ON SETS INVARIANT UNDER THE ACTION OF THE DIAGONAL
GROUP

ELON LINDENSTRAUSS AND BARAK WEISS

1. INTRODUCTION

Starting with Hillel Furstenberg’s seminal paper [F], it has been noted that many natural
actions of R¥, Z* or the semigroup Z* for k& > 2 (say on a space X) display remarkable rigidity
properties. In particular, in stark contrast to hyperbolic actions of Z or R, hyperbolic-like
actions of these k-dimensional groups display a scarcity both of closed invariant subsets of X
and of invariant measures on X.

In this paper we consider the action of A, the positive diagonal matrices in G = SL(n, R)
on G/T', where I' is a lattice in G. This action is defined by a(gl') = agl’. For n = 2, i.e,
when dim A = 1, it is known that this action has many irregular invariant subsets — in fact
for any a € [1, 3] there is a point # € G/T such that Az has Hausdorff dimension « (this is an
unpublished result of Furstenberg and Benjamin Weiss).

For n > 3 it was conjectured by Gregory A. Margulis (see [M1], p. 203) that typically an
orbit-closure for A is an orbit of a group containing A, i.e.,

Axr = Hx

for some Lie subgroup H < . Some care must be taken in this conjecture to rule out some
irregular A-orbits arising from rank-1 actions which appear as factors. For a recent formulation
of Margulis’ Conjecture see [M3], Conjecture 1.1. Related positive results restricting the A-
invariant measures on G/T" were established by Anatole Katok and Ralf Spatzier in [KS] (see
[KS] also for more on conjectures regarding invariant measures).

In this paper we consider the rather special case of A-orbits whose closures contain compact
orbits. For general lattices, we prove the following theorem:

Theorem 1.1. Let G, A, T be as above and let y € G/T. Assume that F = Ay contains a
point x satisfying:
1. Ax is compact;
2. For every 1 < i < j <n, N;; = {diag(ai,...,a,) € A : a; = a;} acts ergodically on Ax
(since N;j is of co-dimension 1 in A, this simply means that N;;x is not compact).
Then there exists a reductive subgroup H, containing A, such that F' = Hy and F carries an
H -invariant probability measure.

The proof we present for Theorem 1.1 is valid not only for SL(n,R) but also for products of
SL(n;, R). To simplify the notation we restrict ourselves to SL(n, R).
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A result similar to Theorem 1.1 was obtained in the S-arithmetic context by Shahar Mozes
in [Mo] for the case G = PGL(Q,) x PGL(Qy) and I' an irreducible lattice.

Assumption 2 implies that n > 3. In unpublished work, Mary Rees has given an example of
a co-compact lattice in SL(3,R) for which the assumption is not satisfied, and irregular orbits
for the action of A do arise. Using her example as a model we prove:

Theorem 1.2. Let G, A, T be as above. If x € G/T is such that Ax is compact but there are
some i < j such that N;; does not act ergodically on Az then there is y € G/T" with Az C Ay
but Ay is not of the form Hy for any Lie subgroup of G.

For the case I' = SL(n, Z), i.e., for the action on the space of lattices in R", we are able to
weaken our assumptions and strengthen our conclusions.

Theorem 1.3. Let G and A be as before, with n > 3. Let I' = SL(n,Z), y € G/T', F = Ay.
Assume that F' contains a compact orbit. Then there are integers k and d with n = kd and a
permutation matriz P such that F' = Hy, where

B, 0 - 0
0 By --- 0 .

H=P ) P~ : B; € GL(k,R) » NG,
0 0 --- By

(here the 0’s stand for O matrices in My(R)). Moreover, if F # Ay then F is not compact.

Corollary 1.4. Assume in addition to the hypotheses of Theorem 1.3 that n is prime. Then
Ay is either compact or dense.

When n is not a prime, there are orbits whose closure contain a compact orbit that are neither
dense nor closed. We give an explicit description of all such possible orbit-closures. These orbit-
closures correspond to pairs of number fields K’ and K where K’ < K and [K: Q] = n.

From Corollary 1.4 we draw the following strengthening of an isolation theorem due to Cassels
and Swinnerton-Dyer (see [CaS-D], Theorem 2 and also [M2], §2.1). Recall that {v1,... ,v,} C
Z", m < n is said to be primitive if it can be completed to a set of n generators of Z".

Corollary 1.5. Let n > 3 be prime, and let f = Ly -...- L, be a product of n independent
linear forms on R™. Assume that the coefficients of f are integers, and that f does not represent
0 nontrivially over Q, that is

flqg) #0 for all nonzero q € Q".

Then for any open V. C R*™! there is a neighborhood U of f (in the space of products of n
linear forms) such that for every h € U which is not a multiple of f there exists a primitive set
Ulyevo ,Up_1 € Z™ such that

(h(v1),...  h(vy_1)) €V.

The argument deducing Corollary 1.5 from Corollary 1.4 follows along the lines of an argu-
ment given by Armand Borel and Gopal Prasad in [BoPr].

There is a number theoretic motivation for the isolation theorem proved by Cassels and
Swinnerton-Dyer, namely the following elementary conjecture due to Littlewood:
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Conjecture 1 (Littlewood). For every «, f € R, we have
lim inf n{na}{np} =0
n—00
(where {z} is the fractional part of ).

Using their isolation theorem, Cassels and Swinnerton-Dyer (albeit in a different ‘language’,
see [M2] §2.1), showed that Littlewood’s Conjecture follows from the statement that any com-
pact A-invariant subset of SL(3,R)/SL(3,Z) contained a compact orbit.

Finally, we wish to mention some of the progress made on problems related to rigidity of
hyperbolic actions of higher-rank abelian groups. In [KS], Katok and Spatzier addressed, inter
alia, the problem of describing the ergodic invariant measures for the action of A on G/T.
Their results place severe restrictions on the invariant measures which have positive entropy
with respect to any one parameter subgroup of A.

An analogue to the action of A on G/T is the action of a (large enough) semigroup of
commuting endomorphisms on tori. For such actions the topological questions regarding the
closed invariant subsets have been completely solved by Furstenberg [F] for the one dimensional
torus T' and by Daniel Berend (see [B]) for T, d > 2.

