Iterations of rational functions:
which hyperbolic components contain polynomials?!

by Feliks Przytycki?

Abstract. Let H? be the set of all rational maps of degree d > 2 on the Riemann
sphere which are expanding on Julia set. We prove that if f € H? and all or all but
one critical points (or values) are in the immediate basin of attraction to an attracting
fized point then there exists a polynomial in the component H(f) of H® containing f. If
all eritical points are in the immediate basin of attraction to an attracting fized point or
parabolic fixed point then f restricted to Julia set s conjugate to the shift on the one-sided
shift space of d symbols.

We give exotic examples of maps of an arbitrary degree d with a non-simply connected,
completely invariant basin of attraction and arbitrary number k > 2 of critical points in
the basin. For such a map f € H with k < d there is no polynomial in H(f).

Finally we describe a computer experiment joining an exotic example to a Newton’s
method (for a polynomial) rational function with a I-parameter family of rational maps.

Introduction.

In the space Q7 of rational maps of degree d > 2 of the Riemann sphere @, denote by
H® the set of maps which are expanding on the Julia set. Expanding means that there
exists n > 0 such that for every z in the Julia set |(f™)(z)| > 1 (the derivative is in the
standard spherical Riemann metric). We call z € € a critical point if f/(0) = 0. We call v
a critical value if v = f(z) for a critical point z.

In Section 1 we prove following:

Theorem A. Let f € H?. Suppose that all, or all but one, of the critical values of f
are in an immediate basin of attraction B(f) to one attracting f-fixed point p. Then the
component H(f) of H? containing f contains also a polynomial.

(Critical values are counted in Theorem A without multiplicities. However critical
points everywhere in the paper are counted with multiplicities.)

Corollary B. If all critical points of f are in B(f) then f restricted to the Julia set
J(f) is conjugate to the full one-sided shift.

1 This is a revised and extended version of a manuscript ”Polynomials in hyperbolic
components” IMS SUNY at Stony Brook, June 1992

2 Research partially supported by Polish KBN Grants 210469101 "Iteracje i Fraktale”
and 210909101 ”...Uklady Dynamiczne”.



Theorem C. Let f € Q?, p be a parabolic fixed point, and let B(f) be an immediate
basin of attraction to p adjacent to p such that f(B(f)) = B(f) (which is equivalent to
f'(p) =1). Suppose that all critical points of f are in B(f). Then f restricted to J(f), is
conjugate to the full one-sided shift.

The procedure to prove Theorem C is similar to Corollary B so it will be only sketched.

It is much easier to prove that, under the assumptions of Corollary B or Theorem C,
J(f)is Cantor, f|ss) is conjugate to a topological Markov chain and f"| s is conjugate
to a 1-sided shift, then to prove that f| s itself is conjugate to a full 1-sided shift.

The questions answered in Corollary B and Theorem C were asked to me by John
Milnor. In the case of the basin of a sink he suggested to join critical values with the sink
along trajectories of the gradient flow , Morse curves, described below. This was a fruitful
idea. After proving Theorem A and Corollary B I learned that these facts were proved by
P. Makienko® in his PhD paper but stayed unpublished. Corollary B is also stated in [GK]
but proved only for d = 2.

Pay attention that Corollary B and Theorem C depend on holomorphic phenomena.
Indeed there exists a 1-sided topological Markov chain T for which each point has 10
preimages which has the same (-function as the full 1-sided shift of 10 symbols Si¢ and
which sufficiently high power T™ is conjugate to S7,, but T is not conjugate to Sy¢ [Boyle].

If B, the immediate basin of attraction to an attracting fixed point, is simply con-
nected, then the number of critical points of f in B is equal to deg(f|p) — 1 . (Because
f pulled-back to the unit disc ID by a Riemann mapping is a Blaschke product which has
deg(f|p) — 1 critical points in ID (and the same number of them outside).)

If B is the basin of attraction to oo for a polynomial and B is not simply-connected,
then the number of critical points of f in B is at least deg(f|p) (including co as (deg(f)—1)-
multiple critical point ).

Surprisingly this is false in general. The "proof” that if the basin is not simply-
connected than it contains at least as many critical points as the degree of f on it , given
in [P], is wrong for degree larger than 2, the corresponding Lemma in [P] is false.

Here in Section 2 we prove with the use of the quasiconformal surgery technique [D]
the existence of exotic basins:

Theorem D. There exists a rational function f of an arbitrary degree d > 3 with a
completely invariant (i.e. invariant under f~') non-simply connected basin of immediate
attraction to an attracting fixed point, and with an arbitrary 2 < k£ < 2d — 2 number of
critical points in the basin.

3 Recently his proof appeared in the preprint [M]. It influenced our revised version of
the paper. Also our Theorem C is proved in [M].
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The conclusion is that the assumption all or all but one critical values are in the basin
in Theorem A, is essential. Namely, due to Theorem D for £ < d — 1, we arrive at

Corollary E. For every d > 3 there exists f € H? with a completely invariant basin of
immediate attraction to an attracting fixed point, such that H(f) contains no polynomial.

Neither in Theorem A nor in Corollary E does it matter that f € H?. Only the basin
B(f) matters. The reader will find appropriate precise assertions in Sections 1 and 2.

I checked with the help of computer that f(z) = 224+c+b/(z—a) for ¢ = —3.121092, a =
1.719727,b = .3142117 is an exotic example for d = 3 which existence is asserted in
Corollary E. I am grateful to Ben Bielefeld and Scott Sutherland for the help in producing
several computer pictures of Julia sets for such f’s and related pictures in the parameter
space. Ben invented the parametrization in which the pictures were done. Our 1-parameter
families join exotic examples of the above type of d = 3, having two superattracting fixed
points and a critical point of period 2, with functions having three superattracting fixed
points. It is easy to see (and well-known) that the latter functions must be Newton’s
method rational functions for degree 3 polynomials.

