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Preface

The main topics discussed at the D. M. V. Seminar were the connectedness theorems of
Fulton and Hansen, linear normality and subvarieties of small codimension in projective
spaces. They are closely related ; thus the connectedness theorem can be used to prove the
inequality-part of Hartshorne’s conjecture on linear normality, whereas Deligne’s
generalisation of the connectedness theorem leads to a refinement of Barth’s results on
the topology of varieties with small codimension in a projective space.

The material concerning the connectedness theorem itself (including the highly
surprising application to tamely ramified coverings of the projective plane) can be found
in the paper by Fulton and the first author: W. Fulton, R. Lazarsfeld, Connectivity and
its applications in algebraic geometry, Lecture Notes in Math. 862, p. 26—92 (Springer
1981). It was never intended to be written out in these notes.

As to linear normality, the situation is different. The main point was an
exposition of Zak’s work, for most of which there is no reference but his letters. Thus it
is appropriate to take an extended version of the content of the lectures as the central part
of these notes.

In the lectures on varieties of small codimension, a detailed proof was presented
for a theorem of Barth and the second author, saying that a smooth variety in a projective
space is a complete intersection as soon as its dimension is (sufficiently) much larger
than its degree. Originally we intended to include this proof in the notes, since the
only reference is Barth’s short address at the Conference in Vancouver. But very recently,
Z. Ran has improved this result considerably, using new methods, so we have decided to
skip this part and reproduce instead Zak’s letters. For his permission to do so we are most
grateful.

We also very much indebted to the D.M.V. and Prof. G. Fischer who has
organised the seminar.

R. Lazarsfeld
A.Vande Ven






Introduction

The purpose of these notes is to outline Zak’s classification of smooth
subvarieties of projective space with maximally degenerate secant varieties.
Consider a non-singular complex projective variety

Xcibm

of dimension #, not contained in any hyperplane. Given a point P P" — X,
projection from P defines a finite map

. m— 1
T[P. X'_>]P Py

and we may ask whether for generic P, np gives an embedding of X into IP" 1.
This is always the case if m> 2n+1, whereas when m <2n+1 the map =, will
usually have double points. For example, when n=2 and m=35, a classical
theorem of Severi asserts that (up to projective equivalence) there is exactly one
surface X < IP°—namely, the Veronese surface—which projects smoothly to
P*. When n=2 and m=4, n, is never an embedding.

In the course of his work on subvarieties of projective space of low
codimension [H], Hartshorne was led on the basis of a few examples te suggest
how this state of affairs for surfaces should generalize to higher dimensions.
Hartshorne’s conjecture was proved by Zak [Z1] in 1979, and we may state the
result as

Zak’s Theorem on Linear Normality. Keeping notation as above, if 3n
> 2(m — 2) then mp is never an embedding.

(The title of the theorem will be explained below; for an exposition, and
an alternative proof, see [FL].)

The question then arises to classify all examples on the boundary of
Zak’s theorem, which Zak calls Severi varieties. Thus a Severi variety is a smooth
non-degenerate subvariety

Xcbpm
of dimension n =% (m—2), such that for generic P e P" — X, np is an embed-

ding. Zak has answered the classification question with the following remark-
able result:

Zak’s Classification Theorem. ([Z2, Z3]). Up to projective equivalence
there are exactly four Severi varieties, to wit:
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1) n=2: X=V<cP° the Veronese surface.
2 n=4: X=P?>xP?>cP? the Segre four-fold.

3) n=8: X=G(1,5) <IP'*, the Pliicker embedding of the Grassmannian
G(1,5).

4 n=16: X=EcP?, the ,,Eq-variety.”

The non-classical example E < IP?°, which was pointed out to Zak by the first
author (R. L.), will be discussed briefly in § 1 below. The case n =4 of the theorem
was proved independently by Fujita-Roberts [F R], who also obtained restric-
tions on the possible dimensions of Severi varieties. Fujita [F] gives additional
results in the near-extremal case.

Our object here is to describe Zak’s beautiful proof of the classification
theorem. In §1 we go over some preliminary material (mostly without proof),
and explain why the four varieties listed in the statement of the theorem—which
we call the four standard Severi varieties—are in fact Severi varieties. The
remaining sections of these notes correspond to the three principal stages of
Zak’s proof. Given a Severi variety X < IP™, Zak’s first step is to analyze the
quadrics on X (§2). By studying the maximal linear spaces on these quadrics,
Zak then shows that n=dimX=2,4, 8 or 16 (§3). Finally, a case-by-case
argument proves the theorem (§4). Zak’s proof is for the most part elementary,
but it is quite long, and we do not pretend to have included all details.
Nonetheless, a dedicated reader should have little problem filling the gaps, and
in any event we trust that Zak will eventually publish a full account.

A word or two is in order on the larger context of Zak’s work. Results of
Barth et. al. in the early 1970’s suggested that it is very difficult to find examples
of smooth subvarieties X = P, other than complete intersections, with codim X
< dim X, and the suspicion arose that no such examples can exist (cf. [H] for a
survey). Specifically, one has Hartshorne’s

Conjecture on complete intersections:

If X = P™ is a smooth projective variety with
dim X> 2 codim (X),

then X must be a complete intersection.

This conjecture has sparked an enormous amount of work over the past decade.
For example, in the codimension two case it is equivalent to the problem of
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whether any rank two vector bundle on IP" (n>7) must split as a sum of line
bundles, a question which seems to have been partly responsible for the tremen-
dous activity in the field of vector bundles on projective space. Work by Barth
and Van de Ven is described in the former’s contribution to the 1974 ICM; see
also [FL].

Complete intersections have the property that they are linearly normal,
meaning that the given embedding X = IP™ does not arise in a non-trivial way by
projection from an embedding X ¢ P™*!. Motivated by his conjecture on
complete intersections, Hartshorne [H] suggested that a smooth variety

Xcpr

of dimension » must be linearly normal if 3n> 2(r—1). This is precisely what
Zak proved in the theorem on linear normality stated above. The problem of
classifying the extremal examples had been posed by Hartshorne in the same
paper.

In a number of letters to J. Roberts and the first author over the period
July 1980—December 1981 Zak stated that he had had new ideas on
Hartshorne’s conjecture on complete intersections, which he felt would prove at
least the codimension two and three cases, and lead to a classification of all
examples on the boundary. However, perhaps understandably, Zak has been
unwilling to provide any details, and as of December 1981 there were still “some
lemmas that I [Zak] haven’t seriously tried to prove”. In the most recent
communication of which we are aware (letter to J. Roberts dated 15 September
1982) no mention is made of the complete intersection problem. Our sense is that
Zak has developed a totally new approach to the conjecture, but that is has not
yet achieved fruition. In view of the tremendous importance of the problem,
even in the codimension two case, we hope very much that Zak will publish at
least some partial results, and clarify the status of his work, in the not-too-
distant future.

Acknowledgements. We are grateful to Joel Roberts for numerous help-
ful comments on an early version of these notes. The authors lectured on this
material at the DMV Seminar at Diisseldorf in September, 1982, and we wish to
thank G. Fischer, who organized the seminar, and all the participants for their
suggestions and enthusiasm.

§1 Preliminaries; the four standard Severi varieties

Let X = IP™ be a smooth non-degenerate projective variety of dimension
n. Recall that the secant variety

Sec(X) <P
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of Xis by definition the union of all secant lines to X and their limits (i. e., tangent
lines). Given a point P € IP" — X, the projection np: X — IP" ™! is an embedding
if and only if P ¢ Sec(X). Thus X is a Severi variety if and only if m=3/2n+2
and dim Sec(X) <m — 1. If Xis a Severi variety, then by Zak’s theorem on linear
normality Sec(X) must be a hypersurface in P™.

A naive dimension count shows that the postulated dimension of the
secant variety Sec(X) is 2n+ 1: it requires » parameters to specify each of two
points on X, and one parameter to specify a point on the line joining them. The
difference

(2n+1)—dim Sec(X)

is the dimension of the family of secant lines passing through a general point of
Sec(X). More formally, for P e Sec(X) — X, consider the secant locus Qp<= X:

(1.1)

tangent line to X passing

P lies on a secant or }
through x.

QP={xeX

(Figure 1). Then dim Sec(X)=(2n+ 1) — dim(Qp) for generic P € Sec(X).

§1a The standard examples

For each of the four varieties listed in the statement of Zak’s classifi-
cation theorem, one has

(1.2) For every Pe Sec(X)— X, Qp is a smooth quadric of dimension n/2.

It follows that in each case dim Sec(X)=3/2n+1=m—1, so that each of the
examples is, in fact, a Severi variety.

P
Figure 1 Figure 2
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For the three classical examples, (1.2) is easily verified by hand (cf. [H]).
Consider, for example, the Grassmannian X = G (1,5) <P, A pair of points
x, y € X corresponds to two lines /., [, = IP3, and provided that Xy & X =P the
corresponding lines span a 3-plane:

P3, = Span(/,, ) S P°. ()

Let G,, <X denote the four-dimensional Grassmannian of lines in IP,. The
Pliicker embedding G (1,5) o IP'* of G (1,5) restricts to the Pliicker embedding
of G,,, and hence G,, is realized in IP'* as a smooth quadric hypersurface in a
linear space 2, of dimension 5. Then for any point P € xy, P ¢ X (in fact for any
PeZ ,—G,,=2,,—X) one has

QP = ny

(Figure 2). This verifies (1.2) in the case n=8; the cases n=2 and n=4 are
similar.

§1b The E¢-variety E < IP2°

There are various heuristic geometric arguments for the existence of E.
The quickest way actually to construct the example, however, is to use represen-
tation theory. Specifically, let G be a simply connected algebraic group of type
Eg, and let V be the irreducible G-module whose highest weight 4 is dual under
the Killing form to the root ay:

O O \J \J'L 0 E6 .
oy %

(One could as well work with a,.) The variety in question arises as the pro-
jectivized orbit of a highest weight vector 0% v; € V;:

E=P(G -v)cP(V)=P?°,
One has

(1.3). E is a sixteen dimensional variety whose secant variety is a (cubic)
hypersurface.

Thus E is indeed a Severi variety.
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The geometry of the E;-module 7 has been described in another context
by Kempf [K], who showed in particular that dim E = 16. We sketch in (1.4)
below an ad hoc verification that Sec (E) has dimension 25. Zak [Z3] has made a
systematic study of the projective geometry of the varieties arising from irreduc-
ible representations of semi-simple algebraic groups. In particular, he verifies
(1.3), and shows that E satisfies (1.2), without any explicit calculations other
than those found in the literature. We refer the reader to Zak’s addendum to
these notes.

