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Abstract

We prove that non-hyperbolic non-renormalizable quadratic poly-

nomials are expansion inducing. For renormalizable polynomials a

counterpart of this statement is that in the case of unbounded com-

binatorics renormalized mappings become almost quadratic. Techni-

cally, this follows from the decay of the box geometry. Speci�c esti-

mates of the rate of this decay are shown which are sharp in a class of

S-unimodal mappings combinatorially related to rotations of bounded

type. We use real methods based on cross-ratios and Schwarzian

derivative complemented by complex-analytic estimates in terms of

conformal moduli.

�Partially supported by NSF grant #431-3604A and the Sloan Foundation

1



1.1 Overview

In recent years, a rather dramatic progress occurred in the study of real
quadratic polynomials, or, more broadly, S-unimodal mappings with a sin-
gularity of quadratic type. Examples of progress include better understand-
ing of measure-theoretical attractors and quasisymmetric classi�cation of
quadratic polynomials which lead to a proof of the monotonicity conjecture
in the real quadratic family.

This progress was partly based on ingenuous new estimates. The main
breakthrough, however, was in achieving a better understanding of the rich
dynamics of unimodal mappings in conjunction with their geometry, and thus
being able to apply appropriate tools in di�erent cases. Most of the progress
in this direction seems to be due to the application of the idea of inducing.
The �rst striking application of inducing to the study of unimodal maps was
in the work [9]. In that work useful geometrical and analytic estimates were
obtained only in judiciously chosen special cases. Another notable step was
the work of [7]. An attempt was made there to handle all cases, though some
patterns emerged as analytically unmanageable. Then, independently, two
approaches appeared. One of them was the inducing construction of [10],
which is also the underlying approach of the present paper. Here a clear
and complete topological model of unimodal dynamics was obtained, with
satisfactory estimates in most cases, except in what was called an in�nite
box case. The in�nite box case was subsequently solved for mappings with
a quadratic singularity based on the phenomenon of decaying box geometry.
The phenomenon was �rst noticed in [10], however proved there only in
some cases. An estimate called the starting condition was provided which,
if satis�ed, allowed one to prove the decaying geometry in general for S-
unimodal maps. It should be noted that about the same time a similar case
of decaying geometry was observed independently by [23] and [4] for circle
mappings with a 
at piece. It is not known whether there is more than an
analogy between both cases.

A breakthrough work was [22], see [17] for a description. This was done for
non-renormalizable quadratic polynomials, complex as well as real. Inducing
was not directly mentioned, but implicitly present in the construction of a
Markov partition. It is believed that the approaches of [10] and [22] give
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equivalent sequences of partitions for real polynomials. A great achievement
of [22] was in being able to get estimates in the \hard case" which again
emerged (and was called persistently recurrent). This was done by watching
how pieces of the partition nest in one another with certain moduli, and using
a computation quite similar to one done in [2] (curiously, this last work was
about cubic polynomials.)

In the real situation, analytic methods were re�ned in the study of one
particular topological class of the so-called Fibonacci polynomial. This map
was proposed in [8] as an interesting example to study. From the point of view
of [10], the Fibonacci polynomial shows the simplest example of the in�nite
box case. In the work of [15] a complex-analytic idea was applied to obtain
estimates in the Fibonacci case. Another approach was used in [12] where the
same results as in [15] were proved by purely real methods based on negative
Schwarzian. Together with arguments of [10] or [16] based on inducing,
the non-existence of non-Feigenbaum type Cantor attractors (proved in [14])
implies induced expansion.

Finally, there was a work of [20] which addressed the geometry of renor-
malizable quadratic polynomials. Again, a hard case emerged when the
trajectory of the restrictive interval was allowed to be arbitrarily long (un-
bounded case), and in terms of the construction of [10] needed to be tracked
through a long sequence of box returns. In [20], the idea borrowed from [15]
was used which consists of introducing an arti�cial map for which the starting
condition holds. Then, a conjugacy with good quasiconformal properties is
constructed between this mapping and the given quadratic polynomial which
forces the starting condition for the polynomial.
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1.2 Statement of results

Introduction In this paper we rely on the inducing approach of [10], and
our goal is to verify the starting condition in the box case. Our method is a
mix of real and complex arguments and works just as well for renormalizable
polynomials of unbounded type as for non-renormalizable ones. The method
is direct, that is independent of quasiconformal conjugacies with arti�cial
maps, the tableau computation of [2] or moduli estimates of [22]. On the
technical level, our main theorems follow from Theorems A and B stated
further in the text. The derivation is by arguments of [20] (fully presented
here.)

Main theorems.

De�nition of our class of mappings.

De�nition 1.1 We de�ne class F� to comprise all unimodal mappings of
the interval [0; 1] into itself normalized so that 0 is a �xed point which satisfy
these conditions:

� Any f 2 F can be written as h((x� 1
2
)2) where h is a polynomial de�ned

on a set containing [0; 1=4] with range (��; 1 + �).

� The map h has no critical values except on the real line.

� The Schwarzian derivative of h is non-positive.

� The mapping f has no attracting or indi�erent periodic cycles.

We also de�ne
F :=

[
�>0

F� :

For any mapping f 2 F we de�ne the fundamental inducing domain as
follows. From the non-existence of attracting or indi�erent periodic points
it follows that there is a repelling �xed point q > 1=2. The fundamental
inducing domain is the interval (1�q; q). Almost every orbit passes in�nitely
many times through the fundamental inducing domain.
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Theorem about non-renormalizable mappings.

Theorem 1 Let f 2 F� be non-renormalizable. Then on an open, dense
and having full measure subset of the fundamental inducing domain one can
de�ne a continuous function t(x) with values in positive integers so that f t(x)

is an expanding Markov mapping. That is, restricted to a maximal interval
on which t(x) is de�ned an constant, f t(x) is a di�eomorphism onto (1�q; q),
expanding, and with distortion (measured as the variation of the logarithm of
the jacobian) bounded by depending on � only.

Theorem 1 has a number of consequences (see [10]). It gives an alternative
proof of the non-existence of \exotic" attractors in class F (already known
from [14]). It also gives an approach to constructing invariant measures.

Theorem in the renormalizable case.

De�nition 1.2 Let f 2 F . A point x in the domain of f is called almost
parabolic with period m and depth k provided that:

� the derivative of fm at x is one,

� fm is monotone between x and the critical point,

� k consecutive images fm(1=2); : : : ; f km(1=2) are between x and 1=2.

Theorem 2 Let f 2 F� be renormalizable, and let n be the return time of
the maximal restrictive interval into itself. Denote by k(n) the maximum of
depths of almost parabolic points with periods less than n. Specify a number
D > 0. For every given k, a number N(�;D; k) exists independent of f so
that if n > N(�;D; k) and k(n) � k, then fn on a neighborhood of 1=2 is
a�nely conjugate to a mapping from FD.

Theorem 2 \almost complements" the theory of renormalizable mappings
developed in [19]. In fact, it says that such a theory at least in some aspects
is much simpler for renormalizable mappings of unbounded type. The exclu-
sion of the unbounded case with almost parabolic returns is the only gap.
Theorem 2 is a critical step in the proof of monotonicity in the real quadratic
family, see [20] (where, by the way, the theorem is stated wrongly without
excluding the almost parabolic case.)
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Technical theorems. The strongest results of our paper are contained
in technical theorems A,B, C, D. They imply theorems 1 and 2. In addition,
Theorem C gives exact bounds on the exponential rate of decay of box ge-
ometry for S-unimodal rotation-like maps. Theorem D concerns the decay
of complex box geometry and can serve as an important step in proving the
density of hyperbolicity in the real quadratic family, see [20]. The technical
theorems are stated for objects that we call box mappings and their statement
must be postponed until those are de�ned.

Plan of the work. All three theorems follow from Theorem B which we
will formulate later which essentially says that the starting condition holds
for any map from F after a bounded number of box inducing steps. To prove
this we will use two complementary methods. The �rst one is based purely
on real-variable considerations. The advantage of a real-variable approach
is in robust estimates. The disadvantage is sensitivity to the combinatorial
complexity of the problem. Thus, we conduct our estimates only in the case
we call \rotation-like" in which estimates are subtle and the combinatorics
not harder than for circle rotations. In this way we prove Theorem A for
real mappings with rotation-like behavior. Our second method is complex-
analytic and based on watching annuli which are mapped by the dynamics
and nest inside one another. This method will allow us to cover the full
realm of combinatorial possibilities, but estimates are weaker. In particular,
they would be too weak in the rotation-like case. More precisely, to prove
the starting condition we will need to show that certain ratios are small after
a number of box steps. Depending on the dynamics, by each box step the
geometrical ratios decrease either by a multiplicative constant uniformly less
than 1, or by being raised to a power uniformly greater than 1. The complex
approach is capable of accounting for the second type of phenomenon, but,
at least at present, misses the �rst one. It turns out that it is exactly the
rotation-like case that exhibits the �rst, slower, type of decay.

After proving the technical theorems, we will derive Theorems 1 and 2.

Acknowledgements. Jacek Graczyk gratefully acknowledges the hospital-
ity of the Institute for Mathematical Sciences in Stony Brook where, amidst
beautiful Long Island spring, most of this work was done. Both authors
thank M. Jakobson for dicussions regarding the rotation-like case. We are
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also grateful to S. Sutherland for sharing his very enlightening computer-
generated pictures, and to J. Milnor for remarks concerning references and
the historical background of our problem.

1.3 Box mappings.

Real box mappings. The method of inducing was applied to the study of
unimodal maps �rst in [9], then in [7]. In [11] and [10] an elaborate approach
was developed to study induced maps, that is, transformations de�ned to be
iterations of the original unimodal map restricted to pieces of the domain.
We de�ne a more general and abstract notion in this work, namely:

De�nition 1.3 Consider a transformation � de�ned on an open dense sub-
set of an interval I into I. Call restrictions of � to connected components of
the domain branches. If each branch is at least three times di�erentiable and
the Schwarzian derivative is non-positive wherever de�ned, we will call � a
piecewise map.

We will deal with two types of branches, namely monotone and folding. A
monotone branch is a di�eomorphism onto its image, while a folding branch
arises as a quadratic polynomial pre- and post-composed with di�eomor-
phisms. Examples include induced maps studied in works cited above.

Next, we want to impose more speci�c conditions on the images of the
branches of a generalized induced map.

De�nition 1.4 A box map on I is a piecewise map on I more combinatorial
structure. Namely, there is a �nite nesting sequence of intervals, called boxes
or real boxes,

I = B0 � � � � � Bn

indexed by a growing sequence of integers and halves of odd integers. All
boxes are assumed symmetric with respect to the critical point. It is further
assumed that there is only one central folding branch whose domain is Bn and
whose image is contained in some Bk with the boundary of Bn going into the
boundary of Bk. It is then said that the rank of the central branch is k. All
other branches are monotone and each maps onto some Bl which determines
its rank.
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Furthermore, no branch of positive rank can share a common endpoint
with another branch of positive rank or folding, and if the domain of some
branch has a non-empty intersection with a box, then it is contained in this
box.

This is an extension of the notion of induced map used in [11]. Namely,

De�nition 1.5 A box map is called full if B1 is the domain of the central
branch which is of rank 0, and the highest rank is 1.

Complex box mappings. We will now give a precise meaning to com-
plex extension of real box mappings. Given a real box B, a corresponding
complex box must be an open disk symmetrical with respect to the real axis
which intersects the real line exactly along B. Given a real box structure,
a compatible complex box structure will be a sequence of nesting complex
boxes corresponding to the real boxes.

Hole structures. Now suppose that a real box mapping � is given
whose all branches are real-analytic and pick a compatible complex box
structure. A hole structure means that for the domain of every branch of
� save monotone branches of rank 0 an open disk (hole) is chosen symmetri-
cal with respect to the real line and intersecting the line along the domain.
It is further assumed that the branch has an analytic continuation to its
hole of the same topological type as the real branch, i.e. either univalent for
monotone branches or degree 2 for folding branches. We will not hesitate
to talk of monotone or folding branches for complex box mappings. This
analytic extension will be called the complex branch. Lastly, the image of the
complex branch is exactly the complex box corresponding to the rank of the
real branch.

De�nition 1.6 Given a real-analytic real box mapping �, the choice of a
complex box structure and a hole structure, de�nes a complex box mapping.
Thus, by a complex box mapping we will formally understand the conglomer-
ate of all three compatible structures: a real box map, complex box structure,
and hole structure. With a slight abuse of language, we will also extend this
name to the union of complex branches of the complex box map.
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Special type box mappings.

De�nition 1.7 A type I box mapping of rank n is a �rst of all a box mapping
whose central domain is Bn. The central branch has rank n � 1 � n0 < n

corresponding to the element of the box structure directly preceding Bn. All
monotone branches of positive rank have rank n. This de�nition makes equal
sense for real and complex box mappings.

Note that the full map is type I of rank 1, with n0 = 0. Most of our work
will be done in terms of type I box maps.

De�nition 1.8 A type II box mapping of rank n is a box mapping whose
central domain is Bn and all branches of positive rank map onto Bn0 which
the element of the box structure directly preceding Bn.

Separation symbols for complex box mappings.

De�nition of the symbols. Now, let ' be any type I complex box
mapping. Fix the notations so that the central hole of ' is labeled Bn with
n > 1. Pick a monotone branch B of rank n. Also, pick another hole C
contained in Bn�1. We may assign to B its separation symbol from C which
is simply an ordered quadruple of real non-negative numbers:

s(B) := (s1(B); � � � ; s4(B)) :
A valid separation symbol by de�nition implies the existence of certain annuli
with moduli estimated from below in terms of the components of the symbol.
We �rst assume that there are annuli A1 and A2, both selected for the given
B even though the dependence on B is not emphasized in the notation. Both
annuli are contained in Bn0 . The annulus A2 surrounds the hole C separating
it from the boundary of Bn�1 as well as the hole B. In addition, A2 is not
allowed to intersect any holes which meet the real on the side of B opposite
to C. This, in e�ect means that A2 also separates C from all holes strung
on the real line \behind" B. Then A1 separates A2 from the boundary of
Bn�1. The number s2(B) is a lower bound on the modulus of A2 and s1(B)
is a lower bound on the sum of moduli of A1 and A2.

We then proceed to select annuli around B which will give the meaning
of the two remaining components of the symbol. First, the annulus A0 is
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chosen to separate B from the domain of the extension of the branch de�ned
on B. This extension is of rank n0. Then, the existence of A3 is postulated
which surrounds A0 separating it from C and the boundary of Bn�1. Also,
A3 is not allowed to intersect any holes that meet the real line on the side of
C opposite to B. Finally, A4 separates A3 from the boundary of Bn�1. The
component s3 is then assumed to be a lower bound for the sum of moduli A0

and A3, while s4 is a lower bound of the sum of all three moduli: A0, A3 and
A4.

In this paper we will always assume C to be the central hole. We will
then call the separation symbol of B from C the critical symbol of B.

This fully lists the geometrical properties implied by a valid separation
symbol.

Normalized symbols. We will now arbitrarily impose certain algebraic
relations among various components of a separation symbol. Choose a num-
ber �, and � := �=2, together with �1 and �2. Assume � � �1; �2, �1 � ��

2
,

�2 � ��
2
and �1+�2 � 0. If these quantities are connected with a separation

symbol s(B) as follows
s1(B) = � + �1) ;

s2(B) = �� �2 ;

s3(B) = � � �1 ;

s4(B) = � + �2 :

we will say that s(B) is normalized with norm � and corrections �1 and
�2.

Separation norm of a box mapping. For a type I complex box
mapping � its separation norm is de�ned as the supremum of values of � for
which valid normalized critical symbols with norm � exist for all univalent
branches.

1.4 Box inducing process

Description of the process. We will now describe a standard inducing
step which is a procedure that takes a box mapping called � and returns a
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type I box mapping called �. � is induced in terms of �, i.e. all branches of
� are compositions of branches of �.

Close and non-close returns. If the escape time of the critical point
is 1, we say that the mapping shows a non-close return. Otherwise, it is a
close return. The box case occurs when the image of the critical point is
found in the domain of a monotone branch of positive rank. The remaining
two cases when the push-forward image is in an rank 0 domain, or beyond
the domain of the induced map (the Misiurewicz case), are well understood
by the methods of [10], so we always assume that a box case occurs. The
procedure we describe applies equally well to complex and real box mappings.
So suppose that a box mapping �. Let the central domain be Bn.

The �rst �lling. Construct �0 by replacing � on the central domain
(hole) with the identity. This gives a valid box mapping. Next, de�ne �1
by replacing the central branch  of � with �0 �  . The new central domain
is the preimage by  of the domain containing the critical value. The new
central domain is adjoined to the hole structure as Bn+1.

Filling-in. In order to obtain a type I mapping, we "�ll in" all monotone
branches obtained by the �rst �lling. This process was introduced in [10].
That is, each point in the domain of a monotone branch is mapped by mono-
tone of branches of positive rank until it leaves the union of their domains. Its
�rst image outside of those domains, by de�nition, is the image of the point
under a new map. This de�nition works except for a Cantor set of points.
The mapping obtained in this way has all monotone (univalent) branches of
rank n+ 1.

This construction can be carried out regardless of whether the return
was close or not. In the case of a non-close return this completes a standard
inducing step and the map so obtained is �. For close returns, it is convenient
to bundle together several steps.

