplication by 273"
componentwise on Y. Since a is an expansive Z*-action, N;(a) is non-trivial only for
[ =1. Let F C R? be a thickened line passing through the origin. By using the adelic
description of X = D, it becomes apparent that « is non-expansive along F' if and
only if {|2"13"2]) : (ny,n,) € F7} is bounded, where | - |) is either the 2-adic, 3—-adic

or archimedean absolute value on Q. For the 2-adic place this can only happen if F
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is such that ny is bounded (that is, F' is a thickening of the z—axis). For the 3—adic
place this can only happen if F' is such that ny is bounded (that is, /' is a thickening
of the y—axis). For the infinite place, this can only happen if there is a real number

r such that for all (ny,ny) € F, |2"3"| < r, that is
nylog2 + nylog3 < logr.

Here | - | denotes the usual archimedean absolute value on R. Hence the line y =
(—log2/log 3)x is also non-expansive. Thus Ny(a) comprises the three lines z = 0,

y=0and y = (—log2/log3)z.

A fundamental result of [3] is that for an expansive Z%-action «a, N;(a) consists
precisely of those [-planes which are subspaces of some (d — 1)-plane in Ny_;(a).
Hence the sets Ny—1 () and E;—1 () completely describe the expansive subdynamics of
a. The remainder of this section is therefore concerned with methods for determining
the expansiveness (or otherwise) of (d — 1)-planes.

For any (d — 1)-plane F' there are two corresponding half-spaces Hy, Hy for which
F is the boundary. More specifically, H; U H, = R? and H, N Hy = F. The following
lemma reveals how these half-spaces are useful for determining whether or not F' is

expansive for a.

Lemma 4.3.2 Let o be an algebraic Z-action and F € Gy_y. Then F € Ny_y if

and only if there is a half-space H which is non-expansive for a and has boundary F.

Proof. See [6, Lemma 2.9]. O

Thus expansiveness along a (d — 1)—plane can be determined by considering the
half-spaces for which it is the boundary. Let S;_; denote the unit (d — 1)-sphere
{v e R?: ||v|] = 1} and Hy the half-space with outward normal v € S;_;, that is
H, = {w € R?: w-v < 0}. The set of all half-spaces in R? is parameterized by
S4—1 via the correspondence v < H,. For an algebraic Z% action this perspective
provides a more immediate algebraic characterization of expansive subdynamics than

that given by using (d — 1)—planes.
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Theorem 4.3.3 Suppose that (X,a) is an expansive algebraic Z%-action and M is
the corresponding dual module. Let v € Sy_1, then H = H, is expansive for « if and
only if for every associated prime p of M

1. Ra/p is a Noetherian module over the ring Ay = Z[u™: n € Hy).
2. [0,00)vNY(p) =2

where V(p) = {(log |z1],...,1og|z4|) : (21,...,24) € Ve(p)} and [0,00)v denotes the
ray {rv :r >0} C R? through v.

Proof. See [6, Theorem 4.9] O

Before the implications of the above for arithmetic dynamical systems are consid-
ered, recall the definition of the locally ringed space introduced in Example 1.7.1, the
Zariski space Zar(k, A) of all valuation rings of a field k£ having centre in a subring A.
The use of Zariski spaces allows similarities between conditions 1 and 2 of Theorem
4.3.3 to become apparent. The Zariski space Zar(k) of all valuation rings of k is
Zar(k,Z) or Zar(k,F,), depending on the characteristic of k. For a subring A of a
field k& denote the complement of Zar(k, A) in Zar(k) by V(k, A).

Suppose that k is a field, &,...,&; € k* and 0 : Ry — k is the substitution map.
We claim that R;/pe is a Noetherian module over the ring Ay = Z[u™ : n € Hy] if
and only if

Zar(k, Rg)NV(k,R;) = @

where Ry = 0:(Ag). If Ry/ps = Re is a Noetherian Ag—-module, then clearly it is a
finitely generated Ag-module. By [23, Theorem 9.1], this means that every element
of R¢ is integral over Rp. Conversely, if Ry C Re is an integral extension, because R
is a finitely generated ring (and hence a finitely generated Ap—algebra) [15, Chapter
9, Section 1, Proposition 2] shows that R is finitely generated as an Ag—module.
Lemma 4.3 of [6] implies that Re must then be a Noetherian Ag—module. Thus,
Rq/pe is a Noetherian Ag—module if and only if the extension Ry C Re is integral.

The latter condition is equivalent to saying that Ry and R, have the same integral
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closure in k. Since the integral closure of a subring of a field is the intersection
of all valuation rings of that field which contain it (see for example [14, Corollary
7.3.3.2] or [23, Theorem 10.4]), it follows that Ry C Re is integral if and only if
Zar(k, Rpy) = Zar(k, R¢). That is, Zar(k, Rg) N V(k, R¢) = @. Thus Theorem 4.3.3

can be restated as follows.

Theorem 4.3.4 Lel (X, a) = (X7, alP9) be an expansive arithmelic dynamical sys-
tem. For any v € Sy_1, the corresponding half-space H = H, is expansive for a if
and only if

1. Zar(k, Rg) N V(k, R¢) = @.
2. [0, OO)V N V(]Jg) =

where Ry is the subring of D generated by {&™ : n € Hy} and k is any field containing
£1,...,¢.

With the aid of Theorem 4.3.4 the expansive subdynamics of a range of illustrative
examples is now investigated. In all these examples, the changing roles of V(k, R;)
and V(p¢) become clear. To begin with, the opening example of this section is again

considered.

Figure 2: Non-expansive set for Example 4.3.5.



Example 4.3.5 Let D = Z[é], & = 2 and & = 3. It has already been shown
that (X, a) = (Xp, aP?®) is an expansive arithmetic dynamical system. We wish to
find the points of S; which describe the non-expansive directions for (X, «). Clearly
pe = (u1 — 2,u; — 3) and so Ve(pe) = {(2,3)}. Therefore, V(pe) = {(log2,log3)}
and the intersection of the ray passing from the origin through this point is shown in
Figure 2. The Zariski space of all valuation rings in Q is parameterized by Spec Q

and it is easy to see that

V(Q,Z[F]) = {Z @), Ze)}-

Furthermore, for a half-space H = Hy, the subspace Zar(Q, Ry ) of Zar(Q) is precisely
the complement of the above unless, v = (—1,0) in which case Zar(Q, Ry) contains
Zz), or v.= (0, —1) in which case Zar(Q, Ry) contains Zs). In either case, condition
(1) of Theorem 4.3.4 is violated. Figure 2 gives a complete picture of the expansive

subdynamics of this example, as parameterized by S;.

