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Introduction.

Let C be a smooth complex projective curve of genus g, let Land N be line
bundles on C, and denote by R(L,N) the space of relations between Land N:

R(L, N) = ker{ HO(C, L) 0 HO(C. N) -> HO(C, N0L) }.

Then, writing Q for the canonical bundle, one can define a homomorphism

OL.N: R(L. N)--> HO{C, Q0L0N)
by making sense of

s 0 t 1--> s dt - t ds..

(When L =N, 0L,L vanishes on symmetric tensors, and so becomes simply a map
OL: 1\2HO(L) --> HO(L2 00).) These so-called Gaussian or Wahl maps have attracted
considerable attention ever since Wahl [W2] made the surprising observation that if C
lies on a K3 surface, then 0Q cannot be surjective. It seems likely that these maps will
arise in other natural conterts as well (d. [Griff,Chapt 9]). It is therefore of some interest
to obtain surjectivity statements for the 0L.N analogous to classical theorems of
Castelnuovo et. at. (c.f. [M] or [G]) concerning the maps HO(L) 0 HO(N) -> HO(L0N), for
which the best possible uniform results are known.

A number of theorems in this direction have already appeared. First. Ciliberto.
Harris and Miranda [CHM] gave in passing a very simple argument to show that if deg(L)
4g + 6, then oL is surjective. Wahl [W3] proved that oL,N is surjective provided that
deg(L) 5g + 1 and deg(N) 28 +2. He also showed that if deg(L) 58 + 2 then 0Q,L is
surjective. The Iatter result is particularly interesting because it has a deformation-
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theoretic interpretation (e.r. [WlJ). In fact. if L is normally generated. then the surjectivity
of ?fO.L implies that in the linearly normal embedding Cc IPr= IPHO(L) defined by L.
C is not the hyperplane section of any variety YC IPr+1 other than a cone over C. (And
so for instance C is not a very ample divisor with normal bundle L on any regular
surface.) Further theorems along these lines appear in [Tl.

The purpose of this note is to record some strengthenings of these results. First we
show that a small adaptation of the argument in [CHMl -- along lines suggested in a
different context by Wahl--Ieads to the optimal bound in the non-special case:

Theorem 1. Let L and N be bundles on C of degrees d and e respectively. Assume
that d. e 2g +2.

m. If d + e 6g + 3. !hm ?fL.N is surjective.

(ii). If C is non-hypereUiptic, then ?fL.N is surjective provided that d +e 6g +2.

(Hi). If C is hypereUiptic. then given L of degree 2g + 2 s d s <fg there elists a line
bundle N on C of degree 6g +2 - d for which ?fL.N fails to be surjective.

So for instance ?fL is surjective as soon as deg(L) 3g + 2. and this is best-possible if
(and only if) C is hypereUiptic.

Our second theorem shows that for the map ?fO.L one can bring into play the
intrinsic geometry of C as measured by its Clifford inder, The theme is that as C becomes
increasingly general. one obtains a progressively stronger surjectivity statement:

Theorem 2 Assume that C is neither hypereUiptic. trigonal, nor a plane quintic H.e.
assume that Cliff(C) 2). If deg(L) 4g + 1- 2·Cliff(C). then ?fO.L is surjective. If
moreover Cliff(C) 3 (i.e. if in addition that C is neither quadrigonal nor a smooth
plane Seltic), then ?fO.L is surjective as soon as deg(L) 4g + I - 3·Cliff(C).

We refer for instance to [GLl or [L,§2l for the definition and basic properties of the Clifford
index CUff(C) of C. Similar but somewhat weaker results were obtained by Tendian [T].

It would be interesting to know whether the elementary methods of this paper can
be adapted to say anything about the Wahl map ?f0 for the canonical bundle. It is proved
by degenerational techniques in [CHM] that on a generic curve C. ?fQ is surjective for g =
10 or g 12. Aconceptual approach to this theorem appears in Voisin's beautiful paper
[Vl. where it is shown that the failure of ?fQ to be surjective is "explained" by the
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presence of many non-projectively normal line bundles on C. Other results concerning 'to
appear in [CMll. [CM2]. and [Mir].