(If f e Q¢ has d superattracting fixed points then in appropriate holomorphic coor-
dinates on € it is Newton’s for a degree d polynomial. Hint to a proof: Change first the
coordinates on € by a homography so that unique repelling fixed point becomes c.)

Section 1. Rearranging critical values. Proofs of Theorem A and Corollary

B.

Let B(f) be the immediate basin of attraction to an attracting fixed point p for a
rational map f € H?. Suppose f'(p) # 0.

We shall make in this Section the following types of perturbations of such maps in

H:

1. A perturbation along a curve ~. We have in mind here the following construc-
tion: Suppose there is a curve v = 4(¢),t € [0, 1] embedded in the basin B(f) with p € 4.
Take a small neighbourhood U of v, U C B(f) disjoint with a neighbourhood of p. Let ¢,
for every t € [0, 1] be a diffeomorphism of € so that g:(v(0)) = 7(¢) and ¢; be the identity
outside U , go = id and ¢, smoothly depend on t. We obtain the homotopy hy = g, 0 f.
Pay attention that though we called our perturbation "along +” we change the map in a

neighbourhood of f~1(7).
If the following assumption holds:

(1) pg U, hi(U)—p
then of course the basin of attraction to p is the same for h; as for f.
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Then we construct an invariant measurable L conformal structure for each f; as
follows: We take the standard structure on a small neighbourhood of p then we pull-back
it by h; " . On the complement we take the standard structure. Now we integrate this
structure (we refer to Measurable Riemann Mapping Theorem [B], [AB]) and h; in the
new coordinates gives a homotopy f; through maps in H?. See [D] for this technique.

2. A small C!-perturbation. If a map g is C* close to f on U such that clU C
B(f)\ {p}, f = ¢ outside U and in neighbourhoods of critical points ¢ differs from f
only by affine parts, then clearly it is homotopic to f through also small perturbations
satisfying the same conditions as ¢g. The condition (1) holds automatically. As before we
introduce new conformal structures, integrate them and obtain a perturbation homotopic

through maps in H(f) to f.

3. Blaschke type perturbation. Let U C B(f) be an open topological disc
containing p, with smooth boundary not containing critical points, such that f(clU) C U
f:U — f(U) is a proper map and d' := deg f|y > 2. Then we construct a l-parameter
family of maps joining in H(f) the map f to a map having p as a d'-multiple fixed point
as follows:

Let Ry, Ry be Riemann maps from U, respect. f(U), to the unit disc ID such that
Ri(p) = 0,i = 1,2. Let a; = 0,as,...,ag be Rj-images of f|y-preimages of p. Let By =
Az H?lzz 1Z—_t?iiz7 IA| = 1,t € [0,1]. We set h;y = R,' o B; o R;. Here \ is chosen so that
hi = f. It is useful to write hy = Rl_l o ¢gs o Ry, where ¢4 = Ry o Rz_l o By. Change
hy in U close to OU by a smooth isotopy so that h; and f coincide on QU for all t. We
extend h; outside U by f to the whole €. As in the previous cases we pull-back the
standard conformal structure from Ry (f(U)) by Ry to f(U), extend it by h; ™, complete
on @\ |Jh;"(f(U)) with the standard structure and integrate.

Let ®; conjugates f to z — Az where A := f'(p) # 0, in a neighbourhood of p (i.e.
Prf(z) = AP s(2). Extend @ to B(f) by ®(2) = A\""®;f"(z). Define G¢(z) = |®¢(2)|*.

If f € HY and g € H(f) then we write p, for the point z : g(z) = z such that (g, 2)
belongs to the component of the Cartesian product H(f) x € containing (f,ps). There
exist B(g) and ®, (provided ¢'(p,) # 0) as above.

Now we can formulate

Main Lemma. For every f € H? there exists ¢ € H(f) such that ¢'(p,) # 0 and
there exists a > 0 such that all critical values of critical points in B(g) are in a component
0 of {G, = a} which is a topological circle separating p, from Julia set J(g).

Proof. By small perturbations (types 2 and 3) we assure that the sink py is neither
a critical point nor a critical value for a critical point in B = B(f) all critical points in B
are simple and their forward trajectories are pairwise disjoint.

At the end it may occur useful also to have %Argf’(p) irrational. We assure this by
type 3 perturbation where Argl is the parameter.
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The critical points of G = G are

1) the fixed point p and its iterated pre-images (these are minimum points with G = 0),

2) the critical points of f and their iterated pre-images (these are saddle points for
G).

Denote the set of points in 1) by M and the set of points in 2) by S.

For every ¢ € M let A(q) denote the basin of attraction to ¢ for the flow of the vector
field —gradG.

Denote by 7(q) the least non-negative integer such that f7(9(q) = p. For every
z € A(q) or X C A(q) write r(z) :=r(¢) and r(X) :=r(q)

Observe that for every z € B(f) there exists a curve v joining z with p consisting of
critical points of G and of trajectories of gradG where this field is non-zero (i.e. 7y goes
from z to a critical point,, say a minimum, then to a saddle, then to a minimum etc. until
it reaches p. Let v(z) denote a curve as above intersecting the minimal possible number
of A(q)’s. Denote the number of these A(¢)’s by s(z) or s¢(z) and call the curve a Morse

curve.

Observations
Lr(f(z)=r(z)—1ifr(z) >1
2. s(f(=) < s(2).

The observation 2. follows from the fact that f maps trajectories of gradG to trajec-
tories of gradG.

