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Introduction.

Let C be a smooth irreducible projective curve of genus g>l, and for each integer d let Jd(C) be the
Jacobian of C, which we view as parametrizing all line bundles on C of degree d. Denote by Lj the
bundle on C corresponding to the point tG Jd(C). Provided that d>2g-l, the vector spaces H°(CJLt)
fit together to form the fibres of a vector bundle Pd on Jd(C), of rank d+l-g, called the degree d
Picard bundle (defined by this description up tp tensoring by line bundles on Jd(C)). These
bundles have been the focus of considerable study in recent years, notably by Kempf and Mukai
([Kl], [K2], [K3], [M]). To better understand their geometry, it is natural to ask whether Pd is
stable with respect to the canonical principal polarization of Jd(C). Kempf [Kl] shows that this is
indeed the case for the first bundle P2g-i- The main purpose of this note is to complete Kempf s
result by proving the following

Theorem. For every d>2g, the Picard bundle Pd is stable with respect to the polarization on
Jd(C) defined by the theta divisor 0cCJd(C).

For g = 2, this was established by Umemura [U]. As in [Kl], the proof depends on analyzing the
restriction of Pd to C. We show that the restriction of Pd to both CC Jd(C) and (-C)C Jd(C) are
stable; either of these statements implies the result. In the hope that the techniques involved may
find other uses in the future, we give rather different arguments for the stability of each of these
restrictions.

The Theorem leads to a quick proof of the semi-stability of the normal bundles to an elliptic
curve embedded by a complete linear series. More precisely, suppose that X is a compact Riemann
surface of genus 1. Let L be a line bundle of degree d on X, and denote by P*(L) the bundle of i
order principal parts of L, so that P*(L) has rank i+1. The global sections of L lift canonically to
sections of P*(L), and they surject when i<d-2. In this case we define a vector bundle R*(L) by the
exact sequence

0 —» R*(L) —> H°(L) <8>c 0 x —» PU) —> 0.

Thus R (L) = N*®L, where N is the normal bundle to X in PH (L), and in general we think of
the R*(L) as higher-order conormal bundles of X. Observing that R*(L) is essentially the pull-back
of a Picard bundle under an etale morphism X -»X = Jd_i_i(X), we deduce in §4 the

Corollary. Provided that deg(L)>i+2, the bundle R*(L) is semi-stable.

When i=l the result is due to Ellingsrud (although by a more involved argument). The general case
answers a question of Dolgachev.

The theorem and its corollary give rise to some interesting open problems. First, it follows by
well known results of Donaldson and Uhlenbeck-Yau that Pd, like any stable bundle, carries a
Hermitian-Einstein metric. The question, suggested by Narasimhan, is whether one can construct
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150 EIN & LAZARSFELD: Stability and restrictions of Picard bundles

these metrics explicity. The second problem concerns a characterization of the Picard bundles.
Mukai [M] proves that when g=2, Pd is (up to twists and translations) the only stable bundle on
Jd(C) with the appropriate Chern classes. Is there an analogous result in higher genus? Mukai [M]
and Kempf [K3] have shown that if C is non-hyperelliptic, then in any event a small deformation of
Pd is again (a twist of a translate of) a Picard bundle. Kempf [K2] has also given some other
characterizations of Picard bundles. Finally, if L is a line bundle of degree d>2g+i on any curve C
of genus g, one may define higher conormal bundles R*(L) as above. We conjecture that R*(L) is
always semi-stable for d » 0. Some evidence in this direction appears in §4.

We wish to take this opportunity to thank D.Butler, G.Kempf, J.Li and S.Mukai for valuable
discussions.

§ 1. Restrictions of Picard Bundles

We start with some notation. Throughout, C denotes a smooth irreducible projective curve of
genus g>l defined over an algebraically closed field of arbitrary characteristic, and XQE C is a fixed
base-point. We denote by Jd(C) the Picard variety parametrizing line bundles of degree d on C, and
we write [L]e Jd(C) for the point corresponding to a bundle L. Finally, let Ud be the universal
bundle on Pd(C)xC, normalized so that Ud is trivial on Jd(C)x{x0}. Thus if rc:Jd(C)xC -» Jd(C) is
the projection, and if [L]e Jd(C) is an arbitrary point, then Udl7c" ([L]) - L. The degree d Picard
sheaf on Jd(C) is defined by

It follows from the base-change theorem and Riemann Roch that if d>2g-l, then Pd is actually a
vector bundle on Jd(C), with rk(Pd)=d+l-g.

