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x1. Introdution.

A key problem in holomorphi dynamis is to lassify omplex quadratis z 7! z

2

+ 

up to topologial onjugay. The Rigidity Conjeture would assert that any non-hyperboli

polynomial is topologially rigid, that is, not topologially onjugate to any other polyno-

mial. This would imply density of hyperboli polynomials in the omplex quadrati family

(Compare Fatou [F, p. 73℄). A stronger onjeture usually abbreviated as MLC would

assert that the Mandelbrot set is loally onneted (see [DH1℄).

A while ago MLC was proven for quasi-hyperboli points by Douady and Hubbard, and

for boundaries of hyperboli omponents by Yooz. More reently Yooz proved MLC

for all at most �nitely renormalizable parameter values (see [H℄, [M2℄ for the exposition

of this work and losely related work of Branner and Hubbard [BH℄ on rigidity of ubis).

One of our goals is to prove MLC for some in�nitely renormalizable parameter values.

Loosely speaking, we need all renormalizations to have bounded ombinatorial rotation

number (assumption C1) and suÆiently high ombinatorial type (assumption C2) (see x2

for the preise statement of the assumptions).

This result is based on a omplex version of a theorem of [L2℄ whih says that the

saling fators haraterizing the geometry of a real non-renormalizable quasi-quadrati

map deay exponentially. Its omplex ounterpart proved below (Theorem I) says that

the moduli of the priniple nest of annuli grow linearly (this result does not need any

a priori assumptions). This makes �nitely renormalizable maps geometrially tame in

the sense that the return maps are beoming purely quadrati in small sales. In the

in�nitely renormalizable ase satisfying assumptions (C1) and (C2) Theorem I implies

omplex a priori bounds (Theorem II) (that is, the bounds from below for the moduli of

the fundamental annuli of R

n

f ).

For real quadrati polynomials of bounded ombinatorial type the omplex a priori

bounds were obtained by Sullivan [S℄. Our result omplements the Sullivan's result in the

unbounded ase. Moreover, it gives a bakground for Sullivan's renormalization theory for

some bounded type polynomials outside the real line where the problem of a priori bounds

was not handled before for any single polynomial.

An important onsequene of a priori bounds is absene of invariant measurable line

�elds on the Julia set (MMullen [MM℄) whih is equivalent to quasi-onformal (q)

rigidity. To prove stronger topologial rigidity we onstrut a q onjugay between any

two topologially onjugate polynomials (Theorem III). We do this by means of a pull-

bak argument, based on the linear growth of moduli and a priori bounds. Atually the

argument gives the stronger ombinatorial rigidity whih implies MLC.

* Supported in part by NSF grant DMS-8920768 and a Sloan Researh Fellowship.
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Loal onnetivity of the Julia set is also a general onsequene of a priori bounds (see

Hu and Jiang [HJ℄, [J℄), so we have it under assumptions (C1) and (C2). Note that Douady

and Hubbard gave an example of an in�nitely renormalizable polynomial with non-loally

onneted Julia set (see Milnor's version of the example in [M2℄). In this example the

ombinatorial rotation numbers of the �xed points of R

m

f are highly unbounded, whih

is ruled out by our �rst assumption.

We omplete the paper with an appliation to the real quadrati family. Here we an

give a preise dihotomy (Theorem IV): on eah renormalization level we either observe

a big modulus, or essentially bounded geometry. This allows us to ombine the above

onsiderations with Sullivan's argument for bounded geometry ase, and to obtain a new

proof of the rigidity onjeture on the real line (ompare MMullen [MM℄ and Swiatek

[Sw℄).

This paper is organized as follows. x2 ontains a ombinatorial framework: Yooz

puzzle, priniple nest, usual and generalized renormalization. Theorems I and II on geo-

metri moduli in the dynamial plane are proved in x3, Theorem III yielding MLC under

the above assumptions is proved in x4. The real ase is disussed in x5.

Aknowledgement. I would like to thank Jeremy Kahn for a fruitful suggestion (see

x3), and Curt MMullen and Mitsuhiro Shishikura for useful omments on the results.

I also thank Sott Sutherland and Brian Yarrington for making the omputer pitures.

This work was done in June 1993 during the Warwik Workshop on hyperboli geometry.

I am grateful to the organizers, partiularly David Epstein and Caroline Series, for that

wonderful time.

x2. Priniple nest and renormalization.

We refer to [D1℄, [DH2℄ and [M1℄ for the bakground in polynomial-like mappings and

tuning (whih is alled below \quadrati-like renormalization"), and to [H℄ and [M2℄ for

the introdution to the Branner-Hubbard-Yooz puzzle.

Let f : U

0

! U be a quadrati-like map with onneted Julia set. Let us start with

an appropriate ombinatorially de�ned  -symmetri domain (\puzzle-piee") V

0

� U

0

suh that (see the onstrution below). Let us then onsider the �rst return of the ritial

point bak to V

0

, and pull V

0

bak along the orresponding piee of the ritial orbit.

In suh a way we obtain the ritial puzzle-piee V

1

� V

0

of the �rst level. If we do the

same replaing V

0

by V

1

, we obtain the ritial puzzle-piee V

2

� V

1

of the seond

level. Proeeding in this manner we will onstrut the priniple nest

V

0

� V

1

� V

2

: : :

of puzzle-piees. It may happen that on some level the quadrati-like map f

�(t)

: V

t+1

!

V

t

has a onneted Julia set (whih is equivalent to having non-esaping ritial point).

Then we say that f is q-renormalizable, or that f admits the quadrati-like renormal-

ization Rf = f

�(t)

: V

t+1

! V

t

(usually suh a map is just alled \renormalizable" but

we need to distinguish the quadrati-like renormalization from the generalized renormal-

ization de�ned below). In this ase the puzzle-piees V

n

shrink down to the Julia set

J(Rf) . Otherwise by the Yooz Theorem they shrink down to the ritial point.
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Let now V

n

i

� V

n�1

denote the pull-baks of V

n�1

orresponding to the �rst returns

of the points x 2 !() \ V

n�1

bak to V

n�1

, numbered so that V

n

� V

n

0

. The �rst

return map

g

n

: [V

n

i

! V

n�1

we all the n -fold (generalized) renormalization of f . If f admits a quadrati-like renor-

malization, then the return time to V

n�1

is uniformly bounded on !() , and hene the

domain of the renormalized maps onsists of only �nitely many omponents V

n

i

. We se-

let the initial puzzle-piee V

0

in suh a way that V

1

is ompatly ontained in V

0

(see

Lemma 0 below). Then the puzzle-piees V

n

i

; n � 2; are ompatly ontained in V

n�1

as well, and hene the g

n

are generalized polynomial-like maps in the sense of [L1℄.

Let us all this return to level n � 1 \entral" if g

n

 2 V

n

. If we have several

subsequent entral returns, we refer to a asade of entral returns. In the q-renormalizable

ase the sequene of puzzle-piees V

n

ends with an in�nite asade of entral returns. Let

us denote by � = �(f) the number of the levels on whih the non-entral return ours.

The map f admits a quadrati-like renormalization i� � <1 .

Let us now onstrut the initial puzzle-piee V

0

. Let q=p be the ombinatorial

rotation number of the dividing �xed point � . This means that there are p disjoint

external rays �

i

landing at � whih are permuted by the dynamis with rotation number

q=p . They ut U

0

into p initial Yooz puzzle-piees. (Warning: we de�ne the external

rays in a non-anonial way via a onjugay to a polynomial. These rays are not neessarily

the external rays for the original map f , whose geometry we would not be able to ontrol).

Let 


0

be the ritial puzzle-piee, that is, the one ontaining the ritial point. Let

us pull it bak along the ritial orbit in the same way as we did above with V -piees.

Then in the beginning we may observe a entral asade




0

� 


1

� : : :

In what follows we always assume that this �rst asade is �nite, that is, there is an N ,

suh that f

p

 2 


N�1

n


N

(this an be viewed as a part of Assumption (C2) that the

ombinatorial type is suÆiently high).

Let now  and 

0

= � be the periodi and o-periodi points of period p belonging

to 


0

. Let us trunate 


N

by the external rays landing at these points. The ritial

puzzle-piee obtained in suh a way is the desired V

0

(see Figure 1).

Lemma 0. The puzzle-piee V

1

is ompatly ontained in V

0

.

Proof. The argument below is not the shortest possible, but it will later give us important

extra information (see Lemma 2). Let W

i

; i = 1; :::; p� 1; be the puzzle-piees bounded

by the external rays landing at �

0

and the equipotential f

�1

U , numbered in suh a way

that f

i

W

i

� U

0

.

Take a point z 2 


0

\ J(f) , push it forward by iterates of g = f

p

, and �nd the �rst

moment r = r(z) (if any) suh that g

r

z lands either at W

i

(where i = i(z) ) or at V

0

.

In the �rst ase onsider the pull-bak X(z) of W

i

along the orbit of z , in the seond

ase onsider the pull-bak Y (z) of V

0

. (The points whih are not overed by the sets

X

j

and Y

j

form an invariant Cantor set in 


N

nV

0

.)
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Let us now de�ne a map G : X

j

[ Y

j

! U

0

[ V

0

in the following way: G = f

i

Æ g

r

on X

j

and G = g

r

on X

j

. Then every X

j

is univalently mapped onto 


0

, while Y

j

is univalently mapped onto V

0

. Let us push  forward by iterates of G until the �rst

moment l it lands at a set Y

j

. Let Q 3  be the pull-bak of 


0

under G

l

. Then

G

l

: (Q; V

1

)! (


0

; Y

j

): (0)

As Y

j

is ompatly ontained in 


0

, V

1

is ompatly ontained in Q . Observe �nally

that Q � V

0

, sine Q may not interset the boundary of V

0

. tu

If f in�nitely q-renormalizable then we an repeat the above onstrution on the

orresponding quadrati-like levels, and onsider the full anonial nest of puzzle-piees:

V

0;0

� V

0;1

� : : : V

0;t(0)+1

� V

1;0

� V

1;1

� : : : � V

1;t(1)+1

� V

2;0

: : :

Here the �rst index ounts the quadrati-like levels, while the seond one ounts the levels

in between. The maps V

m;t(m)+1

! V

m;t(m)

are quadrati-like with non-esaping ritial

point, while V

m+1;0

are the ritial puzzle-piees obtained by the above proedure applied

to these maps. (The hoie of the utting level t(m) is not anonial). We skip the �rst

index when we work in between two quadrati-like levels.

