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§O. Introduction. 

Consider a variety M, and a projective local complete inter-

section 

of pure codimension e. Then for any subvariety Y C:lf of 

k > e, the intersection class 

X • Y �: A (X) 
k-e 

is defined up to rational equivalence on X. One of the most basic 

facts of intersection theory is that if Y meets X, and does so 

properly, then x·y is non-zero and in fact has positive degree with 

respect to any projective embedding of X. On the other hand, if the 

intersection of X and Y is improper, then x·y be zero or of 

negative degree. Our purpose here is to give some conditions on X to 

guarantee the non-negativity or positivity of the intersection class in 

the case of possibly intersection. These conditions take the 

form of hypotheses on the bundle NX/M to X in ).1, the theme 

being that positivity of the vector bundle NX/M forces the positivity 

of X· Y provided only that Y meets X. We give several simple 

applications and related results, including a lower bound for the 

of a proper intersection, generalizing a classical result 

for curves on a surface. 
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§l. Excess intersections with positive noroal bundle. 

We deal with a variety M - not necessarily smooth or complete - and 

a local complete intersection X of pure codimension e, which we 

assume to be projective. Denote by N the normal bundle to X in H. 

and let L be a fixed ample line bundle on X. He are interested in 

intersecting X with a subvariety Y C 11 of dimension k > e. 

Theorem 1. (A). If Sm(N) is generated 1:2: its global sections for 

sose m > O. then 

(B). If Sm(N) ® r is generated 1:2: its global sections 

m > O. then 

degL ex . Y) degL (X () Y). 
m 

(For an cycle or cycle class u on X. degL(u) denotes 

the degree of the zero-dimensional class cl(L) n u. In (B). 

degL(X n Y) is the sum of the L-degrees of the irreducible components 

of X ny, taken with their reduced structures.) The hypothesis in 

(B) is equi.valent to the assumption that the normal bundle N is ample 

in the sense of Hartshorne [HI], and the proof will show that in fact a 

somewhat better inequality holds. 

Before proceeding. we record several simple applications: 

Corollary 1. In the situation £!:. the theorem, if Sm(N) is generated 

!2: its global sections for m > 0, then X is numerically 

effective in the sense that --------
deg(X • Y) a 

!£.E. subvariety Y C; M £!:. pure dimension e = codim(X). If 

moreover N is ample, strict inequality holds in (*) provided that 

Y is numerically equivalent !.£. effective cycle support 

X •• 

Corollary 2. Let be subvarieties of degrees 
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deg (VI () ••• () V ) < dl • ••• • d 
r - r 

This was originally proved by R. MacPherson and the first author. As 

before, the left-hand side denotes the sum of the degrees of the 

irreducible components of VI n ... n Vr with their reduced structures. 

Proof. By passing to a larger projective space, and to cones over the 

Vi' we may assume that L dim(Vi ) .:::. (r-1)n. Let l'f = pn x ••• x pn 

(r times), and let X = pnc: M be the diagonal. The hypotheses of 

statement (B) of the theorem are satisfied with L 

Taking Y = V I x ••• x V r' the corollary follows. • 

(J ( 1) and m = 1-
pn 

Exercise. Assuming r = 2, show that if equality holds in Corollary 2 

then VI and V2 lie in a linear subspace of pn in which they meet 

properly. 

Corollary 3. In the setting £f theorem. suppose M i! 
transitively El. !!. connected If the normal 

N to X in M is ample, X subvariety yeM of 

dimension .:::. codim(X). 

Proof. The homogeneity of M implies that Y is algebraically 

equivalent to a subvariety Z which meets X. and x·z # 0 by the 

theorem. • 

This simplifies and extends somewhat a result of LUbke [L). 

Remark. Corollary 3 is closely related to two conjectures of 

Hartshorne ([H2) 111.4.4, 111.4.5) concerning smooth subvarieties of a 

non-singular variety M in characteristic zero. 

Conjecture A. If X C M has an ample normal bundle. then some multiple 

of X moves (as a cycle) in a large algebraic family. 

Conjecture B. If both X CM and Y eM have ample normal bundles, 

and if dim(X) + dim(Y) .:::. dim(M). then X meets Y. 