The proof of Theorem I occupies S1. We also give a generaliZation to certain higher-
order Gaussian maps. S2 is devoted to the proof of Theorem 2. We eIplain there how the
geometric consequence of the surlectlvlty of O,L mentioned above follows from an
interesting theorem of L'voveskii ll.vl and F. L.Zat..

We are grateful to F.Cukierman and J. Wahl for valuable discussions.

S1. The Gaussian Map for non-special line bundles.

In this section we adapt an argument from [CHM] to prove Theorem 1. As above. C
is a smooth comple! projective curve of genus g. We start by defining the Gaussian maps
'tL.N more formally. To this end. denote by p , q: Cx C--> C the two projections.
and let I:::. C C x C be the diagonal. Given a coherent sheaf F on C. we set:

Fl = p* F and F2 = q* F,

so that FI and F2 are sheaves on Cx C. Suppose now that Land N are line bundles on
C, and consider the eract sequence:

Then as is well known. the Wahl map

is simply the homomorphism on global sections deduced from the restriction map in 0.0.
In particular. to show that 'tL.N is surjective. it is enough to prove that
Hl(LI@N2(-21:::.)) = O. The idea of [CHM] is in effect to study this group geometrically.

To this end. suppose that A is a base-point free pencil on C defining a branched
covering t A : C--> !pl. If S. t E HO(A) is a basis. then

plts@qltt - pltt@q*s E HO(CxC. A1@Az)

vanishes on I:::. and hence canonically defines a section SA E HO( CxC , Al@Az(- I:::.) );

denote the divisor of this section by rAe ex e. More geometrically we may describe r A
as the curve residual to the diagonal I:::. in the fibre product Cxpl C.
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Example 1.2. If C is hyperelliptic, and A is the hyperelliptic pencil on C, then
rA ::: graph( i ) C CxC, where i :C-> C is the hyperelliptic involution.

It is quite standard to analyle the geometry of rA:

Lemma 1.3. Assume that f = fA :C-_>]pl is a simple covering, i.e. assume that for
any branch POint b e ]pl. its preimage i-I{ b } contains only one ramification point p. at
which the local degree of t !! 2: et(p) =2. Then fA is smooth and irreducible. If
moreover deg(A) =n, then the genus of fA is given by

g(f A) (n-lltn + 28 - 3) + (I -g).

where as above g is the genus of C.

Proof. We argue to begin with that rA is irreducible. To this end. let GC Sn be the
monodromy group of the covering i. Onemay view rA as the closure of the set of all
pairs (x,y) ECx C with I y such that i(x) = i(y). and hence it is certainly enough to
show that G= Sn is the whole symmetric group. Now G is transitive since C is
irreducible, and it is generated by simple transpositions thanks to the simplicity of t. But
as F. Cukierman pointed out to us, the only transitive subgroup of Sn generated by simple
transpositions is Sn itself. and therefore rA is irreducible. A computation in local
coordinates shows that it is smooth. Finally. recalling that rAE IAI@A2(- b )l. one
computes g(rA) using the adjunction formula. _

In order to apply the Lemma, we will need a stock of pencils defining simple
coverings:

Lemma 104. (I). 1&1 beageneralpencilofdegreeg+l. Then iA defines a
simple covering. and consequently rA is smooth and irreducible. of genus 382 - 38 + 1.

nu Assume that C is non-hyperelliptic. of genus g 3, Ae w1(c) M..I
general pencil of degree g. Then A is base-point free. and again fA defines a simple
covering. The corresponding curve rA has genus 3g2 -7g + 4.

