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Abstract

We discuss the dynamics of exponential maps z +— Ae® from the point of view of
dynamic rays, which have been an important tool for the study of polynomial maps. We
prove existence of dynamic rays with bounded combinatorics and show that they contain
all points which “escape to c0” in a certain way. We then discuss landing properties of
dynamic rays and show that in many important cases, repelling and parabolic periodic
points are landing points of periodic dynamic rays. For the case of postsingularly finite
exponential maps, this needs the use of spider theory.
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2 Dynamic Rays for Exponential Maps

1 Introduction

The study of the dynamics of iterated polynomials has been a success story for the last two
decades, pioneered by Douady and Hubbard’s study of quadratic polynomials [DH1]. As a main
tool, they introduced dynamic rays which help to describe the topology of Julia sets. Our goal
is to make dynamic rays available to iterated entire maps. As a prototype, we concentrate on
the family z — Ae®: this should help to bring out the ideas more clearly without obscuring
them by technicalities; however, our methods apply to much larger classes of entire maps.

One main feature which helps to investigate polynomial dynamics is the existence of the
attracting basin of the superattracting fixed point co in the complement of the Julia set. In the
case when the latter is connected, one gets dynamic rays for free. For many entire maps, the
Julia set is the entire complex plane, so it is not clear how to identify dynamic rays there. In
particular, this is the case for some of the maps which are understood best in this paper (the
postsingularly finite and bounded escape cases).

There have been earlier attempts to study the dynamics of exponential maps, notably by
Eremenko and Lyubich [EL2], Baker and Rippon [BR], Devaney, Goldberg and Hubbard [DGH],
Devaney and Krych [DK], Devaney and Jarque [DJ], and Viana [Vi]|. The latter four papers have
also introduced variants of dynamic rays (under the name of “hairs”). However, most of the
results in [DGH], [DK] and [DJ] have required the parameter A to be real, or the combinatorics
has been restricted to “regular” sequences (those containing no entry 0); this implies that no
two rays can land together. On the other hand, it is our conviction that the most important rays
for the structure of Julia sets are those which do land together. The most general discussion of
rays is in [Vi]; here, the focus is on differentiability of the rays, not on the way they structure
the Julia set.

We propose an approach which overcomes the mentioned restrictions for the parameter
A or for dynamic rays (at bounded combinatorics). The early part of this paper is closely
related to earlier papers, particularly to that of Viana, and some known results are reproved.
This approach allows to obtain a more complete theory: every orbit which escapes to oo with
bounded imaginary parts is on a dynamic ray; for a large class of parameters (including the
structurally important ones), periodic dynamic rays land at periodic points and periodic points
are landing points of periodic dynamic rays; for those parameters, it is also possible to tell
which dynamic rays land together. These results bring the dynamical study of exponential
maps much closer to the study of polynomials.

In this paper, we restrict attention to bounded combinatorics. In Section 2, this is mostly
convenience: the topological results work also for unbounded combinatorics, as is already known
from Viana; some of our precise estimates become void. For the structure of Julia sets and
parameter spaces, the important rays are for periodic or preperiodic combinatorics; they are
discussed in later sections, and their combinatorics is bounded anyway.

The study of dynamic rays for polynomials has been pioneered by Douady and Hub-
bard [DHI1]; later, various models for Julia sets and parameter spaces have been developed
which all tried to describe the topology in terms of dynamic rays landing together: among
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them are Douady’s pinched disks [Do], Thurston’s laminations [T| and Milnor’s orbit portraits
[M2], all of which have been explored deeply only in the simplest context of quadratic polyno-
mials. Our paper is intended as a first step of an investigation of exponential maps in a similar
spirit, and many of the methods in these papers can now be applied to exponential maps.

In a sequel to this paper, it will explained how the parameter space of exponential maps can
profitably be studied in terms of parameter rays (external rays in parameter space) to bring
out analogies and differences to the Mandelbrot set more clearly.

This paper is organized as follows: the fundamental construction of dynamic rays takes
place in Section 2, first by constructing them sufficiently far to the right (“ray ends”) and
then pulling them back. We obtain a parametrization of the rays in terms of “potentials” and
show that points on the rays at fixed potentials depend analytically on the parameter (some
of the results here serve already as a preparation for an investigation of parameter space).
The combinatorics is described in terms of a “static partition” which is useful only for orbits
sufficiently far to the right. Landing properties of dynamic rays are then discussed in Section 3;
we focus on periodic and preperiodic rays because those are known to describe the structure in
the polynomial case. Section 4 discusses which rays land at which points in terms of itineraries
with respect to dynamic partitions: these partitions must be constructed with respect to the
kind of dynamics at hand; we cannot construct them in every case, but our methods cover
those parameters which are most important for an understanding of parameter space. We want
to prove that repelling and parabolic periodic points are landing points of periodic dynamic
rays and reduce this to a combinatorial problem, which is then solved in Section 5. Technically
the most difficult case is that of postsingularly finite exponential maps: in order to obtain a
useful partition, we need to know that the singular value is the landing point of at least one
preperiodic dynamic ray. We prove this in Section 6 using spider theory and a result from [SS]
which contains a systematic investigation of postsingularly finite exponential maps.

SOME NOTATION. Let C* := C — {0} and C’' := C* — R_. The principal branch of the
logarithm in C' will be denoted Log. We will choose our parameters A € C* and define our maps
E\:C — C by E\(z) = Xe®. For E| = exp, we will simply write E. We will often need log(\);
we will suppose that together with A, a branch of log(\) has been chosen. While the exact
choice is in principle inessential, we have written our estimates for Arg(\) € [—m, «]. Although
many of our constructions will depend on A, we will usually suppress that from the notation.
We sometimes say that a sequence in C converges to +oo to indicate that it converges to oo
along bounded imaginary parts and with real parts diverging towards +o0.

ACKNOWLEDGEMENTS. We would like to thank John Milnor for the invitation to the Insti-
tute for Mathematical Sciences at Stony Brook where this work started, and to the hospitality
there. We would also like to thank the Studienstiftung des deutschen Volkes for its support
all along and in particular during the stay in Stony Brook. Moreover, we have enjoyed helpful
discussions with Noel Baker, Bob Devaney, Adrien Douady, John Hubbard and Phil Rippon.
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2 Ends of Dynamic Rays

In this section, we want to define dynamic rays with sufficiently large real parts for a parameter
A € C*. For k € Z, define the horizontal strip Ry by

Ry :={2€C|(2k—1)m —Im(log\) <Im(z) < (2k +1)m — Im(log A)} .

The union of all Ry is a partition of the complex plane; the boundaries are the preimages
of the negative real axis since E) maps each strip Ry to the slit complex plane C'. We will
equivalently call the strips Ry “sectors” in analogy to the polynomial case: the strips are limits
of polynomial sectors of angles 27/d with vertices at —d, so we imagine them as sectors of
angles 0 with vertex at —oo.

The inverse of E\ mapping C' to Ry will be denoted by Ly x, so that Ly x(z) = Logz —log A+
2mik. As a consequence, Ry C E)(Ry) for every k # 0. Note that Ry is the only sector having
nonempty intersection with the image of the boundary of an arbitrary sector. The idea to
define a partition by considering the preimages of the negative real axis can be found in [DGH];
we call such a partition a static partition (as opposed to various dynamic partitions introduced
in Section 4). For any z € C with E{"(z) ¢ R™ for all n € N, the external address S(z) is
the sequence of numbers of the sectors containing z, E)(z), E3(2), ... (this corresponds to the
“binary expansion” of external angles of monic quadratic polynomials; compare the discussion
at the beginning of Section 4). Let 8 = {s15953,...: all sy € Z} be the space of sequences over
the integers. If such a sequence s := 515353 ... is bounded, we will write |s| := sup{|sx|}. The
shift map on 8§ will be denoted o.

Definition 2.1 (Escaping Point)
A point z € C with Re(ES"(2)) — +00 as n — +o0o will be called an escaping point.

It is one of our goals to describe the set of escaping points with given external address s. We
will show in Theorem 2.3 that there exists a curve of escaping points sharing the given external
address; in a suitably chosen right half plane, all escaping points with the given external address
lie on that curve. Before stating the precise results, let us introduce a name for these curves.

Definition 2.2 (Ray End)
A ray end with external address s € S is a curve

gs: [1,00) = C,

satisfying the following conditions: each point on the curve has external address s, Re (Eﬁ"(gs(t)))
— 400 for n — oo, and limy_, 1 Re(gs(t)) = +o0.

