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Abstract

Consider the group Ham®(M) of compactly supported Hamiltonian symplectomorphisms of the
symplectic manifold (M,w) with the Hofer L*®-norm. A path in Ham®(M) will be called a geodesic
if all sufficiently short pieces of it are local minima for the Hofer length functional £. In this paper,
we give a necessary condition for a path v to be a geodesic. We also develop a necessary condition
for a geodesic to be stable, that is, a local minimum for £. This condition is related to the existence
of periodic orbits for the linearization of the path, and so extends Ustilovsky’s work on the second
variation formula. Using it, we construct a symplectomorphism of S$? which cannot be reached from
the identity by a shortest path. In later papers in this series, we will use holomorphic methods to
prove the sufficiency of the condition given here for the characterisation of geodesics as well as the
sufficiency of the condition for the stability of geodesics. We will also investigate conditions under
which geodesics are absolutely length-minimizing.

1 Introduction

Let (M, w) be a symplectic manifold without boundary, and let Ham®(M) be the group of all compactly
supported Hamiltonian symplectomorphisms of (M,w). This is an infinite dimensional Lie group,
whose tangent spaces equal the space of compactly supported Hamiltonian vector fields on M, or,

equivalently, the space
Ci°(M;R)/{constants}

of compactly supported functions on M, modulo constants. In [6], Hofer considered the Finsler
pseudo-metric arising from the norm

|H|| = Totvar H = sup H(z) — inf H(z)

“Partially supported by NSERC grant OGP 0092913 and FCAR grant ER-1199.
tPartially supported by NSF grant DMS 9103033 and NSF Visiting Professorship for Women GER 9350075.

Invent. Math. 122 (1995), 1-33 Stony Brook IMS Preprint #1995/3a
February 1995



on this Lie algebra. He assigned to each C*°-path {¢;},c(4p) in Ham®(M) with ¢p = 1 the length

b
L(py) :/ Totvar Hydt,
a

where H; € C°°(M;R) is its generating Hamiltonian.! Further, he defined the pseudo-norm ||¢|| to be
the infimum of £(¢;) over all C> paths {¢;}4c[o,1) from 1 to ¢. (This norm is often called the energy
of ¢.) Setting the distance p(¢, ) between two arbitrary points equal to ||¢ o ¢»~!||, he obtained a
bi-invariant pseudo-metric p on Ham®(M).

Hofer showed that p is indeed a non-degenerate metric when M is Euclidean space R?® with
its standard symplectic structure. In addition, he showed that the flow {¢/ }i>0 of an autonomous
Hamiltonian H on R?" is a geodesic with respect to this norm, in the sense that all sufficiently short
pieces {¢f' }s_c<i<st+e minimize length. In fact, the path {4/ }e[a,p) minimizes length provided that
none of the symplectomorphisms ¢! o (¢f1)~1 ¢ € [a,b], have non-trivial fixed points. An appropriate
version of this result was recently generalised to more general flows by Siburg in [11]. Bialy and
Polterovich in [2] improved that result by a careful analysis of the bifurcations of the action spectrum.
These proofs use variational methods which exploit the linear structure of Fuclidean space at infinity.
Thus, other methods are needed in order to extend these results to more general manifolds.

In a previous paper [7], we used global embedding techniques and .J-holomorphic curves to show
that p is a non-degenerate metric for all M. In this paper and its sequels [8, 9], we will apply these
and other techniques to investigate the properties of geodesics in Ham®(M) for arbitrary M, giving in
particular a full characterization of geodesics and of their stability, sufficient conditions for geodesics
to be absolutely length minimizing, and other related results. We define geodesics as paths which are
local® minima, for £ at each moment. In this paper we present those of our results which were inspired
by a variational approach and are proved by a variety of ad hoc techniques. In particular, we establish
various necessary conditions for a path to be a geodesic by developing several direct ways in which
to reduce the length of a given path. We also construct a symplectomorphism of S? which cannot be
reached from the identity by a shortest path. On the other hand, any result which asserts that a given
path is a local or global minimum for £ requires one to measure some associated capacity which cannot
be reduced. Our results in this direction require new versions of the non-squeezing theorem which we
develop in [8, 9] using holomorphic methods. These will allow us to give conditions under which a path
is length-minimizing, and to establish the sufficiency of the necessary conditions presented here for a
path to be a geodesic and to be stable. These results generalize those obtained for the case M = R?"
by Bialy-Polterovich in [2] and by Siburg in [11].

1.1 Geodesics

Given points ¢g,¢1 € Ham(M), let P = P(¢o,¢1) be the space of all C> paths v = {d}ej01]
from ¢y to ¢ with the C*°-topology. (Thus two paths v and ' are close if the associated maps
M x[0,1] = M are C*-close.) For each v € P(¢o,$1) let P, be the path-connected component of

'Note that this norm is L' with respect to time ¢ and L with respect to space. Eliashberg and Polterovich show in
[5] that, although one gets an equivalent norm if one varies the norm in the ¢-direction, the norm becomes degenerate
and essentially trivial if L*° is changed to L”.

'Throughout this paper, we use the word “local” to mean local in the path space, not local with respect to time. A
property which holds locally with respect to time will be said to hold “at each moment”.



P(¢o, ¢1) containing y. A path v = {¢:},¢[qp) is said to be regular if its tangent vector é; is non-zero
for all ¢ € [a, b]. Further, v is said to be a local minimum of £ if it has a neighbourhood N () in P
such that

L(y) <L), forally € N(y).

Definition 1.1 Given an interval I C R, we will say that a path {¢;}cr is a geodesic if it is regular
and if every s € I has a closed neighbourhood N (s) = [as, bs] in I such that the path {¢gq) }renr(s) is a
local minimum of £, where 3 : N'(s) — [0,1] is the linear reparametrization 3(t) = (t — as)/(bs — as).
Such a path will be said to be locally length-minimizing at each moment. (Thus “moments” have
some duration.) A geodesic {¢;}c[o,1) is said to be stable if it is a local minimum for £. Note that
the notion of stability depends on the given endpoints of the path, but not the definition of geodesics.

Remark 1.2 (i) We have restricted to regular paths to make it impossible for a geodesic to stop
and then change direction. However, this restriction is not essential: see Remark 4.6. Of course, any
regular path may be parametrized by a multiple of its arc-length without changing its length.

(ii) The above definition has the virtue that geodesics exist on all manifolds and have a simple char-
acterization: see Theorem 1.3. One might define geodesics in a stronger sense, requiring that they be
absolutely length-minimizing at each moment, instead of locally length-minimizing at each moment.
Both definitions have their appeal (and they agree in ordinary Riemannian geometry). Our choice was
in the end dictated by the fact that we were unable to establish that geodesics in the stronger sense
exist on all M, though they do exist when M = R?" by the work of Hofer and Bialy-Polterovich (or
ours, see [8]). Another possibility would be to use a variational definition. Ustilovsky’s work [13] shows
that this works very nicely if one restricts attention to paths which satisfy a certain non-degeneracy
condition but, as we shall see below, it is somewhat cumbersome otherwise.

Because Hofer’s norm only takes account of the maximum and minimum values of Hy, it is not
surprising that the sets on which H; assumes these values are important. For each ¢t € I, we write

minset H; = {x € M : Hy(x) = min H;},
maxset H; = {z € M : Hy(z) = max H;}.
A point ¢ which belongs to
Nyminset H; or N; maxset H;

will be called a fized extremum of the Hamiltonian H; over the interval I and of the corresponding

path ¢t-
Sometimes it is convenient to consider paths {¢t}te[a,b] which do not start at the identity. The
Hamiltonian corresponding to such a path is defined by the requirement that

d

%@(x) = Xg,(¢(x)) for all ¢,
where Xy, is the vector field such that

Z.()(Ht)"‘) = W(XH“‘) = dH;.

Thus it coincides with the Hamiltonian which generates the path {¢; o ¢, 1}.
Our first theorem characterizes geodesics.



Theorem 1.3 A path {¢i}ier is a geodesic if and only if its generating Hamiltonian has at least one
fized minimum and one fized mazimum at each moment. Thus, each s € I has a neighbourhood Ny C I
such that the Hamiltonian which generates the path ¢y, t € N, has at least one fized minimum and
one fized mazimum.

We prove here that this condition is necessary, postponing to [8] its sufficiency. In fact, in §2 we
describe a simple procedure which shortens every path which does not have a fixed minimum and
maximum. The proof that the given condition is sufficient is more delicate, and relies on a local
version of the non-squeezing theorem for J-holomorphic curves. This result is already known for the
case M = R?" by the work of Bialy-Polterovich [2].2 It is also proved by Ustilovsky [13] for paths
on an arbitrary manifold under the hypothesis that there is only one fixed minimum p and one fixed
maximum P and that the Hamiltonian is non-degenerate at these points p, P at all times.