Close returns. In the case of a close return, we proceed as follows. We
construct �0 in the usual way be replacing the central branch with the identity,
and then de�ne �1 by substituting the central branch  with �0 � . In other
words, the �rst �lling occurs like for a non-close return. The central domain
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is Bn+1, but we will more often use the notation B1. We then look whether
the critical value of �1 (which is still the same as the critical value of  ) is
in B1. If so, we repeat the same step with �1 instead of � to obtain �2 and
continue in this way until the critical value is no longer in the central domain
Bk. This must happen for some k, or the intersection of all central domains
would be a restrictive interval and � would be suitable. The mapping has a
bunch of monotone branches all of which have rank n and are compositions
of the central branch applied a number of times with branches of �. We then
make it a type I mapping � by �lling-in of those monotone branches so that
they become of rank n+k, i.e. all map onto Bk. The central branch remains
unchanged of rank n+ k� 1. Call this new type I mapping ~�. Then the last
step is to execute the standard inducing step on ~� which, by de�nition, will
give �. Finally, we rearrange the box structure of � de�ning Bn+1 as the
central domain of � and Bn+1=2 as B

k.
The reader may check that this is the same map that we would get simply

following the standard inducing step described for non-close returns k + 1
times. However, our description gives a more direct insight into the origin of
branches of �.

Immediate preimages. Regardless of how � was constructed, its imme-
diate or primary branches are those univalent branches which are restrictions
of the central branch  . Note that there may be none or two immediate
preimages, depending on whether the real range of the central branch covers
the critical point. In the case of a close return the immediate preimages are
formed at the last stage of inducing on ~�. The well-known "Fibonacci case"
is an example when all monotone branches occurring in the constru

Filling-in and hierarchy of branches. Consider a abstract setting in
which one has a bunch of univalent branches with common range B0 and
�lls them in to get branches mapping onto some B � B0. The original
branches mapping onto B0 will be called parent branches of the �lling-in
process. Clearly, every branch after the �lling-in has a dynamical extension
with range B0. For two branches, the domains of these respective extensions
m

� one branch is mapped onto the central branch, or
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� the domains of their dynamical extensions are disjoint.

In the second case we say that the original branches were independent. Oth-
erwise, the one mapped onto a monotone domain is called subordinate to the
other one which was transported onto the central domain.

We then distinguish the set of "maximal" branches subordinate to none.
They are mapped by their dynamical extensions directly onto the central
domain. Therefore, the domains of extensions of maximal branches are dis-
joint. They also cover domains of all branches. The extensions of maximal
branches exactly the parent branches of the �lling-in process.

For example, in the non-close return the �rst �lling gives a set of parent
branches, two of which may be immediate, which later get �lled in. In the
close return �lling-in is done twice, so we will be more careful in speaking
about parent branches i

Rotation-like returns. Let � be a type I map obtained in a standard
inducing step. Then its immediate branches are de�ned as in the previous
paragraph.

De�nition 2.1 We say that � exhibits a rotation-like return in the following
situation. When the return is not close, it is rotation-like if and only if the
critical value lands in an immediate branch of �. When the return is close
map the critical value by the central branch until the �rst exit from the central
domain. The return is rotation-like if upon the �rst exit from the central
domain the critical value gets into an immediate branch of � and is mapped
by this branch into Bk.

The above de�nition is slightly technical however its advantage is that
the existence of rotation-like maps follows immediately from the de�nition.

Proposition 1 Rotation like maps do exist.

Proof:

Take a one parameter full family of S-unimodal maps. For each of them
do inducing procedure. Then the position of the critical value of the central
domain during each step of induction depends continuously on the parameter
value. Hence in particular we obtain all rotation-like maps.
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2

Now we are in position to give a simple characterization of rotation-like
maps which also will justify the name of this class of unimodal maps.

Rotation-like sequences. We will say that a sequence of type I box
mappings is rotation-like if the each arises from the previous one by a stan-
dard inducing step, and each return, with the exception of the �rst one for
which immediate preimages are not de�ned, is rotation-like.

Fact 2.1 For a rotation-like sequence, there is an inductive formula relating
consecutive central branches of the inducing procedure

fn+1 = fn�1 � fann ;

where fj denotes the central branch of �j, and an is a the smallest i such that
the i-th iterate of the central branch of the n-th mapping maps the critical
point outside of the central domain. E.g., an = 1 is equivalent to saying that
the n-th map shows a non-close return. We de�ne a0 by a requirement that
f2 = fa0 � fa1

1 .

Following the analogy with the circle homeomorphisms we will introduce
a concept of a rotation number for our class of maps.

De�nition 2.2 The rotation number �(f) of � is equal to

�n =
1

a1 +
1

a2+���

which can be written shortly as [a0; a1; � � �] using the formalism of continued
fractions.

2.1 Technical theorems

The starting condition.

De�nition 2.3 We say that a type I or type II box mapping of rank n satis-
�es the starting condition with norm � provided that Let jBnj=jBn0 j < � and
if D is a monotone domain of �, then also jDj=dist(D; @Bn0) < �.
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Fact 2.2 Let � be a real box mapping of type I of rank n. Pick � > 1 and
assume that the central branch is � -extendable. Then, there is a number �(�)
bounded away from 0 for � in any closed subset of (1;1) with the following
property. Suppose that �i with �0 = � be a sequence of type I box mappings
such that �j+1 arises from �j by a standard inducing step and let � satisfy
the starting condition with norm �(�). Then, in the box construction of [10],
the ratios �n+i=�n+i�1 tends to 0 at least exponentially fast with i with rate
given by an absolute constant.

Proof:

This Fact was proved in [10].

2

The box construction of [10] is slightly di�erent from the inducing con-
struction we use. We do not need the details now.

Theorem A about real box mappings. We state the theorem as follows.
Theorem A

Let � = �0 be a type I real box mapping. Let Bn be its central domain.
Suppose that the ratio of lengths jBnj=jBn0 j is 1��. Next. let �i be a rotation-
like sequence derived from �. Specify a delta > 0. Then, there is a function
K(�; �) of � and � only and independent of �, bounded on any compact com-
pact subinterval of (0; 1]2, with the property that for i � K(�; �) the mapping
�i satis�es the starting condition with norm �.

The proof of Theorem A uses purely real methods. It generalizes the
result of [12]. A natural question is whether an analogous result can be
demonstrated by real methods for an arbitrary box sequence of induced maps.
In principle, that should be possible, but technical di�culties are daunting.

Theorem B about complex box mappings. The technical complexity
of the general box case becomes tractable when one works with complex box
mappings. Hence the theorem:
Theorem B

Let � = �0 be a type I complex box mapping, and �i be a sequence of
complex box mappings such that �i+1 is derived from �i in a standard inducing
step. Suppose that the separation norm of � is �. Also, specify a � > 0. Then,
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there is a function K(�; �) depending solely on � and � and bounded on any
closed set contained in (0;1)2 with the property that if i � K(�; delta), then
�i as a real box mapping satis�es the starting condition with norm �.

Sharp estimates for rotation-like mappings. Theorem C For any S-
unimodal rotation-like map there exist positive constants K1, K2 and �1; �2 <

1 depending only on the initial geometry, i.e. the number � of Theorem A,
so that

K1�
a1�:::�an�1

1 � �n � K2�
a1�:::�an�1

2 :

This is an improvement of Theorem A which also gives the lower bound
on the rate of decay of box geometry. The proof is by purely real methods.

Growth of conformal moduli. Theorem D Let � = �0 be a type I complex
box mapping of rank n, and �i form a sequence of complex box mappings
derived from � by the box inducing process. Suppose that box ratios on the
real line decrease at least exponentially fast, i.e.

jBn+jj
jB(n+j)0 j < Cj

with C < 1. Let �j denote the separation norm of �j. Then, there is a
number C(C; �0) so that if the separation norm of �0 is at least �0, then
�j � C � j. The constant C only depends on its speci�ed parameters.

Theorem D claims a decay of the conformal geometry in a sequence of
complex box mappings derived by inducing. This phenomenon seems to be
the basis of many recently obtained results, see [20]. In view of Theorem B
and Fact 2.2 the assumption of Theorem D regarding the decrease of ratios
is automatically satis�ed for any complex box mapping with constant C

depending only the initial separation

In this section we prove Theorem A. Suppose that in the situation of Theorem
A a rotation-like sequence �i is given, i = 0; 1; � � �.
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3.1 Rotation-like sequences

Notations. For the real induction, we �x the critical point at 0. The
central branch of �i will be called fi. Denote the endpoints of the box Bn by
z�n and z+n . We adopt the following convention of ascribing signs to points:
`+0 written as a superscript indicates the endpoint of Bn which lies closer to
the critical value of f[n+1] (where [�] denotes the integral part.) In other words
f[n+1](0) 2 (0; z+n ). Each central branch can be represented as a composition
of a di�eomorphism hn and a quadratic map g. We know that the image
of Bn is contained in Bn�1. The following Lemma describes extendability of
di�eomorphisms hn.

Generally, we will use (x; y) to denote the interval from x to y, regardless
of the ordering of x and y.

Lemma 3.1 If n � 3, the di�eomorphism hn extends on some neighborhood
of g(Bn) so that the image of the extension coincides with (fn�2(0); z

�
(n�2)0).

Proof:

By construction, hn extends to a neighborhood of g(Bn) which is mapped
on Bn�1. Take arbitrary n. We know that fn = fn�2 � fan�1

n�1 . Consider two
cases.

� If an = 1 then the range of a monotone extensions of hn is the same as
that of the composition fn�2 � hn�1 which is clearly (fn�2(0); z

�
(n�2)0).

and next pull it back by the extension of fn whose image by the induc-
tive hypothesis covers Bn�2. The resulting interval is the

� For an > 1 choose an extension of hn�1 so that fan�1
n�1 � hn�1 maps it

di�eomorphically onto (0; z+n�2). The image of monotone branches of
fn�2 gives the desired range of the extension.

This proves Lemma 3.1.

2

In the \real part" of this paper we will extend di�eomorphisms hn every
time only over a one side of their domains. We distinguish between two
directions of one-sided extendability of hn. The key observation is that the
points ffn�2(0); fn(z

+
n ); fn(0); z

�
n�3g are always arranged according either

17



to the natural or reversed order of the real line. Observe, that fn extends
further \through the head" meaning in the direction of the critical value,
where hn can be extended up to z�(n�2)0 , than \through the legs" meaning
in the direction of fn(@Bn) where the extension is only up to fn�2(0) which
is closer to Bn0 than z+(n�2)0 . The extendability of central branches plays
a crucial role in estimates of the distortion. By real K�obe's Lemma the
distortion depends only on the relative scale of the images of domains with
respect to the images of their extensions. As it happens (and will be proved),
these scales will improve during inducing procedure �nally forcing the starting
condition. We will need however some initial extension to start with.

Estimates a priori. Denote by �n, n integer, the ratio jBnj=jBn0 j. Let
� be the supremum of �n with respect to n. We have the following Lemma:

Lemma 3.2 Under the assumptions of Theorem A, there is a function K3(�)
bounded on any closed subset of (0; 1] with the property that �n < � = 0:37
for n � K3(�).

The proof of this lemma is technical and apart from main ideas of this
paper, so we put it in a separate section at the end of the real estimates.

Ratios and cross-ratios. Suppose we have three points a; b; c arranged
so that a =2 [b; c]. Let us de�ne a few relative scales of the interval (b; c) with
respect to (a; c).

De�nition 3.1 The exclusive ratio of the interval (b; c) with respect to (a; c)
is given by

Re(b; c; a) =
jb� cj

dist((b; c); a)
;

whereas their inclusive ratio by

Ri(b; c; a) =
jb� cj

max(jb� aj; jc� aj) :

Set R(b; c; a) to be equal to the geometric mean of the inclusive and exclusive
ratios.

R(b; c; a) =
q
Ri(b; c; a)Re(b; c; a)
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Together with ratios we will often use cross-ratios. The types of cross-ratios
we use are expanded by homeomorphisms with negative Schwarzian deriva-
tive.

De�nition 3.2 Suppose we have a quadruple a; b; c; d ordered so that a <

b < c < d or reversely. De�ne their inclusive cross-ratio as

Cri(a; b; c; d) =
jb� cjjd� aj
jc� ajjd� bj ;

and their exclusive cross-ratio as

Cre(a; b; c; d) =
jb� cjjd� aj
jb� ajjd� cj :

Finally set

Cr(a; b; c; d) =
q
Cri(a; b; c; d)Cre(a; b; c; d)

Distortion. Suppose that we have an expression A which is de�ned in
terms of distances between points (like ratios and cross-ratios.) Then we
consider f�(A) obtained by replacing given points with their images by f .
We will measure the distortion of this transformation by the ratio f�(A)=A.
For example, if we set A = Cr(a; b; c; d) then the distortion by f is equal to

Cr(f(a); f(b); f(c); f(d))

Cr(f(a); f(b); f(c); f(d))
:

3.2 Induction parameters

In this subsection we will introduce quantities which will describe geome-
try of partitions given by our inducing procedure. Next we will compose a
quasi-invariant which after a �nite number of inducing steps will decrease
at least exponentially fast. The real induction parameters formulated here
will directly correspond to these in the complex part. The same concerns
induction formulae. This suggests that estimates from the complex part of
our work can somehow be translated into the corresponding ones in the real
line. This would enable one to give a proof by purely real methods. However,
the combinatorial complexity of such an approach seems formidable.

Denote by (x�
n ; x

+
n ) the domain of the primary branch of rank n which

contains the critical value of fan
n . Set vn = fan

n (0).
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De�nition 3.3 The center of (x�
n ; x

+
n ), denoted by cn, is de�ned by the con-

dition �n(cn) = 0.

Following the convention of ascribing superscripts + and � we will de�ne x+n
by the condition vn 2 (x+n ; cn).

Lemma 3.3 For rotation-like maps points x�
n lie closer to zero than x+n .

Proof:

For rotation-like maps the ranges of central branches always contain the
critical point. In particular, it means that the image of Bn+1 by fan

n covers
both (0) and the interval (cn; x

�
n ).

2

Parameters of the induction measure sizes of domains of branches as well as
and their separation from the critical point and the boundary of the relevant
box. The distortion of these quantities will be controlled by bounds on � and
extendability of branches. Here, we provide a full list of parameters.

� �n = R(z+n ; z
�
n ; z

+
n0),

� 
n = R(x+n ; x
�
n ; 0),

� �n = Cr(z?n0 ; x+n ; x
�
n ; 0)

where ? is chosen as + or � so that the points have allowable ordering.
We will examine how these quantities change after a standard inducing

step. Generally, none of these quantities is decreases monotonely in the in-
ducing procedure. Nevertheless, we can choose products of these parameters
that show monotone decay. Consider the products �n
n and �n�n (they cor-
respond to the sums s1 + s3 and s2 + s4 in the complex induction). We will
see soon that that primary (immediate) domains (x�

n ; x
+
n ) stay always at the

de�nite distance from the boundary of Bn0 . This implies that in the case of
rotation-like maps these products are equivalent and it is enough to consider
only one of them.

Proposition 2 Consider the quantity �n
n for a rotation-like sequence

�0; : : : ; �n; : : : :
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If �n � � = 0:37 for every n, then there is an absolute constant � < 1 and a
�xed integer N with the property that

�n
n � �n�0
0

for all n > N .

Auxiliary quantities. Before we pass to the proof of Proposition 2 which
will occupy the next three subsections we will introduce three auxiliary in-
duction quantities 
n, !n and 
n.


n = R(vn; x
�
n ; 0)

!n =
jfn(0)j
jz+n0 j and 
n =

jvnj
jz+n0 j

(we recall that vn = fan
n (0).)

In addition, we have already de�ned �n and � . The estimates in the next
two subsections will be quite complicated. It may help the reader to think
of central branches as quadratic polynomials, and of monotone branches as
a�ne. In this model estimates are easier and actually give the right idea of
the real situation. Then the distortion might be treated as a correction to
formulae obtained in the \linear-quadratic" model.

3.3 A non-close return

Throughout this subsection we assume that �n makes a non-close return. In
particular it means that (n+ 1)0 = n.

The distance of a point z to zero is denoted by jzj. Observe that jz+n j =
jz�n j and g(z+n ) = g(z�n ). Hence, we will often drop superscripts \+00 and \�00

from the notation of distances if only no confusion can arise. We will start
with the following simple observation.

�2
n+1 = 4 �Re(g(zn+1); g(0); g(zn)):

The image of Re(g(zn+1); g(0); g(zn)) by (hn)� is equal to


n

q
jx�

n jjfn(0)j
jx�

n j+ jz�n0 j :
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To �nd the distortion of (hn)� on this ratio, we will complete the ratio to
the cross-ratio Cre(g(zn); g(zn+1); g(0); h

�1
n (z�(n�2)0)). Since the cross-ratio is

expanded, we get

�2
n+1 � 4 � 
n

q
jxnjjfn(0)j
jxnj+ jzn0 j

jzn0 j+ jzn�20 j
jzn�20 j � jfn(0)j : (1)

Fact 3.1 The distortion of 
n and 
n by a quadratic map is at least 2.

Proof:

This follows directly from the de�nition of 
n.

2

We pass to estimating 
n+1. Take the image of 
n+1 by the quadratic map
g. Fact 3.1 implies that


n �
1

2
�R(g(vn+1(0)); g(xn); g(0)):

Complete g�(
n+1) to the cross-ratio

Crfh�1
n (fn�2(0)); g(fn+1(0)); g(x(n)); g(0)g

and then push it forward by hn. By the property of expanding cross-ratios
we have that


n+1 �
1

2
� jzn+1j+ jfn+2(0)jq

jfn(0)j2 � jzn+1j2
jfn�2(0)j+ jfn(0)jq
jfn�2(0)j2 � jzn+1j2

: (2)

Comment 1 Note that the estimate (2) remains true if we replace fn+2(0)
by z+n+1.