Let us �nish this setion with speifying exat onditions under whih we will prove

MLC. To these end we need several notions. A limb of the Mandelbrot M set is the

onneted omponents of Mnf

0

g (whih does not ontain 0) where 

0

is a bifuration

point on the main ardioid. A limb is spei�ed by speifying a ombinatorial rotation

number at the dividing �xed point. If we remove from a limb a neighborhood of its root



0

, what is left we all a trunated limb. By a (trunated) seondary limb we mean

the similar objet orresponding to the seond bifuration from the main ardioid ( see

Figure 2).

Two quadrati-like maps are alled hybrid (or internal) equivalent if they are onjugate

by a q map h with

�

�h = 0 almost everywhere on the Julia set. By the Douady-Hubbard

Straightening Theorem [DH2℄, any hybrid lass with onneted Julia set ontains a unique

quadrati polynomial z 7! z

2

+  . So suh hybrid lasses are labeled by points on the

Mandelbrot set.

Let F denote the lass of maps admitting in�nitely many quadrati-like renormal-

izations and satisfying the following assumptions:

(C1). First selet in the Mandelbrot set a �nite number of trunated seondary limbs.

We require the hybrid lasses of all quadrati-like renormalizations R

m

f to be piked from

these limbs.

(C2). On the other hand, we also require the ombinatorial type �(R

m

f) to be

suÆiently high on all levels (depending on the a priori hoie of limbs).

The seond ondition an be improved by speifying other ombinatorial fators produing

a big spae (see the subsetion with Lemma 11 and Lemma 16).

x3. Geometri moduli.

Let us summarize the results of the setion in two Theorems. We say that a quadrati-

like map f : U

0

! U has a de�nite modulus if mod(UnU

0

) � �� > 0 (with an a priori

seleted quanti�er �� ).
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Theorem I. Let f be a polynomial-like map with a de�nite modulus whose internal lass

is seleted from a given �nite family of trunated seondary limbs. Let n(k) ount the

levels of non-entral returns (preeding the next quadrati-like level). Then the priniple

moduli �

n(k)+1

= mod(V

n(k)

nV

n(k)+1

) grow with k at uniformly linear rate.

Theorem II. Let f 2 F . Then all its quadrati-like renormalizations R

n

f have de�nite

moduli.

A ompat set K �

�

C is alled removable if given a neighborhood U � K , any

onformal embedding � : UnK !

�

C allows the onformal ontinuation aross K (see

[AB℄). A simple ondition for removability is the following.

Assume that for any point z 2 K there is a nest of disjoint annuli A

i

�

�

CnK with

de�nite moduli (mod(A

i

) > Æ > 0 ) shrinking to z . Then K is removable.

Removable sets have zero Lebesgue measure. Now Theorem II immediately implies.

Corollary IIa. Given an f 2 F , its ritial set !() is a removable Cantor set.

By [HJ℄, [J℄ the a priori bounds also imply the following (see the argument in x3).

Corollary IIb. The Julia set J(f) of a map f 2 F is loally onneted.

Aording to MMullen [MM℄, an in�nitely q-renormalizable quadrati polynomial

f is alled robust if for arbitrary high level m there exists an annulus in Cn!() with

de�nite modulus whih is homotopi rel !() to a Jordan urve enlosing J(R

m

f) but

not enlosing any point of !()nJ(R

m

f) .

Corollary II. Any f 2 F is robust.

By [MM℄, robust quadrati polynomials have no invariant measurable line �elds on

the Julia set. Absene of invariant line �elds for a quadrati polynomial f : z 7! z

2

+ 

0

is equivalent to the property that its topologial lass has empty interior [MSS℄. Theorem

III below will show that these topologial lasses are atually single points for f 2 F .

Outline for Theorem II. First we show that if a quadrati-like map f satisfying (C1)

has a de�nite modulus then the �rst annulus of the priniple nest also has a de�nite

modulus. However the bound for this modulus is ertainly smaller than the a priori bound

for f . To ompensate this loss, we go through the asade of generalized renormalizations,

and observe (aording to Theorem I) a linear growth of the priniple moduli. So if we

proeed for long enough (assumption (C2)), we will arrive at the next quadrati-like level

with a de�nite modulus ontrolled by the same quanti�er �� . Then we start over again.

Most of this setion is oupied with the proof of Theorem I.

Initial geometry.

Lemma 1. If the annulus A has a de�nite modulus then the starting on�guration (U; 

i

)

of external rays has a bounded geometry.

Proof. Indeed, the map f an be onjugate to a polynomial g by a q map with a

bounded dilatation, where g belongs to the �nite set of seleted limbs. Let g vary within

one of these limbs. Then the �nite intervals of the external rays vary ontinuously with

g .
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Sine the trunated limbs don't touh the main ardioid, the absolute value of the

multiplier � of the � -�xed point of g is bounded away from 1. Hene the fundamental

annulus around this point has a de�nite modulus. So the external rays landing at � will

meet this annulus on some de�nite distane from the Julia set. Outside of the annulus they

have a bounded geometry by the previous argument. Near the �xed point the geometry is

bounded by a loal onsideration. tu

Set A

n

= V

n�1

nV

n

.

Lemma 2. The annulus A

1

= V

0

rV

1

has a de�nite modulus (depending on the modulus

of UnU

0

only).

Proof. Let us go bak to the proof of Lemma 0. Beause of Assumption (C1), V

0

is

well inside 


0

. As the puzzle-piees Y

j

are obtained by pulling V

0

bak by univalent

iterates of g . they are well inside 


0

as well. Finally, as G

l

in (0) is two-to-one branhed

overing, V

1

is well inside of Q . tu

A priori bounds.

Lemma 3. Let i(1); :::i(l) = 0 be the itinerary of a puzzle-piee V

n+1

j

through the

puzzle-piees V

n

i

by iterates of g

n

until the �rst return bak to V

n

. Then

mod(V

n

nV

n+1

j

) �

1

2

l

X

k=1

mod(V

n�1

nV

n

i(k)

):

Proof. The Gr�otsz inequality. tu

Let D be a puzzle-piee whih we all an "island" (ompare below). Let W

i

; i 2 I ,

be a �nite family of disjoint puzzle-piees ontaining a ritial puzzle-piee W

0

. We will

freely identify the label set I with the family itself. For W

i

� D let

R

i

� R

i

(I;D) � Dn

[

j2I

W

j

be an annulus of maximal modulus enlosing W

i

but not enlosing other puzzle-piees of

the family I . Suh an annulus exists by the Montel Theorem. We will briey all it the

maximal annulus enlosing W

i

in D (rel the family I ).

Let us now de�ne the asymmetri modulus of the group I in D as

�(IjD) =

X

i2I

�

i

mod(R

i

); (1)

where the weight �

i

is equal to 1 for the ritial puzzle-piee and 1/2 for all others (if D

is a non-ritial island then all weights are atually 1/2). This parameter for a group of

two puzzle-piees was suggested by Jeremy Kahn as a omplex analogue of the asymmetri

Poinar�e length [L2℄.

Let us now speify D = V

n�1

, and I to be a �nite group of at least two puzzle-piees

V

n

i

of level n ontaining the ritial one. Then set �

n

(I) � �(IjV

n�1

) and

�

n

= min

I

�

n

(I); (2)

where I runs over all groups of puzzle-piees just spei�ed.
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Let us use a speial notation for the priniple moduli

�

n

= mod(V

n�1

nV

n

): (3)

The �

n

and �

n

are the priniple geometri parameters of the renormalized maps g

n

.

Our goal is to show that the asymmetri moduli monotonially and linearly grow with

n . Let us �x a level n � N , denote V

n�1

= �; V

i

= V

n

i

, g = g

n

, and mark the objets

of the next level n+ 1 with prime.

Let I

0

be a �nite family of puzzle-piees V

0

i

. Let us organize them in isles in the

following way. Take two non-symmetri puzzle-piees V

0

i

and V

0

j

and push them forward

by iterates of g through the puzzle-piees V

k

of the previous level. Find the �rst moment

t when they are separated by those puzzle-piees, that is, suh that g

m

V

0

i

and g

m

V

0

j

belong to the same piee V

k(m)

for m = 0; :::; t � 1; , while g

t

V

0

i

and g

t

V

0

j

land at

di�erent piees. (In other words, the itineraries of V

0

i

and V

0

j

oinide until moment

t � 1 ). Then let us produe an island D by pulling V

k(t�1)

bak by the orresponding

inverse branh of g

t�1

. Let �

D

= g

t

: D ! � . This map is either a double overing or a

biholomorphi isomorphism depending on whether D is ritial or not.

The family D = D(I

0

) of isles form a lattie with respet to inlusion. Let depth

: D !N be the minimal stritly monotone funtion on this lattie, assigning to the biggest

island V

0

� �

0

depth 0.

Let us now onsider the asymmetri moduli �(IjD) as a funtion on the family D

of isles. This funtion is learly monotone:

�(IjD) � �(IjD

1

) if D � D

1

; (4)

and superadditive:

�(IjD) � �(IjD

1

) + �(IjD

2

); (5)

provided D

i

are disjoint subisles in D .

We all a puzzle-piee V

0

j

� D pre-ritial rel D if �

D

(V

0

j

) = V

0

. If D = �

0

is the

trivial island, we skip "rel". There are at most two pre-ritial piees in any D . If there

are atually two of them, then they are non-ritial and symmetri with respet to  .

Let D be a deepest island of family D(I

0

) , and V

0

j

; j 2 J , be the group of puzzle-

piees ontained in D , that is J = I

0

jD . Let i(j) is de�ned for j 2 J by the property

�

D

(V

0

j

) � V

i(j)

, and I = fi(j) : j 2 Jg .

Lemma 4. Under the irumstanes just desribed the following estimate holds:

�(J jD) �

1

2

0

�

(jJ j � s)�+ s mod(R

0

) +

X

i2I;i6=0

mod(R

i

)

1

A

; (6)

where s = #fj : i(j) = 0g is the number of pre-ritial piees rel D .