This characterization of geodesics implies that they are not at all unique: if {¢;} is a stable
geodesic, any path of the form {1 o ¢;} will also be a geodesic of the same length, provided that the
support of {14} is disjoint from at least one pair of fixed extrema {p, P}, and that £(v;) is sufficiently
small. Thus we have:

Corollary 1.4 Given any isotopy ¢, 0 < t < 1, there exist an infinite number of non trivial deforma-
tions having the same length. More precisely, there exists an infinite number of smooth 1-parameter
deformations ¢ s such that

(1) ¢ro =t

(2) ¢o,s =1 and P13 = ¢1 for all s

(3) for at least one s, the isotopy dicpo,1),s 98 distinct from ¢yefo1) and
(4) for all s, iep0,1),s has same length as o 11-

In particular, a shortest path or a stable geodesic is never unique.

Remark 1.5 As Weinstein points out, such non-uniqueness occurs on a Finsler manifold whenever
the unit ball in the tangent space has flat pieces in its boundary. A good example to consider is
R? with the metric whose unit ball is the unit square {(z,y) : |z, |y| < 1}. Here, any smooth path
(x(t),y(t)) from (0,0) to (1,0) such that

z'(t) > Iy'(¢)]

is a geodesic.

2They use rather different terminology, calling paths with at least one fixed minimum and one fixed maximum “quasi-
autonomous” and paths with a fixed minimum and maximum at each moment are called “locally quasi-autonomous”.



1.2 Stability: necessary conditions

Consider a path v = {¢;}c0,1) with ¢p = 1. Suppose that g is a fixed extremum of the Hamiltonian
{H¢}efo,1) and consider the linearizations

Ly = dgu(q) : Ty(M) — To(M)

of the ¢; at q. Clearly, this is the symplectic isotopy generated by the Hessian of H; at q. What turns
out to be crucial for the stability of ~ is the time at which non-trivial closed orbits of the L; appear.
If, for every = € T,(M) and every t' € (0,T), the only trajectories a(t) = L¢(z),0 < t < ¢/, with
x = Ly(x) = Ly (z) are single points, we will say that the linearized flow at ¢ has no non-trivial closed
trajectories in the time interval (0,7).

We first state a necessary condition for stability.

Theorem 1.6 Suppose that 7y is a stable geodesic. Then it has at least one fixred mazimum and one
fized minimum. Further, if dim(M) = 2, there is at least one fized mazimum and one fized minimum
at which the linearized flow has no non-trivial closed trajectory in the open interval (0,1); a similar
statement holds for arbitrary M provided that the set of fized extrema of v is finite.

The first statement follows immediately from the curve-shortening procedure of Proposition 2.1
which reduces the length of every path which does not have at least one fixed maximum and minimum.
The second statement is proved by an explicit construction which shows how to use a closed trajectory
« of the linearized flow at ¢ to shorten . To do this, one composes y with a scrubbing motion which
moves the points in M lying near ¢ around (the exponential of) the loop . Intuitively, in the presence
of a closed trajectory « at ¢ it costs extra energy to keep ¢ fixed, and one can reduce the energy needed
to get to the endpoint ¢; by following «. The details are in § 4.

In fact, this was already proved by Ustilovsky in [13] under the nondegeneracy assumptions men-
tioned before, and our proof uses essentially the same method, but involves more delicate estimates.
The point is that this nondegeneracy hypothesis on y ensures that the second variation of £ at v is a
well-behaved functional, and Ustilovsky uses it to prove not only the necessity of the above condition,
but also its sufficiency. We establish the sufficiency of this condition in the general case in [9].

The above necessary condition places severe restrictions on symplectomorphisms which are the
endpoints of stable geodesics from the identity. Combining this with calculations of the Calabi invariant
of various related symplectomorphisms, we show:

Proposition 1.7 There is a symplectomorphism ¢ of S? which is not the endpoint of any stable
geodesic from the identity. A fortiori, there is no shortest path from the identity to ¢.

This map ¢ is generated by a Hamiltonian of the form H(z,y, z)= h(z), and so rotates the parallels
of the sphere by varying amounts.

1.3 Variational definition of geodesic

Another approach to defining geodesics is to use a variational definition, looking at paths which are
critical points of the length functional £. In this section we discuss the relationship between the
definition which we have chosen and the variational one.



Observe first that the tangent space, T,P, to the path space P at v = {:}icpo,1] consists of
smooth families of functions G, 0 < t < 1, such that Gy = G = 0.! Further, the tangent vector {G;}
exponentiates to the path 7., |e| < &g, in Ham®(M) given by

Ye = {bec, © ¢t}te[o,1],

Here, for each fixed ¢, ¢, is the time-1 flow of the function eG¢, and o denotes the usual composition
of maps.

The following definition takes into account the fact that £ is not differentiable everywhere. Observe
that we do not make a statement about arbitrary deformations, but only those which arise from
exponentiating a vector field as described above.

Definition 1.8 A path v = {¢, }o<i<1 generated by a Hamiltonian H; is said to be L-critical if, for
every tangent vector field {G,}, the (not necessarily smooth) real valued function £(7:) of the variable
¢ is bounded below on some neighbourhood of € = 0 by a smooth function whose value at ¢ = 0 is
L(7) and first derivative at £ = 0 vanishes. Further, -y is said to be a smooth point if, for all tangent
vector fields {G;}, the function € — L(.) is differentiable at £ = 0.

Theorem 1.9 A path ¢, 0 <t <1, is L-critical if and only if its generating Hamiltonian has at least
one fixed minimum and one fized mazimum.

Comparing this with Theorem 1.3, we see that any L-critical path is a geodesic, and that, although
a geodesic need not be an L-critical path, it is an L-critical path at each moment. This is in marked
contrast with the situation in Riemannian geometry, where the variational notion of geodesic does
not depend on the interval of time considered. A path 7 is a Riemannian geodesic exactly when its
covariant derivative vanishes at each time, which implies, of course, that the restriction of the path to
any subinterval, no matter how long, is also a critical point of the length functional (on the space of
paths with fixed endpoints).

The next result gives a necessary condition for a L-critical path to be a smooth point of L.

Proposition 1.10 An isotopy ¢, generated by Hy, 0 < t < 1, with at least one fized minimum and
maximum, is a smooth point of the length functional L only if there exist o fized minimum p and fixed
mazimum P such that

Niejoyminset Hy = {p} and  Nygjo, ) maxset H; = {P}

and such that minset H, = {p} and maxset H, = {P} holds for all t € [0,1] except on a subset of
measure 0.

At smooth points (or more generally at points which satisfy the hypothesis of continuity, see §3),
Theorem 1.9 follows directly from the first variation formula of Ustilovsky. We give the general proof
in §3.2. Since a direct consequence of Ustilovsky’s work is that, conversely, a path which satisfies the
conditions in Proposition 1.10 is a smooth point of £ provided that each H; is non-degenerate at both
p and P, one sees that the above proposition is close to being sharp.

'Note that when M is non-compact each tangent vector in TyHam (M) has a unique representation by a function
G. To recover this uniqueness in the compact case, we normalise the function G by requiring that fM Guw™ =0.



1.4 Organization of the paper

This paper is organized as follows. In §2 we discuss various curve-shortening techniques and use them
to prove the necessary condition in Theorem 1.3. §3 discusses the first variation formula for £ and
proves Theorem 1.9. §4 starts with a discussion of the second variation formula and then proves
the necessary condition for stability in Theorem 1.6. The proof involves a considerable amount of
calculation. In §5.1 we apply this theorem to construct a symplectomorphism of S? which cannot be
reached by a shortest path from the identity. The ideas in §2 and §5 are elementary, and the proofs
can be read independently of everything else in the paper.

The authors wish to thank Polterovich for some illuminating conversations.

2 Curve-shortening procedures

The main aim of this section is to prove the necessity of the condition stated in Theorem 1.3 for a
path to be a geodesic. Thus we have to prove that a path {¢;}ier is a local minimum for £ at each
moment only if its generating Hamiltonian has at least one fixed maximum and one fixed minimum
at each moment. Clearly, this is an immediate consequence of the next proposition.

Proposition 2.1 Suppose that the generating Hamiltonian for the path v = {¢i}o<i<1 does not have
at least one fized minimum and one fired maximum. Then there is a deformation vs,s > 0, of v = v
in P =P(¢o, p1) such that

L(7ys) < L(7),

for all s > 0. In particular, v is not a local minimum for L.
Proof: By compactness there is a finite set of ¢, say ty < t; < ... <t such that
Njmaxset Hy;, = ().
Write X; = maxset Hy;. Thus, for some v > 0
Noy(Xo) C Uj>1(M — Xj),

where N, (X) denotes the v-neighbourhood of X C M with respect to some Riemannian metric on
M. Let {f;} be a partition of unity subordinate to the covering

M_NI/(XU)aM_Xla"'aM_Xka
and choose 6 > 0 so that
Xo C Upsi(8; (06, 1)).
For j > 1, let K; be a function with support in ﬂ;l([5/2, 1]) such that

b K] < 03
e K is constant and < 0 on (B;l([é, 1),
e supp (K;;) C supp (6;)-

Now let 1/){ be the time-t flow of K, and, given € > 0, define ¥§ as follows:



(i) U = 1 for t < ty — € and then flows along ¢! o...0¢¥ where s =t — o, until ¢ = o + €.
(ii) ¥§ remains unchanged (its time derivative is 0) when |t —¢;| > ¢ for all j.
(iii) When |t —t;| <, ¥} has the form
i—1
()~ Vi, ., where s=1t—1;.
Thus as one passes t; one undoes the jth perturbation.

