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Abstract. Fix a rank one valuation ν centered at a smooth point x on an algebraic variety over
a field of characteristic zero. Assume that ν is Abhyankar, that is, that its rational rank plus its
transcendence degree equal the dimension of the variety. Let am denote the ideal of elements in the
local ring of x whose valuations are at least m. Our main theorem is that there exists k > 0 such that
amn is contained in (am−k)n for all m and n. This can be viewed as a greatly strengthened form of
Izumi’s Theorem for Abhyankar valuations centered on smooth complex varieties. The proof uses
the theory of asymptotic multiplier ideals.

Introduction. In this paper we use the theory of multiplier ideals to show
that the valuation ideals of a rank one Abhyankar valuation centered at a smooth
point of a complex algebraic variety are approximated, in a quite strong sense,
by sequences of powers of fixed ideals.

Let R be an n-dimensional regular local domain essentially of finite type over
a ground field k of characteristic zero, and let ν be a rank one valuation centered
on R. Recall that this is equivalent to asking that ν be an R-valued valuation on
the fraction field K of R, taking nonnegative values on R and positive values on
the maximal ideal m ⊆ R. A theorem of Zariski and Abhyankar (see Theorem 2.1)
states that

trans.deg ν + rat.rank ν ≤ dim K/k,(1)

where the rational rank of ν is the rank of its value group, while its transcendence
degree is the maximal dimension of the center ν on some model of K/k. One
says that ν is an Abhyankar valuation if equality holds in (1), i.e. if

trans.deg ν + rat.rank ν = dim K/k.

Among all the valuations centered on R, these are the ones from which one
expects the best behavior. For example, a divisorial valuation—corresponding to
the order of vanishing along a prime divisor E ⊆ Y contracting to the closed
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point of X = Spec (R) under a proper birational map Y −→ X—is an Abhyankar
valuation centered on R having transcendence degree n−1 and rational rank 1. At
the other extreme, if α1, . . . ,αn ∈ R are any Q-linearly independent positive real
numbers, then there exists a unique valuation ν centered on k[x1, . . . , xn](x1,...,xn)

with ν(xi) = αi: here trans.deg ν = 0 and rat.rank ν = n.
Abhyankar valuations have been the focus of considerable attention. For

example, they are known to admit local uniformization in any characteristic [14],
and already when dim R = 2 they involve a great deal of beautiful and intricate
geometry [23].

Given a valuation ν as above, denote by Φ = ν(R) ⊆ R the value semigroup
of ν on R. For each real number m ∈ Φ, let

am = {f ∈ R | ν( f ) ≥ m}

denote the ideal of R consisting of all elements of R whose values are at least
m. Clearly aℓm ⊆ aℓm for every natural number ℓ ∈ N, but typically the inclusion
is strict. However our main theorem shows that for Abhyankar valuations these
two ideals lie surprisingly close to each other:

THEOREM A. Let ν be an Abhyankar valuation centered on R. Then there exists
a fixed value k ∈ Φ such that

aℓm ⊆ amℓ ⊆ aℓm−k

for all m ∈ Φ and all ℓ ∈ N. (We adopt the convention that am−k = R when m < k.)

Roughly speaking, the theorem asserts that the valuation ideals amℓ are closely
and uniformly approximated by powers of am. It follows from the theorem that
there is a fixed nonzero element δ ∈ R such that

δℓamℓ ⊆ aℓm(2)

for all m ∈ Φ and ℓ ∈ N. This points to the heuristic idea that the associated “Rees
ring” of the Abhyankar valuation ν, while usually not finitely generated when
n = dim R > 1, is “almost” finitely generated. It would be interesting to know if
one can make this precise. Both the theorem and (2) can fail for non-Abhyankar
valuations: see Remark 2.6.

Theorem A can be interpreted as a strengthened form of a celebrated theorem
of Izumi. In the setting of Theorem A, Izumi’s result (in a form due to Hübl and
Swanson) asserts that there exists an index p such that apℓ ⊆ mℓ for all natu-
ral numbers ℓ, where as above m is the maximal ideal of R. (Izumi’s statement
actually deals with less general valuations but more general rings. It is proved
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in [12], [21], and [11].) Theorem A says much more: not only is apℓ ⊆ mℓ

for all ℓ, but apℓ is contained in the ℓth power of an ideal ap−k very close to
ap. In other words apℓ ⊆ aℓp−k, where not only are the ap−k’s getting deeper
in R as a function of p (whereas m stays fixed), but they are getting deeper
at the same rate as the ap themselves. The theorem also implies—at least for
regular local rings essentially of finite type over a field—the well-known state-
ment of Izumi’s Theorem comparing values of two valuations centered at m; see
Corollary 2.5.

In an algebro-geometric context, Theorem A is most interesting for diviso-
rial valuations. More generally, Theorem A can be applied to a composite of
valuations to yield the following:

COROLLARY B. Let D be an effective divisor on a normal variety X and suppose
that X π→Y is a proper birational map contracting D to a smooth (but not necessarily
closed) point of Y. Then there exists a natural number k such that

π∗OX( − mℓD) ⊂ [π∗OX( − (m − k)D)]ℓ

for all natural numbers ℓ and all m ≥ k.

Thus even though the algebra

⊕

ℓ∈N

π∗OX( − mℓD)(3)

is not finitely generated in general, Corollary B gives some measure of con-
trol over it. Of course, it is a central problem of birational geometry to un-
derstand when such algebras are finitely generated: when (3) is finitely gener-
ated, the corresponding projective scheme is the stable image of X under the
birational map to projective space over Y given by the linear series | − mD|
for m ≫ 0.

Another viewpoint involves the concept of the volume of a rank one valuation
centered on a local domain. By definition, the volume of ν on R is

volR(ν) := lim sup
m→∞

length (R/am)
mn/n!

,

where n is the dimension of the local ring R. In case am is the mth power of a
fixed ideal a, then of course this is simply the multiplicity of a. But in general the
volume is not actually a multiplicity: indeed, it can be an irrational number; see
Example 3.5 (iii). However Theorem A implies that the volume of an Abhyankar
valuation is approximated arbitrarily well by the multiplicities of the ideals am.
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Specifically:

COROLLARY C. If ν is an Abhyankar valuation as above, then

volR(ν) = lim
m→∞

e(am)
mn .

This corollary in turn leads to an interesting upper bound in the spirit of Teissier
on the multiplicity of an m-primary ideal I ⊆ R in terms of the volumes of its
Rees valuations ν1, . . . , νr. (Recall that the Rees valuations of I are defined by
taking the normalized blowup X of I, and writing IOX = OX(−e1E1− · · ·−erEr)
for some prime Weil-divisors Ei of X and some positive integers ei. Then νi

is the valuation on the fraction field of R given by order of vanishing along
Ei.) Specifically, we prove an inequality of Minkowski-type on the volumes of
Abhyankar valuations which implies that the multiplicity of I satisfies

e(I)1/n ≤ e1volR(ν1)1/n + · · · + ervolR(νr)1/n,

where ei = νi(I), and as above n = dim R. Since an earlier version of this
manuscript was written, Mircea Mustata has shown that Corollary C and the
related Minkowski-type statements hold for arbitrary valuations (not just Ab-
hyankar) and even much more generally. See [19].

The proof of Theorem A uses the theory of multiplier ideals. One can as-
sociate to the valuation ideals {am} a sequence of asymptotic multiplier ideals
{jm}m∈Φ, as defined (in a slightly different setting) in [8]. The general theory—
which we review in §1—shows that these satisfy

aℓm ⊆ amℓ ⊆ jℓm(4)

for all m ∈ Φ and ℓ ∈ N. The main work of the present paper—which we carry
out in §2—is to establish that am and jm have “bounded difference” in the sense
that there is a fixed m-primary ideal d ⊆ R such that

d ⊆ (am : jm)

for all sufficiently large m ∈ Φ. Theorem A then follows from (4) upon taking
k = ν(d). In §3, we discuss the volume of a valuation: we believe that this is an
invariant of independent interest. Finally we give in §4 some further applications,
including the proof of Corollary B.