Next, suppose given line bundles

A e J ^ C ) and BeJd+1(C).

Define embeddings

uA:C —> Jd(C) and vB:C —> Jd(C)

via uA(x)=[A(x)], vB(x)=[B(-x)],

where as customary A(x)=A<8>0c(x) and B(-x)=B(S>0c(-x). We denote by CAC Jd(C) and
CBC Jd(C) the images of uA and vB respectively. Observe that if A, A'G Jd_i(C) are two line
bundles of degree d-1, then CA- is a translate of CA (and similarly for CB and CB-).

Lemma 1.1. If d>2g-l, then one has canonical isomorphisms

(uA)*(Pd)

and

(vB)*(Pd)

where p:CxC —> C and q:CxC —» C denote the first and second projection respectively, and
ACCxC is the diagonal
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EIN & LAZARSFELD: Stability and restrictions of Picard bundles 151

Proof. Taking into account the normalization of Ud, one sees fibrewise that

(uAxlc)*(Ud)=q*(A)<8.OCxC(A)®p*(©c(-xo))

and

(vBxlc)*(Ud)=q*(B)<8)aCxC(-A)<8)p*(ec(xo)).

The lemma then follows from the theorem on cohomology and base-change. •

Let 6 C Jd(C) denote the canonical principal polarization. Recall that the slope (with respect to

0) of a torsion-free sheaf F on Jd(C) is the rational number

—rk(F) '

By definition, a vector bundle P is stable [resp. semi-stable] with respect to 6 if fx(F)<|i(P)
[resp. |i,(F)<fi(P)] for every non-zero torsion free subsheaf FCP with rank(F)<rank(P). Similarly,
if V is a bundle on C, then n(V)=deg(V)/rk(V), and V is stable [resp. semi-stable] if M-(W)<n(V)
[resp. ^i(W)<^i(V)] for all sub-bundles WC V with rk(W)<rk(V). (It is equivalent to demand the
reverse inequalities on quotients.) As in [Kl], the next point to observe is

Lemma 1.2. Fix d>2g. Then the stability of Pd is implied by either the stability of uA*(Pd)

for general [A]e Jd_i(C), or by the stability of vB*(Pd) for general

Proof. (Compare [Kl]). Working in the ring Num(Jd(C)) of cycles on Jd(C) modulo numerical

equivalence, recall that [CA]=[0]g"1/(g-l)! c.f. [F, pp. 256-257] or [ACGH]. Hence the stabiUty of
Pd is equivalent to the assertion that

K ' rk F ^ rk Pd

for every torsion free FCP d with rk(F)<rk(Pd). On the other hand, F is locally free outside a set
ZC Jd(C) of codimension >2, and we may assume that in fact F is sub-bundle of Pd outside Z. It
follows by a dimension count that F is locally free in a neighborhood of CAC Jd(C) for sufficienty
general [A]e Jd_i(C), and that FICA sits as a sub-bundle of PdICA. But this being so, (*) is implied
by the stability of uA*(Pd) for general A. The same argument proves the statement for vg*(Pd) upon
observing that if -1 : Jd(C) -> Jd(C) denotes multiplication by - 1 , then (-1)*[0]=[0] in
Num(Jd(C)), and hence [CB]=(-l)*[CA]=[0]g-1/(g-l)!. •

In view of Lemma 1.2, the issue is to understand something about the bundles appearing in
Lemma 1.1. To this end, suppose that L is a non-special line bundle on C, generated by its global
sections. Define bundles ML and EL on C by

EL = p*(q*L<g>eCxC(A))

and

ML = p*(q*L<8>0CxC(-A)).