Proof. As D is the deepest island, eah puzzle-piee V

i

; i 2 I; ontains a single puzzle-

piee �

D

V

j

(though there might be two symmetri puzzle-piees in J with �

D

V

j

=

�

D

V

k

). Let R

i

� � denote an annulus of maximal modulus enlosing V

i

rel I , and let

T

j

� D be an annulus of maximal modulus enlosing V

0

j

rel family J . Let Æ

st

denote

the Kroneker symbol. Fix a j 2 J and let i = i(j) . Let us onsider now two ases:
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(i) Let V

0

j

be non-ritial. Then

mod(T

0

j

) � mod(R

i

) + Æ

0i

�: (7)

To see that, observe that mod (V

i

n�

D

V

0

j

) is at least � , provided i 6= 0 . Observe also

that the pull-bak of the topologial dis Q

i

= R

i

[ V

i

to D is univalent. Indeed, if �

D

were a double overing then the island D would be ritial, and hene would ontain the

ritial puzzle-piee V

0

0

. It follows that Q

i

does not ontain the ritial value of �

D

.

(ii) Let V

0

j

= V

0

0

is ritial. Then

mod(T

0

0

) �

1

2

(mod(R

i

) + Æ

0i

�): (8)

Summing up the estimates (7) and (8) with the weights 1/2 and 1 orrespondingly

over the family J , we obtain the desired estimate. tu

Corollary 5. For any island D of the family D(I

0

) the following estimates hold:

�(I

0

jD) �

1

2

� and �(I

0

jD) � �:

Proof. By monotoniity (4), it is enough to hek the ase of a deepest island D . Let us

use the notations of the previous lemma. Observe �rst that the family I = fi(j) : j 2 Jg

ontains at least two puzzle piees. Indeed, the only ase when jIj < jJ j an happen is

when �

D

is a double overing, and there are two symmetri puzzle-piees in the family

J . But then this family must also ontain the ritial piee V

0

0

, and hene jIj > 2 .

As � > mod(R

0

) , jJ j � 2 and jIj � 2 , the right-hand side in (6) is bounded from

below by

1

2

0

�

jJ j mod(R

0

) +

X

i2I;i6=0

mod(R

i

)

1

A

� �(I) > �; (9)

tu

Let us deompose g

n

: V

n

! V

n�1

as h

n

Æ � where � is purely quadrati, while

h

n

is univalent. The non-linearity or distortion of h

n

is de�ned as

max

z;�2V

n

log

�

�

�

�

Dh

n

(z)

Dh

n

(�)

�

�

�

�

;

and measures how far g

n

is from being purely quadrati.

Corollary 6 (a priori bounds). The asymmetri moduli �

n

grow monotonially and

hene stay away from 0 on all levels (until the next quadrati-like level). The basi moduli

�

n

stay away from 0 everywhere exept for tails of long asades of entral returns. More-

over, the non-ritial puzzle-piees V

n

i

are also well inside V

n�1

exept for pre-ritial

piees on the levels whih immediately follow the long asades of entral returns. The

distortion of h

n

is uniformly bounded on all levels.

Proof. On the �rst non-degenerate level N + 1 we have a de�nite priniple modulus by

Lemma 2. Hene by the previous Corollary we have a de�nite value of � on the next level

whih then begins to grow monotonially. So, it stays de�nite on all levels until the next

8



quadrati-like one. By Lemma 3, the basi moduli stay de�nite as well, exept for tails of

long asades of entral returns. The next statement also follows from Lemma 3.

To hek the last statement, it is enough to observe that h

n

has a Koebe spae spread

over V

n�2

. Hene its distortion is ontrolled by the priniple saling fator �

n�1

. So

we are OK outside the tails of entral asades. But observe also that within the entral

asade we keep the same return map, just shrinking its domain. tu

Linear growth. Our goal is to prove that �

0

� � + a with a de�nite a > 0 at least on

every other level exept for the tails of entral asades. Corollary 6 shows the reason why

these tails play a speial role. The growth rate of � de�nitely slows down in the tails.

So let us assume that the level n � 1 is not there, so that the priniple modulus � is

de�nitely positive.

Corollary 7. If a deepest island D ontains at least three puzzle-piees V

0

j

; j 2 J , then

�(J jD) � �(I) +

1

2

�:

Proof. Let us in (6) split o� (1=2)� and estimate all other � 's by mod (R

0

) . This

estimates the right-hand side by

1

2

�+

jJ j � 1

2

mod(R

0

) +

1

2

X

i2I;i6=0

mod(R

i

);

whih immediately yields what is laimed. tu

Let us now onsider the ase when the island D ontains only two puzzle puzzle-

piees. In order to treat it, we need some preparation in geometri funtion theory.

Moduli defet, apaity and eentriity. Let D be a topologial disk, � = �D ,

a 2 D , and  : (D; a)! (D

r

; 0) be the Riemann map onto a round disk of radius r with

 

0

(a) = 1 . Then r � r

a

(�) is alled the onformal radius of � about a . The apaity

of � rel a is de�ned as

ap

a

(�) = log r

a

(�):

Lemma 8. Let D

0

� D

1

� K , where D

i

are topologial disks and K is a on-

neted ompat. Assume that the hyperboli diameter of K in D

0

and the hyperboli

dist (K; �D

1

) are both bounded by a Q . Then there is an �(Q) > 0 suh that

mod(D

1

nK) � mod(D

0

nK)� �(Q):

Proof. Let us take a point z 2 �D

1

whose hyperboli distane to K is at most Q . Then

there is an annulus of a de�nite modulus ontained in D

0

and enlosing both K and z .

Let us uniformize D

0

nK by a round annulus A

r

= f� : r < j�j < 1g; and let ~z

orrespond to z under this uniformization. Then ~z stays a de�nite Eulidian distane d

from the unit irle.

If R � A

r

is any annulus enlosing the inner boundary of A

r

but not enlosing

~z then by the normality argument mod (R) < mod(A

r

) � �

r

(d) with an �

r

(d) > 0 .

(Atually, the extremal annulus is just A

r

slit along the radius from ~z to the unit irle).

We have to hek that �

r

(d) is not vanishing as r! 0 . Let us �x an outer boundary

� of B (the unit irle + the slit in the extremal ase). We may ertainly assume

9



that the inner boundary oinides with the r -irle. Then the defet mod (R)� log(1=r)

monotonially inreases to the ap

0

(�) . By normality this apaity is bounded above by

an ��(d) < 0 , and we are done. tu

Let A be a standard ylinder of �nite modulus, K � A . Let us de�ne the mod(K )

as the modulus of the smallest onentri sub-ylinder A

0

� A ontaining K (see Figure

3).

Lemma 9 (De�nite Gr�otsz Inequality). Let A

1

and A

2

be homotopially non-

trivial disjoint topologial annuli in A . Let K be the set of points in their omplement

whih are separated by A

1

[ A

2

from the boundary of A . Then there is a funtion

�(x) > 0 ( x > 0 ) suh that

mod(A) � mod(A

1

) + mod(A

2

) + �(mod(K)):

Proof. For a given ylinder this follows from the usual Gr�otsz Inequality and the nor-

mality argument. Let us �x a K , and let mod (A) ! 1 . We an assume that A

i

are

lower and upper omponents of AnK orrespondingly. Then the modulus defet

mod(A)�mod(A

1

)�mod(A

2

)

dereases by the usual Gr�otsz inequality. At the limit the ylinder beomes the puntured

plane, and the modulus defet onverges to -(ap

0

(K)+ ap

1

(K) ). It follows from the

area estimates that this sum of apaities is negative, unless K is a irle entered at the

origin. This estimates depends only on mod (K) by normality. tu

Let d

a

(�) and �

a

(�) be the Eulidian radii of the insribed and irumsribed irles

about � entered at a . Then let us de�ne the eentriity of � about a as

e

a

(�) = log

�

a

(�)

d

a

(�)

:

By Koebe and Shwarz,

e

a

(�) = �(ap

a

(�) + ap

1

)(�) +O(1);

with O(1) � 2 log 4 .

Lemma 10. Under the irumstane of Lemma 9 assume also that the annulus A �

Cnfag is homotopially non-trivially embedded in the puntured plane, and mod (A

i

) �

� > 0 . If e

a

(K) is big then mod (KjA) is big as well.

Proof. Let us onsider the uniformization � :

�

A ! A of A by a round annulus. If

mod (KjA) is bounded then

�

K is well inside of

�

A . Then by the normality argument K

must have a bounded eentriity about a . tu

The ase of two puzzle-piees. Let us now go bak to the estimates of asymmetri

moduli. Suppose we have a deepest island D ontaining two puzzle-piees V

n+1

j

; j 2 J .

Let � � �

D

and let �V

n+1

j

� V

n

i

with i = i(j) . Let us split the argument into several

ases.

Case (i). There is a non-ritial puzzle-piee V

n

i

; i 2 I , whih stays on a bounded

Poinar�e distane in V

n�1

(ontrolled by a given big quanti�er Q ) from the ritial point.

10



Then by Lemma 8

�

n

� mod(R

0

) + � (10)

with a de�nite � = �(Q) > 0 . But observe that when we passed from Lemma 4 to

Corollary 5 we estimated � by mod (R

0

) . Using the better estimate (10), we obtain a

de�nite inrease of � .

Case (ii). Let eah non-ritial puzzle-piee V

n

i

; i 2 I , stay hyperbolially far away

from the ritial point. Then V

n

0

may not belong to any non-trivial island together with

some non-ritial piee V

n

i

; i 2 I . Indeed, it follows from Corollary 6 that any non-trivial

island is well inside of V

n�1

.

Assume �rst that both V

n

i

are non-ritial. Then �(J jD) is estimated by �

n

(

~

I)

where the family

~

I onsists of V

n

i

and the entral puzzle-piee V

n

0

. If no two of these

puzzle-piees belong to the same non-trivial island, then by Corollary 7 �(

~

I) � �

n�1

+ a

with a de�nite a > 0 .

Otherwise the puzzle-piees V

n

i

; i 2 I; belong to an island W . Sine W is well

inside of V

n�1

, it stays on the big Poinar�e distane from the ritial point. Hene

mod (R

0

) � � (this sign means the equality up to a small onstant ontrolled by the

quanti�er Q , while the sign � below means the inequality up to a small error), and

�(

~

I) � �(IjQ) + mod(R

0

) � �

n�1

+ �:

So we have gained some extra growth, and an pass to the next ase.

Fibonai returns. Let one of the puzzle-piees V

n

i

be ritial. So we have the family

I

n

of two puzzle-piees V

n

0

and V

n

1

. Remember that we also assume that the hyperboli

distane between these piees is big. Hene, V

n�1

is the only island ontaining both of

them, so that g

n�1

V

n

0

and g

n�1

V

n

1

belong to di�erent puzzle-piees of level n� 1 . For

the same reason we an assume that one of these puzzle-piees is ritial. Denote them by

V

n�1

0

and V

n�1

1

. Then one of the following two possibilities on level n� 2 an our:

1) Fibinai return when g

n�1

V

n

0

� V

n�1

1

and g

n�1

V

n

1

= V

n�1

0

(see Figure 4);

2) Central return when g

n�1

V

n

0

= V

n�1

0

and g

n�1

V

n

1

� V

n�1

1

.