Observe that if one knew that some mUltiple of [xl moved in an 

algebraic family large enough to cover M, then Conjecture B would 

follow from Theorem I as in the proof of Corollary 3. However, one has 

the following: 
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Counter-example to Conjecture A. Gieseker [Gi] has constructed an ample 

vector bundle E on p2 arising as a quotient of the form 

for suitable n» O. Take M to be the total space of E, and 

X eU to be the zero-section. We claim that there are no projective 

surfaces Y C:M other than X itself, from which it follows that no 

multiple of X moves in non-trivial algebraic family. Indeed, an 

embedding Y distinct from the zero-section would give rise to a 

* non-zero section of f E on the normalization Y of Y, where f 

is the composition of 
1 - * to H (Y, f L/ 2 (-n)) = 0 

o -p * hence H (Y, f E) = O. 

the natural maps Y + Y + X. But 

by the Mumford-Ramanujam vanishing theorem, and 

Conjecture B remains open, although it seems to us plausible that 

a counter-example may exist. The general picture that appears to emerge 

from ([Han], [Fa], [Go], [L], [FLl]) is that ampleness of normal bundles 

has global consequences for subvarieties of homogeneous spaces, but not 

necessarily in general. 

There are two inputs to the proof of Theorem 1. The first, which 

is the essential feature of the intersection theory developed by 

R. HacPherson and the first author ([nu], [FM2], [Fu]), consists in 

reducing to an infinitesimal problem. Specifically, in the situation 

of the theorem, consider the fibre square 

X () Y 

(\\ 

X c 

Y 

m 
11 , 

and denote by C the normal cone of X n Y in Y. Then C has pure 

dimension k dim Y, and sits naturally as a subscheme in the total 

space of the normal bundle N NX/ I1 • One can intersect C with the 

zero section of N to obtain a well-defined rational equivalence class 

z(C,N) € (X) • 

(z(C,N) is actually defined in Ak_e(Xf'lY).) He call this the cone 

class determined by C in N. The basic fact then is that 

X·y z(C,N) 
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(cf. [FlU], [Fu]). Theorem 1 now follows from a general positivity 

statement for the classes determined by cones in vector bundles 

satisfying hypotheses CA) or (B) of the theorem: 

Theorem 2 (cf. [FL2]). Let N be a vector bundle of rank e on a 

Erojective variety X, let C G N irreducible of 

dimension k > e. Let L amEle 9E. X. 

(A) If Sm(N) is generated E.x. iE!. global sections for m > 0, 

then 

degL(z(C,N)) 0. 

(B) If Sm(N) 8 L generated E.x. its global sections !£E. m > 0, 

then 

1 
degL(z(C,N)) > d' (S C) k s(C) degL (Supp e) , - m l.m upp + e-

where see) is multiplicity of e along its zero-section. 

We will prove the theorem under the stronger hypotheses: 

(A') N is generated by its global sections. 

(B' ) 
v 

N 8 L is generated by its global sections. 

The general case is treated by combining the proof below with the 

arguments in §2 of [FL2]. 

Proof. We may assume that Supp(C) = X. If N is generated by its 

global sections, then a general section of N meets C properly or 

not at all. Therefore, z(C,N) is represented by an effective (or 

zero) cycle, and this proves (A). 

Turning to (B), after possibly replacing C C N by C ID L CN ID L 

--which leaves the cone class unchanged ([FL2§1])--we may assume that 

C maps to its support with fibre dimension > 1. In this situation, 

one has the formula 

z(C,N) = TI*(ce_l(Qp(N)) n [pee)]), 

where Qp(N) = TI*N/crP(N)(-l) is the rank e-l universal quotient 

bundle on the projectivization TI : peN) + X. Thus 
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e-l * k . 
L: J C I (7T L) -e+l. C I' (Qp(>,' ® 7T L) 

i=O P(C) e- -1. ,,} 

By the hypothesis (B'), Qp(N) ® 7T L is generated by its global 

sections, and it follows that its Chern classes are represented by 

effective (or zero) cycles. Thus all the terms in the sum above are 

non-negative. Therefore, letting n = dim X = dim Supp(C), one has 

where s (C,N) (X) is the n-dimensional segre class of C. But n n 
sn(C,N) = s(C) • [X], and the theorem follows •• 

Remark. As a special case of statement (B) of Theorem 2, one finds that 

if N is ample, and if C eN is a cone of pure dimension e = rk(N), 

then the cone class z(C,N) has strictly positive degree. This was 

proved in [FL2J, where it was used to determine all numerically positive 

polynomials in the Chern classes of an ample vector bundle. 

