
Introduction to Part Two

The three chapters in this Part Two deal with amplitude for vector bundles
of higher rank.

Starting in the early 1960s, several mathematicians — notably Grauert
[232], Gri�ths [245], [246], [247] and Hartshorne [274] — undertook the task
of generalizing to vector bundles the theory of positivity for line bundles. One
of the goals was to extend to the higher-rank setting as many as possible of the
beautiful cohomological and topological properties enjoyed by ample divisors.
It was not initially clear how to achieve this, and the literature of the period
is marked by a certain terminological chaos as authors experimented with
various definitions and approaches. With the passage of time, however, it has
become apparent that Hartshorne’s definition — which involves the weakest
notion of positivity — does in fact lead to most of the basic results one would
like. The idea is simply to pass to the associated projective bundle, where one
reduces to the rank one case. This approach is by now standard, and it is the
one we adopt here.

After the foundational work of the late sixties and early seventies, the
geometric consequences of positivity were substantially clarified during the
later seventies and the eighties. These same years brought many new examples
and applications of the theory. While aspects of this story have been surveyed
on several occasions — e.g. [533, Chapter V], [15, Chapter 5, §1] and [352,
Chapter 3, §6] — there hasn’t been a systematic exposition of the theory
taking these newer developments into account. Our aim in these chapters is
to help fill this gap. Although we certainly make no claims to completeness,
we hope that the reader will take away the picture of a mature body of work
touching on a considerable range of questions.

We start in Chapter 6 with the basic formal properties of ample and nef
bundles, after which we dwell at length on examples and constructions. Chap-
ter 7 deals with geometric properties of ample bundles: we discuss higher-rank
generalizations of the Lefschetz hyperplane and Kodaira vanishing theorems,
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as well as the e↵ect of positivity on degeneracy loci. Finally, we take up in
Chapter 8 the numerical properties of ample bundles.

In contrast to our focus in the case of line bundles, we say very little
about the various notions of “generic amplitude” for bundles that appear in
the literature. Some of these — for example the weak positivity of Viehweg
or Miyaoka’s generic semipositivity — have led to extremely important de-
velopments. However these concepts are tied to particular applications lying
beyond the scope of this volume. Our feeling was that they are best under-
stood in vivo rather than through the sort of in vitro presentation that would
have been possible here. So for the most part we (regretfully) pass over them.
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Ample and Nef Vector Bundles

This chapter is devoted to the basic theory of ample and nef vector bundles.
We start in Section 6.1 with the “classical” material from [274]. In Section
6.2 we develop a formalism for twisting bundles by Q-divisor classes, which
is used to study nefness. The development parallels — and for the most part
reduces to — the corresponding theory for line bundles. The next two sections
constitute the heart of the chapter. In the extended Section 6.3 we present
numerous examples of positive bundles arising “in nature,” as well as some
methods of construction. Finally, we study in Section 6.4 the situation on
curves, where there is a close connection between amplitude and stability:
following Gieseker [224] one obtains along the way an elementary proof of the
tensorial properties of semistability for bundles on curves.

6.1 Classical Theory

We start by fixing notation and assumptions. Throughout this section, unless
otherwise stated X is a projective algebraic variety or scheme defined over C.
Given a vector bundle E on X, SmE is the mth symmetric product of E, and

⇡ : P(E) �! X

denotes the projective bundle of one-dimensional quotients of E. On occasion,
when it seems desirable to emphasize that P(E) is a bundle over X, we will
write PX(E) in place of P(E). As usual, OP(E)

(1) is the Serre line bundle
on P(E), i.e. the tautological quotient of ⇡⇤E: thus SmE = ⇡⇤OP(E)

(m). We
refer to Appendix A for a review of basic facts about projective bundles.

As in Chapter 1 (Definition 1.1.15), we denote by

N1

�

P(E)
�

= Div
�

P(E)
�

/ Num
�

P(E)
�

the Néron–Severi group of numerical equivalence classes of divisors on P(E).
Since X is projective the Serre line bundle OP(E)

(1) is represented by a divisor,



8 Chapter 6. Ample and Nef Vector Bundles

and we write
⇠ = ⇠E 2 N1

�

P(E)
�

for its numerical equivalence class: in other words, ⇠E corresponds to the first
Chern class of OP(E)

(1).1 Finally, given a finite-dimensional vector space V ,
VX = V ⌦C OX denotes the trivial vector bundle on X with fibres modeled
on V .

6.1.A Definition and First Properties

In the case of line bundles, essentially all notions of positivity turn out to be
equivalent, but this is no longer true for vector bundles of higher rank. Conse-
quently the early literature in the area has an experimental flavor, involving
competing definitions of positivity. By the 1980s, however, the situation had
stabilized, with the approach adopted by Hartshorne [274] generally accepted
as the most useful.

Hartshorne’s basic idea is to reduce the definition of amplitude for a bundle
E to the corresponding notion for divisors by passing to P(E):

Definition 6.1.1. (Ample and nef vector bundles). A vector bundle E
on X is ample if the Serre line bundle OP(E)

(1) is an ample line bundle on
the projectivized bundle P(E). Similarly, E is numerically e↵ective (or nef )
if OP(E)

(1) is so. ut

Observe that if E = L is a line bundle, then P(E) = X and OP(E)

(1) = L,
so that at least this definition generalizes the rank one case. We will see that
6.1.1 leads to the formal properties of amplitude for which one would hope.
In this subsection we focus on results that follow directly from corresponding
facts for line bundles.

The first statement of the following proposition reflects the principle that
“positivity increases in quotients.” The second includes the fact that the re-
striction of an ample bundle to a closed subvariety (or subscheme) is ample.

Proposition 6.1.2. (Quotients and finite pullbacks). Let E be a vector
bundle on the projective variety or scheme X.

(i). If E is ample (or nef ), then so is any quotient bundle Q of E.

(ii). Let f : X �! Y be a finite mapping. If E is ample (or nef ), then the
pullback f⇤E is an ample (or nef ) bundle on X.

Proof. A surjection E ⇣ Q determines an embedding

P(Q) ✓ P(E) with OP(Q)

(1) = OP(E)

(1) |P(Q),

1 As indicated in Remark 1.1.22, one can work on arbitrary complete schemes
provided that one understands N1

�
P(E)

�
to be numerical equivalence classes of

line bundles.



6.1 Classical Theory 9

and (i) follows from the fact that the restriction of an ample (or a nef) bundle
is ample (or nef). As for (ii), f gives rise to a finite map F : P(f⇤E) �! P(E)
such that OP(f⇤E)

(1) = F ⇤OP(E)

(1), so again we reduce to the corresponding
statement (Proposition 1.2.13) for line bundles. ut

Example 6.1.3. (Bundles on P1). Let E be a vector bundle on the projec-
tive line P1. According to a celebrated theorem of Grothendieck [488, Chapter
1, Section 2.1], E is a direct sum of line bundles, say

E = OP1(a
1

) � . . . � OP1(ae).

Then E is ample if and only if ai > 0 for every 1  i  e. (If each ai is
positive, then OP(E)

(1) embeds P(E) as a rational normal scroll.) This is a
special case of Proposition 6.1.13. ut
Example 6.1.4. (Pullbacks of negative bundles). Let f : Y �! X be
a surjective morphism of projective varieties, with dim X � 1, and let E be
an ample bundle on X. Then H0

�

Y, f⇤E⇤
�

= 0. (It is enough to show that
if C ✓ Y is a general curve obtained as the complete intersection of very
ample divisors on Y then Hom

�

f⇤E |C , OC

�

= 0. One can assume that C
maps finitely to X, and then the assertion follows from 6.1.2 upon normalizing
C.) ut

As another illustration, we analyze the case of globally generated bundles:

Example 6.1.5. (Globally generated bundles). Let V be a finite-dimen-
sional vector space, and let E be a quotient

VX�!E �! 0

of the trivial vector bundle VX modeled on V . This gives rise to a morphism

� : PX(E) �! P(V ) (6.1)

from the projective bundle PX(E) = P(E) to the projective space of one
dimensional quotients of V , defined as the composition

PX(E) ✓ P(VX) = P(V )⇥X
pr1�! P(V ).

By construction, OP(E)

(1) = �⇤OP(V )

(1).

(i). E is ample if and only if � is finite.

(ii). Given x 2 X, denote by E(x) the fibre of E at x, so that E(x) is a
quotient of V , and let

P(E(x)) ✓ P(V )

be the corresponding linear subspace of P(V ). Then E is ample if and
only if there are only finitely many x 2 X such that P(E(x)) passes
through any given point of P(V ). ut
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Example 6.1.6. (Tautological bundle on the Grassmannian). Let G =
Grass(V, k) be the Grassmannian of k-dimensional quotients of a vector space
V , and denote by E the tautological rank-k quotient bundle of VG. If k � 2
then E is nef but not ample. (Use 6.1.5 (ii).) In particular, it would be incorrect
to try by analogy with Definition 1.2.1 to define amplitude naively in terms
of embeddings into Grassmannians. ut

For globally generated bundles, amplitude also is equivalent to the absence
of trivial quotients along curves:

Proposition 6.1.7. (Gieseker’s lemma). Suppose that E is a globally gen-
erated bundle on an irreducible projective variety X. Then E fails to be ample
if and only if there is a curve C ✓ X such that the restriction E | C admits
a trivial quotient.

Proof. If E is ample, then it follows from Proposition 6.1.2 that no restriction
of E can have a trivial quotient. Conversely, suppose that E fails to be ample.
Set V = H0

�

X, E
�

, and consider the morphism � : P(E) = PX(E) �! P(V )
appearing in (6.1). By 6.1.5 (i), � fails be finite, i.e. there exists a curve
C ⇢ P(E) contracted by � to a point. But � is in any event an embedding on
each fibre of ⇡ : P(E) �! X, and hence C maps isomorphically to its image
in X. Moreover

OP(E)

(1) | C = �⇤OP(V )

(1) | C ,

and since OP(E)

(1) is a quotient of ⇡⇤E, we arrive at a trivial quotient of
E |C. ut

We refer to Section 6.3 for more substantial examples and methods of
construction. Here we return to developing the general theory.

As in the case of line bundles, the first two parts of the following propo-
sition allow one in practice to focus attention on reduced and irreducible
varieties:

Proposition 6.1.8. (Additional formal properties of amplitude). Let
E be a vector bundle on a projective variety or scheme X.

(i). E is ample (or nef ) if and only if the restriction Ered of E to Xred is
ample (or nef ).

(ii). E is ample (or nef ) if and only if its restriction to each irreducible
component of X is ample (or nef ).

(iii). If f : Y �! X is a surjective finite map, and if f⇤E is an ample vector
bundle on Y , then E is ample.

(iv). If f : Y �! X is an arbitrary surjective mapping, and if f⇤E is a nef
bundle on Y , then E itself is nef.

Proof. By passing to P(E), these statements again follow immediately from
the corresponding facts (1.2.16, 1.2.28, 1.4.4) for line bundles. ut
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The next result expresses the strong open nature of amplitude in families:

Proposition 6.1.9. (Amplitude in families). Let f : X �! T be a proper
surjective mapping, and suppose that E is a vector bundle on X. Given t 2 T ,
denote by Xt the fibre of X over t, and by Et = E | Xt the restriction of E
to Xt. If there is a point 0 2 T such that E

0

is ample, then there is an open
neighborhood U ⇢ T of 0 such that Et is ample for all t 2 U .

Proof. Since P(Et) is the fibre of the evident map P(E) �! T , this yet again
follows directly from the corresponding statement (Theorem 1.2.17) for line
bundles. ut

6.1.B Cohomological Properties

We next analyze the asymptotic cohomological properties of ample vector
bundles. The following theorem of Hartshorne [274] is the analogue for vector
bundles of the theorem of Cartan–Serre–Grothendieck (Theorem 1.2.6).

Theorem 6.1.10. (Cohomological characterization of ample vector
bundles). Let E be a vector bundle on the projective variety or scheme X.
The following are equivalent:

(i). E is ample.

(ii). Given any coherent sheaf F on X, there is a positive integer m
1

=
m

1

(F) such that

Hi
�

X, SmE ⌦ F
�

= 0 for i > 0 , m � m
1

.

(iii). Given any coherent sheaf F on X, there is a positive integer m
2

=
m

2

(F) such that SmE ⌦ F is globally generated for all m � m
2

.

(iv). For any ample divisor H on X, there is a positive integer m
3

= m
3

(H)
such that if m � m

3

then SmE is a quotient of a direct sum of copies
of OX(H).

(iv)*. The statement of (iv) holds for some ample divisor H.

Proof. (i) ) (ii). Denoting as above by ⇡ : P(E) �! X the bundle map,
assume that E is ample, so that OP(E)

(1) is an ample line bundle on P(E),
let F be a coherent sheaf on X. Then by Serre’s criterion (Theorem 1.2.6)
there is an integer m

1

= m
1

(F) such that

Hi
�

P(E),OP(E)

(m)⌦ ⇡⇤F
�

= 0 for i > 0 , m � m
1

. (*)

Now suppose for the moment that F is locally free. Then the projection for-
mula implies that

⇡⇤
�

OP(E)

(m)⌦ ⇡⇤F
�

= ⇡⇤
�

OP(E)

(m)
�

⌦ F = SmE ⌦ F ,
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and by the same token the higher direct images vanish provided that m � 0.
Therefore

Hi
�

X, SmE ⌦ F
�

= Hi
�

P(E),OP(E)

(m)⌦ ⇡⇤F
�

,

and the required vanishings follow from (*). For an arbitrary coherent sheaf
F we can find a (possibly non terminating) resolution

. . . �! F
2

�! F
1

�! F
0

�! F �! 0

of F by locally free sheaves (Example 1.2.21). If dim X = n, it is su�cient in
view of Proposition B.1.2 from Appendix B to establish that

Hi
�

X, SmE ⌦ Fn

�

= · · · = Hi
�

X, SmE ⌦ F
0

�

= 0 for i > 0 and m � 0,

and this follows from the case already treated.2

(ii) ) (iii). Given F , fix a point x 2 X, with maximal ideal mx ⇢ OX .
Consider the subsheaf mxF ⇢ F of germs of sections of F that vanish at x,
so that one has the exact sequence

0 �! mxF �! F �! F/mxF �! 0.

By (ii) there exists a positive integer m
2

(F , x) such that H1(X, SmE⌦mxF) =
0 for m � m

2

(F , x), and so we see using the sequence above that SmE ⌦ F
is generated by its sections at x. The same therefore holds in a Zariski open
neighborhood of x, and consequently by quasi-compactness we can find a
single integer m

2

= m
2

(F) such that SmE ⌦ F is globally generated when
m � m

2

.

(iii) ) (iv). Apply (iii) with F = OX(�H).

(iv) ) (iv)*. Tautological.

(iv)* ) (i). It follows from (iv)* that there is an ample divisor H on X
and a positive integer m > 0 such that we can write SmE as a quotient of
U = OX(H)�N+1 for some N . Note first that U is ample.3 In fact, P(U) is
isomorphic to the product PN ⇥X in such a way that

OP(U)

(1) = pr⇤
1

OPN (1)⌦ pr⇤
2

OX(H),

and this is an ample line bundle on PN ⇥X. Since SmE is a quotient of U ,
it follows that SmE is ample. But one has a Veronese embedding

P(E) ,! P(SmE) with OP(SmE)

(1) |P(E) = OP(E)

(m).

Therefore OP(E)

(m) — and hence also OP(E)

(1) — is ample, as required. ut
2 One can avoid this step by observing directly that

Ri⇡⇤
�OP(E)

(m)⌦ ⇡⇤F�
= Ri⇡⇤

�OP(E)

(m)
� ⌦ F

for any coherent sheaf F on X: see [274, Lemma 3.1].
3 Compare the next proposition for a more general statement.
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Remark 6.1.11. The theorem shows in e↵ect that amplitude of a bundle E
is detected by geometric properties of a high symmetric power SmE. However
in contrast to the situation for line bundles — where for instance one can
use covering constructions (e.g. Theorem 4.1.10) to replace a divisor by a
multiple — it is often not obvious how to pass from information about SmE
to a statement for E itself. In practice, this is the essential di�culty in working
with amplitude for bundles of higher rank. ut
Remark 6.1.12. The equivalence of statements (i), (ii), and (iii) remains
valid on an arbitrary complete (but possibly non-projective) scheme over C:
see [274], (2.1), (3.2) and (3.3). On a non-complete scheme, (iii) is taken as
the definition of amplitude. ut

Turning to direct sums and extensions, there is the useful

Proposition 6.1.13. (Direct sums and extensions). Let E
1

and E
2

be
vector bundles on X.

(i). The direct sum E
1

� E
2

is ample if and only if both E
1

and E
2

are.

(ii). Suppose that F is an extension of E
2

by E
1

:

0 �! E
1

�! F �! E
2

�! 0. (6.2)

If E
1

and E
2

are ample, then so is F .

Proof. (i). If E
1

�E
2

is ample, then so are its quotients E
1

and E
2

. Conversely,
assume that E

1

and E
2

are ample. The plan is to apply criterion (iii) from
6.1.10, so fix a coherent sheaf F on X. We need to show that Sm(E

1

�E
2

)⌦F
is globally generated for m � 0. But Sm(E

1

�E
2

) =
P

p+q=m SpE
1

⌦ SqE
2

,
so the question is to find an integer m

0

such that

SpE
1

⌦ SqE
2

⌦ F is globally generated for p + q � m
0

. (*)

To this end, first use the amplitude of E
1

and E
2

to choose t
1

> 0 such
that

StE
1

, StE
2

⌦ F are globally generated for t � t
1

.