The plan is now to move all critical values to the same level G = a in A(p).

We shall do it for each critical point separately so that we do not move the critical
values moved before to the level a in A(p). We move each critical value f(¢) step by step
so that after each step s(f(c)) decreases and f(c) is in some A(q). When f(c) € A(p) we
move f(c) along the trajectory of gradG to the level a as described in 1.

Take ¢ a critical point for f. By a small perturbation in a neighbourhood of ¢ we
obtain f(c) € A(q). We can assume that ¢ # p.

This is correct because

a) The perturbation is above the G level of f(¢) so it does not change a part of the
stable manifolds of a saddle to which f(z) might belonged, in a neighbourhood of f(¢) and
between it and the saddle).

b) The change of coordinates integrating the new invariant conformal structure is
conformal there. This is so because the structure is non-standard only in some places
above a. Thus the change of coordinates maps the gradient lines of the old G to the
gradient lines of the new one and stable manifolds (separatrices) to separatrices.



Now let v be the part of a Morse curve v(f(¢)) joining f(c¢) with the first saddle
w € y(f(c)). ‘

Observe that for every j > 0 we have fi(y) N~y = 0.

Indeed, we have f/(y N A(q)) Ny = § by Observation 1. . By the same observation
fi(w) € clA(f7(q)) cannot be in v N A(q). Finally f/(w) — p so f/(w) # w.

As fI(y) — p we can find U a neighbourhood of 4 so that f/(U)NU = § for all j > 0.
Take in U a curve 4’ joining f(c¢) with a point z close to w, z € A(q'), s(¢') = s(q) — 1.
Take care about 4/ not containing critical values under iterates f7 of other critical points.

Now perturb f along 7' as described in 1. Do it with g; different from identity only in
a neighbourhood of 4’ small enough not to contain critical values of other critical points,
under iterates f/ . The condition (1) is of course satisfied.

Now let us explain why the new map f; has the property

(2) splfalep) =sp(fle)) = 1.

Here cy, is the old ¢ in new coordinates, it is a critical point for f;. We use the fact that
a part of the domain we changed f to h; is the basins A(f~!(¢)) where by Observation 2.
s < s(gq) . So we did not change G in the basins, the part of the Morse curve v beyond
w goes through, where s < s(¢). We changed f also in a neighbourhood of f~!(w). This
does not change G below a neighbourhood of w because G(f~/(w) > G(w),j = 1,2, ....
(Compare this with the argument (a).) This does not change G below the part of 4 beyond
a neighbourhood of w neither, because this change is close to the set s > s(¢).

The change of ks to f; does not hurt (2). Indeed also by the above arguments the new
measurable conformal structure is the standard one below w and the part of v beyond w.
So the change of coordinates maps the gradient lines of the old G to the gradient lines of
the new one as in (b).

When f(c) € A(p) we first make a small perturbation so that the gradient line of G
passing through f(¢) does not intersect forward trajectories of other critical values which
are already in A(p). Next we move f(c) along v which is a piece of the gradient line of G
passing through f(c¢) joining it with {G = a} in A(p). We succeed because %Arg(f")’(p) is
irrational so all the curves f"(v),n > 0 are pairwise disjoint and the conformal structure
does not change below these curves.

After a sequence of consecutive perturbations as above we obtain a rational mapping ¢
with all the critical values on one level {G = a}, more precisely its component 0 intersecting
A(p). .

Now denote the domain of €'\ 0 containing p by D,. To finish Proof of Main Lemma
take b > 0 so close to 0 that a component 0’ of {G = b} is in the domain around p
where ¢ is linearizable. So @' is a topological circle. Then each x € @' can be mapped to
the point of intersection of @ with the trajectory of gradG starting from x. This gives a
homeomorphism between ' and 0.

Otherwise clD, contains an S-type critical point z for GG,. Then there exists n > 0
such that y = ¢™() is a critical value for g. Hence G,(y) = |¢'(py)|"Gy4(2) < G4(z) < a.
This contradicts just achieved G4(y) = a.



Proof of Main Lemma is finished. &

Proof of Theorem A. Let f be already as ¢ in Main Lemma. By perturbing along
curves one obtains additionally all critical values of critical points from f~1(B(f))\ B(f)
also in 0. (A posterior: we will see that under the assumptions of Theorem A we have
F~YB(f))\ B(f)=01i.e. B(f)is completely invariant.)

Denote again the domain of €'\ d containing p by D,. Denote the complementary
open topological disc @'\ clD, by D',.

Observations

3. There is at most one critical value for f in D!. So the components of f~'(D!)
are topological discs D",j = 1, ,cz where d < d, with closures in D!. (In particular
f~Y(clD,) is connected hence B(f) is completely invariant.)

4. Closures of D'/ intersect or "self-intersect” only at critical points of f and clf~*(D!)
is connected , see Fig 1..

If the latter were false then f~1(D,) would contain a nonsimply-connected component
V . But f maps maps V onto the disc D, so it V would contain a critical point hence
D, would contain a critical value. This would contradict the assumption that all critical
values are on the level a.

After a small perturbation moving (exposing) critical values of some d—1 critical points
towards below a, the set clf~!(D’) consists of d closed dises intersecting one another at
at most 1 point, which union is connected and simply-connected, Fig 2.

So for £ > 0 small enough the set f~1(9D,_.) (where D,_. := D, N{G < a —¢}),
is a topological circle d. bounding a topological disc U 3 p and under f it winds d times
onto dD,_.. Of course f(clU)=clD,_. CU.