Roughly speaking, a ray end is a curve of points sharing the same external address s. Ray
ends stretch to 400 and lie entirely in the Julia set of E) (this follows from the fact that
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limy, 1 Re(Ej’\”(gs (t))) = +o0 since there is strong expansion for all orbits which start near
a ray end, so there will always be nearby orbits which map far into a left half plane after many
iterations and then get close to the origin; this is incompatible with locally uniform convergence
in the Fatou set). Of course, ray ends depend on the parameter A, but we suppress this in order
not to overload notation. Every ray end satisfies a bound in the vertical direction depending
only on the first entry in s. In [DGH], similar objects have been examined under the name
(tails of) hairs.
Now it is time to state the main result of this section.

Theorem 2.3 (Existence of Ray Ends)

For every A € C* and every bounded sequence s € S, there is a ray end having external address
s. There is a positive R = R(\, s) such that every z € C for which S(z) = s, Re(EY"(2)) > R
for all n and Re(EY"(z)) — +00 as n — 400 is a point on that ray.

REMARK. This theorem generalizes a result of [DGH]: in that paper, the existence has been
proved for so-called reqular sequences — that is, a bounded s € 8 with all s, # 0. It is one of
the goals of this paper to get rid of the restriction to regular sequences. We will see at the end
of Section 5 that non-regular external addresses are the most interesting ones (for unbounded
sequences satisfying certain growth conditions, see [DK]).

The rest of this section is devoted to the proof of Theorem 2.3. For F), we will first prove
the existence of a map g,(¢) conjugating the dynamics of F) on a curve to the dynamics of
E:t — exp(t) on some right end of R. Recall that in the polynomial case, the conjugation to
z +— 2% (the Riemann map) is used to define dynamic rays. We will use a similar approach
here, but we cannot define it on any open set. Instead, we define inductively maps g” on right
ends of R as follows for n € N:

g2 (t) == Lys, ©...0Ly\s o E°(t) .

We will show below that there is a ¢; € R such that these maps are defined for all ¢ > ¢,
independently of n.

Lemma 2.4 (Bound on Real Parts)
For every K > 0 and for every A € C* with |log \| < K, everyn € N and every external address
s, the function g% is defined for all t > 2log(K + 2) and satisfies Re(g?(t)) >t — (K 4+ 2) and
gr(t) = Log(gg(_s)l(et)) — log(A) + 2mis;.

PROOF. We start an induction with ¢2(¢) = ¢. It is defined for all real ¢, and hence g} (t) =
t —log A + 2mis; is also defined for all real ¢t. For n > 1, we have ¢"(t) = L)\,sl(gg(’s)l(et)) and
thus

Re(g;(t)) = Re (Log(gﬁ(;)l(et)) —log A\ + 27ri51)
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Re(Log(g2;}(¢"))) — Re(log \) = log

92 (€| = Re(log V)

> log(e" — (K +2)) — [log A
1
= t—1 — | log A
o8 (1 - (K+2)/et> | log A
K +2)/e 1
S (S ) LS ~K
1—(K+2)/e e/(K+2)—1
1
> t——--K>t—(K+2).
- K+1 (K+2)
Therefore, gi*'(t) = Lxs, (95 (€")) is defined for all £ > 2log(K + 2) as well, which concludes
the inductive proof. The recursive relation for the g7 is built into the definition. ]

Proposition 2.5 (Parametrization of Ray Ends)

Fiz a constant K > 0 and a bounded sequence s := (81, 82,...) € 8, let A € C* be a parameter
with |log A\| < K, and let t* := 21log(K +2). Then the sequence of functions g2 (t) is well defined
fort > t* and converges uniformly in t to a limit function gs(t). This function is injective and
continuous int and depends for fired t > t* analytically on \. It satisfies the functional equation
Jo(s)(€") = Exgs(t). Moreover, gs(t) =t —log A+ 2misy +r(t) with |r(t)] < C(K +2x|s|)e" for
some universal constant C' € R.

PROOF. For some fixed ¢t > t*, let ¢, := E°*(t). It is then easy to verify by induction that
terr — (K +2) > eF for all k. Let M := K + 27|s|. We have

g?“(t) —g5(t) =Ly, 0...Lyg, © LAyanrl(et") —Lys,0...Lys, (tn) -

Since |L) , (2)| = 1/|z] < 1/Re(z) for any k, the lemma gives

ASk

Re(Lysyyy © -+ Lo, © Lo, (€7)) = Re(glid ¥ (t)) > 1 — (K +2) .

Therefore, Ly, ,, is applied to arguments 2, with Re(z;) > tg41 — (K + 2) and Ll/\:skJrl <

1/(ty+1 — (KK +2)). Since |Lys, ., (e") —t,| = |tn, —log A+ 2misyi1 — t,| < M, we get for n > 1

740) = 50 < 3 (T = (€4 2)) < b= (42 Lo v

(Note that there is no problem with different branches of the logarithm because all logarithms
are applied only to arguments within the right half plane.) This proves convergence of ¢%(t) to
a limit g,(t) as n — oo. The convergence is uniform in ¢ and A provided ¢ > ¢* and |log A\| < K.
This proves continuity of the limit g;. Moreover, since all g7 are holomorphic in A for fixed ¢,
so is the limit g, by Weierstrafy’ theorem. The functional equation Eyg,(t) = g,(s)(e") follows
from Exg™(t) = Lag, ©-..0 Ly, (E(t)) = Ly, 0 ... 0 Ly, (E°™ D (e!)) = gg(_s)l(et).
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Finally, we have

r@®)] = 1g:(t) = (t —log A + 2mis;)| = |gs(t) — g, (t)]
oo n—1
< Me'(1—(K+2)e ™)' S J[ e <MCe™,
n=1k=1
where .
C=2Y [[e*~284
n=1 k=1

is a universal constant: since ¢t > 2log(K + 2) and K > 0, the term (1 — (K + 2)e™")~! is
bounded above by 2.

Injectivity of g, follows like this: if g5(t1) = gs(t2) for ¢; # t3, then the functional equation
implies go(5)(€") = go(s)(€"); iterating this functional equation sufficiently often, we get a
contradiction to the asymptotic bound for g,n (). ]

PROOF OF THEOREM 2.3. The function g,(¢) defined in Proposition 2.5 is constructed so that
it parametrizes a ray end with the given external address: the estimate g;(t) = ¢t — log A +
2misy + O(e*) gives us Re(gs(t)) — +oo for t — +oo. For ¢ sufficiently large, it follows that

Re(E5"(g:(t)) = Re(gon (o) (E"(£))) = 00 as  n — o0

since the bounds on g,»(s) need only the bounds on |s|. This shows that g,(¢) is indeed a ray
end with external address s.

It remains to show that every z, escaping to 4+o0o within the half plane Re(z) > R and
having external address s is on the ray end g,. To see this, let 2, := F{"(zy) and ¢, := Re(z,).
Then |Im(z,)| < M for all n and we have

ol i
(M/R)2  \/1+ (M/R)?

th—1

€

tn = Re(z,) >
V1+

Since t,,_; > R, for sufficiently large R there is a 0 > 0 depending only on M and R such that
t, — & > e»=17% and thus t, > E°"(t, — 0) + & by induction. Therefore, there is a sequence
(1,) € R with 7, > ty — § such that E°"(r,) = t,. It is not hard to find an upper bound
for the sequence (7,): we have t, < [Me'=!, so for R large enough there is a ' > 0 with
t, + 0" < el»-119" Hence t, < E™(ty+ ') — 0" and 7, < ty+¢'.

For all n, |z, — E°"(,)| is bounded from above by 27|s|. Pulling the two points z, and
E°™(1y,) back under Ly, 0...0L) ;. , we obtain zg respectively g”(7,), and by the contraction of
the logarithm as calculated in the proof of Proposition 2.5, it follows that |zy — g% (7,,)| converges
exponentially fast to 0 as n — oc.

Let 7 € R be a limit point of the sequence (7,,) and fix an € > 0. Then for n suffi-
ciently large, we have |zy — ¢%(7,)| < €. Moreover, by uniform convergence of g to g, we
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have |¢"(7,) — gs(7n)| < € for sufficiently large n. Finally, for 7, close enough to 7*, we have
|9s(7) — gs(7*)| < e. Combining this, it follows

20 = 9s(7)] < J20 = g () | + 19 () = ()| + 19s(70) = 95(77)] < 3¢ .