Next, for k = 0, 1, . . . , t
1

apply 6.1.10 (iii) to each of the coherent sheaves
SkE

2

⌦ F and SkE
1

⌦ F to produce t
2

such that

StE
1

⌦ SkE
2

⌦ F , SkE
1

⌦ StE
2

⌦ F are globally generated for t � t
2

.

We claim that then (*) holds with m
0

= t
1

+ t
2

. In fact, suppose that p + q �
t
1

+ t
2

. If p, q � t
1

then SpE
1

and SqE
2

⌦F are globally generated, and hence
so is their tensor product. If p  t

1

then q � t
2

, and so (*) holds by choice of
t
2

, and similarly if q  t
1

. This proves (i).

For (ii) we apply 6.1.10 (ii), so again fix a coherent sheaf F . Now SmF has
a filtration whose quotients are Sp(E

1

) ⌦ Sq(E
2

) with p + q = m. So (using
Lemma B.1.7) it is enough to prove the vanishings
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Hi(X, SpE
1

⌦ SqE
2

⌦ F) = 0 for i > 0 and p + q = m � 0. (**)

But by part (i) of the proposition we already know that E
1

� E
2

is ample,
and then (**) follows upon applying 6.1.10 (ii) to this bundle. ut

Example 6.1.14. One can also deduce statement (ii) from (i) via Proposition
6.1.9. In fact, by scaling the extension class defining (6.2), the bundle F is
realized as a small deformation of E

1

� E
2

, and then 6.1.9 applies. ut

At least in characteristic zero, the tensorial properties of amplitude flow
from the next result.

Theorem 6.1.15. (Symmetric products). A vector bundle E on X is
ample if and only if SkE is ample for some — or equivalently, for all —
k � 1.

Proof. Supposing first that SkE is ample, the amplitude of E follows via the
Veronese embedding P(E) ✓ P(SkE) as in the argument that (iv)* ) (i) in
6.1.10. Conversely, assume that E is ample. We first note that SmE is ample
for all m � 0. In fact, according to Theorem 6.1.10 (iv), for large m the bundle
in question is a quotient of a direct sum of ample line bundles. It remains to
deduce that SkE is ample for any fixed k � 1. To this end, we again use a
Veronese-type morphism. Specifically, we assert that (in characteristic zero!)
there exists for any ` � 1 a finite mapping

⌫`,k : P(SkE) �! P(Sk`E) (6.3)

with OP(SkE)

(`) = ⌫⇤`,kOP(S`kE)

(1). Grant this for the moment. For ` � 0
we already know that OP(Sk`E)

(1) is ample, and hence so is OP(SkE)

(`). As
before, this implies that SkE is ample, as required.

It remains to prove the existence of ⌫`,k. Recall to begin with that there
are canonical homomorphisms

S`kE
� � i`,k

// S`
�

SkE
� m`,k

// S`kE,

with m`,k given by multiplication. The composition m`,k�i`,k is multiplication
by a fixed non-zero integer C`,k, and — since we are in characteristic zero —
is therefore a homothety. Now write ⇡k : P(SkE) �! X for the bundle map.
Composing ⇡⇤k(i`,k) with the `th symmetric power of the canonical quotient
⇡⇤kSkE �! OP(SkE)

(1) gives a vector bundle morphism

⇡⇤k S`kE �! OP(SkE)

(`). (*)

We will show that (*) is surjective: it then defines the required mapping ⌫`,k.
The surjectivity of (*) can be checked fibre by fibre over X, so we assume

that E is a vector space. Given a non-zero functional � : SkE �! C, and its
`th symmetric power S`� : S`(SkE) �! C, the issue is to show that
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im(i`,k) 6✓ ker(S`�). (**)

Write N = ker(�), choose a one-dimensional subspace L ✓ SkE splitting �,
and denote by L` ✓ S`kE the image of S`L under the multiplication m`,k.
Then

ker(S`�) = S`N + S`�1N · L + . . . + N · S`�1L.

In particular, L` is not in the image of ker(S`�) under m`,k. By the remark at
the beginning of the previous paragraph, this implies that S`� � i`,k does not
vanish on L`, and (**) is established, giving the surjectivity of (*). A similar
analysis shows that ⌫`,k is one-to-one. This completes the proof. ut

Corollary 6.1.16. (Amplitude of tensor products). Let E and F be
vector bundles on a projective variety or scheme X.

(i). If E and F are ample, then so is E⌦F . Consequently any tensor power
T q(E) of E is ample.

(ii). If E is ample, then so are all of its exterior powers. More generally, for
any Young diagram � denote by ��E the bundle deduced from E via the
representation of the general linear group corresponding to �.4 If E is
ample, then so is ��E.

Proof. Since E and F are ample, so is E�F and consequently also S2(E�F )
(6.1.13, 6.1.15). But E ⌦ F is a summand of S2(E � F ), and hence is ample.
The amplitude of T q(E) follows by induction. The exterior products ⇤iE and
more generally ��E are quotients of T q(E) for suitable q, and (ii) follows. ut

Remark 6.1.17. (Positive characteristics). All the results that have ap-
peared so far remain valid for varieties defined over an algebraically closed field
of arbitrary characteristic. The proof of Theorem 6.1.15 requires characteristic
zero. However Barton [34] proved by other methods that the tensor product of
ample vector bundles is ample in arbitrary characteristic, so 6.1.15 and 6.1.16
remain true. (In 6.1.16 (ii) one should define ��E as in [207, Chapter 8.1], so
that it is a quotient of a tensor power of E.) ut

6.1.C Criteria for Amplitude

We now indicate a few criteria for amplitude and nefness parallel to some of
the statements for line bundles from Sections 1.2 and 1.4.

To begin with, nefness and amplitude can be tested by pulling back to
curves:

Proposition 6.1.18. (Barton–Kleiman criterion). Let E be a vector bun-
dle on X.
4 See [210, §15.5] or Section 7.3.B.
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(i). E is nef if and only if the following condition is satisfied:
Given any finite map ⌫ : C �! X from a smooth irreducible
projective curve C to X, and given any quotient line bundle L of
⌫⇤E, one has

deg L � 0.

(ii). Fix an ample divisor class h 2 N1(X) on X. Then E is ample if and
only if there exists a positive rational number � = �h > 0 such that

deg L � �
�

C · ⌫⇤h
�

(*)

for any ⌫ : C �! X and ⌫⇤E ⇣ L as above.

Note that in (ii) the constant � is required to be independent of C, ⌫, and L.

Proof. Recall that giving a line bundle quotient ⌫⇤E ⇣ L is the same as
giving a map µ : C �! P(E) commuting with the projections to X:

C
µ

//

⌫
��

?

?

?

?

?

?

?

?

P(E)

⇡
||z

z

z

z

z

z

z

z

X,

with L = µ⇤OP(E)

(1). So the property stated in (i) is evidently equivalent
to the nefness of OP(E)

(1). For (ii), assuming that (*) holds we use Corollary
1.4.10 to establish the amplitude of E. In fact, as usual write

⇠ = c
1

�

OP(E)

(1)
�

2 N1

�

P(E)
�

.

Then (*) is equivalent to requiring that the Q-divisor class

⇠ � � · ⇡⇤h 2 N1

�

P(E)
�

Q

be nef. On the other hand, since OP(E)

(1) is relatively ample with respect to
⇡, the class a⇠ +� ·⇡⇤h is ample for 0 < a⌧ 1 (Proposition 1.7.10). Therefore

�

⇠ � � · ⇡⇤h
�

+
�

a⇠ + � · ⇡⇤h
�

=
�

1 + a
�

· ⇠

is the sum of a nef and an ample class, and hence is ample. Thus OP(E)

(1) is
likewise ample. We leave the converse to the reader. ut

The proposition shows that twisting by numerically trivial line bundles
does not a↵ect amplitude:

Corollary 6.1.19. (Numerically trivial twists). Let P be a numerically
trivial line bundle on X. Then given any vector bundle E on X, E is ample
or nef if and only if E ⌦ P is so. ut
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(Of course one can also argue directly. In fact, P(E ⌦ P ) ⇠= P(E) by an
isomorphism under which OP(E⌦P )

(1) corresponds to OP(E)

(1) ⌦ ⇡⇤P on
P(E). But under the stated hypothesis on P , the latter bundle is numerically
equivalent to OP(E)

(1).)
We conclude by sketching some other criteria.

Example 6.1.20. (Analogue of Seshadri’s criterion). Given a reduced
irreducible curve C, write m(C) for the maximum of the multiplicities of C
at all points P 2 C. Now suppose that E is a vector bundle on the projective
variety X. Then E is ample if and only if the following condition is satisfied:

There is a real number " > 0 such that for every non-constant map

⌫ : C �! X

from a reduced and irreducible (but possibly singular) curve C to X,
and for any quotient line bundle L of ⌫⇤E, one has

degC L

m(C)
� ". (*)

(To show that (*) implies the amplitude of E, fix any curve C ✓ P(E) finite
over X. As in the proof of 6.1.18, (*) implies that

deg
�

OP(E)

(1) |C
�

� " · m(C).

On the other hand, if C lies in a fibre of ⇡ : P(E) �! X, then

deg
�

OP(E)

(1) |C
�

� m(C).

Therefore it follows from Seshadri’s criterion (Theorem 1.4.13) that OP(E)

(1)
is ample.) ut

Example 6.1.21. (Generalization of Gieseker’s lemma). Let E be a
vector bundle on X. Then E is ample if and only if the following two conditions
are satisfied:

(i). There is a positive integer m
0

= m
0

(E) such that SmE is globally
generated for every m � m

0

.

(ii). There is no reduced irreducible curve C ⇢ X such that E|C
admits a trivial quotient.

(Assuming the conditions are satisfied, it follows from (i) that OP(E)

(m
0

) is
globally generated and hence defines a morphism

� = �m0 : P(E) �! P = PH0(Sm0E).

The issue is to show that � is finite. If not there is a curve C ⇢ P(E) that �
contracts to a point. As in the proof of 6.1.7, C must map isomorphically to
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its image in X, and it remains only to show that OP(E)

(1)|C is trivial. But
by construction OP(E)

(m
0

)|C is trivial, and hence

OP(E)

(1)|C = OP(E)

(m
0

+ 1)|C

is a degree-zero line bundle on C that (thanks to (i) for m = m
0

+ 1) is
generated by its global sections.) ut
Example 6.1.22. (Grauert’s criterion). Let E be a vector bundle on X,
and denote by F the total space of the dual of E, so that P(E) is the projective
bundle of one-dimensional subspaces of F. Then E is ample if and only if the
zero section 0F can be blown down to a point. (In fact, let L denote the
total space of the line bundle L = OP(E)

(�1). One reduces to the case of line
bundles by noting that the complement of the zero section in F is isomorphic
to the complement of the zero section in L. See [274, (3.5)] for details.) ut

Example 6.1.23. (Big vector bundles). A vector bundle E on an irre-
ducible projective variety X is big if OP(E)

(1) is a big line bundle on P(E)
(Definition 2.2.1). The characterization of big divisors as sums of ample and
e↵ective classes (Corollary 2.2.7) generalizes to the bundle setting in a natural
manner. Specifically, assume that H0

�

X, SmE
�

6= 0 for some m � 1. Then
for any ample line bundle A on X, the bundle E ⌦A is big. Conversely, if E
is big, then given any line bundle B on X, H0

�

X, SmE ⌦B
�

6= 0 for m � 0.
(For the first statement, the hypothesis implies that ⇠ = c

1

�

OP(E)

(1)
�

is an
e↵ective class. Then argue as in the proof of Proposition 6.1.18 or 6.2.11 that
given any ample class ↵ 2 N1(X)R, ⇠ + ⇡⇤↵ is a big class on P(E). The sec-
ond assertion follows quickly from Kodaira’s Lemma 2.2.6 applied on P(E).)
Analogous statements — which we leave to the reader — hold in the setting
of Q-twisted bundles (Section 6.2). ut

6.1.D Metric Approaches to Positivity of Vector Bundles

In the case of line bundles, amplitude is equivalent to the existence of a met-
ric of positive curvature, and it is natural to attempt to generalize this ap-
proach to higher ranks. Gri�ths [247] defined a di↵erential-geometric notion
of positivity that seems reasonably close to amplitude, although it is unknown
whether the two concepts actually coincide. The present section is devoted to
a very brief sketch of such metric definitions of positivity for bundles. We refer
to [248, Chapter 0, §5], [126, §3], [381, Chapter 5], [352, Chapter III, §6] or
[533, Chapter VI] for background and more details. We follow the notation
and presentation of [126].5

Let X be a complex manifold of dimension n, and E a holomorphic vector
bundle of rank e on X equipped with a Hermitian metric h. The Hermitian
5 Concerning the various sign conventions in the literature, see [381, p. 136].
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bundle (E, h) determines a unique Hermitian connection DE compatible with
the complex structures on X and E, and DE in turn gives rise to a curvature
tensor

⇥(E, h) 2 C1
�

X, ⇤1,1T ⇤X ⌦Hom(E,E)
�

,

a Hom(E,E)-valued (1, 1)-form on X. If z
1

, . . . , zn are local analytic coordi-
nates on X, and if (e�)

(1�e) is a local orthogonal frame on E, then one can
write

i · ⇥(E, h) =
X

1j,kn
1�,µe

cjk�µ · dzj ^ dz̄k ⌦ e⇤� ⌦ eµ,

where c̄jk�µ = ckjµ�. This curvature tensor gives rise to a Hermitian form ✓E

on the bundle TX ⌦ E, given locally by

✓E =
X

j,k,�,µ

cjk�µ · (dzj ⌦ e⇤�)⌦ (dzk ⌦ e⇤µ).

Definition 6.1.24. (i). E is Nakano-positive if ✓E is a positive-definite Her-
mitian form on TX ⌦ E.

(ii). E is Gri�ths-positive if ✓E is positive on all simple tensors in TX ⌦ E,
i.e. if at every point x 2 X,

✓E(⇠ ⌦ s, ⇠ ⌦ s) > 0 for all 0 6= ⇠ 2 TxX and 0 6= s 2 E(x).

Nakano and Gri�ths semipositivity, negativity, and seminegativity are defined
analogously. ut

If we fix a holomorphic tangent vector ⇠ 2 TxX, then we can view

✓E,⇠ = ✓E(⇠ ⌦ •, ⇠ ⌦ •)

as a Hermitian form on E(x). The condition of Gri�ths positivity is that ✓E,⇠

should be positive definite for every non-zero ⇠. Note that if E has rank one,
then the Nakano and Gri�ths definitions both coincide with positivity in the
sense of Kodaira.

The connection between these notions is given by

Theorem 6.1.25. Let (E, h) be a Hermitian vector bundle on a complex
projective manifold X.

(i). If (E, h) is Nakano-positive, then (E, h) is Gri�ths-positive.

(ii). If (E, h) is Gri�ths-positive, then E is ample.

Statement (i) of the theorem is clear from the definitions, and we refer to [533,
Theorem 6.30] for a proof of (ii). The idea, naturally enough, is to consider
the projective bundle ⇡ : P(E) �! X. The given Hermitian metric h on E
determines one on ⇡⇤E, which in turn induces a natural Hermitian metric k
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on its quotient OP(E)

(1). Then one uses the principle that curvature increases
in quotients to show that the corresponding curvature form ⇥(OP(E)

(1), k) is
positive, and hence that this line bundle is ample.

The Nakano condition is known to be considerably stronger than Grif-
fiths positivity and amplitude (cf. Example 7.3.18). It is an interesting open
question whether or not Gri�ths-positivity is equivalent to amplitude, i.e.
whether every ample bundle carries a Gri�ths-positive metric. Fulton [203,
p. 28] points out that a weaker condition would have many of the same con-
sequences.

Remark 6.1.26. (Garrity’s theorem). Garrity has given an alternate met-
ric approach to amplitude coming from Proposition 6.1.18. A detailed account
appears in [381, Chapter V, §4]. ut

6.2 Q-Twisted and Nef Bundles

As we saw in Chapter 1, the language of Q-divisors greatly facilitates dis-
cussions of positivity for line bundles. In the present section, we start by
developing an analogous formalism involving twists of vector bundles by Q-
divisor classes. This device was initiated by Miyaoka [429], and its utility was
re-emphasized by some related constructions in [133]. As in the rank-one case,
the formalism will allow us first of all to treat nef bundles as limits of ample
ones. Beyond that, it absorbs many of the branched covering arguments that
arise in previous developments of the theory. In the second subsection, we
apply the formalism to establish the basic properties of nef bundles.

Throughout this section, X denotes a complex projective variety or
scheme. Concerning divisors, we adhere to the notation and conventions in-
troduced in Sections 1.1 and 1.3. In particular, Div(X) denotes the group
of Cartier divisors on X, and by a Q-divisor we understand an element of
DivQ(X) = Div(X)⌦Z Q.

6.2.A Twists by Q-Divisors

Whereas the definition of a Q-divisor did not present any di�culties, it is not
really clear what one might mean by a Q-vector bundle. However, for many
purposes — notably for questions of positivity and numerical properties —
there is a natural way to make sense of twisting a bundle by a Q-divisor
(class).