Example 4.3.6 Let D be the ring of integers in the A-field & = Q(v/3). Theorem
3.1.3 of [5] shows that D = Z[v/3]. The localization of D at (1 4 v/3) € Spec D is
a discrete valuation ring D) giving rise to a finite place A of k. Let S = {A}. If Dsg
is the ring of S—integers in k, & = 2 4+ v/3 and & = 2 then Proposition 4.2.1 may
be used to show that (X, a) = (XP5, aPs8)) is an expansive arithmetic dynamical

system. We wish to examine the expansive subdynamics of (X, ). First note that
V(k, R¢) = {D,} and for any n = (nq,ny) € Z*
n(€®) = on(24 V31 + ua(2)ny
= 27’L2
where vy 1s the normalized valuation corresponding to A. Hence, for a half-space H
the ring Ry contains an element with A—adic absolute value less than 1, except when
H has outward normal (0, —1). That is Dy € Zar(k, Rg) provided H is not the half-

space with outward normal (0,—1). There are two other non-expansive directions

which are derived from
V(pe) = {(log(2 + v/3),10g 2), (log(2 — V/3),log 2)}.
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Figure 3: Non-expansive set for Example 4.3.6.

Figure 3 shows where the rays in R? passing through these points intersect S;.

Example 4.3.7 Let D be the ring of integers in k = Q(v2 + V5), & = 1 + V2,
£ =245, & =34+V2V5 and (X, a) = (XP,o(P4)). Again Proposition 4.2.1 may
be used to show that this arithmetic dynamical system is expansive. Since R is an
integral extension of Z it follows that V(k, R¢) = @. Therefore it is only necessary to
consider V(p¢), which consists of the points

{(log[r(&)]; log [7(&)[,log |7(Es)]) = 7 € Gal(K[Q)}-

Figure 4(a) shows where the rays in R® passing through these points intersect S,.

Figure 4(b) shows the corresponding non-expansive planes in relative position in R?

Example 4.3.8 Let D = Fy[ty, 1o, %, ﬁ, t;_l] where t; and 1y are algebraically
independent indeterminates over Fy, & =11, & =t + 12, &3 =t + 1 and (X, ) =
(XPs, a(Ps8)) the resulting arithmetic dynamical system. The associated prime pg
contains 2 and the polynomial 1 4 wy + uy 4+ uz, and these elements of R3 generate
a prime ideal p € Spec Rs of height 2. Since R3/pe = D is not a field, this means
that pe cannot be maximal. Moreover R3 has Krull dimension 3 and so pg has height

2. Therefore pe = p. Hence, as an Rz—module, D = R3/(2,1 + uy + uz + us).

65



mﬂ
A

Figure 4: Non-expansive set for Example 4.3.7.

(@

The algebraic dynamical system corresponding to this module has been studied in
[3], where the authors use alternative methods to investigate expansive subdynamics.
However, Theorem 4.3.4 can also be applied, using the isomorphism described above.
Since 2 € pg, the complex variety Vo(pe) is empty (and because we are dealing with a
cyclic module this shows that « is expansive). Hence, it is only necessary to consider
V(k, R¢). We will deal with the octant {n = (ny,n2,n3) € R? : ny,ny,n3 > 0}
(the other 7 octants can be treated similarly). Suppose that 71, T, are algebraically
independent indeterminates over F,. Example 1.6.7 shows that for any A > 0 there
is a real valued valuation vy on L = Fy (7}, T5,) which has vy(77) = 1 and v)\(T3) = A.
If & = Fa(t1,%2) then there is an isomorphism 6 : k +— L given by sending % to T}
and —— to Ty. This induces a valuation w)y on k given by wy () = v\(#(+)) which has

ta+1

wi(ty) = —1, wa(t2+ 1) = =X and

T+ T, + 11T
wy(ty + 1) = m( 1+ A+ 1 2>

1T,
_ -1 ifa<l1
I S N P
Note that for each A, the valuation ring D) corresponding to wy lies in V(k, R¢). Now

for all n = (ny,n9,n3) € Z4

wi (171 (t 4 12)"2 (t2 + 1)) = wi(t1)n1 + wa(ts + t2)ne + wa(ts + 1)ns (17)
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and so if A < 1 and H is the half-space with outward normal (1,1, X), then wy(a) > 0
for all @ € Ry. If A > 1 and H is the half-space with outward normal (1, A, X), then
(17) again shows that wy(a) > 0 for all @ € Ry. Hence in either case, Dy € V(k, Ry).
If the isomorphism 6 : k +— L is replaced by 8" : k — L, given by sending %
to T7 and i to Ty, then using completely analogous methods to above, for every
0 < A < 1 we obtain a valuation wy on k with wy(t1) = —A, wy(t2 + 1) = =X and
wi(t; + t2) = —1. This means that for a half-space H with outward normal (X, 1, }),
again the valuation ring corresponding to w) lies in Zar(k, Rg). Thus in all cases
just described Zar(k, Ry) N V(k, R¢) # @ and so by Theorem 4.3.4 the corresponding

half-spaces Ry are non-expansive. Figure 5(a) shows the curves produced in S, by

Figure 5: Non-expansive set for Example 4.3.8.

varying A, each point of which represents a non-expansive half-space. The curves 'y
and (5 arise from the isomorphism # with the choices A < 1 and A > 1 respectively.
The curve C3 arises from the isomorphism 6" with A < 1. Note that selecting A > 1

with the isomorphism " duplicates the curve (.

To see that the regions bounded by, but not including these curves represent
expansive directions, consider the following. Suppose that n = (nq1,n9,n3) € Sz
satisfies ny,ng,ng > 0, n3 > ny and ng > ng, so that n lies inside the region shown in

Figure 5(a) which is bounded by the curves C5y and C5. Then we may choose positive
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integers [, m, with [ even, so that
{ . { n3 N3 }
l<—<ming—,— 7.
m No N

If H is the half-space with outward normal n then (¢, + #3)'/(to +1)™ € Ry and
tt/(ty + )™ € Ry. Clearly also —— € Rpg, giving (t; + 3)'/(t + 1)'"! € Ry and

241
t'/(ta +1)'"' € Ry. Hence
(t1 + o) t 1
1 =1y € Ry.
R R U e ey

Since i € Ry and t1it2 € Ry, this shows that Ry = Re and so Zar(k, Ry) =
Zar(k, Re). The other 2 regions in Figure 5(a) can be dealt with similarly. Figure
5(b) shows the complete non-expansive set for this example, taking into account the

other octants.

@ (b)

Figure 6: Non-expansive set for Example 4.3.9.

Example 4.3.9 Let { be an indeterminate, k¥ = Q(¢) and (X,a) = (X, alP9)
. . . _ gl 11 —

the arithmetic dynamical system generated by the data D = Z[t*, 7, t+_1]’ &L =1,

& = —t — 1 and & = 2. The generators &4, &y, €3 parameterize the complex variety

Ve(pe) and hence the logarithmic image in R? is
V(pe) = {(log|z|,log |2 + 1],log 2) : z € C* }.
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Since D = R, this is sufficient to show that « is expansive. The set V(p¢) is shown
in Figure 6(a) and Figure 6(b) shows where the rays in R® passing through V(p;)
intersect the upper hemisphere of S%, each point representing a non-expansive half
space.

