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Contact loci in arc spaces

Lawrence Ein, Robert Lazarsfeld and Mircea Mustata

ABSTRACT

We give a geometric description of the loci in the arc space defined by order of contact with
a given subscheme, using the resolution of singularities. This induces an identification of
the valuations defined by cylinders in the arc space with divisorial valuations. In particular,
we recover the description of invariants coming from the resolution of singularities in terms
of arcs and jets.

Introduction

The purpose of this paper is to study the loci of arcs on a smooth variety defined by order of
contact with a fixed subscheme. Specifically, we establish a Nash-type correspondence showing
that the irreducible components of these loci arise from (intersections of) exceptional divisors in a
resolution of singularities. We show also that these loci account for all the valuations determined by
irreducible cylinders in the arc space. Along the way, we recover in an elementary fashion (without
using motivic integration) results of the third author from [Mus01] and [Mus02] relating singularities
to arc spaces. Moreover, we extend these results to give a jet-theoretic interpretation of multiplier
ideals.

Let X be a smooth complex variety of dimension d. Given m > 0 we denote by
X,,, = Hom(Spec C[t]/(t™1), X)

the space of mth order arcs on X. Thus X, is a smooth variety of dimension d(m + 1), and the
truncation morphism 7,41 @ X;np1 — X, realizes each of these spaces as a C%bundle over
the previous one. The inverse limit X,, of the X,, parametrizes all formal arcs on X, and one
writes 1, : Xoo — X, for the natural map. These spaces have attracted a great deal of interest
in recent years thanks to their central role in the theory of motivic integration (see, for example,
[Bat98, DL99, DL98]). In his papers [Mus01] and [Mus02] the third author used this machine to
give arc-theoretic interpretations of some of the basic invariants of higher-dimensional geometry.
Consider now a non-zero ideal sheaf a C Ox defining a subscheme Y C X. Given a finite
or infinite arc v on X, the order of vanishing of a (or the order of contact of the corresponding
scheme Y') along + is defined in the natural way. Specifically, pulling a back via ~ yields an ideal (¢¢)
in C[t]/(t™!) or C[[t]], and one sets ord,(a) = ord,(Y) = e. (Take ord,(a) = m + 1 when a pulls
back to the zero ideal in C[¢]/(t™!) and ord,(a) = oo when it pulls back to the zero ideal in C[[t]].)

For a fixed integer p > 0, we define the contact loci
Cont?(Y) = Cont”(a) = {y € X | ord,(a) = p}.
These are locally closed cylinders, i.e. they arise as the common pull-back of the locally closed sets

Cont?(Y),,, = Cont?(a),, =qer {7 € X, | ord,(a) = p} (1)
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defined for any m > p. By an irreducible component W of Cont”(a) we mean the inverse image of
a component W, of Cont?(a),, (these being in bijection for all m > p via the truncation maps).
The codimension of W in X, is the common codimension of any of the W,, in X,,.

Our first result establishes a Nash-type correspondence showing that the irreducible components
of Cont®(a) arise from exceptional divisors appearing in an embedded resolution of Y. Specifically,
fix a log resolution p : X’ — X of a. Thus X’ is a smooth variety which carries a simple normal
crossing divisor E = Zle FE;, p is a projective birational map, and

t
a’:a-OX/:OX/<—ZriEZ->. (2)
=1

For simplicity, we assume here that all r; are positive (we can do this if x4 is an isomorphism over
X \Y), and leave the general case for the main body of the paper. We write

¢

Kxix =Y kE;, (3)
i=1

where Kx//x = Kx — p*Kx is the relative canonical divisor defined by the vanishing of det du.

After perhaps some further blowings-up, we may (and do) assume that any non-empty intersection of

the F; is connected and hence irreducible. Observe that p gives rise in the natural way to morphisms

X, — X and pog 0 X — Xoo.

Fix next a multi-index v = (v;) € N'. We consider the ‘multi-contact’ locus

Cont”(E) = {y € X, | ord,/(E;) = v; for 1 < i < t}.

These are again locally closed cylinders arising from the corresponding subsets Cont”(E),, of X/ .
The philosophy is that these loci can be understood very concretely thanks to the fact that F is
a simple normal crossing divisor: for example, Cont”(E),, (if non-empty) is a smooth irreducible
variety of codimension Y v; in X/, .

Our first main result describes the contact loci of Y in terms of the multi-contact loci associated
to E. In particular, we see that any irreducible component of the contact locus Cont”(a)
associated to the ideal sheaf a on X arises as the image of a unique such multi-contact locus
on X'. This is stated in the following theorem.

THEOREM A. For every positive integer p, we have a decomposition as a finite disjoint union

Cont(a) = | | oo(Cont”(E)),

over those v € N' such that Y. v;7; = p. Each p(Cont”(E)) is a constructible cylinder of codimen-
sion y . vi(k; + 1). In particular, for every irreducible component W of Cont?(a) there is a unique
multi-index v as above such that Cont”(FE) dominates W.

A related result appears in [DL02, Theorem 2.4]. Theorem A yields a quick proof of results
of [Mus02] relating the dimensions of the arc spaces Y; C X; of Y to the singularities of the pair
(X,Y). Keeping notation as above, recall that the log-canonical threshold of a, or of the pair (X,Y),
is the rational number

ki+1
let(a) = let(X,Y) =gef mln{ + } .

ri
This is an important invariant of the singularities of the functions f € a, with smaller values
of lct(a) reflecting nastier singularities (see [DKO01, ELSV03, Kol97]). Now consider an irreducible
component V; of Y,. Then the inverse image of V; in X, is contained in the closure of an
irreducible component W of the contact locus Cont?(Y) for some p > ¢+ 1. Write v = (1;) for
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CONTACT LOCI IN ARC SPACES

the multi-index describing the cylinder Cont”(E) dominating W. If ¢ = lct(X,Y) then k; +1 > cr;
for each of the divisors F;, and so one finds from Theorem A:

codim(V, Xy) > codim(pio (Cont” (E)), Xoo)

The reverse inequality being elementary for suitable values of £, we deduce a corollary.