Our next task is to combine estimates on 
n+1 and �n+1 and get the best
possible upper bound of their product in terms of 
n and �n. To this end we
prove

Lemma 3.4 For arbitrary n the following inequality holds.q
jxnjjfn(0)j
jzn0 j+ jxnj

jfn+2(0)j+ jzn+1jq
jfn(0)j2 � jzn+1j2

� 1

4
� �n�n+1(1 + !n+2)

jzn�1j
jfn(0)j+ jzn�1j :
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Proof:

By the de�nition of �n we have that

jzn+1jq
jfn(0)j2 � jzn+1j2

� 1

4
� �n+1�n

q
jzn�1j2 � jznj2

jznj

vuut jznj2 � jzn+1j2
jfn(0)j2 � jzn+1j2 : (3)

The last factor in the inequality (3) is decreasing with respect to jzn+1j. Thus,
the right-hand side of (3) is bounded by

� 1

4
� �n+1�n

jzn�1j
jfn(0)j :

To complete the reasoning we will need the following elementary fact:
For any three positive numbers 0 < x < y < z the inequality

p
xy

z + x
<

y

z + y

holds.
which can be readily proved by calculus. >From there,q

jxnjjfn(0)j
jzn0 j+ jxnj � jfn(0)j

jfn(0)j+ jzn0j
which completes the proof.

2

Comment 2 Replace jfn+2(0)j by jzn+1j in the estimate of Lemma 3.4. By
the same reasoning we obtainq

jxnjjfn(0)j
jzn0 j+ jxnj

jzn+1jq
jfn(0)j2 � jzn+1j2

� 1

2
� �n�n�1

jzn�1j
jzn�1j+ jfn(0)j : (4)

Multiply the inequalities (1) and (2) and then combine with the inequality
in Lemma 3.4. As a result we get the following recursive formula

�n+1
n+1 � �n�n
n;
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where �n is less than

1

2
� (1 + !n+2)

jzn0 j
jfn(0)j+ jzn0 j

jfn�2(0)j+ jfn(0)jq
jfn�2(0)j2 � jzn+1j2

jzn0 j+ jz(n�2)0j
jz(n�2)0j � jfn(0)j : (5)

We will bound from above �n by maximizing (5) with respect to a location
of fn(0). To this end consider

�n =
jfn�2(0)j+ jfn(0)j

jz(n�2)0j � jfn(0)jjzn0j+ jfn(0)j
as a function of jfn(0)j on the interval (0; jzn0 j).
Lemma 3.5 The function �n achieves a global maximum in 0.

Proof:

The sign of the derivative of �n with respect to jfn(0)j is the same as the sign
of

�(jfn�2(0)j � jzn0 j)jz(n�2)0 j+ 2jfn(0)jjfn�2(0)j+ jfn(0)j2:
The smaller root of the above quadratic polynomial is always less than zero.
Thus, the function �n can have only a local minimum in the interval (0; jzn�1j.
Direct computation shows that if � 2 � 1=3, then �n(0) � �n(jzn�1j)

2

Finally, by Lemma 3.5 and the de�nition of � , �n is less than

1 + !n+2

2

1 + � 2p
1� � 6

: (6)

Comment 3 The same computation based on Comments 1 and 2 yields


n�n � 1 + � 2p
1� � 6


n�1�n�1: (7)

3.4 A close return.

Throughout this subsection we assume that n-th return is close. In particular
it means that (n+ 1)0 = n+ 1=2. The scheme of the proof is much the same
as in the previous case. The only di�erence is that the reasoning is a bit
more way around and requires several repetitions of the estimates similar to
these found in the last subsection.

Let �n be the ratio of Bn+1=2 to Bn. Put �n+1 = R(z+n+1; z
�
n+1; z

+
n ). Denote

the primary preimage of Bn+1=2 contained in (x�
n ; x

+
n ) by (x�

n+1=2; x
+
n+1=2).
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Recursion. We will write a recursion for the sequence �n
n. By de�nition,

�n+1 � �n+1

�n
p
1� � 2

: (8)

For i ranging from 1 to an � 1 let x�
n+1=2;i stand for f�i

n (x�
n+1=2) and x+n+1=2;i

for f�i
n (x+n+1=2). To bound fn�(
n+1�n+1) from above we will use similar

arguments as in the previous section. Push forward 
n+1 by the quadratic
map g. Then


n+1 � 1

2
R(g(x+n+1); g(x

�
n+1); g(0)):

Complete g�(
n+1) to the cross-ratio

Crfh�1
n (fn�2(0)); g(x

+
n+1); g(x

�
n+1); g(0)g

and then push it forward by hn. By the property of expanding cross-ratios
we have that


n+1 � jzn+1jq
jfn(0)j2 � jzn+1j2

jfn�2(0)j+ jfn(0)jq
jfn�2(0)j2 � jzn+1j2

: (9)

In the same way as in the proof of Lemma 3.4 (see the inequality (3)) we
obtain jzn+1jq

jfn(0)j2 � jzn+1j2
� 1

4
� �n+1�n

jzn0 j
jfn(0)j :

By de�nition of �n+1,

�n+1 = 4 �Re(g(zn+1); g(0); g(zn)) � 4Cr(g(zn); g(zn+1); g(0); h
�1
n (z�(n�2)0)):

Again using the expanding property of cross-ratios we get

�2
n+1 � 4 � jx

�
n+1=2;an�1 � fn(0)j
jx�

n+1=2j+ jzn0 j
jzn0 j+ jzn�20 j
jzn�20 j � jfn(0)j :

The estimates for 
n+1 and �2
n+1 lead to the following formula

�n+1
n+1 � �n�n
jfn(0)j � jx�

n+1=2;an�1jq
jfn(0)j2 � jzn+1j2j

;

25



where �n is equal to

jzn0 j
jzn0 j+ jx�

n+1=2;an�1j
jzn0 j+ jz(n�2)0 j
jz(n�2)0 j � jfn(0)j

jfn�2(0)j+ jfn(0)jq
jfn�2(0)j2 � jzn+1j2

:

Let 0 � i < an. We shall write 
n;i for the ratio

jfan�i
n (0)j � jx�

n+1=2;ijq
jfan�i

n (0)jjxn+1=2;ij
: (10)

Now, compute

jfn(0)� x�
n+1=2;an�1jq

jfn(0)j2 � jzn+1j2
�R(g � fn(0); g(x�

n+1=2;an�1); g(zn+1)) �

� jx�
n+1=2;an�1j

jx�
n+1=2;an�1j+ jfn(0)j :

Increase this factor to 1=2 and decrease �n replacing
jx�1

n+1=2;an�1j with jfn(0)j. As a result we obtain an upper bound of �n+1
n+1

which can be written in the form

1

2
�n�

0
nR(g � fn(0); g(x�

n+1=2;an�1); g(zn+1));

where

�0n =
jzn0 j

jfn(0)j+ jzn0 j
jfn�2(0)j+ jfn(0)jq
jfn�2(0)j2 � jzn+1j2

jzn0 j+ jz(n�2)0 j
jz(n�2)0 j � jfn(0)j :

By Lemma 3.5 we can only worsen estimates letting jfn(0)j = 0 in the ex-
pression for �0n. Therefore,

�n+1
n+1 � 1

2
�n

1 + � 2p
1� � 6

R(g � fn(0); g(x�
n+1=2;an�1); g(zn+1)): (11)

Complete the last ratio to an appropriate cross-ratio by adjoining a fourth
point at h�1

n (f(n�2)(0)) and then push it forward by hn. The points fn(zn+1)
and x�

n+1=2;an�2) lie on the opposite sides of zero. The resulting cross-ratio
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can be only increased if we move the point fn(zn+1) in the direction of zero.
Hence, for an > 2

R(g � fn(0); g(x�
n+1=2;an�1); g(zn+1)) � 
n+1=2;an�2

1� � 2
(12)

If an = 2 then put 1� �
n in the place of the denominator of (12) in order
to have the correct estimate.

We can use the sequence of estimates starting from (10) again to prove


n;i � 1

2
� 
n+1=2;i�1

1� � 2
(13)

provided i > 1 and


n;1 � 1

2
� 
n+1=2;i�1

1� �
n

(14)

when i = 1. >From inequalities (11), (12), (13) and (14) we obtain

�n+1
n+1 � �n�n
n+1=2;0 (15)

where �n is bounded from above by

1

2an�1

1 + � 2q
(1� � 6)(1� � 2)an�2(1� �
n)

: (16)

In the last step of our reasoning we exploit the fact that 
n+1=2;0 is substan-
tially less than 
n. We claim that

Lemma 3.6


n+1=2;0 � �n
n:

Proof:

We will actually prove

R(x+n+1=2; x
�
n+1=2; 0) � �n
n

and use

n+1=2;0 < R(x+n+1=2; x

�
n+1=2; 0)

which follows directly from the de�nition of 
(n+1=2; 0). First observe that
jx�

n+1=2�x+n+1=2j � �njx�
n�x+n j. Indeed, the centers of Bn+1=2 and Bn coincide
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and the hyperbolic length of Bn+1=2 with respect to Bn is not increased by
the pullback by a di�eomorphism with a non-positive Schwarzian. Since the
element of the hyperbolic length is the smallest in the middle of an interval
we conclude that pullbacks are nested with the ratio at most �n+1. Denote
by s1 and s2 the centers of (x

�
n+1=2; x

+
n+1=2) and (x�

n ; x
+
n ). A straightforward

calculation shows that if these centers coincide then the Lemma follows.
Suppose that s1 is less than s2 since if otherwise then we are done. Push
x+n toward s1 so far that the centers coincide again. This operation can only
increase the ratio of 
n to R(x+n+1=2; x

�
n+1=2; 0). The ratio of the lengths of

the resulting, concentrical intervals, is again at most �n, which completes the
proof.

2

Finally, Lemma 3:6 and inequalities (8) and (15) imply that

�n+1
n+1 � �n�n
n; (17)

where �n is less than

1

2an�1

1 + � 2q
(1� � 6)(1� � 2)(1� � 2)an�2(1� �
n)

:

Clearly, �n is the largest for an = 2 since � 2 < 1
2
. For an = 2 we get

1

2

(1 + � 2)

(1� �
n)
q
(1� � 6)(1� � 2)

(18)

as an upper bound of �n in the case of a close return.

Comment 4 In this subsection in the unlike for non-close returns we worked
with the quantity 
n instead of 
n. The estimates become stronger if we
decrease the left-hand side of (17) substituting 
n by 
n.

�n+1
n+1 � �n�n
n; (19)

where �n is less than

1 + !n+2

4

(1 + � 2)

(1� �
n)
q
(1� � 6)(1� � 2)

: (20)

The proof is the same, except that the estimate (9) ought to be replaced
by (2).
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3.5 Conclusion of the proof

The sequence !n plays a crucial role in the inductive formulae derived in
the last two subsections. The decay of geometry depends directly on the
separation of this sequence from 1. We will begin by writing a recursion for
the sequence 
n. Clearly, !n � 
n. We will consider two cases.

A non-close return. In this case 
n = !n.

Lemma 3.7 Assume that �n makes a non-close return. Then


2
n+1 � (1 + � 2)


n + 
n+2�
2

1 + 
n

:

Proof:

Take the image of 
n by the quadratic map g


2
n+1 = Ri(g(vn+1); g(0); g(zn))

and next push it forward by hn. As a result we obtain

fn�(
n+1) =
jfn(0)j+ jfn+2(0)j
jfn(0)j+ jzn0 j : (21)

To compute the distortion brought in by hn complete g�(
n) to the cross-ratio

Cri(g(vn+1); g(xn+1); g(0); h
�1
n (z�(n�2)0)):

that fact that the cross-ratio is expanded. We obtain

jzn0 j+ jz(n�2)0 j
jz(n�2)0j+ jfn+2(0)j :

as a correction to (21). Observe that jfn+2(0)j=jzn0 j � 
n+2�
2 which estab-

lishes the claim of Lemma 3.7.

2
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A close return. Assume that fn shows a close return. Then 
n+1 =
jvn+1j=jzn+1=2j. By de�nition


2
n+1 = Ri(g(vn+1); g(0); g(zn+1=2)):

Complete the last ratio to an appropriate cross-ratio by adjoining a fourth
point at h�1

n (z�(n�2)0(0)) and then push it forward by hn. By the property of
expanding cross-ratios we get


2
n+1 �

jfn(0)j+ jfn+2(0)j
jfn(0)j+ jfn(zn+1=2)j

jfn(zn+1=2)j+ jz(n�2)0j
jz(n�2)0 j+ jfn+2(0)j :

Let us denote the ratio jfn(zn+1=2)j=jznj by �. Replace jfn(0)j by jfn(zn+1=2)j
in the inequality above. We obtain a new bound of 
n+1 equal to

1

2
� (1 + �n+1

jzn+1=2j
jznj� 
n+2)(1 + �� 3) (22)

Clearly,
jzn+1=2j
jznj� < 1. We will estimate � from above under the assumption

that the critical value of fn remains in the central domain for at least two
iterates. The point fn(zn+1=2) is f

�an+1
n (z�n ). Thus, � is the greatest when

fn(zn+1=2) coincides with a boundary point of Bn. The next inequality is
obtained by completing the ratio g�(�) to an \inclusive" cross-ratio with a
fourth point at h�1

n (z(n�2)0) and then pushing it forward by hn.

�2 � jfn(0)j+ jznj
jfn(0)j+ jzn0 j

jz(n�2)0j+ jzn0 j
jz(n�2)0j+ jznj ;

and �nally,

� �
s
2�(1 + � 2)

1 + �
(23)

So, we write (22) as


2
n+1 �

1

2
(1 + �
n+2)(1 + �� 3); (24)

where � bounded by (23).
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A bound. We want to �nd an upper bound of 
n. To this end, observe
that

� 
n+1 is an increasing function of 
n and 
n+2.

� As long as the value of 
n is greater than 0:7, the estimate of Lemma
3.7 gives a lower value of 
n+1 than inequality (24).

The last statement can be easily justi�ed by direct computation. Indeed,
the right-hand side of the estimate of Lemma 3.7 is smaller than (1=2)(1 +
� 2)(1 + � 2
n+2) while that of (24) is larger than (1=2)(1 + �
n+2). We will
be done once we show that

(1 + � 2)(1 + 0:7 � � 2) < 1 + 0:7 � �;
which clearly holds for � < 0:4.

So we consider the recursion given by assuming equality in (24). The
function

y !
r
1 +

�y

2

has exactly one attracting �xed point for y � 0:823562 in the positive domain.
It follows that if 
n+1 in (24) is greater than this �xed point, then 
n+2 has
to be less than 
n+1. Thus, we set 
 = 0:823562 as an bound of 
n and
!n. We note that this bound is attained in for all values of n su�ciently
large depending only on � stipulated by Theorem A. Indeed, by Lemma 3.2
�n gets smaller than � = 0:37 for n su�ciently large in terms of n, and then
it is clear that 
n decreases at least by a uniform amount for each step of
the recursion given by (24) as long as it is greater than 
.

Final estimates. After these preparations we will prove Proposition 2.
We will conduct estimates by splitting the sequence of box mappings into
blocks. Each block save perhaps the �rst will have a mapping with a close
return immediately followed by a maximal sequence of consecutive non-close
returns. E.g., a single mapping with a close return is a block. The only
exception from the above rule of constructing blocks occurs when �0 makes
a non-close return. Then the �rst block consists of a maximal sequence of
box mappings with non-close returns.

Below we list the rules which will give recursive estimates within a given
block of box mappings.
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1. Suppose �n exhibits no close return and is the last such mapping in a
given block. Then we use formula (7) to estimate

�n+1
n+1 � 1:13837 � �n
n;
If �n is not last in its block, we use the inequality (6).

�n+1
n+1 � 0:56919 � (1 + !n+2) �n
n:

2. Let n-th box mapping exhibits close return.
If �n is not a block in its own right, then we apply formula (18):

�n+1
n � 0:80402 � �n
n:
If �n is a block by itself, then (20) implies that

�n+1
n+1 � 0:881181 � �n
n:

We will consider two cases:

Blocks with at least two box mappings with non-close returns.

Suppose that a series of at least two box mappings with non-close returns
begins at the moment n. We will show that the separation of the critical value
fn(0) from the boundary of the box Bn0 improves with n growing. Indeed,
by Lemma 3.7


n+1 � (1 + � 2)

s



1 + 

� 0:76403

and next


n+2 �
s
(1 + � 2)

0:76403 + 
� 2

1:76403
� 0:751714:

By monotonicity of this formula with respect to 
n, all 
k � 0:751714 for
k � n+ 2. Consequently, for k � n we obtain that

�k+1
k+1 � 0:9971 � �k
k:
It happens that 0:80402 � 1:13837 < 1. Thus, if a block of length k � 3
starting with �n is taken as whole, then

�n+k
n+k � (0:9971)k=3�n
n :
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Shorter blocks. For a block of a single map with a close return, or
one close and one non-close, it follows immediately from our rules that the
product �n
n decreases after passing through a block by a de�nite constant
less than 1.

Conclusion. To see that �n
n goes down to 0 at least exponentially
fast, �rst wait N steps for bounds on 
 to be achieved (N is bounded in
terms of �). Then pick a k > 2N , and construct the blocks starting from �N .
Cut o� the last block at �k. The uniform exponential estimate follows at once
from our considerations of the rate of decay within blocks. So, Proposition 2
follows.