It is interesting to note that the heart of the proof of the results of Furstenberg and Berend
is understanding the closed invariant subsets that contain a non-isolated periodic point. Then
using a disjointness argument (for which there is no clear analogue for the case of G/T") one
deduces the description of all orbit-closures. We remark that the periodic points for semigroups
of endomorphisms are the analogues of the compact orbits in G/T.

Overview: After some notations and preliminaries, we prove Theorem 1.1 in §4. A key
component of the proof is Lemma 4.2, that shows in particular that if Ay contains a compact
orbit Az then there is a unipotent subgroup U such that Uz C Ay. This argument was used
implicitly in [CaS-D]. We then use Marina Ratner’s orbit closure theorem [R] to show that
there is some closed orbit Hx C Ay where H is a reductive Lie subgroup of G (Lemma 4.1). If
Hzx # Ay we then find a higher dimensional unipotent subgroup U’ such that U’z € Ay (this
is what is proved in steps 4.6-4.8).

We discuss Rees’ example and prove Theorem 1.2 in §5. In §6 we consider the case of
[' = SL(n,Z), and prove Theorem 1.3. We also provide a general construction of orbit closures
that contain a compact orbit but are neither a compact orbit nor the whole space. We prove
Corollary 1.5 in §7. The appendix contains the proof of an auxilliary result due to Nimish Shah,
which has been included for the reader’s convenience.

Acknowledgments: We thank Ehud De Shalit, Gregory Margulis and Shahar Mozes for
useful and stimulating discussions. In particular, we would like to thank G. Margulis for very
helpful suggestions on steps 4.6-4.8 in the proof of Theorem 1.1.

2. NOTATION AND DEFINITIONS

Throughout this paper G = SL(n,R) with n > 3. Let k be a subfield of R. By a k-subgroup of
G we mean a subgroup of matrices which satisfy a set of polynomial equations with coefficients
in k, where the variables of the polynomials are the n? matrix entries. If H is a k-subgroup
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and R is a ring in k then H (k) (respectively, H(R)) denotes the matrices in H with entries in
k (respectively, R). A field automorphism o of &k acts on a matrix M = (m;;) with entries in &
by

o(M) = M? = (o(my;)),

and on a polynomial P(z) = Y a;z" with coefficients in k by

P7(x) =) o(a)a’.
If H is a k-subgroup of G then H? is the group obtained by acting on the polynomials defining
H. The above actions are compatible in the sense that
M e H(k) <= M° € H°(k).

For a subgroup H of G, Lie(H) denotes the Lie algebra of H, Ng(H) denotes the normalizer

of H in GG, and
N(H) = {g € No(H) : | det(Ad(g) lieqm)] = 1}.
For any subset S C G, Cs(S) denotes the centralizer of S in G. For any z € G/T,
H,={h€H: hx=uzx}.

Let U™ (respectively U™) denote the group of upper-triangular (resp., lower triangular) matrices
with all diagonal elements equal to 1. For 1 < ¢ # j < n let A;; be the linear functional on
Lie(A) = {diag(a4,...,a,) : Y a; = 0} given by

Aij - diag(aq, ..., a,) — a; — a;
and let U;; be the one-parameter subgroup such that [a,u] = A;j(a)u for every a € Lie(A),u €
Lie(U;;). Thus ® = {);;} is the set of roots and Lie(U;;) = &;; are the root subspaces of Lie(G).
We'll sometimes also let ® denote the set {(7,7) : 1 <i# j < n}.

Throughout this paper u™,u~,u%,u", u;j, ;;,a,a denote elements of Ut, U™, Lie(U"),
Lie(U™), Uij, Lie(U;5), A, and Lie(A) respectively. Fix nonzero elements w;; € Lie(U;;). Then
each w € Lie(G) can be written uniquely as a+ ) ¢;;w;;, and we denote the projection w — ¢;;
by P;;. We choose some norm || - |4 on Lie(A) and define a norm on Lie(G) by

[wl| = max{l|a]|1, [ei;]}-
For every z € G/T', we can find neighborhoods V°, V' V™~ of the identity in Lie(A), Lie(U™), Lie(U )
respectively so that the maps
U:Vtx V™ - G/T,¥(ut,u”) =exp(ut) exp(u)z
and R R
U:VOxVtx V™ = G/T,¥(a,u’,u) = exp(a) exp(u) exp(u )z
are diffeomorphisms onto their images, and the image of ¥ is a neighborhood of z in G/T. We
call ¥ and ¥ box maps for z.

Recall that two lattices 'y and I'y are commensurable if their intersection is of finite index in
both, and that the commensurator of I' is

Commg(I') = {g € G : gI'g”" are commensurable}.
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3. PRELIMINARIES
In this section we collect some of the results we will need.
Proposition 3.1. Let H be a closed connected subgroup of G normalized by A. Then
Lie(H) = Lie(AnH) & P &

AijEA

for some A C ®. If H is reductive then H is in ‘block form’, i.e., there is a partition
{1,...,n} = By U...U By such that

Lie(H) = LieAnH) e P( P  &y),

I=1 i,jEBy,i#j
and H=Cg(ANCg(H)).

Proof: The subalgebras &,;, which are the eigenspaces for the action of Ad(A) on Lie(G),
are one-dimensional. Thus an Ad(A)-invariant subspace of Lie(G) is a sum of the &;;. This
proves the first assertion.

For the second assertion, define a relation R on {1,... ,n} by

iRj <= i=jor Lie(U;;) C Lie(H).

Transitivity of R follows from the fact that H is closed under the Lie bracket, and symmetry
follows from the fact that H is reductive and normalized by A. Thus R is an equivalence
relation, and the desired partition of {1,...,n} is given by the equivalence classes for R.
The third statement follows easily from the second.
O
We will need the following ergodicity condition:

Theorem 3.2. Moore’s Ergodicity Theorem: Let H be a semisimple Lie group with no compact
factors, and let A be a lattice in H. Let A be a subgroup of H such that AN N s noncompact
for any nontrivial normal subgroup N of H. Then A acts ergodically on H/A (with respect to
the H-invariant measure).