Hence g¢4(7*) = zp, which proves the theorem (and shows uniqueness of the limit point 7* by
injectivity of gs). ]

Any ray end can be pulled back by the dynamics unless it contains the singular value.
The resulting object after as many pull-backs as possible will be called a dynamic ray: in the
periodic case, any ray end will either hit the singular value, or it can be pulled back infinitely
often. Preperiodic rays are simply iterated pre-images of periodic ones. In general, the ray for
a bounded sequence s (whether or not it eventually becomes periodic) is the n-th inverse image
of the ray end with external address 0°"(s), in the limit of n — oco. Since the construction
of these rays involves only the bound on s, all the needed rays can be constructed starting
at the same potential t*. Therefore, any bounded external address s gives rise to an entire
dynamic ray until the singular value interferes (and many statements can be carried over even
to unbounded external address which do not diverge too fast).

However, we will lose the parametrization of the ray via the conjugation to the exponential
map: the functional equation g, (e") = E\g,(t) implied that, for a given external address s,
the dynamics on the ray end with external address s was conjugated to E(t) = e¢'. The positive
real axis is a dynamic ray for the exponential map, but it does contain the singular value. This
eventually destroys the conjugation because any real ¢ will eventually run out of images under
iterated logarithms. Therefore, we have to choose a different conjugation.

In any case, this conjugation was arbitrary: instead of E(t) = €', any other strictly mono-
tonically increasing function could have been used. The choice E(t) has the advantage that for
large ¢, the conjugation approaches the identity (plus a constant) exponentially fast. In order
to investigate landing properties of dynamic rays, a different conjugation will be more useful:
we will use the map F:u +— e* — 1. It is strictly monotonically increasing and has a unique
fixed point at 0, which is indifferent.

To see that we can use this conjugation just as well, observe first that v — u+ 1 conjugates
F(u) =¢"—1touwrs e = (1/e)e*. This latter map is in our family {E\}, and the positive
real axis is a ray end for the periodic external address consisting only of entries 0, so its dynamics
is conjugated to the dynamics of the exponential map on the positive real axis.

Near +o0o, the maps E and F' do not differ much, but any real ¢ > 0 can be pulled back
infinitely often under F'; it will converge to the fixed point 0. Any other exponential map
t — e — a could be used just as well provided a > 1, and the topology would not change much
(except that the indifferent fixed point would become repelling for a > 1, which might yield a
nicer conjugation near the fixed point).

We will from now on call the variable t the potential of a point on a ray, and it will always be
with respect to the conjugation to e’ — 1. The conjugation to e was a preliminary construction
and will no longer be used. Although there is no direct relation to potential theory on open
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domains, these names are intended to indicate the relation to dynamic rays of polynomials
(which are usually parametrized by potentials).

3 Landing Properties of Dynamic Rays

For A € C*, we define the postsingular set as P(E)) := U,>oE5"(0). In this section, we
will discuss landing properties of dynamic rays. In order to use contraction properties of
hyperbolic metrics, we need to make certain assumptions for the postsingular set; included are
the important cases of maps with attracting and parabolic orbits, as well as postsingularly finite
maps (for which the singular orbit is necessarily strictly preperiodic), and maps for which the
singular orbit is on a dynamic ray with bounded external address.

The main result of this section is the following.

Theorem 3.1 (Landing of (Pre-)periodic Rays)

If the singular orbit is bounded in C, then every periodic dynamic ray lands at a periodic
point;, moreover, every preperiodic dynamic ray lands at a preperiodic point unless some forward
iterate of the preperiodic ray lands at the singular value, which is then necessarily preperiodic.
If the singular orbit is on a dynamic ray at bounded external address t, then the periodic or
preperiodic dynamic ray at external address s lands at a periodic respectively preperiodic point
unless t = o™ (s) for some n > 1.

ProoF. First we discuss periodic rays. Since rays are simply connected, any inverse image of
any point on some ray gives rise to a unique pull-back of the entire ray via analytic continuation,
provided this ray does not contain the singular value. If the singular orbit is bounded, then it
cannot be on any ray, and every ray can be pulled back infinitely often; if the singular orbit
escapes on a ray, then any periodic ray can still be pulled back infinitely often unless some
forward image of the periodic ray contains the singular value.

The postsingular set contains at least the two points 0 and A # 0. The complement in C
contains exactly one unbounded component U, say. It carries a unique normalized hyperbolic
metric. Denote the hyperbolic distance of two points z1,2z; € U by dy(z1, 22). The map E)
is a holomorphic covering from E'(U) onto U and thus a local hyperbolic isometry. Since
P(E,) is forward invariant, we have E;'(U) C U. This is a proper inclusion, for otherwise U
would be an invariant open set and thus a Fatou component; since it contains dynamic rays
and thus points escaping to +o00, this Fatou component would have to be a domain at infinity,
but such are known not to exist for our maps [EL1]. Therefore, the inclusion Ey'(U) — U is
a strict contraction for the respective hyperbolic metrics. Let p(z) be the contraction factor of
the densities of these two hyperbolic metrics. We have 0 < p(z) < 1 everywhere, and since p is
continuous, it is bounded away from 1 on any compact subset of U. It follows that any branch
of B! taking any ray to another ray is a strict contraction for the hyperbolic metric of U.

Now consider any periodic ray which on its forward orbit never hits the ray containing the
singular value. Denote its period by n and let wy be a point on this ray. Construct a sequence
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wy of points on the same ray such that EY"(wgy1) = wg; this defines the points wy uniquely.
Let dy := dy(wy, wgyq) for all k£ > 0. These distances are finite because the postsingular set is

closed and does not hit the periodic ray under consideration. Obviously dy > di,; > 0 for all
k.

CLAIM. Suppose there is a set K C U with bounded real parts which is closed in C and which
contains infinitely many wy, . Then the sequence (wy) converges to a limit point in K.

PROOF OF CLAIM. Let s > 0 be arbitrary, let K' := {z € U : dy(z,K) < s} and 1 :=
sup,c g {p(2)}. We claim that 7y < 1 (this would be obvious if K was compact, but it may well
be unbounded in the imaginary direction). To see this, consider a sequence of points z, € K’
such that p(z;) — 1. This sequence must leave every compact subset of C, so its imaginary
parts must diverge. However, since the postsingular set satisfies vertical bounds by assumption,
the imaginary parts of E5'(P) — P are distributed evenly (except within a compact subset of
C), and p(z,) cannot tend to 1.

There is an n < 1 such that, whenever some w, € K', then dy.; < ndg. It follows that
dr “\( 0. Although this alone does not imply convergence of the sequence (wy), the idea is that
once the dj, are short enough, the sequence (wy,) can escape from K only so slowly that the rate
of escape will be overcome by the uniform contraction in the neighborhood K’ of K.

Let ¢ := s(1 — 7). Then there is an index m such that d,, < ¢ and w,, € K. If there is an
index [ > m with w; ¢ K', let [ be the least such index. But then

-1 [—m—1
d
dU(wm,wz)SdeSdmznk<—m< SR
k=m k=0 L=n 1-n

and w; € K’ contrary to our assumption. Hence all wy, are in K’ for all £ > m. But in this region,
there is a uniform contraction in every step, and the sequence (dy) converges geometrically to
zero. Therefore, the sequence (wy) converges to a limit in K'. Since s was arbitrary, the limit
is in K. This proves the claim.

As a consequence, we may concentrate on those dynamic rays which enter any closed set in
U with bounded real parts just finitely often. Such a ray must accumulate at (at least) one point
in P(E))U {oco}. It cannot simultaneously accumulate at P(E)) and at oo because that would
require the ray to traverse regions with bounded real parts infinitely often. If it accumulates at
P(E)), then the bounded hyperbolic distances between wy, and wy; translate into Euclidean
distances converging to zero because the points wy are near the boundary of U. This implies
that the ray must land at a periodic point of period dividing n (compare Milnor [M1, § 18]).

The final possibility is that Re(wy) — 400 as k — oo. The limit cannot be —oo because
any point with large negative real part has also large absolute value, and its pull-back then
has large positive real part. But points with large positive real parts will land at smaller real
parts under any branch of E,!. Therefore, the sequence of real parts of w; has a bounded
subsequence, and this finishes the proof of the theorem for periodic rays.