(1.4) Sketch of proof of (1.3). The easiest—but probably least revealing—
approach to (1.3) is simply to make explicit infinitesimal computations. To
begin with, one writes out the 27 weights of V; it is convenient here to use the
explicit description of the root system E¢ given by Demazure [D]. Noting that
the embedded tangent space to E at x; =[v,] € E is given by

T,E=P(3-v)<P(V)

where g = Lie(G), an explicit computation shows that dim £= 16. (One simply
has to count the number of positive roots a for which A —a isagain a weight of V)
To check that dim Sec(E) =25, one can use Terracini’s lemma (cf. § 1 e below),
which asserts in the case at hand that

dim Sec(E)=32—dim(7, En T,E) (*)

for generic points x, y € E. If now 0 # v, € ¥, is a weight vector of lowest weight u
(i.e., u—aisnot a weight of V' for any positive root a), then in the first place u is in
the orbit of A under the Weyl group, and hence v, is in the G-orbit of v;.
Moreover, the G-orbit of (x;, x,) is dense in X x X, so (x) applies to the pair
(x;, x,), and one concludes with another explicit computation.

§1c  An alternative construction of the standard Severi varieties
For the purposes of Zak’s proof of the classification theorem, it is
necessary to construct an explicit birational correspondence between each of the

four standard examples and a projective space of the appropriate dimension.
This is given by:

(1.5) Ineachofcasesn=2,4, 8 and 16, there is a smooth variety Y < P" such that
the linear system of quadrics on P" through Y defines a rational map

P IP3/2"+2,

mapping P" birationally onto the standard Severi variety of dimension n.
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The variety Y in each of the four cases is:
n=2. Y=¢

n=4. Y=P! LIP!, two skew lines
n=8. Y=IPP! xIP3, the Segre variety

n=16. Y=S, the 10-dimensional spinor variety parametrizing one of the
two families of 4-planes on a smooth quadric of dimension 8.

(We will say more about the spinor variety S below.) We note that in each of the
cases n=4, 8 and 16 the variety Y = IP" lies in a hyperplane.

Letting 7 : X — IP" denote the blowing up of IP" along Y, we may rephrase
the assertion of (1.5) by saying that X maps to IP¥2"*2 birationally onto the
standard example of dimension »n:

Pp3/2n+2
ul
¥—r.x (1.6)
n=>bly
YcP'icP"

In fact, X is the blowing up of X along one of the quadrics Qp. The culmination
of Zak’s classification is to recover the diagram (1.6) starting from an “un-
known” Severi variety X (§4).

The case n=2 of (1.5) is trivial. The cases n=4 and n=_8 were known
classically, and can be treated by hand. Zak uses representation theory to verify
(1.5) for the Eg-variety.

Remark. J. Roberts and independently T. Banchoff have found another,
very suggestive, approach to the four standard Severi varieties. Specifically, let &
denote one of the algebras IR, C, H or O, and consider P? (k) as a variety over R.
Then its complexification X = P? (k) ® x € admits an embedding into a complex
projective space of the appropriate dimension, and one obtains in this way each
of the four standard varieties. We hope that Roberts and/or Banchoff will soon
publish the details of this construction. It would be marvelous to exploit this
approach to give a new proof of Zak’s theorem. Conversely, D. Eisenbud and W.
Fulton have asked whether one could use some of Zak’s ideas to give an algebro-
geometric proof of the topological theorem that there exist only four real
division algebras.
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§1d

F. L. Zak

Linear spaces on smooth quadrics; spinor varieties'

We recall for later reference the basic facts about linear spaces of max-

imal dimension on a smooth quadric hypersurface.

QS;Eﬂk+1

of dimension 2k. (The situation on quadrics of odd dimension is slightly dif-
ferent, and will not be needed.)

(1)
@

The linear spaces on Q of maximal dimension have dimension %.
There are two disjoint families of k-planes on Q, each parametrized by a
smooth irreducible projective variety S, of dimension k(k+1)/2. Two
k-planes

A,A4<=Q
are in the same family if and only if

dim(A N A)=k (mod 2).

(cf. [G-H], Chapter 6.) We call S a spinor variety.

Examples.

: Q=P! x P!, and the two families of lines are exactly the two rulings of

Q. Thus S, =~ P!,

: Q=G(1,3), the Grassmannian of lines in IP*. Any 2-plane on Q must be

one of the Schubert cycles

o (P)={/<IP3|l>fixed pt P}

or

o(H)={I<1P?|/<fixed plane H}.

Letting P vary over IP? or H over IP¥, we see that S, ~IP3,

: Here it turns out that S; is itself isomorphic to a smooth quadric of

dimension six (cf. [Z3]).

: S, =S is the ten-dimensional spinor variety appearing in (1.5).

One of the more interesting features of the spinor variety S, is its

projective embeddings. By its very definition, S, admits an embedding in the
Grassmannian of k-planes in IP2**1:

2k+2

S, & Gk, 2k+1) P17 _p.
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However as illustrated already in the case k=1, Op(1)|S, is divisible by two in
Pic(S,), and indeed one has:

(1.7)  Pic(S,) = Z, and the positive generator Og, (1) defines an embedding
S, o P2t
Sketch of proof of (1.7). The spinor variety .S is isomorphic to
G/P,
where G is the simply connected covering of the orthogonal group SO(2k

+2, €), and P is either of the maximal parabolic subgroups associated to the
roots ay Or oy 44 in Dy, q:

e+ 1

(cf. [Z3].) One has Pic(S;) = Z since P is maximal. If 4, 4, , ; are the weights
dual to o, oy, , respectively, then the corresponding representations of G—
which are the two spinor representations—each have dimension 2* (cf. [S, p.
116]), which proves the second assertion of (1.7). The fact that the embedding

2k+2)__1

Sk N IP(k+1

is defined by O, (2) is a reflection of a well-known fact about the representations
of G. Viz, if V'is the canonical SO (2k + 2, €)-module of dimension 2% + 2, then
A** 1V splits as the direct sum of two irreducible representations A~ and A
(corresponding to the two families of k-planes on Q), where A~ and A™ are the
representations with highest weights 2/, and 24, ,, respectively (cf. [S, pp.
133—140]).

Remark. The 10-dimensional spinor variety S = IP*° is, to the best of our
knowledge, the largest known example of a non-complete intersection on the
boundary of Hartshorne’s conjecture. The projective geometry of this variety is
very interesting (e.g., it is isomorphic to its dual variety); as W. Fulton points
out, this variety was studied classically by Room [R].
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§le Terracini’s lemma; Zak’s theorem on tangencies

We state for the reader’s convenience two results which will be needed in
the sequel. We refer to [FL, §7] for proofs and further references.

Terracini’s lemma. Let X < IP™ be a smooth projective variety, and choose
points x,ye X, Pexy — X. Then

TpSec(X)=2Span(T X, T,X), (*)

and for general x, y and P equality holds in ().
The tangent spaces referred to in () are embedded Zariski tangent spaces
in IP™, as are those in:

Zak’s theorem on tangencies. Let X = IP™ be a smooth non-degenerate
variety of dimension n. Fix a k-plane

LcP" mgk<m—1),
and set

Z, ={xeX|T,X<L).

Then dim Z; <k —n.

§1f Some open problems

It emerges from Zak’s classification theorem that every Severi variety is
homogeneous. As the reader will see, an “unknown” Severi variety X < IP™
comes to look more and more homogeneous throughout the course of Zak’s
proof, but it is not until one has the complete list that one actually knows X to be
homogeneous. Is there some way of proving a priori that any Severi variety is
homogeneous? This could lead to a great simplification of the proof of Zak’s
theorem, for it is an easy matter to check using representation theory that the
four standard examples are the only Severi varieties of the form G/P, where G isa
semi-simple algebraic group and P =G is a parabolic subgroup (cf. [Z3]).

A second, very interesting, problem is to construct projective varieties of
large “secant deficiency”. Specifically, consider a smooth projective variety

Xci™

of dimension n not contained in a hyperplane, with dim Sec(X) < m. Define the
secant deficiency of X to be the integer

0=2n+1—dimSec(X).
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(The notion is uninteresting if Sec(X) =IP™.) For instance, just as in § 1a above
one sees that the Segre varieties

P* x Il)b gIPab+a+b ((1, b 22)

have deficiency 6 =2, while the Grassmannians

(k + 1)__ 1
G,k 2 (k=5)
have 6 =4. We pose the
Problem. Do there exist smooth projective varieties with arbitrarily large
secant deficiency?
The E4-variety E < IP?° has secant deficiency 6=38, and we know of no
examples where 6 = 9. It seems to us rather incredible that there could exist an

absolute bound on the secant deficiency of a smooth projective variety, but it
also seems to be fairly difficult to construct examples with large deficiency.

§2 Quadrics on a Severi variety

We now consider an arbitrary Severi variety
m 3
XcP m==n +2

of dimension ». Thus X is a smooth non-degenerate variety whose secant variety
is a hypersurface. As in §1, for Pe Sec(X) — X let

QOp={xe X|xP a secant or tangent line to X},
and put
Xp={ReP"|RexP, with xeQp}.

Thus 2 is a cone over Qp with vertex P. The first main step in Zak’s analysis is to
recover the picture described in §1a:

Theorem 2.1. For any P Sec(X)— X:

a) Qp is a smooth quadric of dimension n/2, and X, is a linear space of
dimension n/2+1.

b)ZpnX=0p

¢) Given P' e Sec(X)— X, one has Qp. = Qp if and only if P’ € Xp.
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The proof of Theorem 2.1 proceeds in three stages. First, as in Fujita-
Roberts [FR], one shows that the statement holds for a generic point
P e Sec(X)— X. One then deduces that Sec(X) is a cubic hypersurface, singular
only along X. Finally, one checks that the assertion holds for all PeSec(X) — X.

Turning to the details, let XXX denote the blowing up of X x X along the

diagonal. Thus any point a € m determines in the evident way a line /, = IP™,
and one has a natural P* bundle

—_—~—
Sy > XxX

whose fibre over a is the line /,. Sy maps to IP™ and its image is precisely Sec(X):

Sy — > XXX P4, xxx ", x
® T (2.2)
P™ 2 Sec(X)

Note that in (2.2), Qp=n(p " (P)).

Proposition 2.3. For general P € Sec(X)— X, Qp is a smooth quadric of
dimension n/2, and X, is a linear space of dimension n/2+ 1.

We refer to [F-R] for a detailed proof. Zak gives a different argument,
based on his theorem on tangencies (§ 1 e¢). Roughly speaking, Zak’s idea is to
choose general points x, y € X, and P € Xy — X, such that P is a smooth point of
Sec(X), and such that the line Xy is not trisecant to X. Thus dim Qp =n/2, and by
Terracini’s lemma (§ 1 €) one may assume that

H =, TpSec(X) = Span(T, X, T, X). (%)
The point now is to show that dim (Sec(Qp)) =n/2 + 1. To this end, assuming for
simplicity of exposition that Qp is irreducible, we observe that (x) holds for any
two general points x,ye€ Qp, whether or not PeXy. Thus for general
P’ e Sec(Qp), one has

Tp Sec(X)=H.
Hence, again by Terracini, there exists a dense open set U < Sec(Qp) such that

QP/EZH‘—-def{xEXl];X.C_H} VP,E U.