COROLLARY B [Mus02]. One has

. [ codim(Yy, Xy)
let(X,Y) = meln{ 1

A closer look at this argument identifies geometrically the components of Y; having maximal
possible dimension: they are the closures of the images of multi-contact loci on X’ involving the
divisors FE; computing lct(a) (Corollary 3.3). We also recover the main result of [Mus01] relating
irreducibility of Yy to the singularities of Y when Y is a local complete intersection.

Our second main result concerns the valuations defined by irreducible cylinders C' C X.
Assuming that C' does not dominate X, it determines a valuation valc on the function field C(X)
of X by the rule:

valo(f) = ord,(f) for general v € C.

We prove that any such valuation comes from a contact locus. This is stated in the next theorem.

THEOREM C. Let C' C X, be an irreducible cylinder which does not dominate X, and denote by
valc the corresponding valuation on C(X). Then there exist an ideal a C Ox, an integer p > 0
and an irreducible component W of Cont?(a) such that valc = valy,. Moreover vale is a divisorial
valuation, i.e. it agrees up to a constant with the valuation given by the order of vanishing along a
divisor in a suitable blow-up of X.

The divisor in question is the exceptional divisor in a weighted blow-up of X’ along the inter-
section of the relevant E; from Theorem A.

Theorem A is a consequence of a result of Denef and Loeser [DL99] describing the fibers of the
map [y, : X, — X,,. This is also one of the principal inputs to the theory of motivic integration,
so the techniques used here are certainly not disjoint from the methods of the third author in
[Mus01] and [Mus02]. However the present approach clarifies the geometric underpinnings of the
results in question, and it bypasses the combinatorial complexities involved in manipulating motivic
integrals.

In order to streamline the presentation, we collect in § 1 some basic results on cylinders in arc
spaces of smooth varieties. The proofs of the above theorems are given in § 2. Section 3 is devoted
to some variants and further applications: in particular, we complete the proof of Corollary B and
explain how to recover some of the results of [Mus01]. We discuss also more general pairs of the form
(X,a-Y —(-Z), and interpret the corresponding generalized log-canonical thresholds in terms of arc
spaces. In particular, this yields a jet-theoretic description of the multiplier ideals. As an example,
we treat the case of monomial subschemes in an affine space.
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1. Cylinders in arc spaces

We collect in this section some basic facts on cylinders. Let X be a fixed smooth, connected
d-dimensional complex variety. We have truncation morphisms 1, : Xoo — X, and 7p1m -
Xm+1 — Xop, such that 7,11, is locally trivial with fiber C?. Note that X is the set of C-valued
points of a scheme over C, and we consider on X, the restriction of the Zariski topology on this
scheme. It is clear that this is equal to the inverse limit topology induced by the projections {,, } .
Since every Ty,+1,m is flat, hence open, it follows that v, is open for every m.

Recall that a cylinder C in X, is a subset of the form v,.1(S), for some m, and some constructible
subset S C X,,. We stress that all the points we consider in X,, and X,, are C-valued points.
The cylinders form an algebra of sets. It is clear that C' = 1,,}(S) is open (closed, locally closed) if
and only if S is. Moreover, we have C' = ,.1(S), so C is a cylinder. Since the projection maps are
locally trivial, it follows that C' is irreducible if and only if S is. In particular, the decomposition
of S in irreducible components induces a similar decomposition for C. For every cylinder C' =
P H(S), we put codim(C) = codim(S, X,;,) = (m + 1)d — dim(S). If C; C Cy are cylinders, then
codim(C1) > codim(Cs). Moreover, if C7 and Cy are closed and irreducible, then we have equality
of codimensions if and only if C7 = Cs.

We say that a subset T of X, is thin if there is a proper closed subscheme Z of X such that
TCZy.

ProrosiTiON 1.1. If C' is a non-empty cylinder, then C' is not thin.

Proof. Suppose that Z is a proper closed subset such that C' C Z,. In particular, we have
codim(C) > codim(y,,}(Zy,)) for every m. On the other hand, it can be shown that lim,, .
codim(1,,'(Z,,)) = oo (see, for example, [Mus01, Lemma 3.7]). This gives a contradiction. O

LEMMA 1.2. If C; 2 C2 2 C3 D --- are non-empty cylinders in X, then (,, Cy, # 0.

Proof. We give a proof following [Bat98]. Note first that a similar assertion holds for a non-increasing
sequence of constructible subsets of a given variety, as we work over an uncountable field. Moreover,
it follows from definition and Chevalley’s theorem that, for every cylinder C C X, the image
1p(C) is constructible for all p.

Consider the constructible subsets of X

Yo(C1) 2 1o(Ca) D ¢o(C3) D -+ - .

The above remark shows that we can find zq € ), ¥0(Cyn). Replace now C,, by C := Cy,Nthy* (o),
which again form a non-increasing sequence of non-empty cylinders. Consider

Y1(C1) D Y1 (CH) DY (Ch) D -+,

so that we can find 1 € ), ¥m(C%,). We replace now C!, by C, := C,,,Ntp; * (1) and continue this
way, to get a sequence {xp},, such that 7,1 p(zp41) = x, for every p, and such that z, € ,(C,)
for every p and m. This defines = (x,), € Xo, and since each Cy, is a cylinder, we see that
xz € O, for every m. O

We consider now a proper, birational morphism p : X’ — X between smooth varieties, with
2 X, — X, the induced map on arc spaces. The next lemma shows that p,, is surjective for
all m € N. In fact, we will show later the stronger fact that u is surjective.