We an assume that one of these shemes our on several previous levels n�3; n�4; :::

as well (otherwise we gain an extra growth by the previous onsiderations). To �x the idea,

let us �rst onsider the following partiular ase

Fibonai asade. Assume that on both levels n � 1 and n � 2 the Fibonai returns

our. Let us look more arefully at the estimates of Lemma 4. In the Fibonai ase we

just have:

mod(R

n

1

) � mod(R

n�1

0

); (11)

mod(R

n

0

) �

1

2

mod(g

n�1

V

n

0

jQ

n�1

1

); (12)

where Q

n

i

= V

n

i

[ R

n

i

. Applying g

n�2

we see that

mod(Q

n�1

1

ng

n�1

V

n

0

) � mod(Q

n�3

0

nV

n�1

0

): (13)
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But sine V

n�2

1

is hyperbolially far away from the ritial point,

mod(Q

n�3

0

nV

n�1

0

) � mod(V

n�3

0

nV

n�1

0

): (14)

By the Gr�otsz Inequality there is an a � 0 suh that

mod(V

n�3

0

nV

n�1

0

) = �

n�1

+ �

n�2

+ a: (15)

Clearly

�

n�1

� mod(R

n�1

0

): (16)

Furthermore, let P

n�1

1

be the pull-bak of Q

n�2

0

by g

n�2

. Sine �(P

n�1

1

) is hyperboli-

ally far away from V

n�1

1

, we have:

�

n�2

� mod(R

n�2

0

) = mod(V

n�1

1

jP

n�1

1

) � mod(R

n�1

1

): (17)

Combining estimates (12)-(17) we get

mod(R

n

0

) �

1

2

(mod(R

n�1

0

) + mod(R

n�1

1

) + a): (18)

We see from (11) and (18) that the only thing to hek that the onstant a in (15) is

de�nitely positive. Assume that this is not the ase. Set �

n

= �V

n

. Then by the De�nite

Gr�otsz Inequality, the mod (�

n�2

) in the annulus A = V

n�3

nV

n�1

is very small. Sine

�

n�2

is well inside of A , we onlude by the Koebe Distortion Theorem that �

n�2

is

ontained in a narrow neighbourhood of a urve  with a bounded geometry. Moreover,

this urve has a de�nite eentriity around the ritial point.

On the other hand, the puzzle-piee V

n�1

1

is hyperbolially far away from the ritial

point. Hene it must be loated Eulidianly very lose to �

n�2

(relatively the Eulidian

distane to the ritial point). Hene the ritial value g

n�1

 is also extremely lose to

�

n�2

.

By Corollary 6, g

n�1

is a quadrati map up to a bounded distortion. Hene the urve

�

n�1

whih is the pull-bak of �

n�2

by g

n�1

must have a huge eentriity around the

ritial point. By Lemmas 10 and 9 it will ontribute towards the de�nite extra onstant

on the (n+ 1) st level.

Remark. The atual shape of a deep level puzzle-piee for the Fibonai asade is shown

on Figure 5. There is a good reason why it resembles the �lled-in Julia set for z 7! z

2

� 1

(see [L3℄). As the geodesi in V

n�1

0

joining the puzzle-piees V

n

0

and V

n

1

goes through

the pinhed region, the Poinar�e distane between these puzzle-piees is, in fat, big.

General ase. Let us now allow the entral returns along with the Fibonai ones. Suppose

we have a asade of entral returns on N � 1 subsequent levels V

m

� ::: � V

m+N�2

�

V

n�2

, preeded by the Fibonai return on level m � 1 . So g

m+1

 2 V

m+N�1

0

, while

g

m

 2 V

m

1

: By our onvention, this asade is not too long, so that we have a de�nite

spae in between any two levels.

Let us now pass from the island D � V

n

� V

m+N

all way up the asade to the level

m� 1 , that is, onsider the map

G = g

m

Æ g

N�1

m+1

Æ �

D

: D ! V

m�1

: (19)

Then S � G V

m+N+1

� V

m

. Now we again should split the analysis depending on where
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the puzzle-piee V

m+N+1

lands. Let us start with the most interesting ase when it lands

at the deepest possible level.

Subase (a). Let S = V

m+N

. Pulling the annuli R

m

0

and R

m

1

bak by G to D ,

we get the following estimates:

mod(R

m+N+1

0

) �

1

2

mod(V

m�1

nS) =

1

2

mod(V

m�1

nV

m+N

); (20)

mod(R

m+N+1

1

) �

1

2

N

(mod(R

m

1

) + mod(R

m

0

)): (21)

By the Gr�otsz inequality there is an a � 0 suh that

mod(V

m�1

nV

m+N

) � mod(A

m

) + mod(V

m

nV

m+N

) + a �

mod(R

m

0

) +

m+1

X

k=m+N

mod(A

k

) + a � mod(R

m

0

) +

N�1

X

k=0

1

2

k

mod(R

m+1

0

) + a: (22)

Sine mod(R

m

0

) � mod(R

m+1

1

) , the above estimates imply

2�(I

m+N+1

jD) = 2R

m+N+1

0

+ R

m+N+1

1

�

1

2

N

mod(R

m

1

) +

1

2

N�1

mod(R

m

0

) + (1�

1

2

N

)mod(R

m+1

1

) + (2�

1

2

N�1

)mod(R

m+1

0

) + a �

�

1

2

N�1

�(I

m

) + (2�

1

2

N�1

)�(I

m+1

) + a:

We see that if the urve �

m

has a de�nite modulus in the annulus V

m�1

nV

m+N

then we have a de�nite growth of � . Otherwise arguing as in the ase of the Fibonai

asade we onlude that the urve �

k

has a big eentriity around the puzzle-piee

V

k+1

1

; k = m; :::;m+N � 1 .

Let us now go one entral asade up to the level V

m�1

(until the Fibonai level).

If this asade is not too long, then by the above onsiderations we either have a de�nite

growth of � within this asade, or �

m�1

has a big eentriity about V

m

1

. But then

�

m

has a big modulus in V

m�1

nV

m+N

, and we are done.

Finally, if V

m�1

is in the tail of a long entral asades then �

m

has always a big

eentriity about the ritial point (see the next subsetion). If we atually have a entral

return on level m (so that N � 2 ), then �

m+1

has a big eentriity around  as well.

But this urve is for sure well inside V

m

nV

m+N

. So we an use it instead of �

m

to

ontribute to the de�nite a in estimate (22).

If a non-entral return on level m ours (that is, N = 1 ), then we don't see a

de�nite growth for �

m+N+1

but we gain it one level down.

Subase (b). Assume now that S � V

m

nV

m+N

: Let us onsider the Markov family

of puzzle-piees W

k

i

; k = m + 1; :::;m+ N; the pull-baks of piees V

m+1

i

� W

m+1

i

to

the annuli A

k

. Let S �W � W

k

i

. Then

mod(WnS) � mod(V

m

nV

m+N

);
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and we have

mod(V

m�1

nS) �

1

2

(mod(A

m

) + mod(WnS) + mod(V

m

nW )) �

1

2

(mod(R

m

0

) + mod(V

m

nV

m+N

) + a

where a > 0 is de�nite, unless V

m�1

is in the tail of a long entral asade. But then

argue as in Subase (a). Theorem A is proved.

Other fators yielding big spae. Theorem A ensures that mod (Rf) is suÆiently

high if the type is suÆiently high, that is, there are suÆiently many non-entral levels.

However, there are other ombinatorial fators whih imply big mod (Rf) as well. For

example, if the return time of some V

n+1

j

bak to V

n

under iterates of g

n

is high, then

Lemma 3 implies big spae.

Sometimes long entral asades imply big spae as well. Let us onsider suh a

asade

V

m

� ::: � V

m+N�1

;

where g � g

m+1

 2 V

m+N�1

nV

m+N

. The quadrati-like map g : V

m+1

! V

m

an be

viewed as a small perturbation of a quadrati-like map G with a de�nite modulus and

with non-esaping ritial point. Let  2 �M be the internal lass of G .

Lemma 11. Under the above irumstanes let us assume that z 7! z

2

+  does not have

neither paraboli points nor Siegel disks. If g is suÆiently lose to G (depending on 

and a priori bounds) then mod (A

m+N+3

) is big.

Proof. The above assumptions mean that the Julia set J(G) has empty interior. If g

is suÆiently lose to G then �

m+N�1

= �V

m+N�1

is lose in the Hausdor� metri to

J(G) . Hene �

m+N�1

has a big eentriity with respet to any point z 2 V

m+N�1

.

As g

m

are quadrati maps up to bounded distortion, the urves �

m+N

, �

m+N+1

and �

m+N+2

also have big eentriity with respet to any enlosed point. Moreover,

there is a de�nite spae in between these two urves. Hene mod (V

m+N

nV

m+N+2

) is

big. This implies that mod (A

m+N+3

) is big as well.

Indeed, if entral return on level m+N ours then straightening the quadrati-like

map g

m+N+1

: V

m+N+1

! V

m+N

by a q map we onlude that

mod(V

m+N

nV

m+N+2

) � mod(A

m+N+1

):

Hene A

m+N+1

has a big modulus.

So we an assume that non-entral returns our on levels m +N and m +N + 1 .

Let us show that then mod (A

m+N+3

) is big. Let  

Æs

 2 V

m+N+2

j

. Then it is easy to see

that

mod(A

m+N+3

) �

1

2

mod(V

m+N+1

n 

Æs

(V

m+N+3

)):

Let now t be the return time of V

m+N+2

j

bak to V

m+N+1

under iterates of g

m+N+1

.

Under this iterate  

Æs

(V

m+N+3

) is mapped onto V

m+N+2

, and we onlude that

mod(A

m+N+3

) �

1

4

mod(V

m+N

nV

m+N+2

);
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whih is big. tu

Remark. In the real ase we will give a omplete desription of the ombinatorial fators

produing big spae (see Lemma 16).

Proof of Corollary IIb. (loal onnetivity of the Julia sets). I learned the

following argument from J. Kahn and C. MMullen. It follows from Theorem II that the

renormalized Julia sets J(R

m

f) shrink down to the ritial point. Let us take an � > 0 ,

and �nd an m suh that J(R

m

f) is ontained in the � -neighborhood of the ritial point.