For preperiodic rays, the statement follows by pulling back periodic rays. This is possible
if the corresponding periodic rays land, and if the pull-back never runs through the singular
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value. ]

REMARK. The periodic landing point must be repelling or parabolic for the same reason as in
the polynomial case (the Snail Lemma; compare again [M1, § 13 and § 18] or [St, § 6.1]).

4 Periodic Points and Dynamic Rays

For the symbolic description of the dynamics, in our case of exponential maps, it is of great
importance to find an appropriate partition of the dynamic plane. We started with the static
partition which is bounded by horizontal lines which are mapped to the negative real axis.
Since the negative real axis itself is usually not distinguished by the dynamics, this partition
is useful only in a far right half plane where the partition boundary is remote from its forward
image, so that we have the Markov property that sector boundaries never map into sectors (but
only for orbits which stay in this right half plane). The nice feature is that every periodic ray is
coded by a unique periodic symbolic sequence, different rays have different codings, and every
periodic coding sequence is actually realized.

In some sense, this partition is too good to be useful: all rays are encoded differently. When
considering landing properties of dynamic rays, it does happen that different rays land at a
common point, and we would like to have a partition which describes this in such a way that
rays have the same symbolic sequence if and only if they land together. We will propose such
a partition which also labels periodic and preperiodic points, and the labels of these points are
the same as the labels of the rays landing at them.

It may be helpful to compare this situation to the (possibly more familiar) case of a monic
quadratic polynomial with connected Julia set K. The exterior of K is canonically foliated by
dynamic rays which are labeled by their external angles in S' = R/Z, and these angles can
be described by the sequence of their binary digits. Using the unique fixed ray at angle 0 and
its unique preimage (other than itself) at angle 1/2, we cut C — K into two sectors which we
label by 0 and 1: a dynamic ray is in sector 0 if its external angle is in (0,1/2), and it is in
sector 1 if the external angle is in (1/2,1). The sequence of labels of the sectors some ray visits
under iteration is exactly the sequence of the binary digits of its external angle. We can also
partition the dynamic plane using straight radial lines at angles 0 and 1/2 (which are part of
the real axis). This is the analog to our static partition. Near infinity, there is not much of
a difference to the ray partition, but it is usually not dynamically invariant and has no real
dynamic significance. (However, the analogy is not complete: in the exponential case, there
is interesting dynamics which takes place in a right half plane far from the negative real line,
and here it is not very important whether this partition boundary is somewhat perturbed. The
static partition can thus be used for rays.)

In any case, no two polynomial dynamic rays have the same external angle or binary se-
quence. This partition does not encode which rays land together. Therefore, we propose another
partition. For simplicity, we suppose that the critical value is strictly preperiodic, so it is the
landing point of a dynamic ray at some preperiodic angle ©). The two inverse image rays land
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together at the critical point; their angles are /2 and (¢ + 1)/2. Now we use the partition
formed by these two rays and label the sector containing the zero ray by 0; the other sector will
be labeled 1. We have to exclude points which ever hit the critical point under iteration, as well
the rays landing at such points. Then every orbit will again have a symbolic sequence which is
called the itinerary of the orbit. Since pairs of rays landing at a common point can never cross
the partition boundary, rays landing at a common point will have the same itinerary, and the
landing point also has the same itinerary. In fact, it is well known and not hard to see that
different points have different itineraries and that a ray lands at some point in the Julia set if
and only if ray and point have identical itineraries. Therefore, this partition reflects more of
the dynamic properties. To stress the difference, we will use the font 0,1, u,... for itineraries
and the usual font 0, 1, s for external addresses.

There are some problems with itineraries, however: if there are several rays landing at the
singular value, we obtain several inequivalent partitions, but all have the same properties. In
many cases, however, there is no dynamic ray at the critical value at all, and it is not clear how
to construct such a partition. In the hyperbolic or parabolic cases, where the critical value is
in the interior of the filled-in Julia set, one can take dynamic rays landing on the boundary of
the Fatou component, together with a curve within this Fatou component (and this choice is
again far from unique). One more case where this construction works is when the critical orbit
escapes: the critical value is then on some dynamic ray, and the two inverse images of this ray
will hit the critical point, forming a useful partition. This case is technically the simplest: the
Julia set is a Cantor set with uniform expansion and every bounded orbit has a well-defined
itinerary. We will discuss analogues of all these cases for our exponential maps.

Definition 4.1 (Various Types of Parameters)

A parameter A € C* will be called attracting if the map E\ has an attracting periodic orbit; it is
called parabolic if there is a parabolic orbit. The parameter is called postsingularly preperiodic
if the singular orbit is finite (and thus necessarily strictly preperiodic). Finally, it will be called
a bounded escape parameter if the singular value is on a dynamic ray with bounded external
address.

In the attracting or parabolic case, the singular orbit will converge to a unique non-repelling
(attracting or parabolic) orbit. If the singular orbit is finite, it ends in a repelling cycle. In
the bounded escape case, the singular orbit diverges to +oo with bounded imaginary parts. In
all cases, every periodic orbit is repelling, with the obvious and only exception of the unique
attracting or parabolic orbit if there is such an orbit.

4.1 The Bounded Escape Case

Suppose that the singular orbit escapes to 4+o0o with bounded imaginary parts. Then the
singular value is on some dynamic ray with bounded external address (Theorem 2.3). Let R;
be the dynamic ray to the singular value, restricted to potentials greater than and including
the potential of the singular value.
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Each inverse image of the ray R; is a curve starting at positive infinite real parts and
bounded imaginary parts and stretches to negative infinite real parts (since typically the ray
Ry will be differentiable [Vi], the imaginary parts of every inverse image will be bounded as
well). Together, all inverse images form a partition of the complex plane. If the singular value
0 is not on the partition boundary, then it defines a unique sector Sy. All the other sectors will
be labeled S; with j € Z so that adjacent sectors are labeled by adjacent integers, and labels
increase by 1 when the imaginary part of the sector is increased by 2. (If the singular value
is on the partition boundary, then it must be on a fixed ray, and we choose one of the two
adjacent sectors to have label 0; it can be shown that this happens only for A € R.) Any point
and any dynamic ray which never lands on the partition boundary will then have a well-defined
itinerary; this includes all points with bounded orbits and in particular periodic and preperiodic
points. A periodic ray can land at a periodic point, or two periodic rays can land together,
only if their itineraries coincide. The converse is true as well:

Proposition 4.2 (Itineraries of Rays and Landing Points)

If the singular value escapes to +00 along bounded imaginary parts, then no two periodic or
preperiodic points have identical itineraries, and a periodic or preperiodic dynamic ray lands at
a given periodic or preperiodic point if and only if ray and point have identical itineraries.

REMARK. Rays which have no itineraries cannot land because they will hit the singular value
on their forward orbits.

PROOF. Let (z;) and (wy) be two periodic orbits such that the itineraries of z; and w; coincide.
We do not assume that the periods of the two orbits are equal. Let n be an integer such that
21 = 241 and wy; = w4 (then n is a common multiple of the periods of both orbits).

Let U be the complex plane from which the closure of the ray R; and all its (finitely or
infinitely many) forward images are removed. Since only finitely many forward images of R;
may intersect any compact subset of C, the set U is open and connected. For an index j € Z, let
U; := UNS;j be the connected and open subset within sector j. It carries a unique normalized
hyperbolic metric. For every j, there is a branch of E,* mapping U into U;. Restricting this
branch to any Uy, it must contract the hyperbolic metric.

There is a common branch of the pull-back which maps z; to z;_1 and wy to wi_;, and it
shrinks hyperbolic distances. Repeating this n times, both periodic points are restored, but
their hyperbolic distance has decreased. This is a contradiction and shows that w, = z;. We
also see that the period of the orbit equals the period of the itinerary: obviously, the period of
the itinerary must divide the period of the orbit, and if it strictly divides it, then there are two
periodic points with the same itinerary.

Therefore, any two periodic orbits have different itineraries, and the period of the orbit
equals the period of its itinerary. Any periodic ray lands at a periodic point by Theorem 3.1
(unless it hits the singular value on its forward orbit, but such rays have no itineraries), and
the itineraries of ray and its landing point must obviously be equal. It follows that any periodic
point is the landing point of any ray which has the same itinerary.
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Similar statements for preperiodic points are now immediate. ]

We will show in Section 5 that (almost) every periodic or preperiodic point is the landing
point of at least one periodic respectively preperiodic dynamic ray. The only thing we need
for this proof is a combinatorial lemma to the effect that for every periodic itinerary (as given
by the prospective landing point), there is a dynamic ray with that itinerary, and it suffices to
describe the external address of this ray. We will provide this combinatorial result in Lemma 5.2,
simultaneously for all three cases.