LEMMA 1.3. If u is as above, then p,, : X — X,, is surjective for every m € N.

Proof. Let Z C X be a proper closed subset such that p is an isomorphism over X \ Z. It follows
from the valuative criterion for properness that X, \ Zoo is contained in the image of o. On the
other hand, for every u € X,,, we have ¥} (u) € Zs by Proposition 1.1, so u € ITm(j,,). O
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We give now a criterion for the image of a cylinder by s to be a cylinder. If  is as above, we
denote by 1, and 1!, the projections corresponding to X and X', respectively.

PROPOSITION 1.4. With the above notation, if C' = (y!,)~(5’) is a cylinder so that S’ is a union
of fibers of pi,,, then C := o (C") is a cylinder in X .

Proof. Since S := p,,(S’) is constructible, it is enough to show that C' = v,,}(S). We prove that
C 2 ,}(S), the reverse inclusion being obvious. If v € v,.}(S), consider for every p > m, the
cylinder

Dy = () 1y (p())) € X
It follows from Lemma 1.3 that D, # 0 for every p > m. On the other hand, it is clear that
Dy 2 Dyiq for p > m, so Lemma 1.2 shows that there is 7' € (5, Dp. Note that pe (') = 7,
while we have 7/ € €', as S’ is a union of fibers of fi,. O

We use this to strengthen the assertion in Lemma 1.3.

COROLLARY 1.5. If i : X' — X is a proper, birational morphism between smooth varieties, then
oo IS surjective.

Proof. C' = X/ certainly satisfies the hypothesis of Proposition 1.4, so C' = p(X7,) is a cylinder.
On the other hand, we have seen in the proof of Lemma 1.3 that there is a proper closed subset Z C X
so that X \ Zoo € C. Therefore X, \ C is contained in Z.,, so it is empty by Proposition 1.1. O

We recall now a theorem of Denef and Loeser which will play a pivotal role in our arguments.
Suppose that p : X’ — X is a proper, birational morphism of smooth varieties. As in the Intro-
duction, we introduce the relative canonical divisor

Kxr/x =der {det(dp) = 0},

an effective Cartier divisor on X', supported on the exceptional locus of p.

DENEF AND LOESER THEOREM [DL99|. Given an integer e > 0, consider the contact locus
Cont®(Kx//x)m = {7 € X, | ordy (Kx//x) = e}.

If m > 2e then Cont®(Kx//x )m is a union of fibers of p, : X, — Xy, each of which is isomorphic
to an affine space A¢. Moreover if

7/7 ’)/” S Conte(KX//X)m

lie in the same fiber of pu,,, then they have the same image in X, .

In fact, Denef and Loeser show that ., is a Zariski-locally trivial A®-bundle over the image of
COHte(KX//X)m in Xm

Remark 1.6. The most important point for our purposes is the statement that the contact locus
Cont®(Kx//x)m € X,, is a union of fibers of ji,, and that all of these fibers are irreducible of
dimension e. When p : X’ — X is the blowing-up of X along a smooth center this is readily
checked by an explicit calculation in local coordinates. This case in turn implies the statement when
1 is obtained as a composition of such blow-ups. There would be no essential loss in generality in
limiting ourselves in what follows to such a composition of nice blow-ups.

COROLLARY 1.7. Let i : X' — X be a proper, birational morphism between smooth varieties.
If C" C X! is a cylinder, then the closure . (C") of its image is a cylinder. Moreover, if there is
e € N such that C" C Cont®(Kx/x), then jioo(C") is a cylinder.
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Proof. We use the above Theorem of Denef and Loeser. Note first that, in order to prove the
second assertion, we may assume that C’ is irreducible. Let e be the smallest p such that C’' N
Cont”(Kx//x) # 0 (we have e < oo by Proposition 1.1). As C7 := C' N Cont®(Kx//x) is open and
dense in C’, it follows that 1o (C') = peo(CL), so that it is enough to prove the second assertion in
the theorem.

Let p and T C X, be such that C' = (¢7)"1(T), and fix m with m > max{2e,e + p}. If
S C X, is the inverse image of T by the canonical projection to X;,, Proposition 1.4 shows that it is
enough to check that S is a union of fibers of p,,. This follows from Denef and Loeser’s theorem: if
51 € S and §; € X, are such that p,,(d1) = pm(d2), then the first assertion in the theorem implies
do € Cont®(K x/ / x)m, and the last assertion in the theorem shows that d; and dy lie over the same

element in X, hence d; € S. O

We show now that our notion of codimension for cylinders agrees with the usual one, defined in
terms of the Zariski topology on X ..

LEMMA 1.8. If C C X, is an irreducible cylinder, and if W O C' is an irreducible closed subset of
X, then W is a cylinder.

Proof. It follows from the definition of the Zariski topology that W =1,y W) where WM =

Vi (b (W)). Note that each W™ is a closed irreducible cylinder, and we have C € W+l C
W) for every m. Therefore codim W (™) < codim(C') for every m, and we deduce that codim W (™)
is eventually constant. This shows that there is mg such that Wm) = wmo) for all m > mg; hence
W = W) is a cylinder. O

COROLLARY 1.9. If C C X, is a cylinder, then codim(C') is the codimension of C, as defined using
the Zariski topology on X .

