RIGIDITY OF C? INFINITELY RENORMALIZABLE UNIMODAL MAPS

W. DE MELO AND A. A. PINTO

ABSTRACT. Given C? infinitely renormalizable unimodal maps f and g with a quadratic critical
point and the same bounded combinatorial type, we prove that they are C'*® conjugate along
the closure of the corresponding forward orbits of the critical points, for some a > 0.
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1. INTRODUCTION

It was already clear more than 20 years ago, from the work of Coullet-Tresser and Feigenbaum,
that the small scale geometric properties of the orbits of some one dimensional dynamical
systems were related to the dynamical behavior of a non-linear operator, the renormalization
operator, acting on a space of dynamical systems. This conjectural picture was mathematically
established for some classes of analytic maps by Sullivan, McMullen and Lyubich. Here we
will extend this description to the space of C? maps and prove a rigidity result for a class of
unimodal maps of the interval. As it is well-known, a unimodal map is a smooth endomorphism
of a compact interval that has a unique critical point which is a turning point. Such a map is
renormalizable if there exists an interval neighborhood of the critical point such that the first
return map to this interval is again a unimodal map, and the return time is greater than one.
The map is infinitely renormalizable if there exist such intervals with arbitrarily high return
times. We say that two maps have the same combinatorial type if the map that sends the
i-th iterate of the critical point of the first map into the i-th iterate of the critical point of the
second map, for all ¢ > 0, is order preserving. Finally, we say that the combinatorial type of
an infinitely renormalizable map is bounded if the ratio of any two consecutive return times is
uniformly bounded.

A unimodal map f is C” with a quadratic critical point if f = ¢y opot)s, where p(z) =z
and ¢, 1y are C" diffeomorphisms. Let c; be the critical point of f. In this paper we will
prove the following rigidity result.

2

Theorem 1. Let f and g be C* unimodal maps with a quadratic critical point which are infin-
itely renormalizable and have the same bounded combinatorial type. Then there erists a Olta
diffeomorphism h of the real line such that h(f*(cr)) = g'(h(cy)) for every integer i > 0.

We observe that in Theorem 1 the Hélder exponent o > 0 depends only upon the bound of
the combinatorial type of the maps f and g. Furthermore,as we will see in Section 2, the maps
f and g are smoothly conjugated to C? normalized unimodal maps F' = ¢rop and G = ¢pgop
with critical value 1, and the Holder constant for the smooth conjugacy between the normalized
maps F' and G depends only upon the combinatorial type of F' and GG, and upon the norms
¢rllc2 and [|éc||c2.

The conclusion of the above rigidity theorem was first obtained by McMullen in [16] under the
extra hypothesis that f and g extend to quadratic-like maps in neighborhoods of the dynamical
intervals in the complex plane. Combining this last statement with the complex bounds of
Levin and van Strien in [11], we get the existence of a C'*® map h which is a conjugacy
along the critical orbits for infinitely renormalizable real analytic maps with the same bounded
combinatorial type. We extended this result to C? unimodal maps in Theorem 1, by combining
many results and ideas of Sullivan in [21] with recent results of McMullen in [15], in [16], and
of Lyubich in [13] on the hyperbolicity of the renormalization operator R (see the definition of
R in the next section). A main lemma used in the proof of Theorem 1 is the following:

Lemma 2. Let f be a C? infinitely renormalizable map with bounded combinatorial type. Then
there exist positive constants 1 < 1, u and C, and a real quadratic-like map f, with confor-
mal modulus greater than or equal to u, and with the same combinatorial type as the n-th
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renormalization R™f of f such that
||Rnf - fn||C° < 077”
for every n > 0.

We observe that in this lemma, the positive constants n < 1 and p depend only upon the
bound of the combinatorial type of the map f. For normalized unimodal maps f, the positive
constant C' depends only upon the bound of the combinatorial type of the map f and upon the
norm ||g|c».

This lemma generalizes a Theorem of Sullivan (transcribed as Theorem 4 in Section 2) by
adding that the map f, has the same combinatorial type as the n-th renormalization R" f of f.

Now, let us describe the proof of Theorem 1 which also shows the relevance of Lemma 2: let
f and ¢ be C? infinitely renormalizable unimodal maps with the same bounded combinatorial
type. Take m to be of the order of a large but fixed fraction of n, and note that n —m is also
a fixed fraction of n. By Lemma 2, we obtain a real quadratic-like map f,, exponentially close
to R™f, and a real quadratic-like map g¢,, exponentially close to R™g. Then we use Lemma
6 of Section 2.2 to prove that the renormalization (n — m)-th iterates R"f of R™f, and R"g
of R™g stay exponentially close to the (n — m)-th iterates R*~™f,, of f,, and R" g, of g,
respectively. Again, by Lemma 2, we have that f,, and g,, have conformal modulus universally
bounded away from zero, and have the same bounded combinatorial type of R™f and R™g.
Thus, by the main result of McMullen in [16], the renormalization (n—m)-th iterates R"~™ f,, of
fm and R ™g,, of g, are exponentially close. Therefore, R" f is exponentially close to R"~™ f,,,,
R"™™ f,, is exponentially close to R"~"g,,, and R" g, is exponentially close to R"g, and so,
by the triangle inequality, the n-th iterates R"f of f and R"g of g converge exponentially fast
to each other. Finally, by Theorem 9.4 in the book [18] of de Melo and van Strien, we conclude
that f and g are C''*® conjugate along the closure of their critical orbits.