3.6 Decay of box geometry

General picture. In this subsection we will estimate the rate of the decay
of box geometry proving eventually that for all S-unimodal rotation-like maps
the rate is always at least exponential. This will prove Theorems A and
C. In the course of inducing a subtle interaction between �n and 
n takes
place. Namely, after a long series of non-close returns, 
n is approximately
equal to the second power of �n. The �rst close return will violate this
simple relation between 
n and �n by decreasing �n stronger than 
n. If the
close return is deep enough (i.e. the critical value needs a lot of iterates to
escape from the central domain) then 
n and �n can even become comparable.
At the moment when we are leaving box maps with close returns, 
n and
�n will quickly regain (exponentially fast with the number of steps of non-
close inducing) their square-law relation. However, the product �n
n for
rotation-like maps of bounded type decreases asymptotically with each step
of inducing by a constant uniformly separated from 0 and 1. It means that
while switching between patterns of inducing \oscillations" between �n and

n destroy monotone (known from the Fibonacci example) fashion of the
decay of boxes. In particular, �n+1=�n can become arbitrarily large in some
cases.

Theorem C expresses what we mean by an exponential decay of box
geometry. From Theorem C it follows immediately that there is a whole class
of S-unimodal maps with at most exponential decay of box geometry. The
dynamics of maps from this class, purely characterized in terms of rotation
number, is certainly di�erent from the \Fibonacci pattern".
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Corollary 1 For any S-unimodal rotation-like map with a rotation number
of the constant type1 there exist constants K > 0 and 0 < � < 1 so that

�n > K�n:

The constant � depends only on the upper bound of the coe�cients of the
continued fraction representation of the rotation number while the constant
K depends solely on the initial geometry of �0, in particular in uniformly
controlled by the parameter � of Theorem A.

>From now on we will denote positive constants dependent only on the initial
geometry by K and call them uniform. Whenever confusion of the type
K < K can arise we will distinguish constants K by adding appropriate
subscripts.

Proof of Theorem C: We will start the proof with two Lemmas.

Lemma 3.8 The is a uniform constant K so that


n � K�n:

Proof:

The proof follows from the observation that the image of 
n by fn is compa-
rable with 
n and fn�(
n) can exceed �n by no more than a uniform constant.

2

Lemma 3.9 The ratio �n of two consecutive boxes goes to zero at least ex-
ponentially fast.

Proof:

Suppose that n is so large that �n < � = 0:37 Let us recall that �n
n goes
to zero at least exponentially fast. We will actually prove that �n decreases
exponentially which is easily equivalent. Consider two cases:

1Let us recall that a number � is of the constant type if and only if all coe�cients in
its continuous fraction representation are bounded.
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� fn shows a close return.
We push forward �n by f ann� . Using (13) we obtain

�2
n+1 � K�an
n ; (25)

where � < 1 depends only on � . Finally, by Lemma 3.8

�4
n+1 � K�2an�n�1
n�1

Proposition 2 concludes the proof.

� fn shows a close return.
Similarly as before we get that

�2
n+1 � K
n:

Lemma 3.9 likewise follows.

2

Lemma 3.9 together with the inequality 25 give the upper estimate of
Theorem C.

To prove the opposite estimate make � go to 0 arbitrary small in all
distortion estimates. So, we can reverse the directions of the inequalities
estimating �n
n from below. Next, observe that �n and �n appearing in
the recursive scheme for for �n
n are after a �nite number of inducing step
greater than (1

2
� �)an . This completes the proof of Theorem C.

Theorem A follows directly from Theorem C and Lemma 3.2.
We �nish this section with an important technical statement concerning

the starting condition.

Proposition 3 For any type I real box map � which satis�es

jBnj
jBn0 j � �

and every � > 0 there is a number k(�; �) only depending on its stated param-
eters so that if only a close return occurs and the critical value remains in
the domain of the central branch for more than k iterations, then the starting
condition is satis�ed with norm �.
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Proof:

De�ne Bi = f�i(Bn) where f is the central branch of �. Also, suppose that
� is of rank n. By the non-positive Schwarzian property, in each component
of Bn n Bn+1=2 there is at most one point at which the derivative of fn is
equal to 1. This point is between �xed points of f , or there would be a
restrictive interval. Hence, there exists a uniform constant K1(�) so that for
all 1 < i < an

jBi nBi�1j
jBnj � K1(�)

i
:

Push forward �n+1 by fn. The bounded distortion yields

�n+1 � K2(�)
q
�n:

On the other hand (see (8))

�n+1 � K3(�)�n+1=�n:

By the real K�obe Lemma and the de�nition of �n+1

�n+1 � K4(�)
q
�n=an:

Combining the above inequalities we get �nally that

�n+1 � K5(�)=
p
an;

which completes the proof of the Proposition.

2
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Our goal is to prove that 0:37 works as an eventual bound of �n = jBnj=jBn�1j.
The estimates will be uniform in the sense of Theorem A. This will prove
Lemma 3.2. The reasoning naturally splits into two parts. In the �rst we will
�nd very initial estimates by solving a certain extremal problem for so called
'auxiliary inducing'. Then using these bounds to control distortion we will
re�ne previous estimates referring to the particular features of both types of
inducing.

4.1 Geometrical setup

Notations. The new domain Bn+1 is formed as the preimage by fn of an
immediate branch of �n which is always �lled-in so that it maps onto B(n+1)0 .
Let us call this domain (un; vn) and let us say that un is closer to the critical
point. The branch de�ned on (un; vn) extends at least onto Bn0 as the image.
The domain of this extension will be called (sn; tn), and again say that sn is
closer to the critical point. Then, call B(n+1)0 (�wn; wn) and say that wn is
on the side of the critical value. Lastly, let (�wn�1; wn�1) be f

�1
n ((�wn; wn)).

The reader may try to get familiar with this notation by trying to see that
the ordering of points is

�wn�1;�wn; 0; wn; sn; un; vn; tn; wn�1

or perhaps the reverse. These notations are applicable for both close and
non-close returns.

Observe that

Cri(sn; un; vn; tn�1) � Cri(�wn�1;�wn; wn; wn�1) :

Let us mention now that the size of the interval (sn�1; tn�1) with respect
to (wn; wn�1) will play an important role later on when we re�ne the �rst
estimates obtained by assuming in estimates that (sn�1; tn�1) is equal to
(wn; wn�1).

Formulation of extremal problem. Let us recall that fn can be repre-
sented as a composition of the quadratic map g and the di�eomorphism hn.
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The extendability properties of fn are formulated in Lemma 3.1. We will
denote preimages of points by hn by adding primes to the notation.

>From the previous two paragraphs,

� 2n �
ju0nj � jv0nj
jw0

nj+ jv0nj
: (26)

Complete the ratio jw0
n�1j � jw0

nj=jw0
n�1j+ jw`nj to the cross-ratio

Cre(�w0
n�1; w

0
n; w

0
n�1; (z

�
(n�2)0)

0) :

By the expanding property of cross-ratios,

j(z�(n�2)0)
0 � w0

nj
j(z�(n�2)0)

0 + jw`nj �
1� �

1 + �

1 + �2n
1� �2n

;

where � = jw0
nj=jw0

n�1j. Denote the right-hand side of the above inequality
by 1=L. To �nd preliminary bounds we solve the following extremal problem:

Problem 1 Suppose that the inclusive cross-ratio of the interval (u0n; v
0
n)

with respect to s0n; t
0
n�1 is equal to to C and the cross-ratio

Cre(�s0n�1; u
0
n; v

0
n�1; w

0
n�3) :

is equal to 1=L�, � � 1. The interpretation of � is that it accounts for the
nesting of (sn; tn) in (wn; wn�1) as well as for possible additional extendability
of fn.

Find a maximum of
ju0nj � jv0nj
jw0

nj+ jv0nj
:

depending on the location of points u0n and v0n.

Solution:

We assume that the interval s0n�1; t
0
n�1 has the unit length. Then jw0

n�1j +
jw0

nj > L. Denote js0n�1j � ju0nj by � and jv0n � w0
nj by �. Then

C =
�+ �� 1

��
: (27)
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We want to maximize
�+ �� 1

L+ �
= C

��

L+ �
;

which is equivalent to minimizing

M =
1

�
(1 +

L

�
):

In the extremal point the gradients of M and C are parallel. Hence

1� �

1� �
= 1 +

�

L
: (28)

Calculate � from (27) and substitute into (27). As we solve the resulting
quadratic equation for ��1 we get the �rst coordinate �0 of the extremal
point.

��1
0 = 1 +

q
(1� C)(1 + L�1):

By algebra we calculate the second coordinate and then the minimum of M

L(
p
1� C +

p
1 + L�1)2:

Finally, we get
C

(
p
1� C +

p
1 + L�1)2

:

as a solution of our problem. Let T = 1� �2n=1 + �2n and 
 =
p
1� C. Then

by inequality (26)

�n+1 �
p
1� 
2p

T�
 +
q
1 + �T




:

2

Set T 0 = 1 � � 2n+1=1 + � 2n+1. If T 0 > T then �n+1 < �n =
p
�n�1�n�2.

Observe that T 0 is a growing function of T . We will determine when the
di�erence T 0 � T is positive. To this aim we bring T 0 � T to the common
denominator and examine the sign of the numerator.

T ((1� T )�(
 +
1



)� 2) + 
2(1 + T ) + 2T�(1� T )

q
(1� T )

r
1 +




T
:
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4.2 Computation of initial bounds

Basic procedures.

General description. We begin with the condition T 0 � T > 0 which
can be analytically rewritten as

T ((1� T )�(
 +
1


)
� 2) + 
2(1 + T ) + 2�T (1� T )

s
1 +




�T
> 0 : (29)

The �rst procedure aims to �nd a possibly large T independent of 
 in
some range, but depending on �, which will force this estimate to be ful�lled.

The second condition will �nd T 0 from the formula

T 0 =
t(
 + 1



+ 2
q
1 + 


t
) + 
2

2� 
2 + t( 1


+ 
 + 2

q
1 + 


t
)

(30)

where t = � � T . More precisely, an upper bound will be found depending
on t, but not depending on 
 varying in some speci�ed range.

We also obtain as a corollary:

Fact 4.1 Let � be a type I box mapping of rank n, let jBnj=jBn0j � 1 � �

and assume that the central branch of � is �-extendable. If another type I
box mapping of rank m is obtained from � in a number of standard inducing
steps, then

jBmj
jBm0j � 1�K(�)

where K is a continuous function of � only, positive when � > 0.

Proof:

>From Fact 4.1 we see that the ratio will remain bounded away from 1 for
two �rst standard inducing steps. Then, formula 29 implies that it will not
deteriorate as long as it is close to 1 (the condition 29 is clearly satis�ed for
T close to 0.)

2
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Implementation of the �rst procedure. The �rst procedure will
take �ve parameters. 
u and 
l will give an upper and lower bound of the
allowed range of 
. For practical reasons, we assume 
l � 0:1, but one easily
checks that the condition of [29] is satis�ed for any 
 < 0:1 and 0 � T � 1.
Another parameter � gives the step size. We will cover the range [
l; 
u]
with �nitely many closed intervals of length �. We will estimate from below
the range of positive values of T which satisfy [29] on each subinterval, and
�nally take the maximum of all estimates with respect to the subintervals.
Another parameter � whose meaning is clear. Lastly, we have � which must
no less than the answer (thus � = 1 will always work, but the point is to
sharpen the estimate by picking � just about as small as possible.)

To �nish the description, we have to explain how the lower estimate is
found on a subinterval [
1; 
2]. The left-hand side of [29] is clearly bounded
from below by

T ((1� T )�(
2 +
1


2
)� 2) + 
21(1 + T ) + 2�T (1� T )

s
1 +


1

��
> 0 :

This gives us a quadratic inequality on T which is solved algebraically to give
us the answer.

Implementation of the second procedure. This procedure will take
four parameters. As previously, 
u and 
l will give the range of 
 with
respect to which the T 0 must be minimized. Again, 
 < 0:01 will give an
answer greater than 0:9 which is better than we will ever use, so we assume

l � 0:01. We use the same procedure of dividing [
l; 
u] into subintervals,
taking a lower bound for T 0 on each interval, and taking the minimum with
respect to all subintervals for a �nal answer. The parameter � gives the
length of subintervals. The parameter t is �T .

On each subinterval [
1; 
2], formula [30] bounds T 0 from below by

T 0 =
t(
2 +

1

2
+ 2
q
1 + 
1

t
) + 
21

2� 
21 + t( 1

1
+ 
1 + 2

q
1 + 
2

t
)
:

This is evaluated on each subinterval.

41



The �rst estimate on � . The �rst estimate on � is obtained by calling the
�rst procedure with parameters 
l = 0:1, 
u = 1, � = 1, � = 0:7, � = 10�5.
The result is more than T > 0:69901. Since

T =
1� � 2

1 + � 2
;

�(1) = 0:4209 will guarantee that T 0�T > 0. We claim that from any initial
box mapping the value of � will eventually drop below �(1) in a uniformly
bounded number of inducing steps. Indeed, from (29) by a compactness
argument it is clear that if 0 < � < T < 0:69901, the increment T 0 � T is
bounded away from 0. However, � is uniformly bounded away from 0. On
the other hand, the formula (30) gives T 0 as an increasing function of T , thus
a decreasing function of � . Hence, once � gets below �(1) it will stay there.
We conclude that eventually, after a number of inducing steps bounded in
terms of � only, the box ratios � become smaller that �(1).

Better estimates on the box ratio. Here we concentrate on a complex
box mapping �. We call bn the central domain of �. We assume that an
estimate � for the box ratio is already satis�ed by � as well as two preceding
mappings in the inducing sequence. We will assume that � � tau1. We
will try to get better estimates for the next box ratio jbn+1j=jb(n+1)0 . The
procedure will depend on what � does.

A close return for �. In this case, we see that opportunity to sig-
ni�cantly improve � in formula (30). Indeed, � = 1 corresponds to the
assumption that either of intervals between Bk and Bk�1 maps onto Bk�1.
In fact, however, we know that each of them contains an extended branch
mapping of rank n0. By standard estimates, we get that the branch mapping
onto Bk�1 occupies the fraction of either space between Bk and Bk�1 which
is no more than � . Thus, one can take � = tau�1. Next, one uses procedure
two with

t = �
1� � 2

1 + � 2

� = 10�5 and the full range of 
 from 0:01 to 1. For � = �(1) this gives
�(21) = 0:29728.
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A non-close return following a close return. In this case, we will
use formula (29) and get an improvement from two sources. First, the lower
estimate for 
 will be quite large as a result of the box ratio being very small
in the case of a close return. Secondly, the extendability factor normally
given by

1� � 2

1 + � 2

will also grow, since the ratio of the length of Bk to the length of B(n�2)0 will
be at most the ratio between lengths of B1 and Bn times � 2. This last ratio
b is given by

b =

s
2�

1 + �
(1 + � 2) :

Now � is at least

� � 1� bd2

1 + bd2
� 1 + d2

1� d2

where d � � . Thus, if we want to get a better estimate on the box ratio, d
should be no more than this expected lower estimate. Using d = 0:37 and
� = �(1) we get � � 1:04694. Also, 
l � 1��(21)

1+�(21)
. With 
u = 1, � = 10�5 and

t = 0:749, procedure one gives T = 0:7483 corresponding to �(22) = 0:3795.
The meaning of this result is that once that estimates apriori given by �(1)
and �(21) hold, in this case � the box ratio will be less than � as long as
� � tau(22). This would imply that eventually � gets smaller than � 22, but
we have one more case.

A non-close return followed by a non-close return. In this case
we also use procedure one. The improvement is obtained from a better 
l
given by


l =
1� �(1)

1 + �(1)

as well as better �. Here, � can easily be estimated

� �
s

1 + �

2�(1 + � 2)

With � = 10�5, 
u = 1 and t = 0:749 we get T = 0:7449 which gives
�(23) = 0:38236.
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Now, the combination of estimates in all cases implies that the box ra-
tio will eventually decrease below the maximum of � 21, � 22 and � 23 which
happens to be � 23. Again, we argue that this will happen in a uniformly
bounded number of inducing steps. So, we can take �(2) = �(23) = 0:38236.

A second round of estimates. We now repeat the same sequence of
estimates in all three cases using � 2 as our original bound instead of � 1. In
the case of a close return this gives

�(31) = 0:27736 :

In the second situation, we get b � 0:79629. With this, and d = 0:369,
we obtain � � 1:05793. Also, 
l = 0:56572. With t = 0:76 and � = 10�5

procedure one yields �(32) = 0:36983. In the last case, we get 
l = 0:4468
and � = 1:25582. We feed those into procedure one together with 
u = 1
and t = 0:78 to get T = 0:75983 which corresponds to �(33) = 0:36942.

We see that indeed the box ratio eventually goes below 0:37 which proves
Lemma 3.2.

5.1 Non-decreasing moduli

Statement of the result. Suppose now that a complex box mapping � is
given of rank n > 1 which later undergoes k consecutive steps of general in-
ducing in the box case. We denote by �i the complex box mappings obtained
in the process so that �0 = � and �i+1 arises from �i in a general inducing
step.

Proposition 4 Choose 0 < j < k. Suppose that a constant � can chosen
independently of B so that normalized critical symbols can be chosen with
norm � for all monotone branches B whose domains intersect the real line.
Then, for �j+1 all normalized critical symbols can be constructed with the
same norm �. Assume in addition that j � 3 and �j does not show a
rotation-like return. If the critical point is in the range of the real central
branch, let lj mean the number of consecutive images of the critical point
by the central branch of �j which remain in the central hole. Otherwise, set
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lj = 0. Put l equal to the maximum of lj, 0 � j < k. Then, there is a
positive function K(l) such that normalized symbols can be constructed for
all univalent branches of �j+1 with norm (1 +K(l))�.