Proof. We may clearly assume that C'is closed and irreducible. In this case, the above lemma shows
that every chain of closed irreducible subsets containing C' consists of cylinders, so the assertion is
obvious. O

ProrosiTiON 1.10. Let C' C X, be a cylinder. If we have a countable disjoint union of cylinders
Uyen Dp € C, whose complement in C' is thin, then

codim(C') = min codim(D)).
peN

Moreover, if each D,, is irreducible (or empty), then for every irreducible component W of C' there
is a unique p € N such that D, C W, and D,, is dense in W.

Proof. Let Z C X be a proper closed subset such that C' C Z,, U Up D,. We will use the fact that
lim,,, o0 codim (1,1 (Z,,)) = oo (see [Mus01, Lemma 3.7]).

It is clear that we have codim(C') < min, codim(D),). For the reverse inequality, choose m such
that codim(v;,'(Zy,)) > min, codim(D,). It follows from Lemma 1.2 that there is r such that

ccbp,uv, (Zn).
PST
This clearly gives codim(C') > min, codim(D)).

Suppose now that every D), is irreducible, and let W be an irreducible component of C'. Choose
m such that codim(v;,}(Z,,)) > codim(W), and let r be such that

ccJD,u, (Zm).

p<r
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Downloaded from https:/www.cambridge.org/core. University of Michigan Library, on 29 May 2017 at 16:27:41, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https://doi.org/10.1112/5S0010437X04000429


https:/www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X04000429
https:/www.cambridge.org/core

CONTACT LOCI IN ARC SPACES

It follows that there is p < r such that W C D_p. Since D, is irreducible, we see that we also have
D,CcWwW. O

Remark 1.11. Under the assumption of Proposition 1.10 one knows that

ot (C) = ) intor (Dp),
p

where ot is the motivic measure from [DL99]. By taking the Hodge realization of the motivic
measure, the statement in the above proposition follows immediately. However, we preferred to
avoid this formalism.

2. Contact loci and valuations

This section is devoted to the proof of our main results. Keeping the notation established in the
Introduction, we give first the statement and the proof of a more general version of Theorem A.
Consider a smooth variety X of dimension d and a non-zero ideal sheaf a C Ox on X defining a
subscheme Y C X. Fix a log resolution p : X' — X of a, with F = 25:1 E; a simple normal
crossing divisor on X’ such that

t t
Cl/:Cl'OX/:OX/<—ZT‘Z'Ei>, KX’/X:ZkiEi (5)
=1

i=1
for some integers 7;,k; > 0. Note that this time we do not assume r; > 1 if k; > 1. Given a
multi-index v = (1;) € N* we define the support of v to be

supp(v) = {i € [1,¢] | v; # 0},
and we put
E,= () E.
i€supp(v)

Thus E, is either empty or a smooth subvariety of codimension |supp(v)| in X’. Without loss of
generality we will assume in addition that E, is connected (and hence irreducible) whenever it is
non-empty. We can always arrive at this situation by a sequence of blow-ups along smooth centers.
In fact, starting with an arbitrary log resolution, first blow up the d-fold intersections of the F;;
then blow up the (d — 1)-fold intersections of their proper transforms; and so on. At the end of this
process we arrive at a log resolution where the stated condition is satisfied.

Given a multi-index v € N* and an integer m > max; v;, we consider as in the Introduction the
‘multi-contact’ loci

Cont”(E)m, = {7 € X, | ordy/(E;) = v; for 1 < i < t},
and the corresponding sets Cont”(FE) C X/ . Provided that E, # (), a computation in local coor-
dinates shows that Cont”(E),, is a smooth irreducible locally closed subset of codimension > v;

in X],. (If E, is empty, then so is Cont”(E),,.) Recall that a subset of X is called thin if it is
contained in Z,, for some proper closed subscheme Z C X.

THEOREM 2.1. For every positive integer p, we have a disjoint union

|_| oo(Cont” (E)) C Cont?(Y),

where the union is over those v € N! such that >, vir; = p. For every v as above such that
Cont”(E) # 0, its image jioo(Cont”(E)) is an irreducible cylinder of codimension ), v;(k; + 1).
Moreover, the complement in Cont?(Y') of the above union is thin.
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Proof. We use the theorem of Denef and Loeser. It is clear that we have a disjoint union

|_| Cont” (E) C psg (Cont?(Y)),

where v varies over the set in the statement, and the complement is contained in the union of
those (Ej)so such that r; = 0. For every v we put e = ), v;k;, so that Cont”(E) C Conte(KX//X).
Corollary 1.7 implies that p(Cont”(E)) is a cylinder.

We show now that e (Cont” (E)) and piee(Cont” (E)) are disjoint if v # /. Indeed, otherwise
there are v € Cont”(E) and v € Cont” (E) with fies(7) = ptes('). If € and € correspond to v
and v/, respectively, fix m > max{2e,e + v;,e + v/ };. The first assertion in the theorem of Denef
and Loeser gives e = ¢/, and the last assertion implies that v and + have the same image in X, __,
a contradiction.

Since [ is surjective by Corollary 1.5, we get a disjoint union as in the theorem. Moreover, if v
is such that E, # () and if m > 0, then the Theorem of Denef and Loeser shows that the projection

Cont”(E)y, — pim (Cont” (E)y,)
has irreducible, e-dimensional fibers (in fact, it is locally trivial with fiber A¢). Hence

dim fi,, (Cont” (E)y,) = dim Cont” (E)y, — e = (m + 1)d = Y vi(k; + 1),
which completes the proof of the theorem. O

Remark 2.2. Note that if p is as in the introduction, i.e. if it is an isomorphism over X \ Y, then
the disjoint union in Theorem 2.1 is finite. Moreover, it follows from the above proof that in this
case the union is equal to Cont”(Y"), and we recover also the first statement of Theorem A.