We claim that ¢; = U§ o ¢; satisfies the requirements. Firstly, it is easy to check that U] = 1
for all . Further, by (i) and the choice of the K, the maximum value of the Hamiltonian for ¢j is
definitely less than that of ¢, when |t —¢y| < € and ¢ is sufficiently small. To see this, note that the
Hamiltonian for the composite ¥§ o ¢; is not the sum Hy + Hy of the Hamiltonian for each component
but rather is

H@//' * H¢ = H\p —+ H¢ o (\Ili)_l

However, for small €, this shifting of the support of Hy is irrelevant in our situation: Hg o (5) 1
takes its maximum on ¥§(maxset H;) which is contained in {z : Hy(z) < 0} when |t —#p| < € and ¢
is sufficiently small. Thus, there is a constant ¢ which is independent of ¢ such that

max(Hy:) < max(Hg,) — ¢

when |t — to| < € and ¢ is sufficiently small. Similarly, because the support of 1/ is disjoint from X §
the maximum of the Hamiltonian will remain unchanged by the perturbations described in (iii) for
small e. It follows that

L({p}) < LU b)) — 2ce
as required. 5

Note that, as in the above proof, we can compose H; during the time interval [t — ¢,t + ¢] with
functions G; having support disjoint from the extrema of H;. This proves the non-uniqueness result
stated in Corollary 1.4.

Our next result is a curve-shortening procedure, similar to Sikorav’s trick [12], which applies to
paths with fixed extrema at which a lot of energy is concentrated. It gives conditions under which
L(y) is not minimal. Recall that the displacement energy (or disjunction energy) e(Z) of a subset Z
of M is defined by

e(2) = in{ll¢]l : #(2)NZ = 0}.

Proposition 2.2 Let ¢; be a path from 1 to ¢ generated by the Hamiltonian H; normalised so that
min H; = 0 for all t, and suppose that there is ¢ > 0 such that the displacement energy of the set

7Z =7, ={x: H(z) <c¢, forsome te€0,1]}
is less than c/4. Assume further that

m]é)fot > c/2+m?XHt for all t.

Then the path ¢ucip,1) is not length-minimizing.



Proof: Let F : M — [0,¢/2] be an autonomous nonnegative Hamiltonian which equals ¢/2 on
Zcj2 and has support in Z.. More precisely, one may take a set Z' in the interior of Z. — Ze/2, with
0Z' smooth, such that a collar neighbourhood 07’ x [1, 1] embeds in Int(Z. — Z,/;). Let s be the
normal coordinate of the collar chosen so that the points where s = —1 are closest to Z /3, and define
F(z) = f(s) where f decreases from ¢/2 to 0 in the interval [—1/2,1/2].

By hypothesis, there exists a symplectic diffecomorphism 7 of M of norm less than ¢/4 which
disjoins Z. from itself. Let a; be the Hamiltonian isotopy generated by —F', and (3; the one generated
by (Hyoay) + F. Set @« = a1 and 8 = 1. Then the path a; o F;, t € [0,1], where the composition is
timewise, is generated by

~F 4+ ((Hioay) + F)oa; ' = H,.

Thus
léll = llo B
I (rar )78
It ((rar1)B) rlr =1, 571 |

= 87+ I (rar =Bl
¢/2+ |l(rar~H)All.

N IN

The last inequality holds because
l7=t 87 Bl < I+ 187 Bl = 2li7)l < /2

since the norm is invariant under conjugation. Now the statement of the theorem follows at once if
we show that

I(rar™ "Bl < L(¢) — /2.
But (Tar 1) is generated by the Hamiltonian

Gt:—FOT71+(HtOO[t+F)OTOé;1T71:—FOTil—{—F—’—HtO[Oét,T].

Now over Z. each function G has minimum at least ¢/2: this is obvious over Z 5, and it holds over
Z. — Z./5 too because each function H; is bounded below by c/2 there. Because each H; is bounded
below by ¢ on M — Z, and since 7 disjoins Z. from itself and F' has support inside Z, with values in
[0,¢/2], it is easy to check that the minimum of each G; on M — Z, is also bounded below by ¢/2.
Thus

minG; > ¢/2 for all t.

The same reasons, and the hypothesis that each H; reaches its maximum outside Z. and satisfies
max s H; > ¢/2+ maxy, H;, imply easily that G; has the same maximum value as H;. This concludes
the proof. O

Note that the shorter path from 1 to ¢ constructed in the above proof is not C*°-close to the
path ¢;. The proof only shows that the path ¢; is not length-minimizing, though it might be a local
minimum of the Hofer length £ in the path space. We will discuss the local minima of £ in § 4.

Here is an elementary corollary. Recall that the the displacement energy of a ball of radius r in
Euclidean space is mr2. It follows from [7] that this is essentially true for balls in any manifold M.



Corollary 2.3 Suppose that H is an autonomous Hamiltonian which takes its minimum value at the
single point p, and suppose that H(z) — H(p) > 4mwr? for all x outside a symplectically embedded ball
B of radius v and center p. Suppose further that the displacement energy of B in M is wr®. Then,
provided that |H|| > 87r?, the flow at time 1 of H is not length-minimizing.

The above hypothesis will be satisfied if the Hessian of H at p is large, but we are still quite far
from an optimal result. For example, in R? the function 7r? has closed trajectories at time 1, and it
is easy to see that a function which equals Awr? near 0 will not generate a minimal geodesic for any
A > 1. But our result only applies when A > 4.

Remark 2.4 (i) Proposition 2.2 is relevant to the optical Hamiltonian flows considered by Bialy—
Polterovich in [2]. They are interested in particular Hamiltonians which take their minimum on
an n-dimensional section Z of a cotangent bundle TX. When Z is Lagrangian they show that the
corresponding path is always a minimal geodesic. The above result makes clear that the Lagrangian
condition is essential. For if Z is not Lagrangian, it can always be displaced (in fact the displacement
energy is 0 by Polterovich [10]), and so if H grows sharply enough near Z the path will not be a
minimal geodesic.

(ii) This proposition can also be improved in various ways. For example, it is clearly unnecessary to
assume that the set Z in the statement of the proposition contains { H; ([0, ¢])} for all ¢ — if it contains
this set for ¢ € [a, b] then we should only “turn on” the flow of F' for these ¢ as in Proposition 2.1, and
make corresponding adjustments to the estimates of energy saved.

3 L-critical paths

The main aim of this section is to prove Theorem 1.9 which characterizes L-critical paths. In order
to show the logical development of ideas, we will begin by discussing the first variation formula. This
has also been derived in a slightly more restricted context by Ustilovsky [13]. Since this formula does
not apply to all paths, but only to those which satisfy the Hypothesis of Continuity stated below, it
is not essential to any of our proofs. However, its form is very suggestive.

3.1 The first variation formula

Given v = ¢ueo,1], let Gyeo,1) be a tangent vector field along v vanishing at both ends ¢ = 0,1. For
any € € R, set
Ve(t) = bec, 0 dr
which is a 1-parameter family of paths with the given ends, where ¢.¢, is the time 1 flow of ¢G;. We
wish to compute
dk
dek

L gk d
c) = T G dt
L0 = [ | 1l
for k =1,2.

Proposition 3.1 The Taylor expansion of the vector field %75 in powers of € up to order 2 is

d
P symplectic gradient of [H; + ¢ (G} + {—Gy, H;})

10



+5 (6L G + {~Co (G HY)) + o).

Here the notation o(¢*) denotes a term R which decreases faster than e*:

R
lim 749 _ g
e—=0 €
uniformly with respect to other variables.

Proof: Lety € M be any point and put § = gb;éto (y), where b=y, 1s the timel-map of the autonomous

Hamiltonian £Gy,. We write ¢/ for the flow at time ¢ of the non autonomous Hamiltonian {Hy, .}
(that is: we look at the flow of the Hamiltonian H; starting at time ¢y.) The vector %|t0'y€(y) is the
derivative at t = 0 of the composition

[0,6] % M x [0,0] & M

where a(t) = (¢i°(y),t) and F(z,t) = GGy i (7). Now o/ (0) = (Xp, (9),1) where X denotes the
symplectic gradient. Thus

d )
i) = AP0 (X, (9),1)
= dF|;0)(Xm, () + et)

where ¢; is the unit tangent vector on the real line. Hence

d _ d _
£|t07€(y) = d¢5Gt0 |g(XHt0 (v)) + £|t:0¢5Gt0+t (Y)-
Now the first term of the right hand side is equal to
XHtO (g) + E[XfGto ) XHtO] + 0(5)7

while the second is p
%XEGH—tO +o(e) = EXG% + o(e).