The �rst part of Proposition 4 which says that the symbols exist with
norm � follows from the proof of Lemma 3.4 of [20]. We will repeat the proof
here and re�ne the argument to show the second part of the statement.

An outline. The proof of Proposition 4 has to be split into a number of
cases. The major dichotomy is between close returns and others. We remind
the reader that the situation is classi�ed as a close return if the critical value
is in the central branch. As analytic tools, we will use the behavior of moduli
of annuli under complex analytic mappings. Univalent maps transport the
annuli without a change of modulus, analytic branched covers of degree 2
will at worst halve them, and for a sequence of nesting annuli their moduli
are superadditive (see [13], Ch. I, for proofs, or [2] for an application to
complex dynamics.)

We assume that a mapping �j of rank n is given as in the hypothesis
of Proposition 4. We will construct �j+1 and show that necessary separa-
tion estimates. On the level of notation, quantities related to �j+1 will be
distinguished by writing a bar above them.

5.2 Non-close returns

Dynamical classi�cation of branches. First, we classify branches of
�j+1 according to their parent branches (compare the description of the in-
ducing construction for the de�nition of parent branches.) The main split
is between immediate parent branches and non-immediate parent branches.
Among domains with immediate parent branches we distinguish maximal
branches, or immediate preimages of Bn+1, and others. Otherwise, a non-
immediate parent branch gets mapped forward by  j. This gives a univalent
branch of �j, denoted with B0. We also have another univalent domain of
�j which contains the critical value. This will be denoted with B. Then, we
distinguish three subcases according to whether B and B0 are independent,
or one is subordinate to the other. The results of our computation can be
summarized as follows.
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Lemma 5.1 Suppose that a sequence of type I complex box mappings �j is
given which satis�es the assumptions of Proposition 4. Let 1 � j � k and
assume that �j shows a non-close return. If � is the separation norm of �0,
then normalized critical symbols can be constructed for branches of

� for immediate preimages of Bn+1 the symbol has norm � with correc-
tions

�1 =
�2(B)

2
; �2 =

�1(B)

2
:

� for domains whose parent branches are not immediate, and whose do-
mains B0 described above are independent with the postcritical domain
B, the norm is � with corrections

�1 =
�2(B)

2
;

�2 =
�� �

2

where � = max(��2(B);��2(B0)).

� in all other situations the norm is at least (1+K(l))� with K a positive
function of l only (l is de�ned in the statement of Proposition 4.)

We proceed to prove Lemma 5.1.

Immediate preimages. Let B denote the hole which contains the critical
branch. In all cases the new central hole Bn+1 is separated from the boundary
of Bn by an annulus of modulus at least (�+�2(B))=2. We will �rst construct
the symbols for immediate preimages of Bn+1, meaning the preimages by the
central branch. Naturally, these preimages exist on the real line exactly if the
image of the real central branch covers the central domain. The annulus A2

around Bn+1 will be the preimage by the central branch of the encompassed
by A3 around B with B removed. This region consists at least of the union
of A3 and A

0. Then, A1 is the preimage of A4. It follows that we can take

s1 =
� + �2(B)

2
and
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s2 =
� � �1(B)

2
:

Of course, since components of the symbol are only lower estimates, we are
always allowed to decrease them if needed. The annulus A

0
is naturally given

as the preimage of the annulus between Bn+1 and the boundary of Bn by the
central branch, likewise A3 is the preimage of A2, and A4 is the preimage of
A1. Since the �rst two preimages are taken in an univalent fashion, we get

s3 =
� + �2(B)

2
+ �� �2(B) and

s4 = s3 +
�1(B) + �2(B)

2
=
�

2
+ � +

�1(B)

2
:

Thus, if we put

�1 =
�2(B)

2
; �2 =

�1(B)

2

This gives the critical symbol for immediate preimages.

Reduction to maximal branches. A branch B can be either maximal,
i.e. the preimage of Bn+1 by its parent branch, or it can be inside another
domain of rank n0 nested inside the parent domain. We now argue that it
is su�cient to do the estimates for maximal branches. In the process we
describe, the annulus A

0
is always chosen as the preimage of the annulus

between Bn+1 and Bn0 . If a maximal branch inside the parent branch is
replaced with another branch, the annuli Ai with i = 1; 2; 3; 4 stay the same,
as they are all outside of the parent branch. So, we only need to show that A

0

can be chosen larger than for the immediate preimage. But this is clear, since
the branch de�ned on B has a univalent extension onto Bn0 , thus an annulus
of the desired modulus will always sit inside this extended domain. Then,
there is an extra annulus between the extended domain and the complement
of the parent branch, whose annulus we can usually bounded away from 0.

Immediate parent branches. Choose a branch B of �1 which is neither
critical nor immediate. Assume that the parent domain is an immediate
preimage of Bn by the central branch. Since we assumed that B was not
an immediate preimage of Bn+1, we see that while annuli Ai for i = 1; 2; 3; 4
can be chosen as for immediate preimages, A

0
will be larger by an annulus
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between the complement of the extended immediate domain and the rank n
extension of B. Since all branches of � sit inside Bn with separating moduli
at least 1

2
�, all parent branches are nested inside Bn with moduli at least

1
4
�. The extension of B will be mapped by the extension of the immediate

branch inside some parent branch. Thus, the extra contribution to A
0
will

be at least 1
4
�. That means s3 and s4 will both grow by the this amount

compared with the estimate for the immediate preimages. Then, one can
choose �0 = 9

8
� and

�1 =
�2(B)

2
� �

8

and

�2 =
�1(B)

2
+
�

8
:

One checks directly that this gives a normalized symbol.

The case of independent B and B0. Let us �rst consider the independent
case. To pick A2, we consider the annulus separating B from the boundary
of the domain of its rank (n�1)0 extension. We claim that its modulus in all
cases is estimated from below by �+� where � can be chosen as the maximum
of ��2(B) and ��2(B0). Indeed, if B is carried onto Bn by the extended
branch, the estimate is � plus the maximum of �1(B) and �1(B

0) which is
at least � since �1 + �2 � 0 in any normalized symbol. On the other hand,
if B is mapped by the extension onto something di�erent from the central
hole, the estimate ���2 � 3

4
� applies which is better than �+ �1 � 3

4
�. To

pick A1, consider the annulus of modulus � + �2(B) separating B from the
boundary of Bn�1. Pull these annuli back by the central branch to get A2

and A1 respectively. By the hypothesis of the induction, the estimates are

s1 =
� + �2(B)

2
and

s2 =
� + �

2
:

As always, A
0
is determined with modulus at least s1. The annulus A3 will

be obtained as the preimage by the central branch of the annulus surrounding
the preimage of B0 in the domain of the extended branch. This has modulus
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at least � + � in all cases as argued above. The annulus A4 is the preimage
of the annulus surrounding the extension in Bn�1. By induction,

s3 =
� + �2(B)

2
+ � + � and

s4 = s3 +
� + �2(B

0)� �� �

2
:

We put �1 =
�2(B)

2
and �2 =

���
2
. We check that

s3 + �1 =
�

2
+ � + �2(B) + � � � � �2(B) + �2(B) � � :

In a similar way one veri�es that

s4 � �2 � � :

Also, the required inequalities between corrections � follow directly. In this
case, it is not evident how to obtain a symbol with norm greater than �, so
we will return later to this case with more careful estimates.

The case of B0 subordinate to B. Presently, we will consider the case
of B0 being subordinate to B. This means that the same univalent branch of
rank n�1 transforms B onto Bn and B

0 onto some B00. Consider the annulus
separating Bn from B00, and a larger annulus surrounding the previous one in
Bn�1. Their preimages �rst by the extended branch and then by the central
branch give us A2 and A1 respectively. Notice that if an annulus surrounds
the domain of the extended branch, its preimage can be used to get another
layer of A1. The estimates are

s1 =
� + �0

2

where �0 is the maximum of �1(B
00) and 0. This is allowed, since if �1(B

00) is
negative, we can always use the fact that B0 is nested in Bn�1 with modulus
at least � + �2(B

0) > �.

s2 =
�� �2(B

00)
2

:
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The annulus A
0
is uniquely determined with modulus s1, and A3 will be the

preimage of the annulus separating B00 from Bn. Finally, A4 will separate the
image of A3 from Bn�1. Again, the separation between the extended domain
and Bn�1 will give us another layer of A4. The estimates are

s3 =
� + �1(B

00)
2

+ � � �1(B
00) = � +

�� �1(B
00)

2
and

s4 = s3 +
�1(B

00) + �2(B
00)

2
= � +

� + �2(B
00)

2
:

Set

�1 =
�� + �0

2
and

�2 =
� + �2(B

00)
2

:

The requirements of a normalized symbol are clearly satis�ed. Moreover, as
we noted, an estimate of the separation between the extended domain and
Bn�1 will give better s1, s3 and s4. If, say, this extra modulus is at least K�,
K < 1=2, then s1, s3 and s4 will grow by at least K

2
�.

Since this situation will recur, we emphasize the following reasoning as a
lemma.

Lemma 5.2 Suppose that a separation symbol (s1; s2; s3; s4) can be repre-
sented by a normalized symbol with norm � and corrections �1 and �2. If a
number 0 < K < 1=2 exists such that

s1 � (1 +K)� + �1 ;

s3 � (1 +
K

2
)� � �1 and

s4 � (1 +K)� + �2 ;

then another normalized symbol can be built for (s1; s2; s3; s4) with norm (1+
K
4
)�.

Proof:

We will distinguish the new normalized symbol by writing primes. Set

�01 = �1 +K
�

4
and
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�02 = �2 +K
�

4
:

Since the corrections were increased the bounds from below on �0i and �
0
1+�

0
2

will remain in force. Also, the bounds from above on will remain since �0

will grow by the same amount as �0i. Now, the corrections �
0
i were set so that

�� �2 = �0 � �02 ;

hence s2 will be correctly estimated. Finally, we check directly that

�0 � �01 = � � �1 +K
�

8
< s3 ;

�0 + �01 = � + �1 +
3

4
K� < s1 and

� + �02 = � + �2 +
3

8
K� < s4

which concludes the proof.

2

Coming back to our situation, we see that a uniform bound on the separa-
tion between the extended domain and Bn�1 will give us a uniform increase of
the norm in the case of B0 subordinate to B by Lemma 5.2. This is provided
by the following lemma:

Lemma 5.3 Under the hypotheses of Proposition 4, let 0 < j � k. Let Bn

be the central hole of �j. Choose D to be the domain of an extended univalent
branch of �j of rank n0. Then there is a positive bound K(l) such that D is
nested inside Bn0 with modulus at least K(l)�.

Proof:

Consider the previous inducing step on �j�1. All extended branches of �j
are nested inside parent branches created after the �rst �lling of �j�1. So, it
is enough to prove the bound for the parent branches. If B0 is a parent non-
immediate branch, consider its push-forward image. By separation bounds,
the push-forward image is surrounded insideB(n�2)0 by an annulus of modulus
at least � which also separates it from the central hole. The bound by �=2 for
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the parent branch follows. Extended immediate preimages are nested with
annuli

2�k�1(� + �1(B)) � 2�k�2�

where k is the number of consecutive images of the critical point inside the
central hole. This gives a uniform bound in terms of l of Proposition 4.

2

The case of B subordinate to B0. This situation is analogous to the
situation of immediate preimages considered at the beginning. Indeed, by
mapping B to Bn and composing with the central branch one can get a
folding branch of rank n � 1 de�ned on B. We now see that the situation
inside the domain of the rank n � 1 extension of B and B0 is analogous to
the case of immediate preimages, except that the folding branch maps onto
a larger set Bn�1. Like in the previous case, the estimates do not use the
separation between the extended domain and Bn�1. By Lemma 5.3 this gives
a de�nite improvement in terms of �. Hence s1, s3 and s4 all improve, and
we can increase the norm of the symbol by Lemma 5.2.

This concludes the proof of Lemma 5.1.

5.3 Close returns

Topological description.

Notation. We will use the notation ~' for the type I mapping obtained
from �j in the �rst stage of the box inducing step. Also, the i-th preimage
of Bn by the central branch will be called Bi, thus Bn = B0. We take k to
be the smallest i such that the critical value does not belong to Bi. Let B�

mean the parent domain of the branch of ~' which contains the critical value
of  j.B

� is the k-th preimage of some B by the central branch, where B is a
univalent domain of �j.

Classi�cation of branches. According to the de�nition of the box
inducing step, �j+1 is obtained from ~� by a box inducing step de�ned for
non-close returns. The �rst �lling of Bk (which becomes Bn+1=2) gives parent
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branches.2 Those will be of two types: immediate preimages of Bk by the
central branch and preimages of branches of rank n + 1=2. We will split
preimages of Bn+1 into two classes. First, we consider D-type preimages.
Those can be mapped by a composition of immediate branches only until
they hit Bn+1. All other domains of �j+1 will be called �-type preimages. It
follows that any �-type preimage falls into a non-immediate parent branch
before hitting Bn+1. A reasoning similar to one conducted in the case of non-
close returns shows that separation estimates for �-type preimages will be the
worst for domains which are mapped by immediate branches only until they
hit a maximal domain inside a non-immediate parent branch. Thus, we only
consider this kind of �-preimages.

The outcome of our computations will be as follows:

Lemma 5.4 Suppose that a sequence of type I complex box mappings �j is
given which satis�es the assumptions of Proposition 4. Let 0 � j � k and
assume that �j shows a close return whereby the critical value stays in the
central domain for k steps. If � is the separation norm of �0, then normalized
critical symbols

� for immediate preimages of Bn+1 the symbol has norm � with correc-
tions

�1 =
�

2
� �� �2(B)

2k+1
; �2 = ��

2
+
� + �1(B)

2k+1
:

� for other D-type preimages the same symbol will work as for immediate
preimages, or a better symbol with norm (1+K(k))� can be used, where
K is a positive function of �, but tends to 0 with k growing to in�nity.

� in all other situations the norm is at least (1+K(l))� with K a positive
function of l only (l is de�ned in the statement of Proposition 4.)

Immediate preimages. We �rst consider the annulus C surrounding Bk

inside Bn. Let us denote its modulus by 
. Clearly,


 � (� + �1(B))(1� 2�k) : (31)

To construct A2, we �rst consider the annulus surrounding B� inside Bk�1

and separating B� from Bk. This annulus is obtained as the preimage of

2One must avoid confusion between parent branches of ~� and parent branches of �j+1.
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A3[A0 which existed for b by a univalent map. Then, inside B� the preimage
of Bk nests with modulus 
. Thus,

s2 =
� � �1(B) + 


2
:

Then, A1 can be obtained as the preimage by the central branch of the
annulus which separates B� from the boundary of Bk�1 and is the k-th
preimage of A4. This gives

s1 =
� � �1(B) + 


2
+
�1(B) + �2(B)

2k+1
:

The annulus A
0
is de�ned in the natural way as the preimage of the

annulus surrounding Bn+1 inside B
k. We have already estimated its modulus

by s1.
The modulus of A3 is easily estimated by

�� �2(B)

2k
:

The annulus A4 will be the preimage of the the skinny annulus encircling
B� in Bk�1. Its modulus is bounded from below by

�1(B) + �2(B)

2k+1
:

This gives

s3 =
�� �2(B)

2k
+
� � �1(B) + 


2
+
�1(B) + �2(B)

2k+1
;

s4 = s3 +
�1(B) + �2(B)

2k+1
=

� � �1(B) + 


2
+
� + �1(B)

2k
:

We now observe that 
 occurs in all estimates with the positive sign, so
we can replace it with the lower estimate [31].

This means the choice of

�1 =
�

2
� �� �2(B)

2k+1
and
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�2 = ��
2
+
� + �1(B)

2k+1
:

>From this one can see directly that the requirements of a normalized
symbol are satis�ed.

�-type preimages. Choose a �-type preimage B. It is mapped by a com-
position of immediate parent branches into a non-immediate parent domain
which we call Bp. We argued that it su�ces to consider the case when B gets
mapped onto a m Now, consider the parent branch of  j(Bp) (as a branch of
~�) and call it ~B. We distinguish between two cases depending on whether ~B
and B� are the same or not.

~B is distinct from B�. Let B0 be  k( ~B) and B mean the  k(B�).
Let C be the modulus on an annulus separating B from Bn, B

0 and the
complement of Bn�1. Analogously, let C 0 separate B0 from B, Bn and the
complement of Bn�1. The triple alternative between one independent and
two subordinate cases tells us that we can always choose C + C 0 = �.

To get the symbol, we use

s1 =
� � �1(B) + 


2

obtained for immediate preimages (we skipped a positive term.) The reader
is reminded that 
 is a lower estimate on the modulus between Bk and Bn,
thus


 � (� + �1)(1� 2�k)

where �1 is the supremum of �1(D) over all monotone holes of �.
We put

s2 =

 + C

2
:

The annulus A
0
has modulus s1. A3 has two layers: one is the preimage

of the annulus between Bk and Bn inside the parent branch, another is the
preimage by the central branch of an annulus separating the parent branch
from Bk inside Bk�1. Those give

s3 =
� � �1(B)

2
+

3

2

 +

� � �1(B
0)

2
+
C 0

2
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Finally, we put s4 = s3.
The only way k enters the estimates is through 
. Thus, we only consider

k = 1 which gives the smallest value of 
, namely 
 = �+�1
2

. Then, pick
�0 = 9

8
�. Take

�1 = ��
8
:

Then

s1 � � +
� + �1 � 2�1(B)

4
� � =

9

8
�� �1

while

s3 � � + 2
 � �1(B) + �1(B
0)

2
� 


2
+ � � +

�

2
=

5

4
� � �0 � �1 :

Next, put

�2 =
�C � 
 + 2�

2
+

1

8
� if s2 < � and

�2 =
�

8
otherwise.

