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x1. Introdu
tion.

A key problem in holomorphi
 dynami
s is to 
lassify 
omplex quadrati
s z 7! z

2

+ 


up to topologi
al 
onjuga
y. The Rigidity Conje
ture would assert that any non-hyperboli


polynomial is topologi
ally rigid, that is, not topologi
ally 
onjugate to any other polyno-

mial. This would imply density of hyperboli
 polynomials in the 
omplex quadrati
 family

(Compare Fatou [F, p. 73℄). A stronger 
onje
ture usually abbreviated as MLC would

assert that the Mandelbrot set is lo
ally 
onne
ted (see [DH1℄).

A while ago MLC was proven for quasi-hyperboli
 points by Douady and Hubbard, and

for boundaries of hyperboli
 
omponents by Yo

oz. More re
ently Yo

oz proved MLC

for all at most �nitely renormalizable parameter values (see [H℄, [M2℄ for the exposition

of this work and 
losely related work of Branner and Hubbard [BH℄ on rigidity of 
ubi
s).

One of our goals is to prove MLC for some in�nitely renormalizable parameter values.

Loosely speaking, we need all renormalizations to have bounded 
ombinatorial rotation

number (assumption C1) and suÆ
iently high 
ombinatorial type (assumption C2) (see x2

for the pre
ise statement of the assumptions).

This result is based on a 
omplex version of a theorem of [L2℄ whi
h says that the

s
aling fa
tors 
hara
terizing the geometry of a real non-renormalizable quasi-quadrati


map de
ay exponentially. Its 
omplex 
ounterpart proved below (Theorem I) says that

the moduli of the prin
iple nest of annuli grow linearly (this result does not need any

a priori assumptions). This makes �nitely renormalizable maps geometri
ally tame in

the sense that the return maps are be
oming purely quadrati
 in small s
ales. In the

in�nitely renormalizable 
ase satisfying assumptions (C1) and (C2) Theorem I implies


omplex a priori bounds (Theorem II) (that is, the bounds from below for the moduli of

the fundamental annuli of R

n

f ).

For real quadrati
 polynomials of bounded 
ombinatorial type the 
omplex a priori

bounds were obtained by Sullivan [S℄. Our result 
omplements the Sullivan's result in the

unbounded 
ase. Moreover, it gives a ba
kground for Sullivan's renormalization theory for

some bounded type polynomials outside the real line where the problem of a priori bounds

was not handled before for any single polynomial.

An important 
onsequen
e of a priori bounds is absen
e of invariant measurable line

�elds on the Julia set (M
Mullen [M
M℄) whi
h is equivalent to quasi-
onformal (q
)

rigidity. To prove stronger topologi
al rigidity we 
onstru
t a q
 
onjuga
y between any

two topologi
ally 
onjugate polynomials (Theorem III). We do this by means of a pull-

ba
k argument, based on the linear growth of moduli and a priori bounds. A
tually the

argument gives the stronger 
ombinatorial rigidity whi
h implies MLC.

* Supported in part by NSF grant DMS-8920768 and a Sloan Resear
h Fellowship.
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Lo
al 
onne
tivity of the Julia set is also a general 
onsequen
e of a priori bounds (see

Hu and Jiang [HJ℄, [J℄), so we have it under assumptions (C1) and (C2). Note that Douady

and Hubbard gave an example of an in�nitely renormalizable polynomial with non-lo
ally


onne
ted Julia set (see Milnor's version of the example in [M2℄). In this example the


ombinatorial rotation numbers of the �xed points of R

m

f are highly unbounded, whi
h

is ruled out by our �rst assumption.

We 
omplete the paper with an appli
ation to the real quadrati
 family. Here we 
an

give a pre
ise di
hotomy (Theorem IV): on ea
h renormalization level we either observe

a big modulus, or essentially bounded geometry. This allows us to 
ombine the above


onsiderations with Sullivan's argument for bounded geometry 
ase, and to obtain a new

proof of the rigidity 
onje
ture on the real line (
ompare M
Mullen [M
M℄ and Swiatek

[Sw℄).

This paper is organized as follows. x2 
ontains a 
ombinatorial framework: Yo

oz

puzzle, prin
iple nest, usual and generalized renormalization. Theorems I and II on geo-

metri
 moduli in the dynami
al plane are proved in x3, Theorem III yielding MLC under

the above assumptions is proved in x4. The real 
ase is dis
ussed in x5.

A
knowledgement. I would like to thank Jeremy Kahn for a fruitful suggestion (see

x3), and Curt M
Mullen and Mitsuhiro Shishikura for useful 
omments on the results.

I also thank S
ott Sutherland and Brian Yarrington for making the 
omputer pi
tures.

This work was done in June 1993 during the Warwi
k Workshop on hyperboli
 geometry.

I am grateful to the organizers, parti
ularly David Epstein and Caroline Series, for that

wonderful time.

x2. Prin
iple nest and renormalization.

We refer to [D1℄, [DH2℄ and [M1℄ for the ba
kground in polynomial-like mappings and

tuning (whi
h is 
alled below \quadrati
-like renormalization"), and to [H℄ and [M2℄ for

the introdu
tion to the Branner-Hubbard-Yo

oz puzzle.

Let f : U

0

! U be a quadrati
-like map with 
onne
ted Julia set. Let us start with

an appropriate 
ombinatorially de�ned 
 -symmetri
 domain (\puzzle-pie
e") V

0

� U

0

su
h that (see the 
onstru
tion below). Let us then 
onsider the �rst return of the 
riti
al

point ba
k to V

0

, and pull V

0

ba
k along the 
orresponding pie
e of the 
riti
al orbit.

In su
h a way we obtain the 
riti
al puzzle-pie
e V

1

� V

0

of the �rst level. If we do the

same repla
ing V

0

by V

1

, we obtain the 
riti
al puzzle-pie
e V

2

� V

1

of the se
ond

level. Pro
eeding in this manner we will 
onstru
t the prin
iple nest

V

0

� V

1

� V

2

: : :

of puzzle-pie
es. It may happen that on some level the quadrati
-like map f

�(t)

: V

t+1

!

V

t

has a 
onne
ted Julia set (whi
h is equivalent to having non-es
aping 
riti
al point).

Then we say that f is q-renormalizable, or that f admits the quadrati
-like renormal-

ization Rf = f

�(t)

: V

t+1

! V

t

(usually su
h a map is just 
alled \renormalizable" but

we need to distinguish the quadrati
-like renormalization from the generalized renormal-

ization de�ned below). In this 
ase the puzzle-pie
es V

n

shrink down to the Julia set

J(Rf) . Otherwise by the Yo

oz Theorem they shrink down to the 
riti
al point.
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Let now V

n

i

� V

n�1

denote the pull-ba
ks of V

n�1


orresponding to the �rst returns

of the points x 2 !(
) \ V

n�1

ba
k to V

n�1

, numbered so that V

n

� V

n

0

. The �rst

return map

g

n

: [V

n

i

! V

n�1

we 
all the n -fold (generalized) renormalization of f . If f admits a quadrati
-like renor-

malization, then the return time to V

n�1

is uniformly bounded on !(
) , and hen
e the

domain of the renormalized maps 
onsists of only �nitely many 
omponents V

n

i

. We se-

le
t the initial puzzle-pie
e V

0

in su
h a way that V

1

is 
ompa
tly 
ontained in V

0

(see

Lemma 0 below). Then the puzzle-pie
es V

n

i

; n � 2; are 
ompa
tly 
ontained in V

n�1

as well, and hen
e the g

n

are generalized polynomial-like maps in the sense of [L1℄.

Let us 
all this return to level n � 1 \
entral" if g

n


 2 V

n

. If we have several

subsequent 
entral returns, we refer to a 
as
ade of 
entral returns. In the q-renormalizable


ase the sequen
e of puzzle-pie
es V

n

ends with an in�nite 
as
ade of 
entral returns. Let

us denote by � = �(f) the number of the levels on whi
h the non-
entral return o

urs.

The map f admits a quadrati
-like renormalization i� � <1 .

Let us now 
onstru
t the initial puzzle-pie
e V

0

. Let q=p be the 
ombinatorial

rotation number of the dividing �xed point � . This means that there are p disjoint

external rays �

i

landing at � whi
h are permuted by the dynami
s with rotation number

q=p . They 
ut U

0

into p initial Yo

oz puzzle-pie
es. (Warning: we de�ne the external

rays in a non-
anoni
al way via a 
onjuga
y to a polynomial. These rays are not ne
essarily

the external rays for the original map f , whose geometry we would not be able to 
ontrol).

Let 


0

be the 
riti
al puzzle-pie
e, that is, the one 
ontaining the 
riti
al point. Let

us pull it ba
k along the 
riti
al orbit in the same way as we did above with V -pie
es.

Then in the beginning we may observe a 
entral 
as
ade




0

� 


1

� : : :

In what follows we always assume that this �rst 
as
ade is �nite, that is, there is an N ,

su
h that f

p


 2 


N�1

n


N

(this 
an be viewed as a part of Assumption (C2) that the


ombinatorial type is suÆ
iently high).

Let now 
 and 


0

= �
 be the periodi
 and 
o-periodi
 points of period p belonging

to 


0

. Let us trun
ate 


N

by the external rays landing at these points. The 
riti
al

puzzle-pie
e obtained in su
h a way is the desired V

0

(see Figure 1).

Lemma 0. The puzzle-pie
e V

1

is 
ompa
tly 
ontained in V

0

.

Proof. The argument below is not the shortest possible, but it will later give us important

extra information (see Lemma 2). Let W

i

; i = 1; :::; p� 1; be the puzzle-pie
es bounded

by the external rays landing at �

0

and the equipotential f

�1

U , numbered in su
h a way

that f

i

W

i

� U

0

.

Take a point z 2 


0

\ J(f) , push it forward by iterates of g = f

p

, and �nd the �rst

moment r = r(z) (if any) su
h that g

r

z lands either at W

i

(where i = i(z) ) or at V

0

.

In the �rst 
ase 
onsider the pull-ba
k X(z) of W

i

along the orbit of z , in the se
ond


ase 
onsider the pull-ba
k Y (z) of V

0

. (The points whi
h are not 
overed by the sets

X

j

and Y

j

form an invariant Cantor set in 


N

nV

0

.)
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Let us now de�ne a map G : X

j

[ Y

j

! U

0

[ V

0

in the following way: G = f

i

Æ g

r

on X

j

and G = g

r

on X

j

. Then every X

j

is univalently mapped onto 


0

, while Y

j

is univalently mapped onto V

0

. Let us push 
 forward by iterates of G until the �rst

moment l it lands at a set Y

j

. Let Q 3 
 be the pull-ba
k of 


0

under G

l

. Then

G

l

: (Q; V

1

)! (


0

; Y

j

): (0)

As Y

j

is 
ompa
tly 
ontained in 


0

, V

1

is 
ompa
tly 
ontained in Q . Observe �nally

that Q � V

0

, sin
e Q may not interse
t the boundary of V

0

. tu

If f in�nitely q-renormalizable then we 
an repeat the above 
onstru
tion on the


orresponding quadrati
-like levels, and 
onsider the full 
anoni
al nest of puzzle-pie
es:

V

0;0

� V

0;1

� : : : V

0;t(0)+1

� V

1;0

� V

1;1

� : : : � V

1;t(1)+1

� V

2;0

: : :

Here the �rst index 
ounts the quadrati
-like levels, while the se
ond one 
ounts the levels

in between. The maps V

m;t(m)+1

! V

m;t(m)

are quadrati
-like with non-es
aping 
riti
al

point, while V

m+1;0

are the 
riti
al puzzle-pie
es obtained by the above pro
edure applied

to these maps. (The 
hoi
e of the 
utting level t(m) is not 
anoni
al). We skip the �rst

index when we work in between two quadrati
-like levels.