Proof: In case A is irreducible, this is a well-known theorem of C. C. Moore (see [Z], Theorem
2.2.6). The general case follows by reduction to this case: By [Ra], Theorem 5.22, we can write
H=H,-...- H, with H; N H; discrete and central for 7 # j, and find A; C H; N A, such that
A; is an irreducible lattice in H;, and [A : A; - ... Ag] < oo. Since A N H; is noncompact, it
acts ergodically on H;/A; and therefore A acts ergodically on Hy /Ay X - - - x Hy/Ay. Therefore
the factor action on H/A is also ergodic.

U

Our results depend essentially on the following result, which is a special case of Theorems A
and B in [R]:

Theorem 3.3. Ratner’s Orbit Closure Theorem: Let U be a connected Lie subgroup of G
generated by unipotent elements, and let x € G/T". Then there is a closed subgroup H containing
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U such that Ur = Hx and H, is a lattice in H. Moreover, if U = {u(t) : t € R} is a one-
parameter subgroup, the positive semi-orbit {u(t)x : t > 0} is dense in Hzx.

We will need some additional properties of the group H appearing in the conclusion of
Theorem 3.3:

Theorem 3.4. Let the notation be as in Theorem 3.53. Then:

1. H is an R-subgroup of G.

2. H, s a Zariski dense lattice in H.

3. The unipotent radical of H is equal to the radical of H.
4. Commpy (H,) is dense in H.

Proof: This was proved by Nimish Shah in section 3 of [Sh], but not stated explicitly. For
the reader’s convenience, we show in Appendix A how to deduce this result from Shah’s results.
U

We also need the following ([Sh], Lemma 2.2):

Proposition 3.5. If H, and Hy are two closed subgroups of G such that H;z is closed for some
z € G/T, then (Hy N Hy)z is also closed.

Proposition 3.6. Let z € G/T'. Then for any finite subset A € G,, Cz(A)z is closed.
Proof: This is Lemma 1.14 of [Ra).

4. INVARIANT SETS FOR GENERAL LATTICES
In this section we will prove Theorem 1.1. We will need some lemmas.

Lemma 4.1. Let V' be a connected unipotent subgroup normalized by A, and let z € G/T be
such that Az is compact. Then Vz = Hz, where H is connected, semisimple, and A C NL(H).

Proof: From Theorem 3.3 it follows that there exists a connected closed subgroup H such
that Vz = Hz and H, is a lattice in H.
Let a € A,. We have

aHao 'z =aHz=aVz=aVz=Var=Vz=Hz,

and since I' is discrete this implies that Ad(a)(Lie(H)) = Lie(H). Since H is connected,
a € Ng(H), and since A, is Zariski dense in A, A normalizes H. Conjugation by elements
of A, preserves H, and therefore preserves H/H,, which has finite volume. H is unimodular
since it contains the lattice H,, and therefore the volume of H/H, is just the haar measure
of any fundamental domain. The Jacobian for the volume change when conjugating by a is
| det(Ad(a)|Lie(rr))| and this implies that for a € A,, det(Ad(a)|pie(s))? = 1. Since A, is Zariski
dense we obtain that A C NL(H).

Let R denote the unipotent radical of H. By Theorem 3.4, R is also the radical of H. It is
invariant under automorphisms of H and therefore A normalizes R. By Lie’s theorem, the group
AR can be brought into triangular form, and thus if R is nontrivial then a — det(Ad(a)|Lie(r))
is a nontrivial character on A.
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On the other hand, by Levi decomposition,
Lie(H) = Lie(S) + Lie(R),

where S is a maximal semisimple subgroup of H, and for any other maximal semisimple sub-
group S’ there is r € R such that Lie(S) = Ad(r)(Lie(S")) (see [OV], §6.3). So there is r € R
such that Ad(ra)(Lie(S)) = Lie(S). Since R is unipotent it has no rational characters, and
therefore

(1) | det(Ad(r)|Lie(m))| = [ det(Ad(r)|Lier))| = 1.

Since the group of outer automorphisms of any semisimple Lie algebra is finite, there are k € N
and s € S such that (Ad(ra)|Lies))® = Ad(s)|Lie(s) and since S is unimodular this implies that

(2) | det(Ad(ra)|iies))*| = 1.
Using (1) and ( 2) we get:

1 = | det(Ad(a)|iie(m))]
= | det(Ad(7) |Lie(s)) - det(Ad(a)]|vie(m)|
= | det(Ad(ra)|uie(m) )|
= | det(Ad(ra)|Lies)) - det(Ad(ra)|Lier))|
= | det(Ad(ra)|Lier) )|
= |det(Ad(T)|L1e R) ) det(Ad( )|Lie(R))|
= |det(Ad(a)|L1e )|

Thus R must be trivial and therefore H is semisimple.
O
The following lemma is the core of our argument.

Lemma 4.2. Suppose z € F' is such that Az is compact and for every 1 < i # j < n, N
acts ergodically on Az. Suppose H is a semisimple subgroup of G, normalized by A, such that
Hz s closed, H, is a lattice in H, and AHz is properly contained in F. Then there exists

1 <u# 7 <n such that U;; ¢ H and U;;z C F.
Proof: The proof of the lemma will be divided into steps.
Step 4.1. Let Ay = ANCg(H). Then Ayz is compact.

Since Az is compact, by Proposition 3.5 it suffices to show that Cg(H)z is closed. By
Theorem 3.4 H, is Zariski dense in H, hence C(H) = C¢(H,) and by the descending chain
condition for algebraic groups, there is a finite subset A C H, such that Cq(H) = Ce(A). Now
we may use Proposition 3.6.