On the other hand, by Zak’s theorem on tangencies, applied to a projectionz : X
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o P¥2"*1 one has
dlmZH§n/2.

Since dim(Qp) = n/2 for all P’ € U, it follows that after possibly shrinking U, all
the Qp. coincide for P* € U. If Q denotes the common secant locus, then evidently
0 2 Qp. Since for general x, y € Qp the line Xy is not a trisecant, the upshot is that
a general point P’ € Sec(Qp) lies on at least c0™? secant lines to Qp, and so
dim Sec(Qp) <n/2 + 1. But this implies that Sec(Qp) is a linear space: in fact, if
V < PV is any irreducible projective variety of dimension k such that dim Sec (V)
=k + 1, then by cutting down to the case k=1 one sees that Sec(}V’) is a linear
space. It follows that Qp must be a quadric; for otherwise Xy would be a trisecant
line for every x, y € Qp. Hence 2 is a linear space of dimension n/2 + 1. Finally,
the nonsingularity of Qp for general P is deduced from the generic smoothness of
the map ¢ in (2.2) (cf. [F-R]).

Corollary 2.4. Fix a general*) point P e Sec(X)— X. Then
2p N X=0p,
and Qp = Qp. for general P’ € Xp— Qp.

Proof. Since Qp is a hypersurface in Zp, clearly any point x € Zp N X lies
on Qp. By the same token, Qp = Qp for any P’ € Xp — Qp; but for generic P, Qp.
is a quadric. [

Remark. We shall see below that most of (2.3) and (2.4) hold for any
P e Sec(X) — X which is a smooth point of Sec(X). Thus it is essential to control
the singularities of Sec(X).

We come now to a basic technical result:

Proposition 2.5. Fix a general smooth point P e Sec(X)— X, and let Q
denote the quadric Qp. Then

Sec(X)=S(Q, X),
where S(Q, X) is the join of Q and X.
Proof. Putting T(Q, X) = UQ T.X, it follows in a standard way from the

connectedness theorem of Fulton and Hansen that either S(Q, X) = T(Q, X), or

*) We adopt the convention that a “general” point P is supposed to satisfy all the properties
previously shown to hold generically. In particular, in (2.4) Qp is assumed to be a
quadric.
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elseboth S(Q, X)and T(Q, X) attain the expected dimensions 3/2n+1 and 3/2n
respectively. So it suffices to prove that 7(Q, X) + S(Q, X). But by Terracini’s
lemma, T(Q, X) < TpSec(X). Since X = S(Q, X), and X is not contained in the
hyperplane 7 Sec(X), the proposition follows. []

Corollary 2.6. Fix a general point P € Sec(X) — X. Then Qp meets Qp for
any P'eSec(X)—X. O
We want next to show that Qp N Qp consists of exactly one point for

generic P, P’ € Sec(X) — X. To this end, we start with some remarks on planes
containing 2p.

Fix a general point P e Sec(X)— X, and let M be any (n/2+2)-plane
through X, with M & 7, Sec(X). Thus M meets Sec(X) transversely at P, and
hence

Sy =gesSec(X)n M

contains Xp as an irreducible component. For reasons of degree, S,; must
contain other components as well.

Lemma 2.7. (i) Besides Qp, M N X contains only finitely many points

Xiy oo X,€X (rz1).

(ii) Besides Xp, Sy consists precisely of the cones
S(x;, Qp) (1=isr).

Proof. 1t follows from (2.5) that Sy, =S(M N X, Qp). f (M N X)—Qp

contained at least a curve, this join would have dimension = % +2,1.e. would fill

up M; this proves (i). As for (ii), obviously S(x;, Op) =S, and the reverse
inclusion again follows from (2.5). [

The assertion of (2.7) is pictured schematically in Figure 3.

Corollary 2.8. For almost all points P, P' € Sec(X) — X, Qp N Qp consists
of a single point.

Proof. Fixing P, M as above, the assertion is true for any P’ € S;, lying on
only one of the cones appearing in Lemma 2.7, and this implies the coroll-
ary. [

We now show that in the situation of Lemma 2.7, one has r=1:
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Xy

Figure 3

Proposition 2.9. Sec(X) is a cubic hypersurface.

Sketch of proof. Let P, P' € Sec(X)—X be two general points, and as-
sume that

P¢ TpSec(X) and P ¢ TpSec(X). ()
We observe first that P, P’ canonically determine a third point
A(P,P)eSec(X)—X
on the line P, P’. In fact, let x = x(P, P') = Qp N Qp (2.8). By (%), neither P nor

P’ lie on a tangent line to X at x. Hence since x € Qp there exists some point y

=y(P,P)exP n X( y* x). For general P, there is moreover only one such y.
Similarly, there is a unique point z € X, z % x, such that

Pexz.
We then set

A(P,P)=yz PP .




24 F. L. Zak

Now for generic P, P’ € Sec(X) — X, the line PP" meets Sec(X) transver-

sely. If deg(Sec(X)) = 4, PP” would meet Sec(X) at P, P’ plus at least two other
points. We have singled out one of these—A (P, P')—canonically, and since
Sec(X) is irreducible a standard monodromy argument gives a
contradiction. []

Proposition 2.9 gives good control over Sec (X) locally. Specifically, fix a
general point P € Sec (X)— X, and consider any point

P e Up=4Sec(X)— TpSec(X).

Then Lemma 2.7 applies to the (n/2 + 2)-plane M = S(Zp, P’). By (2.9) one must
have r=1 in that lemma, and it follows that

Sec(X) is smooth at any point P'e Up — X. (2.10)
Moreover,
Qp has pure dimension n/2 for any P'e Up— X, (2.11)

since, as in Zak’s proof of Proposition 2.3,
Op S {xeX|T X <= Tp,Sec}

and the set on the right has dimension <n/2. Returning to the diagram (2.2),
since Sy is smooth it follows from (2.10) and (2.11) that the map ¢ is flat over Up
— X. A simple argument then shows that

Qp is a quadric for all P'e Up— X. (2.12)

We next wish to show that (2.10), (2.11), and (2.12) hold for all
P’ e Sec(X)— X. To this end it evidently suffices to prove

Lemma 2.13. For any point R € Sec(X), there is a dense open set of smooth
points P' € Sec(X) — X such that

R¢ Tp. Sec(X).
Proof. Pick a general point P € Sec(X) — X such that 0 =Qp is a smooth
quadric with Sec(X)=S(Q, X). Computing tangent spaces to S(Q, X) a la

Terracini, one argues that it suffices to show that for a sufficiently general point
x € X, and general points y,, ..., yy € 0,

0 (5,0, T =TX. ©

For (%), in turn, it suffices to show that 7. X n X, = ¢ for general x € X, for then
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N

| 55,010 =5( ) 7,0.7.).

i=1

and we can certainly arrange that N 7,0 = ¢. But it follows from Lemma 2.7

that projection from X, defines a dominant map n: X —Q —IP", and so

T.X n Zp=¢ for general x € X by the theorem on generic smoothness. []
To recapitulate, we have so far proved

(2.14) For any PeSec(X)— X, Sec(X) is smooth at P, Qp is a quadric of
dimension n/2, and hence Zp is a linear space of dimensionn/2 + 1. Further-
more, Zp N X =Qp, and for any P' € Xp — Qp one has Qp. =Qp.

(The last sentence follows from the first as in the proof of Corollary (2.4).) Hence
Theorem 2.1 is a consequence of

Lemma 2.15. For any x € X, and any quadric Qp through x (P € Sec(X)
—X), Qp is smooth at x.

Proof. Choose a general point P’ € Sec(X) — X such that x ¢ Tp. Sec(X)
(Lemma 2.13), and let M = Span(Z,., x), so that we are in the situation of
Lemma 2.7. In particular, x is an isolated point of M n X. Given Qp3 x, Qp
meets Qp, say at y € Qp. (2.6). The line Xy meets Qp at exactly the two distinct
points x and y; in particular, x cannot be a singular point of Qp. [

(See Figure 4.)

Theorem 2.1 is now proved.
In the sequel, we shall make extensive use of

Qp

QP’

Figure 4

Corollary 2.16. Given any two points P, P’ € Sec(X) — X, the intersection
Op N QOp

is a linear space unless Qp= Qp.
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Proof. Given distinct points x, y € Qp N Qp., it suffices to show that Xy
S Qp N Qp unless Op = Qp.. Now in any event, Xy = Xp N Xp.. If there exists a
point R € Xy with R¢ Qp N Qp., then R lies in neither Qp nor Qp. : for otherwise
one obtains a contradiction to statement (b) of Theorem 2.1. But then

Qp=0r=0p
by two applications of (2.1¢). [

Remark 2.17. The last two results show that for fixed x € X, the set of
all secant quadrics Qp (P € Sec(X)—X) passing through x is itself naturally
parametrized by a smooth quadric Q' of dimension »/2. In fact, as in the proof
of Lemma 2.15 choose any Q' = Q,. such that x ¢ T, Sec(X). Given Qp > x,
the intersection Qp N Q' has dimension zero (by (2.7)) and so consists of a
single point thanks to (2.16). In the other direction, given any point y € Q’,
choose some R € Xy —X and associate to y the quadric Q.

§3 Dimensions of Severi varieties

The second main step in Zak’s classification is to show that there are only
four possibilities for the dimension of a Severi variety:

Theorem 3.1. Let X < P™ be a Severi variety. Then
n=dimX=2,4,8 or 16.

We may—and do—assume that n = 4. Fix for the rest of this section a
point

xeX

and two secant quadrics

0,=0p, and Q2=QP2(P.'GSCC(X)_X)

meeting at x and nowhere else. Zak’s beautiful idea is to estimate in different
ways the dimension of the family of secant quadrics Qp passing through x and
meeting each Q; in positive dimension. These estimates lead to inequalities on
the dimension n of X which ultimately imply the theorem.

In the course of the proof, it becomes necessary to produce secant
quadrics meeting both Q, and Q, in positive dimension. To this end, Zak
introduces the following basic construction. Let

CG=T.0n0Q (=12).
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Thus C; is a cone, with vertex x, over a smooth quadric of dimension #n/2 —2.
Denote by

§(Cy, G)
the joint of C; and C,. Then, evidently,

(3.2) For any point Pe S(C,, C,), P¢ X, one has
dim(@pn Q)21 (i=1,2).

(See Figure 5.) Recall that then Q,n Q, is a linear space (Corollary 2.16).