Let us �nish this se
tion with spe
ifying exa
t 
onditions under whi
h we will prove

MLC. To these end we need several notions. A limb of the Mandelbrot M set is the


onne
ted 
omponents of Mnf


0

g (whi
h does not 
ontain 0) where 


0

is a bifur
ation

point on the main 
ardioid. A limb is spe
i�ed by spe
ifying a 
ombinatorial rotation

number at the dividing �xed point. If we remove from a limb a neighborhood of its root




0

, what is left we 
all a trun
ated limb. By a (trun
ated) se
ondary limb we mean

the similar obje
t 
orresponding to the se
ond bifur
ation from the main 
ardioid ( see

Figure 2).

Two quadrati
-like maps are 
alled hybrid (or internal) equivalent if they are 
onjugate

by a q
 map h with

�

�h = 0 almost everywhere on the Julia set. By the Douady-Hubbard

Straightening Theorem [DH2℄, any hybrid 
lass with 
onne
ted Julia set 
ontains a unique

quadrati
 polynomial z 7! z

2

+ 
 . So su
h hybrid 
lasses are labeled by points on the

Mandelbrot set.

Let F denote the 
lass of maps admitting in�nitely many quadrati
-like renormal-

izations and satisfying the following assumptions:

(C1). First sele
t in the Mandelbrot set a �nite number of trun
ated se
ondary limbs.

We require the hybrid 
lasses of all quadrati
-like renormalizations R

m

f to be pi
ked from

these limbs.

(C2). On the other hand, we also require the 
ombinatorial type �(R

m

f) to be

suÆ
iently high on all levels (depending on the a priori 
hoi
e of limbs).

The se
ond 
ondition 
an be improved by spe
ifying other 
ombinatorial fa
tors produ
ing

a big spa
e (see the subse
tion with Lemma 11 and Lemma 16).

x3. Geometri
 moduli.

Let us summarize the results of the se
tion in two Theorems. We say that a quadrati
-

like map f : U

0

! U has a de�nite modulus if mod(UnU

0

) � �� > 0 (with an a priori

sele
ted quanti�er �� ).

4



Theorem I. Let f be a polynomial-like map with a de�nite modulus whose internal 
lass

is sele
ted from a given �nite family of trun
ated se
ondary limbs. Let n(k) 
ount the

levels of non-
entral returns (pre
eding the next quadrati
-like level). Then the prin
iple

moduli �

n(k)+1

= mod(V

n(k)

nV

n(k)+1

) grow with k at uniformly linear rate.

Theorem II. Let f 2 F . Then all its quadrati
-like renormalizations R

n

f have de�nite

moduli.

A 
ompa
t set K �

�

C is 
alled removable if given a neighborhood U � K , any


onformal embedding � : UnK !

�

C allows the 
onformal 
ontinuation a
ross K (see

[AB℄). A simple 
ondition for removability is the following.

Assume that for any point z 2 K there is a nest of disjoint annuli A

i

�

�

CnK with

de�nite moduli (mod(A

i

) > Æ > 0 ) shrinking to z . Then K is removable.

Removable sets have zero Lebesgue measure. Now Theorem II immediately implies.

Corollary IIa. Given an f 2 F , its 
riti
al set !(
) is a removable Cantor set.

By [HJ℄, [J℄ the a priori bounds also imply the following (see the argument in x3).

Corollary IIb. The Julia set J(f) of a map f 2 F is lo
ally 
onne
ted.

A

ording to M
Mullen [M
M℄, an in�nitely q-renormalizable quadrati
 polynomial

f is 
alled robust if for arbitrary high level m there exists an annulus in Cn!(
) with

de�nite modulus whi
h is homotopi
 rel !(
) to a Jordan 
urve en
losing J(R

m

f) but

not en
losing any point of !(
)nJ(R

m

f) .

Corollary II
. Any f 2 F is robust.

By [M
M℄, robust quadrati
 polynomials have no invariant measurable line �elds on

the Julia set. Absen
e of invariant line �elds for a quadrati
 polynomial f : z 7! z

2

+ 


0

is equivalent to the property that its topologi
al 
lass has empty interior [MSS℄. Theorem

III below will show that these topologi
al 
lasses are a
tually single points for f 2 F .

Outline for Theorem II. First we show that if a quadrati
-like map f satisfying (C1)

has a de�nite modulus then the �rst annulus of the prin
iple nest also has a de�nite

modulus. However the bound for this modulus is 
ertainly smaller than the a priori bound

for f . To 
ompensate this loss, we go through the 
as
ade of generalized renormalizations,

and observe (a

ording to Theorem I) a linear growth of the prin
iple moduli. So if we

pro
eed for long enough (assumption (C2)), we will arrive at the next quadrati
-like level

with a de�nite modulus 
ontrolled by the same quanti�er �� . Then we start over again.

Most of this se
tion is o

upied with the proof of Theorem I.

Initial geometry.

Lemma 1. If the annulus A has a de�nite modulus then the starting 
on�guration (U; 


i

)

of external rays has a bounded geometry.

Proof. Indeed, the map f 
an be 
onjugate to a polynomial g by a q
 map with a

bounded dilatation, where g belongs to the �nite set of sele
ted limbs. Let g vary within

one of these limbs. Then the �nite intervals of the external rays vary 
ontinuously with

g .
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Sin
e the trun
ated limbs don't tou
h the main 
ardioid, the absolute value of the

multiplier � of the � -�xed point of g is bounded away from 1. Hen
e the fundamental

annulus around this point has a de�nite modulus. So the external rays landing at � will

meet this annulus on some de�nite distan
e from the Julia set. Outside of the annulus they

have a bounded geometry by the previous argument. Near the �xed point the geometry is

bounded by a lo
al 
onsideration. tu

Set A

n

= V

n�1

nV

n

.

Lemma 2. The annulus A

1

= V

0

rV

1

has a de�nite modulus (depending on the modulus

of UnU

0

only).

Proof. Let us go ba
k to the proof of Lemma 0. Be
ause of Assumption (C1), V

0

is

well inside 


0

. As the puzzle-pie
es Y

j

are obtained by pulling V

0

ba
k by univalent

iterates of g . they are well inside 


0

as well. Finally, as G

l

in (0) is two-to-one bran
hed


overing, V

1

is well inside of Q . tu

A priori bounds.

Lemma 3. Let i(1); :::i(l) = 0 be the itinerary of a puzzle-pie
e V

n+1

j

through the

puzzle-pie
es V

n

i

by iterates of g

n

until the �rst return ba
k to V

n

. Then

mod(V

n

nV

n+1

j

) �

1

2

l

X

k=1

mod(V

n�1

nV

n

i(k)

):

Proof. The Gr�ot
sz inequality. tu

Let D be a puzzle-pie
e whi
h we 
all an "island" (
ompare below). Let W

i

; i 2 I ,

be a �nite family of disjoint puzzle-pie
es 
ontaining a 
riti
al puzzle-pie
e W

0

. We will

freely identify the label set I with the family itself. For W

i

� D let

R

i

� R

i

(I;D) � Dn

[

j2I

W

j

be an annulus of maximal modulus en
losing W

i

but not en
losing other puzzle-pie
es of

the family I . Su
h an annulus exists by the Montel Theorem. We will brie
y 
all it the

maximal annulus en
losing W

i

in D (rel the family I ).

Let us now de�ne the asymmetri
 modulus of the group I in D as

�(IjD) =

X

i2I

�

i

mod(R

i

); (1)

where the weight �

i

is equal to 1 for the 
riti
al puzzle-pie
e and 1/2 for all others (if D

is a non-
riti
al island then all weights are a
tually 1/2). This parameter for a group of

two puzzle-pie
es was suggested by Jeremy Kahn as a 
omplex analogue of the asymmetri


Poin
ar�e length [L2℄.

Let us now spe
ify D = V

n�1

, and I to be a �nite group of at least two puzzle-pie
es

V

n

i

of level n 
ontaining the 
riti
al one. Then set �

n

(I) � �(IjV

n�1

) and

�

n

= min

I

�

n

(I); (2)

where I runs over all groups of puzzle-pie
es just spe
i�ed.
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Let us use a spe
ial notation for the prin
iple moduli

�

n

= mod(V

n�1

nV

n

): (3)

The �

n

and �

n

are the prin
iple geometri
 parameters of the renormalized maps g

n

.

Our goal is to show that the asymmetri
 moduli monotoni
ally and linearly grow with

n . Let us �x a level n � N , denote V

n�1

= �; V

i

= V

n

i

, g = g

n

, and mark the obje
ts

of the next level n+ 1 with prime.

Let I

0

be a �nite family of puzzle-pie
es V

0

i

. Let us organize them in isles in the

following way. Take two non-symmetri
 puzzle-pie
es V

0

i

and V

0

j

and push them forward

by iterates of g through the puzzle-pie
es V

k

of the previous level. Find the �rst moment

t when they are separated by those puzzle-pie
es, that is, su
h that g

m

V

0

i

and g

m

V

0

j

belong to the same pie
e V

k(m)

for m = 0; :::; t � 1; , while g

t

V

0

i

and g

t

V

0

j

land at

di�erent pie
es. (In other words, the itineraries of V

0

i

and V

0

j


oin
ide until moment

t � 1 ). Then let us produ
e an island D by pulling V

k(t�1)

ba
k by the 
orresponding

inverse bran
h of g

t�1

. Let �

D

= g

t

: D ! � . This map is either a double 
overing or a

biholomorphi
 isomorphism depending on whether D is 
riti
al or not.

The family D = D(I

0

) of isles form a latti
e with respe
t to in
lusion. Let depth

: D !N be the minimal stri
tly monotone fun
tion on this latti
e, assigning to the biggest

island V

0

� �

0

depth 0.

Let us now 
onsider the asymmetri
 moduli �(IjD) as a fun
tion on the family D

of isles. This fun
tion is 
learly monotone:

�(IjD) � �(IjD

1

) if D � D

1

; (4)

and superadditive:

�(IjD) � �(IjD

1

) + �(IjD

2

); (5)

provided D

i

are disjoint subisles in D .

We 
all a puzzle-pie
e V

0

j

� D pre-
riti
al rel D if �

D

(V

0

j

) = V

0

. If D = �

0

is the

trivial island, we skip "rel". There are at most two pre-
riti
al pie
es in any D . If there

are a
tually two of them, then they are non-
riti
al and symmetri
 with respe
t to 
 .

Let D be a deepest island of family D(I

0

) , and V

0

j

; j 2 J , be the group of puzzle-

pie
es 
ontained in D , that is J = I

0

jD . Let i(j) is de�ned for j 2 J by the property

�

D

(V

0

j

) � V

i(j)

, and I = fi(j) : j 2 Jg .

Lemma 4. Under the 
ir
umstan
es just des
ribed the following estimate holds:

�(J jD) �

1

2

0

�

(jJ j � s)�+ s mod(R

0

) +

X

i2I;i6=0

mod(R

i

)

1

A

; (6)

where s = #fj : i(j) = 0g is the number of pre-
riti
al pie
es rel D .