Let �

m

denote the dividing �xed point of the Julia set J(R

m

f) , and �

0

m

denote

the symmetri point. Let us onsider a topologial disk bounded by an equipotential level,

and ut it by the external rays landing at �

0

; :::; �

m�1

into the puzzle-piees P

m;1

j

(as

Yooz did in the �nitely q-renormalizable ase). Let us then pull these puzzle-piees bak

in the usual way, and use the notation P

m;l

(a) for the puzzle-piee of level l ontaining

a point a .

Consider the nest P

m;1

() � P

m;1

() � ::: of the ritial puzzle-piees. This nest

shrinks down to the Julia set J(R

m

f) . Hene there is a puzzle-piee P

m;l

() ontained

in the � -neighborhood of the ritial point. As J(f) \ P

m;l

() is learly onneted, the

Julia set J(f) is loally onneted at the ritial point.

Let us now prove loal onnetivity at any other point z 2 J(f) . Consider two ases.

Case (i). Let the orbit of z eventually land at all Julia sets J(R

m

f) . Take the �rst

moment k = k(m) suh that f

k

z 2 J(R

m

f) . Let us show that the domain U an be

univalently pulled bak along the orbit z; :::; f

k

z . Let U

0

m

� V

m;t(m)

, U

m

� V

m;t(m)�1

,

p be the return time of  bak to U

m

, and

Q

m

�

p

[

t=1

f

t

U

0

m

(23):

Let us �nd the smallest natural number l suh that f

l

z 2 Q

m

; and moreover let f

l

z 2

f

s

U

m

; 1 � s � p . Then f

l�1

z belongs to the domain 
 whih is  -symmetri to

f

s�1

U

m

. As 
 is disjoint from Q

m

� !() , there is a single-valued branh f

�l

: 
 !

Z 3 z . On the other hand, learly there is a single-valued branh f

�(s+1)

: U

m

! 
 .

Hene there is a single-valued branh f

�k

: U

m

! Z as it was laimed.

Beause of the a priori bounds, the Julia set J(R

m

f) is well inside of U

m

. Hene

there is a puzzle piee P

m;l

() � J(R

m

f) whih is well inside of U

m

as well. It follows

from the Koebe Theorem that its pull-bak Y 3 z has a bounded shape and hene a small

diameter (for suÆiently big m ). As Y \ J(f) is onneted, we are done.

Case (ii). Assume that the orbit of z never lands at J(R

m

f) . Then it never lands

at the forward orbit J

m

of J(R

m

f) . Hene it aumulates on some point a 62 J

m

. But

the puzzle-piees P

m;l

(a) are disjoint from the ritial set for suÆiently big l . Pulling

them bak to z , we again obtain small piees Y 3 z ontaining a onneted part of the

Julia set. tu

x4. Pull-Bak Argument.

Any quadrati polynomial indues an equivalene relation on the rational points of

the irle T by identifying the external arguments whose external rays land at the same
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point of the Julia set (see Douady and Hubbard [DH1℄, [D2℄ and [H℄). Two quadrati-like

maps are alled ombinatorially equivalent if they indue the same equivalene relation

(the ombinatorial lasses are learly bigger than the topologial ones). The ombinatorial

lass of quadrati polynomials is obtained by interseting a nest of parameter puzzle-piees

bounded by appropriate external rays and equipotentials. The de�nition of ombinatorially

equivalent quadrati-like maps is straightforward.

Our goal is to prove the following result.

Theorem III. Let f and

~

f be two quadrati-like maps of lass F . If these maps are

ombinatorially equivalent then they are quasi-onformally onjugate.

Corollary. Any quadrati polynomial f : z 7! z

2

+  of lass F is ombinatorially rigid,

so that MLC holds at  .

Proof of Corollary. The well-known argument: ombinatorial lasses of quadrati poly-

nomials are losed, while q lasses are either open or single points. So if a ombinatorial

lass oinides with a q lass, both must be single points. MLC follows sine the inter-

setion of the Mandelbrot set with puzzle-piees is onneted. tu

Strategy. The method we use for proof of Theorem III is alled \the pull-bak argument".

The idea is to start with a q map respeting some dynamial data, and then pull it bak so

that it will respet some new data on eah step. In the end it beomes (with some luk) a

q onjugay. This method originated in Sullivan's work, and then was developed in several

other works (see [K℄ and [Sw℄). Our way is to pull bak through the asade of generalized

renormalizations. The linear growth of moduli gives us enough dilatation ontrol until the

next quadrati-like level, while omplex a priori bounds allow us to interpolate and pass

to the next level.

We will use tilde for marking the orresponding objets. Referring to a q-map, we

always mean that it has a de�nite dilatation. All puzzle-piees have a natural boundary

marking oming, e.g, from the uniformization of the basin at 1 (we an always assume

that we have started with a polynomial map). Let us all two on�gurations of puzzle-

piees W

i

and

~

W

i

q pseudo-onjugate if there is a q map between them respeting the

boundary marking.

Let fV

m;n

g be the priniple nest of ritial puzzle-piees (see x1). We swith from the

nest V

m;n

; n = 0; 1; :::; t(m); to the next nest V

m+1;n

; n = 0; 1; :::; when the modulus

A

m;t(m)+1

is bounded from the both sides (not only from below).

By Lemma 1 the starting on�gurations fV

m;0

i

g and f

~

V

m;0

i

g have bounded geometry,

so there is a q pseudo-onjugay h

m

between them. It is possible to pull it bak to the

�rst non-degenerate level, no matter how deep it is (The Initial Constrution below). Let

us then pull it bak through the asade of generalized renormalizations (the Main Step

below). Sine the geometri moduli of these maps linearly inrease, the positions of their

ritial values are loalized with an exponentially high preision. It follows that the q

dilatation of the pseudo-onjugay on the next level an jump only by an exponentially

small amount. Hene we will arrive at the next quadrati-like level m+ 1 with a q map

H

m

with bounded dilatation.

Finally, sine the annuli A

m;t(m)+1

and

~

A

m;t(m)+1

have a de�nite moduli, we an

q interpolate in between H

m

on their outer boundaries and h

m+1

on the inner ones
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(keeping the map in the right homotopy lass mod the ritial set). This gives us a q

pseudo-onjugay between the nests of ritial puzzle-piees. Then it an be easily spread

around to the whole ritial set. Sullivan's pull-bak argument ompletes the onstrution.

Main Step. Let g : [V

i

! � and ~g : [

~

V

i

!

~

� be two generalized polynomial-like maps.

The objets on the next renormalization level will be marked with prime. So g

0

: [V

0

j

! �

0

is the generalized renormalization of g , �

0

� V

0

. Let � the priniple modulus of g .

Remark. We don't assume that the non-ritial puzzle-piees V

n

i

; i 6= 0; are well inside

� , sine this is not the ase on the levels whih immediately follow long asades of entral

returns. We even allow the annuli �nV

n

i

; i 6= 0 to be degenerate whih atually happens

in the beginning.

Let �(�) be the maximal hyperboli distane between the points in the hyperboli

plane enlosed by an annulus of modulus � . Note that �(�) = O(e

��

) as � ! 1 . Set

� = �(�) .

Let

h : (�; V

i

)! (

~

�;

~

V

i

) (24)

be a K -q pseudo-onjugay between the orresponding on�gurations. Our goal is to

pull this map bak to the next level. The problem is that h does not respet the positions

of the ritial values. We assume �rst that we have a non-entral return on this level, that

is 

1

� g() 2 V

k

with i 6= 0 .

Let P

l

be the pull-baks of V

0

by the univalent branhes of iterates g interseting

the ritial set. We an pull h bak by these branhes to obtain a K -q pseudo-onjugay

h

1

: (�;[P

l

)! (

~

�;[

~

P

l

):

This loalizes the positions of the ritial values in the sense that the hyperboli distane

between h

1

(

1

) and ~

1

in V

k

is O(�) . Indeed, they belong to the same puzzle-piee

~

P

l

whose hyperboli diameter in V

k

is at most � .

Hene we an �nd a di�eomorphism  :

~

� !

~

� whih is id outside

~

V

k

, moves h

1



to ~ , and has a q dilatation 1 +O(�) . Then the K(1 +O(�)) -q map

h

2

=  Æ h

1

: (�; V

i

)! (�; V

i

)

respets the same on�gurations as h , and also arries  to ~ .

Now we an pull h

1

bak to

H : (�

0

; U

0

i

)! (

~

�

0

;

~

U

0

i

); (25)

where U

0

i

are g -pull-baks of V

i

to �

0

. However U

0

i

are not the same as V

0

j

, so we

have to do more. What we need is to loalize the positions of the ritial values a = g

0



and ~a of the next renormalizations. The argument depends on where they are. Let

a

1

= g(a) 2 V

j

.

Case (i). Assume V

j

is non-ritial and di�erent from V

k

. Then we an simultane-

ously move of 

1

and a

1

to the right positions, and then pull the map bak to �

0

.

Case (ii). Assume that V

j

= V

k

. If the hyperboli distane between a

1

and 

1

in

V

j

is greater than �(�=2) then the hyperboli distane between the orresponding tilde-
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points is greater than �(K�=2) . Then we an simultaneously move these points to the

right positions by a q map  with dilatation 1 + O(�(K�=2)) .

Otherwise let us �rst move 

1

to the right position, and pull the map bak to H

as in (25). Then a and  stay in V

0

on hyperboli distane O(�(K�=4)) , and the

orresponding tilde-points stay on distane O(�(K

2

�=4)) . Hene H(a) and ~a stay in

~

V

0

on hyperboli distane Æ = O(�(K

2

�=4)) . So we an move these points to the right

positions by a K(1 + Æ) -q map respeting the boundary marking of V

0

(though not

respeting the ritial points any more).

Case (iii). Let us �nally assume that V

j

= V

0

is ritial. Then a belongs to a pre-

ritial puzzle-piee V

0

s

� V

0

. Sine mod( V

0

nV

0

s

) � �=2 , the map H onstruted above

(see (25)) almost respets the positions of a -points in V

0

. So we an make it respet

these points keeping �V

0

untouhed.