Thus guarantees that s2 is suitably bounded by �0=2 � �2. We have
already seen that

s4 � 5

4
� � �0 +

�

8
:

So we only need to check the case when �2 is given by the �rst more
complicated formula.

s4 � �2 = � � �1(B) + �1(B
0)

2
+ 2
 +

C + C 0

2
� 9

8
� =

� � �

8
+
C + C 0

2
+

2�1 � �1(B)� �1(B
0)

2
� � +

�

2
� �

8
� �0 :

Also, other inequalities between �i are easily veri�ed.

~B is equal to B�. In this case, we try mapping forward by parent
branches of ~� until images of  (Bp) and the postcritical branch of ~� land
in di�erent domains of �k. Then, we distinguish between the situation in
which both these domains are monotone, or one of them is central. If both
are monotone, the same estimates apply as in the previous case. Indeed, the
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two distinct branches obtained here can be used as ~B and B� in the previous
case to obtain the same separation bounds.

We are then left with two subordinate cases. First, assume that the
postcritical branch gets mapped onto Bk, and  (Bp) lands in another domain
of �k, call it B

0
p. Then, we estimate

s1 =
�

2

s2 = 0 :

These are both weak estimates that hold in all cases. The annulus A
0
as

always will have modulus at least s1. The annulus A3 will have two layers.
The inner one will be of modulus at least 
 and is the preimage of the annulus
which surrounds the image of  (Bp) inside B

0
p. The outer one has modulus

� � �1 and is the preimage of the annulus that separates B0
p from Bk inside

Bn. The worst case is when k = 1 which gives

s3 � 3

2
� :

As s4 we take the preimage of the annulus surrounding ~B inside Bk�1 by the
central branch. That will add modulus at least �=2. So, we can take

s4 =
7

4
� :

Clearly, a normalized symbol with �0 = 9
8
�, �1 = � �

16
and �2 = �0

2
will

work.
Finally, let  (Bp) be mapped on Bk with the postcritical domain going

into some Bp�. Let l be the least positive integer such that  l(Bp�) is not
in Bn. Certainly, l � k. Then, A2 has two layers. One is the preimage
of the annulus surrounding the image of the postcritical branch inside Bp�,
and that has modulus at least 
. Another is obtained as the preimage of
the annulus separating Bp� from Bk inside Bk�1, that gives modulus at least
���1(Bt�)

2
where Bt� =  l(Bp�). Thus,

s2 =
� � �1(B

t�) + 


2
:
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The annulus A1 will have three layers. The inner one will be the preimage
of the annulus surrounding A3(B

p�) inside Bl�1. Its modulus is

�1(B
t�) + �2(B

t�)
2l+1

Next, we have the preimage of an annulus between Bl�1 and Bn. This is
at least (� + �1)(1 � 21�l). Finally, we have the preimage of an annulus
separating Bk from B� inside Bk�1, that is at least �=2. All this gives

s1 =
1

4
� + (�+ �1)(1� 21�l) +

�1(B
t�) + �2(B

t�)
2l+1

+ s2 :

One easily sees that this has the least value for l = 1, namely

s1 � � � �1(B
t�)

2
+
� + �1

4
+
�1(B

t�) + �2(B
t�)

4
+

1

4
� �

� 3

4
� +

� + �2(B
t�)

4
� 13

16
� :

Thus, we take

s1 =
13

16
�

s2 =
�

2
:

Then, we trivially have

s3 = s1 =
13

16
�

and

s4 = s3 +
�

2
=

17

16
� :

The additional term �=2 in s4 comes from A4 which is taken at least as the
preimage by the central branch of the annulus separating B� from Bk inside
Bk�1. If si, i not 3 were all decreased by a sixteenth, a normalized symbol
with norm � could obviously be set up. Thus, we get a symbol with greater
norm by Lemma 5.2.

This ends the analysis of �-type preimages.
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D-type preimages. Choose a non-immediate D-type preimage and call it
B0. We go back to the estimates done previously for immediate preimages
in the case of a close return. The bound s1 certainly remains, moreover, we
observe that the annulus A2 for immediate preimages was chosen in such a
way that it also separates their extensions rank Bn+1=2 from Bn+1, Thus, s2
also remains in force for all D-type preimages. For non-immediate D-type
preimages, the annulus A

0
can be chosen with modulus equal to s4 in the

immediate case. Indeed, B0 will be mapped onto an immediate preimage
by a mapping which extends in a univalent way onto Bk. Then A3 is the
annulus surrounding the domain of the rank n + 1=2 extension of B0 inside
the parent branch (which is one of the extended immediate preimages.) Its
modulus is at least as large as the modulus between an extended immediate
preimage of Bk inside Bk, and that is half of the modulus of Bk inside Bk�1,
or at least

(� + �1(B)) � 2�k � � � 2�k�2 :

So, s3 will grow by a half of this amount compared to the estimate for im-
mediate preimages. Since A4 remains as in the immediate case, s4 will also
grow by the same correction. For simplicity, denote this correction by K�
with K uniformly bounded away from 0 in terms of k and no more than 1=2.
Let

�0 = (1 +
K

4
)� :

Now let us mark estimates from the immediate case with bars, and the esti-
mates from the present case with tildes. Then put

~�1 = �1 � K

8
�

~�2 = �2 +
K

8
� :

A comparison with the bounds for immediate preimages shows that this
gives a legitimate normalized symbol. Thus, for D-type preimages the norm
of the symbol can be increased by an amount bounded away from 0 in terms
of k.

This concludes the proof of Lemma 5.4.
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5.4 Proof of Theorem B.

Statement of results. The estimates we have done so far show that in all
cases the symbols after inducing can be chosen with at least the same norm.
This proves the �rst part of Proposition 4, namely that the norms of critical
symbols stay at least �. We will now work to get the improved claim.

Lemma 5.5 In the situation of Proposition 4, let 2 < j � k. Consider a
univalent hole B of �j other than an immediate preimage of the central hole.
Then, the critical symbol of B can be chosen with norm �0 � (1 + K(l))�
with K(l) always positive and depending only on l.

Proof:

Until we say otherwise, our reasoning will be valid for j = 2 as well. A large
portion of the proof is already in Lemmas 5.1 and 5.4. We must must only
return to the "independent" case when �j�1 shows no close return while the
B0 (de�ned as the image by  of the parent branch of B) and the postcritical
branch B are independent.

Let Bn be the central hole of �j�1, B the postcritical branch, and B0

the push-forward of the parent branch of B. The extended branch of B
maps the domain of B onto some D, and similarly B0 is mapped onto D0

by its extension. By Lemma 5.3, we know that the domains of the extended
branches are surrounded inside B(n�1)0 by an annulus with modulus at least
K1(l)�. Now we consider a number of cases depending on whether D and D0

are central or not.
First, assume that D is not central. Then, the same estimates we got in

our previous analysis of the independent case will be valid with B replaced
with D. However, A1 will contain an extra layer of modulus at least �

2
K1(l).

Thus, s1 will be improved. This will also cause s3 and s4 to improve. By
Lemma 5.2, the norm � can be increased by �

8
K1(l).

Knowing that D is central, we have an option of estimating

s1 � K1(l)� +
� + �1

2
and

s2 � � + �1

2

where �1 is the supremum of �1(b) over all univalent holes of �j�1.
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Now suppose that D0 is not central. In this case, use the new estimate
for s1 and the old estimate s2. Also, we take

s3 = s1 + � + �2(D
0) ;

s4 = s3 +K1(l)
�

2
:

Then put �0 = �+ �
4
K1(l) where K1(l) does not exceed 1=2. Also, choose

�1 =
3K1(l)�

4
� �� �1

2
and

�2 =
�� �

2
+
K1(l)

4
� :

We easily check that �1 + �2 > 0, also it is clear that s1 and s2 are
bounded as desired. Next, check

s3 + �1 =
7

4
K1(l)� + �1 + � + �2(D

0) > �0

and

s4 � �2 =
� + �1

2
+ � + �2(D

0)
�� �

2
+

7

4
K1(l)� >

�0 +
�1 + �2(D

0)
2

+
� + �2(D

0)
2

:

Since both fractions are non-negative, we are done.
Thus, we are left with the case when both D and D0 are central. We �rst

consider the situation of � very large, i.e.

� � �

2
� 1

4
K1(l)� : (32)

As �1
delta, we use

s1 =
� + �

2
+K1(l)� ;

s2 =
� + �

2
;

s3 = s1 + � + � ;
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s4 = s3 :

Then, pick

�0 = (1 +
K1(l)

8
)� ;

�1 =
� � �

2
+

7

8
K1(l)� ;

�2 =
�� �

2
+

1

8
K1(l)� :

Provided that K1(l) � 1=2 we have no trouble seeing that the inequalities
between corrections are satis�ed. We need to check

s3 + �1 = 2� + � +
15

8
K1(l)� � 2�+

11

16
� > �0

and

s4 � �2 = 2� + � +
7

8
K1(l)� = 2� +

3

16
� > �0 :

So, we are done in this case and can assume the converse of inequality [32].
We proceed to note that for j > 1 there is a positive bound K2(l) such that

�1(B) + �2(B) � K2(l)� (33)

for all univalent holes B of �j . In the cases already dealt with in the proof
of Lemma 5.5 this estimate follows. Indeed, once the norm of the symbol
is larger than �, one can always decrease the norm and at the same time
increase the corrections �i by the same amount getting weaker estimates. If
a correction exceeds � as a result, it means that it was close to � to begin
with, and thus the sum of the corrections was already positive. So we only
need to prove estimate [33] in the remaining case. However, then our original
choice of

�1 =
�2(B)

2
and

�2 =
�� �

2

proves correct in view of the converse of inequality [32]. Thus, for j � 3 we
can proceed assuming that estimate [33] holds for all holes of �j�1.
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In this situation, we set

s1 =
� + �2(B)

2
;

s2 =
� + �

2
;

s3 = s1 + � + �1 ;

s4 = s3 +
� + �2(B

0)� �� �1

2
:

Let �0 = (1 + 1
4
)K2(l)�. Put

�1 =
�2(B)

2
� 1

4
K2(l)� and

�2 =
�� �

2
+

1

4
K2(l)� :

We see that �1 + �2 > 0 and the bounds on �i also hold provided that
K2 < 1=2 which we can be assumed. Also, s1 and s2 are correctly estimated.
We check

s3 + �1 = � + �1 + �2(B)� 1

8
K2(l)� :

By [33], �1 + �2(B) � K2(l)� for any B, thus we get

s3 + �1 � � +
7

8
K2(l)� > �0 :

Also,

s4 � �2 = � +
�2(B) + �2(B

0)
+

�1 + �

2
� 1

8
K2(l)� � � +

3

8
K2(l)� > �0 :

This concludes the proof of Lemma 5.5.

2
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Proof of Proposition 4. The part of Proposition 4 which says that norms
of critical symbols do not deteriorate in the inducing process follows from the
�rst round of our estimates. To prove that the norm improves, assume that
j � 3 and the critical value falls into a non-immediate preimage B. By
Lemma 5.5 we see two things. First, there is a normalized critical symbol
of B with norm at least (1 + K(l))�. Secondly, for all holes of �j+1 other
than the immediate ones normalized critical symbols can be constructed with
increased norms. Thus, we are left to show that the norm will also increase
for critical symbols of the immediate holes of �j+1. This norm is at least
equal to the norm of the critical symbol of B for immediate preimages, so
we are done.

Theorem B. Suppose that a mapping � satis�es the assumptions of The-
orem B. Our �rst remark is this:

Lemma 5.6 Under the hypotheses of theorem B, there is a function K1(�)
bounded on any closed set in (0;1) such that if in the sequence �i there is a
rotation-like sequence

�j; �j+1; � � � ; �j+K1(�) ;

then �j+K1(�) as a real mapping satis�es the starting condition.

Proof:

This follows directly from Theorem A. We only need to check that if Bn is the
central domain of �j , then jBnj=jBn0 j is bounded away from 1 uniformly in
terms of �. However, Proposition 4 implies that as complex box mappings,
the central hole Bn is nested inside Bn0 with modulus at least �=2. The
bound we need follows from classical analysis, see [13].

2

By Corollary 5.2, we can assume that numbers lj are uniformly bounded,
or the starting condition is immediately satis�ed. Thus, we can regard the
parameter l in Proposition 4 as an absolute constant. Now let us �x some
j. We observe that either j + 3 +K1(�) satis�es the starting condition, or
there is a j0 � j + 3 such that �j0 does not make a rotation-like return. But
then it means that for any j either �j+3+K1(�) already satis�es the starting
condition, or its separation norm is at least (1+K2(l))� from Proposition 4.
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Next, we infer that for any k, �k(j+3+K1(�) either already satis�es the
starting condition, or its separation norm is at least �(1+K2(l))

k. But if the
separation norm becomes su�ciently large, the starting condition follows.
Thus, Theorem B has been demonstrated.

5.5 Proof of Theorem D

Superadditivity of conformal moduli. In the course of our complex
induction we have repeatedly encountered nesting annuli. The modulus of
their union was always estimated from below by the sum of moduli. However,
we will now show that unless the curve separating the two nesting annuli is
quite smooth, a de�nite increment can be added to the modulus of the union.
The following is a classical result:

Fact 5.1 Let A1 and A2 be two disjoint open annuli situated so that A1

separates 0 from A2 while A2 separates A1 from 1. Assume further that
both are contained in the ring A = fz : r < jzj < Rg for some 0 < r < R.
By C denote the set (annulus) of all points from An (A1[A2) separated from
0 and 1 by A1 [ A2. Then, for every � > 0 there is a number � with the
following property: if

mod A1 +mod A2 � mod A� � ;

then a � exists for which the ring

fz : � < jzj < (1 + �)�g
contains C.

Fact 5.1 follows directly from a \Modulsatz" of [21].

Corollary. Our next lemma is a simple corollary to Fact 5.1:

Lemma 5.7 Let �, w and � be non-intersecting Jordan curves, all separat-
ing 0 from 1. Suppose that w also separates � from � and that w passes
through 1 and �1 in the complex plane. Let be the annulus A between � and
w and B the annulus bounded by w and �. Suppose further that the moduli
of A and B are both at least �. Then, there is a number K � 1 with the
property that for each � > 0 at least one of these possibilities occurs:
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� the curve w is in the Hausdor� distance less than � from a K(�)-
quasicircle passing through �1 and 1, or

�
mod A+mod B < mod (A [B)� �(�)

where �(�) > 0 depends on � only.

Proof:

Apply the uniformizing map which carries � onto a circle with radius r, while
� goes to a circle with radius R > r and w is mapped onto a Jordan curve v in
between so that v passes through 1. By Fact 5.1 unless the second part of the
alternative holds, v is contained in a neighborhood of the unit circle of width
�. Since the annuli of A and B are at least �, for � < 1=2 the set of all inverses
to uniformizing maps is normal on the ring fz : 1 < jzj < 1 + �g. From this,
it �rst follows that the preimage of the unit circle is a uniform quasicircle,
and secondly that the preimage of this ring is a narrow neighborhood of this
quasicircle with width going to 0 uniformly with �. So, the �rst part of the
alternative holds.

2

Proof of Theorem D.

Lemma 5.8 Consider a type I complex box mapping � of rank n. Suppose
that � shows a close return which results in a mapping �1. Let v be the
ratio jBnj=jBn0j. Let � be the separation norm of �. There exists a function
V (�) > 0 so that if v < V (�) then at least one possibility occurs:

� the separation norm of � is at least �K(�) log v where K is a positive
function of � alone, or

� the separation norm of �1 at least � + � where � > 0 is an absolute
constant.

Proof:

By Lemma 5.4 we only need to consider D-type preimages, including imme-
diate ones. Also, by the same Lemma the symbol for immediate preimages
is also good for all D-type preimages, so it is enough to show that unless
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the �rst part of the alternative holds, the second possibility must occur for
immediate preimages. Let us track again the proof of Lemma 5.4 in the case
immediate preimages using the same notations. The annulus A2 is obtained
as the preimage by the central branch  of a certain annulus � composed of
two nesting annuli. The outer one surrounds the branch B� inside Bk while
the inner one is isomorphic to C and surrounds the postcritical domain of
~' inside its parent domain B�. Both annuli can be mapped by  k which
is univalent on �. Then, B� gets mapped onto a domain B of the original
mapping �. The outer layer of � gets mapped onto A3(B) [ A0(B). The
estimate used in Lemma 5.4 gives the modulus of � as the sum of s3(B) and
the modulus of C. However, we can get a positive correction here due to the
nesting of the image of C inside A0(B). First, map both by the extension of
the branch de�ned on B, which is univalent. Then A0 goes onto the annulus
surrounding Bn inside Bn0 . As the moduli of C and A0 can both be bounded
away from 0 in terms of �, for a suitably chosen �, by Lemma 5.7 the nesting
of the image of C inside this annulus gives a de�nite correction � unless Bn

is �(�)-close to a quasidisc uniform in terms of �, where �(�) goes to 0 with
�. If this correction occurs, it will be factored into s2 and consequently into
all other components of the critical symbol. So in this case we indeed get the
second possibility allowed by Lemma 5.8.