We start by defining formally the objects with which we shall deal:

Definition 6.2.1. (Q-twisted bundles). A Q-twisted vector bundle

E<�>



6.2 Q-Twisted and Nef Bundles 21

on X is an ordered pair consisting of a vector bundle E on X, defined up to
isomorphism, and a numerical equivalence class � 2 N1(X)Q. If D 2 DivQ(X)
is a Q-divisor, we write E<D> for the twist of E by the numerical equivalence
class of D. ut

So in other words, E<D> and E<�> are just formal symbols, but the
notation is intended to suggest that we are twisting E by the Q-divisor D or
class �. This leads to a natural notion of equivalence among such pairs:

Definition 6.2.2. (Q-isomorphism). We define Q-isomorphism of Q-
twisted bundles to be the equivalence relation generated by declaring that
E<A + D> be equivalent to

�

E ⌦OX(A)
�

<D>

whenever A is an integral Cartier divisor on X and D 2 DivQ(X). ut

We generally identify Q-isomorphic Q-twisted bundles without explicit men-
tion. Therefore we will take care that further definitions respect this equiva-
lence relation.

A “classical” (untwisted) bundle E may be considered in the natural way
as a Q-twisted bundle, viz. as E<0>. Note that then E

1

and E
2

determine
the same Q-twisted bundle — i.e. E

1

<0> and E
2

<0> are Q-isomorphic —
if E

1

= E
2

⌦ P for a numerically trivial line bundle P . But as long as we are
dealing with positivity or numerical properties, this shouldn’t cause undue
confusion.

We have already had occasion to note that if E is a vector bundle and A is
a line bundle on X, then P(E ⌦A) ⇠= P(E) by an isomorphism under which
OP(E⌦A)

(1) corresponds to the bundle

OP(E)

(1)⌦ ⇡⇤A

on P(E), where ⇡ : P(E) �! X denotes as usual the bundle map. This
motivates

Definition 6.2.3. (Ample and nef Q-twisted bundles). A Q-twisted
vector bundle E<�> is ample (or nef ) if

⇠E + ⇡⇤� 2 N1

�

P(E)
�

Q

is an ample (or nef) Q-divisor class on P(E). Here ⇠E = c
1

�

OP(E)

(1)
�

is the
class of a divisor representing the Serre line bundle OP(E)

(1). ut

Observe that E is ample or nef in the usual sense if and only if it so consid-
ered as the Q-twisted bundle E<0>. The remarks preceding the definition
show that the notions of amplitude and nefness just introduced respect Q-
isomorphism.

The same is true for the natural definitions of tensor products and pull-
backs:
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Definition 6.2.4. (Tensorial operations and pullbacks). Let X be a
projective variety or scheme, and let E, E

1

, E
2

be vector bundles on X.

(i). Tensor, symmetric, and exterior powers of Q-twisted bundles are defined
via the rules

E
1

<�
1

> ⌦ E
2

<�
2

> =
�

E
1

⌦ E
2

�

<�
1

+ �
2

>, (6.4a)

Sm
�

E<�>
�

=
�

SmE
�

<m�>, (6.4b)

⇤m
�

E<�>
�

=
�

⇤mE
�

<m�> . (6.4c)

(ii). If f : Y �! X is a morphism, then we define the pullback of a Q-twisted
bundle E<�> on X to be the Q-twisted bundle

f⇤
�

E<�>
�

=
�

f⇤E
�

<f⇤�> (6.5)

on Y . ut

Note that it follows from the definition that pullback commutes with each of
the products in (i).

There is also a natural notion of quotients, sums, and ranks:

Definition 6.2.5. (Quotients, sums, and ranks). Keep notation as above.

(i). A quotient of a Q-twisted bundle E<�> is a Q-twisted bundle Q<�>,
where Q is a quotient of E. Sub-bundles and locally free subsheaves of
E<�> are defined similarly.

(ii). The direct sum of two Q-twisted bundles E
1

<�> and E
2

<�> with the
same twisting class is the Q-twisted bundle

�

E
1

� E
2

�

<�>. Extensions
are defined similarly.

(iii). The rank of E<�> is simply rank(E). ut
Remark 6.2.6. Note that we do not attempt to define direct sums or ex-
tensions of two vector bundles twisted by di↵erent numerical equivalence
classes. ut

We will discuss Chern classes of Q-twisted bundles later in Section 8.1.A.
However a special case will be useful before then:

Definition 6.2.7. (Degrees of Q-twists on curves). If E<�> is a Q-
twisted bundle of rank e on a curve X, then its degree is the rational number

deg E + e · deg �. ut

The basic facts about Q-twisted bundles are summarized in the next
lemma. The first two statements allow one to pass to covers to reduce to
the case of integral divisors.
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Lemma 6.2.8. (Formal properties of Q-twists). Let E be a vector bundle
on X and � 2 N1(X)Q a numerical equivalence class.

(i). The definitions above respect the relation of Q-isomorphism. In partic-
ular, if A is an integral Cartier divisor on X, then E<A> is ample (or
nef ) if and only if E ⌦OX(A) is.

(ii). If f : Y �! X is a finite surjective map, then f⇤
�

E<�>
�

is ample (or
nef ) on Y if and only if E<�> is ample (or nef ) on X.

(iii). E<�> is ample if and only if Sk
�

E<�>
�

is ample for some — or
equivalently, for all — integers k � 1.

(iv). If E
1

<�
1

> and E
2

<�
2

> are ample Q-twisted bundles on X, then

E
1

<�
1

> ⌦ E
2

<�
2

>

is also ample.

(v). If E
1

<�> and E
2

<�> are ample, then so too is their direct sum (or any
extension of one by the other).

(vi). Suppose that E<�> is ample, and let �0 be any Q-divisor class on X.
Then E<� + " · �0> is ample for all su�ciently small rational numbers
0 < " ⌧ 1.

Proof. The first assertion has already been observed. The second statement
follows from the fact that amplitude or nefness for Q-divisor classes can be
tested after pulling back by a finite surjective map (1.2.28, 1.4.4 (ii)). For (iii),
use the covering constructions from Section 4.1 (e.g. Theorem 4.1.10) to form
a branched covering f : Y �! X such that f⇤� is an integral class on Y . By
(ii) it is equivalent to prove the statement after pulling back to Y . But thanks
to (i), here we are reduced to Theorem 6.1.15. For (iv) and (v) one reduces in
a similar manner to the case in which �

1

and �
2

are integral, and then 6.1.16
and 6.1.13 apply. Finally, (vi) is a consequence of the fact (1.3.7) that the
ample cone in N1

�

P(E)
�

Q
is open. ut

Remark 6.2.9. After the evident modifications, Proposition 6.1.18 and Ex-
ample 6.1.20 extend to Q-twisted bundles. We leave the statements to the
reader. ut
Remark 6.2.10. (R-twists). With some extra care, it would be possible to
define and work out the elementary properties of R-twisted bundles. However,
except at one point in Chapter 8 — viz. Theorem 8.2.1, where we will proceed
ad hoc — we do not require this formalism, and it seemed simplest to bypass
it. ut
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6.2.B Nef Bundles

With the formalism of Q-twists in hand, the basic properties of nef bundles
follow easily from the corresponding facts for amplitude.

We start with the analogue of Corollary 1.4.10, showing that a bundle is
nef if and only if it is a limit of ample Q-twisted bundles:

Proposition 6.2.11. (Ample twists of nef bundles). A vector bundle E
on X is nef if and only if the Q-twisted bundle E<h> is ample for every
ample class h 2 N1(X)Q. Similarly, if E<�> is a Q-twisted bundle, then
E<�> is nef if and only if E<� + h> is ample for any such h.

Proof. If E<h> is ample for every ample class h, then ⇠ = ⇠E is the limit as
h ! 0 of the ample classes ⇠ + ⇡⇤h, and hence is nef. Assuming conversely
that E is nef, we argue as in the proof of 6.1.18. Specifically, since ⇠ is ample
for ⇡, a⇠ + ⇡⇤h is an ample class on P(E) for 0 < a ⌧ 1 (Proposition 1.7.10).
Therefore

⇠ + ⇡⇤h =
�

(1� a)⇠
�

+
�

a⇠ + ⇡⇤h
�

,

being the sum of a nef and an ample class, is ample (Corollary 1.4.10). Hence
E<h> is ample. The statement for Q-twists is similar. ut

It is now immediate to establish the analogues for nef bundles of the formal
properties of ample bundles given earlier. We state them all explicitly for ease
of reference.

Theorem 6.2.12. (Formal properties of nef vector bundles). Let X be
a projective variety or scheme.

(i). Quotients and arbitrary pullbacks of nef bundles on X are nef. Given a
vector bundle E on X, and a surjective morphism f : Y �! X from a
projective variety (or scheme)) to X, if f⇤E is a nef bundle on Y , then
E is nef.

(ii). Direct sums and extensions of nef bundles are nef.

(iii). A vector bundle E on X is nef if and only if SkE is nef for any — or
equivalently for all — k � 1.

(iv). Any tensor or exterior product of nef bundles is nef. If E is nef and F
is ample, then E ⌦ F is ample.

(v). All of these statements hold if the “classical” bundles involved are re-
placed by Q-twists (provided in (ii) that the sum or extension is defined).

Proof. Statement (i) follows immediately from the corresponding facts for nef
line bundles. For the first assertion in (ii), suppose that E

1

and E
2

are nef,
and fix any ample Q-divisor class h 2 N1(X)Q. By the previous proposition,
it su�ces to prove that

�

E
1

� E
2

�

<h> is an ample Q-twisted bundle, and
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this follows from Lemma 6.2.8 (v). Extensions are treated in the same manner.
Turning to (iii), note that

�

SkE
�

<�> = Sk
�

E<1

k �>
�

,

and so the amplitude of
�

SkE
�

< h > for all ample Q-divisor classes h is
equivalent to the amplitude of Sk

�

E<h0>
�

for all ample classes h0. Therefore
we are reduced by the previous proposition to Lemma 6.2.8 (iii). The first
assertion of (iv) is similar, and in characteristic zero the nefness of tensor
powers implies in the usual way the nefness of exterior products. For the last
statement in (iv), suppose that E is nef and F is ample, and let h be any
ample class on X. Then E<"h> is ample for all " > 0 by 6.2.11, and F<�"h>
is ample for 0 < " ⌧ 1 thanks to 6.2.8 (vi). Therefore 6.2.8 (iv) applies to
show that

E ⌦ F = E<"h> ⌦ F<�"h>

is ample. We leave the extensions to Q-twisted bundles to the reader. ut

Example 6.2.13. (Fixed twists of large symmetric powers). Let E be
a vector bundle and B an ample divisor on X. If SmE ⌦ OX(B) is nef for
all m � 0, then E itself is nef. Similarly, the nefness of the m-fold tensor
power TmE ⌦ OX(B) for every m � 0 implies the nefness of E. (Replacing
B by 2B, there is no loss in generality in supposing that SmE ⌦ OX(B) is
ample for all m � 0. But considered as a Q-twisted bundle, SmE ⌦ OX(B)
is Q-isomorphic to

Sm
�

E< 1

mB>
�

.

Therefore E< 1

mB> is ample for all m � 0, and hence E is nef. The analogous
assertion for tensor powers follows from this since in characteristic zero SmE
is a summand of TmE.) ut

Example 6.2.14. (The Barton invariant of a bundle). Let E be a vector
bundle and h an ample divisor class on the projective variety X. Define the
Barton invariant of E with respect to h to be the real number

�(X, E, h) = sup
�

t 2 Q
�

� E<�t · h> is nef
 

.

(i). E is ample if and only if �(X, E, h) > 0, and E is nef if and only if
�(X, E, h) � 0. (Compare Proposition 6.1.18.)

(ii). For every integer m > 0, �(X, E,m · h) = 1

m �(X, E, h).

(iii). If f : Y �! X is a finite surjective mapping, then

�(Y, f⇤E, f⇤h) = �(X, E, h).
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Given an ample divisor D or line bundle bundle B, we write �(X, E,D) or
�(X, E,B) for the quantity defined by using D or B in place of h. ut
Example 6.2.15. (Irrational Barton invariants). It is possible for the
Barton invariant to be an irrational number. For a simple example, take X =
C ⇥ C to be the product of an elliptic curve with itself, so that Nef(X) is
a circular cone (Example 1.5.4). Given ample divisors A and H on X, put
E = OX(A). Then the Barton invariant �(X, E,H) of E with respect to H
is the smallest root of the quadratic polynomial s(t) =

�

(A� tH)2
�

, and for
general choices of A and H this will be irrational (compare Section 2.3.B).
Peternell (private communication) has constructed more interesting examples
involving bundles of higher rank. ut

Remark 6.2.16. (Positive characteristics). Except for the second asser-
tion of Example 6.2.13, all of the material appearing so far in this section
remains valid for varieties defined over an algebraically closed field of arbi-
trary characteristic. ut

By analogy with the corresponding notion for line bundles (Section 2.1.B),
it is natural to define semiamplitude for vector bundles.

Definition 6.2.17. (Semiample vector bundles). A vector bundle E on
a complete variety or scheme is semiample if OP(E)

(m) is globally generated
for some m > 0. ut

The condition is satisfied for example if Sm(E) is globally generated for some
m > 0. Evidently a semiample bundle is nef.

Remark 6.2.18. (k-amplitude). Sommese [551] has introduced a quantita-
tive measure of how close a semiample bundle comes to being ample. Specifi-
cally, let E be a semiample bundle – so that OP(E)

(m) is free for some m > 0
– and let

� = �m : P(E) �! P
�

H0

�

P(E),OP(E)

(m)
��

be the corresponding map. Sommese defines E to be k-ample if every fibre
of � has dimension  k. Thus E is ample if and only if it is 0-ample. Many
of the basic facts about amplitude extend with natural modifications to this
more general setting. We shall point out some of these as we go along, and
the reader can consult [551] for a more complete survey. ut
Example 6.2.19. (Some formal properties of k-amplitude). We indi-
cate how some of the results of this and the previous section extend to k-ample
bundles on a projective scheme X (Remark 6.2.18).

(i). Any quotient of a k-ample bundle is k-ample.

(ii). If E is a k-ample bundle on X and f : Y �! X is a projective morphism
all of whose fibres have dimension  m, then f⇤E is (k + m)-ample.



6.3 Examples and Constructions 27

(iii). If E is k-ample then for any coherent sheaf F on X there is an integer
m(F) such that

Hi
�

X, SmE ⌦ F
�

= 0 for m � m(F) and i > k;

the converse holds provided that E is semiample.

(iv). If E and F are globally generated and k-ample, then E ⌦ F and E � F
and any extension of E by F are k-ample.

(See [551, §1, (1.7), (1.9), and (1.10)].) ut

6.3 Examples and Constructions

In order to add substance to the general theory, we present in this section
several examples and constructions of ample and nef vector bundles. Our
hope is to convey a sense of some of the many settings in which positivity of
bundles arises “in nature,” and to illustrate a few of the methods that have
been used to detect and exploit it.

In the first two subsections, we discuss the geometric consequences of posi-
tivity conditions on tangent, cotangent, and normal bundles. We then consider
the Picard bundles on the Jacobian of a curve (and their analogues for irreg-
ular varieties of arbitrary dimension), and prove the positivity of a vector
bundle associated to a branched covering of projective space. Direct images
of canonical bundles are discussed briefly in 6.3.E, while in 6.3.F we indi-
cate some methods of construction. On several occasions we call on results to
be established later, but we felt that the value of presenting early on some
non-trivial illustrations of the theory outweighs any lapses in strict logical
development.

6.3.A Normal and Tangent Bundles

Historically, an important motivation for developing the theory of ample vec-
tor bundles was the desire to generalize to higher codimensions some of the
positivity properties enjoyed by ample divisors. If M is a smooth projective
variety, and if X ⇢ M is a non-singular ample divisor, then of course its nor-
mal bundle NX/M = OM (X)|X is an ample line bundle on X. Given X ⇢ M
of arbitrary codimension, one would like to think of the amplitude of NX/M

as reflecting the intuition that X is “positively embedded” in M . While this
has never been made precise, we present here some of the basic examples and
results supporting this heuristic. We start by considering subvarieties of pro-
jective space and abelian varieties, and then briefly discuss what is known on
arbitrary smooth ambient varieties. Hartshorne’s book [276] remains a valu-
able source of information on these matters.
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Projective space and its subvarieties. The positivity of projective space
is manifested in the amplitude of its tangent bundle and the normal bundles
of all smooth subvarieties.

Proposition 6.3.1. (i). The tangent bundle TPn of n-dimensional projec-
tive space is ample.

(ii). If X ✓ Pn is any smooth subvariety, then the normal bundle NX/P to
X in P = Pn is ample.