Proof. The only point which isn't well-known is that if C is non-hyperelliptic, then a
general pencil A of degree g defines a simple covering. To check this, one needs to show
that if AE is sufficiently general, then:

(a). V I s C, hO(A(-3I» =0 (no triple ramification); and

(b). V I lye C, hO(A(-21-2y)) =0 (no two ramification points in one fibre).
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But these follow from elementary dimension counts. For example, suppose that (a) fails.
Then is contained in the image of the map t: Sym.-3(C) x C--> Pic'(C) given by
teD. x) = D+ 3x. In this case, Im(t) = since both have the same dimension. Dually,
this means that for all I, x, ..... x.-3 Ec. hoe Q(-x,- ...-lg-3-31» 1. But this is absurd,
since for a general point 1 EX. hO(Q(- 31» =g- 3. The proof of (b) is similar.•

We now give the

Proof of Theorem 1. Let A be any base-point free pencil on C. Recalling once again that
rAE IA,@A2(-£1)I. observe that multiplication by r = I'A gives rise on C)( C to an exact
sequence:

0.5)
0-> (L@AM),@ (N@AM)2 @ -> L,@ N2 (-2£1)-> N2 - 2£1»-> 0

The strategy is to use this sequence to study H'(L, @N2 (-2£1». We consider separately
the three statements of the Theorem.

0). Take A EWi.I(C) to be a general pencil. We claim that then the outer terms in U.s)
have vanishing H'. This will show that H'(L, @N2 (-2£1» = 0 • and by the remarks at the
beginning of the section. the surjectivity of ?fL.N follows.

For the term on the left, it is enough to prove that

(M)

In fact. since d , e 2g+2. the bundles L@AM. N@AM both have degree g+l. Hence by
choosing A generally, we may assume that they are base-point free and non-special.
Moreover deg(L@ AM) + deg(N@AM) = d + e - 2g - 2 48+ 1by hypothesis. Then the
required surjectivity (*) is well-known (e.g. by [EKS} or [G, (.o4.eA)]).

deg{ N2(-2£1»} = g(d + e - 8) + 4
?: g(6g - 5) + 4

2·g(r A) - 1,

and the required vanishing follows.

Iii), The argument is similar to the one just given except that one works with a general
A e . We leave the details to the reader.
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(iii). Let A be the hypereUiptic pencil on C, and denote by R the ramification divisor
of the hyperelliptic covering i = t A: C-> ]pI, so that deg(R) = 2g + 2. Fix L of degree
2g -to 2 d -4g, and put N=Q(2R) @i*L*, where i :C--> C Is the hyperelliptic
involution. We assert that liL,N is not surjective. In fact, certainly @HO(N@A*)

-2), and therefore

So by U.5) we are reduced to showing that Hl(r, N2(-26»);r. 0, where as usual
r = rA is the divisor associated to A. But if we define f: C--> r to be the
isomorphism I 1--> ( I •HI», then f* N2(- 26» = L@i*N@ -2R)= Q, and
we are done._

Remark. Keeping the notation of part (iiil of the previous proof, note that if L is a line
bundle of degree 3g -to I on a hyperelliptic curve C, then L@i*L=Q(ZR). Hence it follows
from the proof that C is hyperelliptic # IiL fails to be surjective for some line bundle of
degree 3g + 1 # liL fails to be surjective for every line bundle L of degree 3g + 1.

Finally, we indicate the analogue of Theorem I for higher order Gaussian maps.
Specifically, set liL,N =liL,N, and fix an integer k 2. Then an in [Griff,Chapt 9] there
are naturally defined homomorphisms

litN: ker litJ --> HO(L@N@Q@k) ,

arising for example as the map induced on global sections by the restriction in the
sequence

Arguing as in the proof of Theorem I, one obtains by induction the following

Theorem 1.7. Let L and N be bundles on C of degrees d and e respectively. Assume
that d , e (k+l)(g+H.

W. If d + e (k+l)(2g-to2) + 2g-1, then lit,N is surjective.

(ii). If C is non-hyperelliptic. then litN is surjective provided that d +e C'
(k+l)(2g+2) + 2g-2.