Step 4.2. Let U, U be boz maps for z. There is a sequence of elements (wi,u,) eVt xVvV-,
k=1,2,..., such that at least one of w},u, is not in Lie(H) and such that ¥(u;,u;) € F
and (u},u;) — 0.
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If y, € F — AHz satisfy y, — 2, we can assume that for all &, y; is in the image of ¥, and
write

A

T(0) = 2 « yp = U(ay, u, uy).
Then (u;,u;) are nontrivial, at least one of them is not in Lie(H), they converge to 0, and
U(u,u, ) € F since y, € F and F is A-invariant.
Step 4.3. There is u € Lie(U') U Lie(U™) such that exp(u)z € F and
Uij CH= Pij(ll) =0.
By Step 4.2, there are elements of the form u}u, z in F, with u — e and u;, — e, and at

least one of u}, u, is not in H. Assume with no loss of generality that for all k, u;” ¢ H, and
that both u; and u, are nontrivial for all k (otherwise there is nothing to prove). Let

A:{(Z,])1§Z7£]§7’L,UWCHUU7}
It will suffice to find R > 1 such that for each € > 0, there is an element of F' in
Virg ={¥(ut,u7): 1< |lut +u7|| <R, (i,j) € A= |Pj(ut +u7)| < e}

By step 4.1, (Ap), is cocompact in Ay and hence Zariski dense. By Proposition 3.1, H =
Cc(Ap), and this implies that there is an element a = exp(a) such that az = z and \;j(a) > 0
whenever (z,7) ¢ A, and );;(a) < 0 whenever (i,j) € A. Let

Ry = min{e*® : (i, j) ¢ A}
and

Ry = max{e*® : (i, j) ¢ A}.
We have 1 < R; < R,. Since

! au_a_lz,
we get that for all (u™,u™) € VF x V=, a¥(ut,u”) = ¥(u,u,) with
Ri|Pj(u™ +u”)| < |Pj(uy +uy)| < Ry|P;j(u” +u”)| whenever (i,7) ¢ A

+

autu"z = au™

a

and
|Pij(uf +uy)| < |Pj(u™ +u)| whenever (i,j) € A.
Therefore if we choose (ut,u™) such that ¥(ut,u”) € F,ut+u~ ¢ Lie(H) and |[ut+u || <,
for some natural k we will have " U (ut,u™) € V_ g, u.
Step 4.4. For some 1 < i # j < n, there is u;; # 0 such that exp(w;;)z € F and exp(w;;) ¢ H.

Let u be an element as in Step 4.3. Define
By Step 4.3,
)\ij eN' = Uij ¢ H.
Let A = A5 € A’ be extremal in the sense that it is not in the convex cone over A’ — {A} (in
Lie(A)*). Then we can find a € Lie(A) = Lie(A)** such that A(a) = 0 and a(a) < 0 for every
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a € A" — {A}. Since Az is a torus, the orbit of z under any element of A is recurrent and
therefore there is a subsequence k, — oo such that a*z — z, where a = exp(a). Thus:

F 3 dutz

= aP exp( Z w;;)a a2
Aij EA!
= exp(Ad(a)*( D uy))a*z
Aij €AY
= exp( Z eFri @y, ) ake 2
Aij EAS
00 eXp(urs)z-

Thus (r, s) requires the required conclusions.
Step 4.5. Let 1 <i# j <n beasin 4.4. Then Ujjz C F.
Let A=A\

IR
Lie(A), = {a € Lie(A) : exp(a)z = 2},
and
Q ={\a):acLie(A),} CR

Since Lie(A), is a lattice in Lie(A), @ is either discrete or dense. But if @) is discrete then
Ni; N A, is a lattice in N;;, and this contradicts the assumption that V;; acts ergodically on
Az. Therefore () is dense.

Now we have for ¢ € Q:

exp(efuy;)z = exp(eM ®uy;)z
= exp(Ad(a)u;j)z
= aexp(u,])a 2
= aua 'z
=auz € F,

where a = exp(a) € A,, u = exp(u;;).

Therefore by continuity, exp(tu;;)z € F for all ¢ > 0, and now it follows from the last
assertion in Theorem 3.3 that exp(tu;;)z € F for all t € R.

U

Proof of Theorem 1.1: Let V be a connected subgroup of GG of maximal possible dimension
satisfying the following:

1. V is unipotent.

2. Vo C F.

3. V is normalized by A.

By Ratner’s theorem 3.3 there is a connected closed subgroup H of G such that Vo = Hx and
H, is a lattice in H. By Lemma 4.1, H is semisimple and normalized by A. Let H' = AH. Then
H' is reductive. From Proposition 3.1 we see that A = (AN H) - Ay, where Ay = AN Cg(H),
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hence H' = Ay - H. From Lemma 4.2, step 4.1 it follows that Ayx is compact. It follows from
this that H'z is closed; indeed, if aghyx — z where a), € Ay and hy, € H, let ayx = ajx where
aj, are in a compact subset of Ay and aj — ag. Then

2 aphgr = hpapr = hpapr = aphge,

hence aghypr — z so z € H'x. Also, H'x supports the finite H'-invariant measure obtained by
pushing forward the Ay x H-invariant measure on Agx X Hz via the map (apx, hx) — aghx.

Thus the theorem will be proved if we show that F' = H'x. Suppose the contrary is true; we
will reach a contradiction by finding a connected subgroup V' of G satisfying conditions 1,2,3
above and such that dim V' > dim V. Once again we divide our argument into steps.

Step 4.6. The set
D ={z € Hx : Az is compact, N;; acts ergodically on Az}
s dense in Hx.
By Theorem 3.4, Commp(H,) is dense in H. For each ¢ € Commpy(H,), A,z N A, is of finite

index in A, and is therefore cocompact in A, and similarly, for 1 < i # j < n, (N;;)4 is not a
lattice in N;;. Thus gz € D for every ¢ € Commy (H,).

Step 4.7. There exist 1 <1 # j <n such that U;; ¢ H and U;jHx C F.

For each 1 <7 # j <n such that U;; ¢ H, let
DZ]:{ZEHJIUUZCF}
Then D;; is closed. By step 4.6, there is a dense set of points in Hx for which the hypotheses
of Lemma 4.2 are satisfied. Therefore Hx C |JD;;. By the Baire category theorem, one of
the D;;’s contains an open subset of Hx. Each of the D;; is A N H-invariant and by Moore’s

Theorem 3.2 AN H acts topologically transitively on Hzx; thus there is 1 < i # j < n for which
Hzx = D;j, proving the claim.