Proof. Let V be a vector space of dimension n+1, so that P(V ) = Pn. Then
one has the Euler sequence [280, II.8.13]

0 �! OPn �! V ⇤ ⌦k OPn(1) �! TPn �! 0. (6.6)

So TPn is a quotient of the (n + 1)-fold direct sum of copies of OP(1), and
hence is ample. The second statement then follows from the normal bundle
sequence

0 �! TX �! TPn|X �! NX/P �! 0. (6.7)

In fact, the restriction TPn|X is ample, and hence so it its quotient NX/P. ut

Remark 6.3.2. (Mori’s theorem). A very fundamental theorem of Mori
[437] states that projective space is the only smooth projective variety with
ample tangent bundle. This had been conjectured by Hartshorne [276], and
Siu and Yau [542] proved a complex geometric analogue at essentially the
same time as Mori’s theorem. In the course of his argument, Mori introduced
several spectacular ideas that soon led to a flowering of higher-dimensional
geometry. We refer to [135] for an excellent overview of Mori’s proof, and to
[363] for an account of the developments growing in part out of his techniques.
The papers [80], [81], [6], [91], and [603] contain some results and conjectures
concerning other characterizations of projective space involving positive vector
bundles. ut
Remark 6.3.3. (Nef tangent bundles). Continuing the train of thought of
the previous remark, it is natural to ask whether one can characterize complex
varieties whose tangent bundles satisfy weaker positivity properties. The first
results in this direction were obtained by Mok [435], who classified all compact
Kähler manifolds with semi-positive bisectional curvature. Following work of
Campana and Peternell, [79], Demailly, Peternell and Schneider [133] studied
compact Kähler manifolds X with nef tangent bundles.6 They showed that X
admits a finite étale cover X̃ �! X having the property that the Albanese
mapping X̃ �! Alb(X̃) is a smooth fibration whose fibres are Fano manifolds
with nef tangent bundles. It is conjectured in [79] that a complex Fano variety
6 On possibly non-algebraic Kähler manifolds, nefness of a bundle E is defined by

asking that OP(E)

(1) carry a metric satisfying the condition of Remark 1.4.7. See
[133, §1B].
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with nef tangent bundle must be a rational homogeneous space G/P . If true,
this would give a complete picture, up to étale covers, of Kähler manifolds
whose tangent bundles are nef. An amusing numerical property of varieties
with nef tangent bundles appears in Corollary 8.4.4. ut
Remark 6.3.4. (Bundles of di↵erential operators). In a somewhat re-
lated direction, Ran and Clemens [512] use very interesting considerations
of positivity and stability for sheaves of di↵erential operators to study the
geometry of Fano manifolds of Picard number one. ut

While every smooth subvariety of projective space has ample normal bun-
dle, it was observed in [211, Remark 7.5] that a twist of that bundle carries
additional geometric information:

Proposition 6.3.5. (Amplitude of N(-1)). Given a smooth subvariety
X ⇢ P = Pn not contained in any hyperplane, the twisted normal bundle
NX/P(�1) is ample if and only if every hyperplane H ⇢ P that is tangent to
X is tangent at only finitely many points.

The condition is equivalent to asking that for every hyperplane H, X \ H
have at most finitely many singular points.

Proof of 6.3.5. Restricting the Euler sequence to X, and combining it with
the normal bundle sequence, one arrives at a bundle surjection

V ⇤X = V ⇤ ⌦OX �! NX/P(�1) �! 0.

This gives rise to an embedding

P
�

NX/P(�1)
�

✓ P
�

V ⇤X
�

= X ⇥P(V )⇤,

and in X ⇥P(V )⇤, P
�

NX/P(�1)
�

is identified with the locus
�

(x, H)
�

� x 2 X, H ⇢ Pn a hyperplane tangent to X at x
 

.

So the condition in the proposition is equivalent to the finiteness of the projec-
tion P(NX/P(�1)) �! P(V )⇤, which in turn is equivalent to the amplitude
of NX/P(�1). ut

Example 6.3.6. (Tangencies to complete intersections). Let X ✓ Pn

be a smooth complete intersection of hypersurfaces of degrees � 2. Then a
hyperplane can be tangent to X at only a finite number of points. ut
Example 6.3.7. Given a smooth non-degenerate subvariety X ✓ P = Pn,
the twisted normal bundle NX/P(�1) is k-ample in the sense of Sommese
(Remark 6.2.18) if and only if no hyperplane is tangent to X along a subset
of dimension � k + 1. It follows from Zak’s theorem on tangencies (Theorem
3.4.17) that in fact this always holds with k = codim(X,P)� 1. ut
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Example 6.3.8. (Tangencies along hypersurfaces). Proposition 6.3.5
admits a partial generalization to other twists. Specifically let X ✓ P = Pn

be a smooth subvariety, and let S = Sd ✓ Pn be a non-singular hypersurface of
degree d, not containing X. If the twisted normal bundle NX/P(�d) is ample,
then S cannot be tangent to X along a curve.7 This applies for example
when X is the complete intersection of hypersurfaces of degrees > d. (In fact,
suppose to the contrary that there exists a reduced and irreducible curve C ⇢
X\S such that TX|C ✓ TS|C. This gives rise to a surjective homomorphism

NX/P|C �! NS/P|C

and hence a surjection NX/P(�d)|C ⇣ OC . But an ample bundle on a curve
does not admit a trivial quotient.) This result appears in [186, Proposition
4.3.6]. ut
Remark 6.3.9. (Normal bundles to local complete intersection sub-
varieties). If X ⇢ Pn is a singular local complete intersection subvariety, then
the normal bundle NX/P is still defined, but one no longer has the normal
bundle sequence (6.7). Therefore one can no longer conclude the amplitude of
NX/P. This is discussed in Fritzsche’s paper [189, §3] ut

Subvarieties of abelian varieties. Let A be an abelian variety of dimension
n. The tangent bundle TA of A is trivial, so the first interesting question is
the amplitude of normal bundles. This was analyzed by Hartshorne [277]:

Proposition 6.3.10. Let X ✓ A be a smooth subvariety, and denote by
N = NX/A the normal bundle to X in A. Then:

(i). N is ample if and only if for every regular one-form ! 2 �
�

A,⌦1

A

�

, the
restriction

! |X 2 �
�

X, ⌦1

X

�

of ! to X vanishes on at most a finite set.

(ii). If N fails to be ample, then there is a reduced and irreducible curve C ✓ X
that lies in a proper abelian subvariety of A.

Corollary 6.3.11. (Subvarieties of simple abelian varieties). If A is
simple, i.e. if it contains no proper abelian subvarieties, then every smooth
subvariety of A has ample normal bundle. ut

Proof of Proposition 6.3.10. Write TA = V ⌦OA where V = T
0

A is a vector
space of dimension n, which is canonically identified with the tangent space
to A at the origin 0 2 A. By Gieseker’s Lemma 6.1.7, N fails to be ample if
and only if there is a curve C ✓ X such that N |C admits a trivial quotient.
The normal bundle sequence
7 By definition, S is tangent to X at a point x 2 S \X if TxX ⇢ TxS.
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0 �! TX �! VX = TA|X �! N �! 0

shows that this is equivalent to the existence of a one-form ! 2 V ⇤ =
�
�

A,⌦1

A

�

whose restriction ! |X 2 �
�

X, ⌦1

X

�

vanishes along C. This proves
the first assertion. Assuming such a curve exists, let C 0 be its normaliza-
tion, and denote by ⌫ : C 0 �! X the natural (finite) mapping. Then
⌫⇤(!) = 0 2 �

�

C 0, ⌫⇤⌦1

X

�

and consequently

(d⌫)⇤! = 0 2 �
�

C 0,⌦1

C0
�

.

But this implies that the Jacobian Jac(C 0) — and hence also C 0 itself — maps
to a proper abelian subvariety of A. ut

Example 6.3.12. The converse of the second statement of Proposition 6.3.10
is not true in general. (For instance, let A be an abelian variety of dimension
n � 3 that contains an elliptic curve C ✓ A. Then there exist smooth ample
divisors X ⇢ A with C ⇢ X, but of course NX/A = OX(X) is ample.) ut

General ambient manifolds. We now survey some of the geometric con-
sequences of the amplitude of normal bundles in a general ambient manifold,
referring to [276] for more information. Throughout this discussion, M denotes
a non-singular complex quasi-projective complex variety of dimension n, and
X ✓ M is a smooth irreducible subvariety of dimension d. Unless otherwise
stated we do not assume that M is complete, but we always suppose that X
is projective. We denote by N = NX/M the normal bundle of X in M .

As suggested above, the basic goal is to give some substance to the intuition
that the amplitude of N reflects the fact that X is “positively embedded” in
M . A first idea in this direction is to study the ring of formal functions along
X, or more generally the sections of the formal completion along X of a locally
free sheaf on M . Along these lines one has:

Proposition 6.3.13. (Formal functions along ample subvarieties). As-
sume that d = dim X � 1 and that N = NX/M is ample, and consider the
formal completion cM = cM/X of M along X.

(i). The only formal holomorphic functions along X are constants, i.e.

H0

�

cM,OcM/X

�

= C.

(ii). Given a locally free sheaf E on M , denote by bE its completion along X.
Then H0

�

cM, bE
�

is finite dimensional.

Recall that if U ◆ X is any connected neighborhood of X in M , then the
natural map

H0

�

U,E|U
�

�! H0

�

cM, bE
�
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is injective. The same is true if U is a connected neighborhood in the classical
topology and the group on the left is replaced by the space H0

�

Uan, Ean

�

of
holomorphic sections of E on U . So it follows that both these spaces of sections
are finite dimensional. We refer to [276, Chapter 5] for a discussion of some
related results of Hartshorne, Hironaka, Matsumura, and others concerning
formal rational functions.

Remark 6.3.14. (Contractible subvarieties). To appreciate why this sort
of statement is suggestive of the positivity of X in M , consider by contrast
the “opposite” case, when X contracts. Specifically, suppose that X is the
fibre over a point p 2 N of a surjective mapping f : M �! N of M onto a
variety N of dimension � 1. Then by the theorem on formal functions [280,
III.11] the group appearing in 6.3.13 (i) is isomorphic to the completion of
the stalk at p of the sheaf f⇤OM :

H0

�

cM,OcM/X

�

= \�f⇤OX

�

p
.

In particular, the group in question is infinite dimensional. Similarly, if E =
f⇤F for some bundle F on N , the finiteness in (ii) will also fail. ut

Proof of Proposition 6.3.13. We focus on statement (ii). Let I denote the
ideal sheaf of X in M , and let Xk be the kth infinitesimal neighborhood
of X in M , i.e. the subscheme of M defined by Ik. Then

H0(cM, bE) = lim H0(M,E ⌦OXk
).

For every k � 1 there is an exact sequence

0 �! E ⌦ Ik/Ik+1 �! E ⌦OXk+1 �! E ⌦OXk
�! 0,

and one has the isomorphism Ik/Ik+1 = SkN⇤ of OX -modules. It is enough
for (ii) to show that H0(X, SkN⇤⌦E) = 0 if k � 0: for then H0(cM, bE) injects
into H0(Xk, E ⌦OXk

) for some fixed k � 0, and hence is finite-dimensional.
But since we are in characteristic zero, SkN⇤ = (SkN)⇤. So for k � 0,
SkN⇤ ⌦ E is the dual of an ample bundle and hence has no non-vanishing
sections, as required. By the same token, H0(X, SkN⇤) = 0 for all k � 1,
which in a similar fashion yields (i). ut

Remark 6.3.15. Since we only need to control H0 in the argument just com-
pleted, Proposition 6.3.13 holds under considerably weaker conditions than the
amplitude of N = NX/M . For example, it su�ces to assume the following:

If C ✓ X is a curve arising as a general complete intersection of very
ample divisors on X, then the restriction N |C of N to C is ample.8

8 This is analogous to the condition of generic semipositivity figuring in the theorem
of Miyaoka described in Remark 6.3.34.
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For then, keeping notation as in the previous proof, one has

H0

�

C, (SkN⇤ ⌦ E) | C
�

= 0

for k � 0. Since this holds for the general member of a family of curves that
covers X, it follows that H0

�

X, SkN⇤ ⌦ E
�

= 0. ut
Remark 6.3.16. (Finiteness of formal cohomology). By a similar argu-
ment, Hartshorne [275, Theorem 5.1] proves in the situation of the Proposition
that the formal cohomology groups Hi

�

cM, bE
�

are finite dimensional for all
i < d. Combining this with formal duality, he deduces [275, Corollary 5.5] that
if in addition M is projective, then for every coherent sheaf F on M , the co-
homology group Hi

�

M �X,F
�

is finite-dimensional whenever i � n� d. ut

There have been a number of attempts to find global geometric conse-
quences of the amplitude of the normal bundle N = NX/M . Hartshorne [276,
III.4.2] showed that if X is a smooth divisor in M whose normal bundle
OX(X) is ample, then some large multiple of X moves in a free linear series,
and hence meets any curve with ample normal bundle (Example 1.2.30). This
led him to make two conjectures [276, Conjectures 4.4 and 4.5] concerning
what one might expect in higher codimension:

Hartshorne’s Conjecture A. If X ✓ M is a smooth subvariety with
ample normal bundle, then a su�ciently high multiple of [X] should
move (as a cycle) in a large algebraic family.
Hartshorne’s Conjecture B. Let X , Y ✓ M be smooth complete
subvarieties having ample normal bundles. If dim X+dim Y � dim M ,
then X and Y must meet in M .

It was observed by Fulton and the author in [213] that Conjecture A would
imply B: see Remark 6.3.18 or Corollary 8.4.3. Conjecture B remains open,
although it has been verified in some special cases (cf. [213], [25], [27], [26]).
However, it was also shown in [213] that Conjecture A can fail:

Example 6.3.17. (Counterexample to Conjecture A). There exists for
d � 0 a rank-2 ample vector bundle E on P2 sitting in an exact sequence

0 �! OP2(�d)2 �! OP2(�1)4 �! E �! 0. (*)

Such bundles were originally constructed by Gieseker [223] via a reduction to
characteristic p; we exhibit them as a special case of a general construction in
Example 6.3.67 below. For our example we take M = E to be the total space
of E, and X ✓ M to be the zero-section. Thus X = P2 and NX/M = E. We
will show that the only projective surface Y ✓ M is the zero-section X itself,
and so in particular no multiple of X can move. In fact, let Y 0 �! Y be a
resolution of singularities, and denote by f : Y 0 �! P2 the natural map. The
inclusion Y ,! M gives rise to a mapping Y 0 �! M , which in turn determines
a “tautological” section s 2 H0

�

Y 0, f⇤E
�

: for y 2 Y 0, s(y) 2 E
�

f(y)) is the
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point of the fibre of E �! P2 over f(y) to which y maps. But it follows from
vanishing for the big and nef bundle f⇤OP(d) (Theorem 4.3.1) that

H1

�

Y 0, f⇤OP(�d)
�

= 0,

and by pulling back (*) we deduce that H0

�

Y 0, f⇤E
�

= 0. Therefore Y 0 must
map to the zero-section, as claimed. ut
Remark 6.3.18. (Numerical consequences of positive normal bun-
dles). With X ✓ M as above, the positivity of the normal bundle N = NX/M

has numerical consequences. Specifically, if N is nef then for every subvariety
Y of dimension complementary to X, the intersection number of X and Y
satisfies

�

X · Y
�

� 0. If N is ample then strict inequality holds provided that
Y is homologous to an e↵ective algebraic cycle that meets X. This appears
as Corollary 8.4.3. ut

Finally, in the spirit of the Lefschetz hyperplane theorem, one can attempt
to compare the topology of X and M . Assume now that M is projective.
Napier and Ramachandran [473] used L2 methods to prove that if N = NX/M

is ample, then the image of the map

⇡
1

(X) �! ⇡
1

(M)

on fundamental groups has finite index in ⇡
1

(M). To give a taste of the argu-
ment, we will establish a somewhat weaker algebro-geometric assertion:

Theorem 6.3.19. (Analogue of theorem of Napier–Ramachandran).
Let M be a connected complex projective manifold, and let

X ✓ M

be a smooth irreducible subvariety with N = NX/M ample. Then there is a
positive constant ` = `(X, M) depending only on X and M with the following
property:

If f : M 0 �! M is any finite connected étale covering that admits a
section over X, then deg f  `.

Equivalently, there do not exist subgroups of arbitrarily large finite index in
⇡

1

(M) which contain the image of ⇡
1

(X).

Remark 6.3.20. One can deduce this from the results of Hironaka, Mat-
sumura, et al. on formal rational functions (see [276, Chapter V]). However,
we prefer an argument based on the very nice approach of Napier and Ra-
machandran. In fact, the proof will show — thanks to Remark 6.3.15 — that
it is su�cient to assume that the restriction of N to a general complete inter-
section curve C ⇢ M is ample. A related cohomological result due to Sommese
appears later as Proposition 7.1.12. ut
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Proof of Theorem 6.3.19. Suppose to the contrary that one can find an in-
finite sequence fk : Mk �! M of connected (and hence irreducible) étale
coverings, with deg fk ! 1, each of which admits a section µk : X �! Mk

over X:
Mk

fk

✏✏

X
,
�

µk

::

u

u

u

u

u

u

u

u

u

u

u

� �
// M.

We view X as a subvariety both of M and of Mk. Observe that µk extends to
an isomorphism U ⇠= Uk between small (classical) neighborhoods of X in M

and Mk respectively. It follows in particular that the formal completions cM =
cM/X and cMk = dMk/X of M and Mk respectively along X are isomorphic.

Now fix any line bundle L on M , and set Lk = f⇤k L. Then L | U ⇠= Lk | Uk

(as holomorphic line bundles) and therefore

H0

�

cMk, bLk

� ⇠= H0

�

cM, bL
�

(since by GAGA we can compute these completions analytically). But quite
generally H0

�

Mk, Lk

�

injects into H0

�

cMk, bLk

�

, and so we conclude that

h0

�

Mk, Lk

�

 h0

�

cM, bL
�

,

the right hand side being finite thanks to Proposition 6.3.13 and the hypothesis
on NX/M . So to get the required contradiction, it is su�cient to exhibit any
line bundle L on M such that the dimension h0

�

Mk, f⇤k L
�

goes to infinity
with k.