To illustrate how to calculate the half-spaces H which are non-expansive due to the
non-trivial intersection of Zar(k, Ry) and V(k, R¢), consider for example the octant
{n = (n1,n2,n3) € R*: ny,ny > 0,n3 < 0} (as in the previous example, the other 7
octants can be treated similarly). Example 1.6.7 shows that for each A > 0 there is a
real valued valuation vy on k which has v\(¢) = =X, va(—=t — 1) = =X and v,(2) = 1.
Let D), denote the valuation ring of £ which corresponds to vy. If H is the half-space
with outward normal (A, A, —1) then for alln € Hy,

o (1" (=t —1)"2") = —Ang — Ang + ng
> 0.

Hence D, € Zar(k, Re¢). Clearly also Dy € V(k, R¢) which shows that H is non-
expansive for a. By varying A we obtain a quarter meridian on Sy running from the
south pole to the point (\é_, ?,O), each point of which represents a non-expansive
half-space. To see that these are the only non-expansive directions in this octant,
consider the following.

Suppose H is the half-space with outward normal n = (ny, ny, n3), where n satisfies
ny > 0,n9 > 0 and nz < 0. We wish to show that if ny # ny then H is expansive for a.
If ny > ny then there exist positive integers [, m with [ > m such that (t—l—l)l/tm € Ry.

Since Ry also contains 1 this means

7
!

tll Z()t]l_teRH'
7=1

It now follows that % € Ry. Also € Ry and so Ry = Re. Thus Zar(k, Rg) N

) t+1
V(k, R¢) = @. If ny > ny then there exist posfmve integers [, m with { > m such that

t'/(t+1)™ € Ry. Since Ry also contains t+—1 and -, we have

_1+Z<>t+1 =1 € Rpy.
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Again this means 1 € Ry, which implies Ry = Re and so Zar(k, Rg) N\ V(k, R;) = @.

Upon considering the other 7 octants, two other quarter meridians representing
non-expansive half-spaces arise. These run from the south pole to the points (—1,0,0)
and (0,—1,0). The complete set of non-expansive half-spaces for this example, as

parameterized by S, are shown in Figure 6(b).

It has been shown, for an arithmetic dynamical system (X, a) = (XP, a(P9)) how

the set
N(a) ={v € S4_1 : Hy is non-expansive for a}

can be calculated using the logarithmic image of the complex variety V(p¢) and the
locally ringed space V(k, R¢), where k is any field containing D. A closer look at the
examples above reveals that in many cases it is only necessary to consider elements of
V(k, R¢) which correspond to real-valued valuations. This is in fact always the case
as we shall now see.

Suppose that G is a finitely generated abelian group of Z-rank d. A homomor-
phism from G into the additive group of real numbers is called a character of G. It
is easy to see that the group of all such characters is isomorphic to R% Moreover,

under the equivalence relation
X1~ X2 X1=T"X2

for some r > 0, the set of equivalence classes [x] corresponding to non-trivial char-
acters, can be identified with Sy_;. This is the character sphere of (G. Suppose that
R is a commutative ring and M is a finitely generated RG—module. Following Bieri

and Groves [1], define the submonoid G, = {g € G : x(¢9) > 0} C G and
Y =A{[x] : M is not finitely generated over RG, }.

Bieri and Groves give a formula for Y7 in terms of valuations with value group
a subgroup of R. This formula will be considered in a moment. First, for the case
of a module M associated with an ideal p € Spec Ry, let us see how X corresponds

M

to the set N(a) when a = o™ is an expansive algebraic Z% action. Let H C R? be
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a half-space. Lemma 4.3 of [6] shows that condition 1 of Theorem 4.3.3 is satisfied if
and only if M is a finitely generated Ag—module, where Ay is as defined in Theorem
4.3.3. Because of the natural correspondence between the set of half-spaces of R? and
Sq_1, there is a correspondence between half-spaces and elements of the character
sphere for G = (u1,...,uq), the unit group of Ry. Hence, for each half-space H the
ring Ay may be identified with ZG,, where H = Hy, [x] = [x]-v and v € S;_4,

because

ncH;, & v-n<0
& x(u”) =0
& ut e G,.

Thus, —X s represents the set of half-spaces which do not satify condition 1 of The-
orem 4.3.3.

Let D be an integral domain, ¢, ..., &; units of D and 6 : Ry — D the substitution
map. Denote the subgroup of the unit group of D generated by &;,...,&; by =. Let
v be a valuation on 0¢(Z) C D and w : D +— R U {occ} a valuation with w|s (z) = v.
Again, following Bieri and Groves, let A}, (Z) denote the set of all characters x = w|=
induced by all such valuations w. If D is a Noetherian R;—module under the map 0;

then [1, 8.1] shows that
Sp = J[AL(E)]

where v runs through all valuations on 6¢(Z) (including the trivial one) and [A}(Z)]
denotes the set of equivalence classes obtained from the non-trivial elements of A% (Z).
Corollary 8.4 of [1] shows that the set dis¥p C ¥p consisting of equivalence classes
[x] € ¥p which contain a non-trivial character y with x(Z) C @, is dense in ¥p.
Moreover, by [1, Corollary 6.2] every such y is induced by a discrete valuation on D.
Since the character sphere of = is obtained from non-trivial characters, every element
of dis¥p is induced by at least one element of Sp. Denote the equivalence class of
characters induced by A € Sp by [x,]. A fundamental result of [1] is that ¥p is a

closed subset of the character sphere, so ¥p is in fact the closure of the set

{bx] + A € Sp}
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Fach element of Sy also induces a character of = as follows. For each A € Sy define

Xx: = +— R by
xa(a) = —log |aly.
We now have the following formulation of Theorem 4.3.3.

Theorem 4.3.10 Let (X, o) = (XP,a!P9) be an expansive arithmetic dynamical
system. Then N(a) is the closure of

—{xa]: 2 €Sy USH}.

Proof.  Let Ny denote the subset of S;_; consisting of elements v for which H,
violates condition 1 of Theorem 4.3.3 and N, denote the subset of S;_; obtained by
normalizing the elements of V(p¢) to unit length. Then N(a) = N; U Ny. Clearly,
Ny = —{[xa] : X € Sy} and the above discussion shows that —{[x,] : A € Sp} is
dense in Ni. Thus —{[xa] : A € Sy USp} is dense in N; U N;. Furthermore, [3,

Lemma 3.4] implies N(«) is a closed subset of S;_1 and hence the result folows. O
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Chapter 5

Homoclinic Points

5.1 Preliminaries

Let X be a compact abelian group and o : n — o an algebraic Z-action by
automorphisms of X. A point € X is called homoclinic (to zero) if an(z) — 0 as
|In|| — oo. The set of all such points in X is denoted by A,(X). It is routine to
check that A, (X) is a subgroup of X. In this chapter we investigate the relationships
between homoclinic groups and other dynamical properties for arithmetic dynamical
systems. For such a system, the influence of algebraic characteristics of its defining
data on the homoclinic group will also be considered. Immediately from the definition,
it is possible to deduce the following two results. The first rules out the possibility
of non-trivial homoclinic groups for non-mixing systems and the second is mainly
structural in nature. This will be useful in Section 5.3, although of interest in its own

right.