Remark 2.3. As pointed out by the referee, the fact that
fioo (Cont” (E)) N piao (Cont” (E)) = 0

for v # 1/ can be seen also in an elementary way as follows. If Z = u(FE), then p induces an
isomorphism X’ \ E — X \ Z. By the valuative criterion for properness, ji, induces a bijection
X!\ Eoo — Xoo \ Zoo. As v, V] # oo for all i, we see that Cont”(E), Cont” (E) C X/, \ Es, and
we deduce our assertion.

In the setting of Theorem 2.1, the disjoint decomposition of Cont?(Y") allows us to relate the irre-
ducible components of Cont?(Y") with the multi-contact loci Cont” (E). This is a formal consequence
of Proposition 1.10.

COROLLARY 2.4. With the notation in Theorem 2.1, we have

codim Cont?(Y') = minz vi(k; + 1),

where the minimum is over all v € Nt such that >, vir; = p and E,, # (). Moreover, for every irre-
ducible component W of Cont?(Y') there is a unique v as above, such that W contains ji(Cont” (E))
as a dense subset.

Note that this corollary allows us to describe the irreducible components of each Cont”(Y")
which have minimal codimension in terms of the numerical data of the resolution. However, while
Theorem 2.1 shows that all the irreducible components are determined by the resolution, the ones
of codimension larger than codim(Cont?(Y")) seem to depend on more than just the numerical data.
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CONTACT LOCI IN ARC SPACES

In the next section we will see that, by considering a varying auxiliary scheme Z C X, we can
describe also other components of the contact loci.

We turn now to valuations of C(X) associated to cylinders in the arc space. Recall that, if C
is an irreducible cylinder in X, then we have defined a valuation valg as follows. Note first that
if v € X, and if f is a rational function on X defined in a neighborhood of 1o(7y), then ord,(f)
is well defined. If the domain of f intersects 1o(C), then valg(f) := ord,(f), for general v € C.
Note that this is a non-negative integer by Proposition 1.1. Since C' is irreducible, it follows that
valc(f) is well defined and can be extended to a valuation of the function field of X. We will assume
from now on that C' does not dominate X, so valc is non-trivial (and discrete).

It is clear that if C1 C Cy are cylinders as above, then valg, (f) > vale,(f) for every rational
function f whose domain intersects 1o(C7). If, moreover, C; is dense in C9, then valg, = vale,.
Suppose now that pu : X’ — X is a proper, birational morphism of smooth varieties, and that
C’' C X[ is an irreducible cylinder which does not dominate X’. It follows from Corollary 1.7
that C := s (C”) is a cylinder, and we clearly have valor = valc.

Ezample 2.5. A divisorial valuation of C(X) is a discrete valuation associated to a prime divisor
on some normal variety X’ which is birational to X. If a divisorial valuation has center on X
(see below), then there are infinitely many cylinders in X, whose corresponding valuations agree
up to a constant with the given valuation. To see this, let D be a prime divisor on X', and let valp
be the corresponding valuation. Saying that a valuation has center on X means that we may assume
that we have a proper birational morphism p : X’ — X, that X’ is smooth, and that D is smooth

on X'. For p > 1, let C}, = Cont?(D), so valgy = p-valp. If we put C) = foo(Cy), then Corollary 1.7
shows that (), is an irreducible cylinder, and valc, = p - valp.

In the remainder of this section we show that, conversely, every valuation defined by a cylinder
in X is (up to a constant multiple) a divisorial valuation. We consider first the case when the
cylinder is an irreducible component of a contact locus. In this case, the assertion is a corollary of
Theorem 2.1.

COROLLARY 2.6. Let Y C X be a proper closed subscheme, and let W be an irreducible com-
ponent of Cont?(Y') for some p > 1. Let v € N' be the multi-index given by Corollary 2.4, so
that peo(Cont”(E)) is contained and dense in W. If D is the exceptional divisor of the weighted
blowing-up of (X', E) with weight v, then valy = q - valp, where ¢ = ged{v; | i € supp(v)}.

Proof. Recall the definition of the weighted blowing-up with weight v. Let
s =lem{y; | i € supp(v)}.
If T,, € X' is the closed subscheme defined by
> o(-m)
) Vi
i€supp(v)
then the weighted blowing-up of (X', E') with weight v is the normalized blowing-up of X’ along T,,.

There is a unique prime divisor on this blowing-up which dominates 7},; this is D.

It follows from our choice of v that valy = valgoner(g)- Let g : X — X’ be a proper birational
map which factors through the above blowing-up and which satisfies the requirements for a log
resolution. Note that we may consider D as a divisor on X”. We apply Theorem 2.1 for g.

Let C be the multi-contact locus of all arcs on X’ with order ¢ along D, and order zero along all
the other divisors involved. Well-known results about weighted blow-ups show that the coefficient
of D in g~(E;) is v;/q, and that the coefficient of D in Kyn/y is =1 4+ >, v;/q. We see that
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Joo(C) C Cont”(E). Moreover, both these cylinders are irreducible and have the same codimension,
as

codim goo (C) = ¢q - Z v;/q = codim(Cont” (E)).
i
This gives valyy = valg = ¢ - valp. O
We show now that, in fact, we can describe all valuations given by cylinders using contact loci.