But this is easily achieved. In fact, fix an ample divisor H on M and choose
any positive integer b � 0 large enough so that

�
�

M,OM (KM + bH)
�

= h0

�

M,OM (KM + bH)
�

6= 0

(the equality coming from the Kodaira vanishing theorem). Then

f⇤kOM

�

KM + bH
�

= OMk

�

KMk
+ f⇤k (bH)

�

since f is étale, and

h0

�

Mk , f⇤kOM

�

KM + bH
��

= �
�

Mk , f⇤kOM

�

KM + bH
��

thanks again to Kodaira vanishing. But since Euler characteristics are multi-
plicative in étale covers (Proposition 1.1.28) we conclude that

h0

�

Mk, f⇤kOM (KM + bH)
�

= deg fk · h0

�

M,OM (KM + bH)
�

,

so setting L = OM (KM + bH) we are done. ut
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Example 6.3.21. (Hironaka’s example). A construction of Hironaka
shows that one cannot expect a surjection ⇡

1

(X) ⇣ ⇡
1

(M) on fundamental
groups in the setting of Theorem 6.3.19. Let f : M 0 �! M be a non-trivial
connected étale covering between smooth projective varieties of dimension
� 3. If Y ⇢ M 0 is a su�ciently general complete intersection curve, then the
restriction of f will determine an embedding of Y in M : let X = f(Y ) ⇢ M
denote its image. But then f splits over X, since by construction f�1(X)
contains Y as a connected component. ut

Remark 6.3.22. (Concavity and convexity of complements). From
an analytic viewpoint, a natural way to measure the positivity properties of
an embedding X ✓ M is to study the (pseudo)-concavity or convexity of
the complement M � X in the sense of Andreotti and Grauert [8]. Precise
definitions and statements would take us too far afield here: see e.g. [276,
Chapter 6, §1 (iv)] for a quick overview. Su�ce it to say that Barth [29]
obtained some estimates on the concavity and convexity of Pr � X when
X ✓ Pr is a closed submanifold: as explained in [276], these are related to
Barth’s Theorem 3.2.1 on the cohomology of low-codimensional subvarieties
of projective space. Sommese [550], [554] extended some of these results to
subvarieties of other homogeneous varieties. Assuming that M is projective,
Sommese [554, Corollary 1.4] also proves a convexity estimate for M�X when
X ✓ M is any smooth subvariety whose normal bundle is ample and globally
generated. ut

6.3.B Ample Cotangent Bundles and Hyperbolicity

We now consider smooth projective varieties with ample cotangent bundles.
Such varieties are hyperbolic, and the theme is that they exhibit strong forms
of properties known or expected for hyperbolic varieties. In the first part of
this subsection we summarize some of the basic geometric facts. In the second,
we discuss methods of construction.

Geometric properties. We begin by recalling two notions of hyperbolicity:

Definition 6.3.23. (Hyperbolicity). Let X be a smooth complex projective
variety, and let h 2 N1(X) be an ample divisor class on X.

(i). X is algebraically hyperbolic if there is a positive real number " > 0 with
the following property:

For every finite map ⌫ : C �! X from a smooth curve C to X
one has the inequality

�

2g(C)� 2
�

� " ·
�

C · ⌫⇤h
�

, (6.8)

where as usual g(C) denotes the genus of C.
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(ii). Viewed as a complex manifold, X is Kobayashi hyperbolic if there are no
non-constant entire holomorphic mappings g : C �! X. ut

Algebraic hyperbolicity was introduced and studied by Demailly in [127].
He actually requires (6.8) to hold only for the normalizations of embedded
curves, but it is easily seen using Riemann–Hurwitz that this is equivalent
to the condition stated above. Similarly, the absence of entire holomorphic
mappings is usually not taken as the definition of hyperbolicity, but for com-
pact targets it is equivalent to the standard definition thanks to a theorem of
Brody. (See [127, Corollary 1.2] or [381, Chapter III].)

Example 6.3.24. (Properties of hyperbolic varieties). Keep assump-
tions as above.

(i). The definition of algebraic hyperbolicity is independent of the ample
class h.

(ii). If X is algebraically hyperbolic, then X does not contain any rational
or elliptic curves.

(iii). If X is algebraically hyperbolic, then there are no non-constant maps
f : A �! X from an abelian variety A to X.

(iv). If X is Kobayashi hyperbolic, then X is algebraically hyperbolic.

(The first two statements are clear. For (iii), suppose that f : A �! X is
non-constant, and consider ⌫k = f �mk, where mk : A �! A is multiplication
by k. If C ⇢ A is (say) a general complete intersection curve, then as k !1,
⌫k will eventually violate (6.8). For (iv), see [127, Theorem 2.1].) ut
Remark 6.3.25. (Hypersurfaces of large degree). Let X ✓ Pn+1 be a
very general hypersurface of degree d � 2(n + 1). Then X is algebraically hy-
perbolic. This is proved (but not explicitly stated) by Voisin [597, §1], building
on earlier work of Clemens [93] and Ein [143]. ut

It was established by Kobayashi [351] that compact manifolds with nega-
tive tangent bundles are hyperbolic:

Theorem 6.3.26. (Kobayashi’s theorem). Let X be a smooth projective
variety whose cotangent bundle ⌦1

X is ample. Then X is algebraically hyper-
bolic. In fact, X is hyperbolic in the sense of Kobayashi.

Partial Proof. For the Kobayashi hyperbolicity we refer to [127, (3.1)], or [381,
III.3]. We prove the first statement using results from Section 6.4 concerning
amplitude of bundles on curves. Assuming then that ⌦1

X is ample, fix an
ample class h on X and a positive number " > 0 su�ciently small so that the
Q-twisted bundle ⌦1

X<�"h> remains ample (Lemma 6.2.8.vi). Given a finite
mapping ⌫ : C �! X from a smooth curve to X, the pullback ⌫⇤

�

⌦1

X<�"h>
�

is then an ample Q-twisted bundle on C. On the other hand, the derivative
of ⌫ determines a generically surjective homomorphism ⌫⇤⌦1

X �! ⌦1

C , and
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it then follows from Example 6.4.17 below that ⌦1

C <�"h> is also ample.
Therefore

�

2g(C)� 2
�

� "
�

C · ⌫⇤h
�

= deg
�

⌦1

C<�"h>
�

> 0

thanks to Lemma 6.4.10. ut

Remark 6.3.27. The converse of Theorem 6.3.26 can easily fail. For example,
if B is a curve of genus � 2 then X = B ⇥ B is Kobayashi hyperbolic since
it is uniformized by the product of two discs. But ⌦1

X is evidently not ample,
since its restriction to B ⇥ {pt} admits a trivial quotient.

Example 6.3.28. (Subvarieties). Let X be a smooth complex projective
variety with ample cotangent bundle. Then every irreducible subvariety of X is
of general type. (In fact, let Y

0

⇢ X be an irreducible subvariety of dimension
d, and let µ : Y �! Y

0

be a resolution of singularities. Then there is a
generically surjective homomorphism µ⇤⌦d

X �! ⌦d
Y = OY (KY ). Since ⌦d

X is
ample, this implies upon taking symmetric powers after twisting by a small
negative multiple of an ample class that OY (KY ) is big.) It is conjectured by
Lang (cf. [127, (3.8)]) that X is hyperbolic if and only if every subvariety of
X (including of course X itself) is of general type. ut

There are a number of interesting finiteness theorems in the literature for
mappings to varieties with ample cotangent bundles: a nice survey appears in
[618]. Here we use some ideas from Part One to prove a general boundedness
statement for mappings into algebraically hyperbolic varieties.

Theorem 6.3.29. (Boundedness of regular mappings). Let X be an
algebraically hyperbolic variety, and let Y be any irreducible projective variety
of dimension m > 0. Then the set Hom(Y,X) of morphisms from Y to X
forms a bounded family, i.e. all such morphisms are parameterized by finitely
many irreducible varieties.

Sketch of Proof. In fact, fix very ample divisors H and D on Y and X respec-
tively, and let f : Y �! X be any morphism. By standard finiteness results, it
is su�cient to show that there is a positive integer a > 0 such that the degree
of the graph �f ⇢ Y ⇥X with respect to the ample divisor pr⇤

1

aH + pr⇤
2

D is
bounded independent of f , i.e. we need to bound from above the intersection
number

Z

Y

c
1

�

OY (aH + f⇤D)
�m (*)

independently of f . To this end, we may assume that f is non-constant. In this
case the intersection number

�

Hm�1 ·f⇤D
�

computes the degree (with respect
to D) of the image in X of a curve obtained as the complete intersection of
(m�1) divisors in the linear series |H |. Therefore the algebraic hyperbolicity
of X implies that there is a uniform upper bound on

�

Hm�1 · f⇤D
�

. Then we
can fix a positive integer a � 0, independent of f , such that
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�

(aH)m
�

> m
�

(aH)(m�1) · f⇤D
�

.

As H and f⇤D are nef, it follows from Theorem 2.2.15 that (aH � f⇤D) is
big. Therefore some large multiple (possibly depending on f) of (aH � f⇤D)
is e↵ective. Thanks again to the nefness of H and f⇤D, one concludes that

⇣

(aH � f⇤D) · (aH)(m�1�i) · (f⇤D)i
⌘

� 0

for all 0  i  n� 1. This in turn leads to the inequalities

am
�

Hm
�

� am�1

�

Hm�1 · f⇤D
�

� am�2

�

Hm�2 · f⇤D2

�

� . . .

�
�

f⇤Dm
�

� 0, (6.9)

from which it follows that the quantity in (*) is bounded above by 2mam
�

Hm
�

.
ut

As a consequence, we get a quick proof of a result of Kalka, Shi↵man, and
Wong from [309, Corollary 4]:

Corollary 6.3.30. (Finiteness of regular mappings). Let X be a smooth
projective variety whose cotangent bundle ⌦1

X is ample, and let Y be any
irreducible projective variety. Then the set Hom⇤(Y, X) of non-constant mor-
phisms from Y to X is finite.

Proof. The amplitude of ⌦1

X implies by 6.1.4 that H0(Y, f⇤TX) = 0, so in
any event the Hom scheme in question is discrete (cf. [114, Proposition 2.4]).
On the other hand, it follows from the previous result that the set of all maps
f : Y �! X is parametrized by finitely many irreducible varieties. Putting
these facts together, it follows that there are only finitely many such maps. ut

Remark 6.3.31. (Finiteness of rational mappings). A related result of
Noguchi and Sunada [480] states that with X and Y as in Corollary 6.3.30, the
set Rat⇤(Y, X) of non-constant rational maps from Y to X is also finite. ut
Remark 6.3.32. (Rational points over function fields). Another inter-
esting avenue of investigation concerns the diophantine properties of varieties
with ample cotangent bundles defined over function fields. In this setting, a
number of authors have obtained Mordell-type statements. For example, sup-
pose that L is an algebraic function field over an algebraically closed ground-
field K of characteristic zero, and suppose that X is a smooth, projective,
and geometrically integral variety over L with ample cotangent bundle ⌦1

X/L.
Inspired by theorems of Grauert [233] and Manin [415] in the one-dimensional
case, Martin-Deschamps [418] proves that if the set of L-rational points of X
is Zariski dense, then X is isotrivial over L. There are related results due to
Noguchi [479] and Moriwaki [441]. ut
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Remark 6.3.33. (Rational points over number fields). If X is a smooth
projective variety defined over a number field L that has ample cotangent
bundle, then it is a conjecture of Lang [380] that the set of L-rational points
of X is finite. Moriwaki [442] remarks that this follows from work of Faltings
[178], [179] if one assumes in addition that the cotangent bundle of X is
globally generated. ut
Remark 6.3.34. (Miyaoka’s theorem on generic semipositivity). A
basic theorem of Miyaoka [430] shows that the cotangent bundle of a projec-
tive variety satisfies a weak positivity property in very general circumstances.
Specifically, let X be a smooth complex projective variety of dimension n, and
let H be an ample divisor on X. Suppose that X is not uniruled, i.e. assume
that X is not covered by rational curves. Miyaoka’s theorem states that if
C ⇢ X is a su�ciently general curve arising as the complete intersection of
n � 1 divisors in the linear series |mH | for m � 0, then the restriction of
⌦1

X to C is nef. We refer to [432] and Shepherd-Barron’s exposition in [360,
Chapter 9] for proofs and a discussion of some of the applications. ut
Remark 6.3.35. (Varieties of general type). There are a number of very
interesting results and conjectures concerning finiteness properties for varieties
of general type. Bogomolov [61] proved that if X is a surface of general type
satisfying the inequality c

1

(X)2 > c
2

(X), then the family of curves on X
of fixed geometric genus is bounded. Martin-Deschamps gives a nice account
of this work in [138]. One can view Bogomolov’s theorem as going in the
direction of conjectures of Lang concerning the diophantine and geometric
properties of varieties of general type. These conjectures predict, for example,
that if X is a projective variety of general type, then there exists a proper
Zariski-closed subset Z $ X having the property that the image of any non-
constant morphism f : G �! X from an algebraic group to X must lie in
Z: in particular, Z must contain all rational curves on X. We refer to [382,
Chapter 1] for a pleasant discussion of this circle of ideas. ut

Constructions. Although one expects that varieties with ample cotangent
bundle should be reasonably plentiful, until recently relatively few explicit
constructions appeared in the literature except in the case of surfaces.

Construction 6.3.36. (Ball quotients). If X is a smooth complex pro-
jective variety that is uniformized by the ball Bn ⇢ Cn, then the Bergman
metric on Bn descends to a metric on X with negative holomorphic sectional
curvature, and hence ⌦1

X is ample (cf. [618, Example 2, p. 147]). ut
Construction 6.3.37. (Surfaces). Yau raised the question of classifying
all surfaces with positive cotangent bundles, and motivated in part by this
several authors have given constructions of such surfaces.

• Miyaoka’s examples. Building on ideas of Bogomolov, Miyaoka [428]
showed that if X is a smooth complex projective surface of general type
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with c
1

(X)2 > 2c
2

(X), then the cotangent bundle ⌦1

X is “almost every-
where ample,” which very roughly means that it fails to be ample only
along finitely many curves. Using this, he deduces that if X

1

and X
2

are
two such surfaces, then a complete intersection of two general su�ciently
positive divisors in X

1

⇥X
2

is a surface X with ⌦1

X ample.

• Kodaira surfaces. Martin-Deschamps [418] established the amplitude of
the cotangent bundles of certain Kodaira surfaces, i.e. surfaces that admit
a smooth map to a non-singular curve. A similar result was proved inde-
pendently by Schneider and Tancredi [524], who also generalize Miyaoka’s
construction.

• Hirzebruch–Sommese examples. Hirzebruch found some interesting
surfaces by desingularizing Kummer coverings of P2 branched over line
arrangements, and Sommese [555] classified which of these have ample
cotangent bundles. ut

In higher dimensions, the most general constructions are due to Bogomolov
and Debarre. We recommend Debarre’s nice paper [115] for more information.

Construction 6.3.38. (Bogomolov’s construction). Let Y
1

, . . . , Ym be
smooth projective varieties of dimension d � 1, each having big cotangent
bundle,9 and let

X ✓ Y
1

⇥ . . .⇥ Ym

be a general complete intersection of su�ciently high multiples of an ample
divisor. Bogomolov proves that if

dim X  d(m + 1) + 1
2(d + 1)

,

then X has ample cotangent bundle. Bogomolov and Debarre deduce from
this that there exists a projective variety X having ample cotangent bun-
dle with the additional property that ⇡

1

(X) can be any fixed group that
arises as the fundamental group of a smooth projective variety: in particular,
X can be simply connected. Wong [612] employed a similar construction in a
di↵erential-geometric context. A detailed description and verification of Bogo-
molov’s construction appears in [115, §3]: we will work through an elementary
special case in Construction 6.3.42. ut
Construction 6.3.39. (Complete intersections in abelian varieties).
Debarre [115] recently proved that if X is the complete intersection of e � n
su�ciently ample general divisors in a simple abelian variety of dimension
n + e, then the cotangent bundle ⌦1

X is ample. ut
9 Recall from Example 6.1.23 that a vector bundle E on a projective variety V is

big if OP(E)

(1) is a big line bundle on P(E). Bogomolov shows that if Y is a
surface of general type satisfying c

1

(Y )2 > c
2

(Y ), then the cotangent bundle of
Y is big.
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Remark 6.3.40. (Complete intersections in projective space). De-
barre [115, §2.2] conjectures that if X ✓ Pr is the complete intersection of
e � r/2 hypersurfaces of su�ciently high degree, then the cotangent bundle
of X is ample. ut
Remark 6.3.41. (Nef cotangent bundles). It is also very interesting to
ask for examples of projective manifolds whose cotangent bundles are numer-
ically e↵ective. The class of all such is evidently closed under taking products,
subvarieties, and finite unramified covers, and it includes smooth subvarieties
of abelian varieties. A nice theorem of Kratz [372, Theorem 2] states that if X
is a complex projective variety whose universal covering space is a bounded
domain in Cn or in a Stein manifold, then ⌦1

X is nef. We refer to Theorem
7.2.19 for a result about projective embeddings of such varieties. ut

As Miyaoka suggested, a special case of Bogomolov’s construction is par-
ticularly elementary. We devote the rest of this subsection to working this
case out explicitly.

Construction 6.3.42. (Complete intersections in curve products).
Start with smooth projective curves T

1

, . . . , Tn+e of genus � 2, and set T =
T

1

⇥ . . . ⇥ Tn+e, with projections pi : T �! Ti. Fix next very ample line
bundles Ai on Ti and for each d > 0 put

A = p⇤
1

A
1

⌦ . . . ⌦ p⇤n+eAn+e , L = Ld = A⌦d.

Choose finally e general divisors D
1

, . . . , De 2 |Ld|, and set

X = D
1

\ · · · \De ✓ T.

Assuming that e � 2n� 1 and d � n, we will now verify that X is a smooth
projective n-fold whose cotangent bundle ⌦1

X is ample.