Lemma 5.1.1 Lel (X, a) = (XP,aP9) be an arithmelic dynamical system. If o is
not mixing then A,(X) = {0}.

Proof. According to Proposition 2.1.1, if & is not mixing then there is a non-zero
m € Z% such that £™ = 1. Therefore for all j € Z, a;m is the identity map. Hence,
if J ={jm:j € Z} then for all non-zero * € X, an(z) 4 0 as ||n|| = oo, n € J.
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Hence the only homoclinic point is 0. g

Proposition 5.1.2 Let k be a field, &, ..., ¢ € k™, A, B subrings of k which contain
€1,. .., & as unils, (X, a) = (X4, a48)) and (Y, 8) = (XB,3B4). If A C B then

Au(X) = {0} = As(Y) = {0}.

Proof. There is a surjective homomorphism ¢ : ' — B from a direct sum C' of copies
of A onto B. Moreover, if ¥ denotes the Z?-action given by the componentwise action
of @ on C, then ¥y = /3\77[} Dually, this means Y can be regarded as a f—invariant
subgroup W of X = 6, where 7 is the algebraic Z%action dual to 5. Furthermore

under this identification, 3 becomes the restriction of v to W. Therefore,

Ag(Y) = A (W)
= AX)NW.

Since A, (X) = {0}, it follows that A,(X) = {0} and so Az(Y) = {0}. O

For a basic example of an arithmetic dynamical system with non-trivial homoclinic

group, consider the following.

Example 5.1.3 Let D = Z[}], { = 2 and (X,a) = (XP aP8) the corresponding
arithmetic dynamical system. The action a may be realized using the adelic descrip-
tion of X and Example 1.8.1. Following this approach, the group X is identified
with (R x Q2)/¢(Z[3]), where ¢ is the canonical embedding. For every n € Z the

automorphism «,, is identified with the map given by

(2.y) + S(Z[5]) = (272, 2"y) + S(Z[3]).

For each a € Z[}] the point z, = (0,a) + ¢(Z[}]) is homoclinic since (0,2"a) +
$(Z[3]) — 0 as ||n|| — oo (here it is important to notice that (0,2"a) is congruent
to (2"a,0) modulo ¢(Z[3])). In fact, it will be shown in the next section that all

homoclinic points for this example are of the form z,.
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Lind and Schmidt [17] have dealt with numerous facets of homoclinic groups
for expansive algebraic Z%-actions, and some consequences of their results will be
considered in Section 5.3. Also in that section, we introduce a class of arithmetic
dynamical systems which extends the class of expansive ones, and homoclinic groups
are investigated for this wider class. Building on the approach used by Lind and
Schmidt, it is shown that homoclinic groups are not entirely unpredictable for a large

class of non-expansive algebraic Z%-actions.

An approach common to both [17] and the analysis which follows is the investiga-
tion of the relationship between homoclinic points and entropy. In a different setting,
King [11] has given an example of an ergodic transformation with zero entropy and
non-trivial homoclinic points. This relates to a problem originally posed by Gordin
which arose in [9]. For the following class of arithmetic dynamical systems this is not

possible.

5.2 The A-field case

When (X, o) = (X735, a(Ps¢)) is an arithmetic dynamical system arising from units in
a ring of S—integers in an A—field k, recall the description of X and « given in Section
1.6 and Example 1.8.1. For the rest of this section, X will be identified with the
group k°/¢(Ds) and a with the componentwise action described in Example 1.8.1.
This is particularly useful for calculating A,(X). In [22] the authors treat a special
case of the following, in a slightly different context. The approach used there (in
particular that used in the proof of Theorem 1.2) for toral automorphisms can easily
be extended to cover a larger class of algebraic dynamical systems, namely those of
the form (X, a) = (XPs, alPsd)),

Let a : n 5 ay be an algebraic Z%action on the compact group X and F C Z%
Suppose ¢ € X is such that ay(z) — 0 as ||n|| — oo and n € F. Such a point will be
referred to as homoclinic for a|r. The set of all these points, denoted by A, r(X), is
again easily seen to be a subgroup of X. Also, if F'is infinite then A,(X) C Ay r(X)
and this fact is often useful for showing that A,(X) is trivial. Another fundamental
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result is that if £ and F are both infinite subsets of Z% then

Theorem 5.2.1 Suppose that (X,a) = (XPs aPs9) is an arithmetic dynamical
system arising from units in a ring of S—integers. Then A,(X) is non-trivial if and

only if a is an expansive Z—action. Moreover, if this is the case then A,(X) = Ds.

Corollary 5.2.2 For the above class of arithmetic dynamical systems, A,(X) is non-

trivial if and only if o is expansive and has positive entropy.

Proof. Apply Theorem 5.2.1 and Theorem 3.3.4. g

To prove Theorem 5.2.1, the problem is considered in two stages. The idea is to

first deal with Z—actions and then extend to actions of Z®.

Lemma 5.2.3 Suppose that (X, o) = (XPs,a(Ps:8)) is an arithmelic dynamical sys-
tem arising from a single unit in a ring of S—integers. Then A,(X) is non-trivial if

and only if a is expansive. Moreover, if this is the case then A,(X) = Dg.

Proof.  Let k be the field of fractions of Ds and suppose that 7' is the union of
the set S together with the infinite places of k. Let Y+ C k° be the set of points
y = (y») € k¥ which have y, = 0 for all A satisfying |[{|, > 1. We claim that A, 7, (X)
consists entirely of points of the form y + ¢(Ds) where y € Y. Clearly, any point of
this form is homoclinic for a|z, and so it remains to show that if 2 € X is homoclinic
for a7, then z = y+¢(Ds) for somey € Y*. Suppose that 2 € X satisfies a,(z) — 0
as n — oo. Because of the local isomorphism between X and k°, for a sufficiently
large m > 0 it follows that a.,,(x) must be of the form y + ¢(Ds) for some y € Y.
Furthermore, since «,, is an automorphism, by applying a_,, it follows that = is also
of the required form. Let Y~ C k° denote the set of points y = (y,) € k° which have
yx = 0 for all X satisfying |¢]y < 1. Using completely analogous methods to above,
it can be shown that A,z_(X) consists of all points of the form y + ¢(Ds), where
y € Y~. Hence the group W = Az, (X) N A, z_(X) consists of points of the form
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y + &(Ds), where y € Yt and satisfies y = y’ mod ¢(Ds) for some y’ € Y~. Thus,
for some a € Dg, y = (y,) has

yx = a for each A € T satisfying [£[, < 1. (18)

Recall that « is expansive if and only if €|y # 1 for all A € T'. If « is non-expansive
then there exists A € T such that ||, = 1. By the definition of Y'*, for this A, y, =0
and hence (18) implies that @ = 0. Therefore y\ = 0 for all A € T. Thus W = {0}
and hence A,(X) = {0}. If « is expansive then (18) implies that each point of W is
of the form y, = (yga)) + ¢(Dg), where

@ _ ) 0 for those A with ||y <1
a for those A with |£[, > 1

and a € Dgs. Since A,(X) C W, upon checking that each point of the above form is
homoclinic, it follows that A,(X) = W.