After all, we have onstruted a (1 + O(�

d

)) -q map

h

2

: (�; V

i

; a)! (

~

�;

~

V

i

; ~a):

Let us now start over again, and pull this map bak to get a q map

h

3

: (�;[P

l

)! (

~

�;[

~

P

l

):

Unlike h

1

above this map also respets the forward orbits of the ritial points (that is,

the appropriate pre-images of a ) until their returns to the entral puzzle-piees. Hene

we an pull h

3

bak to the ritial puzzle-piee �

0

. Sine V

0

j

are the pull-baks of P

l

,

this map respets the boundary marking of V

0

j

, and we are done (in the non-entral ase).

Casades of entral returns. Let V

m

� V

m+1

� ::: � V

m+N

be a asade of

entral returns, that is the ritial value g

m+1

 belongs to V

k

; k = m+1; :::;m+N � 1 ,

but esapes V

m+N

. We assume that the following on�gurations are q pseudo-onjugate:

h : (V

m

; V

m+1

)! (

~

V

m

;

~

V

m+1

):

Set g = g

m+1

; � = mod(V

m

nV

m+1

) .

Let us take non-entral puzzle-piees V

m+1

i

� A

m+1

= V

m

nV

m+1

and pull them

bak to the annuli A

m+2

; :::; A

m+N

: We obtain a Markov family of puzzle-piees W

m+k

i

.

Let us indue on this Markov sheme the �rst landing map

� : [P

m+k

l

! V

m+N

:

Then

mod(W

m+k

i

nP

m+k

l

) � �;

so that the dynamially de�ned points are well loalized by this partition.

Now we an proeed along the lines of the Main Constrution just using the following

substitution: W

m+k

i

play the role of V

i

, V

m+N

plays the role of �

0

� V

0

. So we pull

h bak to

h

1

: (�;[P

l

; V

m+N

)! (

~

�;

~

[P

l

;

~

V

m+N

);

orret this map to make it respet the g -ritial values and then pull it bak to V

m+N

as in (25):

H : (V

m+N

; U

i

)! (

~

V

m+N

;

~

U

i

);
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where U

i

are the pull-baks of W

m+N

i

and V

m+N

. Take now the �rst return b of the

ritial point bak to V

m+N

, and look at Cases (i), (ii), (iii) of the Main Step. The

�rst two ases go in the same way as above. However, the last ase is di�erent sine the

pre-ritial puzzle-piees U

1

and U

2

are not neessarily well inside of V

m+N

.

To take are of this problem let us �rst onsider the �rst landing map

 : [Y

j

! V

m+N+1

from U

1

[U

2

to V

m+N+1

, and pull H bak to the domain of  . Sine the omponents

Y

j

of this domain are well inside U

s

(namely mod (U

s

nY

j

) � mod(A

m+N+1

) � � ), this

gives us an appropriate loalization of the b -points.

Initial Constrution. In the beginning we have a asade 


0

� ::: � 


N

of entral

returns with degenerate annuli. So we may not diretly apply the above argument. Below

we use the notations of Lemma 0. We start with a q pseudo-onjugay respeting the

dynamis on the external rays through � , �

0

,  , 

0

and the equipotentials of �


1

.

Step 1. Let us now onstrut a q map Q !

~

Q . Let a = f

s

 be the last point of

orb () landing at a W

j

before the return bak to V

0

. If the points a = g

N

 and ~a are

well inside W

j

and

~

W

j

orrespondingly, then we an take a q map (W

j

; a) ! (

~

W

j

; ~a)

and pull it bak to Q -piees.

Otherwise let us ut 


N

by the external rays landing at 

0

, and take the omponent

E attahed to the �xed point � . Then the branh of g

�1

�xing � univalently maps E

into itself. So F = Eng

�1

E is a ombinatorially well-de�ned fundamental domain for g

near the �xed point � . Hene if w � f

i

(a) 2 E (ombinatorially lose to � ) then there

is the �rst moment l � 0 depending only on ombinatoris suh that g

l

w 2 F .

Let us also onsider the fundamental domain

F

�

= F [ g

�1

F [ g

�2

F

for the third iterate of g . If the external lass of f belongs to the given set of trunated

limbs of order two then the on�guration (F

�

; g

l

a) has a bounded geometry. Hene we

an start with a q map respeting these on�gurations and the dynamial pairing on the

�F

�

.

Let us now pull this q map bak to g

�3

E; g

�6

E; ::: If l� 1 = 3m then the m -fold

pull-bak will arry the point w to ~w . Then we an pull this map bak to Q -piees by

the appropriate iterate of f . If l � 1 is not a multiple of 3 then we an replae it by

l � 1� n whih is a multiple of 3 (where n = 1 or 2) and orrespondingly replae F by

g

�n

F .

Step 2. Let us now take a point z 2 


0

and push it forward by iterates of g until

it lands either at [W

j

[ (


0

n


1

) or at Q . If it happens, then we an pull the pseudo-

onjugay to an appropriate piee ontaining z . The q maps onstruted in suh a way

agree on the ommon boundaries of the puzzle-piees. The set of points where this map

is not de�ned is an expanding Cantor repellor. Hene it is q removable, and the map

automatially allows a q ontinuation aross it. This provides us with a q map

(


0

; V

0

; Q)! (

~




0

;

~

V

0

;

~

Q)

.
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Step 3. Let us now loalize the �rst return b of the ritial point bak to V

0

. To this

end let us push b forward until the �rst moment t it returns bak to Q . Let u = f

t

b .

The proedure depends on whether u and  stay on bounded hyperboli distane in Q

(in terms of a given quanti�er R ) or not (ompare Case (ii) of the Main Constrution).

In the former ase the position of u is already well loalized inside of Q . In the latter

ase we an on Step 1 simultaneously loalize positions of a = g

N

 and g

N

u in W

j

and

pull them bak to Q . Hene we an hange the q pseudo-onjugay inside of Q so that

it respets u -points. Pulling this bak as on Step 2, we onstrut a q pseudo-onjugay

respeting b -points.

Step 4. Let us onsider the full �rst return map G : [Z

j

! V

0

. Its domain overs

the whole piee V

0

exept for a removable Cantor set K � V

0

. We an now onstrut a

qs pseudo-onjugay

(V

0

; Z

j

)! (

~

V

0

;

~

Z

j

)

by the simple pull bak and removing K . Sine the puzzle-piees V

1

i

are among Z

i

, we

are done.

By Lemma 2, the priniple modulus is de�nite on this level. So we an proeed further

by applying the Main Step.

Q onjugay on the ritial sets. Let us show now that there is a q map onjugating

f and

~

f on their ritial sets. Let t = (m;n) 2 T runs over the indies of the priniple

nest of puzzle-piees. Clearly the lexiographi order on T orresponds to inlusion of the

puzzle-piees. Let Q

t

0

� V

t

, and Q

t

l

be all pull-baks of Q

t

0

orresponding to the �rst

landing of the orbits of z , z 2 !(); at Q

t

0

. Then

!() =

\

t

[

l

Q

t

l

:

Let us onsider the multiply onneted domains

P

t

l

= Q

t

l

n

[

k

Q

�

k

;

where � 2 T immediately follows t in the lexiographi order. The boundaries of P

t

l

are

naturally marked.

By the Teim�uller distane between two marked domains (of the same q type) we

mean the logK where K is the q dilatation of the best q homeomorphism between the

domains respeting the marking.

Lemma 11. The domains P

t

l

and

~

P

t

l

stay on bounded Teihm�uller distane.

Proof. We have proved that the pairs (V

t

;[

j

V

�

j

) and (

~

V

t

;[

j

~

V

�

j

) stay a bounded

Teihm�uller distane. Pulling the orresponding q equivalene bak by the univalent

branhes of g

�

we obtain that P

�

0

and

~

P

�

0

also stay a bounded Teihm�uller distane.

Pulling this bak by the univalent branhes of f we obtain the laim for all l . tu

Gluing now together the multiply onneted domains under onsideration, we on-

strut a homeomorphism h : V

0

!

~

V

0

whih is q on V

0

n!() and onjugates f and

~

f

on their ritial sets. Sine the ritial sets are removable, we are done.
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Homotopy. Let  

0

: (U;U

0

) ! (

~

U;

~

U

0

) be a homeomorphism onjugating f and

~

f .

We will show now that the q map h onjugating f and

~

f on their ritial sets an be

onstruted in suh a way that it is homotopi to  

0

rel the ritial sets.

As in the proof of Corollary 2, let U

m

� V

m;t(m)

, U

0

m

� V

m;t(m)+1

, U

00

m

�

V

m;t(m)+2

, G

m

: U

0

m

! U

m

be the orresponding quadrati-like renormalization of f ,

and let Q

m

be de�ned as in (23). These sets nest down to !() .

A seletion of the straightenings of the quadrati-like maps G

m

and

~

G

m

provides us

with a hoie of onjugaies

 

m

: (U

0

m

; U

00

m

)! (

~

U

0

m

;

~

U

00

m

):

Let us ontinue  

m

to the annuli U

m

nU

0

m

in suh a way that  

m

'  

m�1

(are homotopi)

in the annulus U

m

nJ(G

m

) rel the boundary. Then let us spread  

m

around to the whole

set Q

m

. Outside Q

m

set  

m

=  

m�1

. Clearly  

m

'  

m�1

mod J

m

where J

m

is the

orbit of J(G

m

) .

Let us de�ne a homeomorphism  : U !

~

U as the pointwise lim 

m

. This home-

omorphism is homotopi  

0

rel the ritial sets. Let us now onstrut a q map h

homotopi to  rel the ritial sets. First of all, the above seletion of the straightenings

should be uniformly q whih is possible beause of the a priori bounds (Theorem B). Then

let us assume by indution that we have already onstruted a map h

m�1

'  mod Q

m

whih is q outside Q

m

.

Let us ut U

m

by the external rays through the points �; �

0

; ; 

0

into puzzle-piees

S

i

, and go through the above pull-bak onstrution. In the beginning we hange  

m

on

the S

i

to make it q. As the piees S

i

are simply-onneted, this hange an be done

via homotopy rel the boundary. Then this homotopy an be pulled bak to the deeper

puzzle-piees aording to the Starting Constrution. This provides us with a homotopy

rel the boundary

(V

0

;[V

1

i

)! (

~

V

0

;

~

V

1

0

):

Then this homotopy an be pulled bak through the asade of Main Steps, and spread

around to the whole ritial set (as in the previous subsetion). This gives us a q map

h

m

: U

0

nQ

m+1

!

~

U

0

n

~

Q

m+1

homotopi to  

m

rel the boundary.