Proof. As D is the deepest island, ea
h puzzle-pie
e V

i

; i 2 I; 
ontains a single puzzle-

pie
e �

D

V

j

(though there might be two symmetri
 puzzle-pie
es in J with �

D

V

j

=

�

D

V

k

). Let R

i

� � denote an annulus of maximal modulus en
losing V

i

rel I , and let

T

j

� D be an annulus of maximal modulus en
losing V

0

j

rel family J . Let Æ

st

denote

the Krone
ker symbol. Fix a j 2 J and let i = i(j) . Let us 
onsider now two 
ases:

7



(i) Let V

0

j

be non-
riti
al. Then

mod(T

0

j

) � mod(R

i

) + Æ

0i

�: (7)

To see that, observe that mod (V

i

n�

D

V

0

j

) is at least � , provided i 6= 0 . Observe also

that the pull-ba
k of the topologi
al dis
 Q

i

= R

i

[ V

i

to D is univalent. Indeed, if �

D

were a double 
overing then the island D would be 
riti
al, and hen
e would 
ontain the


riti
al puzzle-pie
e V

0

0

. It follows that Q

i

does not 
ontain the 
riti
al value of �

D

.

(ii) Let V

0

j

= V

0

0

is 
riti
al. Then

mod(T

0

0

) �

1

2

(mod(R

i

) + Æ

0i

�): (8)

Summing up the estimates (7) and (8) with the weights 1/2 and 1 
orrespondingly

over the family J , we obtain the desired estimate. tu

Corollary 5. For any island D of the family D(I

0

) the following estimates hold:

�(I

0

jD) �

1

2

� and �(I

0

jD) � �:

Proof. By monotoni
ity (4), it is enough to 
he
k the 
ase of a deepest island D . Let us

use the notations of the previous lemma. Observe �rst that the family I = fi(j) : j 2 Jg


ontains at least two puzzle pie
es. Indeed, the only 
ase when jIj < jJ j 
an happen is

when �

D

is a double 
overing, and there are two symmetri
 puzzle-pie
es in the family

J . But then this family must also 
ontain the 
riti
al pie
e V

0

0

, and hen
e jIj > 2 .

As � > mod(R

0

) , jJ j � 2 and jIj � 2 , the right-hand side in (6) is bounded from

below by

1

2

0

�

jJ j mod(R

0

) +

X

i2I;i6=0

mod(R

i

)

1

A

� �(I) > �; (9)

tu

Let us de
ompose g

n

: V

n

! V

n�1

as h

n

Æ � where � is purely quadrati
, while

h

n

is univalent. The non-linearity or distortion of h

n

is de�ned as

max

z;�2V

n

log

�

�

�

�

Dh

n

(z)

Dh

n

(�)

�

�

�

�

;

and measures how far g

n

is from being purely quadrati
.

Corollary 6 (a priori bounds). The asymmetri
 moduli �

n

grow monotoni
ally and

hen
e stay away from 0 on all levels (until the next quadrati
-like level). The basi
 moduli

�

n

stay away from 0 everywhere ex
ept for tails of long 
as
ades of 
entral returns. More-

over, the non-
riti
al puzzle-pie
es V

n

i

are also well inside V

n�1

ex
ept for pre-
riti
al

pie
es on the levels whi
h immediately follow the long 
as
ades of 
entral returns. The

distortion of h

n

is uniformly bounded on all levels.

Proof. On the �rst non-degenerate level N + 1 we have a de�nite prin
iple modulus by

Lemma 2. Hen
e by the previous Corollary we have a de�nite value of � on the next level

whi
h then begins to grow monotoni
ally. So, it stays de�nite on all levels until the next

8



quadrati
-like one. By Lemma 3, the basi
 moduli stay de�nite as well, ex
ept for tails of

long 
as
ades of 
entral returns. The next statement also follows from Lemma 3.

To 
he
k the last statement, it is enough to observe that h

n

has a Koebe spa
e spread

over V

n�2

. Hen
e its distortion is 
ontrolled by the prin
iple s
aling fa
tor �

n�1

. So

we are OK outside the tails of 
entral 
as
ades. But observe also that within the 
entral


as
ade we keep the same return map, just shrinking its domain. tu

Linear growth. Our goal is to prove that �

0

� � + a with a de�nite a > 0 at least on

every other level ex
ept for the tails of 
entral 
as
ades. Corollary 6 shows the reason why

these tails play a spe
ial role. The growth rate of � de�nitely slows down in the tails.

So let us assume that the level n � 1 is not there, so that the prin
iple modulus � is

de�nitely positive.

Corollary 7. If a deepest island D 
ontains at least three puzzle-pie
es V

0

j

; j 2 J , then

�(J jD) � �(I) +

1

2

�:

Proof. Let us in (6) split o� (1=2)� and estimate all other � 's by mod (R

0

) . This

estimates the right-hand side by

1

2

�+

jJ j � 1

2

mod(R

0

) +

1

2

X

i2I;i6=0

mod(R

i

);

whi
h immediately yields what is 
laimed. tu

Let us now 
onsider the 
ase when the island D 
ontains only two puzzle puzzle-

pie
es. In order to treat it, we need some preparation in geometri
 fun
tion theory.

Moduli defe
t, 
apa
ity and e

entri
ity. Let D be a topologi
al disk, � = �D ,

a 2 D , and  : (D; a)! (D

r

; 0) be the Riemann map onto a round disk of radius r with

 

0

(a) = 1 . Then r � r

a

(�) is 
alled the 
onformal radius of � about a . The 
apa
ity

of � rel a is de�ned as


ap

a

(�) = log r

a

(�):

Lemma 8. Let D

0

� D

1

� K , where D

i

are topologi
al disks and K is a 
on-

ne
ted 
ompa
t. Assume that the hyperboli
 diameter of K in D

0

and the hyperboli


dist (K; �D

1

) are both bounded by a Q . Then there is an �(Q) > 0 su
h that

mod(D

1

nK) � mod(D

0

nK)� �(Q):

Proof. Let us take a point z 2 �D

1

whose hyperboli
 distan
e to K is at most Q . Then

there is an annulus of a de�nite modulus 
ontained in D

0

and en
losing both K and z .

Let us uniformize D

0

nK by a round annulus A

r

= f� : r < j�j < 1g; and let ~z


orrespond to z under this uniformization. Then ~z stays a de�nite Eu
lidian distan
e d

from the unit 
ir
le.

If R � A

r

is any annulus en
losing the inner boundary of A

r

but not en
losing

~z then by the normality argument mod (R) < mod(A

r

) � �

r

(d) with an �

r

(d) > 0 .

(A
tually, the extremal annulus is just A

r

slit along the radius from ~z to the unit 
ir
le).

We have to 
he
k that �

r

(d) is not vanishing as r! 0 . Let us �x an outer boundary

� of B (the unit 
ir
le + the slit in the extremal 
ase). We may 
ertainly assume

9



that the inner boundary 
oin
ides with the r -
ir
le. Then the defe
t mod (R)� log(1=r)

monotoni
ally in
reases to the 
ap

0

(�) . By normality this 
apa
ity is bounded above by

an ��(d) < 0 , and we are done. tu

Let A be a standard 
ylinder of �nite modulus, K � A . Let us de�ne the mod(K )

as the modulus of the smallest 
on
entri
 sub-
ylinder A

0

� A 
ontaining K (see Figure

3).

Lemma 9 (De�nite Gr�ot
sz Inequality). Let A

1

and A

2

be homotopi
ally non-

trivial disjoint topologi
al annuli in A . Let K be the set of points in their 
omplement

whi
h are separated by A

1

[ A

2

from the boundary of A . Then there is a fun
tion

�(x) > 0 ( x > 0 ) su
h that

mod(A) � mod(A

1

) + mod(A

2

) + �(mod(K)):

Proof. For a given 
ylinder this follows from the usual Gr�ot
sz Inequality and the nor-

mality argument. Let us �x a K , and let mod (A) ! 1 . We 
an assume that A

i

are

lower and upper 
omponents of AnK 
orrespondingly. Then the modulus defe
t

mod(A)�mod(A

1

)�mod(A

2

)

de
reases by the usual Gr�ot
sz inequality. At the limit the 
ylinder be
omes the pun
tured

plane, and the modulus defe
t 
onverges to -(
ap

0

(K)+ 
ap

1

(K) ). It follows from the

area estimates that this sum of 
apa
ities is negative, unless K is a 
ir
le 
entered at the

origin. This estimates depends only on mod (K) by normality. tu

Let d

a

(�) and �

a

(�) be the Eu
lidian radii of the ins
ribed and 
ir
ums
ribed 
ir
les

about � 
entered at a . Then let us de�ne the e

entri
ity of � about a as

e

a

(�) = log

�

a

(�)

d

a

(�)

:

By Koebe and S
hwarz,

e

a

(�) = �(
ap

a

(�) + 
ap

1

)(�) +O(1);

with O(1) � 2 log 4 .

Lemma 10. Under the 
ir
umstan
e of Lemma 9 assume also that the annulus A �

Cnfag is homotopi
ally non-trivially embedded in the pun
tured plane, and mod (A

i

) �

� > 0 . If e

a

(K) is big then mod (KjA) is big as well.

Proof. Let us 
onsider the uniformization � :

�

A ! A of A by a round annulus. If

mod (KjA) is bounded then

�

K is well inside of

�

A . Then by the normality argument K

must have a bounded e

entri
ity about a . tu

The 
ase of two puzzle-pie
es. Let us now go ba
k to the estimates of asymmetri


moduli. Suppose we have a deepest island D 
ontaining two puzzle-pie
es V

n+1

j

; j 2 J .

Let � � �

D

and let �V

n+1

j

� V

n

i

with i = i(j) . Let us split the argument into several


ases.

Case (i). There is a non-
riti
al puzzle-pie
e V

n

i

; i 2 I , whi
h stays on a bounded

Poin
ar�e distan
e in V

n�1

(
ontrolled by a given big quanti�er Q ) from the 
riti
al point.
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Then by Lemma 8

�

n

� mod(R

0

) + � (10)

with a de�nite � = �(Q) > 0 . But observe that when we passed from Lemma 4 to

Corollary 5 we estimated � by mod (R

0

) . Using the better estimate (10), we obtain a

de�nite in
rease of � .

Case (ii). Let ea
h non-
riti
al puzzle-pie
e V

n

i

; i 2 I , stay hyperboli
ally far away

from the 
riti
al point. Then V

n

0

may not belong to any non-trivial island together with

some non-
riti
al pie
e V

n

i

; i 2 I . Indeed, it follows from Corollary 6 that any non-trivial

island is well inside of V

n�1

.

Assume �rst that both V

n

i

are non-
riti
al. Then �(J jD) is estimated by �

n

(

~

I)

where the family

~

I 
onsists of V

n

i

and the 
entral puzzle-pie
e V

n

0

. If no two of these

puzzle-pie
es belong to the same non-trivial island, then by Corollary 7 �(

~

I) � �

n�1

+ a

with a de�nite a > 0 .

Otherwise the puzzle-pie
es V

n

i

; i 2 I; belong to an island W . Sin
e W is well

inside of V

n�1

, it stays on the big Poin
ar�e distan
e from the 
riti
al point. Hen
e

mod (R

0

) � � (this sign means the equality up to a small 
onstant 
ontrolled by the

quanti�er Q , while the sign � below means the inequality up to a small error), and

�(

~

I) � �(IjQ) + mod(R

0

) � �

n�1

+ �:

So we have gained some extra growth, and 
an pass to the next 
ase.