It is readily verified that the map v : Dg — W given by ¢ (a) = y, is a surjective
homomorphism. If y, = y; then there is some ¢ € Dg such that y/(\a) = ygb) + ¢ for all
A € T. By the product formula for the global field &, there is necessarily some A € T
with |y < 1. Therefore, for this A, yga) = ygb) = 0. But then ¢ = 0 and so a = b.

Thus @ is an isomorphism. O

Proof of Theorem 5.2.1. 1f a is a Z-action then Lemma 5.2.3 shows that A,(X) is
non-trivial if and only if « is expansive. Also, if this is the case then the same lemma
shows that A,(X) = Ds. Hence it remains to show that if « is a Z%action with
d > 1, then A,(X) = {0}.

First suppose that there exists p € T such that |§], = 1 for some ¢ € {1,...,d}.
After some relabelling, we may assume that ¢« = 1. Let F' = {(m,0,...,0): m € Z}.
Since a|p is equivalent to a non-expansive Z-action, Lemma 5.2.3 may be applied to
show that A, z(X) = {0}, giving A,(X) = {0}. Now let € T" and suppose that
there are at least two of &;,...,&; which have p—adic absolute value not equal to 1.
After some relabelling, we can assume that both || # 1 and |&| # 1. For each
m € Z set

[(m) = [-mlog |&1],/ log |€al,]-
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Define the following subsets of Z?

E = {(m,l(m),0,...,0) € Z*:m € Z,}
and

F ={(m,l(m),0,...,0) € Z*: m € Z_}.

Notice that when n € F, [£*|, — 1 as ||n|| — oo. Similarly for n € F. Using
completely analogous methods to the proof of Lemma 5.2.3 it follows that

Agg(X) C{(zr) + ¢(Ds) : zx =0 when A = por [&]y > 1}
and
Ayr(X) C{(zy) + ¢(Ds) : xx = 0 when A = por [§1]y < 1}.

Therefore Ay g(X) N Ayr(X) = {0}. This implies that A, gur(X) = {0} and hence
AL (X) = {0}. d

5.3 The general case

In this section, homoclinic groups for more general arithmetic dynamical systems are
considered. In what follows, for an arithmetic dynamical system (X, a) = (XP, o(P+)

generated by units &, ..., &, in the integral domain D, the condition that
A € Sy = there exists ¢ € {1,...,d} such that ||y # 1

will be of particular significance. If (X, «) satisfies this condition then it will be
said to have an expansive variety. It is easy to see that arithmetic dynamical systems
with an underlying ring of positive characteristic have expansive varieties, because for
these systems Sy = @. Also, using Theorem 4.2.4, it can be seen that every expansive
arithmetic dynamical system has an expansive variety, and an arithmetic dynamical

system with an expansive variety is expansive whenever D is finitely generated and

A € Sp = there exists ¢ € {1,...,d} such that ||\ # 1. (19)
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Using Fourier analysis and some results from [17] it is possible to determine whether
or not many arithmetic dynamical systems with expansive varieties enjoy non-trivial
homoclinic groups. Before considering this problem further, a straightforward conse-

quence of the results of [17] is given.

Theorem 5.3.1 Let (X,a) be an expansive arithmetic dynamical system. Then
AL(X) # {0} if and only if o has positive entropy. Moreover, if this is the case
then A,(X) is dense in X.

Proof.  This follows from [17, Theorems 4.1 and 4.2] and the fact that positive
entropy and completely positive entropy are equivalent conditions for arithmetic dy-

namical systems. a

Corollary 5.3.2 If the arithmetic dynamical system (X,a) = (XP, aP9) has an
expansive variely and zero entropy then A,(X) = {0}.

Proof.  The arithmetic dynamical system (X olfe€)) is expansive and has zero
entropy. Therefore, the above shows that it must also have trivial homoclinic group.

Applying Proposition 5.1.2 with A = R¢ and B = D gives the result. g

When an arithmetic dynamical system (X, a) = (X7, a(P¥)) has an expansive
variety and positive entropy, it is not necessarily true that A,(X) is non-trivial (al-
though of course if (19) is satisfied then Theorem 5.3.1 shows that A,(X) is dense
in X). For example, if D = Z[] and ¢ = 2 then Sy gives a single norm | - | which
corresponds to the archimedean absolute value on Q. Clearly ||\ # 1 and so (X, )
has an expansive variety. Also, Theorem 3.3.8 shows that h(a) = log2. However,
this dynamical system has trivial homoclinic group by Lemma 5.2.3. If D is replaced
by Z[%] then the same lemma shows that the corresponding dynamical system has
non-trivial homoclinic group. Roughly speaking, despite retaining the same genera-
tor for the action, it seems that in passing from Z[1] to Z[¢] all homoclinic points
are lost. The key issue here is the nature of the extension B¢ C D, and the effect

of this on the homoclinic group will be explored in what follows. For example, if
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(X,a) = (XP,aP8) D is a subring of the field of fractions of R and the extension
Re C D is not integral, then it will be shown that A,(X) = {0}, irrespective of
entropy. To begin with, some illustrative examples are considered, including a more
detailed treatment of the example just described, to prepare for the general approach

adopted later.

Example 5.3.3 Let (X,a) = (X7, a”9) be the arithmetic dynamical system gen-
erated by the data D = Z[{] and £ = 2. Then R = Z[] and ¥ = A_(r. (X T¢) is
non-trivial. One description of Y is given by Example 5.1.3. Alternatively, ¥ can be
described as follows. The action of a!f¢4) on X may be identified with the Z—shift
on the compact subgroup W of T? consisting of those (z,,) € TZ which satisfy

Tyl — 22, = 0

for all m € Z. Under this identification, Y is the subgroup of W generated by elements

111
(.’L’m) = <.“7§’Z7§70’070’.“>

where the zeros can start at any coordinate of (x,,). Note that each element of Y

of the form

can only have coordinate entries whose denominator is a power of 2. The ring Z[¢] is
isomorphic to Z[,1]/(3t — 1), where ¢ is an indeterminate, and it follows that X can
be identified with the compact subgroup W’ of TZ*%+ consisting of elements (%, m,)

which, for all mq, mqy € Z, satisfy the relations

$m1+17m2_2xm17m2 - 07

3$m17m2+1 —Tmymy = 0. (20)
Under this identification, for each n € Z the automorphism «,, is given by
($m17m2) = (xm1+n,m2)

where (Zm,.m,) € W’'. For (2,,.m,) to be homoclinic with respect to the resulting

Z—action, for each mqy € Z

(. cey .CL’_27m2, .le_17m2, Jf07m2, .’L’me Jf27m2, . ) (21)
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should look like an element of Y. In particular, each coordinate of (21) must be
rational and have denominator a power of 2. Suppose that (zm,,m,) is a non-zero
homoclinic point. Since (Z,,m,) # 0, there exists my; € Z and my € Z, such that

Ty my 7 0. Equation (20) implies that for all j € Z
3 Zony mati = Tmymy mod 1,

Therefore, for sufficiently large j, m, m,+; does not have denominator a power of 2,

which gives a contradiction. Thus (#,,,m,) = 0, showing that A,(X) = {0}.