Starting with the sequence 0 -» q*L<gX3CxC(-A) -» q*L -» L®0 A -» 0 and taking direct imags,
one finds that ML sits in an exact sequence

(1.3) 0—> M L —> H°(L)<g>Cec—» L—> 0,
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152 EIN & LAZARSFELD: Stability and restrictions of Picard bundles

the homomorphism on the right being the canonical evaluation map. This bundle ~ which controls
the syzygies of L -- is quite well understood (c.f. [GL], [PR], or [L, §1]). As for EL, we obtain
analogously the exact sequence

(1.4) 0 —> H°(L)<8>Oc —» EL —> L<g>Oc —> 0,

where QQ denotes the tangent bundle to C. The extension class of (1.4) is given by an element
eLeHO(L)<8)H1(L*<8>coc)=HO(L)(8>HO(L)*, and we will see in §2 that up to scalars eL=id. In any
event, putting together Lemmas 1.1 and 1.2, and noting that tensoring by a line bundle does not
affect stability, we see that the Theorem stated in the introduction follows from

Proposition 1.5. //deg(L)>2g-l, then EL is stable, and if deg(L)>2g+l, then ML is stable.

We prove the first statement in §2, while the stability of ML occupies §3.

§ 2. Stability of E L

Throughout this section, L denotes a non-special line bundle of degree d on C, generated by its
global sections. As above we put EL=p*(q*L®(3rcxc(A)), where p:CxC-»C and q:CxC-»C are
the two projections. Taking direct images of 0 -» q*L -» q*L<8>&cxc(A) -» L<8>0A(A) -> 0
yields the basic exact sequence

(2.1) 0 —> H°(L)®£c —> EL —> L<g>Gc —> 0,

9C being the tangent bundle to C. Our purpose it to prove

Proposition 2.2. / / d>2g-2 [resp. if d>2g-2] then EL is stable [resp. is semi-stable].

We start with several lemmas.

Lemma 2.3. Using Serre duality to make the identification H1(L*®C0c)=H°(L)*, the extension

class eeH (L)®H (L*<8>G>C) defining (2.1) is given by a non-zero scalar multiple of the identity

id€H0(L)<g>H°(L)*. In particular, H°((EL)*)=0.

Proof. The second statement follows easily from the first. Consider the sequence
0 -> q*L<g>p*(coc®L*) -* q*L<g>p*(coc<8>L*)(A) -> 0 A -+ 0. Then e is the image of 1 E H ° ( Q A )
in H V ^ H ^ C O C ^ L * ) , i.e. the kernel of H ^ L ^ H ^ c o c ^ L * ) -> H1(q*L0p*(coc<8>L*)(A)).
Now compute this latter map by taking direct images under q: using duality for q it follows that e
spans the kernel of the map induced on global sections by q * ( p * L ) * ® L =
=H (L)*®L —» q*(p*L(-A))*®L=(ML)*®L. But we recognize this homomorphism as a piece of
the Euler sequence, and the assertion follows. •

Lemma 2.4. (Compare [PR] and [B]). Let V be a globally generated vector bundle on C, with

no trivial summands (i.e. with h (V*)=0). Then (i(V)>l.

Proof. Suppose that V has rank r and degree n. Choosing (r+1) general sections of V, we
construct an exact sequence

(*) 0—> V* —* OT+l —> det V —> 0,

and since h°(V*)=0 it follows that h°(det V)>r+1. If det V is special, then Clifford's theorem

applies to yield n=deg(det(V))>2(h°(det V)-l)>2r, and so n(V)=n/r>2 in this case. On the other
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hand, if det V is non-special then r<h (det V)-l=n-g by Riemann Roch, and hence

Lemma 2.5. Consider an exact sequence

0—>T—> V—>x—> 0

of sheaves on C, where T=0T is a trivial bundle of rank r, and x is a torsion sheaf supported on

a finite set. If length(x)<r, then h (V*)*0, i.e. V has a trivial summand.