4.2 The Postsingularly Finite Case

Suppose that the singular orbit is finite and thus preperiodic. This case has been investigated in
[DJ] in the special case of regular external addresses (called “itineraries” there). The following
result will be of crucial importance:

Theorem 4.3 (Rays Land at Singular Orbit)
For every postsingularly finite exponential map, at least one dynamic ray lands at every point
of the singular orbit.

In order to keep the arguments flowing and to maintain the parallel treatment of the different
cases, we defer the proof of this theorem to Section 6.

Let Ry be the dynamic ray which lands at the singular value. Then we get a similar
partition as above, except that the imaginary parts of the partition boundary will usually
become unbounded as the real parts approach —oo because the ray R; will usually spiral into
its landing point 0. The singular value 0 will never be on the partition boundary and defines
a unique sector Sy, and the other sectors are labeled as above. Every periodic and preperiodic
point has a well-defined itinerary, and also every dynamic ray which never iterates onto the ray
landing at the singular value. We obtain the same statement as for the bounded escape case,
but with a complication in the proof: there will be a periodic orbit on the forward orbit of the
partition boundary, and the regions U; need not be connected.

Proposition 4.4 (Itineraries of Rays and Landing Points)

If the singular orbit is finite, then no two periodic or preperiodic points have identical itineraries,
and a periodic or preperiodic dynamic ray lands at a given periodic or preperiodic point if and
only if ray and point have identical itineraries.

PROOF. Let (z), (wg) and n as in the proof for the bounded escape case and let (u;) be the
common itinerary of (zj) and (wy). Let U be the complex plane with the closure of the ray
landing at the singular value and all its finitely many forward images removed. The set U is
still open but it may fail to be connected if several different periodic forward images of the ray
landing at the singular value land at the same point. For an index j € Z, let U; := UNS] be the
open subset within sector j. Every connected component of every Uj has a unique normalized
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hyperbolic metric. For every j, there is a branch of E5' mapping U into U;. Restricting this
branch to any connected component of any Uy, it must contract the hyperbolic metric.

If there is an index %k such that z; and wy are in the same connected component of Uy, ,
then the proof for the bounded escape case goes through. However, if the orbits (wy) and (zy)
are never in the same connected component of Uy, , then their pull-backs must be synchronized
with the pull-backs of the periodic orbit the singular orbit lands in: if z; and wy are in different
connected components of U,,, then they are separated by a pair of rays landing at the same
postsingular point, and both rays and their landing point are in the same strip S,, as z;, and
wg. The inverse image points z;_; and wy_; are in the same strip S,, , because their itineraries
are equal; the inverse image of the ray pair in U,, can separate z,_; and wg_; only if it is in
the same strip as well. Separating ray pairs can only get fewer if their inverse images are in
different sectors, but there can never be new separations. This justifies the claim that 2, and
wy, can forever be in different connected components of their U,, only if their itinerary is the
same as that of a periodic postsingular point.

All we need to prove is the following: if some periodic point z; has the same itinerary
as a periodic postsingular point, then it is equal to this postsingular point. To prove this,
we can connect z; to a linearizable neighborhood of the periodic postsingular point in the
same sector by a curve with finite hyperbolic length, and subsequent pull-backs will shrink this
neighborhood to a point, while the hyperbolic length of the curve will remain at most the same,
so its Euclidean length must shrink to zero because it is near the boundary of the domain.

The remaining steps are the same as in the bounded escape case. ]

4.3 The Attracting and Parabolic Cases

We will now discuss the case that there is an attracting or parabolic periodic orbit of some
period n. Such an orbit will attract a neighborhood of the singular value, so there is a periodic
Fatou component containing an entire left half plane. Let aq,as,...,a, = ag be the points on
the attracting orbit such that ag is in the Fatou component containing a left half plane. Then
ay is in the Fatou component containing the singular value.

Unlike in the previous two cases, we cannot construct a partition using dynamic rays landing
at or crashing into the singular value. We will use closed subsets of periodic Fatou components
in their place. Since we want all periodic points (except those on the attracting or parabolic
orbit) to be in the complement, we cannot use the closure of the entire Fatou components. The
construction of a partition will be specified in the proof.

Proposition 4.5 (Itineraries of Rays and Landing Points)

For attracting or parabolic parameters, no two non-attracting periodic or preperiodic points have
identical itineraries, and a periodic or preperiodic dynamic ray lands at a given non-attracting
periodic or preperiodic point if and only if ray and point have identical itineraries.

PrROOF. First we consider the case of an attracting orbit. Let V; be a closed neighborhood
of the point a; which corresponds to a disk in linearizing coordinates and which contains the
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singular value. Let

V:={z2€C: Ef(z) € V| for some k <n+1
and z is in a periodic Fatou component }

and U := C—V (compare Figure 1). Then V is closed and forward invariant, so U is open and
backward invariant: E/\_I(U) C U, and this is a proper inclusion. Since V;j is a neighborhood
of the singular value, its pull-back contains a left half plane; the next n — 1 pull-backs are
all univalent and connect a,_1,...,a; to +oo within their Fatou components, and the last of
these pull-backs yields a neighborhood of Vi. The final pull-back will connect the left half
plane around ay to 400 along countably many open domains within the same periodic Fatou
component, spaced integer multiples of 277 apart. This is the only connected component of V'
disconnecting C, so U consists of countably many connected components which are all translates
of each other by integer multiples of 27i. Although none of these connected components contains
the singular value, there is exactly one which surrounds it. Let U, be this connected component
and denote the others by Uj for integers j in the same way as before. Every Uj is open and
connected and carries a unique normalized hyperbolic metric, and the same proof as above will
go through once more.

If there is a parabolic orbit, rather than an attracting one, we have to define the set V' some-
what differently: it should be a connected open subset of the Fatou set, it should contain the
singular value, and it should be forward invariant such that E3" maps V into itself; moreover,
its closure should intersect the Julia set only in a parabolic periodic point. Such sets are easily
constructed using Fatou coordinates near the parabolic orbit (compare [M1, § 8]): for example,
in coordinates in which the parabolic dynamics corresponds to translation by +1, we can take
a forward invariant horizontal strip which extends infinitely to the right and which contains the
singular orbit.

With this modification, the given proof for the attractive case applies to all the repelling
periodic and preperiodic points provided the quotient U/2miZ is connected. It may happen,
however, that the parabolic orbit disconnects this quotient. As in the postsingularly finite case,
one can show that two different periodic points with identical itineraries must be in different
connected components of U/2miZ during an entire period of the pull-back, and this is possible
only if their itinerary is the same as that of a parabolic periodic point. But such orbits must then
be equal to the parabolic orbit; instead of linearizing neighborhoods in the repelling case, we
use Fatou coordinates in repelling petals of the parabolic orbit. The details are straightforward.

[]

5 (Pre-)periodic Points are Landing Points

Now we want to show that every repelling periodic or preperiodic point is the landing point of
at least one periodic respectively preperiodic dynamic ray. We prove this in the postsingularly
finite, the attracting and parabolic cases, as well as in the bounded escape case if the singular
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Figure 1: The construction of the partition in the attracting case, for period n = 3.
Indicated are the region V| and its immediate pull-back in dark grey, and the next n
pull-back steps within periodic Fatou components in a lighter shade of gray. Together,
they constitute the set V. Some preperiodic pull-backs are also shown in light grey.
The attracting orbit ay is indicated, as well as several dynamic rays used in the proof
of Theorem 5.3.

17



18 Dynamic Rays for Exponential Maps

orbit is on a periodic or preperiodic ray (in the latter case, there is a well-understood exception).
The statement itself is true in much greater generality, as can be shown by a perturbation
argument together with some knowledge about parameter space: if some repelling periodic
point is the landing point of some periodic dynamic ray, then this will still be true for sufficiently
small perturbations of the parameter (compare [GM] or [Sch] for the proof of the analogous
statement for quadratic polynomials).

The corresponding statement for polynomials is due to Douady and Yoccoz; see [H]. The
proof does not generalize to entire maps because it uses finiteness of the degree and the existence
of the attracting basin of co in an essential way.