Sketch of Verification of Construction 6.3.42. The fact that X is a smooth
n-fold is clear, and the issue is to establish the amplitude of its cotangent
bundle. To this end, we will consider projections of X onto various products
of the Ti. As a matter of notation, for any multi-index I = {i

1

, . . . , ik} (1 
i
1

< · · · < ik  n + e), write

TI = Ti1 ⇥ · · ·⇥ Tik
,

and denote by pI : T �! TI the corresponding projection. Somewhat abu-
sively, we will also write pI for the restriction of this projection to subvarieties
of T . The first point is to check that one can arrange by choosing the Di gen-
erally enough that X satisfies two genericity conditions:

(i). For every I of length 2n, the projection pI : X �! TI is unramified.
(ii). For every J of length n, the projection pJ : X �! TJ is finite.
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Property (i) is verified by a standard dimension count as in [280, II.8.18]. The
second follows from a general finiteness statement (Lemma 6.3.43) formulated
and proved at the end of this subsection: this is where the hypothesis d � n
is used.

Assuming that we have arranged for X to satisfy the two properties just
discussed, we verify that ⌦1

X is ample. Since ⌦1

X — being a quotient of ⌦1

T |X
— is globally generated, it is enough by Gieseker’s lemma (Proposition 6.1.7)
to show that it does not admit a trivial quotient along any curve. Suppose
then that C ✓ X is a reduced and irreducible curve. It follows from property
(ii) that there can be at most n�1 indices i 2 [1, n+e] such that the projection
pi : X �! Ti maps C to a point. Since n + e � 3n � 1 we may assume after
reindexing that pi|C is finite for 1  i  2n. Set I

0

= {1, 2, . . . , 2n}, and
for any J ⇢ I

0

of length n denote by RJ ⇢ X the ramification divisor of
the branched covering pJ : X �! TJ . It follows by a simple argument from
property (i) that

\

J⇢I0
|J|=n

supp
�

RJ

�

= ?. (*)

Therefore we can choose J ⇢ I
0

so that C 6⇢ supp(RJ). Then the derivative
dpJ gives rise to an exact sequence

0 �! p⇤J
�

⌦1

TJ

�

|C �! ⌦1

X |C �! ⌧ �! 0,

where ⌧ is a torsion sheaf supported on C \ supp(RJ). But the bundle on the
left is ample, and it follows right away that ⌦1

X |C has no trivial quotients, as
required. ut

Finally, we state and prove the finiteness lemma that was used in the
course of the argument just completed. We will have occasion to refer to it
also in Section 6.3.F.

Lemma 6.3.43. (Finiteness lemma). Let Y and T be irreducible projective
varieties of dimensions e and n respectively. Let A and B be very ample line
bundles on Y and T , and for d � 1 set

L = Ld = pr⇤
1

A⌦d ⌦ pr⇤
2

B.

Consider e general divisors D
1

, . . . , De 2 |Ld| in the indicated linear series
on Y ⇥ T . If d � n, then the intersection D

1

\ · · · \De is finite over T .

Proof. Fix some 0  k < e and consider

X = D
1

\ · · · \Dk ✓ Y ⇥ T.

(If k = 0 take X = Y ⇥ T .) We assume inductively that every fibre of the
projection X �! T has pure dimension e� k, and we will show that one can
arrange for every fibre of X \Dk+1

�! T to have pure dimension e� (k +1).
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To this end, fix t 2 T , and denote by Xt the fibre of X over t. Consider the
set of “bad” divisors at t:

Zt =
�

D 2 |Ld|
�

� D contains one or more components of Xt

 

.

We claim:

Zt has codimension > d in the linear series |Ld|. (*)

Granting this, it follows that the set

Z =
�

D 2 |Ld|
�

� some fibre of X \D �! T has dim � e� k
 

has codimension > d� n in |Ld|. Hence if d � n we can find Dk+1

62 Z.
Turning to (*), since H0

�

Y ⇥ T , Ld

�

maps surjectively onto the fibre-wise
space of sections H0

�

Y, A⌦d
�

over t, and since A is very ample, it is enough
to verify the following assertion:

Let V ✓ P be any algebraic subset of positive dimension in some
projective space P, and let

ZV =
�

E 2 |OP(d)|
�

� E contains V
 

.

Then ZV has codimension > d in |OP(d)|.

But this follows from the elementary and well-known fact that any d+1 points
on V impose independent conditions on hypersurfaces of degree d in P. ut

6.3.C Picard Bundles

When C is a smooth projective curve of genus g � 1, the Jacobian of C
carries some interesting bundles, whose projectivizations are the symmetric
products of C. It was established by Fulton and the author in [212] that these
so-called Picard bundles are negative, a fact that was used there to study
the varieties of special divisors on C. Here we follow the same arguments
to prove the negativity of the analogous bundles on the Picard variety of any
irregular smooth projective variety. The application to special divisors appears
as Theorem 7.2.12.

Convention 6.3.44. In the present subsection, it is most natural to deal with
the projective bundle of one-dimensional sub-bundles of a given bundle F on a
variety Y . We denote this projectivization by P

sub

(F ), with ⇡ : P
sub

(F ) �! Y
the projection. So P

sub

(F ) = P(F ⇤). On P
sub

(F ) one has the tautological line
sub-bundle OPsub(�1) ✓ ⇡⇤F . We say that F is negative if F ⇤ is ample. Thus
F is negative if and only if the tautological line bundle OPsub(1) on P

sub

(F ) is
ample. ut
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We start by constructing the Picard bundles. Throughout this subsection,
X is a smooth projective variety of dimension n. Fix an algebraic equivalence
class � on X and denote by Pic�(X) the component of the Picard variety
parameterizing bundles in the chosen class. Thus Pic�(X) is a torus of di-
mension q(X) = dim H1(X,OX). Given a point t 2 Pic�(X) we denote by Lt

the corresponding line bundle on X. Choosing a base point 0 2 X, there is a
Poincaré line bundle L on X ⇥ Pic�(X), characterized by the properties

L
�

�

�

X ⇥ {t}
�

= Lt 8 t 2 Pic�(X);

L
�

�

�

{0}⇥ Pic�(X)
�

= O
Pic

�
(X)

.

Our object is to realize the groups H0(X, Lt) for t 2 Pic�(X) as the fibres
of a vector bundle E� on Pic�(X). In order for this to work smoothly we will
suppose that the class � is su�ciently positive so that

Hi(X, Lt) = 0 for all i > 0 and all t 2 Pic�(X), (6.10)

H0(X, Lt) 6= 0 for all t 2 Pic�(X). (6.11)

It follows from (6.10) by the theorems on cohomology and base-change that
the direct image

E� =
def

pr
2,⇤
�

L
�

under the second projection pr
2

: X⇥Pic�(X) �! Pic�(X) is a vector bundle
on Pic�(X), which we call the Picard bundle corresponding to the class �. It
is non-zero by (6.11). Furthermore, push-forwards of L commute with base-
change, so in particular one has a canonical isomorphism

E�(t) = H0

�

X, Lt

�

(6.12)

of the fibres of E� with the corresponding cohomology groups on X.
As in the case of curves the key to analyzing the properties of these Picard

bundles is to interpret their projectivizations as spaces of divisors. Specifically,
let Div�(X) be the Hilbert scheme parameterizing all e↵ective divisors in the
algebraic equivalence class �, and denote by

u : Div�(X) �! Pic�(X)

the Abel–Jacobi mapping that sends a divisor to its linear equivalence class.
Given a point s 2 Div�(X) we denote by Ds the corresponding divisor on X.

Lemma 6.3.45. Still assuming that � satisfies (6.10) and (6.11), one has a
canonical isomorphism

P
sub

(E�) = Div�(X)

under which the bundle projection ⇡ : P
sub

(E�) �! Pic�(X) corresponds to
the Abel–Jacobi mapping u.
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Idea of Proof. The essential point is simply that one has natural identifica-
tions

⇡�1(t) = P
sub

�

E�(t)
�

= P
sub

�

H0(X, Lt)
�

= u�1(t)

coming from (6.12). We leave it to the reader to use the universal property of
Div� to construct the stated isomorphism globally. ut

Remark 6.3.46. When X is a smooth curve, the Picard bundles have been
intensively studied. For instance, their Chern classes are given by a formula
of Poincaré ([15, I.5] and [208, 4.3.3]), and they are stable with respect to the
canonical polarization on Jac(X) ([150]). ut

Homomorphisms defined by restriction to subsets also play an important
role. Let Z be a fixed finite subscheme of X. Then the evaluation maps

�t : H0(X, Lt) �! H0(X, Lt ⌦OZ)

globalize to a morphism � = �Z : E� �! ⌃Z of vector bundles on Pic�(X).
In fact, consider the subscheme Z ⇥ Pic�(X) ✓ X ⇥ Pic�(X), and define

⌃Z = pr
2,⇤
�

L
�

� Z ⇥ Pic�(X)
�

.

Taking direct images of the restriction L �! L⌦OZ⇥Pic

�
(X)

gives rise to �.
Observe that if Z = {x

1

, . . . , xw} is a reduced scheme consisting of w distinct
points of X, then

⌃Z = Px1 � · · ·� Pxw ,

where for x 2 X, Px = L |
�

{x}⇥ Pic�(X)
�

is a line bundle on Pic�(X) that
is a deformation of the trivial bundle P

0

= O
Pic

�
(X)

. For an arbitrary finite
subscheme Z ⇢ X, ⌃Z has a filtration whose quotients are line bundles of
this type.

The maps �Z have a simple meaning in terms of the isomorphism in 6.3.45.
In fact, consider on P

sub

(E�) the composition

OPsub(E�)

(�1) � �
//

sZ
&&

N

N

N

N

N

N

N

N

N

N

⇡⇤E�

⇡⇤�Z

✏✏

⇡⇤⌃Z

defining sZ . Viewing sZ as a section

sZ 2 �
⇣

P
sub

(E�) , ⇡⇤⌃Z ⌦OPsub(E�)

(1)
⌘

,

it is immediate to verify

Lemma 6.3.47. Under the identification P
sub

(E�) = Div�(X), the zero locus
of sZ consists of all s 2 Div�(X) such that the corresponding divisor Ds

contains Z. ut
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A basic fact is that Picard bundles are negative:10

Theorem 6.3.48. (Negativity of the Picard bundle). Let � be any class
satisfying (6.10) and (6.11). Then the Picard bundle E� on Pic�(X) is neg-
ative, i.e. its dual E⇤� is ample. Moreover, if Z ✓ X is any finite subscheme,
then the bundle

Hom(E�,⌃Z) = E⇤� ⌦⌃Z

is ample.

Proof. For the first statement, we apply Nakai’s criterion to establish the
amplitude of the tautological bundle OPsub(E�)

(1) on P
sub

(E�). Suppose then
that V ✓ P

sub

(E�) is any irreducible subvariety of dimension k � 1, and let
⇠ denote the numerical equivalence class of c

1

�

OPsub(E�)

(1)
�

. The positivity
of

R

V
⇠k will follow by induction if we show that ⇠ \ [V ] is represented (in

numerical equivalence) by a non-zero e↵ective (k � 1)-cycle. To this end, fix
a general point x 2 X, and consider in Div�(X) the divisor

Ix = {s 2 Div�(X) | Ds 3 x}.

It follows from Lemma 6.3.47 that under the identification Div�(X) =
P
sub

(E�), Ix arises as the zeroes of a section of OPsub(E�)

(1)⌦Px, where Px is
the deformation of O

Pic

�
(X)

introduced above. Hence Ix ⌘num

⇠. So it su�ces
to show that for general x, Ix meets V in a non-empty proper subset of V .
But this is clear: given any positive-dimensional family of e↵ective divisors,
those passing through a given general point form a non-empty proper subfam-
ily. Turning to the amplitude of E⇤� ⌦⌃Z we focus on the case in which Z is
the reduced subscheme consisting of distinct points {x

1

, . . . , xw}, leaving the
general assertion to the interested reader. Then the Hom bundle in question
is a direct sum of the bundles E⇤�⌦Pxi

, Pxi
being a deformation of O

Pic

�
(X)

.
But by Corollary 6.1.19, the amplitude of E⇤� ⌦ Pxi is equivalent to that of
E⇤�, which we have just treated. ut

6.3.D The Bundle Associated to a Branched Covering

Following the author’s paper [387] we discuss a vector bundle that is associated
to a branched covering of smooth varieties, and establish in particular that it
is ample for coverings of projective space. This will be used in Section 7.1.C
to prove a Barth-type theorem for such coverings.

Let X and Y be smooth varieties of dimension n, with Y irreducible, and
let

f : X �! Y

10 The second statement of the theorem will be needed later, in Section 7.2.C.
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be a branched covering (i.e. a finite surjective mapping) of degree d. Then
f is flat, and consequently the direct image sheaf f⇤OX is locally free of
rank d on Y . Moreover, as we are in characteristic zero the natural inclusion
OY �! f⇤OX splits via the trace

TrX/Y : f⇤OX �! OY .

Let F = ker TrX/Y , so that F is a bundle of rank d � 1 on Y that appears
in a canonical decomposition f⇤OX = OY �F . We consider (for reasons that
will become apparent) the dual bundle

E = Ef = F ⇤,

which we call the bundle associated to the covering f .

Proposition 6.3.49. Denote by E the total space of E, and by p : E �! Y
the bundle projection. Then the covering f canonically factors through an
embedding of X into E:

X

f
  

A

A

A

A

A

A

A

A

✓ E

p
��~

~

~

~

~

~

~

Y.

Proof. Recall that

E = SpecOY
Sym(E⇤) = SpecOY

Sym(F ).

The natural inclusion F ✓ f⇤OX gives rise to a surjection Sym(F ) �! f⇤OX

of OY -algebras, which in turn defines the required embedding of X into E
over Y . ut

Example 6.3.50. (Double covers). Let L be a line bundle on Y with the
property that there exists a smooth divisor D 2 |2L|. In Proposition 4.1.6
we constructed a degree-two cyclic covering f : X �! Y branched over D,
realizing X as a subvariety of the total space of L. Then Ef = L, and the
embedding of X into L is a special case of Proposition 6.3.49. ut
Remark 6.3.51. (Triple covers). Miranda [425] has given a quite complete
description of the data involved in specifying a triple cover with given bundle.

ut
Example 6.3.52. Let f : X �! Pn be the degree (n + 1) covering con-
structed in Example 3.4.13. Then Ef is isomorphic to the tangent bundle
TPn. ut
Example 6.3.53. There is a canonical isomorphism

�

f⇤OX

�⇤ = f⇤ !X/Y ,
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where !X/Y = OX

�

KX�f⇤KY

�

is the relative canonical bundle of X over Y .
(This is a special case of duality for a finite flat morphism: cf. [280, Exercises
III.6.10, III.7.2].) ut
Example 6.3.54. (Branch divisor). The algebra structure on f⇤OX defines
a mapping f⇤OX ⌦ f⇤OX �! f⇤OX of bundles on Y , which composed with
the trace determines a homomorphism f⇤OX ⌦ f⇤OX �! OY and hence

� :
�

f⇤OX

�

�!
�

f⇤OX

�⇤
.

Then � drops rank precisely on the branch divisor B ⇢ Y of f , and in partic-
ular

�2 · c
1

�

f⇤OX

�

⌘
lin

[B].

(Locally det � is the classical discriminant of f : Y �! X, cf. [3, Chapt. 6,
§3]. Note that the divisor structure on B is determined by taking it to be the
divisor-theoretic push-forward f⇤[R] of the ramification divisor R ⇢ X.) ut

We now turn to branched coverings of projective space. Here the associated
bundles Ef satisfy a very strong positivity property:

Theorem 6.3.55. (Coverings of projective space). Let f : X �! Pn

be a branched covering of projective space by a smooth irreducible complex
projective variety X, and let E = Ef be the corresponding bundle on Pn.
Then E(�1) is globally generated. In particular, E is ample.

Proof. We use the basic criterion of Castelnuovo–Mumford regularity that if
F is a coherent sheaf on Pn such that Hi

�

Pn,F(�i)
�

= 0 for all i > 0, then F
is globally generated (Theorem 1.8.3). The plan is to apply this to the bundle
E(�1).

Example 6.3.53 implies that

E �OPn =
�

f⇤OX

�⇤ =
�

f⇤ !X

�

(n + 1). (*)

Since f is finite, one has isomorphisms

Hi
�

Pn, f⇤ !X(k)
�

= Hi
�

X, !X ⌦ f⇤OPn(k)
�

for all i , k.

It then follows from (*) and Kodaira vanishing (Theorem 4.2.1) that

Hi
�

Pn, E(�1� i)
�

= 0 for 1  i  n� 1.

On the other hand, Hn
�

Pn,OPn(�n� 1)
�

= Hn
�

X, !X

�

= C, so it also fol-
lows from (*) that Hn

�

Pn, E(�n� 1)
�

= 0. Thus E(�1) satisfies the required
vanishings, and hence is globally generated. ut

Example 6.3.56. (Consequences of amplitude). Let f : X �! Y be a
branched covering of smooth projective varieties of dimension n, and E = Ef

the corresponding bundle on Y . The amplitude of E has some interesting
geometric consequences analogous to those deduced when Y = Pn from the
Fulton–Hansen connectedness theorem (Section 3.4).
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(i). Let S be a (possibly singular) reduced and irreducible projective variety
of dimension � 1, and let g : S �! Y be a finite morphism. If Ef is
ample, then the fibre product Z = X ⇥Y S is connected.

(ii). Denote by ef (x) the local degree of f at a point x 2 X (Definition
3.4.7). Then there exists at least one point x 2 X at which ef (x) �
min{deg f , n + 1}.