Thus finally

d
preCh symplectic gradient of H; + € (G} + {—G¢, Hi}) .

A similar but more elaborate calculation shows that the next term in the Taylor expansion is
g? ,
7 ({_Gta Gt} + {_Gta {_Gta Ht}}) .

Let
Ka,t = Ht + 5(G; + {_Gtv Ht}) + 0(6)

be the function appearing in the above Taylor expansion. To derive the variation formula, we first
make the following assumption.

11



Hypothesis of continuity The path ¢;c[p,1}, satisfies the hypothesis of continuity if, given any
tangent vector field Gy¢[g 1), it is possible to make a choice pi(€) € M of a point at which the minimum
value of K. ; is reached in such a way that p;(¢) is a smooth path for small values of ¢ and all 0 < ¢ < 1.
In this case, p;(0) = p; where p; is a minimal point of H;. We assume that the same holds for P;(e)
with maximum instead of minimum values.

One way to decide when this condition is satisfied is to use the following lemma.

Lemma 3.2 Let H;,0 <t <1, be any Hamiltonian which has a non-degenerate minimum at p for
all t. Then given any smooth functions Fy of the form f; + o(°) defined on some neighbourhood N of
p, there is for some €' > 0 a smooth map p(t,e) : [0,1] x [—€',&'] = N such that p(t,e) is the unique
minimum of (Hy + €Fy) |n. Further,

d .
%L:o min(H; + eFy) = fi(p).
A similar statement holds near a non-degenerate mazimum P.

The proof of this lemma is easy, based on ordinary smooth analysis. It immediately implies:

Corollary 3.3 Suppose that Hy is non-degenerate in the sense that there exist two points p, P such
that for all t

(i) minset Hy = {p} and maxset H, = {P} and
(ii) p, P are non-degenerate extrema of Hy.

Then the path v which it generates satisfies the hypothesis of continuity.

Theorem 3.4 (First variation formula) Suppose that v = ¢.c(o1) satisfies the hypothesis of conti-
nuity. Then the first variation is:

S LG = 5| _ L0 = | 1 (mupH Gy~ nf GQ) dt.
Proof: Let us compute the total variation of
K.: = Hi+¢e(G) + {—Gt, Hi}) + o(e)
for small €. Under the hypothesis of continuity we find:

TotVar(K.;) = (H;+e(G)+ {H;,Gi})) (Pi(e))
—idem(P;(e) = pe(e)) + ole).

We will write P;(e) for the derivative of P;(g) with respect to e. Then

d%TotVar(KE,t) = dHy(Py(e)) + (G} + {H;,G.})(Pi(e))
—idem(P;(g) — pi(e)) + ().

12



Therefore, because dH; = 0 at P;(0) we find that
d ! /
Je TotVar(Key)l.—g = Gi(P(0)) — Gi(pi(0))

Integrating over ¢ we get the first variation. Note that P;(0) is by definition the limit as ¢ — 0 of a
point where the function
Kgyt = Ht +e (G; + {—Gt, Ht}) + O(E)

reaches its maximum and by the hypothesis of continuity belongs to maxset H;. Since {G, H;} vanishes
over maxset Hy, P;(0) must belong to the subset

maxset (G} |maxses ;) C maxset Hy,

and similarly for p;(0). Therefore the first variation formula becomes:

d ! .
51£({Gt}):£|520£(75):/0 < sup G;— inf G’;) dt.

maxset Hy minset H;

3.2 L-critical paths

Recall that a path v is said to be L-critical if, for every tangent vector field {G,}, the (not necessarily
differentiable) real valued function £(7.) of the variable ¢ is bounded below on some neighbourhood
of € = 0 by a smooth function whose value at 0 is £(-y) and whose first derivative at 0 vanishes.

Proof of Theorem 1.9

We must show that a path ¢, 0 < ¢t < 1, is L-critical if and only if its generating Hamiltonian
has at least one fixed minimum and one fixed maximum. Suppose that p, P are fixed minimum and
maximum of {H;}. Let H;,0 <t < 1, be a 1-parameter family of functions C*®-close to H;,0 <t < 1,
which is such that for every ¢:
1) Hy(p) = Hy(p) and Hy(P) = Hy(P)
2) minset H; = {p} and maxset H; = {P}
3) p, P are non-degenerate extrema of H; and, in some symplectic coordinates near p or P, the 2-jet
of H; at p is strictly larger than the 2-jet of H; at p and conversely at P.

As above, for each ¢, let K, ; be the Hamiltonian which generates the path

Ve (t) = ¢5Gt o ¢y,

and set B B
K.;=K.;— H;+ H;.

Then, at each fixed minimum p, min K, ; < min Ka,t- But Ka,t is now the sum of a function H; which
is non-degenerate at p and of a smooth function ef; (plus terms of order o(¢)), where

fi = G, + {—Gy, Hi}

13



by Proposition 3.1. By Lemma 3.2 above,

d, . -
d—(mang,t)

- | = filp) = Gip) + {~Gi, Hi}(p) = Gi(p).

A similar result holds at the fixed maxima P. Hence we get:
1 _
L(ve) > / Totvar(K. ;) dt
0

where the right hand side is a smooth function of € whose value at 0 is ||¢¢|| 7 and whose first derivative
at € = 0 is therefore

[ @) - ayar = o

Conversely, if the set of fixed minima or the set of fixed maxima is empty, one can easily define
a tangent vector field {G;} such that L(v.) is not bounded from below by a smooth function with
vanishing first derivative. The proof is an obvious adaptation of that of Proposition 2.1. Instead of
constructing a loop ¥§ such that £(U§ o ¢;) < L(¢), we now need to find a family of functions G}
such that

1
/0 Gi(z)dt =0 for all z,

and
1
/ sup Gy — inf G} dt<0.
0 maxset H¢ minset H¢
If there are no fixed maxima, for example, there is a finite set of times, say #p < t; < ... < ; such
that

NQV(X()) C szl(M—Xj),

where X; = maxset H;; as before. Then, we can choose a small § > 0 and functions
k
Gt:ZGk,tSOa for |t—t0| S(s,
i=1

with support in Ny, (Xp) so that for s = 1,...,k and for |t — ¢;| < 0,
maxset(H; — G 44, —t,) = maxset(Hy).

It is easy to check that these G} satisfy the required conditions. a
Corollary 3.5 (i) A Hamiltonian {Hy}c(0,1) has at least one fized minimum and one fived mazimum
if and only if
1
/ ( sup Gj— inf G;) dt > 0
0 maxset H¢ minset H¢
for all admissible tangent vector fields {Gt}iepo,1)-
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(ii) An isotopy ¢y generated by Hy,0 < t < 1, with at least one fized minimum and mazimum, is a
smooth point of the length functional L only if there exist two fized extrema p, P such that

Niepo,yminset H; = {p} and Nigjo maxset H; = {P}

and such that minset H; = {p} and maxset Hy = {P} holds for all t € [0,1] except on a subset
of measure 0.

Proof: The proof of (i) follows easily from what is said above. As for (ii), if ¢;,0 < ¢ < 1, is a smooth
point of L, it has a first derivative which must then be

1
51£({Gt})=/0 ( sup G;— inf G’;) dt.

maxset Hy minset Hy

In particular, this means that the integral expression above is linear in {G,}. If p € Niefo,minset Hy
and P € Ny¢[o,yymaxset Hy is any choice, then

maxset Hy minset H;

1 1
/ ( sup G — inf GQ) dt > / (GL(P) — Gl(p)) dt = 0
0 0

for all {G;}. If H;,0 < ¢t < 1, does not satisfy condition (ii), we constructed in the proof of the
Proposition tangent vector fields {G;} such that the above inequality is strict: but then the same
integral evaluated on {—G}} cannot be negative, and so the left hand side cannot be a linear map (it
is a singular non-negative “conic map”). a

4 Geodesics and stability

We begin this section by discussing the second variation formula. Using this as a guide, we then prove
Theorem 1.6 which gives a necessary condition for stability.
4.1 The second variation formula

Let ¢ be a fixed extremum of the path  at which the Hessian d>H; of H; is non-degenerate for all
t, and let {G;} € T,P be a tangent vector to 7. The second variation of v at ¢ when evaluated
on {G:} depends only on the loop ¢(t) traced out by the gradient V Gi(q) of G; at ¢q. (Note that
9(0) = g(1) = 0 because Gy = G; = 0.) We will choose symplectic coordinates around ¢ and then
identify the tangent space T;, M with R?" equipped with its standard symplectic form wy and complex
structure J. Here Jxo; 1 = x9;, and Jz9; = —Jx9; 1, so that

wo(u,v) = (Ju) - v,

where - denotes the usual dot product. Then the symplectic area enclosed by a loop g in R?" is

1 1
areag:/D w0:§/0 (Jg) - ¢ dt,
g9
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where D, is a 2-disc with boundary along g. We will write
(u,0)e = (®He)™Hu -

for the metric induced on T,M by the inverse of the Hessian d2H; of H; at g. The following theorem
is proved by Ustilovsky in [13], and may also be derived from the Taylor expansion in Proposition 3.1.