Example 5.3.4 Let D =7Z

Then (X,a) = (XP,aP¥) has an expansive variety because Sy consists of a single

3.1, m], where ¢ is an indeterminate, and set { = 2.
element A corresponding to the archimedean absolute value on Q, and |£], = 2. Note
also that this dynamical system is non-expansive, since Sp contains, for example,
an element g corresponding to the valuation ring D, = Z[3, t]243:41) and [¢], = 1.
Let ¢1,t5 be algebraically independent indeterminates over Z and A = Z[%,titl,tg].
The substitution map from A onto D given by sending ¢; to t* + 3¢ 4+ 1 and ¢, to
{ has kernel p = (13 4+ 3ty — {1 + 1) and hence D = A/p. Therefore, upon setting
W = (R x Q)/¢(Z[3]), it follows that X" may be identified with the compact
subgroup Y of W#*%+ consisting of those (Timy my) € WZ%xZ+ which for all m; € Z
and my € Z, satisfy

Tmymat+2 = Tmi+lmy — 3$m17m2+1 — Tmy,ma- (22)

The action a may be realized on Y as the coordinatewise application of the action
described in Example 5.1.3. Hence the homoclinic points of (X, «), realized as a
subgroup of Y, must in each of their coordinates look like the homoclinic points
described Example 5.1.3. Let the subgroup of W which consists of such points be
denoted by V. An element of A,(X) corresponds to (z,.m,) € Y as follows. To

construct (m, m,), we freely choose the coordinates

ey 1.0 LC(L()7 CL’L(), .

and
ey 1152015 1,150 - -
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from V and calculate the remaining coordinates uniquely using (22). Note that
because V' is a subgroup of W, the relation (22) guarantees that for every m; € Z
and mg € Zy, Ty m, € V. Thus

Ao(X) = (V)
In contrast to the A—field case, this gives an example of an uncountable homoclinic
group.

Let (*(Z% R) denote the Hilbert space of square-summable real-valued functions

on Z“ The convolution of ¥ = (¥,,),® = (¥y,) € (*(Z%,R) is defined by
Bk Ul =Y U Py,
lezd

For each h = ZmEZd cp(m)u™ € Ry, define h = (iLm) € A(Z%,R) by b = cp(—m).
The following is taken from [17, Lemma 4.5].
Lemma 5.3.5 Let f =) .ci(m)u™ € Ry and (X, a) = (XM oM) the algebraic
dynamical system corresponding to the Rg—module M = Ry/(f). If (X, «) is expansive
and mizing then, upon identifying X with the compact group

{(l’m) e T Z c¢f(m)zyim =0 for alln € Zd}
meZd

and defining the map « : (*(Z%,R) — T2 by coordinate reduction mod 1, there exists
U € (*(Z%R) such thal =(V) is a non-trivial homoclinic point of (X, ). Moreover,
under this identification, there is an isomorphism 0 : Rq/(f) — AL(X) given by

Ok + (/) = 7(h ¥)

Theorem 5.3.6 Let (X,a) = (XP,a'P9)) be an arithmetic dynamical system with
an expansive variely and suppose that D contains an element of the form a/b, where

b e Re and a is inlegral over Re, salisfying
a,a” +a,_1a"" 4+ aa+ag=0 (23)

for some ag,...,a, € R¢, a, = 1. If there is a discrete valuation v on R¢ with

v(Re¢) > 0 and v(b) > v(ag) then A,(X) = {0}.
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Proof.  Firstly, if p¢ is non-principal then Proposition 3.3.2 shows that (X, «a) has
zero entropy and Corollary 5.3.2 implies A,(X) = {0}. Therefore, it can be assumed
that pe = (f), for some f € Ry. Let B = Ry[t1,12], where t1,t5 are algebraically

independent indeterminates over R;. There exists a polynomial
g) =ati+a, 177+ +ag€ B

such that for ¢ = 0,...,r, a! € R, satisfies 0¢(a’) = a;. Hence the polynomial in
Re[t1,t2], obtained by applying ¢ to ag,...,al, has a as a zero. If ' € Ry is an

Y ry

element of 951(6), then polynomial in R¢[t1, 2] obtained from
h(tl,tz) - bltg - tl € B

by applying 8¢ to b, has (a,a/b) as a zero. Thus, the substitution map from B onto
C = Re¢la, a/b] obtained by applying ¢ to elements of Ry, sending ¢; to a and {3 to
a/b, contains g and h in its kernel. Hence there is a surjective homomorphism from
the ring R = B/(f,g,h) to C. By duality, this means that C may be regarded as a
subgroup Y of X = R. Moreover, R can be viewed as an Rg—module in a natural
way and if (X7, aft) is the resulting algebraic dynamical system, then Y is an af-
invariant subgroup of X% and the arithmetic dynamical system (X¢, () can be
identified with (Y, a®). Our aim will be to show that A z(X®) = {0}, implying that
A, r(Y) = {0}. Then applying Proposition 5.1.2 will show that A,(X) = {0}.

Write

f = Z cp(m)u™,
cb/(m)um,
¢y(m, l)umtll,

>
>
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where c¢f(m), cpy(m), c,(m,l) € Z, 1 € {0,...,r} and m ranges over Z% Then the

dy 72
TZ ><Z+

compact group X can be identified with the subgroup of consisting of ele-

ments (zm ;) which satisfy the relations
D esm)rmini; = 0 (24)

¢(m, NTmsnipr; = 0 (25)

m,[

(M) Tminijst = Tmimi (26)
m

for all n € Z? and ¢, j € Z,. Furthermore, under this identification, for each n € Z?

R

. corresponds to the map

the automorphism «

(Tmij) = (Tmin,ij)- (27)
Let W be the subgroup of TZ*7%4 consisting of elements (zy, ;) which satisfy relation
(24). Tt is easy to see that (27) induces an algebraic Z%-action 8 on W and under the
identification described above, X can be regarded as a subgroup of W and of as
the appropriate restriction of 3. Also, since (W, ) may be viewed as a direct product
of copies of (XFa/lf) ofa/(F)) it is possible to use Lemma 5.3.5 to calculate Ag(W).
This gives an isomorphism 1 : R?Q — Ag(W), described as follows. Let (e; ;) € R?Z)
and for each i, € Z, let e} . € Ry be such that f¢(e! ;) = e;;. Set

¥ ((€i)ijen) = (W(g’z’a * W))

where 7 and W are as defined in Lemma 5.3.5. Note that this is well defined because

4,jED

of the nature of the isomorphism described in Lemma 5.3.5.
Suppose that +» sends (e;;) = (f¢(ei;)) € 3?2 to an element of W which satisfies
(25) and (26). Then upon writing, for each 7,5 € Z

6;’,]' = Z ce'(ma iv ])um’
relation (25) implies, for all n € Z?