The present paper continues the project started in [8] of using ideas from
higher dimensional complex geometry to search for possibly unexpected uniform
behavior in Noetherian rings. Our techniques rest on resolution of singularities
and vanishing theorems, and so are essentially limited to local rings coming from
smooth complex varieties. Although one could expect the statements themselves
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to remain valid in less restrictive settings, we haven’t seriously investigated the
extent to which such a generalization is possible. We hope however that the
results appearing here will pique the interest of experts and encourage them to
put the picture in a broader perspective. We note that the main theorem here was
inspired by an attempt to “localize” a result of Fujita concerning the volumes of
big line bundles: a proof via multiplier ideals appears in [6] (see also [16, 10.3B]
and [4, 14.5]). The reader may consult [4], [22], [20], [13], [5], [16], [7] and the
references therein for numerous other recent applications of multiplier ideals to
the global study of linear series on a projective variety.

Acknowledgments. The authors are grateful to Dale Cutkosky, Will Traves
and especially Mark Spivakovsky for numerous helpful and encouraging dis-
cussions. In particular, Cutkosky first explained to us a special case of Propo-
sition 2.8, and Example 3.15 was worked out in a series of discussions with
Spivakovsky and Traves. Also, we thank Ray Heitmann for questions and re-
marks that improved the presentation of our results.

1. The asymptotic multiplier ideal of a graded family. In this section,
we recall the notion of a graded family of ideals and examine the elementary
properties of graded families of valuation ideals. We also review the construction
and basic properties of the asymptotic multiplier ideals introduced in [8]. Because
collections of valuation ideals are naturally indexed by semigroups slightly more
general than the natural numbers, it is convenient to allow graded families that
are indexed by additive subsemigroups of the real numbers. Thus the exposition
here is slightly more general than what is stated in [8], but all the proofs are the
same.

1.1. Graded families indexed by a semi-group. Let Φ be an additive sub-
semigroup of the nonnegative real numbers. Of course, one of the main examples
is the semigroup of natural numbers N.

Definition 1.2. Fix a ring R. A graded family or graded system of ideals
indexed by Φ is a collection a• = {am}m∈Φ of ideals of R satisfying

am · aℓ ⊆ am+ℓ for all m, ℓ ∈ Φ.(5)

To avoid trivialities, we assume also that am ̸= 0 for m ≫ 0.

It is convenient to assume also that a0 = R, in which case condition (5) is
equivalent to the statement that the R-module

⊕

m∈Φ
am
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has the natural structure of a Φ-graded R-algebra. We refer to this ring as the
Rees algebra of the graded system a•. The theory of asymptotic multiplier ideals
is particularly useful when the Rees algebra fails to be finitely generated (or at
least is not known to be so). Of course, one can also define graded families, and
develop the theory of asymptotic multiplier ideals, for families of coherent ideal
sheaves in the structure sheaf of a scheme. But since all the definitions are local
in nature this involves no essential differences from the affine setting.

Example 1.3. The following are familiar examples of graded families indexed
by the natural numbers.

(i) The simplest example is the collection {am} of powers of a fixed ideal a.
This should be considered a trivial example of a graded family.

(ii) A slightly less trivial example is the collection {am} of integral closures
of powers of a fixed ideal a. From the point of view of multiplier ideals, however,
this example is no less trivial than the first, since the multiplier ideals are the
same. See also Example 3.5 (i).

(iii) The graded family {a(m)} of symbolic powers of a fixed ideal a was the
main example treated in [8].

(iv) The collection {bm} of defining ideals for the base loci of the complete
linear series |mD|, where D is a fixed big line bundle on a projective vari-
ety X, forms a graded family of ideals in the sheaf of rings OX . This graded
family plays a central role in Kawamata’s work on deformation of canonical
singularities [13].

1.4. Graded families arising from a valuation. In this paper, we are pri-
marily interested in graded families of valuation ideals for rank one valuations
centered on a regular local domain. Let us recall some of the basic terminology
and give a few examples. Good general references on valuation theory are [25]
and [26].

Let Γ be an ordered Abelian group, written additively. A valuation on a field
K with values in Γ is a map of Abelian groups

ν: K∗ = K\0 −→ Γ

satisfying the additional condition that

ν( f + g) ≥ min{ν( f ), ν(g)}.(6)

Since only the image of ν is of importance, we assume that ν is surjective. An
elementary but useful observation is that in fact,

ν( f + g) = min{ν( f ), ν(g)} whenever ν( f ) ̸= ν(g).(7)
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The set of all elements of K which have nonnegative values forms of subring
Rν , called the valuation ring of ν. The valuation ring of ν is a local ring with
maximal ideal consisting of all the positively valued elements of K, but it is not
Noetherian in general. One can also define a valuation ring abstractly as a subring
of K containing either x or 1

x for every x ∈ K. The data of a valuation ring inside
a field K is equivalent to the data of a valuation on K (up to order preserving
isomorphism of the value group). The rank of a valuation is by definition the
Krull dimension of the valuation ring Rν .

In this paper, we consider only rank one valuations on function fields. In this
case, the ordered group Γ can and will be identified with an ordered subgroup of
the real numbers, the field K is assumed to be a finitely generated field extension
of some fixed ground field k, and we consider only those valuations vanishing on
k. In particular, the valuation ring Rν is a k-algebra, though not usually finitely
generated.

Let ν be a valuation on a function field K/k. The valuative criterion for
properness (see [9, p. 101]) ensures that for any complete algebraic variety X
over k with function field K (that is, for any complete model of X), there is a
unique map Spec Rν −→ X. Thus a valuation chooses, in a consistent way, a (not
necessarily closed) point on every complete model of K, namely, the image W
of the closed point of Spec Rν under this map. The variety W is called the center
of ν on X—here and elsewhere, we abuse terminology by failing to distinguish
between an irreducible variety and its generic point—and the local ring OW,X is
called the local ring of ν on X. The defining ideal IW of W consists of all local
sections of OX of positive value.

For a local domain R contained in K, we say that the valuation ν is centered
on R if ν takes nonnegative values on R and strictly positive values on the
maximal ideal of R. Thus the valuation is centered on any of its local rings.

Let ν be a valuation on a function field K/k and let X be any irreducible
k-scheme with function field K. For each nonnegative m ∈ R, the subset

am = {f ∈ OX | ν( f ) ≥ m}

forms an ideal sheaf in OX , called a ν-valuation ideal (or just a valuation ideal
when ν is understood). When it is necessary to emphasize the model, we will
write am(X). Note that if π: X −→ Y is a proper birational map between complete
models of K, then π∗am(X) = am(Y).

For any subsemigroup Ψ of R (eg, Ψ = N or Ψ = R≥0), the collection
{am}m∈Ψ forms a graded family of ideals in OX , called the graded family of ν on
X. It is natural to index this graded family by Γ, but allowing the indexing set to
be N or R will sometimes by more convenient. The value semigroup Φ = ν(OX)
is the “optimal” indexing set: every ν-valuation ideal appears exactly once as
a member this graded family. When X is Noetherian, the value semigroup Φ is
well-ordered, meaning that every subset has a minimal element.
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PROPOSITION 1.5. If ν is a rank one valuation on a function field K/k and X is
any complete model of K, then the valuation ideals am(X) are primary to the ideal
defining the center of ν on X. If ν is a rank one valuation centered on local domain
R, then each of the valuation ideals am is primary to the maximal ideal of R.

Proof. Suppose that f and g are local sections of OX with f /∈ am but fg ∈ am.
Then ν(fg) = ν( f ) + ν(g) ≥ m, but ν( f ) is strictly less than m. This means that
ν(g) is positive, so some positive multiple, say kν(g), exceeds m. Thus gk is
in am, proving that am is primary. Furthermore, since any element of IW has a
power in am, the radical of am is IW . The argument for the second statement in
the proposition is the same.

Example 1.6. We give four simple examples of graded families of valuation
ideals in the local ring R = k[x, y](x,y) of the origin in the affine plane. Each arises
from a different rank one valuation on the function field K = k(x, y).

(i) Let ν be the valuation given by “order of vanishing at the origin.” Ex-
plicitly, for a polynomial f , ν( f ) is the degree of the smallest degree nonzero
monomial appearing in the unique expression of f as a sum of monomials xayb.
The value of any rational function f

g where f and g are polynomials is uniquely

determined by virtue of ν being a group homomorphism: ν( f
g ) = ν( f ) − ν(g).

This valuation has value group Z and value semigroup N on R. The valuation
ideals of ν are powers of the defining ideal of the origin:

am = (x, y)m.