After performing Blaschke type perturbation and a holomorphic change of coordinates
on @ we arrive at a polynomial. &

Figure 1. Figure 2. Critical points
¢y and ¢y are exposed towards p.
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Proof of Corollary B. This Corollary follows from Theorem A because its assertion
is an open property in H¢ and it is true and easy for polynomials.

Indeed if f is a polynomial, then with the help of a small perturbation we guarantee
that for each critical value v;,j =1,...,d—1 (different from oo) the trajectory ~; for gradG
where G is Green’s function in the basin of attraction to oo, pole at oo, goes from v; up
to co. In other words v; does not go to any critical point for G. Then there are no critical
values for f in the topological disc

U=@0\A where A= U (7).

7=1,...,d—=1, n>0

Because f(A4) C A, we have a collection of branches ¢g; : U — U of f~!. Denote ¢;(U)
by U;. Then each z € J(f) is coded by the sequence of symbols j,,n = 0,1,... where
(=) eU;,.

For each sequence (j,, ) the family of maps ¥,, = ¢;,0¢;, 0...0¢;, is a normal family of
maps on U. It is easy to find a slightly smaller topological disc U' C U so that U' D J(f)
and each

(3) g; maps clU' into U'.

Hence the sequences U, | converge uniformly to points in J(f). This proves that the
coding is one-to-one. &

Remark 1.1. In fact a proof of Corollary B is contained in Proof of Theorem A.
Indeed already Observation 3. gives a partition of the Julia set .J into JND" and J 3 z —
(jn) such that f*(z) € D" gives a conjugacy to the one-sided shift space of d symbols.

Remark that for this proof of Corollary B, there was no need to refer to Measurable
Riemann Mapping Theorem. Namely there was no need to integrate every time a new
conformal structure to obtain a rational mapping. One could work just with smooth maps
until the properties described in Observation 3. are reached.

Remark 1.2. One can prove Theorem A by perturbing f along a curve 4 close to
the Morse curve, dragging the critical value to a small neighbourhood of p just in one
step instead of doing it step by step decreasing s(f(c)). The property (1) is satisfied by
Observations 1. and 2. (Every point of 4 can come close to 4 under f’ only further, i.e. if
f7(3(1)) is close to (') then 7/ > 7. The more so for f? replaced by h] .)

Remark 1.3. Makienko [M] proved the following Proposition which corresponds to
our Main Lemma:

If all critical values vy, ..., v, for critical points in the basin B(f) of immediate at-
traction to an attracting fixed point py have disjoint forward orbits then there exists a
topological disc U C B(f) containing ps such that f|y is injective, f(clU) C U and all
v;,J = 1,...,m belong to the annulus U \ f(U).
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One can easily change U so that all v; belong to df(U). There is a quasiconformal
conjugacy ® of f on U to z — Az on the unit disc ID, |A| < 1. So as usually one can pull-
back the standard conformal structure on ID by ®~! to U spread it by ®".n = 1,2, ...
to the whole basin of ¢ and complete on the complement of the basin by the standard
structure. After integration of this structure the new map satisfies the properties asserted
in Main Lemma.

Thus: Makienko’s Proposition (preceded by a small perturbation) + Measurable Rie-
mann Mapping Theorem, give Main Lemma.

Conversely, ¢ from the assertion of Main Lemma is conjugate to f (provided f is
already after the first perturbation in Proof of Main Lemma). So Makienko’s f(U) can be
defined as the image under the conjugacy of the disc bounded by 0. Observe that for that
we did not need to construct the new holomorphic structures along the proof. (Compare
this with Remark 1.1.)

Thus Makienko’s Proposition is a topological heart of Main Lemma.

Remark 1.4. Neither in Main Lemma nor in Theorem A one needs to assume f € H¢.
Proofs work for an arbitrary rational map f,deg f > 2 if one replaces in the statements
H(f) by Teichj.

The latter denotes the set of all such rational maps ¢ that there exists
1) a connected open domain P 3 0 in the complex plane,

2) a family of quasiconformal homeomorphisms %y : € — €, \ € P with ko = id such that
for each z the point hy(z) depends holomorphically on z, (such a family is usually called
a holomorphic motion ).
3) a family of rational maps fy, A € P with fo = f and f\, = ¢ for some Ay € P such that
for every A the map h) conjugates f with fy between e-neighbourhoods of their Julia sets
(e not depending on \).

Proof of Theorem C. One proves first an analog to Main Lemma:

If f(2) =2z+a(z—p)'T +o((z —p)™tY), a # 0 then H (z) = Z—)‘t for some A # 0
conjugates f on a "petal” P C B(f) to F(z) = z+ 1 + o(1) for z with large real part.
(See [DH] for the precise description.) Next conjugate smoothly F to z +— z + 1 by H,.
Define ®; = H; o H; on P and extend it to B(f) by lim, . ®; o f"(z) — n. Define
Ge(z):= W on B(f).

Then after a small perturbation such that all critical points in B are simple and their
forward orbits are disjoint, one can find a quasiconformally conjugate ¢ € Q? such that all
critical values v; of g-critical points in B(g) are in the component of {G, = a} bounding

a "petal”. (See Fig. 3.)

A proof of this parabolic version of Main Lemma is the same as that of Main Lemma
except there are no M- critical points for Gy in B(f). One can think of M critical points as
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belonging to dB(f), being precisely the set dB(f) N, f~"({p}). So the perturbation
is not along Morse curves in basins A(¢q) but along curves in B(f) N A(q) joining directly
consecutive S-critical points in 9A(q).

Repeat now Proof of Corollary B:

(The assumptions imply ¢t = 1.)