Theorem 5.1 (The Douady-Yoccoz Landing Theorem)

If the Julia set of a polynomial is connected, then every repelling periodic point is the landing
point of at least one and at most finitely many periodic dynamic rays, and analogously for
preperiodic points. ]

If a polynomial Julia set is disconnected, then not every repelling periodic point is the
landing point of a periodic dynamic ray; it may be the landing point of no ray at all or of
infinitely many non-periodic rays [GM, Appendix C|; however, the number of affected orbits
is bounded by the number of critical orbits [LP]. Therefore, one would expect an analogous
statement for exponential maps to have some exceptions at least in the case that the singular
orbit escapes.

In order to start a proof, we need a combinatorial lemma about symbolic dynamics on the
symbol space § = {s15283...: all s; € Z} with the usual topology and lexicographic order.
For s,t € §, let (s,t) be the open interval of elements of 8§ between s and ¢ in this lexicographic
order. The shift operator o acts on this space in the usual way. It is continuous, but it does
not preserve the order. For any sequence ¢t € 8 and ¢; € Z, terms like ¢;t or (¢; + 1)t will denote
the sequence starting with ¢; or ¢; + 1 and continuing with ¢ (concatenation of the first symbol
with the remaining sequence).

We need to define itineraries of sequences s € 8§ with respect to fixed symbolic sequences.
In order to define them, let ¢ be any sequence over Z starting with ¢; € Z, and suppose that
t is different from the constant sequence. Then exactly one of the two intervals (¢1t, (t; + 1)t)
and ((t; — 1)t,t1t) contains the sequence t; denote this interval I, (this interval is the first or
second of the given two examples iff the first entry in ¢ different from ¢; is greater or smaller
than 1, respectively). For j € Z, let I; be this same interval, except that in every sequence the
first entry is increased by j. For a sequence s € § we want to define its itinerary with respect to
t: that should be the sequence of indices of intervals containing o°*(s) for k = 0,1,2,.... This
works unless s ever maps onto the boundary of the partition, which happens iff it maps onto ¢
in the next step. In this case, the corresponding entry in the itinerary will not be an integer,
but a “boundary symbol” 331 indicating that the corresponding forward image of s is on the
boundary between the intervals I3 and [j;.

If ¢ is a constant sequence, we can use one of the two intervals (¢, (t; +1)t) or ((t; —1)t, t1t)
as I, and proceed as above; there is no preferred choice.
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The itinerary of any sequence ¢ with respect to itself will be called the kneading sequence
of t. By construction, the first symbol in any itinerary is 0. If ¢ is periodic, then its orbit will
run through the boundary of the partition, so the kneading sequence will contain a boundary

symbol. We will say that a kneading sequence with a boundary symbol J;-ri is adjacent to

an itinerary u if all non-boundary entries are equal, and if any boundary symbol J;-rl in one
sequence corresponds to the same symbol or to an adjacent entry j or j 4+ 1 in the other
sequence.

The meaning of this construction is as follows: ¢ will be the external address of some dynamic
ray landing at the singular value or hitting it. The partition boundaries above will then be
dynamic rays (or ends of dynamic rays) with external addresses jt (concatenation!) for integers
J, and the itinerary of any dynamic ray having external address s with respect to this partition
is combinatorially determined as the itinerary of the sequence s with respect to the sequence ¢.

Lemma 5.2 (Combinatorics of Itineraries)
For any periodic or preperiodic external addresst € & and any periodic or preperiodic itinerary
u € 9§, there is a periodic resp. preperiodic external address s € & such that the itinerary of s
with respect to t is u, unless the kneading sequence of t is equal to or adjacent to a finite shift
of u. The number of sequences s with itinerary u always finite, and if u does not contain an
entry 0, then there is a unique such sequence s.

PROOF. First suppose that u is periodic with period n > 1 and let u; be its k-th entry for
k > 1. In order for the first entry in the itinerary of s to be u;, we need s € I,,. Since the
forward orbit of ¢ is finite by assumption, it cuts I,, into finitely many open sub-intervals; call
them Ji,...,J), for some m > 1. Each of these sub-intervals can be pulled back n times so as
to yield sub-intervals Jy, ..., Jy, of I, which generate n initial entries in their itineraries equal
to uy,...,u,; compare Figure 2. The construction assures that the n-shift from any J; to its
image .J;, is monotone and that each .J; is completely contained in a unique J;,(k), thus defining
a map p from {1,...,m} to itself (it need not be injective).

Now we will construct sequences (my) with elements in {1,...,m} as follows: start with
any my and let my, 1 = p(my) for all k: then my; is the index of the unique interval J,’nk+1
which contains .J,,,,. By finiteness of m, some index must repeat, and there is thus an interval
J' among the J; such that .J' contains a subinterval .J which maps monotonically onto J' after
gn shifts for some integer ¢ > 1. If the intervals J and .J’ do not have a common boundary
point, then the interior of J contains a sequence s which is fixed under the gn-th shift, so it
is periodic. Obviously, this sequence s has itinerary u. However, if the two intervals do have
a common boundary point, then this boundary sequence (which is on the forward orbit of ¢ )
is fixed under the gn-th shift. Sequences within .J sufficiently close to the boundary will have
itineraries which coincide with u for arbitrarily many entries (at least n). If the boundary
sequence itself has an itinerary, then it is equal to u. This itinerary exists unless the boundary
maps on its forward orbit through an immediate inverse image of ¢, which happens if and only
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Figure 2: The construction of the intervals .J,. .., J,, in the proof of Lemma 5.2.

if it maps through ¢ itself, and this happens only if ¢ is periodic so that the itinerary of ¢ is
adjacent to a finite shift of u. Everything is fine if ¢ is preperiodic (its kneading sequence does
not contain a boundary symbol). This finishes the proof for periodic u.

For preperiodic sequences u, we first construct a periodic sequence s’ which generates a
periodic itinerary u’ on the forward orbit of u; this is possible unless ¢ is periodic and its
itinerary is adjacent to a finite shift of u. The preperiodic pull-back is possible if ¢ is periodic;
if it is preperiodic, it is impossible if the pull-back runs through ¢: this happens only if the
itinerary of ¢ is equal to a finite shift of u. Combining everything, we see that there is a sequence
s generating the itinerary u except if the itinerary of ¢ is equal or adjacent to a finite shift of u.

Finally, we need to prove uniqueness if u does not contain an entry 0. In this case, we can
simply start with the interval I, and keep pulling back. By assumption, the sequence of pull-
backs will never be in sector I, which contains . Hence every pull-back step yields a contiguous
interval, and it shrinks to a unique sequence in 8 when the pull-back is continued. (Comparing
with the proof given above, the difference is this: the orbit of ¢ may cut [, into several intervals,
but during the pull-backs the disconnecting forward images of ¢ will eventually be on different
branches than the various intervals themselves because the pull-back of I, cannot map through
Iy > t; therefore, all the intervals J;, will eventually pull back into a single interval, and all orbits
under p land on a unique orbit.) This proves the lemma. ]
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This lemma can also be described in terms of a transition matrix between the intervals .Jj.
This has been elaborated in [DJ] for the case exponential maps which are postsingularly finite
and for which the external address of the singular orbit is “regular”.

Now we have all ingredients together to prove in many cases that every repelling or parabolic
periodic point is the landing point of at least one dynamic ray.

Theorem 5.3 (Every (Pre-)periodic Point is Landing Point)

For every postsingularly finite, attracting or parabolic parameter, every repelling or parabolic pe-
riodic or preperiodic point is the landing point of at least one periodic resp. preperiodic dynamic
ray.

For every parameter for which the singular orbit escapes on the end of a periodic or prepe-
riodic dynamic ray, the same is true with the exception of periodic sequences t and periodic or
preperiodic points for which a finite shift of the itinerary is equal to or adjacent to the kneading
sequence of t.

In any case, only finitely many periodic or preperiodic rays land at the same point.

PrOOF. The fact that only finitely many periodic (and thus preperiodic) rays may land together
is the same as for polynomials and will thus be omitted; compare [M1, § 18].