Z cg(my,i)co(—mo, i 4+ 1, ))¥mi4n-m, = 0 mod 1

mj,mp,!

= Y cp(—my,i)co(—my,i + 1) Wn_(my+m,) = 0mod 1.

mj,mo,l
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Therefore, for all 2,5 € Z
s (Z ajelyg i * \Il> = 0.
]
So, applying =1 gives

Z A1€i41,5 = 0. (28)

{

Since (26) also holds, using similar methods to above, for all ¢, 5 € Z we have

€it1,j = beijp (29)
Combining (28) and (29) gives
age;; = Z abe; jyi. (30)
=1
Hence
v(ess) = min {v(b) + v(a) + v(ei )} — vlar). (31)

1<I<r
Suppose that e, ; # 0 for some ¢,5 € Z,. By (30), this means ¢; j1; # 0 for some
1 <1< r. Since v(b) > v(ag), by (31) it follows that

v(eig) > min{v(e;j)}
= vlei)
for some j < j; < j+[. This implies €; ;, # 0, because e;; # 0. By repeating this
argument with j; in place of j, we obtain 53 < 73 < j1 + [ such that
v(eis) > v(eis,)
and e; ;, # 0. Continuing in this way yields a sequence j1, ja, J3,... such that

v(er;) > v(eij) > vle ) > ...

and since v is a discrete valuation with v(R¢) > 0, we must have v(e; ;) = oco. So

ei; = 0, which gives a contradiction. It follows that e;; = 0 for all ¢, € Z,, and
hence A =(X%) = {0}. O
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Corollary 5.3.7 Let k be a field and &1,...,64 € k™. If D D R¢ is a subring of the
field of fractions of Re and Re C D is not integral, then given thal the arithmetic
dynamical system (X, o) = (XP,aPE)) has an expansive variety, A,(X) = {0}.

Proof. 1f Re C D is not integral then there is an element a/b € D, where a,b € R,
which is not integral over R¢. Moreover, by the Mori-Nagata integral closure theo-

rem, there is a discrete valuation v on R¢ which shows this. That is, v(R¢) > 0 and
v(a/b) < 0. Hence, v(a) < v(b) and the result follows by Theorem 5.3.6. O

If the condition that the arithmetic dynamical system has an expansive variety is
dropped in Corollary 5.3.7, the following example illustrates that a trivial homoclinic

group cannot necessarily be expected.

Example 5.3.8 Let k = Q(¢,n), where ¢ is an indeterminate over Q and

n=+/(12=5t+1)(12 =t +1).

Set & =1, & = 3t 'p—3(t=34+17"), D = Q[t*',n] C k and let (X, a) = (XP, o(P)
be the corresponding arithmetic dynamical system. Note & is a unit of D because
&= -3 — Lt =3+ 171). Also, it is clear that the field of fractions of Ry is k.

Since

Y2+ (1 +2=30)7Y +1 € Q()[Y]

is the minimal polynomial for &, and ¢, ' over Q(t), and because Z[t*!] is an integrally
closed domain, it follows that Re = R,/pe, where the associated prime p is generated

by u2 + (1 4+ u? — 3u; )uj'ug + 1 € Ry. Multiplying this polynomial by —u;"' gives
pe = (3 —us —uy' —uy —uyt).

Now Sy contains an element A corresponding to (1,% + %\/gx/—l) € (C*)* and
|€1]x = |é2]n = 1. Hence (X, a) does not have an expansive variety. Thus (X, a)
satisfies the requisites of Corollary 5.3.7, with the exception of the variety condition.
Furthermore, despite the fact that the extension R, C D is clearly not integral, it

will be shown that A,(X) is non-trivial.
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Notice that n € Re and D = injlim(Re,v;), where for j > 1, ¢; is multiplication
by 7 + 1. By duality, X & proj hm(XR‘f,L//}\j). Using similar methods to Example
TZ2XN

1.8.6, X can be identified with the compact subgroup of consisting of elements

(Tm,;) = (Tmy ms.;), Which for all m = (my,m3) € Z? and j € N satisfy

=0, (32

SwmlmeJ = Tmy+l,me,j = Tmi—1,mz,j — Tmima+1,j — Tmy,ma—1,5
Lmy,ma,j — (-7 + 1)$m1,m2,j+1 = 0. (33)

Also, for each n € Z?, the automorphism ay can be identified with the map
(Tm ;) = (Tmin ;). (34)

Under the above identification, X may be considered as a subgroup V of the compact
group W € TZ*N consisting of elements (2, ;) € TZ Y which satisfy (32). Moreover,
(34) induces an algebraic Z%-action 3 on W, V is a B-invariant subgroup of W and
(V, B|lv) has a natural identification with (X, «). Therefore

AL(X) = Ag(V)
= VAW).

The algebraic dynamical system (W, 3) may be regarded as a direct product of copies
of (XF2/Pe of2/Pe) 4 system which has been studied in [17, Example 7.3]. Here the
authors show that there exists ¥ € ¢*(Z* R) with the property that, for any r € R,
7(r¥) is a non-trivial homoclinic point of (XF2/P¢ of2/Pe) If & = W for some r € R

and for each 57 € N we set

1

g!
then ¢ = (7 (®1), 7(P2), 7(P3), ... ) satisfies both (32) and (33) and 26 € VNAZ(W).
Thus, A,(X) is non-trivial. In fact, by varying the choice of r, it can be seen that

A,(X) is uncountable.

5.4 Homoclinic points and expansive subdynamics

Let a be an algebraic Z% action. In the study of expansive subdynamics, a concept

which is fundamental is that many dynamical properties are constant (or vary nicely)
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within connected components of E;(«), the set of expansive [-spaces in the Grassmann
manifold G;, 1 <1 < d. Also, these properties may undergo marked changes between
one maximal connected component of E;(«) and another. Such maximal connected
components are called expansive components. Boyle and Lind discuss these ideas in
[3, Section 5], formalising the notion of a dynamical property being defined ‘along’
an element of E;(«), which we now proceed to do for homoclinic points.