For f already as g above we take curves v;,7 = 1,...,2d — 2 joining v; to p. We
can take as 7;’s the cI>)71—preilrlrlages of horizontal lines in ¢ Then f(v;) C ;. So for
A= Uj;ll v; the set €'\ A is a topological disc and we have for the branches of f~!
g;(U)CU, j=1,..,4d.

We find U’ C U such that (3) holds, except 9U' N U = {p} and g;,(p) = p for the
branch g, : ¢j,(p) = p, see Figure 3 By uniform (g7 )" — 0 on clU’ we obtain 1, ¢7 (U")
is only one point p.

Figure 3.

Remark 1.5. As we mentioned in Introduction the fact that under the assumptions
of Corollary B or Theorem C J(f) is a Cantor set is much easier than the fact f| ) is
conjugate to the one-sided shift.

Indeed, it is easy to prove that fN|J(f) is conjugate to a one-sided shift, for an integer
N > 0.

Just take a small topological disc D C B(f) so that D 3 p (or a small petal in the
parabolic case) such that f(clD) C D.

For each critical value v; and every n > 0 such that f"(v;) ¢ D join f"(v;) to D by
an embedded curve v;, so that these curves are mutually disjoint. Take N such that for
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each j,n  f™(y;n) C D. Consider now U = €'\ A where A = DU U]‘ » Vin- Next proceed
as in Proof of Corollary B where f is replaced by fV.*

Remark 1.6. It is also easy to prove that f| () is conjugate to a one-sided topological
Markov chain.

Indeed, let Dy = D as in Remark 1.5 . Let D,,, n = 1,2,... be defined recursively:
D,, is the component of f~!(D,,_y) containing D,,_1.

Let N > 0 be large enough that there are no critical values in €'\ Dy.

Let Uy, ...,Ux denote all the components of €'\ clDy. These are topological discs
because Dy is connected. Consider the family of topological discs ¢;(Uy) for all branches
gj,7 =1,...,dof f7' and k =1, ..., K. Then for every sequence of pairs (j,, k), n = 0,1, ...
such that ¢, (Ug, ) C Uk, ,, there exists precisely one point z € J(f) such that for every
n>0 f"z)€ g (Uk,).

n+41

Remark 1.7.°> Considering the situation in Theorem A such that p is already not
critical (say all f-critical points belong to B(f) and Arg2x f'(p) is rational), John Milnor
asked whether it is possible to find a set A which is union of parts of trajectories of gradG
contains all critical values is compact in B(f) is f-forward invariant and is connected
simply-connected (a tree).

This would immediately allow to prove Corollary B with the set A as here.

Unfortunately the answer is negative. We can modify an exotic example in Section 2
(the case d = 3, Fig. 5) so that f(cs) = f?(c3) = a the pole. Then the set of saddles for
Gis S =J,5o f"(cz2). So every curve I' built from the pieces of trajectories of gradG
joining ¢4 = f_(C4) to oo passes a point of f~"({e3}). Hence f*(T") joins oo with oo passing
through ¢s, hence it is a loop, i.e. A is not a tree.

(Even the assumption f(cy) # a # f?(c3) does not help if f(cq), f*(c3) are close to a.
I' must still leave the basin A(a) for gradG passing through a point in | J, v, f~"({c2}).)

Remark 1.8.° Though in Main Lemma we can arrange all critical values of critical
points in B(f) on one component of a level of G it sometimes is not so for critical points
(unless all critical points for f or all but one, are in B(f) as in Theorem A, see Fig 2.).
Again we modify an exotic example from Section 2. Here degree of f is 5. Start with a
cubic polynomial P which has degree 1 on 0A;, degree 2 on 0A,, see Fig 3, Section 2, and
P maps the critical point a € A; to the critical point at the self-intersection of the figure
8 line 0A; U 0As, which escapes to oo.

Consider now the function z — P(z) + # with & small real positive number. We
obtain the picture as on Figure 4. Do the surgery as in Section 2 to have it holomorphic.
For a final example split a into two different poles which gives an f-critical point cg between
them, Fig. 4. Make Blaschke type perturbation close to oo to have co not critical and

move f(es), f(e1), f(ez) to one level with f(es).

4 T owe this proof to K. Baranski.
® Before reading this Remark the reader is advised to read Section 2.
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Figure 4. f*(cq) = ¢4, f*(co) = co, flc5) = ¢5, f(er) = er.

Section 2. Exotic basins.

Proof of Theorem D, case d = 3. We start with a geometric description of an
exotic example of degree 3, illustrated on Fig. 5 .

Start with a quadratic polynomial P(z) = z? 4+ ¢ with the critical point ¢y = 0 ,
escaping to ¢; = oo a attracting fixed point of multiplicity 2. The level 0 = {G = t}
of Green’s function of the basin of attraction to co with the pole at oo, containing cs, is
figure eight. Now we change the map on By, one of the two discs By, Bs bounded by 0 as
follows:

Draw two little discs Dy, Dy in Bs, intersecting one another. Let Dy N Dy be maped
1-to-1 onto @'\ (By U By) . Let Dy \ Dy goes onto By and D, \ D; goes onto By both both
proper maps with degree 2. So there are critical points ¢ € Dy \ Dy and ¢4 € D5 \ D;.
On D, this map f is quadratic-like so we can do anything there, for example f(cy) = ¢4.
On D; the map f? is quadratic-like so we can assume f%(c3) = c3.

Figure 5.
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The rational function is obtained out of this topological picture by the quasi-conformal
surgery technique [D]. We shall explain it closer now:

We need following Lemma which generalizes Douady-Hubbard’s theorem that a poly-
nomial-like mapping is quasiconformally conjugate to a polynomial [DH1]:

Lemma 2.1. Let U C € be an open set (not necessarily connected or simply-
connected) with boundary being a family of smooth Jordan curves. Let F} : U — U bhe a
holomorphic map such that its Fy(clU) C U. (We denote the continuous extension of Fy
to clU by the same symbol F}.)