Thus, we can assume that Bn normalized so that its boundary passes
through 1 and �1 is �-close to a K(�)-quasidisc where � > 0 can be speci�ed.
It remains to show that this last possibility implies the �rst part of the
alternative claimed in Lemma 5.8. The region Bn is the preimage of Bn0 by a
quadratic mapping composed with a univalent transformation with bounded
distortion. If Bn is a uniform quasidisc, it contains a round disc centered at
0 of radius comparable to the length of Bn \R. This property carries over
to Bn0 . On the other hand, again by virtue of Bn being a uniform quasidisc,
it is contained in a round disc centered at 0 with radius comparable to the
length of the real section of Bn. So, the modulus between the complex boxes
Bn and Bn0 is log v+C(�). Thus, the component s1 of any separation symbol
can be as large as the lemma claims. But then A0 always has at least the
same modulus, so s3 and s4 can be chosen with the same size. The lemma
follows.

2
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Lemma 5.9 Consider a type I complex box mapping � of rank n�1. Assume
that � arises from some ��1 in a box inducing step. Suppose that � shows
a non-close return which results in a mapping �1, and �1 and also shows a
non-close return whereby which gives �2 after a box inducing step. Suppose
also that in both cases the critical value falls into an immediate preimage.
Let v be the ratio jBnj=jBn0 j. Let � denote the separation norm of �. There
exists a function V (�) > 0 so that if v < V (�), then at least one possibility
occurs:

� the separation norm of �1 is at least �K(beta) log v where K > 0 is an
absolute constant, or

� the separation symbol for immediate preimages of �2 at least �+� where
� > 0 is an absolute constant.

Proof:

We ask the reader to return to the proof of Lemma 5.1 in the case of immedi-
ate preimages. For �2, the annulus A2 is constructed as the preimage by the
central branch  1 of A

0(B)[A3(B) where B is the postcritical domain of �1.
In the estimates, the modulus of A0(B) [ A3(B) is taken to be equal to the
sum of moduli of its components. These nesting components are separated
by the boundary of B which is the preimage of the boundary of Bn by the
extension of the branch de�ned of B which is univalent and its distortion on
the boundary of B is bounded in terms of �0. Assume in addition (as will be
veri�ed later) that moduli of both A0(B) and A3(B) are bounded from below
uniformly in terms of �. Then, Lemma 5.7 implies that either the nesting
involves a positive correction �, or the boundary of Bn after normalization is
�-close to a uniform quasidisc. Then we proceed as in the proof of Lemma 5.8
to prove that the �rst part of the alternative holds. On the other hand, if the
nesting gives a correction, the same correction will appear in all components
of the symbol, and the second possibility occur. So we must show that the
moduli of A0(B) and A3(B) are both bounded away from 0. This is clear for
A0(B) which is the preimage of the annulus between Bn and Bn0 of modulus
at least �=2. Next, we have to see how A3(B) arises from the previous in-
ducing step. Denote the postcritical domain of �0 by b. Then, A3(B) is the
preimage by  n�1 of A2(b). So it is su�cient to show that s2(b) is a bounded
away from 0 proportion of �. Recall that b is an immediate preimage, and the
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inspection of separation bounds given by Lemmas 5.8 and 5.9 for immediate
preimages shows that �1(b) � �=4.

2

We will now conclude the proof of Theorem D. Consider a sequence of
type I complex box mappings �i as de�ned by the hypothesis of Theorem D.
Observe that if the �rst possibility occurs in Lemma 5.8 or Lemma 5.9 for
� = �j , the estimate claimed by Theorem D follows for �j with a uniform C.
Take an index j. First, look for j0 de�ned as the largest index i not exceeding
j for which the estimate of Theorem D follows with this C. Clearly, we are
done if we show that from j0 to j the moduli grow at a de�nite linear rate.
By Lemma 5.8 we know that each close return causes the modulus to grow
by a constant (that is because now only the second possibility can occur.)
Thus, we are done if we show that a sequence of, say, �ve consecutive non-
close returns also increases the modulus. Unless the fourth or �fth of those
mappings has the critical value fall into an immediate domain, we are done
by Lemma 5.8. Otherwise, we also get an increase by Lemma 5.9.
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We will need to delve a little more deeply in the inducing construction of [10].
So we begin by recalling certain crucial constructions.

6.1 The basics of inducing

Extendability. The whole fragment on extendability is a repetition of ar-
guments of [10] put in a somewhat di�erent language. The idea of extendabil-
ity is to provide a condition which will imply bounded distortion of branches,
at least a fair part of all branches, and will automatically reproduce itself
by the inducing construction. What is required is the \metric extendability"
condition which we state following [11]:

De�nition 6.1 A di�eomorphism g with a non-positive Schwarzian deriva-
tive de�ned on an interval (a; b) is said to be �-extendable if there is a larger
interval (c; d) � (a; b) and an extension ~g � g such that ~g is still a di�eo-
morphism with a non-positive Schwarzian, and

~g(c)� ~g(a)

~g(d)� ~g(a)

~g(d)� ~g(b)

~g(c)� ~g(b)
> � :

We will call the interval (c; d) from De�nition 6.1 the collar of extend-
ability, and its image by g the margin of extendability.

For branches of our box mappings Schwarzian derivative is non-positive
by de�nition. We can therefore use the powerful \real K�obe lemma" (see [6]).
This will say that

Fact 6.1 If a monotone branch or its restriction satis�es �-extendability, the
distortion of that branch measured as the maximum logarithm of the ratio of
derivatives taken at two points is bounded as uniform function of �.

A folding branch can also be said to be �-extendable provided that it is
the composition of x! (x�1=2)2 with an �-extendable di�eomorphism. The
margin of extendability is equal to the margin determined for this di�eomor-
phism. The collar is the preimage of the margin by the complete branch.
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Induced box maps. Given a mapping from class F , we will consider its
induced box maps, that is real box mappings in sense of De�nition 1.4 whose
branches are iterations of f .

A real box mapping will be called suitable if there is a symmetric neigh-
borhood of the critical point which is mapped by the central branch inside
itself. If a suitable box mapping is induced, then this neighborhood must be
a restrictive interval of the underlying f .

General inducing process. We proceed to describe the general inducing
process introduced in [10]. This will work for any S-unimodal f representable
as a power law composed with a bounded distortion di�eomorphism which is
either renormalizable or whose critical orbit is recurrent. The main features
of this process are as follows:

1. Any map in the sequence is de�ned except on a set of points whose
forward orbits avoid neighborhoods of the critical point.

2. All rank 0 branches show a uniform margin of extendability which
is independent of the original map f as well as of the place in the
construction. This naturally implies �-extendability with a uniform �.

3. For any rank 0 branch, its collar of extendability is contained in the
smallest box containing the domain of this branch, with the obvious
exception of the branches adjacent to the boundary of a box whose
collars stick out to one side. Also, except for the central branch the
collar of extendability does not contain the critical point.

4. If a map constructed in the process is not full, it is still of type I, and
any branch of positive rank k extends with the margin Bk0 .

We will now describe the process. This part is essentially a summary
of [10]. The reader can refer there for more details.

The beginning. A full induced map exists which satis�es the extendability
properties. In most cases, one just takes the �rst return map of f into its
fundamental inducing domain. A problem may occur since the central branch
can be arbitrarily short which prevents us from asserting any uniform margin
of extendability for the branch next to the critical one. This problem is taken
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care of by more inducing as described in the section 2.2 of [11]. The margin of
extendability established for this induced map will remain in force throughout
the construction.

We now suppose that an induced box mapping mapping �, not necessarily
of type I, is given which is not suitable, whose critical value is in the domain
of de�nition of �, and which satis�es our postulates. We will show how to
get the next induced mapping. From the procedure, the postulates will be
also satis�ed. We distinguish a few cases.

The basic case. The basic case occurs if the critical value falls into the
domain of a monotone rank 0 branch. In the basic case, the construction of
the new induced mapping proceeds as follows. De�ne �0 to be � with the
central branch replaced with the identity. Then compose � with �0. This,
�rst of all, gives you the new central branch which is of rank 0. Overall,
we now have a box mapping �01 of complicated structure. Now consider
the extendability of rank 0 branches of �01. The only ones of questionable
extendability are preimages of rank 0 branches of �0 by the central branch
of �. This is because the critical value of � may have entered their collars
of extendability. However, the new central branch is uniformly extendable
(compare the de�nition of extendability for folding branches.) To regain the
extendability of all rank 0 branches of �1, we apply the process of boundary
re�nement to branches of �0 that are images of non-extendable branches of
�1. The process is described in [10]. For us. it su�ces to say that the
boundary re�nement involves composing monotone branches of �0 with �0

and allows us shrink the collar of extendability of the branch adjacent to the
postcritical domain so that it no longer contains the critical value. The easy
proof is provided in [10]. This phenomenon is based on the fact that the
boundary re�nement increases the number of iterations on branches. The
boundary of the maximal possible margin of extendability then gets into a
vicinity of the repelling �xed point q of f , and as the number of iterations
increases, this point will be repelled from q, thus increasing the margin. After
the adjustment of �0 by boundary re�nement followed again by replacing the
central branch of � with its composition with �0, we get a mapping �1 with
all branches of rank 0 uniformly extendable.

This is followed by a �lling-in process. The objective is to obtain a type
I mapping. To this end, monotone branches of ranks between 0 and n + 1
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have to be re�ned. Prepare �01 by replacing its central branch with the
identity map. Then take every branch of �1 of rank strictly between 0 and
1 and replace it with the composition of this branch with �01. Again, some
non-extendable branches of rank 0 may appear which are preimages of rank 0
monotone branches of �01. Like in the previous step, one then returns to �

0
1 to

boundary-re�ne the preimages of those troublesome branches and that takes
care of the problem. This gives us �2. The mapping �2 still has branches of
ranks bigger than 0, though less than n + 1, but the set occupied by their
domains has shrunk. Then, exactly the same �lling-in step is performed with
�2 instead of �1. In the limit of �lling-in a type I induced map is regained.
Checking the properties of this mapping, we notice that compared with the
domain of de�nition of �, this limit map is not de�ned on the Cantor set
points which forever stay in domains of ranks between 0 and n+ 1. But the
orbits of these points forever avoid Bn+1. Other postulates are easily satis�ed
from the construction.

The box case. The box case occurs when the critical value of � is found
in a monotone branch of positive rank. We then follow the standard inducing
step de�ned earlier on branches of positive rank. The only di�erence is that
monotone branches of rank 0 are adjusted by boundary re�nement to ensure
their uniform extendability.

Close returns. The remaining case is when the critical value falls into the
central domain. This again follows the process described in the standard in-
ducing step with the exception that some monotone branches of �0. One �rst
constructs the mapping ~� in the same way it was described in the standard
inducing step. The di�erence may occur is some branches of this map of
rank 0 do not have standard extendability. That is helped by going back to
�0 and boundary-re�ning some of its monotone branches of rank 0. Then a
dichotomy occurs for ~� since it can show either a box or a basic return. We
simply follow the appropriate step as described above.

The re�ned inducing process. In addition to the general inducing pro-
cess just described we will need yet another inducing procedure, which we call
re�ned inducing process. The re�ned inducing also allows type II mappings
in the sense of De�nition 1.8 and switches back forth between the two cases.
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Let us assume that an induced map � of type I or II and rank n is given. We
�rst consider the case when � is like a map coming from the general inducing
process, i.e. it is of type I and satis�es the properties true for maps obtained
in the general inducing.

Inducing on a type I map. Let us �rst assume no close return. The
�rst �lling is done in the usual way. A map �0 is built by replacing the central
branch with the identity, and then the central branch of � is replaced with
its composition with �0. If that leads to non-extendable rank 0 branches,
we return to �0 to apply the boundary-re�nement, and then compose the
central branch with this modi�ed �0. In what we get all monotone branches
of positive rank have rank n, while the new central branch has rank n or
0 depending on whether the basic or box case occurred. In the basic case,
we exactly follow the general inducing step (there is no di�erence between
general and re�ned inducing in the box case.) Otherwise, we stop at this
stage. The only thing we do is to adjoin the new central domain to the
box structure as Bn+1. This gives a type II mapping which di�ers from the
outcome of the general step by a lack of �lling-in.

In a close return, the mapping ~� is obtained as in the general step, and
then the process just described for non-close returns is used. We observe
that this modi�ed step preserves all properties inductively claimed for the
general step.

Inducing on a type II mapping. The procedure depends on whether
or not the range of the real central branch covers the critical point. If so, we
start with a �lling-in of all monotone branches of rank n0. This is a general
observation that there always is a passage from type II to type I by �lling-in
of monotone branches of rank n0 to obtain only monotone branches of rank n.
After that, we follow the re�ned inducing step for type I maps just described.

If the image of the central branch does not cover the critical point, we
follow the general step as in the re�ned step for type I mappings, and again
skip the �lling-in stage. In this case, if the rank of � was Bn and, then after
this step all branches will be of rank n0. We will thus remove the old Bn from
the box structure and replace it with the new central domain. This means
that this particular step does not increase the rank.

This completes the description of the re�ned inducing.
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Boxes shrink uniformly.

Decay in terms of return time. We start with a general lemma.

Lemma 6.1 For a map f 2 F , let k denote the maximum depth of almost
parabolic points with periods less than the return time of the restrictive inter-
val if f is renormalizable, or 1 if not. For any � > 0 there exists an integer
m(�; k) with the property that if the stopping time on the central branch of a
type I induced map in the sequence constructed from f the general inducing
process is at least m(�; k), then the size of any domain of positive rank, as
well as of the central domain, are less than �. The function m(�; k) is inde-
pendent of f . Conversely, for any integer m there is a number �(m) > 0 so
that if the return time of the central branch is no more than m, the length of
the central domain is greater than �(m).

Proof:

We �rst prove the bound from below on the rate of decay. We begin by noting
that F is a normal family in the C2;1 topology. Indeed, all members of this
family are in the form hf (z � 1=2)2. Di�eomorphisms hf are of negative
Schwarzian derivative and uniformly �-extendable by the principle of [19]. It
is a well known fact the Schwarzian derivative of an �-extendable iterate of
a one-dimensional map with �nitely many polynomial-type singularities is
bounded from below uniformly in terms of � (see a proof of a very similar
estimate in [5].) Thus the normality follows.

Now, proceed by contradiction and consider a limit g of maps from F
which have increasing return times on the central branch while the sizes of
positive rank or folding domains remain bounded away from 0. One easily
sees that g has a homterval, i.e., an interval on which all iterations of g
are monotone. By the general result of [1], g must have a non-repelling, thus
neutral cycle. We also notice that g continues not to expand cross-ratios, thus
by [18] this neutral orbit is unique and the critical point is in the immediate
basin of one point, say p. Now carry out the inducing process for g. The
critical point and p will always stay together in the central branch, since
branches in the inducing construction are separated either by preimages of
the �xed point. Next, it is a property of the construction that for any branch,
no intermediate images enter the central domain. This statement is veri�ed
by induction. The easiest way to see it is by reviewing the description we
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provided asking which branches can change when we change f on its central
domain only. By induction, for � the central branch is the only one. Now,
observe that when constructing �0 to be precomposed with other branches,
we always replace the central branch by the identity, which eliminates the
dependence except for the new central branch. From this observation it
follows that return times on the central branch in the inducing process for
g cannot jump the period of p. Thus, after �nitely many steps an induced
map is obtained which exhibits a close return (which must be low, i.e. the
image of the real central branch does not cover the critical point). Now, if
we take a map f from the sequence which allegedly contradicts the claim of
the lemma which is very close to g in the C2 topology, the construction is
conducted in the same way for f , since the course of the construction only
depends on where the critical value falls. The map f will show a low return,
but will recover from it after a large number of steps. By Lemma 6.2 the
central branch of this map is uniformly �-extendable. Since it takes a long
time for the critical value to escape the central domain, and this time can be
made arbitrarily large by choosing f close enough to g, we can obtain a map
f with an almost parabolic point of arbitrary depth, contradiction.

Finally, we prove the bound from above on the rate of decay of boxes.
This follows immediately by induction. By construction, each central branch
de�ned on Bn is a composition of the quadratic polynomial with a di�eomor-
phism mapping on Bn�1. In the case of a close return, this should be applied
to mappings �i described in the standard inducing step. But the derivative
of this di�eomorphism is bounded from above in terms of the return time.
So, by each step the box shrinks only by a bounded factor in terms of the
return time, and the number of inducing steps is certainly no more than the
return time.

2

Decay in terms of the rank.

Lemma 6.2 If � is a type I or II induced box mapping of rank n derived
from some f 2 F , then

jBnj
jBn0j � 1� �

where � is a n absolute constant independent of f .
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Proof:

If � is full, the ratio is indeed bounded away from 1 since a �xed proportion
of B0 is occupied by the domains of two branches with return time 2. In
a sequence of box mappings this ratio remains bounded away from 1 by
Fact 4.1.

2

For type I mappings, we know that monotone branches of rank r > 0
are extendable to Br0 , and the central branch is extendable to B(r�1)0 , also
in type II mappings. Note that it implies �-extendability with � an absolute
constant.

6.2 Main proposition

Proposition 5 For every � > 0, there are a �xed integer N and �0 > 0,
both independent of the dynamics, for which the following holds. Given a
mapping from F a mixture of general and re�ned inducing gives an induced
map � which satis�es at least one of these conditions:

� � is of type I, suitable and of rank less than N ,

� � is of type I, satis�es the starting condition with norm �, its central
branch is � -extendable, and � � �(�) in the sense of the hypothesis of
Fact 2.2,

� � has a structure of a complex box mapping with separation norm
greater than �0 and the rank less than N .