Let us point out the main ideas in the proof of Lemma 2: Sullivan in [21] proves that
R™f is exponentially close to a quadratic-like map F,, which has conformal modulus univer-
sally bounded away from zero. The quadratic-like map F), determines a unique quadratic map
Pyr,)(z) = 1 — ¢(F,)z* which is hybrid conjugated to F,, by a K quasiconformal homeomor-
phism, where K depends only upon the conformal modulus of F;, (see Theorem 1 of Douady-
Hubbard in [6], and Lemma 11 in Section 3.3). In [13], Lyubich proves the bounded geometry
of the Cantor set consisting of all the parameters of the quadratic family P.(z) = 1 — c¢z?
corresponding to infinitely renormalizable maps with combinatorial type bounded by N (see
definition in Section 2 and the proof of Lemma 2). In Lemma 8 of Section 2.2, we prove that
R"f and F,, have exponentially close renormalization types. Therefore, letting ¢, be the pa-
rameter corresponding to the quadratic map P, with the same combinatorial type as R"f, we
have, from the above result of Lyubich, that ¢(F},) and ¢, are exponentially close. In Lemma 12
of Section 3.3, we use holomorphic motions to prove the existence of a real quadratic-like map
fn which is hybrid conjugated to P, , and has the following essential property: the distance
between F,, and f, is proportional to the distance between ¢(F;,) and ¢, raised to some positive
constant. Therefore, the real quadratic-like map f,, has the same combinatorial type as R"f,
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and f, is exponentially close to Fj,. Since the map F}, is exponentially close to R" f, we obtain
that the map f, is also exponentially close to R™f.

The example of Faria and de Melo in [7] for critical circle maps can be adapted to prove the
existence of a pair of C* unimodal maps, with the same unbounded combinatorial type, such
that the conjugacy h has no C'*® extension to the reals for any o > 0.

2. SHADOWING UNIMODAL MAPS

A C" unimodal map F : I — I is normalized if I = [-1,1], F = ¢r op, F(0) = 1, and
¢r 1 [0,1] — I is a C" diffeomorphism. A C” unimodal map f = ¢y o p o ¢y with quadratic
critical point either has trivial dynamics or has an invariant interval where it is C" conjugated
to a C" normalized unimodal map F'. Take, for instance, the map

brla) = (v7 0 7(0)) 07t 00y (07" 0 6;0) 7 -a)

Therefore, from now on we will only consider C" normalized unimodal maps f.

The map f is renormalizable if there is a closed interval J centered at the origin, strictly
contained in I, and [ > 1 such that the intervals J, ..., f/"1(J) are disjoint, f!(.J) is strictly
contained in J and f(0) € 8J. If f is renormalizable, we always consider the smallest [ > 1
and the minimal interval J; = J with the above properties. The set of all renormalizable maps
is an open set in the C° topology. The renormalization operator R acts on renormalizable maps
fby Rf =¢o floy™ : T — 1, where ¢ : J; — I is the restriction of a linear map sending
f4(0) into 1. Inductively, the map f is n times renormalizable if R ' f is renormalizable. If f
is n times renormalizable for every n > 0, then f is infinitely renormalizable.

Let f be a renormalizable map. We label the intervals Jg, ..., f"1(J;) of f by 1,...,1
according to their embedding on the real line, from the left to the right. The permutation
or:{1,...,1} = {1,...,l} is defined by o/(¢) = j if the interval labeled by 7 is mapped by
f to the interval labeled by j. The renormalization type of an n times renormalizable map f
is given by the sequence oy,... ,0rns. An n times renormalizable map f has renormalization
type bounded by N > 1 if the number of elements of the domain of each permutation ogm ¢ is
less than or equal to N for every 0 < m < n. We have the analogous notions for infinitely
renormalizable maps.

Note that if any two maps are n times renormalizable and have the same combinatorial
type (see definition in the introduction), then they have the same renormalization type. The
converse is also true in the case of infinitely renormalizable maps. An infinitely renormalizable
map has combinatorial type bounded by N > 1 if the renormalization type is bounded by N.

If f = ¢pop isn times renormalizable, and ¢ € C?, there is a C? diffeomorphism ¢,, satisfying
R™f = ¢, o p. The nonlinearity nl(¢,) of ¢, is defined by

5 (2)
() =
nl(en) = sup 15 @)

Let Z(N,b) be the set of all C? normalized unimodal maps f = ¢ o p with the following
properties:

(i) f is infinitely renormalizable;
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(ii) the combinatorial type of f is bounded by N;
(iii) [|¢[]c2 < b.