(ii) Let π: X −→ Spec R be any proper birational map from a normal scheme
X and let D be any prime divisor of X collapsed to the origin. Let νD be the
valuation given by “order of vanishing along D.” Explicitly, for any f ∈ R,
consider the image of π∗f in the local ring OD,X of X at the generic point of D.
Then νD( f ) is the maximal integer n such that π∗( f ) is divisible by tn in OD,X ,
where t is a uniformizing parameter for the discrete valuation ring OD,X .

This valuation has value group Z, and value semigroup on R a subsemigroup
of N. The valuation ideals are

am = π∗OX( − mD),

which in general, can be tricky to understand. In the simple case where π is
the blowup of the origin and D is the resulting exceptional divisor, this example
recovers Example (i) above.

(iii) Let ν be the valuation on k(x, y) defined by the assignment ν(x) = 1 and
ν(y) = π ∈ R. This uniquely determines a valuation on k(x, y): the value of each
monomial xayb is a + bπ, and because 1 and π are Z-independent, distinct mono-
mials have distinct values, so the value of an arbitrary polynomial is determined
by (7).
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This valuation has value group Z + Zπ ⊂ R and value semigroup N + Nπ on
R. The valuation ideals for νπ are all monomial ideals

am = ({xayb | a + πb ≥ m}).

(iv) Let ν be the valuation given by “order of vanishing along the analytic
arc y = ex − 1.” Explicitly, for a polynomial f , we define ν( f ) to be the highest
power of t dividing the image of f under the map

k[x, y] ↪→ k[[t]]

f (x, y) *→ f (t, et − 1).

Here et − 1 denotes the power series t + t2
2! + t3

3! + · · · (assuming that k has char-
acteristic zero).

This valuation has value group Z and value semigroup N on R. Its valuation
ideals are given by

am =

(

xm, y − x − x2

2!
− · · ·− xm−1

(m − 1)!

)

.

The preceding examples are simple examples of rank one valuations centered
on the origin of the plane. The first three are Abhyankar valuations (see 2.1); all
four have finitely generated value groups. By contrast, there are valuations with
value group Q centered on the origin of the plane (see Example 3.15); while
more complicated to describe, these are actually “typical” in a certain sense. The
classification of valuations centered on the origin of the plane is a beautiful story;
see [23]. For further examples of valuations, including higher rank valuations,
consult [25] §10, or [26] VI §15.

1.7. Multiplier ideals. We now recall the construction and basic properties
of multiplier ideals as well as the asymptotic constructions from [8]. We will give
only a few proofs; the rest can be found for instance in [8] or [16].

Consider a scheme X, smooth and essentially of finite type over a field of
characteristic zero—mainly we have in mind the case where X is a smooth com-
plex variety or the spectrum of a regular local k-algebra. Let a ⊆ OX be a
(coherent) ideal sheaf on X. Given a rational number c > 0 we define multiplier
ideals

J (X; c · a) = J (X; ac) ⊆ OX .

Intuitively these are ideals with remarkable cohomological properties which re-
flect in a somewhat subtle manner the singularities of the divisors of functions
f ∈ a. The construction starts by taking log resolution µ: X′ −→ X of a. Recall
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that this means that µ is a projective birational map from a regular scheme X′

to X such that aOX′ = OX′( − F), where F is an effective Cartier divisor on X′

with the property that the sum of F and the exceptional divisor of µ has sim-
ple normal crossing support. Such resolutions can be constructed (as we are in
characteristic zero) by resolving the singularities of the blow-up of a. We write
KX′/X = KX′ − µ∗KX for the relative canonical divisor of X′ over X. Given a and
c > 0 as above, we now define

J (X; c · a) = J (c · a) = µ∗OX′(KX′/X − [cF]).(8)

Here cF is viewed as an effective Q-divisor on X′, and its integer part [cF] is
defined by replacing the coefficient of each component by the greatest integer
less than or equal to it. This definition is independent of the log resolution µ;
see e.g. [16]. When X is the affine scheme Spec R, we write also J (R, c · a), and
when c = 1 we write simply J (a).

Remark 1.8. Following Lipman [17] it is also possible to define J (X; c · a)
without referring to a log resolution. For example, when R is a regular local ring,

J (R; c · a) =
⋂

ν

{r ∈ K | ν(r) ≥ cν(a) − ν(JacRν/R)},(9)

where the intersection is taken over all valuations of K given by order of vanishing
along some prime divisor on a model X′ of K, and where JacRν/R denotes the
Jacobian ideal of the extension R ↪→ Rν . This is a slight modification of Lipman’s
definition of an adjoint ideal, in which we have allowed for the possibility of a
coefficient c; see [17]. This approach makes sense for arbitrary regular Noetherian
schemes (not just for classes of schemes that admit a good theory of resolution
of singularities as we have assumed here.) However multiplier ideals derive their
power from the properties they satisfy, and the important facts—which rest on
vanishing theorems—are so far only known over fields of characteristic zero.

Remark 1.9. Multiplier ideals were originally defined analytically, as ideals
of germs of holomorphic functions that are L2-integrable for a certain weighted
L2 space. See e.g. [4]. In this approach they appear as sheaves of multipliers,
whence the name.

Among the various properties these ideals satisfy, we will need three in
particular. First:

a ⊆ J (a)(10)

for any ideal a. This is elementary: it boils down to the fact that the relative
canonical bundle KX′/X of a log resolution is effective. More substantially for
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any rational c > 0 and any ℓ ∈ N one has the subadditivity relation:

J (ℓc · a) ⊆ J (c · a)ℓ.(11)

This is established in [6] using vanishing theorems. The third useful property,
which follows easily from the definitions, is the behavior of these ideals under
birational maps. Specifically, if µ: X′ −→ X is a proper birational map, with X′

regular, and if a ⊆ OX is any ideal, then

J (X; a) = µ∗(J (X′; a′) ⊗OX′(KX′/X)),(12)

a′ = a · OX′ being the pullback of a to X′. The reader may consult [16, Part III]
for proofs of these and other basic properties of multiplier ideals.

Given now a graded family a• as above and an index m ∈ Φ, we will
construct an asymptotic multiplier ideal jm = jm(a•) which reflects the asymptotic
properties of all the ideals apm for p ∈ N. From (5) and (8), it is easy to check
that for each m ∈ Φ, we have

J (am) ⊆ J ( 1
p · apm)(13)

for all p ∈ N; see [8, §1]. This, together with the Noetherian property for OX ,
implies that the set of ideals

{J ( 1
p · apm)}p∈N

has a unique maximal element. We then define the mth asymptotic multiplier
ideal jm(a•) to be this maximal element. In other words,

jm(a•) = J ( 1
p · apm) for sufficiently divisible p ∈ N.(14)

In fact, it is not necessary to assume that p is sufficiently divisible: assuming
that am ̸= (0) for m ≫ 0, any very large p will do; see [8], Remark following
Definition 1.4.

The essential property of these ideals is summarized in the next result, which
was established in [8].

THEOREM 1.10. For any graded system a•, any index m ∈ Φ, and any natural
number ℓ ∈ N one has inclusions:

aℓm ⊆ amℓ ⊆ jℓm.(15)

Sketch of proof. The first inclusion is definitional. For the second, note first
that amℓ ⊆ jmℓ: this is easily checked using (10) and (13). So it is enough to show
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that jmℓ ⊆ jℓm. For this, choose any p ≫ 0. Then using the subadditivity relation
(11) one finds:

jmℓ = J ( 1
p · amℓp)

= J ( ℓ
ℓp · amℓp)

⊆ J ( 1
ℓp · amℓp)ℓ

= jℓm,

as required.

Remark 1.11. The second inclusion in (15) does not hold in general if one
works with the “absolute” multiplier ideal J (am) in place of jm.

2. Abhyankar valuations. Let ν be a rank one valuation on a function
field K/k. There are two basic invariants of ν. The rational rank of ν is the
dimension of the Q-vector space Q ⊗Z Γ. The transcendence degree of ν is
the transcendence degree of the residue field of the valuation ring Rν over k.
Equivalently, the transcendence degree is the maximal dimension of the center
of ν over all models of K/k. The basic result relating these invariants is the
Zariski-Abhyankar inequality [26] [1].