Suppose with no loss of generality that U;; C UT. Let us also replace V' with H N U™, which
we may since dim H N U = dim V. Write

Uij = {Ul](t) 1t e R}
By step 4.7, for all ¢,
uij(t)Vuij(t)*luij(t)x C F.
By Ratner’s theorem there is a sequence ¢, — oo such that u;;(tx)r =, . This implies that
if ¢ is a limit point of
{’LLZJ(tk)HU”(tk,)_I k= ]_, 2, e },

then gx € F. Therefore we can increase the dimension of V', and conclude the proof, by taking
V' = U,;;Vp where 1} is as in the following

Step 4.8. The limit limy_, o, Ad(u;;(t))(Lie(V)) exists in the Grassmannian manifold of dim V -
dimensional subspaces of Lie(G), and is the Lie subalgebra of a unipotent subgroup Vy of G not
containing U;j, normalized by A and by Ui;.
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Let £ < ¢ and let Ej, be the matrix with 1 as the &, ¢ entry and 0 elsewhere. Then:
SEM + tSEig lf] =k

(1 + tEij) . SEM . (1 - tEij) == SEM - tSEkj if =1
sEyp otherwise
oo & Biy if 0= (in Grassmannian).

E., otherwise

Let A C ® such that
Lie(V) = Y Lie(Uy).
(i,9)eA
Define
(1,0) ifk=j
S: A=, Skt)y=<¢ (k,j) if =1
(k,¢) otherwise
By considering the various cases separately one can verify that S is injective. For example,
suppose S(ky,l1) = S(ka,l3) and k; = j. We consider three subcases:
1. if kg :j then Eg =/(= El and so (klagl) = (kg,gg).
2. if ly = i then ko = i = {5 contradicting the fact that V C U™T.
3. if ¢y # i and ky # j then (ko,03) = (4,¢1) and so Lie(H) contains both &;,, and &,,.
Since H is reductive also &, ; C Lie(H). By taking the Lie bracket we get that U;; C H,
a contradiction.

The other cases, which are similar, are left to the reader.
Since S is injective |S(A)| = |A| and therefore

Jim Ad(uy;(1)) (Lie(V)) = P LieUy).
(i)eS(A)

In particular the limit exists. Since the Lie subalgebras form a closed subset of the Grassmanian
manifold, we get that the limit corresponds to a connected subgroup V,. Our computation also
shows that (z,7) ¢ S(A), and hence U;; ¢ Vp, and that V; is unipotent and normalized by A.
Also V; is normalized by Uj;; since its Lie algebra is the limit of an Ad(U;;)-orbit.

U

5. REES’ EXAMPLE AND RELATED CONSTRUCTIONS

In an unpublished manuscript Rees showed how to construct uniform lattices I' in G =
SL(3,R) such that I'; = ' N H; is a lattice in H;, where

le

O % ¥
O ¥ ¥
* O O
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and
x x 0
x x 0
0 01

From this construction Rees obtained A-invariant closed subsets of G//I" which are contained
in H,/T'; and are circle bundles over an arbitrary orbit-closure for Ay = AN H, in Hy/T's. Note
that H, is isomorphic to SL(2,R). Thus any irregular orbit-closure for the action of As on
H, /Ty — that is, for the geodesic flow on the unit tangent bundle to a finite volume Riemann
surface — can appear as the base of a bundle which is an orbit-closure for A in G/I'. As is
well-known, for these one-parameter flows many irregular orbit-closures can appear —e.g., orbit-
closures which have fractional Hausdorff dimensions, orbit-closures which contain but are not
equal to periodic orbits, etc.

In this section we show that a construction similar to Rees’ is possible for the action of the

diagonal matrices on SL(n, R)/T" whenever assumption 1 but not assumption 2 of Theorem 1.1
holds. That is, we show

ng

Proposition 5.1. Let G, A, be as in Theorem 1.1. Let v € G /T such that Az is compact and
Ni; does not act ergodically on Az. Then there exists a subgroup Hy of G which is isomorphic
SL(2,R) and normalized by A such that:

1. Hyx s closed and admits an Hs-invariant finite measure.

2. Let HH = AH,. Then H,x 1is closed.

3. Let Ay = ANCg(Hs) and A5 = AN Hy. Then for any y € Hox, Agy is compact and
Ay = AUAQy.

Proof: Since Az is compact and N;; does not act ergodically on Az, (Njj), is a cocom-
pact lattice in NNV;;. By Zariski density, we obtain the existence of v € (Nj;), such that
v = diag(ay, ... ,a,) with a; = a; and ay # a; whenever {k,l} # {i,j}. Let H; = Cqx(v),
and let Hy be the subgroup generated by U;; and Uj;. Then obviously Hs is isomorphic to
SL(2,R), A normalizes Hy and AH, C H;. By considering dimensions we see that H; = AH,.

By Proposition 3.6, H,x is closed. By Theorem 3.3, U;;z = Hz for some subgroup H of G
containing U;;, and there is a finite H-invariant measure on H,. Since H,z is closed H C Hj,
and since, by Lemma 4.1, H is semisimple, we must have that H = Hs.

Arguing as in Step 4.1 in the proof of Lemma 4.2 we see that Agz is compact. Therefore for
any y € Hox, say y = hox for hy € Hy, we get that

Aoy = Aghg.ib' = th()a?

is compact. Now let apy — z, where ay € A. Write a;, = aZa) with ai € Ay and a) € Ay. Then
for each k there is aj € Ap such that ayy = a)y and a; — ag. Thus

20 _ 21 _ 1.2
Z 4 Qpapy = papy = apapy

and therefore
azy — ay 2.
This implies that z € AgAsy.
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O

Proposition 5.1 shows that any irregular orbit for the geodesic flow on SL(2,R)/A (where A

is an appropriate lattice) yields an irregular orbit for the action of A on G/I'. For instance,
Theorem 1.2 now follows from Proposition 5.1 and the following simple

Lemma 5.2. Let A be a lattice in SL(2,R) and D = {diag(e’,e”") : ¢t € R}. Then for any
z € SL(2,R)/A such that Dz is a periodic orbit, there ewists y € SL(2,R)/A such that Dy is
open in Dy and x € Dy.