(iii). If C is hyperelliptic, suppose that L and N satisfy the relation L@r- N=
Q«k+l)R), where i: C-> C is the hyperelliptic involution. and R the divisor of
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branch points of the hyperelliptic covering C-> JPI. Then d +e =
(k+l)(2g+2) + 2g-2, and otN fails to be surjective.

S2. The Gaussian map oO,L

It seems most natural to prove Theorem 2 using some elementary vector bundle
techniques. We start by defining the bundles that come into play, which essentially arise as
direct images of the sheaves occuring in S1. As above, C is a smooth complex projective
curve of genus g. To avoid problems in the definition of the Clifford index, we assume
throughout this section that g 4; we leave it to the interested reader to make the
necessary adjustments to handle low genera.

Given a very ample line bundle L on C. set

and
ML = p*{q*L @

RL = p*{q*L @

where as in Sl p, q :CxC--> C are the projections. Denoting by Pl(L) the rank two
locally free sheaf of first-order principal parts of L, these vector bundles are tied together
by three exact sequences:

(Z.1) 0 -> ML -> HO(L) @tt --> L--> 0

(2.2) 0 --> RL --> HO(L) @tt --> pl(L)--> 0
and

(2.3)

The right-hand maps in (2.1) and (2.2) are the canonical evaluation homomorphisms, and
(2.3), which is the direct image of (I.B under p, may alternatively be deduced from (2.1),
(2.2) and the standard sequence relating Pl(L) to Land 0 @L. Remark that (2.1) is a
twist of the pull-back of the Euler sequence on JPHO(L).

Note that the Gaussian OL,N is just the homomorphism HO(ML@N) -->
HO(Q@N@L) on global sections obtained by twisting (2.3) by N. Therefore, much as in Sl;

Lemma 2.4. U HI(C, RL@N) =0 then oL,N is surjective I

Observe also (from (2.1) and (2.2)) that
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(2.5) RL = n * @L. where n* = Il*C/PHO(L) is the conormal bundle to C in
IPHO(L) under the embedding defined by the complete linear series
associated to L.

Hence:

Lemma 2.6. 11 C is scheme-theoretically cut out by quadrics in the embedding
CC PHO(L) defined by L. 1hm RL@L is generated by its global sections.•

We will need one further property of the bundles RL. Namely. suppose that
11••••• 1mEC are points such that L( is still very ample (or at least immersive),
Then. setting D= there is an exact sequence:

(2.7) 0--> RL(-D) --> RL --> $ (9-C(-Zli) --> O.

This may be proved for instance as in [L.§1.4] and lE]' We remark that this sequence is
the basis. from the vector bundle point of view. of Wahl's "immersivepencil trick" in [W3].

Proof of Theorem 2. Let e = Cliff(C). Wewill assume that e 3. the case e= 2 being
similar but simpler. Choose (e-Z) points 11 ••..• Ie-Z EC. and put D= Ox = 11+••. + Ie-Z'
Wewish to apply to Q(-D) a result of Green and the third author [L.(2.4.Z)] to the effect
that if A is a very ample line bundle on C. with deg(A) Zg + Z - Z'h1(A) - CHff(C). then
C is scheme-theoretically cut out by quadrics in the embedding CC PHo(A) defined by A
provided that C has no trl-secant lines in PHO(A). To this end. we claim:

The line bundle Q(-D) is very ample, and C has no trl-secant lines in the
embedding CC HO(Q(-D» defined by Q(-D).

In fact, suppose that y" Y: EC fail to impose independent conditions on Q(-D). Then the
degree e divisor D+Yl +Y2 spans a pe-2 in canonical space P8-1 • Therefore
D+ Yl + yz moves in a pencil, but this would force Cliff(C) s e-z. A similar argument
proves the second assertion.

We conclude from the result just quoted that CC IPHO(Q(-D)) is cut out by quadrics.
It then follows from Lemma 2.6 that RQ(-D) sits in an exact sequence

(Z.8)

We claim nert:

$ Q*(D) --> RQ(-D) --> O.