Theorem 4.1 (Second variation formula) Suppose that Hycjo1) has at least one fived minimum
and one fized mazimum. Suppose further that each fized extremum of {H;} is a non-degenerate critical
point of all the functions Hy,0 <t < 1. Let Gicpo,1] be a tangent vector field along ¢cio1], and set
g(t) = VGi(p). Then the contribution of the fived minimum p of Hyco 1) to the second variational
formula, is

PLUGHE) = [ (¢g)edt + 2area o).

Similarly, the contribution of the fixred mazimum P is

1
PLUGHP) = [ (g gndt — 2area (g
where this time g(t) = VG¢(P).

We denote by Q, the quadratic functional

1
Qu(9) = [ (tgs9)e £ (Ja) -9 i

on the space of smooth loops g based at the origin in T,M = R?" which appears above. The analysis
of this functional is an isoperimetric problem relating the area of the loop to its time-dependent energy
defined by the varying metric (-, -);. It has been carried out as part of the development of index theory
for positive-definite periodic linear Hamiltonian systems (see Ekeland [4]) as well as by Ustilovsky in
[13]. The results of the present section show that there is a very close connection between the periodic
linear theory and the question of stability of geodesics in Hofer geometry. This will become even more
apparent in [9].

Theorem 4.2 (Ustilovsky,[13]) Let v have fized non-degenerate extrema q = p, P as above, and
suppose that there is no other fized extremum. Then, the quadratic functional Qg4 is positive definite
if the linearized isotopy déy at q, generated by the 2-jet Hy,0 <t <1 of Hy; at q, has no non-constant
closed trajectory a in time < 1. Moreover, if this is the case at both p and P, 7 is a stable geodesic,
i.e. it is a local minimum for L on the path space P(vy). Conversely, if such « does exist in time less
than 1 at either p or P, then Qg4 has non-vanishing index and the path v is not a local minimum of L.

This theorem. can be proved by looking at the 1-parameter family of functionals

Qv (g) Z/Ot (99"t £ (Jg) - ¢') dt, t € (0,1]

defined on the space of closed loops ¢ : [0,t'] — T;M = R?" based at the origin. Note that these
functionals are quadratic (and therefore have generically only the zero loop as critical point) and are
invariant by translation and multiplication by —1.!

!The symmetry group will be larger if, for instance, all the metrics (-, ¥+, 0 <t < t' are conformally equivalent.
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Lemma 4.3 The loop g belongs to the null space of Qu if and only if —Jg is the translate of a closed
trajectory « of dgy, 0 < ¢t < t'.

Proof: Let us suppose that ¢ is a minimum so that

Qv = /Ot (g, 9" )+ (Jg)-4) dt.

Since we may normalise H; so that its minimum value Hy(p) is 0, its 2-jet H, may be written in local
symplectic coordinates about p = 0 as

- 1 1
Hy(z) = 3 ZBU (t)xiz; = 2% Bz,

for some symmetric matrix B; = B;;(t). Then the inner product (u,v); = v-(B;)~'u, and the linearized
flow L; = d¢; is generated by the vector field —JBz.?
Recall that the null space of a quadratic form Q on a vector space V is defined to be

null Q@ = {g: Q(g,h) =0for allh € V}.

Thus g € null Q if and only if g is a critical point of Q. Now,

0 ¢ _
SoleoQela+se) = [ (2B +ag-g g ) de

t’
= 26 - (B 'g' + Jg)dt.
0
Hence, g is in the null space of Oy if and only if
Bt_lg' + Jg = const,

or equivalently if
g'(t) = Bi(=Tg(t) +c), 0<t<t.

It follows that —Jg(t) + ¢ is a closed trajectory of the linearized flow L;,0 <t < t'. a

Intuitively, the idea above is that when H, or equivalently B, is small, the term (-,-); dominates
Q4. When ¢ is a minimum, the closed orbits of the linearized flow L; enclose negative area, which
increases as H does. The two terms exactly balance out when Jg is an orbit of L;,0 < ¢ < 1. When ¢
is a maximum the area enclosed by the closed orbits of L; is positive, and similar reasoning applies.

The next step is to show that the values #' where the null space of Q; is non-trivial are conjugate
values. In other words, for ¢ < mint', Q; is positive definite, and the index of Q; increases at the
passage of a conjugate value ¢’ by a quantity equal to the (finite) nullity of Q. One can do this by a
Lagrange multiplier method, or by using the Jacobi sufficient condition: see [3, 13]. This proves the
first statement in Theorem 4.2.

The other statements are proved by investigating explicit deformations of ¢;c[p 1) along the loops
g in T,M. Let & : [0,#] = T,M = R?" be a closed trajectory of L;, 0 < ¢ < # and compose it with

2Recall that our convention is that the symplectic gradient Xy satisfies w(Xu,-) = dH.
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some slowing down function f : [0,1] — [0, '] which is the identity on [0, — ] for ¢ > 0 sufficiently
small and sends [t' — ¢, 1] onto [t — ¢, #']. If

a(t) =a(f(t))

denotes this composition, define the loop g by requiring that

9(t) = J((t) = (0)).

Thus, —Jg follows a path which is, up to translation, the same as the path of a closed trajectory of
the linearised isotopy during the time interval [0,#']. Observe that the choice of @ is not unique: it
may be replaced by pa for any non-zero scaling factor p, positive or negative.

Given such g we define G; to be a vector field supported near p with gradient VG,(p) = g(t). The
corresponding deformation ¢.q, o ¢; is the composition of ¢; with the time-1 map of ¢G;. Thus, up
to order 1 in ¢,

Py © Pu(p) = —eJg(t) = e(a(t) — (0)).

Ustilovsky showed that it is possible to choose the vector field G} in such a way that the energy of this
deformation is the sum of the energy L£(¢;) of the original path with Q(g) (up to terms of order &3).
Therefore, if Q(g) < 0, one can decrease the length of ¢;, while if Q is positive definite one cannot.

The striking fact here is that the deformation which optimally reduces the length is given by
composing the isotopy ¢; with a motion that moves p in the same direction as does the flow of
¢¢,0 < t < 1, round p. Thus, if the linearised motion at p has a closed orbit, the path {¢;} uses
extra energy to keep the point p fixed rather than letting it move around p in the direction of this
orbit. In the next section we extend the range of validity of this result, getting rid of most of the
non-degeneracy hypotheses on the path v = {¢;}.

4.2 Stability of geodesics: necessary condition

We use the preceding results as a guideline to give a rigorous proof of a necessary condition for the
stability of geodesics. For simplicity, we first consider the case when M has dimension 2.

Theorem 4.4 Let Hicg 1) be any Hamiltonian defined on a surface S, and v = ¢, 0 < t < 1, the
corresponding path in Ham®(S). If v is a stable geodesic, H; has at least one fized minimum p and
one fized maximum P at which the differential d¢, of the isotopy has no non-trivial closed trajectory
in the time interval (0,1). Indeed, if this condition fails, there is a canonical deformation of the path
v which reduces L(7).

Proof: We have already seen that a stable geodesic must have at least a fixed minimum and a
fixed maximum. Assuming that at all fixed minima of the family {H;} the differentials have a closed
trajectory of period less than 1, we construct a deformation of the path «v which increases the minimum
of all H; without changing the maxima, and hence reduces the Hofer length of v. A similar argument
works for maxima. In the first step of the proof we show how to avoid the worst degeneracies of
H;. The heart of the proof is Steps 2 and 3 which construct and analyse the scrubbing motion which
reduces the length of the path, and Lemma 4.9 of Step 4 which handles the degeneracies of H; at the
fixed extremum.
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Let p be a fixed minimum where L; = {d¢¢(p) }c[o,1] has a non-trivial closed trajectory in time
less than 1. Observe first that this implies that p is isolated among the fized extrema of {H,},
since the manifold is a surface. Rescale all functions H; so that their minimum value H(p) is 0.
Note that because {Hi};c(p,1] defines a geodesic, no function H; can be identically zero. Then let
M = min; maxg H; > 0 be the minimax of the family.

Step 1.
Working in local coordinates near p = 0, let A = A(d) be the annulus D(40) — D(§/2) for some
small 6 > 0, centered at the origin.