Let V C @ be homeomorphic to @'\ clU by a homeomorphism %; which extends
orientation preserving to a homeomorphism of €. (Again we do not assume V is connected
or simply-connected.) Let Fy : V — @ be a holomorphic map. We also suppose that the
boundary of V is smooth and denote by F5 the continuous extension of th original F, to
clV.

Suppose the family of curves being the components of QU has the same combinatorics
in @ as the family of curves being the components of V. We mean by this, that

1. There exists a homeomorphism hy : OU U 0F(U) — OV U 0F5(V) such that
the boundary of each component of @'\ (0U U 8F(U) is mapped to the boundary of a
component of AV U JF»(V)

2. For each component 0 of QU the map hy maps 0 to hi(9), F1(0) to Fy(hy(0)) and
there a continuous map (a lift) byt 0 — h1(0) such that on @ we have hy o F} = Fy 0 ho.
(i. e. hg preserves orders between Fy(0) and Fy(h1(0))).

Then there exists a rational map f : @ — € and an open W C € such that f is
quasiconformally conjugate to Fy on W and quasiconformally conjugate to Fy on €'\ W.

Proof. We replace hs on QU by the lift hy and then extend it from OU U OF1(U) to
a quasiconformal homeomorphism h : € — €. Define F : ' — ¢ by F, on clV and by
hoFioh™on @\V.

Let po denote the standard conformal structure on €. Take p; = hy(po|v) on @\ clV.
(Think about u; as a field of ellipses, up to a multiplication by a positive function.)
For each z € V define p1(2) as a pull-back F,"((p1)(EF™(z)) where n > 0 is such that
Fn(z) € €\ clV. If such n does not exist take p1(z) = po(2). This is correct due to the
crucial property F(@'\ clV) C @'\ clV. As F, is holomorphic, p; is in L !

Now integrate p1. In the new coordinates F' changes to a rational map f we looked

for. &

Now we construct Fy and Fj satisfying the assumptions of Lemma. It is illustrated
on Fig. 6.

Take the polynomial P(z) = z? + ¢, ¢ < —2. Make F; by adding to P a term ﬁ
for a = \/—c € P71(0)N By, (a > 0). Let b > 0 be small so that for our F} the level
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d = {G’ = tg} containing the Fj critical point ¢ close to ¢; = 0 is figure 8 close to 0.
Here G is defined analogously to Green’s function or to G in Section 1: on the basin of
attraction to oo by F, one defines G(z) = lim, .o 27" log |F"(z)|. Denote discs bounded
by adequate parts of d close to By, B; by Bl,Bg respectively.

It is easy to compute that ¢ = % + o(b) and for two other Fj-critical points ¢3, ¢4
we have Fiy(é34) = F2V2aVb + 0(\/5). So Fi(és) € Bl,Fl(é4) € B,.

Let 0 < t3 < t1 < to with t3 ~ t; ~ ty and denote by K5, K; the topological discs
both in By bounded by {G = t,}, respect. {G' = t;}. Denote by K! the topological disc
in By bounded by {G’ = t1}. Finally denote the component of Fl_l(Kl) in B, by K3 and
denote the component of F; ' (K}) in By by K4. We have é; € K3, ¢4 € K.

Define U := €\ (K, U K3 U K4). We have Fy(clU) C U. So F, and U satisfy the
assumptions of Lemma. Now we need to define Fjy:

Set Fy(z) := 2% on a geometric disc Ly = {|z| < ry}, r4y > 1. Take a disc Ly =
{|z — 20| < r3} C Fy(Ly) \ clL, and define FQ(Z) = (2 — 20)? + 29. One finds large ry,r3
such that FQ(L3) D clFy(Ly). Pick in FQ(L3) \ F5(Ly4) two discs Ly C Ly of the form
Ly = {|z — z1] < m}, Ly = {|z — z1] < ra},r2 < r1. Take an affine holomorphic map
UL — FQ(L;;) (onto). Define

=010 Fg on Ly and

F2 = \I/|L2 o1l Lz.

We care to have ry so close to ry that U(Ls) D clFy(Ly).
Now take V = L, U L3 U Ly and F5 defined on V as above.

The assumptions of Lemma are satisfied. So we can "glue” F} and F} in one rational
mapping f.

Figure 6.

Observe finally that J( f) is disconnected because F*(¢s) — oo and moreover F*(1) —
oo where [ = {3z = 3¢y }. The line [ separates Iy from say I{y. Both Ky and I, intersect
J(f) (in the coordinates after the integration of 1) so the intersections belong to different
components of J(f).

The degree of f on the basin of attraction to oo is 3 because such is the degree of Fy
on U. Only two critical points: oo and that one corresponding to é; belong to the basin,
because ¢3 4 do not escape under the iteration by F,. Theorem D is proved for d = 3.
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Remark 2.2. Observe that in appropriate holomorphic coordinates on ¢ we have
fz)=2*4+c+ ﬁ Indeed after subtracting from f constructed above the principal part
of the Laurent series expansion at the pole, we are left with a quadratic polynomial. By
an affine holomorphic change of coordinates we arrive with teh polynomiial to z? 4 c.

Remark 2.3. One should be careful in the above construction because not every
branched cover of € preserves a conformal structure. Above, an annulus A in B, containing
¢z and ¢4 is mapped in a proper way by f to the disc D' = {G < ¢'},t' >t  ie. a disc
containing oo , outside the figure 8 level {G = t}.