Figure 5 x

Finally, observe that
dimS(C,, C,)=2(n/2—1)=n—-2,

and that S(C,, C,) is irreducible if each C; is, i.e. if n=6.
Lemma 3.3. Fix two points P, P' € S(C,, C,) — X, and put
L=0p,nQ; for i=1and2.

Then Qp. = Qpifandonlyif P'€ S(L,, L,), where S(L,, L,) denotes the join of L,
and L,.

Proof. If P'e S(L,, L,), then P’ € 2 and hence Qp = Qp (Theorem 2.1).
Conversely, if say P’ € y; 7, with y; € C;, and if Qp. = Qp, then

YieQinQp=0,n0p (i=1,2),
and hence y;e L;. [
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Lemma 3.4. The family of all secant quadrics through x meeting both Q,
and Q, in positive dimension has dimension <n/2—2.

Proof. This is guggested by a naive parameter count. In fact,

dim {Qp|Qp3x} =n/2

(Remark 2.17), whereas a general secant quadric Qp through x meets each Q;
only at x. Hence one expects at least two conditions to be imposed by the
requirement that 0p meet both Q, and Q, in positive dimension. []

A possibly more convincing formulation of this argument makes use of
the quadric Q' parametrizing all secant quadrics through x (2.17). The quadric
Q; 3 x corresponds to a point y; € Q’, and the reader may find it amusing to verify

(3.5) If Qp > x is a secant quadric parametrized by a point y € Q', and if

dim(Qr N Q) 21,
thenye T, Q'.

(It ultimately emerges that the converse holds as well.) Lemma 3.4 follows
immediately.
One now obtains already a first restriction on the dimension of X:

Proposition 3.6. Assume that n=dim X = 6. Then

n=0(mod 4)
and
dim(Qp N Q)=n/4 forall PeS(C,,C,)—X.

Proof. Since n =6, S(C,, G,) is irreducible. We may hence set

o =dim(@rn Q) (=1,2)

for a general point P € S(C,, C,) — X. Then, for general P, the joins in Lemma
3.3 have dimension a, +a,. Hence the family of distinct quadrics Qp obtained as
P varies over S(C,, C,)— X has dimension (n—2)— (o, +a,). Therefore, by
Lemma 3.4,

(1=2) = (@ +ox) S5 -2,
L.e.

()

n
oc1+oc2_2_—2—.
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If n=4k+2, then o, <k (i=1, 2), since the largest linear spaces on a smooth
quadric of dimension 2k + 1 have dimension k. But this leads to the inequality

2k+1<a, +a, <2k,

a contradiction. Hence n =4k, and one finds from (x) that «; =a, =k. Finally,
since in any event dim(Qp N Q;) <k, it follows by semi-continuity that
dim(Qp n Q) =k for any Pe S(C,, C,)—X. O

Remarks. (1) It follows from the proof that the inequality in Lemma 3.4
must actually be an equality (provided that n> 4). On the other hand, returning
to the situation of (3.5), let y,, y, € Q' be the points parametrizing the fixed
quadrics Q, and Q,. One now sees that if y € Q' corresponds to a secant quadric
QOp, then dim(Qp N Q;)> 0 for i=1and 2 iff ye T, Q' n T,,Q’. Therefore, by
fixing y, and varying y, (or vice-versa) one deduces

dim(Qp N 0)>0<=yeT, Q. (i=1 or 2)

In particular, the set of all such Qp is irreducible if n> 4.

2) The congruence n =0 (mod 4), as well as the assertion of Corollary 3.7
below, were obtained also by Fujita-Roberts [F R], using completely dlfferent
less elementary, methods.

Corollary 3.7. If n= 8, then n=0 (mod 8).

Proof. Pick Qp meeting each Q, (i=1, 2) in a linear space L; of dimension
n/4. Then L, n L, = {x}. Hence by the results quoted in § 1 d, it suffices to show
that L, and L, lie in the same family of (n/4)-planes on Qp. But in fact by the
Proposition and Remark 1 above, the family of secant quadrics

fo

is irreducible if > 4. [

We now arrive at the most interesting part of Zak’s argument, namely the
bound n<16. Recall from §1d that the quadric Q, contains two families of
(n/4)-planes. Since S(C,, C,) — X is irreducible if n> 4, it is meaningful to make
the following

Op3x
Op N Qp an (n/4)—p1ane}

Definition 3.8. Assuming n=8, let §(Q,) denote the family of (n/4)-
planes on Q, containing the intersections
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{Q;n QP}PES(CI,CZ)—X’

and let &' (Q,) be the other family. Write

&:(Q1), §.(Q1)

for those (n/4)-planes in each family which pass through x.

Example. Consider X = G (1,5) = P'*. The secant quadric Q, is obtained
as the Schubert cycle {lines/< L*} for some 3-plane L?> =IP°. The 2-planes in
&(Q,) are the Schubert cycles {lines/ = H*} for some 2-plane H* = L*, while
those in &' (Q,) are the Schubert cycles {{ = L|/> O} for some fixed point O € L>.
Note that a 2-plane in the F-family does not lie on any larger linear space in X,
whereas any 2-plane in the §'-family lies on a unique 4-plane in X (namely
{I=P°|l>0}).

We henceforth assume n=8. Zak’s crucial observation now is

Proposition 3.9. For any Z—-plane A< Q, corresponding to a point
[A]l € &.(Q,), there exists a point Pe S(C,, C,) — X such that

(@rn Q) =4.

Note that Theorem 3.1 follows at once. For in any event

dim, Q)= (%) (%—1)

and combining the Proposition with Lemma 3.4 yields the inequality

1 (n n
n/2—2§§ (Z) (1_1),

n—4) n—16)<0.

1.€.

Hence n< 16!

For use in the proof of (3.9), and elsewhere, we record the following
elementary observation:

(3.10) If M, N< X are two linear spaces of dimension a, and if
dim(M N N)y=a—1,
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then for any P e Span(M, N) — X, one has
M,NcQp.

Indeed, if m € M is any point, the line m P must meet N. In practice, (3.10) is used
either to construct secant quadrics containing a given plane N, or to show that
the span of two linear spaces must lie in X.

Proof of Proposition 3.9. Fix a point Pe S(C,, C,) — X, and set:
A4;=0pn Q; (i=1,2)

a=dim L.

Arguing by induction on «, we may assume that « < n/4, and it suffices to
construct a point P’ € S(C,, C,) — X such that

dim(A N Qp)> .
Fix any point
xoeA—L.

We assert:

(3.11) There exists a point y, € A, such that:

a) Span(y,,L)=X

and

b) Xoyo EX.
(See Figure 6.) Granting (3.11), consider any point P’ € X;7, — X. Then clearly
P e S(C,, C,). Furthermore, applying (3.10) with M =Span(y,,L) and N
= Span(x,, L), one has N < Qp.. Thus dim(Qp. N A)> «, so it remains only to
prove (3.11).

To this end, observe to begin with that
(3:12) A(xo) =y{y € Qp|Toy = X}

is a linear subspace of Qp.

Indeed, given y, y' € A (x,), suppose there were to existapoint P €y, y', P' ¢ Qp.
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w, /\
//'\
. \
- \
/// \\
-7 \
. L
%o
0,nQ0p=41,
Figure 6 A;=0pn Q4

Then P’ ¢ X, sincein any event P’ € . But each of the lines X; 7 and x, ) liein X,
and hence by (3.10) they would lie also in Qp.. But Qp. = Qp (Theorem 2.1¢), and
S0 X, ¢ Op, a contradiction.

Note next that since A is in the family & (Q,), and since n/4 =0 (mod 2),
we have (cf. §1d)

a=dim(A N A,)=0 (mod?2),
whence

nf4—o=2.
But this implies:

(3.13) There exists a linear space L, S A, of dimension =2 such that
Span(L,, L)< Qp.

In fact, if Q is any smooth quadric of dimension 2, and if L and A, are linear

spaces on Q of dimensions o < k — 2 and & respectively, with L n A, = {x}, then

there exists a plane L, < A of dimension = 2 such that Span(L,, L) < Q. (Hint: if

0 is the intersection of Q with Span(L, 4,), show that dim(SingQ N 4,) > 2.)
Similarly:

(3.14) There exists an (g—— 1>-plane L, < A, such that

Span(L,, xo) = Q, = X.
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But now (3.11) follows. For since Qp is smooth, the linear space A4(x,) has
dimension <n/4. On the other hand, dim (4 (x,) N A4,)=n/4—1 by (3.14), so
dim (4 (x,) N 4,) < 1. In particular L, & 4(x,), so we simply choose any point

Yo€L,—A(x,). [

This completes the proof of Proposition 3.9, and hence of Theorem 3.1.
We conclude this section with a result needed later on linear spaces in the

family § ().

Proposition 3.15. Assume n =8, and let | < X be a line through x not lying in
Q,. Then there exists an n/4-plane A' = Q,, with [A'] € § (Q,), such that the join

SA,HeX.

Proof. Choose any Pe S(C,,!)— X, and set

A=0pn Q.
Then as in (3.14) there is an (n/4— 1)-plane H < A such that A=,S(H, ) = Qp.
Then on Q, there exists an n/4-plane A’ such that A n A'= H. Note that
[47] e & (Q,) (since it meets A in codimension one). But then

S(A, A X;

for if there were a point R € S(A’, A) — X, then one would have A’ = Qx N Q, by
(3.10), which is impossible since A’ € F(Q,). O

§4 The classification of Severi varieties
Let
Xc IP3/2 n+2

be a Severi variety of one of the four possible dimensionszn = 2, 4, 8 or 16, and fix
a secant quadric

0=0p

n
2
to the case n=2, Zak considers the projection of X from X to a complementary
IP". More formally, let X denote the blowing-up of X along Q. Then X maps to IP"

spanning the { —+1 )-plane 2 = X,. Following one of the classical approaches
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in a natural way, and one has the diagram

~

ba S=blg X< Pp3/2nt2
e “4.1)
]Pn

The main point in the final stage of Zak’s classification is now to prove the
following

Theorem 4.2. The projection n realizes X as the blowing-up of P" along a
copy of the variety Y <IP" listed in §1c.

It is then a small matter to check that Xis, in fact, one of the four standard
examples.

We assume henceforth that n=4, the case n=2 being at this point clear.
As the proof of Theorem 4.2 is rather long, we begin by explaining briefly the
central geometric picture. Let H = Tp Sec(X). By (2.7) and (2.9) the projection ng
is an isomorphism on X — H; thus the real issue is to understand 7y on X n H. To
this end, we choose x* € X, x* ¢ H, and we think of 7y as mapping onto 7,.X
=1IP". Setting Z=T.X n X n H, the basic fact is this:

For eachy € Z, there is a unique n/4-plane A, < Q—with [A,] € § (Q) [cf.
(3.8)] if n=8—such that the spans
M,=S5(4,,y)

lie in X. As y varies over Z, these sweep out the exceptional divisor of .