Proof. Dualizing the given sequence yields 0 -» V* -» T* -> Exf^x.Oc) ~* 0> a n d

lcngth(£xr1(x,Orc))=length(x). The assertion follows. •

Proof of Proposition 2.2. When d=deg(L)=2g-2 the semi-stability of EL is clear from (2.1),

so we assume d>2g-l. Then | I (EL)<1 . Suppose now that EL fails to be stable. Then there exists a

stable quotient sheaf G of EL with (i(G)<p.(EL)<l. Letting F be the image of the composition

H (L)®OQ-* E L - » G, the situation is summarized in the following diagram, which defines a

sheaf x:

0 —> H°(L)<8>6r —» ET —> L<8>0r —» 0

i
F

i
0

i
—> G —>

i
0

X

0

Note that x - being a quotient of L<8>0C ~ is either a torsion sheaf or isomorphic to L®0c. In
particular, F*0: for otherwise G=x=L®0c, but L(8)0c doesn't destabilize EL when d>2g-l.

We assert that F is trivial. In fact, since F is generated by its global sections one can write
F=F1®F2, where Fj is trivial and F 2 has no trivial summands. Thus F 2 is a sub-sheaf of G. But if
F2*0, then H(F2)>1 by Lemma 2.4. This contradicts the stability of G and hence F=Fx is trivial as
claimed.

If x=L®0c then [i(G)>[i(E]J by a direct computation, so we may assume that x is a torsion
sheaf. If length(x)>rank(G), then again [X(G)>1>[I(EL). SO there remains only the possibility that
length(x)<rank(G). But then h°((EL)*)*0 thanks to Lemma 2.5, and this contradicts Lemma 2.3.
This complete the proof of the Proposition. •

§ 3. Cohomological Stability of ML

Let L be a globally generated line bundle on C, and define M L as at the end of §1. The stability
of M L when deg(L)>2g+l follows almost immediately from the proof of Lemma 2.4. Indeed, an
argument along these lines was given with M. Green some years ago, and Paranjape and Ramanan
[PR] independently used such an approach to prove the stability of M Q when C is non-
hyperelliptic. However, in response to a question of Kempf, we will give an alternative
cohomological proof. We start with a
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154 EIN & LAZARSFELD: Stability and restrictions of Picard bundles

Definition 3.1. Let V be a vector bundle on C. We say that V is cohomologically stable [resp.
cohomologically semistable] if for every line bundle A of degree a, and for every integer t<rk(V),
one has

H0(AlV<8)A*)=0 whenever a£t.ja(V) [resp. when a>t.n(V) ].

Note that cohomological stability indeed implies stability in the usual sense. In fact, a proper sub-
bundle TC V of degree a and rank t determines an inclusion A=<ief A^TC AlV, and hence a non-zero
section of AlV®A*. The condition in the definition then implies that (i(T)<|x(V). In characteristic
zero any exterior power of a semistable bundle is semistable, and it follows that in this case
cohomological semistability is equivalent to semistability.

Proposition 3.2. If deg(L)>2g+l [resp. deg(L)>2g] then M L is cohomologically stable
[resp. cohomologically semistable].

Proof. We assume d>2g+l, the other case being almost identical. Keeping notation as in the
definition, we must prove that H (A ML®A*)=O whenever

We use what is by now a standard filtration argument, as in [GLP, p.498], [GL], or [L].
Specifically, set r=r(L)=d-g, and choose general points xi,...,xr_ieC. Then (c.f. [L,§1.4]) there is
an exact sequence

r-l
0 » L ^ x ^ . + X r . ! ) > ML > eGcC-Xj) > 0.

Put D=Dr_i=X2+...+xr_i. Taking exterior powers yields

t i r-l t tr-l

0—> A {©Oc(-Xi)}®L*(D)—> A M L — > A ©Oc(-Xi)—> 0.

One deduces from this that H°(AlML<8)A*)=0 so long as:

(i). £r (A*(-Dr))=0 for a general effective divisor Dr of degree t,
and

(ii). H°(A*(8)L*(Dr.t))=0 for a general effective divisor Dr.t of degree r-t=d-g-t.