Lemma 4.5 There exists a deformation of v = {¢¢} to a path (with the same end points and same
length L(7)) which is generated by a Hamiltonian which is strictly positive on A for all t.

Proof: Suppose to begin with that, for at least one value ¢y, the 2-jet I:ItO of Hy, at p is non-degenerate.
We can assume that ¢y € (0,1) is an interior value, and that ¢, £ are small enough so that Hy is strictly
positive on A for all t € (tg —2¢,t9+2¢). Then let f : N(A) — [0,1] be a S'-invariant function defined
on a small neighbourhood of A and strictly positive and constant on A. As in Proposition 2.1, we
consider the path {U; o ¢y}, where U, is generated by the Hamiltonian F; = A\(¢)f, 0 < ¢ < 1, where

e 3:[0,1] — (—¢,¢) has vanishing integral; and
e (3 is equal to its minimum on (g — £, %o + &), and to its maximum on [0, 1] — (to — 2&, o + 2£).

Since ¥y = ¥; = 1, the path {¥; o ¢4} has the same end points 1, ¢ as {¢;}. If 0 is chosen
sufficiently small and ¢ is smaller than M/2, the maximum value of the generating Hamiltonian is
unchanged and therefore so is the length £. The new path is generated by a Hamiltonian, that we
still denote Hy, which is the same as before everywhere except on N(A) and is always strictly positive
on A.

To obtain the same result when all the 2-jets H, are degenerate, it is enough to show that we
can slightly perturb {H;} so that some H; is strictly positive on A. But since a non-constant closed
trajectory exists, there must be at least two rank 1 functions I{Itl,ﬁtz with distinct kernels: one can
then apply the same kind of argument but using this time a function f which is equal to two bump
functions covering the two connected components of K3 N N(A), where K is the kernel of I:Itl. This

will transform Hy, into a function strictly positive over A while reducing slightly some positive values
of Ht2 . O

Remark 4.6 In order to make the last step above work, we used the fact that H; is not identically 0
for any £. This is permissible because the path v was assumed to be a geodesic and hence, according
to Definition 1.1, must be regular. However, it is not necessary to assume regularity here: one can use
the same trick as above to make a regular path of the same length as the given one. To see this, choose
to so that Hy, is not identically zero, and let f : S — [0, 1] be a smooth function such that f is 0 on
the set of all fixed minima of the family {H;} and equal to 1 out of some neighbourhood of this set.
Then, for all small v and all ¢ in some neighbourhood (g — 2¢, tg + 2£) of ¢y, max(H; — v f) is reached
on the same set as max H; and vf < H; everywhere. It now suffices to compose ¢; with ¥, generated
by Af, where A : [0,1] — (—¢,¢) has vanishing integral, reaches its minimum on (¢y — &,to + &), and
its maximum on [0, 1] — (to — 2&, to + 2£). O
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Step 2. Construction of the scrubbing motion

By Step 1, m =inf;inf4 H; is > 0. Since p is a minimum of H;, the linearized isotopy L; = d¢;
at p of the Hamiltonian H; always rotates in the same direction (clockwise, in fact). Therefore, our
hypothesis implies that it rotates some ray by more than a full turn, and it follows that there exists
a closed trajectory a : [0,1] — R? = T;,S of AH; for some X € (0,1). ! We construct an optimal
deformation of the path ¢;, 0 < ¢ < 1, which increases the minimum of each Hy| D(40)> by composing

¢ with a loop 1/;?”’ which moves the points near p round a small loop (this is our scrubbing motion).
For each ¢, and each sufficiently small §, p, consider the symplectic diffeomorphism I/Jf ? of D(36)
whose restriction to D(26) is the translation by pag(t) where

ap(t) = a(t) —c, c¢=a(0),

and which is smoothed to the identity on the annulus D(3d) — D(26).
We construct the 1/;? ? 5o that they form a closed path, that is

s, s,
T/)1p:¢0p: 1.

Thus each point of D(2§) describes a small loop during this Hamiltonian isotopy.
Let F; be the non autonomous Hamiltonian which generates the isotopy {#{*}. Since ¢ (z) =
x + pag(t) on D(0), the function Fy; must have the form

Fy(z) = pJd/(t) -z + 2(t), for z € D(J).
where z(t) = F;(0). We normalize F; by setting F; = 0 on the boundary of D(30).
Lemma 4.7 f01 z(t)dt = area pay.

Proof: Let §:]0,1] — S be a path from a point 3(0) € dD(30) to 5(1) = 0. Then

[ (are foyas

= [t fonas,

A) = F(o) = [

where X; = z/}f’p(ﬁ(s)) and w is the standard symplectic form w(u,v) = (Ju) - v on R2. Thus [ z(t)dt
is the total flux through the arc (3, that is, the total algebraic amount of surface area which crosses
the fixed arc a during the whole isotopy. This flux is not only independent of the choice of 8 but may
also be computed by taking any family of time dependent arcs (3;, provided that each (3; begins at 3(0)
and ends at 3(1), and By = 1. (Here we are using the fact that we are working locally in S so that
the integral of w over the sphere formed by the images of the paths (; is zero.) Take 3; = \;0 A\ where
A is the image of the fixed arc 3 by z/)f » and ); is the straight segment in D(§) from d)f ?(0) = pay(t)
to {0} oriented that way. The total flux is the sum of that through A; and that through \;.

'Here we use the parameter A as conjugate value parameter instead of ¢. In dimension 2, this will lead to a simpler
and more elegant theory, since there is then a canonical choice of the loop . With time as conjugate parameter, one
is forced to take a closed loop « : [0,1] — T},S obtained by composing the closed trajectory & : [0,t'] — T,S with some
more or less arbitrary slowing down map f as we described in the last section.
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Since the former follows the flow of the isotopy, the flux crossing it is zero. To calculate the flux
through the arcs A; we use the fact that these paths are entirely contained in the disc D(4) on which
p * is translation by pap(t) with constant Hamiltonian vector field X; = pag(t). The flux at time ¢
passing through a moving arc A; is the difference between the infinitesimal flow which passes through
A¢ as if Ay were fixed, and the infinitesimal area swept out by A\;. The latter contribution integrates

over t to give the area enclosed by the loop pag, while the former is:
1,1 o 1,1
/ / w(pag(t), =—\)dsdt = / / w(pag(t), —pag(t))dsdt
0 Jo 0s 0 Jo
1

= —/ p?af(t) - Jag(t)dt = 2 area pag.
0

|

Note Since the area of pag(t) is negative, this average value of F;(q), for any ¢ € D(0), is equal to a
negative constant. Of course the average value at some points in the annulus D(3§) — D(J) must be
positive since the Calabi invariant of the isotopy is 0.

Now consider the path z/)f’p o ¢¢. It is generated by the Hamiltonian K; = F; + Hy o (z/)f’p)*l. We
write H; = H, + R, on D(49) for all t, where H, is the 2-jet of H; at p and ﬁ;ﬁﬁ) — 0 when g — 0.
Correspondingly, we set

Kt = Ft + .ﬁt o (z/)?,p)—l.
By construction K; = H; outside D(44).
Step 3. Calculation of the minimum of K; on the disc D().

For z € D(9),
. Son_
Ki(x) = Fy(z)+Heo (4;7) 7" ()
= z(t) + pJd (t) -z + Hy(z — pap(t))

is a non-homogeneous polynomial of degree 2. We now show that its minimum is reached at a critical
point lying inside D(§) even when H; has rank 1. The reason is that we chose o' so that Jo' is parallel

to the gradient qf I:It, which, as we shall see, implies that the minimum of K, may be computed as if
the Hessians d2H; : R? — R? were invertible for all ¢.

Lemma 4.8 There is a continuous path p(t) in R? on which K, assumes its minimum over R2. By
choosing p sufficiently small, we may assume that p(t) € D() for all t. Further,

1 N 1 -
/ min K; :/ (1 = MX\p>Hy(ag)dt > 0.
0 0

Proof: We prove the lemma in dimension 2, but it clearly holds in any dimension. As in §4.1, we
will write

~ 1
Hy(z) = 3% Bz,

for some matrix B;. Then, the Hessian d?H; is the linear transformation given by the matrix B;, and
the closed trajectory « of the Hamiltonian flow of AH; satisfies the equation

o = —\JB,a.
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Therefore . .
dKi(z) = pJd' + dHy(z — pa) = By(z — pap + pAa).