THEOREM 2.7. If C' is an irreducible cylinder in X, which does not dominate X, then there is a
proper closed subscheme Y C X, a positive integer p, and an irreducible component W of Cont? (Y")
such that valc = valyy . In particular, vale is equal, up to a constant, to a divisorial valuation.

Proof. We have to prove only the first assertion; the second one follows from this and Corollary 2.6.
By replacing C with its closure, we may assume that C' is closed. Moreover, it is enough to prove
our assertion in the case when X = Spec(A) is affine. Recall that a graded sequence of ideals is
a set of ideals ay = {a,}p>1 such that a, - a; C apqq for all p and ¢ (see [Laz04] for more on this
topic). Since vale is a valuation which is non-negative on A, if we define

ap :=={f € A|vale(f) = p},

then a, is a graded sequence of ideals. Note that, since C' does not dominate X, we have a, # (0)
for every p.

Starting with a graded sequence of ideals a, as above, we get a sequence of closed cylinders as
follows: for every p > 1, let

W, ={y € X | ord,(f) = p for every f € ap}.

Since a, is a graded sequence, we have af C a,,, so that W,, C W, for every p, ¢ > 1. Note that in
our case, it follows from definition that C' C W), for all p. Moreover, since a, # (0), we see that W),
does not dominate X, for any p. We put C,, := W, so that C' C C,,,+.1 C C, for every m > 1.

We claim that we can choose irreducible components C, of Cy, such that C € C;, ,, C C;, for
all m. It is clear that for every m we can choose irreducible components C;,, of C; for i < m, so
that

C - C’m,m c Cm—l,m c.--C Cl,m'

As every cylinder has finitely many irreducible components, there is an irreducible component C]
of Cy such that C{ = C},, for infinitely many m. Similarly, there is an irreducible component
Cy of Oy, such that Cy C (', and such that C% = Cy,, for infinitely many m. Continuing in this
way, we deduce our claim.

Note that we have codim(C]) < codim(C%) < --- < codim(C). Therefore there is ¢ such that
codim(Cy,) = codim(Cy) for every m > ¢, hence Cy,, = Cy, as all C} are irreducible closed cylinders.
Let Y be the closed subscheme defined by a,, and let 7 := min{ord,(f) | v € C7, f € ag}. It is
clear that 7 > ¢! and that Cj is the closure of an irreducible component of Cont™(Y’), so that in
order to finish the proof, it is enough to show that valg = Valcé.

Since C' C C’é, we have valc > vale; on A. Fix f € A, and let us show that m := valg(f) <
valcy (f). By multiplying f with g such that valc(g) > 0, we may assume m > 1. Moreover, by
taking a suitable power of f, we may assume that m = p! for some p > ¢. By definition we have
f € ap,, hence

Cy=C, CWy C{y € Xe | ord,(f) = m}.
This gives Valcé( f) = m, and completes the proof of the theorem. O
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Remark 2.8. It follows from Theorem 2.7 that to each irreducible cylinder C' which does not domi-
nate X we may associate a (unique) divisor D over X such that valc = A - valp for some A > 0 (of
course, we identify two divisors over X which give the same valuation). This map is obviously not
injective, but it is surjective by Example 2.5.

Suppose now that Y C X is a fixed proper closed subscheme. It would be interesting to under-
stand which divisors appear from the irreducible components of contact loci of Y. One can consider
this as an embedded version of Nash’s problem [Nas95]. If Y is a variety, and if 1o : Yoo — Y is the
canonical projection, then Nash described an injective map from the set of irreducible components
of 15! (Yiing) to the set of ‘essential’ exceptional divisors over Y (divisors which appear in every
resolution of V). He conjectured that this map is surjective, but a counterexample has been recently
found in [IK03].

In the next section we will use Theorem 2.1 to describe certain divisors which are associated to
distinguished irreducible components of the contact loci of Y, namely the divisors which compute
generalized versions of the log-canonical threshold.

3. Applications to log-canonical thresholds

We discuss here some applications of Theorem 2.1. As before, X is a smooth irreducible variety of
dimension d, Y C X is a subscheme defined by a non-zero ideal sheaf a C Oy, and p: X' — X is
a log resolution of (X,Y’) with

a-Ox = Ox (— 3 rE) Kxiyx =Y kiEi.

3.1 Arc spaces of subschemes
We indicate how to recover some of the results of [Mus01] and [Mus02] relating singularities of the
pair (X,Y) to the properties of the arc spaces Yy C X,.

Note that for every irreducible cylinder C' C X, there is a subcylinder Cy C C which is open
in C, such that ord,(a) is constant for v € Cy. We denote this positive integer by ordc(a) or
ordc(Y). It is clear that, if p = ordc(Y'), then C is contained in the closure of an irreducible
component of Cont?(Y).

Suppose now that V; is an irreducible component of Yy, and let V = w;l(Vg) C X Note that
V' is an irreducible component of

P, (V) = Cont® D (Y) =g {7 € Xoo | 0rd, (V) = £+ 1}, (6)

Let p = ordy(Y), so p = £ + 1. Note that we might have strict inequality (Example 3.1). In any
case, V is the closure of an irreducible component of Cont?(Y'). Conversely, the closure of every
irreducible component of Cont?(Y") is the inverse image of an irreducible component of Y),. Therefore
our analysis of the contact loci Cont”(Y") gives complete control over the arc spaces of Y.

Ezample 3.1. Let X = A! with coordinate ¢, and let Y C X be defined by (t¢) C C[t] for a fixed
integer ¢ > 2. Then V; = Y7 is the irreducible subset of X7 consisting of arcs centered at the origin.
However, ordy (Y) =e > 1.