Let (X,a) be an algebraic dynamical system. A point 2 € X will be called
homoclinic along a subset I of R? if there exists r > 0 such that

an(z) = 0 as ||n|| = oo,n € Fy,. (35)

Let € X and suppose that for some r > 0, z satisfies (35). Then z satisfies (35) for
all » > 0. To see this, it is enough to notice that given s,r > 0, all points of F7 lie
within a bounded distance of F. The set of all z € X satisfying (35), for some r > 0
will be denoted by A(X). This is again easily seen to be a subgroup of X,

Theorem 5.4.1 Lel « be an expansive algebraic Z%action on a compact abelian

group X. If C is a connected component of E/(«) then for any VW € C
AL (X) = AT(X)

Proof. See [6, Theorem 9.6] O

Hence every [-plane in a connected component of E;(a) has the same homoclinic
group. The idea of common homoclinic points existing in this way for commuting
toral automorphisms was introduced in [22]. The theorem above generalizes this
notion to arbitrary algebraic Z? actions. In light of Theorem 5.4.1, it makes sense
to refer to the group of common homoclinic points of a connected component C of
Ei;(«). This group will be denoted by A€ (X).

Let o be an algebraic Z%action and 1 < [ < d. An [-plane V € G; is called
rational if V N Q? spans V. For such a plane there is a correponding restriction of a,
aly, = alynze, which is an algebraic Z'-action. Therefore, there is a straightforward

notion of entropy along V, that is the entropy along V is just h(alv,).
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Theorem 5.4.2 Lel « be an expansive algebraic Z%action on a compact abelian
group X and 1 <1< d. If h(aly,) = 0 for some rational V € Ei(a), then h(aly,) =0
for all rational V € Ei(«).

Proof. This is part of [3, Theorem 6.3]. O

Therefore, the property of having positive or zero entropy is constant along every

rational expansive [-plane. Combining Theorems 5.4.1 and 5.4.2 gives the following.

Corollary 5.4.3 If AS(X) is non-trivial for some expansive component C of E;(a)

then AS(X) is non-trivial for every expansive component C of E;(a).

Proof. By [3, Lemma 3.4] C is an open subset of G;. Hence the set of rational
[-planes is dense in C. By definition, there is a rational [-plane V in C for which
AY(X) # {0}. Since V is rational, this means Ay, (X) # {0}. Therefore by [17,
Theorem 4.1] it follows that h(aly,) > 0. Hence if B is another expansive component,
then there is a rational [-plane W in B with h(a|w,) > 0, by Theorem 5.4.2. Again
applying [17, Theorem 4.1] gives A, w,(X) # {0}, which implies AY(X) # {0}.
Thus AS(X) # {0}. O

The entropy rank of an expansive algebraic Z%action « is defined to be the largest
1 <1< d such that there is a rational [-plane V' with h(aly;,) > 0. By convention, if
there is no such [~plane, the entropy rank is set at zero. Proposition 7.3 of [6] shows
that the entropy rank of an algebraic Z% action arising from an R; module of the
form Ry/p, p € Spec Ry, is equal to the Krull dimension of R;/p. Since an expansive
arithmetic dynamical system (X, a) = (X7, alP€)) has an underlying ring D which is
necessarily integral over Re 22 R;/pe, by [23, Section 9], the Krull dimension of D and
Rq/pe is the same. Therefore, the entropy rank of « is equal to the Krull dimension
of D.

Corollary 5.4.4 Lel (X,a) = (XP,alP9) be an expansive arithmelic dynamical
system. Then for any expansive component C of Ei(a), 1 <1< d
trivial if 1 > kdim(D),

dense in X otherwise.

AS(X) is {
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Here kdim(D) is the Krull dimension of D.

Proof. 1f [ > kdim(D) then each rational /-plane V' € E;(a) has h(a|v,) = 0. Hence
by Theorem 5.3.1, AY(X) = {0}. Tt follows that all expansive components C of E;(a)
have AS(X) = {0}. If I < kdim(D) then by Theorem 5.4.2, for each rational I-plane
V € Ei(a), h(aly,) > 0. Therefore, Theorem 5.3.1 implies that AY(X) is dense in X.

Thus AS(X) is dense in X for each expansive component C. g

Corollary 5.4.5 If in the above, D is a ring of S—integers then

isomorphic to D if [ =1,

AS(X) is
trivial otherwise.

Proof.  This follows from the fact that rings of S—integers have Krull dimension 1,

using Lemma 5.2.3 in place of Theorem 5.3.1. O

It is important to note that despite the isomorphism described in Corollary 5.4.5,
as subgroups of X, the homoclinic groups A¢(X) can intersect trivially. This demon-
strates the idea of a ‘phase transition’ when passing from one expansive component to

another, as described in [3, Section 5]. The following example illustrates this further.

Example 5.4.6 Let D be the ring of integers in the A-field k¥ = Q(v/2 + V/5),
b =14V2, 6 =245 6 =3+v2V5 and (X, a) = (XP,aP4)). Proposition
4.2.1 may be used to show that this arithmetic dynamical system is expansive. Note
that by Theorem 3.3.4 this dynamical system has zero entropy. Hence Corollary 5.2.2
gives A,(X) = {0}. However, there are non-trivial homoclinic groups isomorphic to
D for each expansive component of F;(a). The expansive components of E;(a) can
be determined from Figure 4(b), by pairing off the ‘cones’ between the non-expansive
planes shown there. The intersection of the four non-expansive planes creates 14 open
cones in R? and these pair off to give 7 expansive components of E;(a). By choosing
a line in each of these components, Theorem 5.4.1 and Lemma 5.2.3 then allow the

calculation of A¢(X) for each expansive component C. The results of doing so are
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Line in C AC(X)
r(2,—2,1) {(0,0,a,0) + ¢(D):a € D}
r(0,—0,1) | {(0,0,a,a) + ¢(D): a € D}
r(=2,2,1) | {(0,0,0,a) + ¢(D):a € D}
r(l,0,0) {(0,a,0,a) 4+ ¢(D):a € D}
r(=2,-2,1) {(a,(),a,a) + ¢(D) ca € D}
r(2,2, ) {(0,a,a,a) + ¢(D) : a € D}
r(0,1,0) {(0,a,a,0) 4+ ¢(D) : a € D}

Table 3: Homoclinic groups for Example 5.4.6.

summarized in Table 3. Here the homoclinic groups are given as subgroups of the

1)/

where A runs over the four infinite places of &, which correspond to the absolute values

compact group

given by

[ = 17 () oo

| - |so being the restriction of the usual archimedean absolute value on R to k& and

7\ € Gal(k|Q).

In fact, a simple combinatorial argument shows that for an expansive arithmetic
dynamical system, arising from units in a ring of S—integers in an A-field k, the
number of distinct homoclinic groups arising in this way is always bounded. This is
evident immediately from the explicit form of the homoclinic groups possible in the
proof of Lemma 5.2.3. In particular, if T' is the union of S with the set of infinite

places of k, then the number of distinct non-trivial homoclinic groups corresponding
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to expansive components of E;(«) cannot exceed
2lTI=1 _q

where |T'| is the cardinality of T'. Note that this is necessarily finite by Proposition
4.2.1 and the fact that the places of an A—field satisfy the finite character property.

Also, the example above shows that this bound may be achieved.
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