If the depths of almost parabolic points with periods less than the return
time of the restrictive interval (taken as 1 in the non-renormalizable case)
are bounded by k, the bound N on the rank can be replaced by a bound the
return time on the central branch by a function N(k).

Taking care of the basic case. Let � > 0 be given small enough so that if
for a full map induced from some f 2 F the central domain and all domains
of positive rank are shorter that �, then this map satis�es the assumption
of Fact 2.2. This is certainly possible as all domains of positive rank are
separated from the boundary of B0 by the branches of return time 2 adjacent
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to the boundary of B0 and the central branch is uniformly extendable (the
� is uniformly bounded away from 0 in Fact 2.2.)

Then, for any f we construct an induced map '(�) according to the
following procedure. We follow the general inducing process until one step
before the central domain and all domains of positive rank become smaller
than �. By Lemma 6.1, the stopping time on the central branch of '(�) is
uniformly bounded in terms of �, hence by an absolute constant. We can
be prevented from being able to construct �(�) by earlier hitting a suitable
map. That, however, means that the return time of the restrictive interval is
uniformly bounded in terms of �, so are done as far the proof of Proposition 5
is concerned.

We take '(�) as the beginning point for further inducing. Note that if
in the general or re�ned inducing a full map is ever derived from '(�), we
are already done with the proof of Proposition 5, since the starting condi-
tion holds. Thus, we can assume that general and re�ned inducing on '(�)
encounters exclusively box cases.

A way to control stopping times. As another step in the proof of Propo-
sition 5, we o�er a convenient way of controlling stopping times on the central
branch in terms of the rank. This will let us derive the estimates claimed
in terms of return times in the absence of almost parabolic points of great
depth. Let us label the induced mappings which follow '(�) in the general
inducing procedure as '0 := '(�), '1 is the next one, and so on.

Lemma 6.3 Under the hypothesis and in notations of Proposition 5, there
exists a sequence of integer constants C(j; k), independent of f , such that if
the stopping time of the central branch of 'j exceeds C(j; k), then the starting
condition holds.

Proof:

We proceed by induction with respect to j, starting from j = 0 where the
lemma is obvious. Since the stopping time on the central branch is bounded
by C(j; k), the size of the central domain is bounded away from 0. Otherwise,
the derivative on the central branch would follow to be uniformly small. But,
by Lemma 6.1 if the stopping time on the central branch of 'j+1 becomes
large, the size of its central domain will become small as a uniform function
depending also on k. Observe, however, that the smallness of the central
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domain of 'j+1 relative to the central domain of 'j determines box ratio in
the starting condition for 'j+1. Also, the extendability of the central branch
is uniformly bounded in terms of j by Lemma 6.2. The lemma follows.

2

The meaning of Lemma 6.3 is that in the absence of almost parabolic
point of great depth, the requirement regarding the stopping time of the
central branch being bounded in a certain way can be replaced by a simpler
condition that the number of box steps leading to the suitable map from '(�)
is appropriately bounded.

6.3 Finding a hole structure

We consider the sequence ('k) of consecutive box mappings obtained from
'0 := '(�) in the course of the re�ned inducing. The objective of this section
is to show that for some k which is bounded independently of everything else
in the construction, a uniformly bounded hole structure exists which extends
'k as a complex box mapping in the sense of De�nition 1.6.

The case of multiple type II maps. We will prove the following lemma:

Lemma 6.4 Consider some 'm of rank n. There is a function k(n) such
that if the mappings 'm+1; : : : ; 'm+k(n) are all of type II, then 'm+k(n) has a
hole structure which makes it a complex box mapping. The separation norm
of the hole structure is bounded away from 0 depending solely on n.

Proof:

If a sequence of type II mappings occurs, that means that the image of the
central branch consistently fails to cover the critical point. The rank of all
branches is �xed and equal to n. The central domain shrinks at least expo-
nentially fast with steps of the construction at a uniform rate by Lemma 6.2.
Thus, the ratio of the length of the central domain of 'm+k to the length of
Bn is bounded by a function of k which also depends on n, and for a �xed n
goes to 0 as k goes to in�nity.

This means that we will be done if we show that a small enough value of
this ratio ensures the existence of a bounded hole structure. We choose two
symmetrical circular arcs which intersect the line in the endpoints of Bn at
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angles �=4 to be the boundary of the box.(� will be chosen in a moment, right
now assume � < �=2). We take the preimages of the box by the monotone
branches of rank n. They are contained in similar circular sectors circum-
scribed on their domains by Poincar�e metric considerations given in [19].
Now, the range of the central branch is not too short compared to the length
of Bn since it at least covers one branch adjacent to the boundary of the
box (otherwise we would be in the basic case). We claim that the domain of
that external branch constitutes a proportion of the box bounded depending
on the return time of the central branch. Indeed, one �rst notices that the
return time of the external branch is less than the return time of the central
branch. This follows inductively from the construction. But the range of the
external domain is always the whole fundamental inducing domain, so the
domain of this branch cannot be too short. On the other hand, the size of
the box is uniformly bounded away from 0 by Lemma 6.1. To obtain the
preimage of the box by the complex continuation of the central branch, we
write the central branch as h(z�1=2)2. The preimage by h is easy to handle,
since it will be contained in a similar circular sector circumscribed on the
real preimage. Since the distortion of h is again bounded in terms of n, the
real range of (x� 1=2)2 on the central branch will cover a proportion of the
entire h�1(Bn) which is bounded away from 0 uniformly in terms of n. Thus,
the preimage of the complex box by the central branch will be contained in
a star-shaped region which meets the real line at the angle of �=4 and is
contained in a rectangle built on the central domain of modulus bounded in
terms of n.

It follows that this preimage will be contained below in the complex box
if the middle domain is su�ciently small. As far as the separation norm is
concerned, elementary geometrical considerations show that it is bounded
away from 0 in terms of n.

2

Formation of type I mappings. We consider then same sequence 'k and
we now analyze the cases when the image of the central branch covers the
critical point. Those are exactly the situations which lead to type I maps in
the re�ned inducing.
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A tool for constructing complex box mappings. The reader is
warned that the notations used in this technical fragment are \local" and
should not be confused with symbols having �xed meaning in the rest of the
paper. The construction of complex box mappings (choice of a bounded hole
structure ) in the remaining cases will be based on the technical work of [15].
We begin with a lemma which appears there without proof.

Lemma 6.5 Consider a quadratic polynomial  normalized so that  (1) =
 (�1) = �1,  0(0) = 0 and  (0) = a 2 (�1; 1). The claim is that if a < 1

2
,

then  �1(D(0; 1)) is strictly convex.

Proof:

This is an elementary, but somewhat complicated computation. We will
use an analytic approach by proving that the image of the tangent line to
@ �1(D(0; 1)) at any point is locally strictly outside of D(0; 1) except for
the point of tangency. We represent points in D(0; 1) in polar coordinates
(r; �) centered at a so that �(1) = 0, while for points in preimage we will
use similar polar coordinates r0; �0. By school geometry we �nd that the
boundary of D(0; 1) is given by

(r + a cos�)2 + a2 sin2 � = 1 :

By symmetry, we restrict our considerations to � 2 [0; �]. We can then
change the parameter to t = �a cos�, which allows us to express r as a
function of t for boundary points, namely

r(t) =
p
1� a2 + t2 + t : (34)

Now consider the tangent line at the preimage of (r(t); t) by  . By
conformality, it is perpendicular to the radius joining to 0, so it can be
represented as the set of points (r0; �0)

r0 =

q
r(t)

cos2(�=2)
; �0 =

�

2
� �

2
+
�

2

where � ranges from �� to �. The image of this line is given by (r̂(�); �� �)
where

r̂(�) =
2r(t)

1 + cos �
:
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Let us introduce a new variable t(�) := �a cos(�� �) so that t = t(0). Our
task is to prove that

r(t(�)) < r̂(�) (35)

for values of � is some punctured neighborhood of 0. This will be achieved
by comparing the second derivatives with respect to � at � = 0. By the
formula [34]

r(t(�)) =
q
1� a2 + t(�)2 + t(�) :

The second derivative at � = 0 is

1� a2

(
q
1� a2 + t(�)2)3

(a2 � t2)� t� t2q
1� a2 + t(�)2

=

= �
q
1� a2 + t(�)2 � t+

1� a2

(
q
1� a2 + t(�)2)3

:

The second derivative of the right-hand side of the desirable inequality [35]
is more easily computed as q

1� a2 + t(�)2 + t

2
:

Thus, the proof of the estimate [35], as well as the entire lemma, requires
showing that

3

2
(
q
1� a2 + t(�)2 + t)� 1� a2

(
q
1� a2 + t(�)2)3

> 0

for jaj < 1=2 and jtj � jaj. For a �xed a, the value of this expression increases
with t. So, we only check t = �a which reduces to

3

2
(1� a)� (1� a2) > 0

which indeed is positive except when a 2 [1=2; 1].

2
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The main lemma. Now we make preparations to prove another lemma,
which is essentially Lemma 8.2 of [15]. Consider three nested intervals
I1 � I0 � I�1 with the common midpoint at 1=2. Suppose that a map
 is de�ned on I1 which has the form h(x � 1=2)2 where h is a polynomial
di�eomorphism onto I�1 with non-positive Schwarzian derivative. We can
think  as the central branch of a generalized box mapping. We denote

� :=
jI1j
jI0j

. Next, if 0 < � � �=2 we de�ne D(�) to be the union of two regions
symmetrical with respect to the real axis. The upper region is de�ned as
the intersection of the upper half plane with the disk centered in the lower
< = 1=2 axis so that its boundary crosses the real line at the endpoints of I0
making angles � with the line. So, D(�=2) is the disk having I0 as diameter.

Lemma 6.6 In notations introduced above, if the following conditions are
satis�ed:

�  maps the boundary of I�1 into the boundary of I0,

� the image of the central branch contains the critical point,

� the critical value inside I0, but not inside I1,

� the distance from the critical value to the boundary of I0 is no more
than the (Hausdor�) distance between I�1 and I0,

then  �1(D(�)) is contained in D(�=2) and the vertical strip based on I1.
Furthermore, for every � < 1 there is a choice of 0 < �(�) < �=2 so that

 �1(D(�(�))) � D(�(�))

with a modulus at least K(�), and  �1(D(�(�))) is contained in the inter-
section of two convex angles with vertices at the endpoints of I1 both with
measures less than � �K(�). Here, K(�) is a continuous positive function.

Proof:

By symmetry, we can assume that the critical value, denoted here by c, is
on the left of 1=2. Then t denotes the right endpoint of I0, and t0 is the
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other endpoint of I0. Furthermore, x means the right endpoint of Bn�1. By
assumption, h extends to the range (t0; x). To get the information about the
preimages of points t; t0; c; x one considers their cross-ratio

C =
(x� t)(c� t0)
(x� c)(t� t0)

� 1 + �

4

where we used the assumption about the position of the critical value relative
I0 and I�1. The cross ratio will not be decreased by h�1. In addition, one
knows that h�1 will map the disk of diameter I0 inside the disk of diameter
h�1(Bn) by the Poincar�e metric argument of [19]. As a consequence of the
non-contracting property of the cross-ratio, we get

h�1(c)� h�1(t0)
h�1(t)� h�1(t0)

<
1 + �

4
: (36)

When we pull back the disk based on h�1(I0), we will get a �gure which inter-
sects the real axis along I1. Notice that by the estimate [36] and Lemma 6.5,
the preimage will be convex, thus necessarily contained in the vertical strip
based on I1. Its height in the imaginary direction is

jI1j
2

vuut h�1(t)� h�1(c)

h�1(c)� h�1(t0)
<
jI1j
2

s
3� �

1 + �
; (37)

where we used the estimate [36] in the last inequality. Clearly,

 �1(D(�=2))

is contained in the disk of this radius centered at 1=2. To prove that

 �1(D(�=2)) � D(�=2) ;

in view of the relation [37] we need

�

s
3� �

1 + �
< 1 (38)

By calculus one readily checks that this indeed is the case when � < 1. To
prove the uniformity statements, we �rst observe that

 �1(D(�)) �  �1(D(�=2))
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for every � < pi=2. Since [38] is a sharp inequality, for every � < 1 there is
some range of values of � below �=2 for which  �1(D(�)) � D(�) with some
space in between. We only need to check the existence of the angular sectors.
For the intersection of  �1(D(�)) with a narrow strip around the real axis,
such sectors will exist, since the boundary intersects the real line at angles �
and is uniformly smooth. Outside of this narrow strip, even  �1(D(�=2)) is
contained in some angular sector by its strict convexity.

2

The assumption of extendability to the next larger box is always satis�ed
in our construction.

The case when there is no close return. We now return to our
construction and usual notations. We consider a map 'k, type II and of rank
n, whose central branch covers the critical point, but without a close return.
Then:

Lemma 6.7 Either the Hausdor� distance from Bn to Bn�1 exceeds the
Hausdor� distance from Bn�1 to Bn�2, or 'k has a hole structure uniformly
bounded in terms of n.

Proof:

Suppose the condition on the Hausdor� distances fails. We choose the box
around Bn and the hole around Bn+1 by Lemma 6.6. Observe that the
quantity � which plays a role in that Lemma is bounded away from 1 by
Lemma 6.2. The box is then pulled back by these monotone branches and
its preimages are inside similar �gures built on the domains of branches by
the usual Poincar�e metric argument of [19]. For those monotone branches,
the desired bounds follow immediately.

2

The case when the close return occurs. Finally, we have to deal
with the case when the image of the central branch of 'k, which as always
can be assumed of type II and some rank n, covers the critical point, but
also makes it a close return.
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Lemma 6.8 In the situation described above at least one the three statements
holds:

� the starting condition holds as claimed by Proposition 5,

� a hole structure uniformly bounded in terms of k exists for an induced
map '0 obtained from 'k and from which 'k+1 can be extracted by more
inducing,

� the Hausdor� distance from Bn+1 to Bn exceeds the Hausdor� distance
from Bn to Bn�2.

Proof:

Suppose that the condition on the Hausdor� distances does not hold. We
look into the description of the inducing process in the close case, and seek an
opportunity to apply Lemma 6.6. We build a sequence of temporary boxes
which are preimages of Bn by the central branch until for one of them, say
Bn+m, the critical value escapes. First, we remark by Lemma 6.3 that m is
uniformly bounded in terms of k, or the starting condition holds and we have
nothing more to prove. To construct '0 we just �ll-in all branches of positive
rank so that they map onto Bn+m�1. The map '0 is of type II and no longer
shows a close return, and indeed 'k+1 can be obtained from '0 by a step of
the re�ned inducing construction. The hole structure for '0 is obtained by
repeating the argument of Lemma 6.7 with the additional information that
the central branch is extendable to a margin equal to the whole Bn�2.

2

Proof of Proposition 5. This is just a summary of the work done in
this section. We claim that we have proved that either a map with a box
structure can be obtained from '(�) in a uniformly bounded number of steps
of the re�ned inducing process, or the Proposition 5 holds anyway. Since
Lemmas 6.4, 6.7 and 6.8 all provide uniform bounds for the hole structures in
terms of k or the rank which is bounded in terms of k, it follows that the hole
structure is bounded or the starting condition holds anyway. It also follows
that by Lemma 6.3 that if the inducing fails within this bounded number
of steps because of a suitable map being reached, then the stopping time on
the central branch of the suitable map is bounded, hence Proposition 5 again
follows.
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So, we need to prove that claim. If the claim fails, then by Lemma 6.4
the situations in which the image of the central branch covers the critical
point have to occur with de�nite frequency. That is, we can pick a function
m(k) independent of other elements of the construction which goes to in�nity
with k such that among '1; : : : ; 'k the situation in which the critical point
is covered by the image of the central branch occurs at least m(k) times.
But each time that happens, we are able to conclude by Lemmas 6.7 and 6.8
that the Hausdor� distance between more deeply nested boxes is more than
between shallower boxes. Initially, for '0 whose rank was n, the Bn distance
between and Bn�1 was a �xed proportion of the diameter of Bn So only a
bounded number of boxes can be nested inside Bn�1 with �xed space between
any two of them (or at least between every other pair in the situation of
Lemma 6.8.) So we have a bound on the value of m(k), thus on k. This
proof of the claim is a generalization of the reasoning used in [15].

The claim concludes the proof of Proposition 5.

6.4 Proofs of main theorems

Proof of Theorem 1. By [10] an S-unimodal non-renormalizable map-
ping without attracting or indi�erent periodic points is expansion-inducing
provided that box ratios shrink to 0. Thus, Theorem 1 follows directly.

Proof of Theorem 2. We will prove this theorem by showing that if the
return time on the restrictive interval is su�ciently large, it follows that for
the suitable map obtained in the inducing construction of [10] which is of
type I and rank n the ratio jBn0 j=jBnj. Namely, given a D in Theorem 2, this
ratio should be at least D. Next, specify � in Proposition 5 equal to that
D. Of the three outcomes of Proposition 5 the integer N will give us the
minimum return time in Theorem 2. In other cases the starting condition
either holds, in which case we are done, or we get a hole structure with a
uniform separation norm. Then we use Theorem B. We learn that after a
bounded number of box steps, which by Lemma 6.3 means either a starting
condition again or a uniformly bounded return time on the central branch,
we get the starting condition with norm �. So, in all cases either the starting
condition holds with norm � and can only improve, or the return time on the
central branch is uniformly bounded. Theorem 2 follows.
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