This is 0 when z € pag — pra+ K er(I:It), and a smooth choice of critical points is given by
p(t) = pag — pAa = p(1 — A)a — pe.
It is clear that this is small if p is small, and that these critical points are absolute minima of K, over

RZ.
Observe that

1 1
areacy = —/ Jayg - agdt
2 Jo
1 1
= ——>\/ (%)) -BtOz() < 0.
2 Jo
Therefore, by Lemma 4.7,
1 N 1.
/ min Kydt — / Ki(p(t)) dt
0 0
1 1
= / (z(t) + p*Jafy - (ap — Aa) + 5,02)\2@0 - Byag) dt
0
1
= (=14+2(1-X)+ )\),02)\/ g - By dt
0
1
= (]_ - )\)pZ/ ap - Btag dt
0
i
S —A)Ap2/ Hy() dt
0

is strictly positive because ag is a non-constant trajectory of AH;. O

Step 4. The minimum of Kj.
In this step we show how to arrange that min K; be strictly positive for all ¢. To begin we show
that fol minp 44y Ky is strictly positive.

Lemma 4.9 If § is sufficiently small, we may choose p so that

min K; = min K; > minKt + min R;
D(49) D(6) D(6) D(26)

with

1 3
/ <minKt 4+ min Rt> dt > 0.
0o \D(5) D(26)
Proof: Keeping ¢ fixed, and taking p sufficiently small with respect to m = min; max4 H;, we can
insure that the minimum of K¢[p4y) is reached inside D(4). Now Hy = Hy + Ry on D(40) where

Ry()

5 — 0 when z — 0.
B
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Further K; = F; + Hy o (10")~!, where ()~ (D(8)) C D(25). Thus, clearly,

min K; > min K; + min R;.

D(5) D(3) D(20)
We have just seen that [ minp ) K; has the form cp?, where the constant c¢ is independent of §, p. On
the other hand, [minp(g5) Ry = 0(0?) by the definition of R;. Therefore, to prove the second part of
the lemma, it suffices to show that we may choose p = p(J) to be a linear function of . To check this,
consider the dependency on ¢ of all parameters introduced so far. In Step 1 we introduced a fixed
parameter ¢, and parameters ¢, m. These have the form ¢ = const 2, m = const 62 since they both
only depend on the value of the fixed function H; (or of the fixed functions Hy , Hy,) over A(J). In
Step 2, the functions F} depend only on the parameter p = p(d) which determines the size of the closed
orbit. To insure that the scrubbing motion can be smoothed out to the identity on D(36) — D(24),
one may choose p such that max; p|la(t)|| < /6, and to be sure that minps) Ky is reached on D(0),
it is enough to choose p so that the minimum over D(40) of the linear part of K; be smaller than m/3,
which means that 46 max; ||po/|| = 40p max, ||| < m/3 = const §2. Thus p(§) depends linearly on &,
as required. a

We now use the technique of Proposition 2.1 again to deform the Hamiltonian K;,0 < ¢t < 1, so
that minp4s) Ky is strictly positive for all . To do this, compose the isotopy with ¢, generated by
the Hamiltonian F;, 0 < t < 1, defined by F, = B(t)f where f : D(46) — [0,1] is a S'-invariant
bump function equal to 1 on D(30) and 0 near 9D(46), and where 3 : [0,1] — (mgo,m1) has vanishing
integral, with my = —max; minp4s) K¢ and my1 > —min, minp4s) K. As before, this composition
has the same end points 1, ¢, it does not increase the Hofer length of the path. It is now generated
by a Hamiltonian, still denoted by Hy, which is the same as before everywhere except on D(44) where
each H, is now strictly positive.

Step 5. Completion of the proof of Theorem 4.4.
Repeating the above process near each of the finite number of fixed minima of H;, we deform Hy
to a Hamiltonian K; with

mngt(x) = mﬁth(x), gél]{]th(x) > irgj{let(x) =0,

for all ¢, where N is some neighbourhood of all fixed minima. Then, of course, {K; |5 n };c[o,1) has no
fixed minimum, and Proposition 2.1 implies that we can perturb {Kj};c(9,1) so that their maxima are
the same as those of H;, but with minima satisfying

1 1
/ min K; > / min H;.
o S o S
Thus L({K:}) < L({H:}). Further, we may clearly choose {K;} to be as close to {H;} as we want in
the C*°-topology. Thus 7 is not a local minimum of L. a

Finally, note that the proof of Theorem 4.4 shows:

Theorem 4.10 Let {Ht}te[o,l} be a Hamiltonian defined on any symplectic manifold M, and v =
{#}, 0 < t < 1 the corresponding isotopy. Assume that each fized extremum of {H;} is isolated
among the set of fixed extrema. If v is a stable geodesic, there exist at least one fixred minimum p and
one fixed mazimum P at which the differential of the isotopy has no non constant closed trajectory in
time less than 1.
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Proof: The proof of Theorem 4.4 in the 2-dimensional case applies directly. Actually, the hypothesis
on dimension has been used only once, namely to deduce that each fixed extremum is isolated. The only
other argument of the proof which should be treated in a slightly different way is the use of t-conjugate
values instead of A-conjugate values. In arbitrary dimensions, one cannot derive the existence of a
closed trajectory of )\I:It, 0 <t <1 from the existence of a closed trajectory of I:It, 0 <t <¢t. Thus, as
we indicated above, the loop a must be replaced by a closed loop [0, 1] — T}, M obtained by composing
the closed trajectory @ : [0,t'] — T,M with a slowing down map f : [0,1] — [0,#']. The rest of the
proof is similar, although the proof of Lemma 4.8 in Step 3 must be adapted accordingly. O

This theorem has the following obvious corollary:

Corollary 4.11 Let M be a compact symplectic manifold, and let ¢ € Ham(M) be generic in the
sense that all its fized points are isolated. Then, any stable geodesic ¢y, 0 < t < 1, from the identity
to ¢ must have at least two fized points at which the linearised isotopy has no non-constant closed
trajectory in time less than 1.

5 Symplectomorphisms of S2
This section is devoted to proving the following result.

Proposition 5.1 There is a symplectomorphism ¢ of S? which is not the endpoint of any stable
geodesic from the identity. A fortiori, there is no shortest path from the identity to ¢.

The proof uses properties of the Calabi invariant. Recall, from [1] for example, that if (M,d)\) is
an exact symplectic manifold, Cal is a homomorphism Ham®(M) — R defined by:

Cal (¢) = /M><[0 . H;w"dt,

where H; is any compactly supported Hamiltonian with time-1 map ¢.! Thus

Cal (¢) < [|4]-

A crucial point is that H; must be compactly supported. We will see below that if ¢ € Ham(S?)
is the identity near both poles pg,py,, then the Calabi invariant of ¢ considered as an element of
Ham®(S? — p,) may be very different from the corresponding invariant calculated with respect to
Ham®(S? — p,). It is this fact which complicates the use of Calabi invariant on S

Before starting the construction, we prove the following easy lemma.

Lemma 5.2 Let {¢:} be any isotopy in P with fized minimum at p and fized mazimum at P, and let
« be a path in M from p to P. Then L({¢:}) is the absolute value of the area swept out by o under

the isotopy {¢}.

! Although this definition does not appear to use the exactness of w, this is needed to show that Cal is independent of
the choice of the homotopy class of {¢:}. For general non-compact M, Cal is defined on the universal cover of Ham®(M).
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Proof: There are several ways to see this. Here is a geometric argument. Let H(x,t) be the Hamil-
tonian which generates {¢;} and consider the surface S in its graph I'yy made up of the characteristic
lines starting at the points of a:

S = {(#r(a(u), H(dr (o)), £),1) : u, t € [0,1]}.

Then the form Q = w @ ds A dt vanishes on S since it is a union of characteristic lines. Thus

[,({qbt}):/sds/\dt:—/sw

is (up to sign) the area swept out by « under the isotopy. O

On the 2-sphere S of radius 1 centered at the origin of R3, take coordinates 6 : S—{p, p,} — [0,27]
and z : S — [—1,+1], where {ps, p,} are the south and north poles, 8(z,y, z) is the positive angle of
the point (z,y) with respect to the positive z-axis, and z is the height coordinate. The symplectic
form is df A dz, with total area A = 4w. Thus the Hamiltonian flow of the function z is the positive
rotation

(0,2) — (0 +t,2).

We begin with the following proposition:

Proposition 5.3 Let h : R — R be a smooth function either strictly convex everywhere or strictly
concave everywhere, with h'(+1) ¢ 2nZ, and ¢ the time 1 map of the Hamiltonian H = ho z on S.
Then the length of any stable geodesic 1,0 <t < 1, joining the identity to ¢ satisfies

L{ye}) <A

Proof: Let 9 be any stable geodesic from the identity to ¢, generated by a Hamiltonian K;.
Let p, P be a fixed minimum and a fixed maximum of the family {K;}, where by Corollary 4.11 the
linearised Hamiltonian isotopy rotates no ray by more than a full turn. Then p, P belong to

Fix(¢) = {(0,2) | W' (2) € 21Z or z = £1}

which is the union of a discrete set of parallels. By Lemma 5.2, £({¢;}) is equal to the area swept
out by the curve 9;((s)),0 < s < 1, during the time interval 0 < ¢ < 1, where « is any path from p
to P oriented accordingly. First assume that p, P do not belong to the same parallel. Call a path «
from p to P admissible if it is locally the graph of a function 6(z): it is a smooth embedded curve
everywhere transversal to the parallels, which can meet the poles p,, or ps only at its end-points and
only when {p,,ps} N{p, P} # 0. Since h is strictly convex or concave, and h'(+1) ¢ 27Z, the map d¢
at any ¢ € Fix(¢) has only the tangent space T,Fix(¢$) as eigenspace. Thus for any admissible curve
a:

a) « intersects ¢(a) transversally at interior points of « located on Fix(¢), and all these intersection
points have same sign; and

b) «a(i) = ¢(a(i)),7 = 0,1, and the tangent vectors are transversal there.