We should now ontinue this map to the annulus R

m

= U

m

nU

0

m

. To this end observe

that  

m�1

has a bounded twist in this annulus sine it an be deformed rel the boundary

to a q map (by the above pull-bak argument). Hene  

m�1

has a bounded twist in the

annulus U

m

nJ(G

m

) as well, sine this homotopy an be pulled bak to this annulus (and

by a hyperboli argument will automatially be trivial on the Julia set). Consequently

the ontinuation of  

m

(and hene h

m

) to R

m

(suh that  

m

'  

m�1

in U

m

nJ(G

m

)

mod the boundary) has a bounded twist as well. Hene this ontinuation an be realized

quasi-onformally.

Finally we an spread the homotopy from U

m

around the Q

m

.

Sullivan's pull-bak argument. Remember that  

0

: (U;U

0

)! (

~

U;

~

U

0

) is a onjugay

between f and

~

f , and h is a K -q map homotopi to  

0

rel the ritial sets. Sullivan's

Pull-bak argument allows us to reonstrut h into a q onjugay.
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Let U

n

be the preimages of U under the iterates of f . We an always assume that

hjU

n

=  . Sine h(

1

) = ~

1

, we an lift h to a K -q map h

1

: U

1

=

~

U

1

homotopi to

 rel the ritial set and �U

1

. Hene h

1

= h on these sets, and we an ontinue h

1

to

UnU

1

as h . This map onjugates f and

~

f on the ritial sets and also on U

1

nU

2

.

Let us now replae h with h

1

and repeat the proedure. In suh a way we onstrut

a sequene of K -q maps h

n

onjugating f and

~

f on the ritial sets and on U

1

nU

n+1

.

Passing to a limit we obtain a desired q onjugay.

x5. Real ase.

In this setion we will prove the following dihotomy: real maps of Epstein lass (see

below) either have a big omplex spae on the next quadrati-like level, or essentially

bounded real geometry (\essentially" loosely means \up to saddle-node asades"). The

main ingredient is to reate a generalized polynomial-like map with a de�nite modulus on

an essentially bounded level. By Theorem I this implies big spae, provided the type is

suÆiently high. From this dihotomy we derive the real rigidity theorem.

Preliminaries. Let �(z) = (z � )

2

denote the purely quadrati map. Let I

0

� I be

two nested intervals. A map f : I

0

! I is alled quasi-quadrati if it is S -unimodal and

has quadrati-like ritial point  .

Let us also onsider a more general lass A of maps g : [T

i

! T de�ned on a �nite

union of disjoint intervals T

i

ompatly ontained in an interval T . Moreover, gjT

i

is a

di�eomorphism onto T for i 6= 0 , while gjT

0

is unimodal with g(�T

0

) � �T . We also

assume that the ritial point  2 T

0

is quadrati-like, and that Sg < 0 . Maps of lass

A are real ounterparts of generalized polynomial-like maps.

Let g 2 A , and gjT

0

= h Æ � where and h is a di�eomorphism of an appropriate

interval K � �(T

0

) onto T . This map belongs to the so-alled Epstein lass E (see [S℄

and [L2℄) if the inverse branhes f

�1

: T ! T

i

for i 6= 0 and h

�1

: T ! K allow analyti

extension to the slit omplex plane CnT .

Let I

0

= [�; �

0

℄ be the interval between the dividing �xed point � and the symmetri

one. Let M denote the full Markov family of pull-baks of the interval I

0

. Given a ritial

interval J 2 M (that is, J 3  ), we an de�ne a (generalized) renormalization R

J

f on

J as the �rst retun map to J restrited to the omponents of its domain meeting the

ritial set. If f admits a unimodal renormalization, then there are only �nitely many suh

omponents, so that we have a map of lass A . Moreover, if f is a map of Epstein lass

or a polynomial-like map, the renormalization R

J

f inherits the orresponding property.

Let I

0

� I

1

� : : : � I

t+1

be the real prinipal nest of intervals until the next

quadrati-like level (that is, I

n+1

is the pull-bak of I

n

orresponding to the �rst return

of the ritial point. Let us use the same notation g

n

: [I

n

j

! I

n�1

for the real generalized

renormalizations on the intervals I

n

.

Our �rst goal is to �ll-in the gap in between the notions of bounded ombinatorial

type in the sense of period and in the sense of the number of entral asades. To this end

we need to analyse in more detail asades of entral returns.

The return on level n � 1 is alled high or low if g

n

I

n

� I

n

or g

n

I

n

\ I

n

= ;

orrespondingly. Let us lassify the asades

I

m

� ::: � I

m+N

; g

m+1

 2 I

m+N�1

nI

m+N

(26)
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of entral returns as Ulam-Neumann or saddle-node aording as the return on the level

m + N � 1 is high or low. There is a fundamental di�erene between these two types of

asades. Let us all the levels m+1; :::;m+N � 1 of a saddle-node asade negletable,

and all other levels essential. Let m = e(l) ounts the essential levels.

Let K

m+i

j

� I

m+i�1

nI

m+i

denote the pull-bak of I

m+1

j

under g

Æ(i�1)

m+1

, i = 1; :::; N ,

j 6= 0 . Clearly K

m+i+1

j

are mapped by g

m+1

onto K

m+i

, i = 1; :::; N � 1 , while

K

m+1

j

� I

m+1

j

are mapped onto the whole I

m

. So we have a Markov sheme assoiated

with any entral asade.

Take now a point x 2 !()\ (I

m

nI

m+1

) on an essential level m = e(l) . Let us push

it forward by iterates of g = g

m+1

through the above Markov sheme until it lands at

the next essential level I

m+N

, m + N = e(l + 1) . Let o(x) (\the order of x ") denote

the number of times it passes through I

m

nI

m+1

before landing at I

m+N

(e.g., o(x) = 1

if gx 2 I

m+N

). Let gx 2 I

m+i

. Then set d(x)minfi; N � ig (\the depth of the �rst

iterate").

Let us now introdue the saling fators

�

n

� �

n

(f) =

jI

n

j

jI

n�1

j

:

Aording to [L2℄, these saling fators exponentially deay with the number of entral

asades. Moreover, this rate is uniform when the saling fators beome small enough.

Let us all the geometry of f essentially bounded (until the next quadrati-like

level) if the saling fators �

n

= jI

n

j=jI

n+1

j stay away from 0, while the on�gurations

(I

n�1

nI

n

; I

n

k

) have bounded geometry (that is, all intervals I

n

j

; j 6= 0 , and all omponents

of I

n�1

n[ I

n

k

(\gaps") are ommensurable). Remark that we allow the saling fators �

n

to be lose to 1.

Complex bounds. Sullivan's Setor Lemma provides us with omplex bounds in the ase

when f is in�nitely q-renormalizable of bounded type. In the non-q-renormalizable ase

the omplex bounds were obtained in [LM℄ and [L2℄. We will omplement these results

with the following theorem.

Let us pik a lass U

�;��

of real quadrati-like maps f of the same q-renormalizable

type � , and suh that mod (f) � �� , where �� > 0 is an a priori hosen small quanti�er.

Theorem D. One of the following two possibilities ours for all f 2 U

�;�

simultaneously:

either mod (Rf) � �� > 0 , or the real geometry of f is essentially bounded (until the next

quadrati-like level).

In the following two lemmas we analyse the geometry of long entral asades. Let us

all a quasi-quadrati map saddle-node or Ulam-Neumann if it is topologially onjugate

to z 7! z

2

+ 1=4 or z 7! z

2

� 2 orrespondingly.

Lemma 12. Let us onsider an Ulam-Neumann asade as (26) with ommensurable I

m

and I

m+1

. Then there is a bounded l suh that the generalized renormalization g

m+l

allows a polynomial-like extension to the omplex plane with a de�nite modulus. Moreover,

the priniple modulus �

m+N+1

is big, provided the asade is long.
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Proof. It is easy to see by ompatness argument that if the asade is long enough then

the map g

m+1

: I

m+1

! I

m

(with the domain resaled to the unit size) is C

1

-lose

to an Ulam-Neumann map. It follows that I

m+N

oupies a de�nite part of I

m

, and,

moreover, jI

m+k

nI

m+N

j derease with k at a uniformly exponential rate. Hene there is

a bounded l suh that I

m+l

nI

m+N

is � -tiny as ompared with I

m+N

.

Take now the Eulidian disk D = D(I

m+l

) and pull it bak by the inverse branhes

of g

m+l+1

(as in the previous lemma). As g

m+l+l

= h Æ � where h is a di�eomorphism

with a bounded distortion, the entral pull-bak will be an ellipse based upon the interval

I

m+l+1

whose imaginary axis is O(

p

�jI

m+l+1

j) . It follows that this ellipse is well inside

of D .

The last statement follows from Lemma 11. tu

Lemma 13. All saddle-node patterns (26) of the same length with ommensurable I

m

and I

m+1

are qs equivalent.

Proof. Let g : I

0

! [0; 1℄ be a unimodal map of Epstein lass (and perhaps esaping

ritial point): g 2 E

u

. By de�nition, g = h Æ � with a di�eomorphism h whose inverse

allows the analyti extension to Cn[0; 1℄ . Let us supply this spae with with the Montel

topology on h

�1

.

The set of g 2 E

u

with bounded geometry on the real line is ompat. Hene given a

long saddle-node asade (26), the map G obtained from g

m+1

: I

m+1

! I

m

by resaling

I

m

to the unit size must be lose to a saddle-node quadrati-like map. Hene we an

redue G to a form z 7! z+ �+ (z) > 0 where  (z) is uniformly omparable with z

2

,

and (as we will see in a moment) � is determined (up to a bounded error) by the length

of the asade.

Take a big a > 0 . When jzj < a

p

� , the step G(z) � z is of order � . Otherwise

 (z) dominates over � , and in the hart � = 1=z the step is of order 1. It follows that

the qs lass of the asade is determined by � , whih in turn is related to the length of

the asade by N � 1=

p

� . tu

Given two intervals L � S , let P (LjS) denote the Poinar�e length of L in S . Given

an interval I , let D(I) denote the Eulidian disk based upon I as a diameter.

Lemma 14. Assume that �

n

< � with a suÆiently small � > 0 . Then there is an inter-

val T 2 M ontaining I

n+2

suh that the renormalization R

T

f allows a (generalized)

polynomial-like extension to the omplex plane with the priniple modulus � ! 1 as

�! 0 .

Proof. First of all we an assume that all intervals I

n

j

are well inside I

n�1

(otherwise pass

to the next level). The following onstrution of a polynomial-like map is ombinatorially

the same as in [L℄, Lemma 5.3. For the reader's onveniene we briey repeat it.