We start by completing the proof of Corollary B, namely we prove the following.
COROLLARY 3.2. The log-canonical threshold of (X,Y’) is given by

codim(Yy, Xy) }

let(X,Y) :meln{ 1
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Proof. We saw in the Introduction that Theorem A implies the inequality
codim(Yy, Xp) = (£ + 1), (7)

where ¢ = lct(X,Y), so it remains only to prove the reverse inequality for suitable ¢. But this is
immediate. In fact, it follows from the definition of let(X,Y") that there exists an index i (say i = 1)
for which k; + 1 = ¢ry. Let v = (1,0,0,...,0) be the multi-index with v; = 1 and v; = 0 for ¢ > 1.
It follows from Theorem 2.1 that ps(Cont”(E)) is a subcylinder of Cont™ (Y') of codimension & +1.
If ¢ = r; — 1, then the closure of this subcylinder can be written as wé_l(V) for some closed subset
V C Yy, with codim(V, Xy) = ¢(¢ + 1). The first part of the proof implies that V' must be an
irreducible component of Yy, so we are done. O

The argument just completed leads to an explicit description of the components of Y, having
maximal possible dimension. Keeping notation as before, let us say that one of the divisors E; C X’
computes the log-canonical threshold of (X,Y) if let(X,Y) = (k; + 1) /r;. Note that in general there
may be several divisors E; that compute this threshold.

COROLLARY 3.3. Let Vy C Yy be an irreducible component of maximal possible dimension, i.e. with
codim(Vp, Xyp) = (£ + 1) - 1et(X,Y),
and let V = ngl(vg) be the corresponding subset of Xo,. Then ordy (a) = ¢+ 1 and V' is dominated
by a multi-contact locus Cont”(E) where
v; # 0 = E; computes the log-canonical threshold of (X,Y).

Conversely the image of any such multi-contact locus Cont”(FE) determines a component of Yy of
maximal possible dimension.

Proof. Write ¢ = let(X,Y). We return to the proof of Corollary B. Specifically, V' is contained in
the closure of some irreducible component W of Cont?(a), which in turn is dominated by some
multi-contact locus Cont”(FE). However, codim(Vy, Xy) = ¢(¢+ 1) by hypothesis, and hence equality
must hold in all the inequalities appearing in Equation (4). Therefore

p:ZVm:(E—I—l).

Moreover, since in any event k; + 1 > cr; for all i, we deduce that v;(k; + 1) = cyyr; for each
index ¢. In particular, if v; # 0 then E; computes the log-canonical threshold of (X,Y’). We leave
the converse to the reader. Ol

Similar arguments allow one to eliminate motivic integration from the main results of the third
author in [Mus01]. For example, we have the following corollary.

COROLLARY 3.4 [Mus01]. Let Y C X be a reduced and irreducible locally complete intersection
subvariety of codimension f. Then the arc space Yy is irreducible for all ¢ > 1 if and only if Y has
at worst rational singularities.

Proof. Following [Mus01] let u : X’ — X be a log resolution of (X,Y’) which dominates the
blowing-up of X along Y. Write E; for the (reduced and irreducible) exceptional divisor created by
this blow-up, so that

= 17 kl = f - 17
and otherwise keep notation and assumptions as above. It is established in [Mus01], Theorem 2.1

and Remark 2.2 that Y has at worst rational singularities if and only if k; > fr; for every index
i > 2. So we are reduced to showing:

Y, is irreducible for all £ > 1 <= k; > fr; for ¢ > 2. ()
(It is the proof of this equivalence in [Mus01] that uses motivic integration.)
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CONTACT LOCI IN ARC SPACES

Assuming that k; > fr; for ¢ > 2 we show that each Yy is irreducible. Note to begin with that
Y, has one ‘main component’ Y;"*", namely the closure of the arc space (Y;eg)¢: this component
is dominated by the multi-contact locus Cont(+1:0.0-0)(E) described by the multi-index v = (£ +

1,0,0,...,0). Suppose for a contradiction that there is a further component V; of Y. In the usual
way, V = zbe_l(Vg) lies in the closure of an irreducible component W of Cont?(Y') for p > ¢ 4 1,
which via Corollary 2.6 is dominated by a multi-contact locus Cont”(E) for some v = (v;) #
(+1,0,...,0). Since Y C X is a local complete intersection of codimension f, we have in any event

codim(W, Xy) < ((+1)- f. In view of the hypothesis k; > fr; for i > 2 we then find the inequalities
(+1)- f > codim(WW)
=> vi(ki +1)
i>1
=vi-f+ ) vilki+1)

122

Ef'ZVﬂ‘H-ZVi

i>1 i>2
= fp + Z Vj.
i>2
However, since p > ¢+ 1 this forces v; = 0 for 7 > 2, a contradiction.
Conversely, suppose that k; < fr; for some i > 2: say ko < fro — 1. Setting v = (0,1,0,...,0)
and ¢ = r9 — 1, the multi-contact locus Cont”(E) maps to an irreducible set W, C Y, with
codim(Wy, Xy) < (£+ 1) f = codim (Y™™, Xy),

and therefore Y, cannot be irreducible. O

3.2 Generalized log-canonical thresholds

We extend now the above results to take into account also an extra scheme Z. We fix two proper
closed subschemes Y, Z C X defined by the ideal sheaves a and b, respectively. We use the
previous notation for p : X’ — X, but this time we assume that p is a log resolution for
Y UZ. We write b - Oxs = Ox/(—=)_ s;E;). Having fixed also § € Q, we define the log-canonical
threshold let(X,Y; 8- Z) to be the largest o € Q4 such that (X,a-Y — 3+ Z) is log canonical,
ie. k;+1>a-r,— (-s; for all 4. Therefore

ki+1+4+0-si
1ct(X,Y; 8- Z) = min {%ﬁs} .
It is standard to see that the definition does not depend on the particular log resolution [Kol97].