Theorem 3. (Sullivan [21]) There exist positive constants B and ny(b) such that, for every
f € Z(N,b), the n-th renormalization R"f = ¢, o p of f has the property that nl(¢,) < B for
every n > nj.

This theorem together with Arzeld-Ascoli’s Theorem implies that, for every 0 < § < 2,
and for every n > ny(b), the renormalization iterates R"f are contained in a compact set of
unimodal maps with respect to the C” norm. We will use this fact in the proof of Lemma 5
below.

2.1. Quadratic-like maps. A quadratic-like map f : V — W is a holomorphic map with
the property that V' and W are simply connected domains with the closure of V' contained in
W, and f is a degree two branched covering map. We add an extra condition that f has a
continuous extension to the boundary of V. The conformal modulus of a quadratic-like map
f:V — W is equal to the conformal modulus of the annulus W\ V. A real quadratic-like map
is a quadratic-like map which commutes with complex conjugation.

The filled Julia set IC(f) of f is the set {z : f"(z) € V, for all n > 0}. Its boundary is
the Julia set J(f) of f. These sets J(f) and IC(f) are connected if the critical point of f is
contained in K(f).

Let Q(u) be the set of all real quadratic-like maps f : V' — W satisfying the following
properties:

(i) the Julia set J(f) of f is connected,

(ii) the conformal modulus of f is greater than or equal to p, and less than or equal to
2413
(iii) f is normalized to have the critical point at the origin, and the critical value at one.
By Theorem 5.8 in page 72 of [15], the set Q(u) is compact in the Carathéodory topology taking
the critical point as the base point (see definition in page 67 of [15]).

Theorem 4. (Sullivan [21]) There exist positive constants y(N) < 1, C'(b, N), and u(N) with
the following property: if f € I(N,b), then there exists f, € Q(u) such that ||R™f — fullco <
Cy™.

In the following sections, we will develop the results that will be used in the last section to

prove the generalization of Theorem 4 (as stated in Lemma 2), and to prove Theorem 1.

2.2. Maps with close combinatorics. Let D(o) be the open set of all C° renormalizable
unimodal maps f with renormalization type oy = 0. The open sets D(c0) are pairwise disjoint.
Let E(o) be the complement of D(c) in the set of all C° unimodal maps f.

Lemma 5. There exist positive constants ny(b) and e(N) with the following property: for every
f € Z(N,b), for every n > nq, and for every g € E(opnys), we have ||R"f — g||co > €.

Proof. Suppose, by contradiction, that there is a sequence R™ f;, R™ f5, ... with the property
that for a chosen o there is a sequence g, go,... € E(0) satisfying ||R™ f; — ¢i||c0o < 1/i.
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By Theorem 3, there are B > 0 and ny(b) > 1 such that the maps R™: f; have nonlinearity
bounded by B > 0 for all m; > ny. By Arzela-Ascoli’s Theorem, there is a subsequence
R™i f; R™i> f; ... which converges in the C° topology to a map g. Hence, the map g is
contained in the boundary of E(c) and is infinitely renormalizable. However, a map contained
in the boundary of E(o) is not renormalizable, and so we get a contradiction. O

Lemma 6. There exist positive constants n3(N,b) and L(N) with the following property: for
every f € Z(N,b), for every C? renormalizable unimodal map g, and for every n > ns, we have

I|IR"f — Rgl||lco < L||R"*f — gl|co -

Proof. In the proof of this lemma we will use the inequality (1) below. Let fi,..., f,, be maps
with C'' norm bounded by some constant d > 0, and let ¢y, ... , g, be C° maps. By induction
on m, and by the Mean Value Theorem, there is ¢(m, d) > 0 such that

(1) [fio.ofm—gio...0gmlleco < ¢ max {[[fi —gillco} .

Set ng = max{nj,ny}, where n;(b) is defined as in Theorem 3, and ny(b) is defined as in
Lemma 5. Set F' = R"'f with n > n3. We start by considering the simple case (a), where F’
and g do not have the same renormalization type, and conclude with the complementary case
(b). In case (a), by Lemma 5, there is ¢(N) > 0 with the property that

[|RF — Rg||co <2 < 27 Y|F — gl|co .

In case (b), there is 1 < m < N such that RF(z) = apF™(a;'z), and Rg(z) = agg™(a,'z),
where ap = F™(0) and a, = ¢"(0). By Theorem 3, there is a positive constant B(/N) bounding
the nonlinearity of F'. Since the set of all infinitely renormalizable unimodal maps F' with
nonlinearity bounded by B is a compact set with respect to the C° topology, and since ap
varies continuously with F', there is S(N) > 0 with the property that |ap| > S. Again, by