Fibona

i returns. Let one of the puzzle-pie
es V

n

i

be 
riti
al. So we have the family

I

n

of two puzzle-pie
es V

n

0

and V

n

1

. Remember that we also assume that the hyperboli


distan
e between these pie
es is big. Hen
e, V

n�1

is the only island 
ontaining both of

them, so that g

n�1

V

n

0

and g

n�1

V

n

1

belong to di�erent puzzle-pie
es of level n� 1 . For

the same reason we 
an assume that one of these puzzle-pie
es is 
riti
al. Denote them by

V

n�1

0

and V

n�1

1

. Then one of the following two possibilities on level n� 2 
an o

ur:

1) Fibina

i return when g

n�1

V

n

0

� V

n�1

1

and g

n�1

V

n

1

= V

n�1

0

(see Figure 4);

2) Central return when g

n�1

V

n

0

= V

n�1

0

and g

n�1

V

n

1

� V

n�1

1

.

We 
an assume that one of these s
hemes o

ur on several previous levels n�3; n�4; :::

as well (otherwise we gain an extra growth by the previous 
onsiderations). To �x the idea,

let us �rst 
onsider the following parti
ular 
ase

Fibona

i 
as
ade. Assume that on both levels n � 1 and n � 2 the Fibona

i returns

o

ur. Let us look more 
arefully at the estimates of Lemma 4. In the Fibona

i 
ase we

just have:

mod(R

n

1

) � mod(R

n�1

0

); (11)

mod(R

n

0

) �

1

2

mod(g

n�1

V

n

0

jQ

n�1

1

); (12)

where Q

n

i

= V

n

i

[ R

n

i

. Applying g

n�2

we see that

mod(Q

n�1

1

ng

n�1

V

n

0

) � mod(Q

n�3

0

nV

n�1

0

): (13)
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But sin
e V

n�2

1

is hyperboli
ally far away from the 
riti
al point,

mod(Q

n�3

0

nV

n�1

0

) � mod(V

n�3

0

nV

n�1

0

): (14)

By the Gr�ot
sz Inequality there is an a � 0 su
h that

mod(V

n�3

0

nV

n�1

0

) = �

n�1

+ �

n�2

+ a: (15)

Clearly

�

n�1

� mod(R

n�1

0

): (16)

Furthermore, let P

n�1

1

be the pull-ba
k of Q

n�2

0

by g

n�2

. Sin
e �(P

n�1

1

) is hyperboli-


ally far away from V

n�1

1

, we have:

�

n�2

� mod(R

n�2

0

) = mod(V

n�1

1

jP

n�1

1

) � mod(R

n�1

1

): (17)

Combining estimates (12)-(17) we get

mod(R

n

0

) �

1

2

(mod(R

n�1

0

) + mod(R

n�1

1

) + a): (18)

We see from (11) and (18) that the only thing to 
he
k that the 
onstant a in (15) is

de�nitely positive. Assume that this is not the 
ase. Set �

n

= �V

n

. Then by the De�nite

Gr�ots
z Inequality, the mod (�

n�2

) in the annulus A = V

n�3

nV

n�1

is very small. Sin
e

�

n�2

is well inside of A , we 
on
lude by the Koebe Distortion Theorem that �

n�2

is


ontained in a narrow neighbourhood of a 
urve 
 with a bounded geometry. Moreover,

this 
urve has a de�nite e

entri
ity around the 
riti
al point.

On the other hand, the puzzle-pie
e V

n�1

1

is hyperboli
ally far away from the 
riti
al

point. Hen
e it must be lo
ated Eu
lidianly very 
lose to �

n�2

(relatively the Eu
lidian

distan
e to the 
riti
al point). Hen
e the 
riti
al value g

n�1


 is also extremely 
lose to

�

n�2

.

By Corollary 6, g

n�1

is a quadrati
 map up to a bounded distortion. Hen
e the 
urve

�

n�1

whi
h is the pull-ba
k of �

n�2

by g

n�1

must have a huge e

entri
ity around the


riti
al point. By Lemmas 10 and 9 it will 
ontribute towards the de�nite extra 
onstant

on the (n+ 1) st level.

Remark. The a
tual shape of a deep level puzzle-pie
e for the Fibona

i 
as
ade is shown

on Figure 5. There is a good reason why it resembles the �lled-in Julia set for z 7! z

2

� 1

(see [L3℄). As the geodesi
 in V

n�1

0

joining the puzzle-pie
es V

n

0

and V

n

1

goes through

the pin
hed region, the Poin
ar�e distan
e between these puzzle-pie
es is, in fa
t, big.

General 
ase. Let us now allow the 
entral returns along with the Fibona

i ones. Suppose

we have a 
as
ade of 
entral returns on N � 1 subsequent levels V

m

� ::: � V

m+N�2

�

V

n�2

, pre
eded by the Fibona

i return on level m � 1 . So g

m+1


 2 V

m+N�1

0

, while

g

m


 2 V

m

1

: By our 
onvention, this 
as
ade is not too long, so that we have a de�nite

spa
e in between any two levels.

Let us now pass from the island D � V

n

� V

m+N

all way up the 
as
ade to the level

m� 1 , that is, 
onsider the map

G = g

m

Æ g

N�1

m+1

Æ �

D

: D ! V

m�1

: (19)

Then S � G V

m+N+1

� V

m

. Now we again should split the analysis depending on where
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the puzzle-pie
e V

m+N+1

lands. Let us start with the most interesting 
ase when it lands

at the deepest possible level.

Sub
ase (a). Let S = V

m+N

. Pulling the annuli R

m

0

and R

m

1

ba
k by G to D ,

we get the following estimates:

mod(R

m+N+1

0

) �

1

2

mod(V

m�1

nS) =

1

2

mod(V

m�1

nV

m+N

); (20)

mod(R

m+N+1

1

) �

1

2

N

(mod(R

m

1

) + mod(R

m

0

)): (21)

By the Gr�ot
sz inequality there is an a � 0 su
h that

mod(V

m�1

nV

m+N

) � mod(A

m

) + mod(V

m

nV

m+N

) + a �

mod(R

m

0

) +

m+1

X

k=m+N

mod(A

k

) + a � mod(R

m

0

) +

N�1

X

k=0

1

2

k

mod(R

m+1

0

) + a: (22)

Sin
e mod(R

m

0

) � mod(R

m+1

1

) , the above estimates imply

2�(I

m+N+1

jD) = 2R

m+N+1

0

+ R

m+N+1

1

�

1

2

N

mod(R

m

1

) +

1

2

N�1

mod(R

m

0

) + (1�

1

2

N

)mod(R

m+1

1

) + (2�

1

2

N�1

)mod(R

m+1

0

) + a �

�

1

2

N�1

�(I

m

) + (2�

1

2

N�1

)�(I

m+1

) + a:

We see that if the 
urve �

m

has a de�nite modulus in the annulus V

m�1

nV

m+N

then we have a de�nite growth of � . Otherwise arguing as in the 
ase of the Fibona

i


as
ade we 
on
lude that the 
urve �

k

has a big e

entri
ity around the puzzle-pie
e

V

k+1

1

; k = m; :::;m+N � 1 .

Let us now go one 
entral 
as
ade up to the level V

m�1

(until the Fibona

i level).

If this 
as
ade is not too long, then by the above 
onsiderations we either have a de�nite

growth of � within this 
as
ade, or �

m�1

has a big e

entri
ity about V

m

1

. But then

�

m

has a big modulus in V

m�1

nV

m+N

, and we are done.

Finally, if V

m�1

is in the tail of a long 
entral 
as
ades then �

m

has always a big

e

entri
ity about the 
riti
al point (see the next subse
tion). If we a
tually have a 
entral

return on level m (so that N � 2 ), then �

m+1

has a big e

entri
ity around 
 as well.

But this 
urve is for sure well inside V

m

nV

m+N

. So we 
an use it instead of �

m

to


ontribute to the de�nite a in estimate (22).

If a non-
entral return on level m o

urs (that is, N = 1 ), then we don't see a

de�nite growth for �

m+N+1

but we gain it one level down.

Sub
ase (b). Assume now that S � V

m

nV

m+N

: Let us 
onsider the Markov family

of puzzle-pie
es W

k

i

; k = m + 1; :::;m+ N; the pull-ba
ks of pie
es V

m+1

i

� W

m+1

i

to

the annuli A

k

. Let S �W � W

k

i

. Then

mod(WnS) � mod(V

m

nV

m+N

);
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and we have

mod(V

m�1

nS) �

1

2

(mod(A

m

) + mod(WnS) + mod(V

m

nW )) �

1

2

(mod(R

m

0

) + mod(V

m

nV

m+N

) + a

where a > 0 is de�nite, unless V

m�1

is in the tail of a long 
entral 
as
ade. But then

argue as in Sub
ase (a). Theorem A is proved.

Other fa
tors yielding big spa
e. Theorem A ensures that mod (Rf) is suÆ
iently

high if the type is suÆ
iently high, that is, there are suÆ
iently many non-
entral levels.

However, there are other 
ombinatorial fa
tors whi
h imply big mod (Rf) as well. For

example, if the return time of some V

n+1

j

ba
k to V

n

under iterates of g

n

is high, then

Lemma 3 implies big spa
e.

Sometimes long 
entral 
as
ades imply big spa
e as well. Let us 
onsider su
h a


as
ade

V

m

� ::: � V

m+N�1

;

where g
 � g

m+1


 2 V

m+N�1

nV

m+N

. The quadrati
-like map g : V

m+1

! V

m


an be

viewed as a small perturbation of a quadrati
-like map G with a de�nite modulus and

with non-es
aping 
riti
al point. Let 
 2 �M be the internal 
lass of G .

Lemma 11. Under the above 
ir
umstan
es let us assume that z 7! z

2

+ 
 does not have

neither paraboli
 points nor Siegel disks. If g is suÆ
iently 
lose to G (depending on 


and a priori bounds) then mod (A

m+N+3

) is big.

Proof. The above assumptions mean that the Julia set J(G) has empty interior. If g

is suÆ
iently 
lose to G then �

m+N�1

= �V

m+N�1

is 
lose in the Hausdor� metri
 to

J(G) . Hen
e �

m+N�1

has a big e

entri
ity with respe
t to any point z 2 V

m+N�1

.

As g

m

are quadrati
 maps up to bounded distortion, the 
urves �

m+N

, �

m+N+1

and �

m+N+2

also have big e

entri
ity with respe
t to any en
losed point. Moreover,

there is a de�nite spa
e in between these two 
urves. Hen
e mod (V

m+N

nV

m+N+2

) is

big. This implies that mod (A

m+N+3

) is big as well.

Indeed, if 
entral return on level m+N o

urs then straightening the quadrati
-like

map g

m+N+1

: V

m+N+1

! V

m+N

by a q
 map we 
on
lude that

mod(V

m+N

nV

m+N+2

) � mod(A

m+N+1

):

Hen
e A

m+N+1

has a big modulus.

So we 
an assume that non-
entral returns o

ur on levels m +N and m +N + 1 .

Let us show that then mod (A

m+N+3

) is big. Let  

Æs


 2 V

m+N+2

j

. Then it is easy to see

that

mod(A

m+N+3

) �

1

2

mod(V

m+N+1

n 

Æs

(V

m+N+3

)):

Let now t be the return time of V

m+N+2

j

ba
k to V

m+N+1

under iterates of g

m+N+1

.

Under this iterate  

Æs

(V

m+N+3

) is mapped onto V

m+N+2

, and we 
on
lude that

mod(A

m+N+3

) �

1

4

mod(V

m+N

nV

m+N+2

);
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whi
h is big. tu

Remark. In the real 
ase we will give a 
omplete des
ription of the 
ombinatorial fa
tors

produ
ing big spa
e (see Lemma 16).

Proof of Corollary IIb. (lo
al 
onne
tivity of the Julia sets). I learned the

following argument from J. Kahn and C. M
Mullen. It follows from Theorem II that the

renormalized Julia sets J(R

m

f) shrink down to the 
riti
al point. Let us take an � > 0 ,

and �nd an m su
h that J(R

m

f) is 
ontained in the � -neighborhood of the 
riti
al point.