(For (i), the amplitude of Ef implies that H0

�

S, g⇤E⇤
�

= 0. Writing f 0 :
Z �! S for the induced map, it follows from this that H0

�

S, f 0⇤OZ

�

= C.
Statement (ii) is then deduced as in the proof of Theorem 3.4.8. See [387,
Proposition 1.3] for details.) ut
Example 6.3.57. Given a branched covering f : X �! Y of smooth projec-
tive varieties, it is not true in general that the associated bundle Ef is ample
or even nef. Examples may be constructed for instance by observing that if f
is the double covering associated to a smooth divisor D 2 |2L| as in 6.3.50,
then Ef = L is ample or nef if and only if L is. On the other hand, if C ⇢ Y
is any curve not contained in the branch locus of f , then E | C is nef. (It
is enough to test this after pulling back by any cover C 0 �! C, and then
one reduces to the case of a branched covering D0 �! C 0 of curves with the
property that every irreducible component of D0 maps isomorphically to C 0.
See [504, Appendix] for details.)

Remark 6.3.58. (Rational homogeneous spaces and other varieties).
Kim and Manivel [336], [335], [337], [417] have studied the bundle associated
to a branched covering f : X �! Y for certain rational homogeneous spaces
Y . In the cases they treat, they prove that for any X and f , the bundle Ef is
always spanned, and even ample when b

2

(Y ) = 1. They conjecture that this is
true for any rational homogeneous space Y with b

2

(Y ) = 1. Some other results
concerning these bundles — notably when Y is a curve or a Del Pezzo (or
more general Fano) manifold — appear in the papers [504], [503] of Peternell
and Sommese. ut
Example 6.3.59. (Coverings of abelian varieties). Let

f : X �! A

be a branched covering of an abelian variety A by a smooth (but possibly
disconnected) projective variety X of dimension n. Then Ef is nef. This is
a result of Peternell–Sommese [504], extending earlier work of Debarre [109].
(Choose a very ample divisor B on A, and argue first as in the proof of
Theorem 6.3.55 that

�

f⇤ !X

�

⌦ OA

�

(n + 1)B
�

is globally generated. This
gives a lower bound on the Barton invariant (Example 6.2.14) of f⇤ !X :

�(A, f⇤ !X , B) � �(n + 1). (*)

Now fix k > 0 and consider the map ⌫ = ⌫k : A �! A given by multiplication
by k. Applying (*) to the pulled-back covering f 0 : X 0 = X ⇥A A �! A one
finds that
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�
�

A , f⇤ !X , B
�

= �
�

A , ⌫⇤f⇤ !X , ⌫⇤B
�

= �
�

A , ⌫⇤f⇤ !X , k2 · B
�

= 1

k2 · �
�

A , ⌫⇤f⇤ !X , B
�

= 1

k2 · �
�

A , f 0⇤ !X0 , B
�

� �(n + 1)
k2

.

Letting k ! 1 it follows that �(A, f⇤ !X , B) � 0, as required.) Debarre
conjectures that if f : X �! A is a non-trivial branched covering of a simple
abelian variety A by a smooth irreducible variety, then Ef is ample provided
that f does not factor through an étale covering of A. ut

6.3.E Direct Images of Canonical Bundles

Here we discuss very briefly one more instance where positivity properties of
vector bundles have proven to be of great importance. Our modest intention
is to convey something of the flavor of a large and imposing body of work
through a couple of highly oversimplified statements.

In 1978, Fujita [192] proved an important and suggestive result about the
direct images of the relative canonical bundles of fibre spaces over curves:11

Theorem. (Fujita’s theorem). Let X be a smooth projective variety of
dimension n, and suppose given a surjective mapping f : X �! C with
connected fibres from X to a smooth projective curve. Denote by !X/C the
relative canonical bundle of X over C. Then f⇤!X/C is a nef vector bundle
on C. ut

While we do not attempt to reproduce the calculations here, the rough strat-
egy of Fujita’s proof is easily described. Specifically, at least away from the
finitely many points t 2 C over which Ft = f�1(t) is singular, there is a
natural identification of the fibres of the bundle in question:

�

f⇤!X/C

�

(t) = H0

�

Ft,!Ft

�

= Hn�1,0(Ft).

The space on the right carries a natural Hermitian metric defined by inte-
gration, which in fact extends over the singular fibres to define a Hermitian
metric on the bundle f⇤!X/C . Fujita then deduces the statement by an explicit
curvature calculation.

The interest in such a result is that it can be used to study the geometry of
f , which is the simplest example of the sort of fibre space that arises frequently
in the approach to birational geometry pioneered by Iitaka and his school. For
example, Fujita ([192], Corollary 4.2) uses it to re-prove a statement of Ueno
concerning additivity of Kodaira dimension in the case at hand:
11 Recall (Definition 2.1.11) that for a surjective mapping between smooth projective

varieties to be a fibre space means simply that it has connected fibres.
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Example 6.3.60. (Fibre spaces over curves). In the setting of Fujita’s
theorem, assume that C has genus g � 2 and that a general fibre F of f has
positive geometric genus pg(F ) =

def

hn�1,0(F ) > 0. Then

(X) = (F ) + 1.

(The inequality (X)  (F )+1 holds quite generally, so the issue is to show
that (X) � (F ) + 1. To this end, observe first that f⇤!X/C 6= 0 thanks to
the hypothesis on pg(F ). Moreover, since g(C) � 2 it follows from Fujita’s
theorem that

f⇤!X = f⇤!X/C ⌦ !C

is ample. Fixing a very ample divisor H on C, this implies that Sm
�

f⇤!X

�

⌦
OC(�H) is globally generated for all m � 0. Using the natural map
Sm

�

f⇤!X

�

�! f⇤
�

!⌦m
X

�

, one then deduces that

H0

�

X, !⌦m
X ⌦ f⇤OC(�H)

�

= H0

�

C, f⇤(!⌦m
X )(�H)

�

6= 0,

and hence H0

�

X,OX(f⇤H)
�

is realized as a subspace of H0

�

X,OX(mKX)
�

for all m � 0. This implies that f factors as a composition of rational maps:

X
⇢

99K V 99K C,

where ⇢ is the Iitaka fibration of X associated to the canonical bundle
OX(KX) (Section 2.1.C). In particular, if G ⇢ X is a general fibre of ⇢,
then (G, KX |G) = (G, KF |G) = 0, from which it follows that (F ) 
dim F � dim G = (X)� 1. See [192, Propositions 1 and 2] for details.) ut

In the years since [192], these ideas have been greatly developed by a
number of authors, notably Viehweg [588], [590], [591], [592], [593], Kawa-
mata [315], and Kollár [358], [356], [357], to study the positivity properties of
direct images of dualizing sheaves for fibre spaces f : X �! Y of projective
varieties under various smoothness hypotheses. We refer to [315], [358], and
[594] for further references and precise statements of the results that have
been obtained, which are necessarily somewhat involved and technical. Be-
sides consequences for the geometry of fibre spaces (e.g. questions involving
additivity of Kodaira dimension), this machine has found important applica-
tions to proving projectivity or quasi-projectivity of moduli spaces. Kawamata
[321] [322] has recently applied positivity theorems for direct images of canon-
ical bundles to study linear series on higher-dimensional varieties: see Remark
10.4.9.

As in the paper of Fujita, the work of Kawamata [315] and Kollár [358]
analyzed the direct image bundles via metrics arising from Hodge theory.
However, Kollár showed in [356, 357] that one could replace some of these
arguments with vanishing theorems. To give the flavor, we conclude this sub-
section with a “toy” special case of [356, Corollary 3.7]:



6.3 Examples and Constructions 53

Proposition 6.3.61. Let f : X �! Y be a morphism between smooth pro-
jective varieties, and assume that f is smooth, i.e. that the derivative of f is
everywhere surjective. Then f⇤!X/Y is nef.

It goes without saying that the hypothesis that f is smooth is unrealistic in
practice, and the assumptions in [356] are much weaker.

Proof of Proposition 6.3.61. We will use the theorem of Kollár stated in 4.3.8
that if ⇡ : V �! W is any surjective projective mapping with V smooth and
projective, and if L is any ample line bundle on W , then

Hj(W,L⌦Ri⇡⇤!V ) = 0 for any i � 0 and j > 0. (*)

Fix s > 0, and consider the s-fold fibre product f (s) : X(s) = X ⇥Y · · · ⇥Y

X �! Y of X over Y . The smoothness hypothesis on f guarantees that X(s)

is still smooth, and one has

f (s)
⇤ !X(s)/Y =

�

f⇤!X/Y

�⌦s
.

Now suppose that dim Y = d, and let B be a very ample line bundle on Y that
is su�ciently positive so that B ⌦ !⇤Y is ample. Applying Kollár’s vanishing
theorem (*) to f (s), we deduce that

Hj
�

Y, (f⇤!X/Y )⌦s ⌦B⌦(d+1�j)
�

= Hj
�

Y, f (s)
⇤ (!X(s))⌦ !⇤Y ⌦B⌦(d+1�j)

�

= 0

for j > 0. By Castelnuovo–Mumford regularity (Theorem 1.8.5), this implies
that the vector bundle

�

f⇤!X/Y

�⌦s ⌦B⌦(d+1)

is globally generated. But since this holds for all s > 0, the bundle in question
must be nef thanks to 6.2.13. ut

6.3.F Some Constructions of Positive Vector Bundles

We conclude by presenting a couple of methods of construction of ample
bundles.

Pulling back bundles on Pn. We discuss an “amplification” process for
bundles on Pn suggested by Barton’s use of the Frobenius in [34, Proposition
3.1]. Fix for each k � 1 a branched covering

⌫k : Pn �! Pn with ⌫⇤kOPn(1) = OPn(k).

For example, one might take a Fermat-type covering ⌫k([a
0

, . . . , an]) =
[ak

0

, . . . , ak
n], but the next proposition holds for any choice of ⌫k.
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Proposition 6.3.62. Let E be an ample vector bundle on Pn, and let F be
an arbitrary bundle on Pn. Then there is a positive integer k

0

= k
0

(E,F )
such that

⌫⇤kE ⌦ F is ample for all k � k
0

.

Proof. For suitable a 2 Z we can realize F as a quotient of a direct sum
of copies of OPn(a). So it su�ces to treat the case F = OPn(a). Let
� = �(Pn, E,OPn(1)) be the Barton invariant of E with respect to OPn(1)
(Example 6.2.14). In other words,

� = sup
�

t 2 Q
�

� E<�tH> is nef
 

,

where H denotes the hyperplane divisor on Pn. Then by part (iii) of the
example just cited,

�(Pn, ⌫⇤kE,OPn(1)) = k · �(Pn, ⌫⇤kE,OPn(k))
= k · �(Pn, ⌫⇤kE, ⌫⇤kOPn(1))
= k · �(Pn, E,OPn(1))
= k · �.

Therefore
�(Pn, ⌫⇤kE ⌦OPn(a),OPn(1)) = k� + a. (*)

But � > 0 since E is ample, so if k � 0 the right-hand side of (*) is positive,
and ⌫⇤kE ⌦OPn(a) is ample. ut

Example 6.3.63. An analogous statement holds if A is an abelian variety,
and ⌫k : A �! A is the isogeny determined by multiplication by k. (Compare
Example 6.3.59.) ut

Generic cokernels. In [223] Gieseker used a reduction to characteristic p >
0 to produce some interesting ample bundles on P2. In this paragraph we
construct analogous bundles on an arbitrary projective variety.

Proposition 6.3.64. (Generic cokernels, I). Let X be an irreducible pro-
jective variety of dimension n, let H be a very ample divisor on X, and let
V be a vector space of dimension n + e with e � n. Then for d � n + e the
cokernel of a general vector bundle map

OX(�dH)�n u�! VX

is an ample vector bundle of rank e on X.

Proof. The condition e � n guarantees that a general map u has constant rank
n on X, and hence that Eu = coker(u) is indeed a bundle of rank e. Since
ampleness is an open condition in a family of bundles (Proposition 6.1.9), it is
enough to show that Eu is ample for some u. Now u is defined by an n⇥(n+e)
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matrix of sections in � (X,OX(dH)), and we are then free to assume that these
are pulled back from � (Pn,OPn(d)) under a branched covering f : X �! Pn

with f⇤OPn(1) = OX(H). Then u and Eu are themselves pulled back from Pn,
and since amplitude is preserved under finite coverings (Proposition 6.1.8), we
are reduced to the case X = Pn.

Set r = n + e� 1. Fixing u, we have an exact sequence

0 �! OPn(�d)�n u�! VPn �! Eu �! 0,

and the amplitude of Eu is equivalent to the assertion that the natural map

P(Eu) �! P(V ) = Pr

is finite. But P(Eu) ⇢ P(VPn) = Pn ⇥ Pr is the complete intersection of
n divisors in the linear series |pr⇤

1

OPn(d)⌦ pr⇤
2

OPr (1)| determined by the
vanishing of the composition

pr⇤
1

OPn(�d)�n
pr

⇤
1u

// VPn⇥Pr // pr⇤
2

OPr (1),

the second map being the pullback under the projection pr
2

of the evaluation
VPr �! OPr (1). The required finiteness is then a consequence of the finiteness
lemma (Lemma 6.3.43) established above. ut

The previous proposition generalizes to quotients of an arbitrary bundle:

Theorem 6.3.65. (Generic cokernels, II). Let X be an irreducible pro-
jective variety of dimension n, let H be a very ample divisor on X, and let
F

0

be any vector bundle on X of rank n + f with f � n. Then for any d � 0
the cokernel of a su�ciently general vector bundle map

u : OX(�dH)�n �! F
0

is an ample vector bundle of rank f .

Remark 6.3.66. Demailly informs us that he has proven a similar result via
a metric argument. ut
Example 6.3.67. ([223]). Taking X = P2, for d � 0 there is an ample vector
bundle E having a presentation of the form

0 �! OP2(�d)2 �! OP2(�1)4 �! E �! 0. ut

Proof of Theorem 6.3.65. We start with some reductions analogous to those
in the proof of Proposition 6.3.64. Specifically, in the first place we will require
that d be large enough so that the bundle Hom(OX(�dH)n, F

0

) is globally
generated. This guarantees that the general cokernel is at least a vector bundle
of the stated rank. Note also that as before, it is enough to establish the
amplitude in question for some u having a locally free cokernel.
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We next argue that we can reduce to the case in which F
0

is of the form
VX ⌦ OX(�mH) for some vector space V of rank � 2n + f . In fact, choose
m

0

� 0 so that F
0

(mH) is globally generated for every m � m
0

. Then we
can fix for each m � m

0

a surjective map vm : VX ⌦OX(�mH) �! F
0

. Now
for d � m consider a general homomorphism

ũd,m : OX(�dH)n �! VX ⌦OX(�mH),

and set ud,m = vm � ũd,m:

OX(�dH)n
ũd,m

//

ud,m

((

R

R

R

R

R

R

R

R

R

R

R

R

R

R

VX ⌦OX(�mH)

vm

✏✏

F
0

.

Then coker(ud,m) is a quotient of coker(ũd,m), so it su�ces to establish the
amplitude of the latter. Moreover, as in the proof of 6.3.64 we may further
restrict attention to the case when ũd,m is pulled back from Pn under a
branched covering f : X �! Pn. So finally we are reduced to considering
X = Pn, and a trivial vector bundle VPn of fixed large rank � 2n. Given
an integer m

0

, we need to show that for every su�ciently large d � 0 there
is some m � m

0

such that the cokernel of a general map OPn(�d)n �!
VPn(�m) is ample.

To this end, first apply Proposition 6.3.64 to choose a natural number d
0

,
depending only on n and dim V , plus a map u

0

: OPn(�d
0

)n �! VPn such
that E

0

= cokeru
0

is ample. By Proposition 6.3.62, there is a large integer
k
0

such that whenever we pull back by a covering ⌫k : Pn �! Pn defined by
OPn(k) with k � k

0

, then for 0  i  d
0

� 1 each of the bundles

Ek,i = ⌫⇤kE
0

⌦OPn(�m
0

� i)

is ample. Note that Ek,i sits in an exact sequence

0 �! OPn(�kd
0

�m
0

� i)n �! V ⌦OPn(�m
0

� i) �! Ek,i �! 0.

But every d � 0 is of the form kd
0

+m
0

+i for some k � k
0

and 0  i  d
0

�1,
so we are done. ut

6.4 Ample Vector Bundles on Curves

The object of this section is to study ample vector bundles on smooth curves,
and in particular to give Hartshorne’s characterization (Theorem 6.4.15) of
such bundles. It was observed already in [277] that amplitude on curves is
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closely related to the concept of stability, and we emphasize that connection
here. In order to control the stability of tensor products, Hartshorne originally
drew on results of Narasimhan and Seshadri giving an essentially analytic
characterization of stability. Gieseker [224] and Miyaoka [429] later realized
that one can in e↵ect reverse the process, and we follow their approach. In
particular, along the way to Hartshorne’s theorem we will use the theory of
ample bundles to recover in an elementary fashion the tensorial properties of
stability (Corollary 6.4.14).

Throughout this section, C denotes a smooth irreducible complex projec-
tive curve.

6.4.A Review of Semistability

For the convenience of the reader we recall in this subsection the basic facts
and definitions surrounding semistability of bundles on curves.