Theorem 3, and by inequality (1), there is ¢;(/N) > 0 such that

(2) IF™ = g™[co < ci]|[F = glco -
Thus,
(3) lar — a| < e1][F = glleo -

Now, let us consider the cases where (i) ||F'—g|| > S/(2¢1) and (ii) ||F —g|| < S/(2¢1). In case
(i), we get
|RF — Rgl|co <2 < 4e1SH|F — gl|co -
In case (ii), using that |ap| > S and (3), we get a;, > ap — S/2 > S/2, and thus, by (2), we
obtain
‘a;l — a;l‘ < a;1a9_1|ap —a4] < 257%¢,||F — gl|co .
Hence, again by (2) and (3), there is co(IN) > 0 with the property that
IRF = Rgllco < [[F™||eolar — ag| + lag||F™ |1 |ag" — a5
+agl[[F™ — g™ | co
< &l|F —gl|eo -
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Therefore, this lemma is satisfied with L(N) = max{2¢ !, 4¢;571, o }. O

Lemma 7. For all positive constants A < 1 and C' there exist positive constants «(N, \) and
ny(b, N, A\, C) with the following property: for every f € Z(N,b), and every n > ny, if f, is a
C? unimodal map such that

IR"f = fallco < CA™,

then f is [an+ 1] times renormalizable with ogmj, = Ogn+m for everym =0, ..., [an] (where
[y] means the integer part of y > 0.)

Proof. Let €¢(N) and ny(b) be as defined in Lemma 5, and let L(N) and n3(b) be as defined

in Lemma 6. Take o > 0 such that L*\ < 1. Set ny > max{ny, n3} such that CA\"™ < e and

C A Llenal < ¢ Then, for every n > ny, the values CA", CAL, ..., C\"LI*" are less than e.
By Lemma 5, if ||R"f — ful||lco < CA" < € with n > ny, then the map f, is contained in

D(ogng). Thus, f, is once renormalizable, and of, = ogny. By induction on m =1,... , [an],
let us suppose that f, is m times renormalizable, and ogif, = ogn+if forevery i =0,... ,m—1.
By Lemma 6, we get that ||R"™™f — R™f,||co < CL™\" < e. Hence, again by Lemma 5, the
map R™f, is once renormalizable, and ogmyf, = ognimy. O

Lemma 8. There ezist positive constants y(N) < 1, a(N), u(N), and C(b, N) with the fol-
lowing property: for every f € Z(N,b), there exists f, € Q(u) such that
(i) IR f = fulleo < O

(i) fy is [an+1] times renormalizable with ogmf, = O gnm ¢ for everym = 0,. .., [an].

Proof. The proof follows from Theorem 4 and Lemma 7. O

3. VARYING QUADRATIC-LIKE MAPS

We start by introducing some classical results on Beltrami differentials and holomorphic
motions, all of which we will apply later in this section to vary the combinatorics of quadratic-
like maps.

3.1. Beltrami differentials. A homeomorphism h : U — V, where U and V are contained
in C or C, is quasiconformal if it has locally integrable distributional derivatives 0h, Oh, and if
there is € < 1 with the property that ‘gh/ 8h‘ < € almost everywhere. The Beltrami differential
pn of his given by p, = 0h/Oh. A quasiconformal map h is K quasiconformal if K >
(L+ 1t lloe) /(1 = [t ).

We denote by Dg(cg) the open disk in C centered at the point ¢y and with radius R > 0. We
also use the notation Dp = Dg(0) for the disk centered at the origin.

The following theorem is a slight extension of Theorem 4.3 in page 27 of the book [9] by
Lehto.

Theorem 9. Let ¢y : C — C be a quasiconformal map with the following properties:
(i) py = 01/ has support contained in the disk Dg;

(ii) lilloe < € < 1;
(i) limy. o (1(2) — 2) = 0.
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Then there ezists C'(e, R) > 0 such that

¢ —idl|co < Cllpy]loo -

Proof. Let us define ¢; = p,, and, by induction on ¢ > 1, we define ¢;1 = pyH¢;, where H¢;
is the Hilbert transform of ¢; given by the Cauchy Principal Value of

[

By Theorem 4.3 in page 27 of [9], we get ¢)(z) = z+ Y>>, T'¢;(z), where T'¢;(z) is given by

//Cg_zd udo

By the Calderén-Zigmund inequality (see page 27 of [9]), for every p > 1, the Hilbert operator
H : L — L” is bounded, and its norm ||H||, varies continuously with p. An elementary
integration also shows that ||H||; = 1 (see page 157 of [10]). Therefore, given that |||l < €,
there is po(€) > 2 with the property that

(4) [ [[po [ loo < [1H [[poe <1

Since pg > 2, it follows from Holder’s inequality (see page 141 of [10]) that there is a positive
constant ¢ (pg, R) such that

(5) T ¢illco < eallgillpo -
By a simple computation, we get

1 . .
(6) 16illpe < (wR2) 2o || H |5 |11

Thus, by inequalities (4), (5), and (6), there is a positive constant cs(e, R) with the property
that

1
. - e (TR?) %0 ||y ]
1) —id|co < [T ¢il|co <
Z L —|[H|pol[ 115 ]|s0

N

< eolllle -
O

3.2. Holomorphic motions. A holomorphic motion of a subset X of the Riemann sphere
over a disk Dg(co) is a family of maps 9. : X — X, with the following properties: (i) v, is
an injection of X onto a subset X, of the Riemann sphere; (ii) ¢, = id; (iii) for every z € X,
() varies holomorphically with ¢ € Dg(co).