Denote by fi(p, P) the algebraic number of interior points of intersection , which is simply, up to a
sign, the number of parallels in Fix(¢) lying strictly between p and P, thus independent of the choice
of the admissible curve.
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Lemma 5.4 {(p, P) =0.

Proof. Let a be an admissible curve from p to P. There is a Hamiltonian conjugation which sends
K, to a Hamiltonian K; on S such that P, P = Ps, Pn, and sends « to a meridian & Then ¢(«) is sent
to qb( ) which intersects & at f(p, P) interior points of same sign. Note that the linearised isotopies diy
at ps, pp rotate in the positive f-direction because pg, p, are the minimum and maximum respectively,
but no ray turns by more than a full turn. Further, the tangent vectors of & and qg(d) at ps and p,
are still transversal. Blow-up the sphere at pg,p,: the map C = ([0,27]/{0 = 27}) x [-1,1] = S
defined by the coordinates 6, z admits a unique lifting of the isotopy (&) such that 1, (&(0)) is lifted
to (6, —1) where 0 is the angle of the tangent vector of ¢ (&) at p = p, (and similarly at p,). Now
lift again to the universal covering R x [—1,1] — C to get an isotopy 7 : [0,1] x [0,1] - R x [-1,1]
beginning with Im(7(s,¢ = 0)) = {0} x [~1,1]. Of course, the condition on the differential of ¢); at p, P
means that 6(7(i,t)),i = 0,1, are non-decreasing functions of ¢ with values in [0,27] C R. But the
transversality of the tangent vectors of & and qg(d) at the end points implies that these functions have
values in (0, 27). Since the interior intersection points of 7(s, 1) with each of the liftings {27k} x [-1, 1]
of & are all transversal and have same sign, the image of 7(s,1) must lie inside (0, 27) x [—1, 1], which
means that f(p, P) = 0. O

It follows from the proof of this lemma that the area swept out by any curve joining p to P is at
most A. By Lemma 5.2, this proves Proposition 5.3 when p, P do not belong to the same parallel.

If p, P belong to the same parallel, there is no need to introduce f(p, P): take o = ¢(«) a segment
of the parallel to which p, P belong, and the above lifting argument shows that either 6(7(0,1)) =
0(7(1,1)) = 0 or (r(0,1)) = 6(r(1,1)) = 2w. In the first case, the area of 7 is 0, and is A in the
second one. The condition h'(£1) ¢ 27Z is not necessary, but slightly simplifies the proof: without
it, we would lose the transversality condition of tangent vectors of & and gﬁ(&) at the poles, and we
would need to keep track of the signs to reach the same result. O

Let h : [—1,1] — R be any smooth function with h'(£1) ¢ 27(Z + 1) = {2n(k + 3) | k € Z}. Set
Z={ze(-1,1) | h(z) € 2rZ}, and let us denote by hz : [-1,1] — R the map hz(z) = h(z) +p(z—2)
where p equals h'(Z) if Z # +1, and equals 2wk when Z = +1 with & the unique integer that minimizes
|2rk — B/(Z)|. Thus h; is the 1-jet of h at z when z # +1, and is close to the 1-jet when z = +1.
One should think of hz as the correction term which is needed to make h compactly supported when
considered as a function on S%2 — z, where £ € h='(2). Of course, h — hz does not quite have compact
support in §% — z, but its 1-jet at 7 is zero which, as we shall see, means that we can use it to calculate
the Calabi invariant about z of a slight perturbation of its time-1 map. Finally, set

/ll(h —hs)de

if the right hand side is positive, and set ¢(h) = 0 otherwise.
The proof of the Proposition now boils down to the following;:

c(h)=—4r+ inf
zeZu{-1,1}

Proposition 5.5 Let h: [—1,1] — R be any smooth function with h'(£1) ¢ 2n(Z + ), and let ¢ be
the time 1 map of H = hoz. Then any stable geodesic 1,0 <t < 1, joining the identity to ¢ satisfies

L) > 0

26



Proof. Let 1, be a stable geodesic from the identity to ¢ = 1 generated by K;,0 < ¢t < 1, with
fixed minimum and fixed maximum p, P. We rescale K; so that K;(p) = 0 for all ¢. The point p
belongs to Fix(¢) = 2 1(Z U {—1,1}). We will calculate in two ways the Calabi invariant about p of
a diffeomorphism qg which is very close to ¢.
Suppose first that z(p) € Z. Let
G=(h—hz)oz

where Z = z(p). Then p is a critical point of G, G(p) = 0 and, because the flows of h; and h commute,
G has time-1 map ¢. Then let us denote by ¢; the flow generated by G. Now let 3 be a bump function
with support very near the point p, and ¢; be the isotopy generated by G = BG. (Note that this has
very small support.) Setting

G=(1-B)G)oh

and denoting by 5,5 its flow, one easily sees that:
¢i 0 % = ¢; or equivalently G x G=G
where x is defined in the proof of Proposition 2.1. Thus
b= =¢ 0

is very close to ¢. Further, because G= 0 near p we may use it to calculate the Calabi invariant of qz
about p, that is, the Calabi invariant of ¢ considered as an element of Ham(S? — p). We find:

Calp(a) = /t/séw

— / /S G +e
1

_ 27r/ (h—hs)dz +e
-1

(In general, in what follows, there will be various small constants &; which can be made as small as
we want by choosing appropriate bump functions.)

Now let us do the calculation using K;. We will add the isotopy ¢ L to oy (we could tack it on
at the end, that is do 1, a fraction faster, and then do 95; L quite quickly) to get an isotopy ¥, to $
generated by Fj. Note that U;(p) = p for all £, and ¥y = ¢ = 1 near p.

Because p is a minimum of K;, the rotation of di; about p is always in the negative direction.
Also, ¢; is C%-small, and equals the identity outside the support of 3 and on the parallel z = Z where
G = 0. Therefore, it contributes a total of less than 7 to the twisting at p. Thus, the isotopy ¥,
rotates S around p by an angle 6, equal either to 0 or to —2.

Let 6 be a bump function supported in a little disc centered at p, and let U; be the isotopy generated
by dF;. As before, let U, be the isotopy generated by ((1 — 0)F;) o ¥;. Then qg = U, = ¥; 0 ¥;. Since
all three diffeomorphisms fix a neighbourhood of p, we can write:

Cal,(¢) = Cal,(T) + Cal (7).
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Let us begin by computing the first term of the right hand side: ¥; = 1 except on a little annulus A
centered at p, whose inner boundary is rotated through angle 6, with respect to its outer boundary.
The isotopy U; fixes the large disc outside A and moves a small disc near p. However, to calculate
the Calabi invariant of U; about p, we must use an isotopy which fixes a neighbourhood of p. Thus
this isotopy must rotate the large disc outside A through the non-negative angle —6,, and therefore,
viewed on the large disc outside A, centered at the point antipodal to p, this isotopy rotates the large
disc through the non-positive angle 0,. It follows easily that

Calp(\ifl) = 4:7T0p + £3.

Therefore N B _
Cal p(¢) = Cal (V1) + Cal (V) = 4wl + cp + 4

where ¢, = [, [¢(Kw).

Thus the two calculations give
1 c 1
/ (h—hz) < 2 < 47T+/ (h — hz)
-1 21 —1

which implies that <2l > c¢(h), and therefore that

Cp
2w

L)) > 22l > 22

lepl o c(h)
m 2
If p is one of the poles, the same argument applies if one takes h; = h(z) + 27k(z — z) where
zZ = z(p) = £1 and k is the integer which minimizes |2wk — h'(Z)|. Indeed, the 2-jet of G = (h —h(Z) —
27k(z — Z)) o z then generates a flow which rotates the tangent space T),S by less than 7, and the
same argument goes through. Here again, the hypothesis that h'(+1) ¢ 2m(Z + %) is not necessary,
but slightly simplifies the definition of ¢(h). O

Proof of Proposition 5.1
If h: [-1,1] — R is a strictly convex function with h'(£1) ¢ nZ, and if the second derivative h”(z)
is large enough (for instance equal to a large constant), then @ > A = 4, and there cannot exist a

stable geodesic joining the identity to the time 1 map ¢ of H = h o 2. O
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