Instead of mapping ¢z into Dy so that F?(¢3) = ¢3 we can map A onto D' in a proper
way so that f(cs) = ¢3 and f(cq) = ¢4. This will be a topological branched cover. However
it does not allow a holomorphic invariant structure.

If it allowed, for ¢z close to ¢4, for A small but of a definite modulus, then in the limit
after rescallings of A’s to be of a definite size we would end up with a covering map of an
annulus with two punctures to a disc with a puncture (covering without branching point).
This is not possible by the Euler characteristics argument. It means ¢3 and ¢4 cannot be
too close in D'.

Another argument is that such f would have 3 superattracting fixed points. So it
would be a Newton’s method rational function of a degree 3 polynomial, see Introduction.
But the basin of attraction to oo is not simply-connected. This contradicts a theorem that
the basins of immediate attraction to the attracting fixed points for Newton’s method are
simply-connected [P].

Proof of Theorem D, the general case d > 3.

We shall realize holomorphically the picture on Fig. T7:

Figure 7.

On Fig. 7, D; is mapped properly on B; for j =1,2. Each D; contains d — 2 critical
points. The points aq, ..., a4_2 are poles.
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We proceed similarly as in the case d = 3. Let

d—2

Fl(z)zzz—l—c—l—b(z_:

m=1

1

Z— G,

).

Take a,, = /—c+1mT for areal constant T': 0 < T < 1 in particular T" small enough
that all a,, are well in Bs.

For b real b > 0 small, there is a small annulus around each pole a,,, containing two
critical points

Cm3,Cma =0aF b/2a—|—0(\/5).
The corresponding critical values
Um,3 = Fl(ém,S)v Um,4 = Fl(ém,él)

are

a2, + ¢ F 2V2aVh + o(Vb) = 2imT + (—m*T? F 2v/2aVb + o(Vb)).

Computing &, 34y and v, 34y it is comfortable to consider z2 + ¢ + —%—. Other
p & Cm,3(4) 3(4)

zZ—a

terms Z_b have only the O(b) influence.)

at

The Fy critical point close to 0 is O(b).
Take I1, K} from the case d = 3 slightly modified, larger than the original ones: Let
I be the line (parabola) (2iT7, —T*7?) for 7 > 0. Observe that the critical values v,, 5 are

to the left of I, and V,,, 4 to the right of I. We extend K, K} to I;’l,f(fl almost to [ to
capture vy, 3, v, 4 respectively. See Figure 8.

Figure 8.
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Consider the topological discs

Kz = CompF, Y (Ky), K,4= CompF, '(K}), where Comp means the component
containing €, 3, €y 4 respectively.

K5 is as in the case d = 3, such that Fy(K3) D clKj.

Finally set

d—2
Ui=C\ (KU | (KnsUKpa)

m=1

The rest of the construction of f is the same as for d = 3. When we make quadratic-
like maps F, on L,,s and F, on L,, 4 we have a complete freedom of which quadratic
polynomials we glue in, in particular of whether we want the corresponding critical points
to escape or not. (In particular if no critical point escape we have the most surprising case

k = 2 of the assertion of Theorem D.) &

For the completeness of the exposition we shall prove the following simple facts (The
first of them stated already in Introduction) :

Proposition 2.4. a) Let f € H? be a polynomial with B(f) the basin of attraction
to oo not simply-connected. Then B(f) contains at least one critical point different from
00.

b) More generally, if f € Q? and for a pair of topological discs A, A; : cl4 C A; the
map fla: A — Ay is proper of degree d' < d, then A; is in the basin of attraction B(f) to
an attracting fixed point and if B(f) is not simply-connected then it contains at least d’
critical points. This concerns in particular the case d’ = d in which f|g 4, : T\ cld; —

@'\ clA is polynomial-like.

Proof. a) Take a topological disc D = {G > a} around oo (cf. Proof of Corollary
B or Remarks 1.5, 1.6). If there are no critical points in B(f) (except oo) then f~"(D) is
an increasing sequence of topological discs, so B(f) = J,,», f~"(D) is a topological disc,
hence B(f) is simply-connected. B

(Remark that we already used the argument, that if there is only one critical value for
a proper map f : Wy — W, where W; is a topological disc , then Wi is also a topological
disc, in Remark 2.2)

b) The proof is similar. There are d' — 1 critical points in 4; and there must be a
critical point in B(f) \ A;.

(One can also deduce b) from a) using Blaschke type perturbation, Section 1.) &

Proposition 2.5. Every non simply-connected immediate basin of attraction to an
attracting or parabolic fixed point (with f'(p) = 1) contains at least 2 different critical

values of critical points in the basin.

This complements Theorem D: the integer k cannot be less than 2.
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Proof. Consider the sets D,, defined in Remark 1.6. As B(f) = |J,,>q Dn is not
simply-connected, there exists n such that D, is simply-connected and D, is not. Then
D, contains at least two different critical values of critical points in D, 1. &

(Almost the same argument proves the above for periodic basins, period larger than

1.)

Proof of Corollary E. Let f € H? be as in Theorem D for d > 3,k = 2. Con-
sider an arbitrary ¢ € H(f). Then there exist a real continuous l-parameter family of
homeomorphisms h; : € — € and a real 1-parameter family of maps f; € H(f) having the
same properties as hy and fy in Remark 1.4. (There exist complex families precisely as in
Remark 1.4, but we do not need them here.) Then #(Crit(f¢) N B(f:)) is constant because
critical points cannot be too close to J(t), where |f'| > 0 uniformly, they move continu-
ously with ¢, so they cannot jump between components of €'\ J(f;). So by Proposition 2.4,
B(g) cannot be the basin of attraction to co for a polynomial. But degree of f hence g on
each other invariant basin B is less than d. (Otherwise 0B; = J(f) would be connected
and it is not because B(f) is not simply-connected.) So ¢ cannot be a polynomial. )

Remark that it follows from Proposition 2.4,b) and above Proof that none g € H(f)
has a polynomial-like restriction of degree d.