Proof: Let U™ (respectively, U~) be the subgroup of SL(2,R) consisting of upper (re-
spectively lower) triangular unipotent matrices. Then U~ DU is a dense open subset of
SL(2,R). Since the periodic D-orbits in SL(2, R)/A are dense (see [A]), there is z € SL(2, R)/A,
z = u~dutx, such that Dz is periodic and Dz # Dzx. Let y = u™z. From the commutation
relations for D, U+, U~ it is then obvious that Dy = Dy U Dz U Dx.

O

6. ORBIT-CLOSURES FOR ' = SL(n, Z)

In this section we examine the case I' = SL(n,Z) in more detail. First we show how to
explicitly construct orbit-closures for A in G/T" that contain a compact A-orbit, and are not
equal to an A-orbit or to G/T". We then prove Theorem 1.3. In the proof of Theorem 1.3 it
develops that all orbit-closures containing a compact orbit are like the ones in the example.
Example:

First let us construct some compact orbits. Let K be a totally real number field, with
[K : Q] =n, and let L be the splitting field for K. We take O(K) to be the ring of algebraic
integers of K, and we recall that O(K') considered as an additive group is isomorphic to Z".
Now take R < O(K) an additive subgroup of finite index. Let ay, ..., o, be generators for R.
We further set A = Gal(L/Q), and Ak the subgroup of A that acts trivially on K. Recall that
[A: Ag] =n. Let {01 =1id,09,...,0,} be a set of representatives of the cosets of A/Ag. For
any unit § € O(K)*, take

a(f) = diag(o1(0),...,0,(0)) € A.

We now take g € GL(n,R) to be

(3) 9 = (0i())ij=1..n-
and

g = det(g)~"/"gI".
We first claim that Ag is compact. Note that there are only a finite number of subgroups
R' < O(K) with

[O(K) : R = [O(K) : R],

since R’ is the kernel of a group homomorphism from O(K) to a group of a given order, and
there are only a finite number of these. Note also that for § € O(K)*,

[O(K) : 9R] = [O(K) : R).



14 ELON LINDENSTRAUSS AND BARAK WEISS

Thus there is a finite index subgroup Og of O(K)* which leaves R invariant (we remark that
if R is an ideal in O(K) then Op = O(K)*).
This implies that for § € Og there is y(6) € SL(n, Z) such that

Do, = Za{y(@)ij forj=1,...,n,
i=1

hence

(4) a(f)g = g7(0).
Now by Dirichlet’s Unit Theorem (see [Sa], Theorem 4.4.1) up to finite index (which is in fact

1 or 2 in our case since K C R) the group O(K)* is a free commutative group with n — 1
generators, and hence so is Ogr. Thus

a(Og) C A= R
is a group of rank n — 1, fixing g, and is discrete since
g 'a(Ogr)g C SL(n,Z).

Thus Ag is compact.
Now let us construct a closed A-invariant set containing such a compact orbit. Assume there
is some intermediate field Q < K’ < K. Set

d=[K":Q

k=K :K'.
Since Or N O(K')* is of finite index in O(K')* there is a ' € Og such that Q(¢') = K'. Let
H = Cg(a(#')). By (4) we know that a(f')g = g, hence by Proposition 3.6 Hg is closed, and
in addition since A C H it contains the compact orbit Ag. Since Q(f') = K, ¢ has exactly d
conjugates, and so the n-tuple

o1(0"),09(0"),...,0,(6")

consists of d different elements of L each appearing with multiplicity k. This shows that for
some permutation matrix P,

B, 0 - 0
0 By --- 0 )

H=P ) P~ :By,...,B; € GL(k,R) » NG.
0 0 --- By

We now show that Hg is an orbit closure of some y € G/T.

Proposition 6.1. H/H; admits a finite H-invariant measure, and A acts ergodically H/H; =
Hg. In particular, there is a dense orbit in Hg.

Remark: We remark that even though H/H; has finite volume as we shall see later it is not
compact.
Proof: Let Hy = g~'Hg and Ay = g~'Ag where g is as in (3). Notice that

HyNT =g 'Hyg.
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We will show momentarily that Hy as well as its semisimple part H{ are defined over Q
and have no characters defined over Q. By a Theorem of Borel and Harish-Chandra ([BoH])
this implies that Hy/(Hy N T) (respectively, H)/(H) N T)) admits a finite Hy- (respectively,
H{-) invariant measure. From Moore’s Theorem 3.2 we then conclude that Aj = Ay N Hj acts
ergodically on H|/(Hj N T), and since Ay contains the center of Hy (which acts transitively
on fibers in the map Hy/(Hy N T') — H{/(H), N T)), we obtain that A, acts ergodically on
Hy/(HyNT) and hence that A acts ergodically on Hg.

We now use ( 4) to see that

Hy = Cg(g"a(0)g) = Ca(v(0))
and since y(6') € SL(n,Z) the group H, is defined over Q. Also

H| = ﬂ ker x,

XEX(Hop)

where X (Hy) is the set of rational characters of Hy. The Galois group Gal(Q/Q) acts on
matrices in Hy(Q) and the action induced on polynomial functions on Hy(Q) maps characters
to characters. Thus X (H,) is a subset defined over Q, and hence HJ is also. Since H{ is
semisimple, it has no characters.

Now let us show that Hj has no characters defined over Q. Assume that y is an algebraic
character of H. Choose one of the GL(k,R) blocks of H and consider matrices in H for which
all the other blocks are the identity. This subgroup of H is isomorphic to the simple group
SL(k,R) and so must be in the kernel of x. Thus if

B, 0 .- 0
(5) hep| 0P Ul

0 0 --- By
then x(h) depends only on det(B), ..., det(By), and since it is algebraic, it is of the form
(6) xX(h) = XD () XD (r)" - XD (h),
where the /; are integers and

xD(h) =det(B;) forj=1,..., k.
It remains to rule out the possibility that for x of this form the character

(7) Xo(ho) = x(9™ " hog)

of Hy is defined over Q. .