Theorem 10. (Stodkowski [23]) Let ¢, : X — X, be a holomorphic motion over the disk
Drg(co). Then there is a holomorphic motion W, : C — C over the disk Dg(cq) such that

(Z) \IJC|X - wc;
(ii) V. is a K. quasiconformal map with
KC: R+ |C—Co| ‘
R —|c— ¢
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See also Douady’s survey [5].

3.3. Varying the combinatorics. Let M be the set of all quadratic-like maps with connected
Julia set. Let P be the set of all normalized quadratic maps P. : C — C defined by P.(z) =
1 — cz?, where ¢ € C\ {0}. Two quadratic-like maps f and g are hybrid conjugate if there is
a quasiconformal conjugacy h between f and g with the property that dh(z) = 0 for almost
every z € K(f). By Douady-Hubbard’s Theorem 1 in page 296 of [6], for every f € M there
exists a unique quadratic map P, which is hybrid conjugated to f. The map £ : M — P
defined by £(f) = Py is called the straightening.

Observe that a real quadratic map P, with ¢ ¢ [1,2] has trivial dynamics. Therefore, we
will restrict our study to the set Q([1,2], ) of all f € Q(u) satisfying {(f) = Py for some
(f) € [1,2).

Let us choose a radius A large enough such that, for every ¢ € [1,2], P.(z) = 1 — ¢2? is a
quadratic-like map when restricted to P! (Da).

Lemma 11. There ezist positive constants Q(p) and K(u) with the following property: for
every [ € Q([1,2], p) there exists a topological disk Vi C Dgq such that f restricted to f~1(V})
is a quadratic-like map. Furthermore, there is a K quasiconformal homeomorphism @ : C — C
such that

(i) d>f|<I>JTI(Vf) is a hybrid conjugacy between f and Py ;
(ii) ®5(Vy) = Da; -

(1ii) ®¢ is holomorphic over C\ Vy;

(i) ®f(z) = Of(2).

Proof. The main point in this proof is to combine the hybrid conjugacy between f and P,
given by Douady-Hubbard, with Sullivan’s pull-back argument, and with McMullen’s rigidity
theorem for real quadratic maps. Using Sullivan’s pull-back argument and the hybrid conjugacy
between f and Py, we construct a K quasiconformal homeomorphism ®; : C — C which
restricts to a conjugacy between f and Pj. Moreover, ®; satisfies properties (ii), (iii) and
(iv) of this lemma, and the restriction of ®; to the filled in Julia set of f extends to a quasi
conformal map that is a hybrid conjugacy between f and P,). By Rickman’s glueing lemma
(see Lemma 2 in [6]) it follows that ®; also satisfies property (i) of this lemma.

Now, we give the details of the proof: let us consider the set of all quadratic-like maps
[+ Wy — W} contained in Q([1,2], u). Using the Koebe Distortion Lemma (see page 84 of
[2]), we can slightly shrink f~"(W?}) for some n > 0 to obtain an open set V; with the following
properties:

(i) V; is symmetric with respect to the real axis;

(ii) the restriction of f to f~'(V}) is a quadratic-like map;

(iii) the annulus V;\ f='(V}) has conformal modulus between p/2 and 2;
(

iv) the boundaries of V; \ f~1(V}) are analytic v(;) quasi-circles for some ~(p) > 0,
i. e., they are images of an Euclidean circle by 7(u) quasiconformal maps defined on

&l



10 W. DE MELO AND A. A. PINTO

Let Q' be the set of all quadratic-like maps f : f1(V}) — V} contained in O([1,2], u/2) U

O([1,2], ) for which V; satisfies properties (i), ..., (iv) of last paragraph. Since for every
f € Q' the boundaries of V} \ f~ (Vf) are analytic v(p) quasi-circles, any convergent sequence
fn € Q', with limit g, in the Carathéodory topology has the property that the sets V;, converge
to V, in the Hausdorff topology (see Section 4.1 in pages 75-76 of [16]). Therefore, the set
Q' is closed with respect to the Carathéodory topology, and hence is compact. Furthermore,
by compactness of @', and using the Koebe Distortion Lemma, there is an Euclidean disk Dq
which contains V; for every f € Q'.

Now, let us construct ®; : C — C such that the properties (i), ..., (iv) of this lemma are
satlsﬁed

Since V; is symmetric with respect to the real axis, there is a unique Riemann Mapping
¢:C\ Vf — C\ D, satisfying ¢(Z) = ¢(z), and such that ¢(R*) c R*. Since the boundaries
of Vi\ f (V) are analytic v(j) quasi-circles, using the Ahlfors-Beurling Theorem (see Theorem
5.2 in page 33 of [9]) the map ¢ has a K, () quasiconformal homeomorphic extension ¢; : C — C
which also is symmetric ¢1(Z) = ¢1(2).

Let ¢ : VA\K(f) = Da\K(P,y)) be the unique continuous lift of ¢; satisfying P.pyops(2) =
¢1 0 f(z), and such that ng(R*) C R*. Since ¢; is a K;(p) quasiconformal homeomorphlsm
SO is ¢o.