Section 3. A 1-parameter family of functions joining an exotic z +— 22 + ¢+

b to Newton’s method rational function.

Z—a

Let f(z) = 22 4L e+ =2 Then fl(z) = 22 —

z—a

ﬁ. The equation for the critical
points in (€ is
2:(z —a)* =b

Suppose that w = ¢4 is an f-fixed critical point, see Fig 5, Section 2. (This restricts the
number of parameters to 2.) We obtain

(w2 —w+e)(w—a)=-b
2w(w —a)? =b
Let a = kw. We parametrize f by k and w. We obtain:
a=kw, b=2w1-k? c=w?2k-3)+w

The critical points are u = ¢9, v = ¢z, w, where

U, v = w(—% +kF %\/47{:—3)
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Given a parameter k < 1 sufficiently close to 1, one finds w such that f?(v) = v and
the trajectory of u escapes to co. For k£ = .85 one finds w & 1.88053. This is an exotic
example as in Figure 5, Sec.2. The reason is that the geometry is as in Fig. 6, Sec.2, so the
basin B of attraction to oo is connected, i.e. the immediate basin is completely invariant.
The picture is similar to that in Fig 10d.

(It is not clear to me whether just the escape of u to oo proves the connectedness of
B. One should be careful because for f being only a topological branched cover this is not
so, see the example in Remark 2.3.)

In the rest of this Section we discuss the change of dynamics for varying parameter

For k = .85 the number w = 1.88053 is in the principal part of a Mandelbrot-like set
M/(cs), symmetric with respect to real w’s, pronged to the left. For w € M(ec3), Julia set
for quadratic-like f?|p, (see Fig. 5, Section 2) is connected and we still have exotic maps.

Now let us decrease w. It leaves M(c3) at w ~ 1.86874 and below that w the trajectory
of v escapes from D;. It need not escape to co. There is a sequence of intervals where
f?™(v) hits B,, the basin of immediate attraction to w, n decreases to 2. Later on, after
escape, again f*(v) € B, but f?(v) < u (before, it was between w and v). This happens
at w ~ 1.63045. See Fig. 9.

Figure 9. k = .85,w = 1.63045.

At some parameter w the trajectory of u = ¢s stops to escape to oo. It hits B,,. But
next with further decrease of w it can again escape to cc.

Starting from w =& 1.541549 the trajectory of u neither escapes to oo nor to w. The
parameter w is in a Mandelbrot-like set M(cz) pronged towards right. In fact at this
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parameter f(u) € (v, a). Only after some further decrease of w we arrive at f?(u) € (u,v),
so that one has a unimodal map f: (f(u),v) — (f(u),v).

w & 7136114 is in the principal part of M(cz) and f is Newton’s. Then f"(c3) —
¢3 = f(ez2). The number w ~ .301 is still in the principal part of M(c3) and f is Newton’s
but now f*(cy) — 3 = c3.°

Let us present now pictures from this experiment for k = .81.

On Fig.10, k£ = .81, white is the basin of attraction to w, grey the basin of oo, black
is the complement. For Newton’s, Fig 10a, black contains both ¢y and e¢3, so it has a
connected interior and accesses the only repelling fixed point in two channels. Let w grow.
For w ~ 1.37 black Newton’s basin has bifurcated to period 4, Fig 10b.

For w ~ 1.4961, Fig 10c., w is already in M (e3) but u = ¢y does not escape to co. It is
in the basin of w. The basin of oo is not connected. This is so because the immediate basin
(and the whole basin too) contains only 1 critical point: co. So it is simply-connected, see
Prop. 2.5. Hence f has only degree 2 on this immediate basin.

For w =~ 1.51545 wu escapes to oo. The basin of oo becomes connected. This is one of
our exotic examples: see Fig. 10d.

Figure 10a. & = .81, w = .63, window —2 — 2¢,2 + 2s.
Iteration of Newton’s method rational map for a polynomial. Black, white and grey
are basins of attraction to the zeros of the polynomial.

¢ This description comes out of a computer made picture in 9 colors, showing whether
¢, c3 escape to 0o to w or make something else.
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Figure 10b. £ = .81,w = 1.37, window —2 — 2,2 + 2s.

Black Newton’s basin has bifurcated to period 4 immediate basin and its pre-images.

Figure 10c. k = .81,w = 1.49, window —2 — 2¢,2 + 24.
The map is still not exotic because the trajectory of the critical point u is attracted
to w.
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Figure 10d. k£ = .81, w = 1.51545, window —z,2 + 1.
This is an exotic map. The pattern is as in Figures 5,6. The union of black and white
does not separate plane anymore, u escapes to o0o.

Question 3.1. In the set of Newton’s method rational functions N Py for the poly-
nomials Py(z) = 23+ (A—1)z — A there exist Mandelbrot-like sets where the critical point
different from the zeros of Py converges to a periodic attracting orbit different from these
zeros, [CGSJ. Do these sets move to M (c3) sections of the set exotic maps when we change
parameters from Newton’s to the exotic ones?

Question 3.2. Describe precisely how does the dynamics bifurcate (what is the limit
behaviour of the trajectories of ¢y and ¢3) for real parameters k, w. This is the question on
the iteration of the real map having 2 critical point, namely our f restricted to (—oo,a).
(The right branch from a to oo does not take part in the recurrence because for z > a for
every n >0 f"(z) > a.)
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