Consider the characters Y (ko) = x@) (g~ hog). The Galois group A = Gal(L/Q) acts on
these characters. The action is described explicitly as follows. Let ¢ € A, and assume that o
permutes the rows of ¢ according to some permutation 7, which we identify with the associated
permutation matrix, i.e., o(g) = 7g. If hg = g 'hg where h is as in (5) with B; € GL(k, Q)
then

o(hy) = g 'n " hrg.
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Since a(hg) € Hy we know that 7~ 'hr € H, so conjugating by 7 permutes the GL(k,R) blocks

of H, possibly conjugating each block by some k£ x k permutation matrix. Thus A permutes

the X(()j), j=1,...,k, and since this Galois group acts transitively on the rows of g it also acts

transitively on the X(()j Vs, If Xo is defined over Q and hence is A-invariant then the /;’s defined
by (6) and (7) are all equal, and so since H C SL(n,R) the character y, is trivial.

O

We now prove Theorem 1.3. In the course of the proof it will develop that any orbit-closure

for A containing a compact orbit arises as in the example above. We will first need the following:

Lemma 6.2. Let g = gI" € G/T be such that Ag is compact. Let Ay = g~'Ag. Then there is
a Galois number field L and a matriz go € GL(n, L) such that Ay = g5 'Ago, and Gal(L/Q)
permutes the rows of go (up to multiplication by a scalar in L) transitively. In particular, if
a, ..., a, € Q then the Galois group Gal(L/Q) acts on g, 'diag(ai,...,a,)g0 € Ao(L), by
permuting the a;’s transitively.

Proof: Since I'y = I' N Ay is Zariski dense in Ay, there is v € T’y with distinct eigenvalues.
Let L be a splitting field for the minimal polynomial P, of . Let us show that P, is irreducible
over Q. If not, there is a nontrivial y-invariant proper Q-subspace V' C R" (see e.g. [HK],
Theorem 6.12). Since 7 has distinct eigenvalues and Ay = Cg(7y), V is also an Agp-invariant
subspace. The character a — det(aly) is then a nontrivial Q-character and since it is trivial on
integer matrices and I'y is Zariski-dense, it must be trivial on Ay. This however implies that
dim Ay < n — 2, which is impossible.

As a consequence A = Gal(L/Q) acts transitively on the eigenvalues of ~.

We know that there are 6;, ..., 0, € L such that

gy = diag(fy,...,60,)g.
Thus the rows of g are left eigenvectors for 7. On the other hand, since v € SL(n, Z) there is a
row vector vy € Q(0)" satisfying
v171 = Ovy.

The group Gal(L/Q) permutes the eigenvalues of v, and so the orbit of v; under Gal(L/Q) are
n linearly independent eigenvectors: v; with eigenvalue 6, v, with eigenvalue 65, etc. Let

U1

go — )

Un
i.e., the v;’s are the rows of the matrix go. It is clear that gy € GL(n, L). Also, since each row
of gy spans a one-dimensional eigenspace for A\, and the eigenvalues are permuted transitively,

so are the eigenspaces. In particular, the sth row of g is the same as v; up to multiplication by
a scalar, and so

9o *Ago = g tAg.
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Remark: Lemma 6.2 shows in particular that any compact orbit arises as in the example,
with K = Q(«) for some eigenvalue « of \.

We are now ready for the

Proof of Theorem 1.3: Our first step is show that the assumptions of Theorem 1.1 are
satisfied automatically:

Step 6.1. If Ax is compact then for any 1 < i # j < n, Nz is not compact.

Since Az is a torus, it is enough to find some z € Az such that IV;;z is not compact.
Thus we can replace  with z = goI', where gy is as in Lemma 6.2. If IV;;z is compact then
No =gy 1N,~jg0 intersects I' co-compactly and is therefore defined over Q. Therefore the action
of A leaves Ny(L) invariant. By Lemma 6.2, A permutes the eigenvalues of elements of the
dense subset g, *A(Q)go. Therefore for any o € A there is a permutation (also denoted by o) of
{1,...,n} such that N§ = gy ' Ny@)o(j)go- That is, for every o € A, {o(i),0(j)} = {i,j}. This
contradicts the fact that the action of A on {1,...,n} is transitive and n > 3.

Step 6.2. Let H be as in the conclusion of theorem 1.1. Then H 1is in ‘equal blocks form’, i.e.,
there is a partition

(8) {1,...,n} =B U...UBy,

where all the By are of the same cardinality, such that

(9) Lie(H) = Lie(4) o (P &4).

=1 i,j€By

The proof of Theorem 1.1 shows that H = A - S where S is semisimple, normalized by A,
and S, is a lattice in S. S consists of those block matrices in H such that the determinant
of each block is 1. Moreover, if v = zo[" for xy € G, Theorem 3.4 shows that Sy = x(]leo
is defined over Q and Sy(Z) is a Zariski dense lattice in Sp. Using Lemma 6.2 we can also
assume (changing zo if necessary) that there is a Galois field L over Q such that A = Gal(L/Q)
acts on z, S(Q)xy by permuting the rows of 2o. Thus for each ¢ € A there is an associated
permutation (also denoted by o) of {1,...,n} and a corresponding permutation matrix P,,
such that for

h € 251 So(Q)zo, h = x4 h'xg
we have
h’ = 25" P,h' Py .

Thus the action of o on {1,...,n} preserves the partition ( 8). Since A is transitive on
{1,...,n}, for every 1 < {1 # ly < d there is 0 € A such that By, N o(By,) # 0 and thus
0(By,) = By,. Therefore all the By have the same cardinality.

Step 6.3. If H # A then Hx is noncompact.

If H # A there is some 1 < i # j < n such that U;; C H. Thus it will suffice to prove
that AU;;2I" is an unbounded subset of G/T" for any z € G. For this we adapt the argument of
[CaS-D].
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We claim first that there are 2’ € AUz, v € Z" — {0}, and some 1 < ¢ < n such that
< zp,v >= 0, where 2] is the ith row of 2’ and < -,- > is the standard inner product on R".
Indeed if for z there are no such v then for any v € Z" — {0} we can let t = —22:; and
2= (1+1tE;j)z. Then < zj,v >=< zj +tz;,v >= 0.