Using the Ahlfors-Beurling Theorem, we construct a Ko(p) quasi-conformal homeomorphism
¢3 : C\ K(f) = C\ K(P.(s)) interpolating ¢; and ¢, with the following properties:

(1) ¢3(2) = ¢1(2) for every z € C\ V};

(ii) ¢3(2) = ¢2(2) for every z € f~1(Vy) \ K(f);

(i) ¢3(2) = ¢3(2).
Then the map ¢ conjugates f on df~"(Vy) with Py on aP ( A), and is holomorphic over
C\V; c C\ Dq.

By Theorem 1 in [6], there is a K quasiconformal hybrid conjugacy ¢4 : Vi — Vc’( 1) between

f and Py, where V/ is a neigbourhood of KC(f). Using the Ahlfors-Beurling Theorem, we
construct a K }’ quasiconformal homeomorphism @, : C — C interpolating ¢3 and ¢, such that

(i) @o(z) = p3(2) for every z € C\ [ (V});

(i) @o(2) = @u(z) for every z € K(f);

(iii) Po(z) = Po(2).
Then the map ®, conjugates f on K(f) Udf 1 (Vy) with Py on K(Pyp) U 8PC_(})(DA), and
satisfies the properties (ii), (iii) and (iv) as stated in this lemma. Furthermore, ta,(2) = 0 for
every z € C\ Vy, |ug,(2)] < (Ky —1)/(K; 4+ 1) for a. e. z € Vp\ f71(V}), and pg,(2) = 0 for
a.e. z€ K(f)\T(f). o

For every n > 0, let us inductively define the K }’ quasiconformal homeomorphism ®,, : C — C

as follows:

(i) ®,(2) = D, _1(2) for every z € (@\f‘"(Vf)) UK(f);
(ii) Py o ®p(2) = ®,q 0 f(2) for every z € f7"(Vy) \ K(f).
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By compactness of the set of all Ky quasiconformal homeomorphisms on C fixing three points (0,
1 and 00), there is a subsequence ®,,; which converges to a K }’ quasiconformal homeomorphism
®;. Then @ satisfies the properties (ii), (iii) and (iv) as stated in this lemma.

The restriction of @ to the set f~'(V}) has the property of being a quasiconformal conjugacy
between f and P,). Furthermore, the Beltrami differential yg, has the following properties:

(i) po,(z) =0 for every z € C\ V;
(ii) |pa,(2)] < (K2 = 1)/(Ky+ 1) for a. e. 2 € Vi \ K(f);
(iii) pe,(2) = 0fora. e. z € K(f) \ T(f)-

Therefore, by Rickman’s glueing lemma, ®; : C — C is a Ko(1) quasiconformal homeomor-
phism, and @ restricted to the set f~'(V}) is a hybrid conjugacy between f and Pyy). O

The lemma below could be proven using the external fibers and the fact that the holonomy
of the hybrid foliation is quasi conformal as in [13]. However we will give a more direct proof
of it below.

Lemma 12. There exist positive constants () < 1, D(p), and (' () with the following prop-
erty: for every ¢ € [1,2], and for every f € Q([1,2], ), there is f, € Q([1,2], 1) satisfying
&(fe) = P., and such that

(7) 1f = felloogy < Dle(f) — ¢ .

Proof. The main step of this proof consists of constructing the real quadratic-like maps f, =
e o Poo, t satisfying foy) = f, and such that the maps w, : C — C defined by w, = 1, o @Z)C_(})
form a holomorphic motion w,, and have the property of being holomorphic on the complement
of a disk centered at the origin. Using Theorem 9 and Theorem 10, we prove that there is a
positive constant Lz with the property that ||w. — id||co < Ls|c — ¢(f)|. Finally, we show that
this implies the inequality (7) above.

Now, we give the details of the proof: let us choose a small € > 0, and a small open set U of
C containing the interval [1,2] such that, for every ¢ € U, the quadratic map P.(z) = 1 — c¢z?
has a quadratic-like restriction to P7'(Da), and P7'(Da) C DA . Let n: C — R be a C*®
function with the following properties:

(i) n(z) =1 for every z € C\ Dx;
(ii) n(z) = 0 for every z € D _;
(iii) n(z) = n(z) for every z € C.

There is a unique continuous lift a : C\ P,'(Da) — C\ P '(Da) of the identity map such

that

(i) Peoae(z) = Peyl2);

(il) o, = id;

(iii) . (z) varies continuously with c.
Then the maps a. are holomorphic injections, and, for every z € C\ P_'(Da), ac(z) varies
holomorphically with c.
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Let 8. : C\ P,,'(Da) = C\ P, !(Da) be the interpolation between the identity map and
a. defined by . = n-id+ (1 —n) - a.. We choose r' > 0 small enough such that, for every
¢o € [1,2], and ¢ € Dyi(cy) C U, B, is a diffeomorphism. Then 3. : C\ P! (Da) — C\ P (Da)
is a holomorphic motion over D, (cy) with the following properties:

(i) the map £, is a conjugacy between P,, on 0P, '(Da) and P, on 9P, '(Da);

(ii) the restriction of (. to the set C\ Dy is the identity map;

(iii) if ¢ is real then 3.(Z) = B.(z).
By Theorem 10, (. extends to a holomorphic motion Bc : C — C over D,(cy), and, by taking
r=r'/2, the map 8. is 3 quasiconformal for every ¢ € D, (cp).