Let �

m

denote the dividing �xed point of the Julia set J(R

m

f) , and �

0

m

denote

the symmetri
 point. Let us 
onsider a topologi
al disk bounded by an equipotential level,

and 
ut it by the external rays landing at �

0

; :::; �

m�1

into the puzzle-pie
es P

m;1

j

(as

Yo

oz did in the �nitely q-renormalizable 
ase). Let us then pull these puzzle-pie
es ba
k

in the usual way, and use the notation P

m;l

(a) for the puzzle-pie
e of level l 
ontaining

a point a .

Consider the nest P

m;1

(
) � P

m;1

(
) � ::: of the 
riti
al puzzle-pie
es. This nest

shrinks down to the Julia set J(R

m

f) . Hen
e there is a puzzle-pie
e P

m;l

(
) 
ontained

in the � -neighborhood of the 
riti
al point. As J(f) \ P

m;l

(
) is 
learly 
onne
ted, the

Julia set J(f) is lo
ally 
onne
ted at the 
riti
al point.

Let us now prove lo
al 
onne
tivity at any other point z 2 J(f) . Consider two 
ases.

Case (i). Let the orbit of z eventually land at all Julia sets J(R

m

f) . Take the �rst

moment k = k(m) su
h that f

k

z 2 J(R

m

f) . Let us show that the domain U 
an be

univalently pulled ba
k along the orbit z; :::; f

k

z . Let U

0

m

� V

m;t(m)

, U

m

� V

m;t(m)�1

,

p be the return time of 
 ba
k to U

m

, and

Q

m

�

p

[

t=1

f

t

U

0

m

(23):

Let us �nd the smallest natural number l su
h that f

l

z 2 Q

m

; and moreover let f

l

z 2

f

s

U

m

; 1 � s � p . Then f

l�1

z belongs to the domain 
 whi
h is 
 -symmetri
 to

f

s�1

U

m

. As 
 is disjoint from Q

m

� !(
) , there is a single-valued bran
h f

�l

: 
 !

Z 3 z . On the other hand, 
learly there is a single-valued bran
h f

�(s+1)

: U

m

! 
 .

Hen
e there is a single-valued bran
h f

�k

: U

m

! Z as it was 
laimed.

Be
ause of the a priori bounds, the Julia set J(R

m

f) is well inside of U

m

. Hen
e

there is a puzzle pie
e P

m;l

(
) � J(R

m

f) whi
h is well inside of U

m

as well. It follows

from the Koebe Theorem that its pull-ba
k Y 3 z has a bounded shape and hen
e a small

diameter (for suÆ
iently big m ). As Y \ J(f) is 
onne
ted, we are done.

Case (ii). Assume that the orbit of z never lands at J(R

m

f) . Then it never lands

at the forward orbit J

m

of J(R

m

f) . Hen
e it a

umulates on some point a 62 J

m

. But

the puzzle-pie
es P

m;l

(a) are disjoint from the 
riti
al set for suÆ
iently big l . Pulling

them ba
k to z , we again obtain small pie
es Y 3 z 
ontaining a 
onne
ted part of the

Julia set. tu

x4. Pull-Ba
k Argument.

Any quadrati
 polynomial indu
es an equivalen
e relation on the rational points of

the 
ir
le T by identifying the external arguments whose external rays land at the same
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point of the Julia set (see Douady and Hubbard [DH1℄, [D2℄ and [H℄). Two quadrati
-like

maps are 
alled 
ombinatorially equivalent if they indu
e the same equivalen
e relation

(the 
ombinatorial 
lasses are 
learly bigger than the topologi
al ones). The 
ombinatorial


lass of quadrati
 polynomials is obtained by interse
ting a nest of parameter puzzle-pie
es

bounded by appropriate external rays and equipotentials. The de�nition of 
ombinatorially

equivalent quadrati
-like maps is straightforward.

Our goal is to prove the following result.

Theorem III. Let f and

~

f be two quadrati
-like maps of 
lass F . If these maps are


ombinatorially equivalent then they are quasi-
onformally 
onjugate.

Corollary. Any quadrati
 polynomial f : z 7! z

2

+ 
 of 
lass F is 
ombinatorially rigid,

so that MLC holds at 
 .

Proof of Corollary. The well-known argument: 
ombinatorial 
lasses of quadrati
 poly-

nomials are 
losed, while q
 
lasses are either open or single points. So if a 
ombinatorial


lass 
oin
ides with a q
 
lass, both must be single points. MLC follows sin
e the inter-

se
tion of the Mandelbrot set with puzzle-pie
es is 
onne
ted. tu

Strategy. The method we use for proof of Theorem III is 
alled \the pull-ba
k argument".

The idea is to start with a q
 map respe
ting some dynami
al data, and then pull it ba
k so

that it will respe
t some new data on ea
h step. In the end it be
omes (with some lu
k) a

q
 
onjuga
y. This method originated in Sullivan's work, and then was developed in several

other works (see [K℄ and [Sw℄). Our way is to pull ba
k through the 
as
ade of generalized

renormalizations. The linear growth of moduli gives us enough dilatation 
ontrol until the

next quadrati
-like level, while 
omplex a priori bounds allow us to interpolate and pass

to the next level.

We will use tilde for marking the 
orresponding obje
ts. Referring to a q
-map, we

always mean that it has a de�nite dilatation. All puzzle-pie
es have a natural boundary

marking 
oming, e.g, from the uniformization of the basin at 1 (we 
an always assume

that we have started with a polynomial map). Let us 
all two 
on�gurations of puzzle-

pie
es W

i

and

~

W

i

q
 pseudo-
onjugate if there is a q
 map between them respe
ting the

boundary marking.

Let fV

m;n

g be the prin
iple nest of 
riti
al puzzle-pie
es (see x1). We swit
h from the

nest V

m;n

; n = 0; 1; :::; t(m); to the next nest V

m+1;n

; n = 0; 1; :::; when the modulus

A

m;t(m)+1

is bounded from the both sides (not only from below).

By Lemma 1 the starting 
on�gurations fV

m;0

i

g and f

~

V

m;0

i

g have bounded geometry,

so there is a q
 pseudo-
onjuga
y h

m

between them. It is possible to pull it ba
k to the

�rst non-degenerate level, no matter how deep it is (The Initial Constru
tion below). Let

us then pull it ba
k through the 
as
ade of generalized renormalizations (the Main Step

below). Sin
e the geometri
 moduli of these maps linearly in
rease, the positions of their


riti
al values are lo
alized with an exponentially high pre
ision. It follows that the q


dilatation of the pseudo-
onjuga
y on the next level 
an jump only by an exponentially

small amount. Hen
e we will arrive at the next quadrati
-like level m+ 1 with a q
 map

H

m

with bounded dilatation.

Finally, sin
e the annuli A

m;t(m)+1

and

~

A

m;t(m)+1

have a de�nite moduli, we 
an

q
 interpolate in between H

m

on their outer boundaries and h

m+1

on the inner ones
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(keeping the map in the right homotopy 
lass mod the 
riti
al set). This gives us a q


pseudo-
onjuga
y between the nests of 
riti
al puzzle-pie
es. Then it 
an be easily spread

around to the whole 
riti
al set. Sullivan's pull-ba
k argument 
ompletes the 
onstru
tion.

Main Step. Let g : [V

i

! � and ~g : [

~

V

i

!

~

� be two generalized polynomial-like maps.

The obje
ts on the next renormalization level will be marked with prime. So g

0

: [V

0

j

! �

0

is the generalized renormalization of g , �

0

� V

0

. Let � the prin
iple modulus of g .

Remark. We don't assume that the non-
riti
al puzzle-pie
es V

n

i

; i 6= 0; are well inside

� , sin
e this is not the 
ase on the levels whi
h immediately follow long 
as
ades of 
entral

returns. We even allow the annuli �nV

n

i

; i 6= 0 to be degenerate whi
h a
tually happens

in the beginning.

Let �(�) be the maximal hyperboli
 distan
e between the points in the hyperboli


plane en
losed by an annulus of modulus � . Note that �(�) = O(e

��

) as � ! 1 . Set

� = �(�) .

Let

h : (�; V

i

)! (

~

�;

~

V

i

) (24)

be a K -q
 pseudo-
onjuga
y between the 
orresponding 
on�gurations. Our goal is to

pull this map ba
k to the next level. The problem is that h does not respe
t the positions

of the 
riti
al values. We assume �rst that we have a non-
entral return on this level, that

is 


1

� g(
) 2 V

k

with i 6= 0 .

Let P

l

be the pull-ba
ks of V

0

by the univalent bran
hes of iterates g interse
ting

the 
riti
al set. We 
an pull h ba
k by these bran
hes to obtain a K -q
 pseudo-
onjuga
y

h

1

: (�;[P

l

)! (

~

�;[

~

P

l

):

This lo
alizes the positions of the 
riti
al values in the sense that the hyperboli
 distan
e

between h

1

(


1

) and ~


1

in V

k

is O(�) . Indeed, they belong to the same puzzle-pie
e

~

P

l

whose hyperboli
 diameter in V

k

is at most � .

Hen
e we 
an �nd a di�eomorphism  :

~

� !

~

� whi
h is id outside

~

V

k

, moves h

1




to ~
 , and has a q
 dilatation 1 +O(�) . Then the K(1 +O(�)) -q
 map

h

2

=  Æ h

1

: (�; V

i

)! (�; V

i

)

respe
ts the same 
on�gurations as h , and also 
arries 
 to ~
 .

Now we 
an pull h

1

ba
k to

H : (�

0

; U

0

i

)! (

~

�

0

;

~

U

0

i

); (25)

where U

0

i

are g -pull-ba
ks of V

i

to �

0

. However U

0

i

are not the same as V

0

j

, so we

have to do more. What we need is to lo
alize the positions of the 
riti
al values a = g

0




and ~a of the next renormalizations. The argument depends on where they are. Let

a

1

= g(a) 2 V

j

.

Case (i). Assume V

j

is non-
riti
al and di�erent from V

k

. Then we 
an simultane-

ously move of 


1

and a

1

to the right positions, and then pull the map ba
k to �

0

.

Case (ii). Assume that V

j

= V

k

. If the hyperboli
 distan
e between a

1

and 


1

in

V

j

is greater than �(�=2) then the hyperboli
 distan
e between the 
orresponding tilde-
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points is greater than �(K�=2) . Then we 
an simultaneously move these points to the

right positions by a q
 map  with dilatation 1 + O(�(K�=2)) .

Otherwise let us �rst move 


1

to the right position, and pull the map ba
k to H

as in (25). Then a and 
 stay in V

0

on hyperboli
 distan
e O(�(K�=4)) , and the


orresponding tilde-points stay on distan
e O(�(K

2

�=4)) . Hen
e H(a) and ~a stay in

~

V

0

on hyperboli
 distan
e Æ = O(�(K

2

�=4)) . So we 
an move these points to the right

positions by a K(1 + Æ) -q
 map respe
ting the boundary marking of V

0

(though not

respe
ting the 
riti
al points any more).

Case (iii). Let us �nally assume that V

j

= V

0

is 
riti
al. Then a belongs to a pre-


riti
al puzzle-pie
e V

0

s

� V

0

. Sin
e mod( V

0

nV

0

s

) � �=2 , the map H 
onstru
ted above

(see (25)) almost respe
ts the positions of a -points in V

0

. So we 
an make it respe
t

these points keeping �V

0

untou
hed.