§2. Intersection multiplicities. 

If C and D are curves on a surface M, and P €C n D is an 

isolated point of intersection, then a classical formula of Max Noether 

expresses the intersection multiplicity 'D) of the given curves 

at P in terms of their proper transforms on the blow-up M of M at 

P. Specifically, Noether's formula states that 

• D) = ep(C) • ep(D) + L: mQ(c. D), 
Q�E 

C and D being the proper transforms of C and D, where the sum on 

the right is taken over all points on the exceptional divisor E c:M. 
In particular, since this sum is non-negative, one obtains the familiar 

lower bound for the intersection multiplicity. In this section we 
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discuss a generalization of Noether's formula to higher dimensions. 

Unlike the situation for curves on a surface, it can happen in general 

that the proper transforms of the given varieties no longer meet 

properly in a neighborhood of the exceptional divisor. In this case, 

positivity results come into play in order to bound from below the 

contribution of this intersection. 

Let VI'''' ,Vr be subvarieties of a smooth variety M, with 

I: cOdim(Vi,M) = dim(M). Assume that Vl"",Vr intersect properly at 

the point P e. M. As we are interested in local questions, we will 

suppose that P is the only point at which the Vi meet. Denote by 

M the blow-up of M at P, so that the exceptional divisor E is a 

projective space, with 

L = C'(-E) IE 

the (ample) hyperplane bundle. If 

P, then nV i is contained in E, 

V. eM is the blow-up of V. -
and hence VI· ••• • Vr is a 

well-defined rational equivalence class of dimension zero on E. 

Theorem 3. With the preceding notation, 

r 
(A) Vr ) = II ep(V i ) + deg(V I 

i=l 
the multiplicity of V. at P. 

at 

We will prove (A) and (B) when each V. is a divisor on H. The proof 

of (A) in general uses the deformation to the normal bundle, as in 

[FMI]. For (B), one cannot apply Theorem I to the diagonal imbedding 

of M in M x •• , x M, since the normal bundle to this imbedding is 

not ample. Instead, one imbeds t1 in the blow-up of M x •• , x fI 
along E x x E, where the normal bundle is ample. We refer to 

[Fu] §12.4 for details. 

Proof. Let TI: M + M and n: E + P be the canonical maps. From 

the projection formula and the identification of C9(E) I E with 

C'(-l) , one has: 

(i) * 
n*(TI VI 

* • TI V ) 
r = VI ..... Vr 

* * (H) n*(TI VI • TI V. 
J 

• Er - j ) = 0 (1 < j < r) 
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Let m. = ep(V.). Equivalently, one has an equation of divisors 

on M: 

(iv) 

By (i) - (iv) and bilinearity of intersection products, 

which proves (A). Shrinking M, we may assume each Vi is a principal 

Cartier divisor on M, so that, by (iv), C'(V.) = C'(-m.E). 

The intersection class V 1 •.... V r may be constructed from the fibre 

square 

OV. G M 
01 0\ - -

VI x x V eM x x M 
r -

-The normal bundle to VI x ••• x V in M x ••• x M restricts to 
r r 8m. 

(j) L on OV. C E. 
. 

Theorem 2(B) then applies, as in the proof of 
i=l 
Theorem 1, to show that 

Remark. \fuen the 

M is singular. 

V. are Cartier divisors, the theorem holds even if 

In fact, the preceding proof shows that if mi 
any positive integers such that 

* 7T V. = m.E + vI. 

for some effective Cartier divisors vIi on M, then 

r 
..... Vr ) =; IT m.· ep(M) + deg(V\ ..... Wr ) 

i=l 

are 

with deg(WI • ... 'Wr ) ;:degL(VlI () ... tlwr ). In place of (iii) one 

uses the equation ll*(Er ) = (_l)r-l ep(M) • [p]. 
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