Let g � g

n

: [I

n

j

! I

n�1

. Let us indutively de�ne the ut-o� orbit of I

n

0

as

g

l

ut

(I

n

0

) = g (g

l�1

ut

(I

n

0

) \ I

n

j

);

provided I

j

3 g

l�1

; j 6= 0 . We stop at the �rst moment when g

l

ut

I

n

0

\ I

n

0

6= ; . Let

us de�ne T � T

0

3  as the pull-bak of I

n�1

by g

l

, and set GjT

0

= g

l

. Clearly

I

n

� T

0

� I

n+1

, and G(�T

0

) � �I

n�1

:
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Let now z 2 (!() \ I

n�1

)nT

0

. If z 2 I

n�1

nI

n

then let T (z) be the interval

I

n

j

� I

n

(z) ontaining z , and GjT (z) = g . If z 2 I

n

nT

0

then let us push z forward

by iterates of g until it is separated from the orresponding iterates of  by the intervals

I

n

j

. Let it happen at moment s , and g

s

 2 I

n

k

. It follows from the hoie of l that s � l

and k 6= 0 . Let us now de�ne T (z) as the pull-bak of I

n

k

by g

s

, and GjT (z) = g

s+1

.

It is easy to see that G : T (z)! I

n�1

is a di�eomorphism.

So we have onstruted a map G : [T

i

! I

n�1

of lass A . Let us now take the

Eulidian disk D = D(I

n�1

) and pull it bak by the inverse branhes of G . This provides

us with a set of domains D

i

based upon the intervals T

i

. Moreover, by a little hyperboli

argument (see e.g., Lemma 8.1 of [LM℄) D

i

� D(T

i

) .

Let us now estimate the shape of D

0

. To this end let us onsider the following

deomposition:

GjT

0

= (gjI

n

i

) Æ (hjK) Æ �jT

0

:

Here g

l�1

 2 I

n

i

, and g

l�1

jT

0

= h Æ� , where h is a di�eomorphism of an appropriate in-

terval K onto I

n

i

with a Koebe spae spreading over I

n�1

. As I

n

i

is well inside of I

n�1

,

hjK has a bounded distortion. Moreover, gjI

n

i

is quasi-symmetri (as a omposition of the

quadrati map and a di�eomorphism of bounded distortion). Hene GjT

0

= (HjK) Æ �jT

0

with a quasi-symmetri di�eomorphism H . Furthermore, as G(T

0

) \ I

n

0

6= ; ,

jG(T

0

)j �

1� �

2

jI

n�1

j:

Pulling this bak by the qs map H , we onlude that

j�(T

0

)j � ÆjKj

with Æ = Æ(�) . Let Q be the pull-bak of D by H . Then Q � D(K) . Pulling this bak

by the quadrati map � , we onlude that D

0

has a bounded shape. As it is based upon

a � -tiny interval I

n

0

, it is well inside D . Moreover, the annulus DnD

0

is getting big as

�! 0 .

It follows that R

T

G satis�es the desired properties. Finally, it is easily seen from the

onstrution that the �rst return map to T under f oinides with the �rst return map

under f , so that R

T

f = R

T

G . tu

Now we are ready to state the key lemma.

Lemma 15. There is an interval T 2 M suh that the renormalization R

T

f allows a

polynomial-like ontinuation to the omplex plane with a de�nite priniple modulus � .

Moreover, T lies on an essentially bounded level: T � I

e(l)

.

Proof. Take a small � > 0 and Æ > 0 , and selet the �rst moment l for whih

�

l

> (1� Æ)�

l�1

: (27)

For suh a level [L2,x5℄ provides us with a polynomial-like map G : [D

i

! D(I

l

) with

a de�nite modulus and suh that the number of entral asades preeding T

0

= D

0

\R

is bounded. Moreover, only the last of these asades may be of Ulam-Neumann type. If

this asade is of bounded length then T

0

lies on an essentially bounded level. Otherwise

Lemma 12 provides us with a desired polynomial-like map.
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On the other hand, if (27) fails to happen on the �rst s = log �=log(1� Æ) + 1 levels

then we ome up with an � -small saling fator, and an apply Lemma 14. tu

Given a q-renormalizable map f , let �(f) denote the maximum of the type �(f) ,

the lengths of the Ulam-Neumann asades, the orders o(x) and the depths d(x) for all

x 2 !() .

Lemma 16. Take a �� > 0 . Let f be a q-renormalizable unimodal map of Epstein lass

of a bounded distortion D . If �(f) is suÆiently high (depending on D and �� only),

then the renormalization Rf is polynomial-like with mod (Rf) > �� .

Proof. Assume that (i) ours. Then by Lemma 15 on an essentially bounded level T we

an reate a generalized polynomial-like map R

T

f with a de�nite modulus (> �� > 0 ).

Then by Theorem A the moduli of further renormalizations of R

T

f will grow at a linear

rate with the number of entral asades. Hene the quadrati-like renormalization Rf

will have a �� -big modulus, provided there are suÆiently many entral asades.

If (ii) ours then by Lemma 12 in the end of the Ulam-Neumann asade we observe

a generalized polynomial-like map with a big modulus. Then by Corollary 6 the modulus

of the quadrati-like renormalization Rf will be big as well.

Assume further that there is an x 2 !() \ (I

m

nI

m+1

) of a high order o(x) , where

I

m

� ::: � I

m+N

is a entral asade as (26) (it may be N = 1 ). Let us onsider the

above Markov sheme involving the intervals K

m+i

j

. Let J 3 x denote the pull-bak of

I

m+N

orresponding to the �rst landing of the orb (x) at I

m+N

.

As the intervals K

m+1

j

are well inside of I

m

nI

m+1

, and orb (x) passes many times

through these intervals before the �rst landing at I

m+N

, the Poinar�e length

P (J j(I

m

nI

m+1

)) is big. Pulling this interval bak to the ritial point we will �nd a

level with a small saling fator. Applying Lemma 14 we get the laim.

Let us �nally assume that there is an x 2 !() \ (I

m

nI

m+1

) with high d(x) . Then

g

m+1

x 2 I

m+i

nI

m+i+1

with d(x) � i � N � d(x) . Then by Lemma 13 I

m+i

nI

m+i+1

is

tiny in I

m

. It follows that the interval J 3 x introdued two paragraphs up is tiny in

I

m

nI

m+1

. Now we an omplete the argument as above. tu

Remark. Now a little extra work shows that if �(R

m

f) is suÆiently high on all levels,

then MLC holds at  2 R .

Lemma 17. If �(f) is bounded, then the geometry of f is essentially bounded (until

the next quadrati-like level).

Proof. Assume that the geometry is bounded on level n�1 , and let us see what happens

on the next level. Given an x 2 !() \ (I

n�1

nI

n

) , let J(x) denote the pull-bak of I

n

orresponding to the �rst landing of orb( x ) at I

n

. As the landing time under iterates of

g

n

is bounded, J(x) is ommensurable with I

n�1

.

To reate the intervals I

n+1

j

, we should pull all intervals J(x) bak by g

n

: I

n

!

I

n�1

. As g

n

is a quasi-quadrati map, all non-entral intervals I

n+1

j

and the gaps in

between are ommensurable with I

n

.

The only possible problem is that the entral interval I

n+1

may be tiny in I

n

. This

may happen only if the ritial value g

n

 2 J(x) is very lose to the �J(x) . Let l be
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suh that f

l

J(x) = I

n

. Sine f

l

: J(x)! I

n

is qs, g

n+1

 = g

Æ(l+1)

n

turns out to be very

lose to �I

n

(\very low return"). But g

n+1

 belongs to some non-entral interval I

n+1

j

whose Poinar�e length in I

n

is de�nite (as we have shown above). This is a ontradition.

So when we pass from one level to the next, the geometri bounds hange gradually

(provided the onditions of Lemma 16 don't hold). But the same is true when when we

pass from level m = e(l) to level m+N = e(l+1) of a saddle-node asade (26). Indeed,

assume that the geometry on level I

m

is bounded. Then the geometry of all on�gurations

(I

m+i�1

nI

m+i

; K

m+i

j

) , i = 1; :::;m+N , are bounded as well. Let us de�ne the intervals

J(x) , x 2 !()\ (I

m+N�1

nI

m+N

) , as the pull-baks of I

m+N

orresponding to the �rst

landing of orb (x) at I

m+N

. Then it follows from boundedness of o(x) and d(x) that

the on�gurations of intervals J(x) has a bounded geometry in I

m+N�1

. Now we an

pull these intervals bak to the next level m + N , and argue that the geometry is still

bounded in the same way as above. tu

Now Theorem D follows from the last two lemmas.

Quasi-symmetri onjugay. We will show below that any two real quadrati-like maps

with the same ombinatoris are qs onjugate, whih implies the real rigidity onjeture

(ompare [Sw℄). To onstrut the onjugay, we boune in between Sullivan's argument

for bounded geometry ase, and the pull-bak argument of x4.

Let us take two maps f and

~

f of Epstein lass with a bounded distortion on the real

line. Let us onsider the alternatives of Theorem D. In the latter ase the real geometry

is essentially bounded before the next quadrati-like level. This allows us to onstrut

a q pseudo-onjugay between the on�gurations of the Eulidian disks based upon the

intervals I

n

j

. The onstrution is the same as in the bounded geometry ase (see [MS℄,

Ch. IV, Theorem 3.1), exept that Lemma 12 takes are of long saddle-node asades.

If the �rst alternative of Theorem D ours, then by Lemma 15 on some essentially

bounded level we an reate polynomial-like maps with de�nite moduli. By Lemma 17 the

geometry is essentially bounded until that level, and we an apply the previous argument.

On that level we an swith to the pull-bak argument of x4. (To begin the argument, use

the initial onstrution of [L3℄, x5.)

When we arrive at the next quadrati-like level, then we proeed as follows. In the

�rst ase we have arrived with a q pseudo-onjugay between on�gurations of Eulidian

disks. Then just apply the previous onstrution to Rf (here we need real a priori bounds

for in�nitely q-renormalizable maps [G℄, [BL℄, [S℄). In the seond ase we have arrived with

on�gurations of topologial disks. Then interpolate the q pseudo-onjugay as in x4, and

onformally map the range of Rf to a slit domain. This gives us a map of Epstein lass

with a de�nite distortion on the real line, and we an repeat the onstrution.
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