After all, we have 
onstru
ted a (1 + O(�

d

)) -q
 map

h

2

: (�; V

i

; a)! (

~

�;

~

V

i

; ~a):

Let us now start over again, and pull this map ba
k to get a q
 map

h

3

: (�;[P

l

)! (

~

�;[

~

P

l

):

Unlike h

1

above this map also respe
ts the forward orbits of the 
riti
al points (that is,

the appropriate pre-images of a ) until their returns to the 
entral puzzle-pie
es. Hen
e

we 
an pull h

3

ba
k to the 
riti
al puzzle-pie
e �

0

. Sin
e V

0

j

are the pull-ba
ks of P

l

,

this map respe
ts the boundary marking of V

0

j

, and we are done (in the non-
entral 
ase).

Cas
ades of 
entral returns. Let V

m

� V

m+1

� ::: � V

m+N

be a 
as
ade of


entral returns, that is the 
riti
al value g

m+1


 belongs to V

k

; k = m+1; :::;m+N � 1 ,

but es
apes V

m+N

. We assume that the following 
on�gurations are q
 pseudo-
onjugate:

h : (V

m

; V

m+1

)! (

~

V

m

;

~

V

m+1

):

Set g = g

m+1

; � = mod(V

m

nV

m+1

) .

Let us take non-
entral puzzle-pie
es V

m+1

i

� A

m+1

= V

m

nV

m+1

and pull them

ba
k to the annuli A

m+2

; :::; A

m+N

: We obtain a Markov family of puzzle-pie
es W

m+k

i

.

Let us indu
e on this Markov s
heme the �rst landing map

� : [P

m+k

l

! V

m+N

:

Then

mod(W

m+k

i

nP

m+k

l

) � �;

so that the dynami
ally de�ned points are well lo
alized by this partition.

Now we 
an pro
eed along the lines of the Main Constru
tion just using the following

substitution: W

m+k

i

play the role of V

i

, V

m+N

plays the role of �

0

� V

0

. So we pull

h ba
k to

h

1

: (�;[P

l

; V

m+N

)! (

~

�;

~

[P

l

;

~

V

m+N

);


orre
t this map to make it respe
t the g -
riti
al values and then pull it ba
k to V

m+N

as in (25):

H : (V

m+N

; U

i

)! (

~

V

m+N

;

~

U

i

);
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where U

i

are the pull-ba
ks of W

m+N

i

and V

m+N

. Take now the �rst return b of the


riti
al point ba
k to V

m+N

, and look at Cases (i), (ii), (iii) of the Main Step. The

�rst two 
ases go in the same way as above. However, the last 
ase is di�erent sin
e the

pre-
riti
al puzzle-pie
es U

1

and U

2

are not ne
essarily well inside of V

m+N

.

To take 
are of this problem let us �rst 
onsider the �rst landing map

 : [Y

j

! V

m+N+1

from U

1

[U

2

to V

m+N+1

, and pull H ba
k to the domain of  . Sin
e the 
omponents

Y

j

of this domain are well inside U

s

(namely mod (U

s

nY

j

) � mod(A

m+N+1

) � � ), this

gives us an appropriate lo
alization of the b -points.

Initial Constru
tion. In the beginning we have a 
as
ade 


0

� ::: � 


N

of 
entral

returns with degenerate annuli. So we may not dire
tly apply the above argument. Below

we use the notations of Lemma 0. We start with a q
 pseudo-
onjuga
y respe
ting the

dynami
s on the external rays through � , �

0

, 
 , 


0

and the equipotentials of �


1

.

Step 1. Let us now 
onstru
t a q
 map Q !

~

Q . Let a = f

s


 be the last point of

orb (
) landing at a W

j

before the return ba
k to V

0

. If the points a = g

N


 and ~a are

well inside W

j

and

~

W

j


orrespondingly, then we 
an take a q
 map (W

j

; a) ! (

~

W

j

; ~a)

and pull it ba
k to Q -pie
es.

Otherwise let us 
ut 


N

by the external rays landing at 


0

, and take the 
omponent

E atta
hed to the �xed point � . Then the bran
h of g

�1

�xing � univalently maps E

into itself. So F = Eng

�1

E is a 
ombinatorially well-de�ned fundamental domain for g

near the �xed point � . Hen
e if w � f

i

(a) 2 E (
ombinatorially 
lose to � ) then there

is the �rst moment l � 0 depending only on 
ombinatori
s su
h that g

l

w 2 F .

Let us also 
onsider the fundamental domain

F

�

= F [ g

�1

F [ g

�2

F

for the third iterate of g . If the external 
lass of f belongs to the given set of trun
ated

limbs of order two then the 
on�guration (F

�

; g

l

a) has a bounded geometry. Hen
e we


an start with a q
 map respe
ting these 
on�gurations and the dynami
al pairing on the

�F

�

.

Let us now pull this q
 map ba
k to g

�3

E; g

�6

E; ::: If l� 1 = 3m then the m -fold

pull-ba
k will 
arry the point w to ~w . Then we 
an pull this map ba
k to Q -pie
es by

the appropriate iterate of f . If l � 1 is not a multiple of 3 then we 
an repla
e it by

l � 1� n whi
h is a multiple of 3 (where n = 1 or 2) and 
orrespondingly repla
e F by

g

�n

F .

Step 2. Let us now take a point z 2 


0

and push it forward by iterates of g until

it lands either at [W

j

[ (


0

n


1

) or at Q . If it happens, then we 
an pull the pseudo-


onjuga
y to an appropriate pie
e 
ontaining z . The q
 maps 
onstru
ted in su
h a way

agree on the 
ommon boundaries of the puzzle-pie
es. The set of points where this map

is not de�ned is an expanding Cantor repellor. Hen
e it is q
 removable, and the map

automati
ally allows a q
 
ontinuation a
ross it. This provides us with a q
 map

(


0

; V

0

; Q)! (

~




0

;

~

V

0

;

~

Q)

.
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Step 3. Let us now lo
alize the �rst return b of the 
riti
al point ba
k to V

0

. To this

end let us push b forward until the �rst moment t it returns ba
k to Q . Let u = f

t

b .

The pro
edure depends on whether u and 
 stay on bounded hyperboli
 distan
e in Q

(in terms of a given quanti�er R ) or not (
ompare Case (ii) of the Main Constru
tion).

In the former 
ase the position of u is already well lo
alized inside of Q . In the latter


ase we 
an on Step 1 simultaneously lo
alize positions of a = g

N


 and g

N

u in W

j

and

pull them ba
k to Q . Hen
e we 
an 
hange the q
 pseudo-
onjuga
y inside of Q so that

it respe
ts u -points. Pulling this ba
k as on Step 2, we 
onstru
t a q
 pseudo-
onjuga
y

respe
ting b -points.

Step 4. Let us 
onsider the full �rst return map G : [Z

j

! V

0

. Its domain 
overs

the whole pie
e V

0

ex
ept for a removable Cantor set K � V

0

. We 
an now 
onstru
t a

qs pseudo-
onjuga
y

(V

0

; Z

j

)! (

~

V

0

;

~

Z

j

)

by the simple pull ba
k and removing K . Sin
e the puzzle-pie
es V

1

i

are among Z

i

, we

are done.

By Lemma 2, the prin
iple modulus is de�nite on this level. So we 
an pro
eed further

by applying the Main Step.

Q
 
onjuga
y on the 
riti
al sets. Let us show now that there is a q
 map 
onjugating

f and

~

f on their 
riti
al sets. Let t = (m;n) 2 T runs over the indi
es of the prin
iple

nest of puzzle-pie
es. Clearly the lexi
ographi
 order on T 
orresponds to in
lusion of the

puzzle-pie
es. Let Q

t

0

� V

t

, and Q

t

l

be all pull-ba
ks of Q

t

0


orresponding to the �rst

landing of the orbits of z , z 2 !(
); at Q

t

0

. Then

!(
) =

\

t

[

l

Q

t

l

:

Let us 
onsider the multiply 
onne
ted domains

P

t

l

= Q

t

l

n

[

k

Q

�

k

;

where � 2 T immediately follows t in the lexi
ographi
 order. The boundaries of P

t

l

are

naturally marked.

By the Tei
m�uller distan
e between two marked domains (of the same q
 type) we

mean the logK where K is the q
 dilatation of the best q
 homeomorphism between the

domains respe
ting the marking.

Lemma 11. The domains P

t

l

and

~

P

t

l

stay on bounded Tei
hm�uller distan
e.

Proof. We have proved that the pairs (V

t

;[

j

V

�

j

) and (

~

V

t

;[

j

~

V

�

j

) stay a bounded

Tei
hm�uller distan
e. Pulling the 
orresponding q
 equivalen
e ba
k by the univalent

bran
hes of g

�

we obtain that P

�

0

and

~

P

�

0

also stay a bounded Tei
hm�uller distan
e.

Pulling this ba
k by the univalent bran
hes of f we obtain the 
laim for all l . tu

Gluing now together the multiply 
onne
ted domains under 
onsideration, we 
on-

stru
t a homeomorphism h : V

0

!

~

V

0

whi
h is q
 on V

0

n!(
) and 
onjugates f and

~

f

on their 
riti
al sets. Sin
e the 
riti
al sets are removable, we are done.
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Homotopy. Let  

0

: (U;U

0

) ! (

~

U;

~

U

0

) be a homeomorphism 
onjugating f and

~

f .

We will show now that the q
 map h 
onjugating f and

~

f on their 
riti
al sets 
an be


onstru
ted in su
h a way that it is homotopi
 to  

0

rel the 
riti
al sets.

As in the proof of Corollary 2, let U

m

� V

m;t(m)

, U

0

m

� V

m;t(m)+1

, U

00

m

�

V

m;t(m)+2

, G

m

: U

0

m

! U

m

be the 
orresponding quadrati
-like renormalization of f ,

and let Q

m

be de�ned as in (23). These sets nest down to !(
) .

A sele
tion of the straightenings of the quadrati
-like maps G

m

and

~

G

m

provides us

with a 
hoi
e of 
onjuga
ies

 

m

: (U

0

m

; U

00

m

)! (

~

U

0

m

;

~

U

00

m

):

Let us 
ontinue  

m

to the annuli U

m

nU

0

m

in su
h a way that  

m

'  

m�1

(are homotopi
)

in the annulus U

m

nJ(G

m

) rel the boundary. Then let us spread  

m

around to the whole

set Q

m

. Outside Q

m

set  

m

=  

m�1

. Clearly  

m

'  

m�1

mod J

m

where J

m

is the

orbit of J(G

m

) .

Let us de�ne a homeomorphism  : U !

~

U as the pointwise lim 

m

. This home-

omorphism is homotopi
  

0

rel the 
riti
al sets. Let us now 
onstru
t a q
 map h

homotopi
 to  rel the 
riti
al sets. First of all, the above sele
tion of the straightenings

should be uniformly q
 whi
h is possible be
ause of the a priori bounds (Theorem B). Then

let us assume by indu
tion that we have already 
onstru
ted a map h

m�1

'  mod Q

m

whi
h is q
 outside Q

m

.

Let us 
ut U

m

by the external rays through the points �; �

0

; 
; 


0

into puzzle-pie
es

S

i

, and go through the above pull-ba
k 
onstru
tion. In the beginning we 
hange  

m

on

the S

i

to make it q
. As the pie
es S

i

are simply-
onne
ted, this 
hange 
an be done

via homotopy rel the boundary. Then this homotopy 
an be pulled ba
k to the deeper

puzzle-pie
es a

ording to the Starting Constru
tion. This provides us with a homotopy

rel the boundary

(V

0

;[V

1

i

)! (

~

V

0

;

~

V

1

0

):

Then this homotopy 
an be pulled ba
k through the 
as
ade of Main Steps, and spread

around to the whole 
riti
al set (as in the previous subse
tion). This gives us a q
 map

h

m

: U

0

nQ

m+1

!