It is classical that much of the geometry associated to a line bundle on a
curve is governed by the degree of the bundle. However, it was recognized early
on that the degree is a less satisfactory invariant for vector bundles of higher
rank. The pathologies stem from the fact that bundles of a given degree can
become arbitrarily “unbalanced”: for instance, if Ln is a line bundle of degree
n on C, then En = Ln � L⇤n has degree zero, but most of the properties of
En depend on n. The condition of semistability in e↵ect rules out this sort of
problem, and the Harder–Narasimhan filtration expresses an arbitrary bundle
as a successive extension with semistable quotients.

Definition 6.4.1. (Slope and semistability). Let E be a vector bundle
on the smooth projective curve C. The slope of E is the rational number

µ(E) =
deg(E)
rank(E)

,

where as usual the degree of E is the integer deg(E) =
R

c
1

(E). One says that
E is semistable if

µ(F )  µ(E) for every sub-bundle F ✓ E. (*)

E is unstable if it is not semistable. ut

Thus the slope of E measures “degree per unit rank,” and the condition of
semistability means that E cannot have any inordinately positive sub-bundles.
There is a related notion of stability, for which one requires strict inequality
in (*), but we will not require this.

We collect some elementary but useful observations that the reader may
check:

Example 6.4.2. (i). If E = E
1

�E
2

is a direct sum of two bundles, then E
is semistable if and only if E

1

and E
2

are semistable with µ(E
1

) = µ(E
2

).
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(ii). E is semistable if and only if µ(Q) � µ(E) for all quotients Q of E.

(iii). In the definition of semistability, it is equivalent to work with sub-sheaves
F ✓ E (so F is still locally free, but one can allow E/F to have torsion).

(iv). If E and F are any two vector bundles on C, then µ(E ⌦ F ) = µ(E) +
µ(F ).

(v). Given any divisor D on C, E is semistable i↵ E ⌦OC(D) is. ut

Facts (iv) and (v) of the previous example give two equivalent ways to
extend these concepts to Q-twisted bundles. Suppose that E is a vector bundle
on C, and that � is a Q-divisor class on C. Recall that in Definition 6.2.7 we
defined the degree of the Q-twisted bundle E<�> on C to be the rational
number

deg
�

E<�>
�

= deg E + rank(E) · deg �.

Recalling also that a sub-bundle of E<�> is the Q-twisted bundle F <�>
where F ✓ E is a sub-bundle of E, we are led to make

Definition 6.4.3. (i). The slope of E<�> is defined to be

µ
�

E<�>
�

=
deg

�

E<�>
�

rank
�

E<�>
� = µ(E) + deg �.

(ii). E < � > is semistable if µ
�

F < � >
�

 µ
�

E < � >
�

for every Q-twisted
sub-bundle F<�> of E<�>. In the contrary case, E<�> is unstable. ut

This definition evidently agrees with 6.4.1 in case � is the class of an integral
divisor, i.e. it respects Q-isomorphism. As one expects in light of 6.4.2 (v):

Lemma 6.4.4. The Q-twisted bundle E<�> is semistable if and only if E
itself is. ut
Remark 6.4.5. All the statements of Example 6.4.2 remain valid for Q-
twisted bundles, with the proviso that in (i) one deals with two bundles twisted
by the same class, so that their sum is defined. ut

A basic fact for our purposes is that an unstable bundle has a canoni-
cal filtration with semistable graded pieces (Proposition 6.4.7). We start by
establishing the following

Lemma 6.4.6. Let E be a vector bundle on C. Then the set of slopes
�

µ(F ) | F ✓ E
 

of sub-bundles of E is bounded from above. Moreover, if E is unstable, there
is a unique maximal sub-bundle U ✓ E of largest slope.

The sub-bundle U ✓ E is called the maximal destabilizing sub-bundle of E.
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Proof of Lemma 6.4.6. The first statement is clear for sub-bundles of a trivial
bundle O�N

C , and hence also for sub-bundles of OC(H)�N for any divisor H
thanks to Example 6.4.2 (iv). But we can realize any bundle E as a sub-bundle
of OC(H)�N for some su�ciently positive H, and the first statement follows.
For the second, let E

1

, E
2

⇢ E be sub-bundles having maximal slope µ, and
let E

1

+ E
2

✓ E be the sub-sheaf they generate. It is su�cient to prove that
µ(E

1

+ E
2

) = µ. But this follows from the exact sequence

0 �! E
1

\ E
2

�! E
1

� E
2

�! E
1

+ E
2

�! 0.

Indeed, by maximality µ(E
1

\E
2

)  µ, and then it follows with a computation
that µ(E

1

+ E
2

) � µ(E
1

� E
2

) = µ. ut

One then obtains:

Proposition 6.4.7. (Harder–Narasimhan filtration). Any vector bundle
E on C has a canonically defined filtration

HN•(E) : 0 = HN`(E) ⇢ HN`�1

(E) ⇢ . . . ⇢ HN
1

(E) ⇢ HN
0

(E) = E

by sub-bundles, characterized by the properties that if

Gri = HNi(E) / HNi+1

(E)

is the ith associated graded bundle, then each of the bundles Gri is semistable,
and

µ(Gr`�1

) > . . . > µ(Gr
1

) > µ(Gr
0

).

Proof. In fact, if E is semistable, take ` = 1. Otherwise, let HN
1

(E) ⇢ E be
the maximal destabilizing sub-bundle of E, and continue inductively. ut

Remark 6.4.8. (Extension to Q-twists). Again the previous results ex-
tend in a natural way to Q-twisted bundles. In the situation of Definition
6.4.3, we define the maximal destabilizing sub-bundle of a Q-twisted bundle
E<�> to be the Q-twisted sub-bundle U <�> of E<�>, where U ⇢ E is
the maximal destabilizing subsheaf of E. In a similar fashion, E<�> has the
Harder–Narasimhan filtration HN•

�

E<�>
�

= HN•(E)<�>. ut
Remark 6.4.9. In the present discussion, stability appears as a technical
tool for studying positivity. However, it originally arose in connection with the
construction of moduli spaces of bundles (see [477] for a very readable account
and [47] for a survey of later developments). More recently, the concept of
stability has proven to be very fundamental from many points of view; see for
example [474], [139], [579], [180], [181]. ut
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6.4.B Semistability and Amplitude

The result for which we are aiming states that the positivity of a bundle E on
a curve is characterized in terms of the degrees of E and its quotients. One
direction is elementary:

Lemma 6.4.10. (i). Let E be a vector bundle of rank e on C. If E is nef
then deg E � 0 and if E is ample then deg E > 0.

(ii). The same statement holds more generally if E is replaced by a Q-twisted
bundle E<�>.

Proof. We treat (ii). Consider the projective bundle ⇡ : P(E) �! C, and let

⇠ = ⇠E + ⇡⇤� 2 N1

�

P(E)
�

Q
,

where as usual ⇠E represents (the first Chern class of) OP(E)

(1). Then

deg E<�> =
Z

P(E)

⇠e.

But if E<�> is ample then by definition ⇠ is an ample class on P(E), and
consequently the degree in question is strictly positive. Similarly, Kleiman’s
theorem (Theorem 1.4.9) shows that it is non-negative if E<�> is nef. ut

We now wish to consider how to pass from numerical properties to state-
ments about amplitude and stability. Let E be a vector bundle of rank e on
the smooth curve C, and let � be a divisor representing det(E). It will be
convenient to work with the Q-twisted bundle

E
norm

= E<� 1

e�> .

The point of this normalization is that it reduces one to the case of bundles
of degree zero: it follows from Definition 6.2.7 that deg E

norm

= 0. Since by
6.4.4 E

norm

is semistable if and only if E is, we see using Example 6.4.2 (ii)
that E is semistable if and only if every quotient of E

norm

has degree � 0 in
the sense that

deg
�

Q<� 1

e�>
�

� 0

for any quotient bundle Q of E. Analogous remarks hold starting from a Q-
twisted bundle E<�>: indeed, if one mirrors the definition above one finds
that in fact

�

E<�>
�

norm

= E
norm

.

The basic link between stability and positivity is then given by

Proposition 6.4.11. (Semistability and nefness). E is semistable if and
only if E

norm

is nef.

We start with a useful lemma:
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Lemma 6.4.12. Let E be a vector bundle on C, and let f : C 0 �! C be any
branched covering of C by a smooth irreducible projective curve C 0. Then E
is semistable if and only if f⇤E is semistable.

Proof. If E is unstable, then certainly f⇤E is as well since the pullback of
a destabilizing sub-bundle U ✓ E will destabilize f⇤E. Conversely, suppose
for a contradiction that E is semistable but that f⇤E is unstable. By what
we have just observed the pullback of f⇤E under a covering C 00 �! C 0 will
remain unstable, so we may assume without loss of generality that f is Galois,
with group G = Gal(C 0/C). Let V ✓ f⇤E be the maximal destabilizing sub-
bundle of f⇤E. Now G acts in the natural way on f⇤E and hence also on
the collection of sub-bundles of f⇤E. It follows from the uniqueness of the
maximal destabilizing sub-bundle that V is G-stable. Hence V = f⇤U for a
sub-bundle U ⇢ E, and one checks right away that U must destabilize E. ut

Proof of Proposition 6.4.11. Suppose first that E
norm

is nef. Then thanks to
Theorem 6.2.12 (i), all of its quotients are nef, and hence have non-negative de-
gree. Therefore by the remarks preceding the statement of Proposition 6.4.11,
E is semistable. Conversely, suppose that E is semistable, but that E

norm

is
not nef. It follows from the Barton–Kleiman criterion (Proposition 6.1.18 and
Remark 6.2.9) that there is a finite map f : C 0 �! C from a smooth irre-
ducible curve C 0 to C such that f⇤E

norm

has a rank one quotient of negative
degree. Then f⇤E

norm

is unstable. On the other hand, since C is smooth f
must be a branched covering. Thus we arrive at a contradiction to 6.4.12,
which completes the proof. ut

Remark 6.4.13. It follows from 6.4.4 that Proposition 6.4.11 and Lemma
6.4.12 both remain valid if the “classical” bundle E is replaced by a Q-twist
E<�>. ut

We pause to note that as an application one obtains the following funda-
mental result, which is traditionally established via the theorem of Narasimhan
and Seshadri [474] characterizing stable bundles in terms of representations of
the fundamental group of C. The present much more elementary approach is
due to Gieseker [224], rendered particularly transparent via Q-twists in [429].

Corollary 6.4.14. (Semistability of tensor products). The tensor prod-
uct of two semistable bundles on a smooth curve is semistable. Consequently,
if E is semistable, then so is SmE for every m � 0. The same statements
hold for Q-twisted bundles.

Proof. Suppose that E and F are semistable. Then E
norm

and F
norm

are nef,
and hence

�

E ⌦ F
�

norm

= E
norm

⌦ F
norm

is also nef thanks to Theorem 6.2.12 (iv) and (v). The semistability of E ⌦F
then follows from the previous proposition. By induction, if E is semistable
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then so is any tensor power T q(E). In characteristic zero, SmE is a summand
of TmE, so its semistability follows from 6.4.2 (i). The extension to Q-twists
is evident. ut

Finally, we turn to a theorem of Hartshorne [277] giving a very pleasant
characterization of nef and ample vector bundles on a curve.

Theorem 6.4.15. (Hartshorne’s theorem). A vector bundle E on C is
nef if and only if E and every quotient bundle of E has non-negative degree,
and E is ample if and only if E and every quotient has strictly positive degree.
The same statements hold if E is replaced by a Q-twisted bundle E<�>.

Proof. One direction is immediate: if E is ample (or nef), then every quotient
is ample (or nef) and hence has positive (or non-negative) degree thanks to
Lemma 6.4.10. Conversely, the essential point will be to treat the case in which
E is semistable:

Main Claim: Let E be a semistable bundle on C. If E has non-negative
degree then E is nef, and if E has positive degree then E is ample.

Granting this for the moment, we complete the proof.
Suppose then that E is not nef. We need to show that E itself or a quotient

has negative degree. If deg E < 0 there is nothing further to prove, so we may
suppose that deg E � 0. It then follows from the Claim that E must be
unstable. Consider its Harder–Narasimhan filtration

HN•(E) : 0 = HN`(E) ⇢ HN`�1

(E) ⇢ . . . ⇢ HN
1

(E) ⇢ HN
0

(E) = E

and as before set Gri = HNi(E)/HNi+1

(E). Since an extension of nef bundles
is nef, it follows again from the Claim that at least one of these graded pieces
— say Grk — must have negative degree. Therefore

µ(Gr
0

) < µ(Gr
1

) < . . . < µ(Grk) < 0.

But then deg
�

E / HNk+1

(E)
�

< 0, and we have produced the desired quo-
tient. A similar argument shows that if E is not ample, then E or some
quotient has degree  0.

Turning to the claim, the point is to apply Proposition 6.4.11. In fact,
assume that E is semistable. Then E

norm

is nef. But

E = E
norm

<1

e�> = E
norm

⌦OC<1

e�>,

where as above � is a divisor class representing det(E). If deg(E) � 0 then
deg(�) � 0, whence OC< 1

e�> is nef, and if deg(E) > 0 then OC< 1

e�> is
ample. Therefore thanks to Theorem 6.2.12, E itself is nef in the first case
and ample in the second, as asserted.

Finally, the extension to Q-twists presents no di�culties, and is left to the
reader. ut
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Example 6.4.16. (Higher cohomology and amplitude). Suppose that
C has genus g � 2. If E is a bundle on C such that H1

�

C,E
�

= 0, then E
is ample. (If Q is a quotient of E having degree  0, then it follows from
Riemann–Roch that H1

�

C,Q
�

6= 0, and hence that H1

�

C,E
�

6= 0.) This
result is due to Fujita [192, Lemma 3]. ut
Example 6.4.17. (Generically surjective morphisms). Let E and F be
vector bundles on C, and suppose that u : E �! F is a homomorphism that
is surjective away from finitely many points of C. If E is ample then so too is
F , and the analogous statements hold also for Q-twists. (Any quotient Q of
F gives rise to a quotient Q0 of E with deg Q0  deg Q.) ut
Example 6.4.18. (Singular curves). Fulton [201, Proposition 4] gave an
example to show that the conclusion of Theorem 6.4.15 can fail on a singular
curve C. In fact, fixing a non-singular point P 2 C, one can construct a
non-split extension

0 �! OC �! E �! OC(P ) �! 0

which splits when pulled back to the normalization ⌫ : C 0 �! C of C. Then
every quotient of E has positive degree, but ⌫⇤E is not ample. Serre had used
a similar construction to show that Hartshorne’s theorem fails in positive
characteristics. ut
Remark 6.4.19. (Higher-dimensional varieties). Examples suggest that
there cannot be a clean numerical criterion for the amplitude of bundles on
higher-dimensional varieties analogous to Hartshorne’s theorem: see Remark
8.3.14. ut
Example 6.4.20. (Hartshorne’s proof of Theorem 6.4.15). The original
proof of Theorem 6.4.15 in [277] is quite interesting, and we indicate the
idea. As in the argument above, the essential point is to show that if E is a
semistable bundle of non-negative degree on C, then E is nef. Supposing this
is false, there is a reduced irreducible curve � ⇢ P(E) such that

Z

�

c
1

(OP(E)

(1)) < 0. (*)

Evidently � cannot lie in a fibre of the projection ⇡ : P(E) �! C, and so �
is flat over C, say of degree d. Consider the exact sequence

0 �! I�/P(E)

(m) �! OP(E)

(m) �! O� (m) �! 0.

For m � 0 — so that R1⇡⇤I�/P(E)

(m) = 0 — this gives rise to a surjection

SmE �! ⇡⇤O� (m) �! 0.

But degO� (m)  �m by virtue of (*), and it follows from Riemann–Roch on
the normalization � 0 of � that �(�,O� (m)) becomes increasingly negative as
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m grows. On the other hand, the bundle Gm = ⇡⇤O� (m) has fixed rank d, and
satisfies hi(C,Gm) = hi(�,O� (m)). Applying the Riemann–Roch formula

�(C,Gm) = deg Gm + d · (1� genus(C))

on C, we see that deg Gm ⌧ 0 for m � 0. In other words, we have established
that if m � 0, then SmE has a quotient of negative degree. But this is
impossible: for E is semistable of non-negative slope, and hence so is SmE. ut

Notes

Section 6.1 largely follows [274], although the use of a Veronese mapping to
establish the tensorial properties of ample bundles in characteristic zero (The-
orem 6.1.15) — which simplifies earlier approaches — is new. The presenta-
tion of this argument follows some suggestions of Fulton. Gieseker’s lemma
(Proposition 6.1.7) appears in [223].

A formalism of twisting bundles by Q-divisors was initiated by Miyaoka in
[429], and its utility was re-emphasized by an analogous construction in [133].
Nef vector bundles have come into focus in recent years with the flowering of
higher-dimensional geometry, where nef line bundles play a critical role. The
Barton invariant (Example 6.2.14) appears implicitly in [34], where Barton
uses the Frobenius to establish the amplitude of tensor products in positive
characteristics.

Section 6.3 draws on many sources, most of which are cited in the text
and won’t be repeated here. The proof of Theorem 6.3.19 is adapted from
[473], while Theorem 6.3.29 is new. The discussion of Picard bundles closely
follows [212], although it seems to have been overlooked that the arguments
for curves work without change on irregular varieties of all dimensions. Section
6.3.D follows [387]. The proof of Proposition 6.3.61 was explained to me by
Ein. The material in Section 6.3.F is new, although as noted Demailly has
obtained some similar results by di↵erent methods.

As we have indicated, the approach of Section 6.4 originates with Gieseker
[224] and Miyaoka [429]. We have drawn on the very nice exposition in [432,
Lecture III, §2].
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