By Lemma 11, there is a K (u) quasiconformal homeomorphism ®; : C — C, and an open
set Vp = @;I(DA) such that (i) @ restricted to f~'(V}) is a hybrid conjugacy between f and
Pyp); (ii) ®; is holomorphic over C \ Vy; and (iii) ®;(Z) = ®;(2). Let @, : C — C be defined
by &, = f3.0 ® ;. Then, for every ¢ € D,(cy), ®. is a 3K quasiconformal homeomorphism which
conjugates f on 8f'(V}) with P. on P (Dx).

We define the Beltrami differential p. as follows:

(i) pe(z) =01if z € K(P.) U(C\ Da);

(ii) (Po)*pe(2) =01if 2 € Da \ P71 (Da);

(ifi) (PM), se(2) = pe(P2(2)) if 2 € P7(Da) \ Pe "V (Da) and n > 1.
Then (i) the Beltrami differential y. varies holomorphically with ¢; (ii) ||pe||0 < (3K —1)/(3K+
1) for every ¢ € D,(¢(f)); and (iii) if ¢ is real then u.(Z) = p.(2) for almost every z € C.

By the Ahlfors-Bers Theorem (see [3]), for every ¢ € D,(c¢(f)) there is a normalized 3K
quasiconformal homeomorphism . : C — C with 1.(0) = 0, ¥.(1) = 1, and t.(00) = oo such
that 1, = pt., and t.(z) varies holomorphically with c. Thus, the restriction of ¢, to C\ Da
is a holomorphic map, and if ¢ is real then 1.(Z) = 9.(z) for every z € C.

The map f. : Ye(P,Y(Da)) = ¥e(Da) defined by f. = 1.0 P.ot_ ! is 1 quasiconformal, and
thus a holomorphic map. Furthermore, the map f. is hybrid conjugated to P., and so f. is a
quadratic-like map whose straightening &(f) is P.. Since the conformal modulus of the annulus
e(Da) \ ¥e(P71(Da)) depends only on 3K (u), we obtain that there is a positive constant
p' (1) such that the conformal modulus of f. is greater than or equal to p'(i). If ¢ is real then
fe(Z) = fe(z), which implies that f, is a real quadratic-like map.

For the parameter c(f), the map (s o @y is 1 quasiconformal and fixes three points (0, 1
and 00). Therefore, 1),y o @y is the identity map, and since the map 1.(s) o ®; conjugates f
with fc(f), we get fc(f) = f.

Now, let us prove that the quadratic-like map f. satisfies inequality (7). By compactness of
the set of all 3K (1) quasiconformal homeomorphisms ¢ on C fixing three points (0, 1 and oo),
there are positive constants (s, u) < s < L(s, ) for every s > 0 with the property that

(8) D, C ¢(Dy) and C\ Dy, C ¢(C\ D,) .

Thus, there is A” = L(L(A)) with the property that w. = 1. o wc’(}) is holomorphic in C\ Dan
for every ¢ € D,(c(f)), and ¢(f) € [1,2].
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Let Soar be the circle centered at the origin and with radius 2A”. By (8), we obtain that
we(S2ar) is at a uniform distance from 0 and oo for every ¢ € D,(c(f)), and ¢(f) € [1,2]. Hence,
by the Cauchy Integral Formula, and since w, is a holomorphic motion over D, (c¢(f)), the value

o : : : ) .

a. = wl.(0c0) varies holomorphically with ¢, and there is a constant L;(x) > 0 with the property
that

(9) jac = 1 < Lyfe = ()] -
Thus, (i) the map aw, is holomorphic in C \ Dar; (ii) ||t ||so 1S less than or equal to

(9K? — 1)/(9K? + 1); and (iii) lim,e0(acw.(2) — z) = 0. Hence, by Theorem 9, there is a
positive constant Lo () such that, for every ¢ € D, (¢(f)), and for every ¢(f) € [1,2], we get

(10) |lacwe —id|[co < Lol ftaew. ||oo

Since a.w, is a holomorphic motion over D, (c(f)), and by Theorem 10, we get
| — (/)]

(1) oo < E= AL

By inequalities (9), (10), and (11) there is a positive constant Lz(x) such that, for every
c(f) € [1,2], and for every ¢ € (¢(f) —r,c(f) + r), we obtain

(12) ||wc—id||00(1) < L3|C—C(f)| .
This implies that
(13) llwg " = id||coy < Lale — e(f)] -

Since w, is a 9K? quasiconformal homeomorphism, and fixes three points, we obtain from
Theorem 4.3 in page 70 of [10] that there are positive constants 3(u) < 1 and Ls(p) with the
property that ||we||csy < Ls. Then by inequalities (12) and (13) there is a positive constant
L5 (1) such that, for every ¢(f) € [1,2], and for every ¢ € (¢(f) —r,¢(f) + 1), we have