~

U

0

n

~

Q

m+1

homotopi
 to  

m

rel the boundary.

We should now 
ontinue this map to the annulus R

m

= U

m

nU

0

m

. To this end observe

that  

m�1

has a bounded twist in this annulus sin
e it 
an be deformed rel the boundary

to a q
 map (by the above pull-ba
k argument). Hen
e  

m�1

has a bounded twist in the

annulus U

m

nJ(G

m

) as well, sin
e this homotopy 
an be pulled ba
k to this annulus (and

by a hyperboli
 argument will automati
ally be trivial on the Julia set). Consequently

the 
ontinuation of  

m

(and hen
e h

m

) to R

m

(su
h that  

m

'  

m�1

in U

m

nJ(G

m

)

mod the boundary) has a bounded twist as well. Hen
e this 
ontinuation 
an be realized

quasi-
onformally.

Finally we 
an spread the homotopy from U

m

around the Q

m

.

Sullivan's pull-ba
k argument. Remember that  

0

: (U;U

0

)! (

~

U;

~

U

0

) is a 
onjuga
y

between f and

~

f , and h is a K -q
 map homotopi
 to  

0

rel the 
riti
al sets. Sullivan's

Pull-ba
k argument allows us to re
onstru
t h into a q
 
onjuga
y.
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Let U

n

be the preimages of U under the iterates of f . We 
an always assume that

hjU

n

=  . Sin
e h(


1

) = ~


1

, we 
an lift h to a K -q
 map h

1

: U

1

=

~

U

1

homotopi
 to

 rel the 
riti
al set and �U

1

. Hen
e h

1

= h on these sets, and we 
an 
ontinue h

1

to

UnU

1

as h . This map 
onjugates f and

~

f on the 
riti
al sets and also on U

1

nU

2

.

Let us now repla
e h with h

1

and repeat the pro
edure. In su
h a way we 
onstru
t

a sequen
e of K -q
 maps h

n


onjugating f and

~

f on the 
riti
al sets and on U

1

nU

n+1

.

Passing to a limit we obtain a desired q
 
onjuga
y.

x5. Real 
ase.

In this se
tion we will prove the following di
hotomy: real maps of Epstein 
lass (see

below) either have a big 
omplex spa
e on the next quadrati
-like level, or essentially

bounded real geometry (\essentially" loosely means \up to saddle-node 
as
ades"). The

main ingredient is to 
reate a generalized polynomial-like map with a de�nite modulus on

an essentially bounded level. By Theorem I this implies big spa
e, provided the type is

suÆ
iently high. From this di
hotomy we derive the real rigidity theorem.

Preliminaries. Let �(z) = (z � 
)

2

denote the purely quadrati
 map. Let I

0

� I be

two nested intervals. A map f : I

0

! I is 
alled quasi-quadrati
 if it is S -unimodal and

has quadrati
-like 
riti
al point 
 .

Let us also 
onsider a more general 
lass A of maps g : [T

i

! T de�ned on a �nite

union of disjoint intervals T

i


ompa
tly 
ontained in an interval T . Moreover, gjT

i

is a

di�eomorphism onto T for i 6= 0 , while gjT

0

is unimodal with g(�T

0

) � �T . We also

assume that the 
riti
al point 
 2 T

0

is quadrati
-like, and that Sg < 0 . Maps of 
lass

A are real 
ounterparts of generalized polynomial-like maps.

Let g 2 A , and gjT

0

= h Æ � where and h is a di�eomorphism of an appropriate

interval K � �(T

0

) onto T . This map belongs to the so-
alled Epstein 
lass E (see [S℄

and [L2℄) if the inverse bran
hes f

�1

: T ! T

i

for i 6= 0 and h

�1

: T ! K allow analyti


extension to the slit 
omplex plane CnT .

Let I

0

= [�; �

0

℄ be the interval between the dividing �xed point � and the symmetri


one. Let M denote the full Markov family of pull-ba
ks of the interval I

0

. Given a 
riti
al

interval J 2 M (that is, J 3 
 ), we 
an de�ne a (generalized) renormalization R

J

f on

J as the �rst retun map to J restri
ted to the 
omponents of its domain meeting the


riti
al set. If f admits a unimodal renormalization, then there are only �nitely many su
h


omponents, so that we have a map of 
lass A . Moreover, if f is a map of Epstein 
lass

or a polynomial-like map, the renormalization R

J

f inherits the 
orresponding property.

Let I

0

� I

1

� : : : � I

t+1

be the real prin
ipal nest of intervals until the next

quadrati
-like level (that is, I

n+1

is the pull-ba
k of I

n


orresponding to the �rst return

of the 
riti
al point. Let us use the same notation g

n

: [I

n

j

! I

n�1

for the real generalized

renormalizations on the intervals I

n

.

Our �rst goal is to �ll-in the gap in between the notions of bounded 
ombinatorial

type in the sense of period and in the sense of the number of 
entral 
as
ades. To this end

we need to analyse in more detail 
as
ades of 
entral returns.

The return on level n � 1 is 
alled high or low if g

n

I

n

� I

n

or g

n

I

n

\ I

n

= ;


orrespondingly. Let us 
lassify the 
as
ades

I

m

� ::: � I

m+N

; g

m+1


 2 I

m+N�1

nI

m+N

(26)
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of 
entral returns as Ulam-Neumann or saddle-node a

ording as the return on the level

m + N � 1 is high or low. There is a fundamental di�eren
e between these two types of


as
ades. Let us 
all the levels m+1; :::;m+N � 1 of a saddle-node 
as
ade negle
table,

and all other levels essential. Let m = e(l) 
ounts the essential levels.

Let K

m+i

j

� I

m+i�1

nI

m+i

denote the pull-ba
k of I

m+1

j

under g

Æ(i�1)

m+1

, i = 1; :::; N ,

j 6= 0 . Clearly K

m+i+1

j

are mapped by g

m+1

onto K

m+i

, i = 1; :::; N � 1 , while

K

m+1

j

� I

m+1

j

are mapped onto the whole I

m

. So we have a Markov s
heme asso
iated

with any 
entral 
as
ade.

Take now a point x 2 !(
)\ (I

m

nI

m+1

) on an essential level m = e(l) . Let us push

it forward by iterates of g = g

m+1

through the above Markov s
heme until it lands at

the next essential level I

m+N

, m + N = e(l + 1) . Let o(x) (\the order of x ") denote

the number of times it passes through I

m

nI

m+1

before landing at I

m+N

(e.g., o(x) = 1

if gx 2 I

m+N

). Let gx 2 I

m+i

. Then set d(x)minfi; N � ig (\the depth of the �rst

iterate").

Let us now introdu
e the s
aling fa
tors

�

n

� �

n

(f) =

jI

n

j

jI

n�1

j

:

A

ording to [L2℄, these s
aling fa
tors exponentially de
ay with the number of 
entral


as
ades. Moreover, this rate is uniform when the s
aling fa
tors be
ome small enough.

Let us 
all the geometry of f essentially bounded (until the next quadrati
-like

level) if the s
aling fa
tors �

n

= jI

n

j=jI

n+1

j stay away from 0, while the 
on�gurations

(I

n�1

nI

n

; I

n

k

) have bounded geometry (that is, all intervals I

n

j

; j 6= 0 , and all 
omponents

of I

n�1

n[ I

n

k

(\gaps") are 
ommensurable). Remark that we allow the s
aling fa
tors �

n

to be 
lose to 1.

Complex bounds. Sullivan's Se
tor Lemma provides us with 
omplex bounds in the 
ase

when f is in�nitely q-renormalizable of bounded type. In the non-q-renormalizable 
ase

the 
omplex bounds were obtained in [LM℄ and [L2℄. We will 
omplement these results

with the following theorem.

Let us pi
k a 
lass U

�;��

of real quadrati
-like maps f of the same q-renormalizable

type � , and su
h that mod (f) � �� , where �� > 0 is an a priori 
hosen small quanti�er.

Theorem D. One of the following two possibilities o

urs for all f 2 U

�;�

simultaneously:

either mod (Rf) � �� > 0 , or the real geometry of f is essentially bounded (until the next

quadrati
-like level).

In the following two lemmas we analyse the geometry of long 
entral 
as
ades. Let us


all a quasi-quadrati
 map saddle-node or Ulam-Neumann if it is topologi
ally 
onjugate

to z 7! z

2

+ 1=4 or z 7! z

2

� 2 
orrespondingly.

Lemma 12. Let us 
onsider an Ulam-Neumann 
as
ade as (26) with 
ommensurable I

m

and I

m+1

. Then there is a bounded l su
h that the generalized renormalization g

m+l

allows a polynomial-like extension to the 
omplex plane with a de�nite modulus. Moreover,

the prin
iple modulus �

m+N+1

is big, provided the 
as
ade is long.
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Proof. It is easy to see by 
ompa
tness argument that if the 
as
ade is long enough then

the map g

m+1

: I

m+1

! I

m

(with the domain res
aled to the unit size) is C

1

-
lose

to an Ulam-Neumann map. It follows that I

m+N

o

upies a de�nite part of I

m

, and,

moreover, jI

m+k

nI

m+N

j de
rease with k at a uniformly exponential rate. Hen
e there is

a bounded l su
h that I

m+l

nI

m+N

is � -tiny as 
ompared with I

m+N

.

Take now the Eu
lidian disk D = D(I

m+l

) and pull it ba
k by the inverse bran
hes

of g

m+l+1

(as in the previous lemma). As g

m+l+l

= h Æ � where h is a di�eomorphism

with a bounded distortion, the 
entral pull-ba
k will be an ellipse based upon the interval

I

m+l+1

whose imaginary axis is O(

p

�jI

m+l+1

j) . It follows that this ellipse is well inside

of D .

The last statement follows from Lemma 11. tu

Lemma 13. All saddle-node patterns (26) of the same length with 
ommensurable I

m

and I

m+1

are qs equivalent.

Proof. Let g : I

0

! [0; 1℄ be a unimodal map of Epstein 
lass (and perhaps es
aping


riti
al point): g 2 E

u

. By de�nition, g = h Æ � with a di�eomorphism h whose inverse

allows the analyti
 extension to Cn[0; 1℄ . Let us supply this spa
e with with the Montel

topology on h

�1

.

The set of g 2 E

u

with bounded geometry on the real line is 
ompa
t. Hen
e given a

long saddle-node 
as
ade (26), the map G obtained from g

m+1

: I

m+1

! I

m

by res
aling

I

m

to the unit size must be 
lose to a saddle-node quadrati
-like map. Hen
e we 
an

redu
e G to a form z 7! z+ �+ (z) > 0 where  (z) is uniformly 
omparable with z

2

,

and (as we will see in a moment) � is determined (up to a bounded error) by the length

of the 
as
ade.

Take a big a > 0 . When jzj < a

p

� , the step G(z) � z is of order � . Otherwise

 (z) dominates over � , and in the 
hart � = 1=z the step is of order 1. It follows that

the qs 
lass of the 
as
ade is determined by � , whi
h in turn is related to the length of

the 
as
ade by N � 1=

p

� . tu

Given two intervals L � S , let P (LjS) denote the Poin
ar�e length of L in S . Given

an interval I , let D(I) denote the Eu
lidian disk based upon I as a diameter.

Lemma 14. Assume that �

n

< � with a suÆ
iently small � > 0 . Then there is an inter-

val T 2 M 
ontaining I

n+2

su
h that the renormalization R

T

f allows a (generalized)

polynomial-like extension to the 
omplex plane with the prin
iple modulus � ! 1 as

�! 0 .