The following corollary is a generalization of Corollary 3.2 to this setting. This time we state the
formula in terms of the contact loci, and leave the corresponding statement in terms of arc spaces
to the reader.

COROLLARY 3.5. We have

let(X,Y; 8- Z) = min{Codim(C) + - ordc(Z)}
9 ) C ,

orde(Y)

where C' runs over the irreducible cylinders in X, which do not dominate X; in fact, it is enough
to let C' run only over the irreducible components of Cont?(Y), for p > 1.

Proof. Let ¢ = let(X,Y; 0 - Z). We show first that, if C' is an irreducible cylinder in X, then
codim(C) > ¢-orde(Y) — B - ordc(Z). Let p = ordc(Y), and let Cy C C be an open subcylinder
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such that Cy C Cont?(Y'). Let W be an irreducible component of Cont?(Y") containing Cj, and let
v be the multi-index corresponding to W by Corollary 2.4. We have

codim(C') = codim(Cp)
> codim(W)
> ZVi(C'Tz’ — B )
=c-p—(-ordw(2)
>c-p—f-ordc(Z),

as required.

In order to finish the proof, it is enough to show that there is p > 1 and an irreducible component
V of Cont?(Y) such that codim(V') = ¢-p—B-ordy (Z). For this, let ¢ be such that ¢ = (k;+1+08-s;) /7,
and take p = r; and v such that v; = 1 and v; = 0 if j # 7. We may take V' to be the closure of
too(Cont”(E)) in Cont?(Y'). O

We have a similar generalization of Corollary 3.3. Again, we phrase the result in terms of
irreducible components of contact loci of Y. We say that a divisor E; computes lct(X,Y; 3 - Z)
iflet(X,Y58-Y)= (ki +1+3-s;)/r.

COROLLARY 3.6. Let W be an irreducible component of Cont?(Y'), with p > 1, such that
codim(W) =p-let(X,Y; 8- Z) — - ordw (2). (8)
Then W is dominated by a multi-contact locus Cont”(E) where
v; 20 = E; computes lct(X,Y; 5 7).

Conversely, the image of any such multi-contact locus determines an irreducible component of
Cont?(Y') as above.

The proof is similar to that of Corollary 3.3, so we omit it.

Remark 3.7. Recall that we have defined in the previous section a map from the irreducible com-
ponents of Cont?(Y) with p > 1 to the divisors over X. One can interpret the above corollary as
saying that, for every Z and 3, every divisor D which computes lct(X,Y; 5 - Z) is in the image of
this map. Moreover, the irreducible components which correspond to these divisors are precisely
the ones satisfying (8).

Remark 3.8. Suppose that X = Spec(A) is affine, that Y is defined by the ideal a C A, and that
Z is defined by a principal ideal (f). It follows from definition that A < lct(X,Y; Z) if and only
if f € Z(X,\-a), the multiplier ideal of a with coefficient A\ (we refer to [Laz04] for the basics on
multiplier ideals). One can therefore interpret Corollary 3.5 as giving an arc-theoretic interpretation
of multiplier ideals.

We end with an example: monomial ideals in the polynomial ring. For a non-zero monomial
ideal a in the polynomial ring R = C[T7,...,T}], the Newton polyhedron of a, denoted by Py, is the
convex hull in R of the set {u € N¢ | T € a}. For u = (u;) € N%, we use the notation 7% = [, T}
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PROPOSITION 3.9. Let X = A% and Y, Z — X subschemes defined by non-zero monomial ideals
a and b C R, respectively, where R = C[T},...,Ty]. For every o, 3 € Q4, with o # 0, we have
(X,a-Y — - Z) log-canonical if and only if

/B'Pb+ega'Pa7

where e = (1,...,1).

Proof. For every q € N?, consider the multi-contact locus Cq € X, consisting of those arcs with
order q; along the divisor defined by Tj, for all i. Every contact locus of Y is a union of such
cylinders. It follows from Corollary 3.5 that (X,a-Y — 3 - Z) is log canonical if and only if

B -orde,(Z) = a-ordg, (Y) — codim(Cy), 9)
for every q.

It is easy to see that codim(Cq) = >, q;. Moreover, it is clear that we have ordc,(Y) =
inf{} ,w;q; | u € P}, and a similar formula for ordg,(Z). If we consider the dual polyhedron of
P,

P = {pERd

Zpiui > 1forallue PR, },
i

then we see that ordg, (Y') = m if and only if (1/m)q € Fy.
Condition (9) then says that for every q € N and every m € N*, such that (1/m)q € P2, w

have
3m- int <szqz>+zqz/m

Since Py is a rational polyhedron, this is the same as saying that for every ' € P2, we have
5 inf <qu> DIE
Since (Py)° = Py and « > 0, the above condition is equivalent to - P, +e C a - Py. O

COROLLARY 3.10 [HowO1]. If X = AY and a C R = C[T1,...,Ty] is a non-zero monomial ideal,
then for every o € Q' , the multiplier ideal of a with coefficient « is given by

I(X,a-a)=(T" |u+ecInt(a-Fy)).

Proof. Note that multiplier ideals of monomial ideals are monomial (for example, because we can
find a log resolution which is equivariant with respect to the standard (C*)Z-action on A9). If Z is
the subscheme defined by T, note that 7" € Z(X, - a) if and only if (X, A-Y — Z) is log canonical
for some A > «. The assertion of the corollary follows now from the above proposition. O
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