First we consider the postsingularly finite case. We assume that some dynamic ray lands
at the singular value; this will be proved in Theorem 6.8 independently of this section. Let ¢
be the external address of such a ray. In Proposition 4.4, we have constructed partitions with
respect to which every periodic point has an associated itinerary. Consider any periodic point
z and let u be its itinerary. By Lemma 5.2, there is a finite non-empty collection of periodic
sequences in 8 which all generate the itinerary u with respect to ¢. For every such sequence,
there is a unique dynamic ray with this external address, and each of these rays will have
itinerary u. According to Proposition 4.4, these rays must land at the periodic point z with
the same itinerary. Preperiodic points are handled by pull-backs: the only problem may occur
if a preperiodic point has an itinerary which runs through the kneading sequence of ¢ under
iterated shifts; but then the periodic forward orbit must be part of the singular orbit and the
preperiodic point itself must map through the singular value. This is obviously impossible, and
there is no problem.

Now we deal with the case that the singular value escapes on a periodic or preperiodic
ray. Let ¢ be the (periodic or preperiodic) external address of the ray containing the singular
value. In Proposition 4.2, we have constructed partitions with respect to which every periodic
point has an associated itinerary. Again, we consider a periodic point z with itinerary u and
use Lemma 5.2 as before. The proof proceeds as in the postsingularly finite case, except that
we have to deal with the exceptions from the lemma: if ¢ is preperiodic, then every periodic
point is the landing point of finitely many periodic dynamic rays (no exceptions so far); for
preperiodic points, we can pull back unless the pull-back runs through the ray containing the
singular value; in this bad case, a shift of the itinerary of the preperiodic point will be equal to
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the itinerary of the singular value, which is the kneading sequence of t. This case was excluded
in the hypothesis.

Now we discuss the attracting case. We have constructed a partition in Proposition 4.5
(compare Figure 1), so every periodic and preperiodic point which is not on the attracting
orbit is repelling and has a well-defined itinerary. The partition was not constructed using a
dynamic ray through the singular value; instead we have used a subset of the Fatou component
around the singular value which stretches out to +oo. If n denotes again the period of the
attracting orbit and thus of the periodic Fatou components, then the first n — 1 entries in the
itinerary of the singular value and its Fatou component are well defined. The n-th forward
image is contained within the Fatou component defining the sector boundary, so this entry is
not defined. The idea is to replace the left half plane by a ray which is very far up or down
so that the partition and its combinatorics is the same; we can then apply our combinatorial
lemma once more.

More specifically, let z be a repelling periodic point with itinerary u and let ¢ be a periodic
sequence of period n where the first n — 1 entries are as in the itinerary of the singular orbit
and the n-th entry is a very large positive integer which exceeds the absolute value of the
largest entry in u. Then the kneading sequence of ¢ will contain at the n-th position an entry
which is greater than all entries in u, so Lemma 5.2 gives us a periodic sequence s such that
its itinerary with respect to ¢ is u. Let g, be the periodic ray for external address s; it exists
by Theorem 2.3. We will argue that the itinerary of g, is u also for the partition consisting of
Fatou components. Indeed, if the itineraries are different, then some forward image of g, must
be “between” the dynamic ¢-ray and the singular value Fatou component (in the order near
+00); since the first n — 1 entries in the itineraries of the ¢-ray and the singular value Fatou
component are equal, we may iterate forward n — 2 times and preserve the order near +oc of
the two rays and the Fatou component. But the n — 2-th image of the singular value Fatou
component is the Fatou component containing a left half plane, so one of the forward images
of g; must be “above” the n — 1-th image of the ¢-ray; but this contradicts the bounds on the
itinerary u of g,. This contradiction shows that the itinerary of the ray g, is indeed u with
respect to the partition using Fatou components, and the ray lands at z by Proposition 4.5 (it
also follows that the construction of s is independent of the choice for the n-th entry in the
sequence t ). For preperiodic points, we can simply pull back; there is no problem in this case.

Finally, the proof for the parabolic case is the same as for the attracting case; it works for
all repelling orbits, as well as for the parabolic one. ]

We conclude this section with a brief discussion of external addresses without entries 0.
Such sequences and the corresponding rays have been investigated in a number of papers under
the name of “regular itineraries”. The following two lemmas are known from [DGH] and are
intended to show that the dynamical possibilities of “regular” itineraries are rather restricted.

Lemma 5.4 (Dynamic Rays Intersecting Partition Boundary)
If a dynamic ray intersects the boundary of the static partition, then its external address must
contain an entry 0.
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PROOF. Suppose that a dynamic ray intersects a boundary of the static partition. This implies
that the images of ray and sector boundary under E) intersect each other as well. Since the
image of a sector boundary is the negative real axis which lies in sector zero of the static
partition, the external address had to contain the entry zero. ]

Lemma 5.5 (Dynamic Rays Landing at Common Point)
If several dynamic rays with bounded external addresses land at a common point, then the
external address of at least one of them contains the entry 0.

PROOF. Suppose that several dynamic rays with bounded external addresses land at a given
point. If none of them contains the entry 0, then all these rays lie completely in one strip of
the static partition by Lemma 5.4. This means they have the same first entry in their external
address. The same argument applies to all forward images as well, so all these rays have the
same external addresses. But there is a unique dynamic ray for any given external address by
Theorem 2.3, a contradiction. ]

While rays with “regular” external addresses always land alone, the structure of Julia sets
and of parameter space is largely determined by groups of rays landing together: for example,
Douady’s pinched disk models [Do], Thurston’s laminations [T], Milnor’s orbit portraits [M2]
are all based on pairs of rays landing together.

6 Spiders

In this section, we will give a proof that for every postsingularly finite exponential map, the
singular value is the landing point of at least one dynamic ray. We will prove this result by a
variant of the spider theory from [HS], which is an offspring of Thurston’s classification theory
of rational maps [DH2|. Since we have used this theorem in Sections 4 and 5, we can use here
only the results of earlier sections.

For this entire section, fix a postsingularly finite exponential map FE), and let s; = 0,
sy = E\(0) = X, s3 = E\(E\(0)), ...be the singular orbit with preperiod [ and period £,
so that s;;xy1 = s;11. Then there is an integer N # 0 such that s, — s, = 2miN. Let
S :={s1,..., 54k} be the postsingular set.

A spider of the map F, will be a set of [ 4 k disjoint curves, one for each postsingular point
57, which connects this point to co. These curves are not allowed to meet each other or any
of the endpoints, other than those they connect to oo. We will call these curves spider legs
with endpoints s;. Two spiders will be called equivalent if their endpoints are identical, and if
their legs are homotopic relative to the endpoints. At oo, the legs have a cyclic order which
is fixed under homotopies. There are finitely many cyclic orders of the finitely many legs, and
each of them defines a spider space as a set of equivalence classes of spiders. (Compare the
more systematic discussion in [HS]. In general, the space of (equivalence classes of) spiders is
a Teichmiiller space; we are interested only in the discrete subset with fixed endpoints, which
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corresponds to a single point in moduli space. Usually, in Teichmiiller space or spider space we
have to divide by the action of Mobius transformations; however, we have already normalized
so that 0 and oo are special and s, — s; = 27iN.)

Definition 6.1 (The Spider Map with Fixed Endpoints)

Consider any spider which connects all the postsingular points of Ey to oo and denote the leg
which connects s; to oo by v;, fori=1,2,... 1+ k. Associate to this a new spider, the image
spider, which has the same endpoints s;, and for which the leg ; from s; to oo s the unique
inverse image of v;41 under E\ which connects s; to oo (by periodicity, we set Yiirpi1 = Yit1

here).

REMARK. Any leg v;,1 connects s; 1 to 0o; since E)(s;) = $;41, there is indeed a unique inverse
image of ;.1 which ends at s;. The two new spider legs at s; and s, will both be different
inverse images of 7,11 = Yk+1; on the other hand, the leg v, landing at the singular value
s; = 0 will not be used in the construction of the new spider (in fact, all the legs at preperiodic
points will be thrown away eventually, but without them the point in Teichmiiller space would
not be specified completely).

Lemma 6.2 (Spider Map on Equivalence Classes)
Under the spider map, equivalent spiders have equivalent images, so the map descends to a map
on the set of equivalence classes.

PROOF. Any homotopy between equivalent spiders yields a homotopy between the image
spiders. ]

In general, the cyclic order of the spider legs near oo may be different for any spider and its
image spider. The total number of possible cyclic orders is finite, so eventually one cyclic order
must repeat. It is not obvious that then the image spiders will also have the same cyclic orders
(the cyclic order alone does not determine the image spider or even its cyclic order). We want
to prove more: that after some finite number of iterations, a periodic spider is reached.