(2.9) If deg(L) = d 4g + 1- 3e, then for a general choice of the Ii,
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Hl(L0Q*(D» = O.

In fact, suppose to the contrary that HO(Q20L*(-D»;Ii! O. Then in the first place

(*)

[Proof: Otherwise 4g-4-d-e+2 g-2, which leads to the inequality d 3g-e; but since
in any event 2e g-l. this contradicts our hypothesis on d.l It follows from (*) that
h1(Q20L*(-D» 2. Since also hO(Q20L*(-D» 1 for general choices of the Ii, we
deduce that h1(Q20L*) 2 and hO(Q20L*) e-l 2. Therefore Q20L* contributes to
the Clifford inder of C. But Cliff(Q20L*) s 4g-4-d-2(e-2) e-l, the last inequality
coming from the hypothesis d 4g+1-3e. This is a contradiction, and (2.9) is proved.

Twisting (2.8) by L. it follows from (2.9) that if D is sufficiently general. then
HI(C, RQ(-D) 0 L) =O. But L(-2Xi) is non-special for reasons of degree, so
HI(RQ0L) =0 thanks to the exact sequence (2.7). In view of (2.4), this competes the
proof. _

Remark. Note that the theorem implies that if Cliff(e) 3. then Q.Q2 is surjective, a fact
proved by other methods in [T). It would be interesting to know how close Theorem 2
comes to being optimal.

Finally. we wish to explain the connection with an interesting theorem of L'vovskii
[L'v] and Zat which we learned about at the Chicago conference. We start with:

Definition 2.10. A non-singular variety XC IPr of dimension n is said to be t-
eIlendable if there is a possibly singular non-degenerate projective variety YC pk-r of
dimension n+r. which is not a cone, such that X is the intersection of Y with a
codimension k linear SUbspace of pr-k, We say that X is eIlendable if it is at least
I-extendable.

Consider now a smooth non-degenerate variety XC IPr I and let n =nX/lPr denote the
normal bundle to X in IPr. Clearly hom (-I)) r + 1. The theorem of Zak and L'vovskii
concerns the situation when equality comes close to holding:

Theorem. (ll.v], andZak, to appear). Assume codim(X,IPf)::= 2. If hOm(-2» =0 and
home-I)) S r-k, then xc IPr is not k-eItendable. In particular. if home-I)) = r+l,
then X is not eltendable. i.e. Xc IPr is not the hyperplane section of any variety
YC pr-l other than a cone over X.
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Concerning the second statement, one shows that if hOmH» =r -+ 1, then necessarily
h0<n(-2» =o.

Suppose now that L is a very ample line bundle on a curve C, and denote by n
the normal bundle to C in lPHO(L). As we are assuming that g(C) I, the natural map
HO(Q) 0 HO(L) -> HO(00L) is automatically surjective tc.r, [GJ.(3.c.1H. It then follows by
duality from the sequences (2.1) - (2.3) upon twisting by Q that

(2.U)

Combining this with Theorem 2 and the L'vovskij-Zak theorem we obtain:

Corollary 2.12. If CHff(C) 3 and deg(L) 4g+1- 3·Cliff(C), then C is not eltendable in
lPHO(L). I

More generally:

Corollary 2.13 If. deg(L)> 2g+2, and if corank((fO,L) =k, then CC lPHO(L) is not
(k+1)- extendable.

Proof. It follows from Theorem 1 that <>L,00L is surjective. Therefore h
'm*

000L) =

h°<n0 L-2) =O. So the corollary follows from (2.11) and L'vovskii-Zak's theorem. I

Remark. It also follows from Zak's theorem and (2.U) that if S is a smooth regular
surface (e.g. a [3 surface), and if CC S is a very ample divisor with normal bundle L,
then <>O,L is not surjective. It was this observation (proved with deformation theory
rather than L'vovskii-Zaks theorem) that was the starting point of Wahl's work [WI] [W2]
in this area.
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