THEOREM 2.1. (The Zariski-Abhyankar Inequality) For any valuation on a
function field K/k

trans.deg ν + rat.rank ν ≤ dim K/k.(16)

Furthermore, if equality holds in (16), then the value group Γ is a finitely generated
(free) Abelian group. Here, dim K/k refers to the transcendence degree of K over
k, or equivalently, to the dimension of any complete model for K/k.

A valuation satisfying equality in (16) is called an Abhyankar valuation. Ab-
hyankar valuations generalize the familiar example of divisorial valuations, that
is, valuations given by order of vanishing along some divisor on a normal model
of K/k. Note that divisorial valuations have rational rank one and transcendence
degree n − 1, where n is the dimension dim K/k.

Example 2.2. For the valuations in Example 1.6, the rational rank and tran-
scendence degree are easily computed: for (i) and (ii), the rational rank is 1 and
the transcendence degree is 1; for (iii), the rational rank is 2 and the transcen-
dence degree is zero; and for (iv), the rational rank is 1 and the transcendence
degree is zero.
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We now state the main technical result of the present paper:

THEOREM 2.3. Let ν be an Abhyankar valuation on a function field K/k of
characteristic zero. Let R be the local ring of the center of ν on some smooth model
of K, and let {am}m∈Φ be the graded family of ν-valuation ideals in R. Then there
exists a nonzero element δ ∈ R such that

δ · jm ⊆ am

for all m ∈ Φ, where {jm}m∈Φ are the asymptotic multiplier ideals associated
to a•.

Remark 2.4. For any ν-valuation ideal a in domain R and for an arbitrary ideal
b, the colon ideal (a : b) is also a ν-valuation ideal of R; see [26, p. 342]. Thus
(taking Φ to be the full value semigroup ν(R)), there is a function α: Φ −→ Φ
such that

(am : jm) = aα(m).

Theorem 2.3 says that for Abhyankar valuations centered on a regular local
domain essentially of finite type over a field of characteristic zero, this function
is bounded above. In other words, the graded family of (m-primary) valuation
ideals (am : jm) has a minimal element.

Proof of Theorem A. In view of the preceding Remark, Theorem A from
the Introduction follows immediately upon combining Theorems 1.10 and 2.3.
Indeed, one simply takes k = ν(δ), where δ is the nonzero element of R whose
existence is guaranteed by Theorem 2.3. Since δjm ⊂ am for all m, clearly jm ⊂
am−k for all m, and so aℓm ⊂ jℓm ⊂ aℓm−k.

Theorem 2.3 also implies that Izumi’s theorem holds for nondivisorial Ab-
hyankar valuations in our setting:

COROLLARY 2.5. (Izumi’s Theorem for Abhyankar valuations) Let ν and w be
rank one Abhyankar valuations on a function field K/k of characteristic zero and
let (R, m) be any regular local ring essentially of finite type over k on which both ν
and w are centered. Then there exists C > 0 such that

ν(x) ≥ Cw(x)(17)

for all nonzero elements x ∈ R.

Proof. Without loss of generality, we may assume that the minimal value
obtained by w on R is 1. Indeed, because R is Noetherian, w must achieve some
minimal value on R\0; now we can simply scale the values of w and ν by this
minimal value.
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Now we claim that there exists a value p such that

amp ⊂ bm(18)

for all m ∈ N, where {am} (respectively {bm}) denote valuation ideals of ν
(respectively, w). Indeed, note that b1 = m, and so mℓ ⊂ bℓ for all ℓ ∈ N. Thus
to prove (18), it is enough to show that there exists p such that

apℓ ⊂ mℓ(19)

for all ℓ. (In other words, we are reduced to the case where w is the m-adic
valuation on R.) By Theorem 1.10, we see that (19) follows immediately provided
that some jp ⊂ m. But if all jp are trivial, we have δ ∈ ∩am = (0), contradicting
Theorem 2.3.

Finally, (17) follows as in [11, Lemma 1.4] by setting C = 2p − 1 (and
enlarging p if necessary so that p ≥ 2). Indeed, suppose on the contrary that
there is some x ∈ R such that ν(x) > Cw(x). Set m = w(x) + 1. Then x ∈ amp, but
x /∈ bm.

Remark 2.6. Theorems A and 2.3—and also the Izumi-type statement of
Corollary 2.5—can fail for non-Abhyankar valuations. In fact, consider the val-
uation ν given by order of vanishing along the exponential curve y = ex − 1
(Example 1.6(iv)). Here ap ⊆ R = C[x, y](x,y) has colength p. So there cannot
exist a nontrivial ideal j ⊆ R having the property that amℓ ⊆ jℓ for fixed m and
ℓ ≫ 0, since the colength of jℓ would grow quadratically in ℓ. Therefore the
inclusion (4) in Theorem A can only hold with jm = R for all m. On the other
hand, ∩mam = (0), so there cannot exist a fixed nonzero element δ ∈ R with
δ · jm ⊆ am for all m. However for an arbitrary valuation ν, it is possible that
the colon ideals dm = (am : jm) “grow slowly”: see Remark 3.14 for a precise
statement.

We now prove Theorem 2.3. The outline is this: Lemma 2.7 below guarantees
that it is enough to find δ after blowing up, but after a suitable blow up, any
Abhyankar valuation is “essentially monomial” by Proposition 2.8, where a direct
computation can be carried out.

LEMMA 2.7. Let π: X −→ Y be a proper birational map of smooth varieties
over k. Assume that there exists an ideal d′ ⊆ OX such that d′ · jm(X) ⊂ am(X).
Then there exists an ideal d ⊆ OY such that d · jm(Y) ⊆ am(Y).

Proof. Let d = π∗(d′ω−1
X/Y ). Note that both d′ and ω−1

X/Y are ideals of OX , so d
is an ideal of OY . Now

d · jm(Y) = π∗(d′ω−1
X/Y ) · π∗

(

J
(

X,
1
p
· amp(Y) · OX

)

⊗ ωX/Y

)
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where p is sufficiently large. Here we have used the definition of the asymptotic
multiplier ideal together with the transformation rule (12) for multiplier ideals
under proper birational morphisms. Therefore

d · jm(Y) ⊆ π∗

(

d′ω−1
X/Y · J

(

X,
1
p
· amp(Y)OX

)

⊗ ωX/Y

)

= π∗

(

d′ · J
(

X,
1
p
· amp(Y) · OX

))

.

Because amp(Y)OX ⊂ amp(X) for all m and p, the corresponding inclusion holds
for the multiplier ideals. Note that the multiplier ideal appearing on the right is that
associated to the pull-back of a valuation ideal on Y rather than the corresponding
valuation ideal on X. However amp(Y)·OX ⊆ amp(X) and consequently for p ≫ 0:

d′ · J
(

X,
1
p
amp(Y) · OX

)

⊆ d′ · J
(

X,
1
p
amp(X)

)

= d′ · jm(X).

But d′ · jm(X) ⊆ am(X), and putting these inclusions together we find that

d · jm(Y) ⊆ π∗(d′ · jm(X)) ⊆ π∗(am(X)) = am(Y)

for all m, as required.

The next Proposition is probably well known, at least for valuations of tran-
scendence degree zero. We learned that case from Dale Cutkosky.

PROPOSITION 2.8. Let ν be a rank one Abhyankar valuation on a function field
K/k of characteristic zero. Given any model Y of K/k, there exists a smooth model
X dominating Y and a regular system of parameters x1, . . . , xr for the local ring of
ν on X such that ν(x1), . . . , ν(xr) freely generate the value group Γ.

Proof. Let r denote the rational rank of ν, so by Theorem 2.1, Γ ∼= Zr.
Fix f1, . . . , fr in the field K, whose values generate Γ. By replacing fi by 1

fi
if

necessary, we can assume all v( fi) > 0.
We can write each fi as a fraction ai

bi
, where the ai and bi are regular on

some neighborhood of the center of ν on Y . By blowing up the ideals (ai, bi),
we can make the fractions ai

bi
regular on some neighborhood of the center. By

blowing up further if necessary, we can assume that the dimension of the center is
the transcendence degree of ν—which means its codimension equals the rational
rank in the presence of the Abhyankar hypothesis. So we have created a model Y ′

dominating Y where the elements fi are regular on a neighborhood of the center
of ν, and where the codimension of the center is exactly r, the rational rank of Γ.