Proposition 6.3 (Periodic Spider)

The iteration of any spider with endpoints at the singular orbit will lead to a periodic spider
after finitely many steps (that is, to a spider which is equivalent to its image spider after finitely
many iterations of the spider map).

This fact has been proved in [SS]. At this place, will not repeat the proof, which requires
some background in hyperbolic geometry and Teichmiiller theory. Instead, we will prove the
analogous result for unicritical polynomials to illustrate the concepts in a much simpler context
where a Hubbard tree is available (for postcritically preperiodic polynomials, the Julia set is a
dendrite, while it is all of C for postsingularly finite exponential maps).
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Suppose that we have a unicritical polynomial of degree d, written in the form z — A(1 +
z/d)?, and that the critical value 0 is strictly preperiodic. Then we can define spiders and a
spider map in complete analogy to the exponential case (and in fact, this is possible much more
generally).

Lemma 6.4 (Periodic Spider for Unicritical Polynomials)

The spider map for every postcritically preperiodic unicritical polynomaial, started with an arbi-
trary spider, will lead to a periodic spider after finitely many steps (that is, to a spider which
is equivalent to its image spider after finitely many iterations of the spider map).

PrROOF. In the dynamic plane of the polynomial, there is a unique Hubbard tree: that is
the unique tree within the (arcwise connected) Julia set connecting the finite critical orbit. It
is easy to modify the spider to a homotopic spider so that every leg intersects this tree in a
finite number of points (this may be easier if the Hubbard tree is also considered only up to
homotopy). It then follows easily that the image spider can have no more intersections with
the Hubbard tree than the first spider, so we have a bound for the intersection numbers of all
spiders on the iterated orbit of the first spider. But the number of spiders (up to homotopy)
with any given number of intersections is finite, so the sequence of spiders must eventually
become periodic as claimed (recall from Lemma 6.2 that we regard the spider map at this point
as a map on equivalence classes). ]

REMARK. In fact, one can easily draw an initial spider which does not intersect the Hubbard
tree at all, and it follows that the periodic spider will have the same property. After all, we are
interested in dynamic rays landing at the singular orbit, and these do not intersect the Hubbard
tree.

In order to make our spiders legs look more like dynamic rays, we will require from now on
that they approach oo along bounded imaginary parts with real parts diverging to +oc. We
will call a spider with this property a tamed spider; tamed spiders will be called equivalent if
they are equivalent as spiders, and if the homotopy between the spiders can be chosen so that
it runs only through tamed spiders. Every spider has an equivalent tamed spider, and every
equivalence class of spiders splits into finitely many equivalence classes of tamed spiders: the
cyclic order of the legs at oo becomes refined as the order of the legs as they approach +oo
(ordered by imaginary parts), and two tamed spiders are equivalent if they are equivalent as
spiders and if the order of their legs at +oc is the same.

From now on, we will view the spider map on the level of spiders, rather than on equivalence
classes of spiders, and we only need to consider spiders which represent the periodic equivalence
class. Any spider is given by its legs, and its image spider needs one leg for each of the
postsingular points: for the point s,, we take an inverse image under E) of the leg at s, and
choose the branch of the inverse image (the logarithm) so that it maps s, to s,. If any spider
is tamed, then the image spider will automatically be tamed.
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Lemma 6.5 (Images of Tamed Spiders)
Two tamed spiders which are equivalent as spiders have tamed images which are equivalent as
tamed spiders.

PROOF. Take any tamed spider, take its lowest leg (with respect to the order at +o00) and
move it around the complex plane within the space of equivalent (non-tamed) spiders so that
it becomes the highest leg: within the equivalence class of non-tamed spiders, we can thus
change which leg is the lowest in the approach to +o00, and we can arrange for any leg to be
the lowest one after finitely many such moves. This way, we can turn any tamed spider into
any tamed spider which is equivalent to it as a (non-tamed) spider. We need to show that the
image spiders are equivalent even as tamed spiders.

There is a leg to the singular value, and all the inverse images of this leg under F) cut
the complex plane into fundamental domains for the maps E). When a leg turns around the
complex plane so as to turn a tamed spider into a non-equivalent tamed spider, the images
of both tamed spiders under the spider map will have their legs in the same sectors of the
partition, and the claim follows easily. ]

We can thus strengthen Proposition 6.3 as follows.

Corollary 6.6 (Periodic Tamed Spider)
For every postsingularly finite exponential map, there is a tamed spider which is mapped to an
equivalent tamed spider after a finite number of iterations of the spider map.

ProOOF. Indeed, Proposition 6.3 supplies a spider which is mapped to an equivalent spider
after finitely many spider iterations, and except possibly for the first time, the spider will be
tamed and equivalent to its image tamed spider. ]

As we see, spiders are tamed under iteration, and now they are tame enough so that we
can replace the ends of spider legs by ends of dynamic ray. Let M be the number of spider
iterations it takes to map the tamed spider to itself.

Proposition 6.7 (Periodic Spider with Ray Ends)

FEvery periodic tamed spider has an equivalent tamed spider for which the legs terminate in rays
ends near +o0o such that after M iterations of the spider map, the legs to the same postsingular
points terminate in the same ray ends.

Proor. First we show that we can associate to each leg a canonical external address. Let R
be a part of the negative real axis which does not meet the given periodic tamed spider. All its
inverse images under F) form a static partition (within a right half plane) which does not meet
any inverse image of a spider leg and in particular no leg of the image spider under the spider
map (image spiders have legs which are constructed using inverse images of E)). Every spider
leg will thus disappear to +o0o within a well-defined sector of this partition, and this sector is
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the same for an entire equivalence class of tamed spiders. Label the sectors by the integers in
the order of increasing imaginary parts so that the singular value 0 is in sector 0. This way,
every leg of the image spider gets a well-defined label in Z. Continuing for M iterations of the
spider map, the tamed spider returns to an equivalent tamed spider, and the labeling becomes
periodic. Since the period of the singular orbit is k, every periodic leg will have a kM-periodic
sequence of labels.

For every leg, consider the periodic respectively preperiodic ray end with the same external
address; such exists by Theorem 2.3. Since legs as well as ray ends are ordered near +oo0
according to the lexicographic order of their external addresses, we can replace the ends of
all the legs by the ends of the ray ends with the same external addresses, thus obtaining an
equivalent tamed spider. The construction assures that the spider map respects these ray ends
so that after M iterations of the spider map, the leg into any given postsingular point always
terminates in a ray end with the same external address. ]

The proof of the following theorem is now routine.

Theorem 6.8 (Fixed Spider with Dynamic Rays)
Every postsingularly finite exponential map has a periodic spider for which all the legs consist
of dynamic rays landing at the postsingular points.

PrROOF. Given any postsingularly finite exponential map F)\, we can construct a tamed spider
for which all the legs terminate in ends of dynamic rays as in Proposition 6.7. Iterating the
spider map means pulling the ray ends back along their periodic respectively preperiodic inverse
images. It suffices to consider the periodic ray ends.

We know from Theorem 3.1 that every periodic ray end extends to a periodic ray which
lands at a repelling periodic point; all we want to prove is that the landing point is on the
singular orbit. We will again use contraction of a hyperbolic metric.

Let U be the complex plane minus the singular orbit and U’ := E*(U); then Ex:U' — U
is a holomorphic universal covering map, thus a local hyperbolic isometry. Since U’ is strictly
contained in U, every pull-back is also a local isometry from U to U’ and the inclusion into U
is a contraction. For every periodic leg, let z be a point on its ray end and let w be a point
within the domain of linearization of the endpoint. Under iteration of the spider map, w will
converge to the endpoint, while the hyperbolic length of the (continuously differentiable) leg
between the orbits of 2 and w will decrease, and corresponding points on both orbits will always
be on the same spider leg. Since w converges to the boundary of the domain U, hyperbolic
neighborhoods of fixed radii will become Euclideanly small, so the orbit of 2z converges to the
landing point of its leg. Since z is on a dynamic ray which lands, the ray must land at the same
point as its leg, and we have a fixed spider made of dynamic rays. ]

REMARK. The period of the postsingular orbit is k£, and the period of the tamed spider is M.
Therefore, spider legs may have periods up to kM, and up to M legs (and thus rays) may land
at the same postsingular point.
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In Section 4, we promised a proof that every postsingular point is the landing point of a
periodic or preperiodic dynamic ray. This is now trivial.

Proor oF THEOREM 4.3. We have a spider consisting of dynamic rays which land at each

point of the singular orbit. ]
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