[fe = faplleoay < lwe = id||cory + |lwelles ] | Pe — Pc<f>llgo(1)
+||WC||CB||PC(f)||gl(1)||w;1 - ingO(])
< Lsle—e()]”
Finally, by increasing the constant Ls if necessary, we obtain that the last inequality is also

satisfied for every ¢(f) and ¢ contained in [1,2]. O

4. PROOFS OF THE MAIN RESULTS

4.1. Proof of Lemma 2. Let f = ¢ op be a C? infinitely renormalizable map with bounded
combinatorial type. Let N be such that the combinatorial type of f is bounded by /N, and set
b = ||¢f|lc2. By Lemma 8, there are positive constants v(N) < 1, a(N), u(N), and ¢1(b, N)
with the following properties: for every n > 0, there is an [an + 1] times renormalizable
quadratic-like map F,, with renormalization type o(n) = ogny,... ,Ogn+ian, With conformal
modulus greater than or equal to u, and satisfying

(14) |R"f — Fullcoy < av™ .
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By Milnor-Thurston’s topological classification (see [14] and Theorem 4.2a. in page 470 of
[18]), the real values ¢ for which the real quadratic maps P.(z) = 1 — ¢2z? have renormalization
type a(n) is an interval I,(,). Thus, by Sullivan’s pull-back argument (see [21] and Theorem
4.2b. in page 471 of [18]), there is a unique ¢, € I,(,) such that P, has the same combinatorial
type as R™(f). By Douady-Hubbard’s Theorem 1 in [6], there is a unique quadratic map
§(Fn) = Pyp,) which is hybrid conjugated to F,. Since F, has renormalization type o(n),
the parameter c¢(F),) belongs to I,(,). By Lyubich’s Theorem 9.6 in page 79 of [13], there are
positive constants A(N) < 1 and ¢;(N) such that |I,4)| < coA™. Therefore, |c, —c(F},)| < c2A™.

By Lemma 12, there are positive constants ((u) < 1, D(p), and p'(p) with the following
properties: for every n > 0, there is a real quadratic-like map f,, with conformal modulus
greater than or equal to ', satisfying £(f,) = P.,, and such that

|| fn — Fn||C°(I) < Dle,, — C(Fn)r6 < ch)‘ﬁn :
Therefore, the map f, has the same combinatorial type as R"(f), and, by inequality (14), for
C(b,N) = ¢, + Dé) and n(N) = max{~, \’}, we get
|R"f = fallcoay < Cn™ .
[

4.2. Proof of Theorem 1. Let f = ¢;op and g = ¢, o p be any two C? infinitely renor-
malizable unimodal maps with the same bounded combinatorial type. Let N be such that the
combinatorial type of f and ¢ are bounded by N, and set b = max{||¢||c2, ||¢q]|c2}. For
every n > 0, let m = [an], where 0 < a < 1 will be fixed later in the proof. By Lemma 2,
there are positive constants n(N) < 1 and ¢;(b, N), and there are infinitely renormalizable real
quadratic-like maps F},, and G,, with the following property:

(15) IR™f = Fullooay < en™ and [|[R™g = Gllcoy < ein™ .

By Lemma 6, there are positive constants n3(b) and L(N) such that, for every m > ng, we get
(16) |R"f = R* ™ Fpllcoqy < L™ ™|R™f = Ful ooy
< o (L))",
and, similarly,

(17) ||Rng - Rn_me||CO(]) S (4] (Ll—ana)

Now, we fix 0 < a(N) < 1 such that L' *n* < 1.

Again, by Lemma 2, F,,, and G,, have conformal modulus greater than or equal to p(N),
and the same combinatorial type as R™f and R™g. Therefore, by McMullen’s Theorem 9.22
in page 172 of [16], there are positive constants v5(N) < 1 and ¢y(p, N) with the property that

(18) |R™™F,, — R* "Gl o) < eorp™™

By inequalities (16), (17), and (18), there are constants c3(b, N) = 2¢; + ¢o and v3(N) =
max{L'~*n® vy~ %} such that

n

|R"f — R"gl|cory < csvs .
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By Theorem 9.4 in page 552 of [18], the exponential convergence implies that there is a 1T
diffeomorphism which conjugates f and g along the closure of the corresponding orbits of the
critical points for some a(N) > 0. O

The exponential convergence of the renormalization operator in the space of real analytic
unimodal maps holds for every combinatorial type. Indeed, if f and g are real analytic infinitely
renormalizable maps, by the complex bounds in Theorem A of Levin-van Strien in [11], there
exists an integer N such that RV (f) and R"(g) have quadratic like extensions. Then we can
use Lyubich’s Theorem 1.1 in [12] to conclude the exponential convergence. However, as we
pointed out before, this is not sufficient to give the C'* rigidity. Finally, at the moment, we
cannot prove the exponential convergence of the operator for C? mappings with unbounded
combinatorics.
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