Now we use embedded resolution of singularities to resolve the hypersurface
defined by the product f1f2 · · · fr in a neighborhood of the center on Y ′. This
produces for us a smooth model X dominating Y ′ such that the pullback of the
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hypersurface to this model has simple normal crossing support. In particular, for
any closed point x of X, we have

f1f2 · · · fr = uxa1
1 xa2

2 · · · xaN
N ,

where x1, . . . , xN is a regular system of parameters at x, the exponents ai are
natural numbers, and u is a regular function invertible in a neighborhood of x.
Because the local rings of X are unique factorizations domains, for each fi we
have

fi = uix
ai1
1 xai2

2 · · · xaiN
N

for some aij ∈ N and some unit ui.
In particular, choosing the point x to be in the center W of ν on X, then the

elements ui are also units in the local ring OW,X . Because units in OW,X have
value zero, we see that

ν( fi) =
N
∑

j=1

aijν(xj).

So clearly, the elements ν(xj) generate Γ.
We claim that exactly r of the elements xj have nonzero value. Indeed, if

fewer have nonzero value, then the rank of Γ can not be r. But if more have
nonzero value, then there are at least r+1 of the parameters x1, . . . , xr+1 contained
in the defining ideal of the center W. This would force W to have codimension
greater than r, a contradiction.

Relabeling so that the parameters x1, . . . , xr are those with positive value,
note finally that the images of these elements generate the maximal ideal in the
local ring of X along W. Indeed, this maximal ideal is generated by the image of
the defining ideal IW of W, and we have already remarked that (x1, . . . , xr) ⊂ IW .
But since x1, . . . , xr are part of a regular sequence of parameters in a neighbor-
hood of W, they must generate the maximal ideal after localizing at IW . Thus
the proposition is proved: the elements x1, . . . , xr of K are a regular system of
parameters for the local ring OW,X and the values ν(x1), . . . , ν(xr) generate Γ.

We can now finish the proof of the main theorem.

Proof of Theorem 2.3. By Lemma 2.7 and Proposition 2.8, we can assume that
we are in the following situation. The variety X is smooth, and the center W of
ν on X is of codimension r equal to the rational rank of ν; furthermore, the local
ring R of X along W has a regular system of parameters x1, . . . , xr whose values
generate the value group Γ. We wish to prove that there exists δ ⊂ OX such
that δjm ⊂ am. Because am is primary to IW (see Proposition 1.5), it is enough
to check this after localizing along the defining ideal of W, so we consider the
graded family of valuation ideals {a•} in the local ring (R, m).
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Because the values of the parameters x1, . . . , xr are all Z-independent, the
ideals am are generated by “monomials” in x1, . . . , xr. Indeed, fix any m ∈ Φ. By
(1.5), some power of the maximal ideal of R, say mt, is contained in am. Now
consider an arbitrary element f of R (not already in mt). Modulo mt, f can be
written as a sum of monomials in the regular system of parameters x1, . . . , xr

with unit coefficients. Because the values of the xi are independent, each of these
monomials has a distinct value, and so the value of f is equal to the value of the
unique smallest value monomial in this sum (Cf (7)). So each of the monomial
“terms” of f are in am, and am is generated by monomials in the regular system
of parameters for R.

We now claim that this setup is sufficiently close to the standard monomial
case so as to be able to apply the computation derived in [10] for the multi-
plier ideal of a monomial ideal in a polynomial ring. Roughly this reason is
this: the ring R is étale over a polynomial ring and the computation of multi-
plier ideals commutes with étale extension. We justify this carefully in the next
paragraph.

Think of the parameters x1, . . . , xr as local sections of OX and extend them
to a full set of regular parameters in some affine neighborhood U of W on X.
The inclusion

k[x1, . . . , xr, xr+1, . . . , xn] ↪→ OX(U)(20)

induces a natural map

U −→ An(21)

consisting of an open immersion followed by a finite map. Localizing at the prime
ideal of W and its corresponding contraction to the polynomial ring, we have an
inclusion

A = k[x1, . . . , xr, xr+1, . . . , xn](x1,...,xr) ↪→ OW,X = R.(22)

Our claim above that am is a monomial ideal is tantamount to saying that am is
the expansion of a monomial ideal a′m ⊂ k[x1, . . . , xn]. The monomial ideal a′m is
itself a valuation ideal for the valuation on k(x1, . . . , xn) obtained by restricting
ν to this subfield. Because the maximal ideal of A expands to the maximal ideal
of R, the map of rings (22) is étale, which is to say, the morphism (21) is étale
is a neighborhood of W [18]. Thus replacing U by a possibly smaller open
neighborhood, we can assume the morphism

U −→ An

consists of compositions of open immersions with a finite étale map. But the com-
putation of multiplier ideals commutes with pullback under both open immersions
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(obvious) and finite étale maps (straightforward; see [16, 9.5E]). So

J (An, c · a′m) · OU = J (U, c · a′mOU),

and passing to the local ring at W (which, after all, amounts to taking a limit of
pullbacks to smaller and smaller affine neighborhoods of W), we see that

J (An, c · a′m)R = J (R, c · a′mR) = J (R, c · am).

So to compute the multiplier ideal of am in the local ring R, it is sufficient to
compute the multiplier ideal of the monomial ideal a′m in the polynomial ring
k[x1, . . . , xn] and expand to R.

We recall the formula for the multiplier ideal of a monomial ideal from [10].
Let a ⊂ k[x1, . . . , xn] be an ideal generated by monomials and let L denote its
lattice of exponents:

L = {(a1, . . . , an) | xa1
1 · · · xan

n ∈ a}.

Then the multiplier ideal J (c · a) is the ideal of the polynomial ring generated
by those monomials xb1

1 · · · xbn
n satisfying

(b1, . . . , bn) + (1, . . . , 1) ∈ {hull(cL)}int,

where {hull(cL)}int denotes the interior of the convex hull of the lattice L scaled
by the real number c.

In our case, the monomial ideals a′m are generated by

{

xa1
1 · · · xan

n |
∑

aiν(xi) ≥ m
}

,

so the multiplier ideals are given by

J (c · a′m) =
({

xb1
1 · · · xbn

n |
∑

(bi + 1)ν(xi) > cm
})

.

In particular, for any real positive p,

J (c · a′m) = J
(

c
p
· a′mp

)

so that the asymptotic multiplier ideals j′m of the graded family {a′m} in the
polynomial ring satisfy

j′m = J (a′m).
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Expanding to R, we see that the asymptotic multiplier ideals in R are given by

jm(a•) =
({

xb1
1 · · · xbn

n |
∑

(bi + 1)ν(xi) > m
})

.

Finally, using this description of the asymptotic multiplier ideals, we observe
that the element δ = x1 · · · xr in R satisfies the condition that

δjm ⊆ am

and Theorem 2.3 is proved.

3. The volume of a graded family of m-primary ideals. In this section
we introduce the volume of a graded family of m-primary ideals, and compare it
to the multiplicities of the individual ideals of the graded system. In particular,
we deduce Corollary C from the Introduction as a special case of a general
phenomenon.

Definition 3.1. Let a• = {am}m∈Φ be a graded family of m-primary ideals
in a local Noetherian ring (R, m) of dimension n. The volume of a• is the real
number

vol(a•) = lim sup
m∈Φ

length (R/am)
mn/n!

.(23)

Remark 3.2. The volume of a graded system is the local analogue of the
volume of a big divisor D on a projective variety X of dimension n, which is
defined to be

vol(D) = lim sup
m

h0(X,OX(mD))
mn/n!

.

When X is smooth and D is ample, this coincides up to constants with the volume
of X determined by any Kähler form representing c1(OX(D)), which explains the
terminology.

While Definition 3.1 works well for graded systems indexed by the natural
numbers N, it does not have very good behavior for arbitrary graded systems
{am} indexed by more general semigroups Φ ⊆ R≥0. For example, suppose that
Φ = N + N

√
2, and put

aj+k
√

2 = bj · ck

for some fixed ideals b, c ⊆ R. Then the volumes of the two N-graded subsystems
{aj} and {ak

√
2} will not in general coincide. In order to avoid this sort of



428 L. EIN, R. LAZARSFELD, AND K. E. SMITH

pathology, we will henceforth adopt the following:

Convention 3.3. For the remainder of this section, we deal with the graded
families arising from ideal filtrations; that is, we work with graded families
{am}m∈Φ which satisfy the additional condition

am ⊆ am′ for any two indices m, m′ ∈ Φ with m ≥ m′.(24)

Of course (24) is automatic for the graded families arising from valuations.