The line bundle appearing in (i) has degree -a-t, and we have t degrees of freedom in choosing it.
So provided that -a-t<g, the desired vanishing will follow if t>-(a+t). But both of these inequalities
are consequences of (*). Similarly, for (ii) it is enough that deg(A*®L*(Dr..t))=-a-t-g<0. •

Remark. If E is a globally generated vector bundle on C, one can use the canonical sequence
0 -» ME -> H°(E)® 0 C -» E -> 0 to define a bundle ME on C. Butler [B] has generalized
Proposition 3.2 by proving that ME is stable provided that E is stable and |x(E)>2g. He applies this
to obtain interesting surjectivity theorems for the multiplication maps H (E)®H (F) -» H (E®F)
on sections of stable bundles, and to prove a conjecture of Kempf concerning the syzygies of the
homogeneous coordinate rings of curves. He also studies the stability of ML for line bundles L
with deg(L)<2g. The referee informs us that the stability of ML has also been investigated by
Paranjape in his 1989 thesis.
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§ 4. Poly-stability of Normal Bundles to Complete Linear Series on an Elliptic
Curve

A number of authors have considered the stability of the normal bundles to space cures (c.f.
[GS], [EV], [EL],[Hu], or [Ha]), but in general the situation seems rather complicated. However
as a very simple application of our main theorem, we show that for linearly normal embeddings of
elliptic curves in characteristic zero, one obtains a fairly clean picture.

Let X be a compact Riemann surface of genus 1, and let L be a line bundle of degree d on X.
Fix i<d-2, and let R*(L) be the rank d-i-1 vector bundle on X defined by

where as above p,q:XxX -» X denote the two projections. As noted in the introduction, these
higher conormal bundles fit into exact sequences

0 —> R\L) —> H°(L)<g>cftx —» ^(L) —» 0.

Theorem 4.1. The bundle R*(L) is poly-stable, i.e. it is a direct sum of stable bundles of the
same slope. In particular, R*(L) is semi-stable.

Proof. The line bundle £=q*L<8>©XxX(-(i+l)A) defines a family of degree d-i-1 line bundles on
X parametrized by X. This induces a finite surjective (and hence 6tale) classifying morphism

f:X — Jd_i_i(X)=X

with the property that £=(lxf)*(U(i_j_1)<8>p*'n for some bundle T| on X, where as in §1 Ud denotes
the Poincare bundle on XxX. It follows from the base-change theorem that R1(L)=f*(P(|.i.1)<8)'n,
and hence R*(L) is a twist of the pull-back of a stable bundle P under an 6tale covering. But such a
pull-back is automatically polystable. (The semi-stability of f*P follows by a standard descent
argument from the uniqueness of a maximal destabilizing sub-bundle. The stronger assertion that
f*P is actually poly-stable ia a consequence of the characterization of such bundles as those having
an Hermitian-Einstein connection: alternatively, in the case at hand one could give a more direct
elementary argument.) •

Theorem 4.1 suggests that unlike the situation for incomplete linear series, the normal bundles
of curves embedded by a complete linear series of sufficiently large degree behave in a uniform
manner:

Conjecture 4.2. There is an integer d(g,i) such that if C is any curve of genus g (say in
characteristic zero), then the conormal bundle R*(L) defined as above is semi-stable for any line
bundle L of degree d>d(g,i).

One can use Proposition 3.2 to show that in any event R*(L) cannot be "too unstable" for d » 0 . In
fact, to fix ideas let L be a line bundle of degree d>2g+l, and consider R(L )=R (L ), which has
slope -2-4g/(4d-g-l). One may identify the fibre of M L at a point p€ C with the vector space
H°(L(-p)), and similarly the fibre of R(L2) at p is H°(L2(-2p)). Then the canonical map

H°(L(-p))<g>H°(L(-p)) —> H°(L2(-2p))

globalizes to a vector bundle homomorphism ML<8>ML -* R(L ) which is surjective for d>2g+2.
But in characteristic zero the tensor product of two stable bundles is semi-stable, and hence

is semi-stable, of slope 2|i(ML)=-2-4g/(4d-2g). In particular, any quotient of R(L ) has
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156 EIN & LAZARSFELD: Stability and restrictions of Picard bundles

slope >-2-4g/(4d-2g). Unfortunately, when g>2 this falls slightly short of proving the semi-

stability of R(L2).
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