Now we claim that Az'T" is unbounded. Recall that by Mahler’s compactness criterion (see
[Ra], Corollary 10.9) it is enough to find ay € A and v, € Z™ — {0} such that ||ay2’ vk|| — ko0 0-
This is satisfied by vx = v and any a;, = diag(a¥, ... ,a*) € A such that for alli # £, a¥ —_,5 0.

U

Remarks:

1. The proof of Theorem 1.3 shows that any orbit-closure for A arises as in the example,
with K’ = Q(«v), where « is an eigenvalue of a generic matrix in Cq(H) N A,.

2. If one is only interested in a proof of Corollary 1.4, the following shorter proof is available.
Suppose Ay # Ay. Then from Lemma 4.2 (which is easier in this case since H = {e})
there is U such that Uz C Ay. Then Uz = Hx by Ratner’s theorem, and by Lemma 4.1
and Step 6.2, H = G.

7. AN ISOLATION RESULT

In this section n > 3 is prime and I' = SL(n,Z). We first state a corollary similar to
Corollary 1.4:

Corollary 7.1. Let F be a closed A-invariant subset of G/T containing a compact orbit Az,
and suppose that F — Ax is not closed. Then F = G/T.

Proof: Arguing as in the proof of Lemma 4.2, we obtain a unipotent subgroup U such that
Uz C F. By Ratner’s theorem Uz = Hz and by Lemma 4.1 and Step 6.2, H = G.
O
Now we turn to
Proof of Corollary 1.5: Any product h of n linearly independent forms can be represented
by n vectors in R". If we place these vectors as rows in a matrix, which we denote by h, we get
an element of GL(n,R). Note that h is not uniquely defined by & but the coset Ah is since left
multiplication by elements of A does not change A and moreover A is the stabilizer of h since
the forms are linearly independent. By rescaling we may restrict our attention to those h € G.

Let
R(h) = {(h(v1),... ,h(vp-1)) : {v1,... ,vp—1} is primitive}.
Note that for every a € A and every v € T', R(h) = R(ahv). If the assertion is untrue, there is

an open V C R” and a sequence of forms h; such that for each £, V' N R(h~k) =0, hy — f in
the space of forms, and the h; are not multiples of f. Therefore V N R(h) = () for every

heF=A{h,: k=12, ).

The projection of F to G/T is an A-invariant closed set. It contains f[‘ We will show momen-
tarily that AfT" is compact. This will complete the proof since F'— AfT" is not closed and then
by Corollary 7.1, F = G, contradicting the existence of g € G such that V' N R(g) # 0.
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Let us show that AfF is closed, or equivalently that AL is closed, where A = f_lAf. Notice
that A is the stabilizer of f, where G acts on the right by f9(v) = f(gv). Let ay € A,y € T
such that a;y, — z. Then

f7 4 fOM = [,
For each k the form f7 also has integer coefficients and is therefore contained in a discrete
subset of the set of products of n forms. Hence there is vy such that f* = f7° and therefore
27y " stabilizes f. Thus z € AT.

Now suppose AfT" is unbounded. By Mahler’s compactness criterion (see [Ra], Corollary
10.9) this implies that there are a;, € A and v, € Z" — {0} such that |la; fvi| — 0. If we write
ap = diag(a¥,... ;a¥) and f = L, -...- L,, where L; =< w;,- >, then we get

»'n

max |afLi(vk)| — koo 0
and therefore

Z—{0} > f(u) = [ aFLi(ve) =40 0.

=1

APPENDIX A. PROOF OF THEOREM 3.4

In [Sh], Shah proves this theorem uncer the additional hypotheses that G is an algebraic
group defined over Q, I' = G(Z) and x is the coset I'. More precisely, assertions 1 and 3 of the
proposition are proved in [Sh], Proposition 3.2. Assertion 4 follows since

H(Q) C Commy (H(Z)),

and assertion 2 is Corollary 2.13 of [Sh]. We are only interested in the case G = SL(n,R), n > 3.
This case can be easily reduced to Shah’s results using Margulis’ arithmeticity theorem (see
[Z], Chapter 6), as follows:

Suppose x = gI'. Replacing H with ¢"'Hg and U with ¢7'Ug shows that there is no loss
of generality in assuming that ¢ = e. Recall that the arithmeticity theorem states that there
is an algebraic group G’ defined over Q and a surjective homomorphism p : G' — G such that
K' = ker p is compact and I' is commensurable with p(G'(Z)). Let U'" C G’ be a connected
unipotent subgroup such that p(U’) = U (such a group exists since there is an embedding
Lie(G) C Lie(G")). Let I" be a subgroup of finite index in G'(Z) such that p(I') is a finite
index subgroup of ', and let 2’ be the coset I'. Then the map p : G'/T" — G/T defined by
p(g'T") = p(¢")T is a proper map.

Let H' be a connected subgroup containing U’ such that U'G'(Z) = H'G'(Z). By [Sh|, H'
satisfies the conclusions of the Theorem. Let us show that also U'z’ = H'z'. By Ratner’s
orbit-closure theorem, U'z’ = H"2'. Since H'G'(Z) is closed and the map G'/T" — G'/G'(Z) is
continuous and equivariant, H'z' is closed and contains U’z’, and hence H"” C H'. Also

H C U'G(Z) — U Ul = UW,Y _ UHIIF/%

Y v Y
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where the union is over a finite set of representatives of cosets in I'"\G'(Z). Therefore we must
have dim H' = dim H” and hence by connectedness H' = H".

By Ratner’s orbit-closure theorem there is a connected group H such that Uz = Hx. We
claim that H = p(H'). Indeed, since p is proper, Uz C p(H')z and since U'z’ is dense in H'z',
its image p(U'z') = Ux is dense in p(H'z") = p(H)x. Thus Hx = p(H')x and since I is discrete
and H and p(H') are connected, H = p(H'). Thus the assertions that H is an R-subgroup and
that the unipotent radical of H is equal to its radical follow from the corresponding ones for
H'

Now we claim that p(H.,) is of finite index in H,. It is obvious that p(H.) C H, and since
both are lattices in H, the assertion follows. Thus the remaining assertions about H, follow
from the corresponding ones for H.,.

]
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