Remark 3.4. The volume of a graded family of m-primary ideals satisfying
(24) is finite. Indeed, fix any m ∈ Φ. Since aℓm ⊂ amℓ for every positive integer
ℓ, we see that

length (R/aℓm)
(mℓ)n ≥ length (R/amℓ)

(mℓ)n

for all ℓ ∈ N. So taking the limit as ℓ gets large, Lemma 3.8 below ensures that
the volume of {a•} is bounded above by the rational number e(am)/mn, where
e(am) denotes the multiplicity of the ideal am.

Example 3.5. (i) The volume of the trivial graded family {am} of powers of
a fixed ideal a is equal to the multiplicity of the ideal. Likewise, the volume of
{am} of integral closures of a fixed power of an ideal a is also the multiplicity
of a.

(ii) Let ν be the valuation on k(x, y) given by “order of vanishing at the
origin” in Example 1.6(i). As we have seen, the valuation ideals of ν on k[x, y]
are given by am = (x, y)m. In this case, the volume is the multiplicity of the
maximal ideal (x, y) in k[x, y], which is one.

(iii) Let ν be the monomial valuation of Example 1.6(iii). Then each am ⊂
k[x, y] is generated by the monomials xayb, where a + πb ≥ m. So the length of
k[x, y]/am is equal to the number of integer points in the first quadrant of the
Cartesian plane inside the triangle bounded by the a-axis, the b-axis, and the line
a+πb = m. The area of this triangle is roughly 1

2πm2. Taking the limit, the volume
of ν on Spec k[x, y] is 1

π . An evident modification of this shows that any positive
real number can occur as the volume of a graded family of ideals in k[x, y].

(iv) Let ν be the arc valuation of Example 1.6(iv). Then the quotients R/qm

are spanned by the residues of 1, x, x2, . . . , xm−1, so the length of R/qm is m and
the volume of ν is zero. However, the 1-volume is 1; cf. Remarks 3.7 and 3.17.

Remark 3.6. The volume of the family of ideals associated to a divisorial
valuation was considered by Cutkosky and Srinivas in [3]. In the two-dimensional
case, they show that this invariant is always a rational number: this essentially
reflects the existence of Zariski decompositions. However Kuronya [15] gives an
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example of a four dimensional divisorial valuation with irrational volume. His
construction makes use of Cutkosky’s curves in P3 having irrational Castelnuovo-
Mumford regularity [2].

Remark 3.7. It is also possible to define the p-volume of a graded system a•
for any p ≤ n = dim R as

lim sup
m∈Φ

length (R/am)
mp/p!

.

In the current paper, we will not pursue this further. See, however, Remark 3.17.

LEMMA 3.8. Let {at}t∈Φ be a graded system of m-primary ideals in a Noethe-
rian local ring (R, m) of dimension n satisfying (24). Then for any fixed positive
m ∈ Φ,

lim sup
t∈Φ

length (R/at)
tn = lim sup

ℓ∈N

length (R/amℓ)
(mℓ)n .

In particular, the volume of the mth Veronese graded subsystem {amℓ}ℓ is given by

vol({amℓ}ℓ∈N) = mnvol({at}t∈Φ).

Remark 3.9. It follows from Lemma 3.8 that volume can be defined as

lim sup
ℓ∈N

length (R/aℓm)
(ℓm)n/n!

,

where m is any fixed nonzero real number. In particular, with the convention that
1 ∈ Φ, the volume is

lim sup
m∈N

length (R/am)
mn/n!

.

Proof of Lemma 3.8. For each t ∈ Φ, we have

m ·
[

t
m

]

≤ t < m ·
[

t
m

]

+ m,

where [ t
m ] denotes, as usual, the greatest integer less than or equal to the real

number t
m . Setting ℓ = [ t

m ], we have thanks to (24):

a(ℓ+1)m ⊂ at ⊆ aℓm,
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so that

length (R/a(ℓ+1)m)
tn ≥ length (R/at)

tn ≥ length (R/aℓm)
tn .

Since limt→∞
t

[ t
m ]m

= 1, one has

lim sup
ℓ→∞

length (R/aℓm)
(ℓm)n = lim sup

t→∞

length (R/aℓm)
tn ,

and likewise with ℓ replaced by ℓ + 1. Thus

lim sup
ℓ→∞

length (R/a(ℓ+1)m)
((ℓ + 1)m)n ≥ lim sup

t→∞

length (R/at)
tn ≥ lim sup

ℓ→∞

length (R/aℓm)
(ℓm)n .

Since the expression on the left here is equal to the expression on the right, the
lemma is proved.

The next proposition shows that from the point of view of multiplier ideals,
graded families with zero volume are trivial.

PROPOSITION 3.10. Let a• be a graded family of m-primary ideals in a local
ring (R, m) essentially of finite type over a field of characteristic zero. Assume that
a• satisfies (24). If {a•} has volume zero, then each of its asymptotic multiplier
ideals jm(a•) is the unit ideal.

Proof. Fix any m ∈ Φ. Then for all ℓ ∈ N, we have

amℓ ⊆ jℓm,

whence e(jm) ≥ vol(a•) thanks to the previous Lemma. The assertion follows.

The following proposition allows us to deduce Corollary C from the Intro-
duction.

PROPOSITION 3.11. Let (R, m) be a regular local ring of dimension n, essentially
of finite type over a field of characteristic zero. Let {am}m∈Φ be a graded family of
m-primary ideals of R satisfying (24), and let {jm}m be the associated sequence of
asymptotic multiplier ideals. Assume that there is a fixed nonzero element δ ∈ R
such that

δ · jm ⊆ am for all m ∈ Φ.(25)

Then

vol(a•) = lim sup
m→∞

e(am)
mn = lim sup

m→∞

e(jm)
mn ,

where e(a) denotes the multiplicity of the ideal a in the local ring R.
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(As in Lemma 3.8, the limits can be taken over all m ∈ Φ or just over all
positive integer multiples of a fixed element in Φ. For graded systems indexed
by the natural numbers N, one does not need to assume the filtration condition
(24).)

Proof. Given any index m ∈ Φ, set dm = (am : jm). This is an m-primary
ideal, and since all the dm contain the fixed element δ one verifies that

lim sup
m→∞

e(dm)
mn = 0.

Indeed, since am
1 ⊂ am ⊂ dm, we see that (am

1 + δ) ⊂ dm for all m. Thus
e(dm) ≤ e(a1

m) = mn−1e(a1), where a1 is the image of the ideal a1 in the (n− 1)-
dimensional ring R/(δ).

Now fix a large index m ∈ Φ. Then for all ℓ we have

(dmjm)ℓ ⊆ aℓm ⊆ amℓ ⊆ jmℓ ⊆ jℓm,

and so

length (R/jℓm)
ℓn ≤ length (R/amℓ)

ℓn ≤ length (R/aℓm)
ℓn ≤ length (R/(dmjm)ℓ)

ℓn

for all ℓ. Taking the limit as ℓ goes to infinity, we find that

e(jm) ≤ vol({amℓ}ℓ) ≤ e(am) ≤ e(dmjm),(26)

where {amℓ}ℓ is the mth Veronese subgraded sequence of {a•}.
But now note that dividing by mn, the expressions on the left and right here

(namely e(jm)
mn and e(dmjm)

mn ) have the same limit superior as m gets large. In fact,
Teissier’s Minkowski Inequality [24, p. 39] implies that

e(dmjm)1/n ≤ e(dm)1/n + e(jm)1/n

for all m, whence

e(dmjm)1/n

m
≤ e(dm)1/n

m
+

e(jm)1/n

m

for all m. But limm→∞
e(dm)

mn = 0, and so

lim sup
m→∞

e(dmjm)
mn ≤ lim sup

m→∞

e(jm)
mn .
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On the other hand, since e(jm) ≤ e(δmjm), the reverse inequality always holds.
Finally, using Lemma 3.8, we conclude from (26) that

lim sup
m→∞

e(jm)
mn = vol(a•) = lim sup

m→∞

e(am)
mn ,

as claimed.

Remark 3.12. The proof shows also that the “volume” of {jm} is equal to
the volume of the graded system {am} (even though {jm} itself is not a graded
system).