Along the way, it will emerge that Z is isomorphic to the appropriate Y < IP" of

§1.

Turning now to details, for x € X let
Z¥=TXnX.
Observe to begin with that

Z* is a cone with vertex x. 4.3)

Indeed, it suffices to show that X is cut out by quadrics, at least set-theoretically.
But this is a consequence of the fact that Sec(X) is a cubic hypersurface singular
exactly along X.

Denote by Z, the base of the cone Z¥: we may realize Z, as the intersec-
tion of Z¥ < T, X with a hyperplane H not passing through x.
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Lemma 44. Z} = QU (C.0p),

where C,.Qp=T,.Q0p N Qp, the union taken over all secant quadrics Qp passing
through x.

Proof. A simple argument shows that Z¥ is not a linear space, and it
follows that for almost every point z € Z, there exists a point z’ € Z, such that

z,z € Z . If Pis a point in the 2-plane x, z, z/, with P ¢ X, then each of the lines
xz and xz’ lies C.(Qp). In short,

U Cx (QP)

Op3x
contains a dense open subset of Z*. But {J C, (Qp) is Zariski-closed in Z¥, so the

two coincide. [
We now describe the varieties Z, explicitly in the cases n=4 and n=8.

Proposition 4.5. If n=4, then Z, consists of two skew lines in P?
=T.X N H for every x e X.

Proof. As in §3, fix any two secant quadrics Q; (i=1, 2) through x,
meeting only at x, and denote by C; the corresponding cones. Thus each C,
consists of two lines through x, and we observe that by Theorem 2.1 (b) the 2-
plane spanned by C; cannot be contained in X.

Consider now a line /; of C, and /, of C,. If the join S(/,, [,) £ X, then
taking Pe S(/;,1,) — X gives a secant quadric Qp meeting each Q, in dimension
> 0. On the other hand, according to (3.5) the secant quadrics through x meeting
each Q; in positive dimension are parametrized by some subset of a smooth
quadric of dimension n/2 — 2, i.e. in the case at hand by two points. Hence of the
four possible joins

S, L) (LG, LeG)

two at least must lie in X. However neither S(/;, C,) nor S(/,, C;) can be
contained in X: for otherwise one could use (3.10) to construct a secant quadric
QOp containing the 2-plane S(/,, /,), which is impossible since Qp is smooth.

The upshot is that the components of C; and C, pair up in such a way that
the joins of the corresponding lines lie in X:
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One thus obtains a pair of 2-planes in X—call them II and IT'—meeting
(exactly) at x. It remains to show that [T U [I'=Z%.

To this end fix a line /; = C; —say with /; = [I—and a line n' = II". We
assert that the span S(/, n') £ X; for otherwise one obtains as above a contradic-
tion by applying (3.10) to the planes IT" and S(/,, #'). Hence taking Pe S(/;, n')
— X we obtain a secant quadric with C, (Qp) =/ U #'. Now fixing »’ and letting /,
vary in II it follows that for any lines n = IT and n' S IT’ there exists a secant
quadric Qp through x such thatn U n' = C,(Qp). One thus obtains an irreducible
two-dimensional family of secant quadrics Qp through x with

C.(Qp)cHull. ()

But the family of all secant quadrics through x is itself irreducible of dimension
two (2.17), so () holds for every Qp 3 x, and hence Z¥ < IT U IT' by (4.4). [

Remark. As Zak points out, this Proposition can already be used to give a
quick proof of the classification theorem in the case n=4. Keeping notation as in
the proof, the idea in brief is as follows. Since the proposition holds for every
x € X, one must obtain for each x € IT a second 2-plane IT' (x) = X through x. One
checks that the IT’ (x) are disjoint, and hence are the fibres of a map X — II. One
defines a morphism X — II’ similarly. The resulting map

X—II xIT

is the desired isomorphism.
Proposition 4.6. When n=8, Z, is the Segre variety
P'xPcsP'=T.XnH

for any x e X.

Sketch of proof. The argument is similar to the one just completed. We
indicate the main steps.

We start with an elementary construction in projective geometry.
Consider two disjoint IP*’s in IP7 and a smooth quadric B, (i=1, 2) in each.
Speaking of the two rulings of each B; as “horizontal” and “vertical” lines, we
suppose given an isomorphism between a vertical line in B, and a vertical line in
B,. Such an isomorphism arises, for example, if one has a third smooth quadric
Bmeeting each B; in a vertical line. (Figure 7.) The isomorphism of vertical lines
determines a natural bijective correspondence between the horizontal lines of B,
and those of B,. We may then consider the union of the oo’ three-planes spanned
by corresponding horizontal lines. The resulting variety is the Segre embedding
of IP! x IP3 in IP7.
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/u‘ _______ \

Figure 7
Now choose two secant quadrics Q,, @, through x, as in § 3, and a third
quadric Q =Qp meeting each Q; in a IP2. Put

q=Cx(Qz) (l= 192)9 Cx=Cx(Q)a

and let B,, B, and B denote the bases of these cones, which we may think of as
living in a P? < IP® = T_X. We are thus in the situation just described, and the
first point to check is that the corresponding Segre variety lies in Z,. To this end,
take a horizontal line /;  B; and the corresponding line /< B. Denoting by A4,
and A the resulting 2-planes through x, observe that

4, €§.(Q1)
AeE.(0). (See Figure 8.)

and

Then M, =,,5(A,, A) € X, for otherwise (3.10) would give a point P’ € Sec(X)
— Xwith A, = Qp N Q,, which in turn would mean that A, € §,(Q,).If , € B, is
the horizontal line meeting /, and 4, = C, the corresponding 2-plane, then

M, =4S4, HSX.
Another application of (3.10) now shows that S(M,, M,)=X. Thus
S(l,, l,) = Z,. Varying I, one thus obtains the desired copy of P! x P*in Z,. We
leave it to the reader to verify that in fact Z, =P! xP?. [

We will treat the case n=16 later, by an indirect argument.
We now start a more detailed analysis of the map 7 in (4.1). To this end,
fix any point x* € X, and fix P € Sec(X)— X such that

x*¢ H=,,TpSec(X). (*)
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Figure 8

X

Putting Q = Qp and X = X}, it follows from (2.7) and (2.9) that
the map = in (4.1) is an isomorphism over P"—P" N H. , (%)

In particular, (+) implies that 7,.X N ¥ = ¢. We may then think of the projection
ny from X as a birational map

n:tX—Q—*];*X=IP".

We set L=T.X n H. (See Figure 9.)

Figure 9
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Let S be the spinor variety parametrizing n/4-planes A € § (Q) if n=_8 or
16, or simply lines in Q if n=4. Thus

S=P'LIP' if n=4
S=Pp? if n=8
S = 10-dimensional spinor variety if n=16.

Leeting Z=Z.=Z% n L, we consider the basic correspondence

ZxS2W={(y,[4DIS(y, ) = X} 4.7
p q
Z S

Proposition 4.8. (i) The map p is bijective.
(ii) The fibres of q are linear subspaces of X.

Proof. (1) We start with the surjectivity of p: given y € Z we must exhibit
A <€ Q, corresponding to [4] € S, such that S(y, 4) = X. Note to begin with that
Sec(X) n H=T(X, Q) (cf. proof of Proposition 2.5), so y € T X for some x € Q.
By (4.3) applied at x € X, the line Xy then lies in X. When n = 8, (3.15) gives the
desired 4 < Q. When n=4, the existence of A follows from Proposition-4.5.

To show that p is one-to-one, suppose to the contrary that for some y € Z
there are distinct planes 4,, 4, € Q—corresponding to points in S—such that
S(4;,y)e Xfori=1,2. We consider first the case when A, and A4, meet along a
non-empty linear space L; this is automatic when n==8 or 16, since then
dim (A4, N A,)=0 (mod 2). Choose pointsae A,,be A,,witha, b ¢ L, such that
ab € Q. Thenab ¢ X (Theorem 2.1), so there exists a point R € ab — X. Applying
(3.10) to Span(L, a, y) and Span(L, b, y) one finds that y € Q. But Qr = 0, and
y ¢ 2, a contradiction. The possibility that n=4, and that A,, A, are two skew
lines, may be handled by (4.5).

(i) If y,,y,€Z are distinct points such that S(y,,A)=X and
S(y,, A) =X, then S(7;7,, A) =X by 3.10), i.e. y77, =9 ' ([4]). O

In the cases n=4 and 8 we know already that Z is smooth, and it follows
that p is an isomorphism. (When n=4, q is also an isomorphism; whenn=38, q is
the projection of P! x IP? onto its second factor.) In the last case, one has:

Proposition 4.9. When n=16, p and q are isomorphisms.

Proof. Note to begin with that the irreducible variety Z is a section of X
by a linear space L of codimension 26 — 15= 11 in P?®. Hence H'(X, Z; Z)=0
when i <16 — 11 = 5 by the Lefschetz theorem. Moreover H'(IP?°, X; Z) =0 for
i<2byBarthand Larsen (cf. [FL, §9]). Hence H*>(Z; Z)=Z,and if 0,(1) is the
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line bundle defining the embedding Z < IP*® = L, then ¢, (0;(1))is a generator of
H?*(Z;Z)= H*(W, Z). 1t now follows that q is finite: in fact, any surjective
morphism V' — W between irreducible projective varieties of dimension =1
must be finite if H*(V; Z)=Z, and certainly im g is not a point. On the other
hand, an elementary argument using (4.4) and (3.5) shows that in any event
dimZ =dim W=3/4n—2=10. Thus ¢ is surjective and so by (4.8 1ii) is an
isomorphism. Identifying S with W, p : § — Z = P** is a one-t0-one map to IP**
defined by a positive generator of Pic(S) = H*(S, Z) =Z. But the only such is
the projectively normal embedding S o P’ (1.7). O

Proof of Theorem 4.2. In each of the cases n=4, 8 and 16, p is an
isomorphism and Z< T.X n HS T..X=IP" coincides with the appropriate
variety Y listed in §1c. G1ven y € Z, let A, denote the n/4-plane in Q correspon-
ding to the point g(p~'(y)) € S, so that

M,=.:S(y,4,)=X.

Observe that for distinct y, y' € Z, the planes M, and M, can meet only in 0. A
simple argument now suffices to verify

(*) Referring to diagram (4.1), the fundamental locus of 7 is exactly the
smooth subvariety Z € IP"= T_.X and n ! (Z) is the P"* " !-bundle over Z
swept out by the planes M, as y varies over Z.