Proof. First of all we 
an assume that all intervals I

n

j

are well inside I

n�1

(otherwise pass

to the next level). The following 
onstru
tion of a polynomial-like map is 
ombinatorially

the same as in [L℄, Lemma 5.3. For the reader's 
onvenien
e we brie
y repeat it.

Let g � g

n

: [I

n

j

! I

n�1

. Let us indu
tively de�ne the 
ut-o� orbit of I

n

0

as

g

l


ut

(I

n

0

) = g (g

l�1


ut

(I

n

0

) \ I

n

j

);

provided I

j

3 g

l�1


; j 6= 0 . We stop at the �rst moment when g

l


ut

I

n

0

\ I

n

0

6= ; . Let

us de�ne T � T

0

3 
 as the pull-ba
k of I

n�1

by g

l

, and set GjT

0

= g

l

. Clearly

I

n

� T

0

� I

n+1

, and G(�T

0

) � �I

n�1

:
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Let now z 2 (!(
) \ I

n�1

)nT

0

. If z 2 I

n�1

nI

n

then let T (z) be the interval

I

n

j

� I

n

(z) 
ontaining z , and GjT (z) = g . If z 2 I

n

nT

0

then let us push z forward

by iterates of g until it is separated from the 
orresponding iterates of 
 by the intervals

I

n

j

. Let it happen at moment s , and g

s


 2 I

n

k

. It follows from the 
hoi
e of l that s � l

and k 6= 0 . Let us now de�ne T (z) as the pull-ba
k of I

n

k

by g

s

, and GjT (z) = g

s+1

.

It is easy to see that G : T (z)! I

n�1

is a di�eomorphism.

So we have 
onstru
ted a map G : [T

i

! I

n�1

of 
lass A . Let us now take the

Eu
lidian disk D = D(I

n�1

) and pull it ba
k by the inverse bran
hes of G . This provides

us with a set of domains D

i

based upon the intervals T

i

. Moreover, by a little hyperboli


argument (see e.g., Lemma 8.1 of [LM℄) D

i

� D(T

i

) .

Let us now estimate the shape of D

0

. To this end let us 
onsider the following

de
omposition:

GjT

0

= (gjI

n

i

) Æ (hjK) Æ �jT

0

:

Here g

l�1


 2 I

n

i

, and g

l�1

jT

0

= h Æ� , where h is a di�eomorphism of an appropriate in-

terval K onto I

n

i

with a Koebe spa
e spreading over I

n�1

. As I

n

i

is well inside of I

n�1

,

hjK has a bounded distortion. Moreover, gjI

n

i

is quasi-symmetri
 (as a 
omposition of the

quadrati
 map and a di�eomorphism of bounded distortion). Hen
e GjT

0

= (HjK) Æ �jT

0

with a quasi-symmetri
 di�eomorphism H . Furthermore, as G(T

0

) \ I

n

0

6= ; ,

jG(T

0

)j �

1� �

2

jI

n�1

j:

Pulling this ba
k by the qs map H , we 
on
lude that

j�(T

0

)j � ÆjKj

with Æ = Æ(�) . Let Q be the pull-ba
k of D by H . Then Q � D(K) . Pulling this ba
k

by the quadrati
 map � , we 
on
lude that D

0

has a bounded shape. As it is based upon

a � -tiny interval I

n

0

, it is well inside D . Moreover, the annulus DnD

0

is getting big as

�! 0 .

It follows that R

T

G satis�es the desired properties. Finally, it is easily seen from the


onstru
tion that the �rst return map to T under f 
oin
ides with the �rst return map

under f , so that R

T

f = R

T

G . tu

Now we are ready to state the key lemma.

Lemma 15. There is an interval T 2 M su
h that the renormalization R

T

f allows a

polynomial-like 
ontinuation to the 
omplex plane with a de�nite prin
iple modulus � .

Moreover, T lies on an essentially bounded level: T � I

e(l)

.

Proof. Take a small � > 0 and Æ > 0 , and sele
t the �rst moment l for whi
h

�

l

> (1� Æ)�

l�1

: (27)

For su
h a level [L2,x5℄ provides us with a polynomial-like map G : [D

i

! D(I

l

) with

a de�nite modulus and su
h that the number of 
entral 
as
ades pre
eding T

0

= D

0

\R

is bounded. Moreover, only the last of these 
as
ades may be of Ulam-Neumann type. If

this 
as
ade is of bounded length then T

0

lies on an essentially bounded level. Otherwise

Lemma 12 provides us with a desired polynomial-like map.
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On the other hand, if (27) fails to happen on the �rst s = log �=log(1� Æ) + 1 levels

then we 
ome up with an � -small s
aling fa
tor, and 
an apply Lemma 14. tu

Given a q-renormalizable map f , let �(f) denote the maximum of the type �(f) ,

the lengths of the Ulam-Neumann 
as
ades, the orders o(x) and the depths d(x) for all

x 2 !(
) .

Lemma 16. Take a �� > 0 . Let f be a q-renormalizable unimodal map of Epstein 
lass

of a bounded distortion D . If �(f) is suÆ
iently high (depending on D and �� only),

then the renormalization Rf is polynomial-like with mod (Rf) > �� .

Proof. Assume that (i) o

urs. Then by Lemma 15 on an essentially bounded level T we


an 
reate a generalized polynomial-like map R

T

f with a de�nite modulus (> �� > 0 ).

Then by Theorem A the moduli of further renormalizations of R

T

f will grow at a linear

rate with the number of 
entral 
as
ades. Hen
e the quadrati
-like renormalization Rf

will have a �� -big modulus, provided there are suÆ
iently many 
entral 
as
ades.

If (ii) o

urs then by Lemma 12 in the end of the Ulam-Neumann 
as
ade we observe

a generalized polynomial-like map with a big modulus. Then by Corollary 6 the modulus

of the quadrati
-like renormalization Rf will be big as well.

Assume further that there is an x 2 !(
) \ (I

m

nI

m+1

) of a high order o(x) , where

I

m

� ::: � I

m+N

is a 
entral 
as
ade as (26) (it may be N = 1 ). Let us 
onsider the

above Markov s
heme involving the intervals K

m+i

j

. Let J 3 x denote the pull-ba
k of

I

m+N


orresponding to the �rst landing of the orb (x) at I

m+N

.

As the intervals K

m+1

j

are well inside of I

m

nI

m+1

, and orb (x) passes many times

through these intervals before the �rst landing at I

m+N

, the Poin
ar�e length

P (J j(I

m

nI

m+1

)) is big. Pulling this interval ba
k to the 
riti
al point we will �nd a

level with a small s
aling fa
tor. Applying Lemma 14 we get the 
laim.

Let us �nally assume that there is an x 2 !(
) \ (I

m

nI

m+1

) with high d(x) . Then

g

m+1

x 2 I

m+i

nI

m+i+1

with d(x) � i � N � d(x) . Then by Lemma 13 I

m+i

nI

m+i+1

is

tiny in I

m

. It follows that the interval J 3 x introdu
ed two paragraphs up is tiny in

I

m

nI

m+1

. Now we 
an 
omplete the argument as above. tu

Remark. Now a little extra work shows that if �(R

m

f) is suÆ
iently high on all levels,

then MLC holds at 
 2 R .

Lemma 17. If �(f) is bounded, then the geometry of f is essentially bounded (until

the next quadrati
-like level).

Proof. Assume that the geometry is bounded on level n�1 , and let us see what happens

on the next level. Given an x 2 !(
) \ (I

n�1

nI

n

) , let J(x) denote the pull-ba
k of I

n


orresponding to the �rst landing of orb( x ) at I

n

. As the landing time under iterates of

g

n

is bounded, J(x) is 
ommensurable with I

n�1

.

To 
reate the intervals I

n+1

j

, we should pull all intervals J(x) ba
k by g

n

: I

n

!

I

n�1

. As g

n

is a quasi-quadrati
 map, all non-
entral intervals I

n+1

j

and the gaps in

between are 
ommensurable with I

n

.

The only possible problem is that the 
entral interval I

n+1

may be tiny in I

n

. This

may happen only if the 
riti
al value g

n


 2 J(x) is very 
lose to the �J(x) . Let l be

26



su
h that f

l

J(x) = I

n

. Sin
e f

l

: J(x)! I

n

is qs, g

n+1


 = g

Æ(l+1)

n

turns out to be very


lose to �I

n

(\very low return"). But g

n+1


 belongs to some non-
entral interval I

n+1

j

whose Poin
ar�e length in I

n

is de�nite (as we have shown above). This is a 
ontradi
tion.

So when we pass from one level to the next, the geometri
 bounds 
hange gradually

(provided the 
onditions of Lemma 16 don't hold). But the same is true when when we

pass from level m = e(l) to level m+N = e(l+1) of a saddle-node 
as
ade (26). Indeed,

assume that the geometry on level I

m

is bounded. Then the geometry of all 
on�gurations

(I

m+i�1

nI

m+i

; K

m+i

j

) , i = 1; :::;m+N , are bounded as well. Let us de�ne the intervals

J(x) , x 2 !(
)\ (I

m+N�1

nI

m+N

) , as the pull-ba
ks of I

m+N


orresponding to the �rst

landing of orb (x) at I

m+N

. Then it follows from boundedness of o(x) and d(x) that

the 
on�gurations of intervals J(x) has a bounded geometry in I

m+N�1

. Now we 
an

pull these intervals ba
k to the next level m + N , and argue that the geometry is still

bounded in the same way as above. tu

Now Theorem D follows from the last two lemmas.

Quasi-symmetri
 
onjuga
y. We will show below that any two real quadrati
-like maps

with the same 
ombinatori
s are qs 
onjugate, whi
h implies the real rigidity 
onje
ture

(
ompare [Sw℄). To 
onstru
t the 
onjuga
y, we boun
e in between Sullivan's argument

for bounded geometry 
ase, and the pull-ba
k argument of x4.

Let us take two maps f and

~

f of Epstein 
lass with a bounded distortion on the real

line. Let us 
onsider the alternatives of Theorem D. In the latter 
ase the real geometry

is essentially bounded before the next quadrati
-like level. This allows us to 
onstru
t

a q
 pseudo-
onjuga
y between the 
on�gurations of the Eu
lidian disks based upon the

intervals I

n

j

. The 
onstru
tion is the same as in the bounded geometry 
ase (see [MS℄,

Ch. IV, Theorem 3.1), ex
ept that Lemma 12 takes 
are of long saddle-node 
as
ades.

If the �rst alternative of Theorem D o

urs, then by Lemma 15 on some essentially

bounded level we 
an 
reate polynomial-like maps with de�nite moduli. By Lemma 17 the

geometry is essentially bounded until that level, and we 
an apply the previous argument.

On that level we 
an swit
h to the pull-ba
k argument of x4. (To begin the argument, use

the initial 
onstru
tion of [L3℄, x5.)

When we arrive at the next quadrati
-like level, then we pro
eed as follows. In the

�rst 
ase we have arrived with a q
 pseudo-
onjuga
y between 
on�gurations of Eu
lidian

disks. Then just apply the previous 
onstru
tion to Rf (here we need real a priori bounds

for in�nitely q-renormalizable maps [G℄, [BL℄, [S℄). In the se
ond 
ase we have arrived with


on�gurations of topologi
al disks. Then interpolate the q
 pseudo-
onjuga
y as in x4, and


onformally map the range of Rf to a slit domain. This gives us a map of Epstein 
lass

with a de�nite distortion on the real line, and we 
an repeat the 
onstru
tion.
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