Proof of Corollary C. To prove Corollary C from the Introduction, let ν be a
rank one Abhyankar valuation centered at a smooth point on a complex variety,
and let R be the local ring of that point. By Theorem 2.3, there exists a nonzero
element δ such that δjm ⊂ am for all m ∈ Φ. Thus Corollary C is an immediate
consequence of Proposition 3.11.

Remark 3.13. Another example of a graded family satisfying (25) is given
by the base loci of the linear series of a big divisor. Specifically, fix a big divisor
L on a smooth projective variety X, and let b′m ⊂ OX be the base ideal of the
linear system |mL|. The components of the base locus stabilize as m → ∞, so
choose one component and localize along it to get a graded family of ideals bm

in the local ring along the generic point of the component. One can show that
there exists D such that OX( − D) · jm ⊂ bm for all m (see [16], Chapter 10). So
the conclusion of Proposition 3.11 holds for b•.

Remark 3.14. The conclusion of Proposition 3.11 holds under the weaker
assumption that there is a family of nonzero m-primary ideals dm, with lim sup
e(dm)

mn = 0, such that dm·jm ⊆ am. As far as we know, it is possible that every graded
system am has this property, namely that the sequence am is “tightly bound” to the
sequence jm in the sense that lim sup e(am:jm)

mn tends to zero as m goes to infinity.
In particular, Proposition 3.11 may hold for a completely arbitrary graded system
of m-primary ideals, so in particular, for an arbitrary valuation. Since we posed
this question in an earlier version of this manuscript, Mircea Mustata has shed
some light on the question of whether Proposition 3.11 holds more generally.
Specifically, he shows that the volume of an arbitrary graded system of ideals is
equal to the limit of the normalized multiplicities e(am)

mn in general—that is, that the
first equality in the conclusion of Proposition 3.11 holds without the assumption
that there exists a δ such that δjm ⊂ am for all m; see [19]. In particular, Mustata
shows that Corollary C holds for any rank one valuation, Abhyankar or not.
However, the relationship with the sequence of asymptotic multiplier ideals (as
well as the second equality in Proposition 3.11) remains an open question in the
general case.
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Theorem 2.3 implies that the volume of an Abhyankar valuation on any model
is positive, and we saw in Example 3.5 (iv) that the volume of a non-Abhyankar
valuation can be zero. However, it is not the case that a valuation has positive
volume if and only if it is Abhyankar, as the example below shows.

Example 3.15. In [26, pp. 102–104], there is a construction of a valuation
on K = k(x, y) with value group an arbitrary additive subgroup of the rational
numbers; see also [25, §10, Example 12]. Using this, we can construct a non-
Abhyankar valuation of arbitrary volume (even normalizing so that ν(m) = 1).

Let ν(y) = 1 and set ν(x) = β0 > 1, some rational number. Let c0 be the
smallest positive integer such that c0β0 ∈ Z. As in [26], there exists a valuation
so that the polynomial

q1 = xc0 − yβ0c0

has value β1 equal to any rational number greater than (or equal to) the “expected
value” of β0c0. Let us choose this value so that β1 = d1

c1
> β0c0, where di and ci

are relatively prime positive integers with c1 relatively prime to c0.
This process can be repeated, so that we can construct a valuation having the

values on x, y, and q1 as already specified, and having arbitrary rational value
β2 ≥ β1c1 on the polynomial

q2 = qc1
1 + yβ1c1 .

Again, we make this choice of β2 so that the smallest positive integer c2 such
that c2β2 ∈ Z is relatively prime to each of the preceding ci.

In this way, we inductively construct a sequence of polynomials qi, rational
numbers βi, and positive integers ci with the following properties:

qi+1 = qci
i + yβici ,

and

βi+1 > βici,

where ci is the smallest positive integer such that ciβi ∈ Z, and ci is relatively
prime to the product c0c1 · · · ci−1. As shown (even more generally) in [26], this
uniquely defines a valuation ν on k(x, y), such that ν(qi) = βi. Indeed, using the
Euclidean algorithm, and setting q−1 = y and q0 = x, every polynomial has a
unique expression as a sum of “monomials” in the qi:

qa−1
−1 qa0

0 qa1
1 · · · qat

t

where a−1 is arbitrary but the remaining exponents ai satisfy ai < ci. Because
each of these “monomials” has a distinct value, the valuation ideals on k[x, y]
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have the form

am =

⎛

⎝

⎧

⎨

⎩

qa−1
−1 qa0

0 qa1
1 · · · qat

t |
t
∑

j=−1

βiai ≥ m; aj ≤ cj − 1 for j ≥ 0

⎫

⎬

⎭

⎞

⎠ .

In particular, the quotients k[x, y]/am have vector space basis consisting of
“monomials”

qa−1
−1 qa0

0 qa1
1 · · · qat

t where
t
∑

j=−1

βiai < m and aj ≤ cj − 1 for j ≥ 0.

Although the number of products t here can be arbitrary, note that for each fixed
m, we only need t up to the greatest integer such that βt < m.

So computing the volume amounts to counting the number of monomials in
this basis. A computation shows that the volume of ν is the limit of the following
decreasing sequence of rational numbers

αi =
1
β0

(

c0β0

β1

)

· · ·
(

ciβi

βi+1

)

.

(Calculation hint: this is the limit of the subsequence {2!λ(k[x,y]/am)
m2 } indexed by

m = ctβt, which bounds the volume below. On the other hand, we can approximate
ν by a sequence of valuations νi which take the values βj on qj for j ≤ i, and the
“expected values” on the remaining qi (which is to say that the corresponding
sequences of βj and cj satisfy βj = cj−1βj−1 for j > i). Then just observe that the
volume of each νi bounds the volume of ν above and compute that the volume
of νi is αi.)

By choosing the values of βi and ci appropriately, one can make this limit be
any nonnegative real number (note that we have normalized so that β−1 = ν(y) =
1). For a completely explicit example, take ci to be the standard enumeration of
the prime numbers (c0 = 2, c1 = 3, . . .), and set βi+1 = ciβi + 1

ci+1
. Then the volume

turns out to be the reciprocal of the infinite sum

1 +
1
c0

+
1

c0c1
+

1
c0c1c3

+ · · · ,

which approaches a real number between 1
2 and 1.

Discussion 3.16. (The associated graded algebra of a valuation) Fix a rank
one valuation ν on a function field K/k centered a local domain (R, m) and let
Φ be the corresponding value semigroup ν(R). The associated graded algebra of
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the valuation on R is

grν R =
⊕

m∈Φ
am/a>m,

where a>m denotes the valuation ideal {f | ν( f ) > m}. It is easy to check that
grν R is a domain, but it is not finitely generated over R/m (its degree zero piece)
in general. The transcendence degree of grν R over R/m is equal to the rational
rank of ν plus the transcendence degree of Rν/mν over R/m, where mν denotes
the maximal ideal of the valuation ring Rν . If grν R is finitely generated, therefore,
its Krull dimension is equal to this sum. In this case, the associated graded ring has
dimension equal to the dimension of R if and only if the valuation is Abhyankar.
(Here we are using a slightly different, but equivalent (for function fields), form of
Abhyankar’s inequality (16) which says that rat.rankν+trans.degR/m(Rν/mν) ≤ R;
this inequality differs from (16) by addition of the same number, namely the
transcendence degree of R/m over k, to both sides.)

When the associated graded ring of ν is finitely generated and N-graded, the
volume of ν has a simple interpretation in terms of grν R, namely it is equal
to the Hilbert multiplicity of ν. Recall that if A = ⊕Am is a finitely generated
N-graded domain over a field A0 containing nonzero elements of every degree,
then there exists a positive rational number e such that

dim Am = e
mn−1

(n − 1)!
+ O(mn−2)(27)

where n is the Krull dimension of A and dim denotes the dimension over the
field A0. This number e is called the Hilbert multiplicity of A. (To see this, note
that for some r, the Veronese subalgebra A(r) is generated in degree one (or r),
so A decomposes as a direct sum of A(r)-modules A(0) ⊕A(1) ⊕ · · ·⊕A(r−1), where
A(i) = ⊕j∈NAjr+i. Thus each of the modules A(i) has some multiplicity ei over the
ring A(r). In general, these multiplicities can be different, but if A has elements
of every degree, one shows that the ei are all equal. Indeed, to see that ei = ei′ ,
just take a nonzero element x ∈ Ai−i′ and note that the cokernel of the injective
map A(i′)

x→A(i) has dimension strictly less than the common dimension of A(i)

and A(i′). Thus A(i) and A(i′) necessarily have the same multiplicity, e. Thus the
Hilbert polynomials of all the A(i) have the same leading terms, leading to the
formula for the dimension above (with e suitably normalized).)