But now the theorem follows from a result of Aeppli [A] to the effect that if
n: X — P is a proper birational morphism between smooth varieties such that
the fundamental locus Z = P of # is smooth, and also the exceptional set F
=n"'(Z) < X is smooth, then 7 is blowing up of P along Z. []

Finally, to complete the proof of the classification theorem, it suffices to
show that the rational map IP" —— P%2"* 2 arising from (4.1) is defined by the
(necessarily complete) linear system of quadrics on IP" passing through Y. Since
7 is the blowing up of Y, the map P" —— IP¥2"*2 is in any event defined by a
linear system of hypersurfaces of degree k passing r times through Y. Hence it
suffices to show that k=2, i.e. that the transform of a line / = IP" disjoint from Y
is a conic curve in P*2"*2, But this is clear, for given x € Q choose a smooth
conic curve C< X meeting Q exactly at x, with 7,X n C={x}. Under the
projection from X, C maps to the desired line /< IP", and we are done.
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ADDENDUM by F. L. Zak

Varieties of small codimension arising from group actions
(excerpts from [Z3])

Here follow excerpts from [Z 3] in which I show how to use representa-
tion theory in the study of geometric properties of some important projective
varieties of small codimension. In particular, I recover in the group-theoretic
term all constructions in the preceding notes by Lazarsfeld and Van de Ven of the
four standard Severi varieties. Of course, there are other methods to prove the
results stated in §1.b and §1.c of the above notes (for example, 1.5 has been
proved by C. Segre for n=4 and J. Semple for n=8, and a similar result for the
variety S is due to P. Heymans), but I think it worthwhile to have a unified
approach to all the examples.

I am greatly indebted to R. Lazarsfeld who wrote me about his discovery
of the Severi variety E. I am also grateful to V. L. Popov for useful discussion of
representation theory. Finally, I wish to thank Prof. Fischer who suggested to
include these excerpts in the present volume.

. Let G be a linear algebraic group over an algebraically closed field &
acting on a vector space V, dim ¥V =N+ 1. We are interested in invariant
subvarieties K = V corresponding to nonsingular projective subvarieties in P¥
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=1IP(¥V). Thus K must be a cone, and to guarantee the nonsingularity it is natural
to assume that there exists an orbit Gv, v € K'such that K = Gv = Gv U 0, where 0
is the origin in V.

In V. L. Popov’s note “On Hilbert’s theorem on invariants” (Dokl. AN
SSSR 249:3(1979), 551—555; Engl. transl.: Math. USSR Doklady) it is shown
that in this case the stabilizer H of the point v contains a maximal unipotent
subgroup of the group G (cf. n° 4, cor. 2; in our case this simply reflects the fact
that each parabolic subgroup contains a Borel subgroup). In particular, H
contains the unipotent radical of G, and without loss of generality we may
assume that G is reductive. Furthermore, since we are interested only in the
projective variety corresponding to Gv, we may assume that G is semisimple.

Fixing a Borel subgroup containing the above maximal unipotent sub-
group, we can write v =v, +---+ v, where bv, = A,;(b)v; for be B, A; is the
highest weight of the restriction of the action of G on an invariant subspace
V.oV, and v, is (b’%/ definition) the highest weight vector (primitive element) in

V.. Clearly Gv= @ V;, and without loss of generality we may assume that ¥
i=1

k _
= @ V. Since Gv contains only two orbits, it follows that all 4, lie in an affine
i=1 ‘

hyperplane. Therefore we may assume that k=1 and Gv is the orbit of the
highest weight vector of an irreducible representation of a semisimple group G.
In particular, it easily follows that the smooth projective variety X = Gv/k* < PV
is rational.

Let A (resp. M) be the highest (resp. lowest) weight of this representation,
let v, (resp. v,,) be the corresponding weight vector, and let g be the Lie algebra
of G. Let TX (resp. SX) be the variety of tangents (resp. the secant variety) of the
projective variety X. Clearly 7X corresponds to the affine cone Ggv, < V.
Furthermore, if P, = G is the (parabolic) stabilizer of the line kv, (or, which is
the same, of the point x , € X corresponding to v,), then it is easy to verify that the
stabilizer of gv, in G coincides with P, (to do this, one can use the theorem on
tangencies). Similarly, let N, = V'* be the subspace of points corresponding to
hyperplanes passing through g, (the “normal” subspace). Then the projective
variety corresponding to the cone G N, is just the dual variety X * = (PY)* (here G
acts on V'* via the contragredient representation). The stabilizer of N, clearly
coincides with the stabilizer of gv,. Now, although the action of P, on gv, and
N, is not completely reducible and one cannot directly apply Kempf’s theorem 0
on p. 229 in Inv. Math. 37:3 (1976), it seems that the same methods show that
TX and X* (as well as X) are (arithmetically) Cohen-Macaulay varieties (it is
also clear that 7X and X * are unirational; probably, they are even rational —do
you know of anybody has considered these normality and rationality
questions?).

If X is a complete intersection, then X* is the image of a (smooth)
projective bundle under a finite birational map. If X* is normal, that means that
X * is a nonsingular hypersurface in (P)* which at the same time is a projective
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bundle over X with fibers P¥ "~ ! < (PY)*, where n = dim X. From this it clearly
follows that N—n—1 <0, i.e. either X = P¥ or X is a hypersurface in IP". In the
last case it is immediate that X is in fact a quadric. Thus there are three
possibilities: a) G acts transitively on ¥* = V"\0 and X =IP", so that the only
invariants are constants; b) X is a nonsingular quadric, and the ring of invariants
coincides with k[ Q7], where Q =0 is the equation of X; ¢) X is not a complete
intersection (of course, all these possibilities actually occur). Certainly, there are
other, less elegant but more “reliable” methods of proving that X usually isnota
complete intersection and X* and TX are (arithmetically) Cohen-Macaulay
varieties (in our examples they will be determinantal varieties).

Next we notice that, although the orbit Gv, does not necessarily contain
all weight vectors, vy, € Gv, because M = w,, (A), where w,, is the involution in the
Weyl group W of the group G which transforms the positive Weyl chamber into
the negative one (cf. Bourbaki, Groupes et algébres de Lie, ch. VI, § 1, n°6, cor.
3), so that we may assume that w,, lies in the normalizer of the maximal torus of
G. Let x,, be the point in X corresponding to v,,, and let P, be the stabilizer of
X - Consider the orbit of the point x 4, X x,, € X x X under the natural actionof G
on X x X. Then the stabilizer of x, x x,, is P, N Py, and

dim G (x4 + xp) =dim G —dim (P, N Py,) =
=dim X + (dim (P, - Py) — dim Py) =2dim X

since dim (P, o P,;) =dim G because P, contains the “upper” and P,, contains
the “lower” Borel subgroup of G (cf. A. Borel, Linear algebraic groups, ch. IV,
theorem 14.1). Thus the orbit G(x, xx,) is dense in X xX and SX
=G - [x 4, x)p ], Wwhere [ x 4, x,,] denotes the secant joining x , with x,, and the bar
denotes projective closure.

Let U be the plane in V generated by v, and v, let 9t be the cone of
nullforms in ¥V (recall that 9 is the subset of V" defined by vanishing of all non-
constant G-invariant polynomials), and let Z<IPY be the projective variety
corresponding to . Clearly X = Z. Consider the action of the maximal torus
TcGon U. Letv=ov,+ Povyye U, a,f+0. Then Tv< U and there are two
possibilities: either A+ M+ 0 and dim (7v)=2 or A+ M =0 and dim(7v) =1.
In the first case Gv > Tv 30, and therefore GU =Gv <t and SX <= Z. In the
second case GU = G (kv) ; examples show that in this case SX may lie or not lie
in Z. Anyhow, this consideration shows that if X cannot be isomorphically
projected to P¥ ™1, then either M=V, i.e. I;[ V] =k, where I;[ V] is the algebra
of polynomials on V invariant with respect to the action of G, or Gv RN is a
hypersurface in ¥ and, since dim Bt > dim Gv, I;[ V] =k[F], where F generates
the ideal of 9t (it should be noted that all representations with these properties
have been classified). The involution w, for simple Lie groups is given in thé
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tables at the end of the Bourbaki book. In particular, w, = — 1 (and hence 4 + M
=0 for all representations) iff G has one of the following types:

Al’Br(rgz)a Cr(rgz)’ Dzl(lgz)a E7a E89 F4a Gz-

Now we are sufficiently equipped to consider concrete examples.
Suppose first that G is not simple. Without loss of generality we may assume that
G=G X xXGy, V=V, @@ V; and G— Aut(V) is a tensor product of
irreducible representations G; — Aut(¥;) with highest weight A; and primitive
element v;. Itis clear thatv =v; ® --- ® v, is a primitive element of our represen-
tation and the corresponding highest weight is A, +---+ A4,. Let X; be the
projective variety of dimension n; in P = IP (V) corresponding to G;v;. Then it is
easy to see that the n-dimensional projective variety X in IPY = IP (V") correspond-
ing to Gv is the Segre embedding of X, x --- x Xj.

In what follows I’ll try to describe varieties corresponding to orbits of
highest weight vectors.

Since we are primarily (although not exclusively!) interested in varieties
of “small” codimension, in this letter I'll focus attention on the case when N
<2n. Suppose first that d> 1, so that n=n; +---+n;,, N=(N,+1)-...- (N,
+1) — 1. Elementary computations show that d<2, and if d =2, then either X
=P! x P"<P?"*! or X =P? x IP2 = IP® (these varieties correspond to the stan-
dard representations of the groups SL, x SL,,, and SL; x SL, respectively).
In the first case =V and SX=P?"*!, In the second case the above theory
yields SX < Z, and it is easy to see that I;[V]=k[det]. Thus SX is a cubic
hypersurface in IP® (corresponding to the set of nonzero matrices of rank <?2),
and Sing SX = X (X corresponds to the set of matrices of rank 1). Furthermore,
from the above discussion it follows that (SX)* = X, X* >~ SX. It remains to
consider representations of simple Lie groups. Since the stabilizer P, of the
primitive element x, contains a Borel subgroup B< G,

n=dim X = dim G — dim P, gdimG—dimB=% (dim G — rkG).

Therefore 2n+rkG £dimG,andif N+ 1 =dim V= dimG, then N = 2n+ (rkG
—1), so that either X is a quadric in IP? (G = SL, and the representation is the 2¢
symmetric power of the standard representation of SL, in k?) or X does not
satisfy the dimensionality condition. Thus from the dimensionality condition it
follows that the maximal dimension of orbits in our representation is less than
dim G, and all such representations have been classified in the paper by Elasvili
in Funkc. Anal. Priloz. 6:1 (1972), 51—62 (English transl.: Funct. Anal.
Applic. . .). So we only need to consider (using the above theory) Elasvili’s tables
and to pick those varieties that present interest in our context, i.e. either have
small codimension or have small secant varieties.

The results are as follows (¢; denotes the i-th fundamental weight in the
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notation of Bourbaki; we do not list those representations for which X is a
projective space or a quadric).