Thus

length (R/am) =
m−1
∑

i=0

length (am/am+1) =
e

(n − 1)!

[m−1
∑

i=0

i(n−1) + O(mn−2)

]

,
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and since
∑m−1

i=0 [i(n−1) + O(mn−2)] = mn

n + O(mn−1), we see that

lim
m→∞

length (R/am)
mn/n!

= e.

Remark 3.17. When grν R is finitely generated, the preceding discussion
indicates that it is natural to consider the p-volume of ν on R, where p =
rat.rank ν + trans.degR/m(Rν/mν); see Example 3.5(iv). However, Example 3.15
indicates that the p-volume need not be finite in general, even when the graded
ring has transcendence degree p.

4. Generalizations and further applications. Let D be an arbitrary effec-
tive divisor on a smooth variety X and let π: X −→ Y be a proper birational map
to a smooth variety Y that collapses D to a point. The collection

{π∗OX( − mD)}m∈N(28)

forms a graded family of ideals in OY . Although this is not the graded family
of a valuation, it can be handled by the methods developed here for families
of valuation ideals because it is an intersection of graded families of valuation
ideals.

Definition 4.1. Let {{aλm}m∈Φ}λ∈Λ be an arbitrary collection of graded fami-
lies, all indexed by the same semigroup Φ ⊂ R. The intersection graded family
is defined by

⋂

λ∈Λ
aλ• :=

⎧

⎨

⎩

⋂

λ∈Λ
aλm

⎫

⎬

⎭

m∈Φ

.

Note that if each aλ• satisfies (24), then so too does their intersection.
The asymptotic multiplier ideals of an intersection family satisfy

jm

⎛

⎝

⋂

λ∈Λ
aλ•

⎞

⎠ ⊂
⋂

λ∈Λ
jm({aλ•})(29)

Indeed, for each λ, we have {
⋂

λ∈Λ aλm} ⊂ aλm for all m, so the corresponding
inclusion holds for the asymptotic multiplier ideals.

Let S be any collection of rank one valuations centered on a domain R. For
each m ∈ R≥0, set

am = {f ∈ R | ν( f ) ≥ m for all ν ∈ S}.(30)
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The collection {am}m∈R≥0 forms a graded family of ideals in R indexed by the
nonnegative real numbers (or by considering only distinct such ideals, some
subsemigroup of R.) This graded family is the intersection, over all ν ∈ S, of
the graded families {qm(ν)}m∈R≥0 of ν-valuation ideals.

As a variant, one can also assign multiplicities to the valuations in S. Say
for each ν in S, we assign some positive real number eν . Then for each m ∈ R,
set

am =
{

f ∈ R | ν( f )
eν

≥ m for all ν ∈ S
}

.(31)

The collection {am}m∈R forms a graded family of ideals in R, indexed by (some
subsemigroup of) the real numbers. For example, the graded family (28) above is
of this form: If D =

∑

eiDi where the Di are prime divisors, then the set S is the
set of valuations νi given by order of vanishing along Di and the multiplicities
eνi are the coefficients ei. These graded families are also intersections: the graded
family (31) is the intersection, over all ν in S, of the graded families {qeνm(ν)}m

of the eν th Veronese subfamily of the graded family of valuation ideals of ν.
Alternatively, it can be interpreted as an intersection of graded families of val-
uation ideals: it is the intersection of the graded families of valuation ideals in
the set S ′, where the set S ′ is obtained from S by replacing each valuation ν in
S by the valuation 1

eν
ν. So this is really no more general than the intersection

(30) discussed in the previous paragraph. Once again, condition (24) is satisfied
by these families.

One can also define the product of two graded families {a•}m∈Φ and {b•}m∈Φ
by

{ambm}m∈Φ.

Note that the asymptotic multiplier ideals of the product graded family satisfy

jm(a•b•) ⊆ jm(a•)jm(b•),(32)

since, for all large p, we have the inclusion of “usual” multiplier ideals J ( 1
p ·

(ampbmp)) ⊂ J ( 1
p · amp)J ( 1

p · bmp) by subadditivity [6]. By induction, the prod-
uct of any finite number of graded families indexed by the same semi-group is
defined, and the same multiplicativity of the asymptotic multiplier ideals holds.

Our Main Theorem 2.3 and its ensuing corollaries can be extended to graded
families arising as finite intersections or products of Abhyankar valuations. Ex-
plicitly:

COROLLARY 4.2. Let S be a finite collection of rank one Abhyankar valuations
of a function field K/k of characteristic zero, all centered on some local ring R
of a model of K/k. Let {a•} denote either the corresponding intersection or the
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corresponding product graded family of ideals. Then there exists a nonzero element
δ ∈ R such that

δjm ⊂ am

for all m ∈ R, where {jm} is the associated sequence of asymptotic multiplier
ideals. Furthermore, the conclusions of Theorem A and Corollary C hold for this
graded family of ideals.

Proof. This is immediate from Theorem 2.3. For each ν ∈ S, let δν be
the nonzero element guaranteed by Theorem 2.3 and let δ be their product. The
desired inclusion follows from (29) or from (32), respectively, for the intersection
and the product case.

Proof of Corollary B. For the graded system (28) of a divisor D, Corollary 4.2
immediately implies Corollary B from the Introduction. It also guarantees the
existence of a nonzero δ such that

δℓ(π∗OX( − mℓD)) ⊆ (π∗OX( − mD))ℓ

ℓ, m ∈ N with m ≫ 0.

Finally, we point out the following Minkowski Inequality for intersections
and products of graded families.

COROLLARY 4.3. (Minkowski Inequality) Let a• and b• be two graded families
of m-primary ideals in a regular local ring essentially of finite type over a field of
characteristic zero. Assume that the hypothesis of Proposition 3.11 holds for each
of these systems. Then

vol
(

a•
⋂

b•
)1/n

≤ vol(a•b•)1/n ≤ vol(a•)1/n + vol(b•)1/n.

Proof. Since ambm ⊆ am
⋂

bm for all m, it is evident that vol(a•
⋂

b•) ≤
vol(a•b•). So it is enough to prove the inequality for product families.

It follows from the subadditivity relation (32) that if the hypothesis of Propo-
sition 3.11 holds for each of a• and b• then it holds also for the product system.
This being said, the result follows from Proposition 3.11 and Teissier’s Minkowski
inequality for multiplicities. Indeed,

vol(a•b•)1/n =
[

lim sup
m

e(ambm)
mn

]1/n

≤ lim sup
m

{

[

e(am)
mn

]1/n
+
[

e(bm)
mn

]1/n
}
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≤ lim sup
m

{

[

e(am)
mn

]1/n
}

+ lim sup
m

{

[

e(bm)
mn

]1/n
}

= vol(a•)1/n + vol(b•)1/n,

as required.

Remark 4.4. Note that the hypothesis of Proposition 3.11 is satisfied in partic-
ular for graded families that are finite products or intersections of graded families
of Abhyankar valuations. This is the content of Corollary 4.2. More generally, the
product or intersection graded family of any finite collection of graded families
that satisfy the hypothesis also satisfy the hypothesis. Indeed, we verified this in
the proof of Corollary 4.3 for products using (32) and the same argument, using
(29) instead of (32), works for intersections.

Example 4.5. As a special case of the Minkowski inequality, fix an m-primary
ideal a in a local ring R of a smooth complex variety and let ν1, . . . , νr be
the associated Rees valuations of a. (The definition of Rees valuations is re-
called in the Introduction.) Set ei = minf∈I νi( f ). Then the associated graded
family

am =
{

f ∈ R | νi( f )
ei

≥ m for i = 1, 2, . . . , r
}

is nothing more than the graded family of integral closures of powers of a of
Example 1.3(ii). In particular, its volume is the multiplicity of a. This family is
a finite intersection of graded families of Abhyankar valuations, so Corollary 4.3
can be applied. This produces the bound

e(a)1/n ≤ e1vol(ν1)1/n + · · · + ervol(νr)1/n.
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