1) G=SLr+1(Ar)‘
a) A=2¢, (or 2¢,), r=2, n=2, N=35, X=uv,(P?)

(in this case N=2n+1, but [ include it for the sake of completeness). By the
above, SX < Z, and it is clear that V is identified with the space of symmetric 3
x 3 matrices and I;[V]=k[det]. Thus SX is a cubic hypersurface in IP°
(corresponding to the punctured cone of nonzero symmetric matrices of rank
<2), and SingSX =X (X corresponds to the punctured cone of symmetric
matrices of rank 1). As above, we see that (SX)*~ X and X*=SX;

bl) A=(D2 (Or (pr—l)a r=4, n=6a N=9s X=G(4’1)'

Here 9t = V, SX =IP?, and there are only three orbits: 0, the punctured cone over
X (the set of (nonzero) decomposable 2-vectors) and the set of indecomposable
2-vectors (each of which has rank 4). From the above it follows that X* ~ X;

b,) A=¢, (or ¢,_,), r=5, n=8, N=14, X=G(5,1).

In this case 9t is the cone of bivectors of rank <4, and in N there are 3 orbits: 0,
the cone over X (the set of (nonzero) decomposable 2-vectors), and the set of 2-
vectors of rank 4. Furthermore, I;[ V'] = k[ Pf], where Pf denotes the Pfaffian,
and therefore SX is a cubic hypersurface in IP'*. As above, we see that

SingSX=X, (SX)*=X, X*x=SX;
b;) A=¢, (or ¢,_,), r=6, n=10, N=20, X=G(6,1).

This example is similar, but less interesting. Here 9t =V and there are only four
orbits: 0, the set of bivectors of rank 2, the set of bivectors of rank 4, and the set
of bivectors of rank 6. The cone corresponding to SX consists of all bivectors of
rank <4, SX is an (arithmetically) Cohen-Macaulay variety, dim(SX)=17,
SingSX=X, (SX)*= X, X*x~SX.

2) G =Sping(B,), A=¢,,n=10, N=15,1;[V]=k[Q], where Q is a non-
singular quadratic form, SX=1IP'>. It is easy to verify that in 9 there are three
orbits: 0, the punctured cone over X (the set of “pure” spinors), and the set of
“impure” spinors from N. Here X is the same variety that arises in connection
with the spinor representation of Spin,,; it will be discussed in more detail
below.
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3) G = Sp,,(C,), A= ¢,. Consider Sp,, as a subgroup of SL,, and restrict
the standard representation of SL,, on the space of alternating 27 x 2r matrices
to Sp,,. Then the resulting representation is a direct sum of the representation of
Sp,, with highest weight A=, in a hyperplane of A%(k*") and the trivial
representation in the one-dimensional subspace of A%(k?") generated by the
1 (1)' . It is easy to verify that the orbit of
the primitive element in this representation of Sp,, is the intersection of the
hyperplane and the orbit of the primitive element in the representation of SL,, in
A?(k*"). Furthermore, I;[V] is a free algebra generated by (r—1) forms
F,, ..., F, degF,=i (the coefficients of the “characteristic Pfaffian poly-
nomial”). The only case satisfying the dimensionality condition (2(4r—5) = 2r?
—r—2)is r=3 (for r=2 X is a quadric in P*). In this case n=7, N=13, X isa
hyperplane section of the variety G(5,1) considered in 1), b,), SX is a hyperplane
section of SG(5,1), and dim SX=12.If D(F,, F;) =4 F3 — 27 F% is the discrimin-
ant of the Pfaffian characteristic polynomial and Z,, = (F,, F;) " ! (a, b), then Z ,
is an orbit of dimension 12 provided D (a, b) 0, Z,, consists of two orbits of
dimensions 8 and 12 if D(a, b) =0 but ab + 0, and Z,, consists of three orbits of
dimensions 0, 8, and 12. Using this orbit decomposition, it is easy to describe the
secant variety and the duals of X and SX.

standard skew-symmetric matrix

4) G = Spin,,(D,), r=5, A=¢s (or ¢,), n=10, N=15. In this case I;[ V]
=k, 9=V, and there are only three orbits: 0, the punctured cone over X (the set
of nonzero “pure” spinors), and the set of impure spinors. Clearly SX = P!* and
X* =~ X. This example will be considered in more detail below. It should be noted
that “pure” spinors are in the same relation to linear subspaces on quadrics as
decomposable polyvectors are to linear subspaces in projective spaces. Like the
Grassmanians, the varieties of pure spinors are defined by quadratic equations.

5) G=F;,, A=¢, (or ¢5),n=16, N=26, I;[ V] =k[F], where Fis a cubic
form (the exact form of Fwill be given in 6)), and in N there are only three orbits:
0, the punctured cone over X (the primitive idempotents; cf. 6)), and 3 \(the
cone over X). Thus SX is a cubic hypersurface in P?®, X is a Severi variety,
Sing(SX) =X, (SX)*~ Xand X * =~ SX. Later this example will be considered in
more detail. It is interesting that defining equations of X and SX were written
down by E. Cartan in ch. VIII, § 8, n° 5 of his thése “Sur la structure des groupes
de transformations finis et continus” published in 1894 (cf. also Oeuvres com-
pletes, partie I, vol. 1, Paris 1952). However to treat the next case it seems
necessary to assume the modern point of view (representations on the excep-
tional Jordan algebra; cf. 6)) since the connection between the simplest represen-
tations of £, and F, does not seem evident from Cartan’s equations in op. cit.,
ch. VIII, §8, n°8 (it also seems that Cartan has found only one of the two
invariants in the case of F)).
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6) G=F,, A=¢,,n=15, N=25. Suppose that chark + 2, 3, and let V" be
the 27-dimensional exceptional simple Jordan algebra of 3 x 3 Hermitian mat-
rices over the Cayley numbers (this algebra is not associative; multiplication is

given by the formulavow= 5 (vw + wv)). The.trace defines a quadratic form Q

on V(Q()=Tr(vev)=Tr(v?)), and the determinant defines a cubic form det
on V. It is known that E is the group of linear transformations of V preserving
det and F, is the subgroup of E, preserving the unit element e (so that F, is the
group of automorphisms of the algebra V (this description is due to Chevalley,
Schafer, Springer, and Jacobson)). Clearly this representation of F, splits into a
direct sum of two representations: the trivial representation in the one-
dimensional subspace generated by e and the irreducible representation induced
in the subspace e* = V' (it should be noted that F, preserves not only det, but the
quadratic form Q as well; e* consists of all matrices from ¥ whose trace is equal
to zero, dim e* = 26). Here X and SX are hyperplane section of the correspond-
ing varieties in example 5). The ring of invariants is a free k-algebra generated by
F, = Q and F; = det. Furthermore, x> — Q (x) x —detx - e=0 for all x in e*, and
we see that this example is very similar to 3). In particular, in the notation of 3),
we see that Z,, is an orbit of dimension 24 provided D(a, b) 0, Z,, consists of
two orbits of dimensions 16 and 24 if D (a, b) =0 but ab %0, and Z,, consists of
three orbits of dimensions 0, 16, and 24. Using this orbit decomposition, it is easy
to give a detailed description of SX, (SX)*, and X*.

The remaining groups do not provide interesting examples (in particular,
G, gsixsles a quadric in IP® and E, a 27-dimensional subvariety X = IP*>5 with SX
=P>°).

Summing up, we see that representations of algebraic groups yield four
examples of Severi varieties, namely v, (P?) = IP°, P? x P2 P8, G(5,1) = P4,
and the variety E'® = IP?® described in 5), and two examples of “Hartshorne
varieties” (i. e. varieties “on the boundary” of Hartshorne’s conjecture on com-
plete intersections), namely G(4,1) = IP? and the variety S*° = IP!5 described in
2) and 4). All these varieties are rational homogeneous Cohen-Macaulay
varieties defined by quadratic equations. The secant varieties of the above Severi
varieties are rational cubic hypersurfaces (defined by some kind of
“determinantal”equation), and if X is a Severi variety of the above type, then
SingSX =X, (SX)*= X, and X*=SX (most of these properties for general
Severi varieties were already indicated in my letter to Roberts; in view of this
letter, deg SX = mult, SX + 1 for all x € X and deg SX = 3 (the minimal possible
degree for a secant variety unless it coincides with the ambient space) simply
means that all points of X have multiplicity 2 on SX (the minimal possible
multiplicity since in general ¥ = SingSY unless SY is the ambient space)). For
the Hartshorne varieties listed above SX =P and X~ X*.

It should also be noted that hyperplane section of the above Severi
varieties also correspond to the orbits of highest weight vectors of represen-
tations of simple Lie groups. Namely, a section of 5) is 6), a section of 1), b,) is 3),
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a section of IP? x IP? corresponds to the adjoint representation of SL, in k8, and
a section of 1a) corresponds to the adjoint representation of SL, in k3.

Furthermore, an n-dimensional Severi variety is ruled by n/2-
dimensional quadrics, and an n-dimensional Hartshorne variety is ruled by (n/2
—1)-dimensional projective spaces. In the above examples, these rulings not
only come naturally from the dual varieties, but can be explicitly constructed
with the help of representation theory. In fact, along with the parabolic sub-
group P, containing the Borel subgroup B, there exists another parabolic
subgroup containing B, namely the parabolic subgroup P_,, corresponding to
the highest weight vector of the contragredient representation (the correspond-
ing highest weight is equal to — M). It is clear that dim P, = dim P_,,; moreover,
G/P,=G/P_,, (this situation for the “simplest” representations (in particular,
for the 27-dimensional representation of Eg) was described by E. Cartan, op. cit.
ch. VIII, §8, n° 11). In the case of Severi and Hartshorne varieties A+ M 0,
P,+ P_,,. Consider the orbit of the point x, under the action of P_,,. Let H_,,
be the semisimple quotient of P_,, (the corresponding Dynkin diagram is
obtained from the Dynkin diagram of G by deleting the vertices at which M = 0).
Then P_y;x,= H_yx, (the action of H_,, corresponds to the restriction of A to
the maximal torus of H_,,). The representations of H_,, for the above Severiand
Hartshorne varieties can be pictured as follows:

v, (P?): % (Ay,20,);
P2 x IP?: c1) c1> (4, @ 4y, 0, @ 94);

G(5,1): 0_(1)_0 o (A; @ 4y, 0, @ 0);

o
E: D.,
(1)_0_0<0 (Ds, ¢1)
G(@4,1): 1 A A :
( ’1) 0—0 o ( Z(_B 19(02@0)’
S: O_O_O_cl) Ay, 04).

It is clear that in the first four examples (Severi varieties) the orbit of

. . . . . 1 .
x, under the action of H_,, is a nonsingular quadric Q,, dimQ =5 and in
the last two examples (Hartshorne varieties) the orbit of x, is a projective

space PP, dim]PA=%n—1 (where n=dim X, X= Gx,). Furthermore, in the
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case of Severi varieties P,Q,=P,P_,,x,=X, so that two points of X can
always be joined by a quadric of the form gQ,(g € G). The situation here
is similar to the one described on p. 235 of the paper by Kempf. In particular,
we get a resolution of singularities G xP» {Q,} of SX which is a projective

bundle of rank %n+1 over X' = X (here X’ corresponds to the orbit of the
highest weight vector of the contragredient representation, X’ =~ G/P_,,). Fur-
thermore, P,{Q,}=S,, X, its resolution of singularities is the projective

bundle P, xPanP-» {0 1 ofrank%n+ 1 (over P,/P\,"P_,)=0 _u,

PanP-
and P, x4~ M Q

'1‘" . l" . .

(which is a bundle over 02,, with fiber 02") maps birationally onto X.

For Hartshorne varieties P,IP,+ X, and P,IP, is the 1mage of P,
x P20 P-uTP which is a projective bundle of rank % n—1over ]P2 ' The map P,

x Pa0P-uP, — P, P, is birational for G(4,1) and has generic fiber IP! for S. This

1nformat10n about P, P, isimportant because it gives a descriptionof 7y , , N X.
As a matter of fact, one can show that 7y , N Xisa cone with vertex x, over IP!
x P? (if X=G(4, 1)) or over G(4,1) (if X S). Similarly, for Severi varieties
Ty, ., N Xisa cone with vertex x 4 over § (if X = v, (IP?)), over P* L1 P* (if X = P?
x P?), over P! x IP? (if X=G(5,1)), or over S (if X = E). This will be clarified
below.

In the case of Hartshorne varieties there exists another ruling by quadrics

of dimension % n+1. To obtain this ruling, consider the orbit of x, under the

action of the (maximal) subgroup P, G whose semisimple quotient corres-
ponds to the following Dynkin diagram:
1

0
: 1 : 0—ol
G4,1) o—d o S: o o\0
It is clear that the orbit of x , under this action is a quadric Q, of dimension % n

+1. Accordmg to Kempf, we obtain a birational map G x {Q,} — P", where
G/P, is IP* for G(4,1) and Q8 for S, PAQ =P,P,x,=X,and P+ " F Q maps
birationally on to X(P,/P, N P, “_*IP2 ) Thus any two points of the above
Hartshorne varieties can be joined by an %n+ 1)-dimensional quadric.
Finally, for reference purposes, we mention that a Severi variety (of the

above type) of dimension » is defined by 3 (n + 2)/2 quadratic equations, G (4,1) is
defined by 5 quadratic equations, and S is defined by 10 quadratic equations.
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Let H, denote the semisimple quotient of the parabolic subgroup P,.
Then, restricting the representation of G on H,, we obtain a representation of H,
on V. This representation is always reducible; in fact, the tangent space gx is
obviously stable with respect to the action of H,; on the other hand, by
definition, H,(kv,)=kv,. Thus the H,-module V splits as follows: V'
=kv, ® V' ® V",wherekv, @ V'is the tangent spaceto Gv,atv, and V" is the
“normal” space. Writing out the weights of the representation of G and restrict-
ing them to the maximal torus of H,, one can find the explicit form of these
representations of H, (the situation in the above examples is so simple that one
can avoid any computations). The results are as follows (R denotes the represen-
tation of H, on V, 0 denotes the trivial representation, and R (i) denotes the
irreducible representation of H, corresponding to a weight i of H,; in the cases
when H, is simple ¢; denotes the i-th fundamental weight of H,; if H, is not
simple, it is a product of two simple groups, the fundamental weights of the first
of them are denoted by ¢; and of the second one by ¢;; the first summand in the
following formulae corresponds to kv, the second summand to V', and the third
one to V").

() X=0v,(P?), H,=SL,, R=0® R(¢,) ®R(Q2¢,);

(i) X=P>xP?, H,=SL,xSL,, R=0®[R(p,)® R(¢1)]1® R(¢;+¢1);
(i) X=G@4,1), H,=SL,xSL;, R=0® R(¢,+¢7) D R(p3);

(v) X=G(5,1), H,=SL,xSL,, R=0®@R(p,+¢1) DR(¢3);

(v) X=S§, H,=SLs, R=0® R(p3) ® R(9,);

(vi) X=E, H,=Spin,,, R=0® R(ps) ® R(¢y).

It is clear that Gv, N (V' @ V") is invariant with respect to H 4, and the
stabilizer of an arbitrary point of Gv, N (V' @ V") contains a maximal un-
ipotent subgroup of H,. Thus we only need to consider the orbits of sums of
(some of) the highest weight vectors of the irreducible representations of H
making up ¥V*and V" (with respect to suitable Borel subgroups). It immediately
follows that X n ((V* @ V") \0/k*)is a singular hyperplane section of X, and its
singular locus coincides with X n (V" \0/k*). Moreover, it is clear that vy, is a
lowest weight vector of the representation of H, in V", so that X n (V" \0/k*)
corresponds to the orbit of a highest weight vector of the representation of A, in
VX (V'NO/k*) = P_ 4 X0 = Wo P_pyWo Xar = Wo P_yr X4 and is either the% n-
dimensional quadric Q,,=w,0, (in the case of Severi varieties) or the

<%n — 1>-dimensional projective space IP,,=w,IP, (in the case of Hartshorne

varieties).
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Now we project X to IP" from the projective subspace corresponding to

: . .1 N . .1
V" (it has dimension o) n+1 for Severi varieties and dimension o) n—1 for

Hartshorne varieties). This projection = is a rational map onto IP", and it is
convenient to regard IP" as the projective space corresponding to kv, @ V* (i.e.
the tangent space to X at x,). Let P"~! be the projective subspace of P"
corresponding to ¥, and let Y <IP"~! be the subvariety corresponding to the
cone Gv, N V*. Itis clear that the hyperplanes passing through the center of our
projection are mapped onto hyperplanes in IP"; in particular, the hyperplane
corresponding to V* @ V" is mapped onto "~ ‘, and the hyperplane section
Y < X corresponding to Gv, n (V' @ V") is mapped onto Y. Clearly the projec-
tion Gv, — kv, @ V' isamap of H,-spaces, and its fibers over points belonging
to the same orbit are isomorphic to each other. In particular, the generic fiber of
7 is a single point (to see this without computations one can use the purity of
branch locus). More premsely, n defines an isomorphism between X\ ¥ and
P"\Y, and n|;: ¥ — Y is a rational fiber bundle whose fibers are projective
spaces (for example, if X=E, then the fibers are IP>’s (corresponding to the
Dynkin subdiagram A4 < E;) intersecting the quadric Q% lying in the center of
the projection z along the various IP* = Q% belonging to one and the same family
(these IP*’s are parametrized by the spinor variety ¥'=S)). One can use Kempf’s
method to obtain a resolution of singularities of Y (Y may be viewed as a
generalization of the Schubert variety of codimension 1).

From the above description of ¥ (or the fact that T; x.x N X is a cone over
Y with vertex x for all x € X) it follows thatif L PV isa hyperplane which does
not contain the center of our projection 7, then = maps the hyperplane section
X, =X L onto a hypersurface in IP” passing through Y. Suppose that the
birational map o = (%) "' : IP" — X o IP¥is given by a linear system .# without
fixed components (the members of . are the preimages of the hyperplanes in P¥
with respect to the map 0). As we have already seen, the fundamental subset of &
coincides with Y. Furthermore, .2 is a complete linear system of hypersurfaces of
a fixed degree in IP” passing through Y, since otherwise X wouldn’t be linearly
normal. Now it immediately follows that deg. ¥ =2, i.e. X is defined by the

linear system of quadrlcs in IP" passing through Y. In other words, X is obtained

by projecting v, (IP") = IPZ ) from the smallest linear subspace containing Y

(recall that Y is defined by quadratic equations). This generalizes the results of
Segre, Todd, and Semple cited in my letter to Roberts.

It should be noted that Y is obtained from IP4™¥ by a similar procedure;
this is clear except in the case of G(r, 1), where Y =P! x IP""2, Proceeding as
above, we see that Y is the variety corresponding to the orbit of a highest weight
vector of the representation R (¢, + ¢}) of the group SL, xSL,_,, H,=SL,_,,
Vi=kv ® V",whereve V', V" and V" are isomorphic to the standard represen-
tation of SL,_, in k"7, and the singular locus of the hyperplane section
correspondingto V' @ V"isIP" ™3 =P (V™). Projecting Y to IP" ! from this P 3
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and reasoning as above, we see that Y is the image of IP"~! under the rational
map defined by the complete linear system of quadrics in IP" ™! passing through
Y’ <"~ 2, where Y’ is a union of the point corresponding to kv and the (r— 3)-
dimensional projective space corresponding to V' (the point does not lie in the
projective space).

This is the method of projecting sketched in my letter to Roberts. But of
course one can reverse this argument as suggested in your letter. Namely, start
with the projective space Ty, , , and use the following formulae (S? denotes the
second symmetric poyer):

(i) Hy=SL,: SZ(O @R(qh))go @ R(p,)? @R(2(P1)3§
(i) Hy=SL, x SL,:5%(0 ® [R(p,) ® R(p))])=

0@ [R(¢y) @ R(91)]* @ R(p, +9}) ®[RQ2¢;) ® RQ2¢))]1°;
(i) Hy=SL, x SLy: S*(0® R(¢, +¢}))= ‘

0@ R(p;+¢)° @R, D RQRp,+20)'%;
(iv) Hy=SL, x SL,: S*(0 ® R(¢,+¢}))=

0@ R(p; +1)" ® R(92)° ® Ry +291)*;
(v) Hy=SLs, SZ(O@R(¢3));

0@ R(93)"° @ R(9,)’ D R(Q2¢3)°;
(vi) H,=Spin,,, S*(0® R(ps))=

0@ R(¢5)'®* ®R(9))'"°+RQ2ps)'*°.

Looking at these formulae, it is easy to observe that the first summand
corresponds to kv,, the second one to V', and the third one to V" (compare with
the formulae above), and mapping 7 ., by the linear system of quadrics
passing through Y we obtain a map of IP" to the projective space corresponding
to the sum of the first three summands. Clearly the corresponding map
kv, ®@V'—> kv, ® V'@ V" is a map of H,-spaces, and since the orbit de-
composition in the above cases is described quite explicitly, it is easy to verify
that the closure of the image of this map coincides with Gv, (consider the cone
over the H,-orbit of the vector v, + v, where v is the sum of highest weight vectors
of the irreducible representations of H, making up ¥* and V'"). This completes
the study of the examples of Hartshorne and Severi varieties arising from
representations of groups.






