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We extend the work of Bielefeld, Fisher and Hubbard on Critical Por-
traits (see [BFH] and [F]) to the case of arbitrary postcritically �nite poly-
nomials. This determines an e�ective classi�cation of postcritically �nite
polynomials as dynamical systems.

This paper is the �rst in a series of two based on the author's thesis (see
[P]) which deals with the classi�cation of postcritically �nite polynomials. In
this �rst part we conclude the study of critical portraits initiated by Fisher
(see [F]) and continued by Bielefeld, Fisher and Hubbard (see [BHF]). As an
application of our results, we give in the second part of this series necessary
and su�cient conditions for the realization of Hubbard Trees.
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In the �rst three sections of this introductory chapter we de�ne the
concept of critically marked polynomials and state their main combinatorial
properties. Our de�nition extends the concept presented in [F] and [BFH]
by including the possibility of periodic critical points. This de�nition di�ers
slightly from that given in the above references in the strictly preperiodic
case, but our results are the same. This small modi�cation will later be
useful, because some proofs will be simpli�ed.

Our de�nition is supported by a number of examples given in Section
4. We remark here that the `hierarchic selections' in the construction, are
essential only to the marking corresponding to Fatou set critical cycles. Here
they are needed in order to guarantee uniqueness for the polynomial with
speci�ed critical portrait. (Compare Example 4.5, and see the remark fol-
lowing Lemma II.2.4). The inclusion of the `hierarchic selection' for Julia set
critical points was made to uniformize notation and is not essential (compare
[BFH] where all critical points are in the Julia set).

1. Preliminaries.

1.1. Let P be a polynomial of degree d > 1 with 
(P ) the set of critical
points. For M � C denote by O(M) = [1n=0P

�n(M) the orbit of M. If the
orbit O(
(P )) of the critical set is �nite, we say that P is postcritically �nite
(PCF). It follows that every critical point of P is periodic or preperiodic.
We call the orbit O(!) of a periodic critical point ! (if any) a critical cycle.
In this postcritically �nite case a criterion to decide when a preperiodic (or
periodic) point is in the Fatou set is as follows.
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A preperiodic point is in the Fatou set if and only if it eventually maps
to a critical cycle.

If P is postcritically �nite, then the Julia set J(P ) and the �lled in
Julia set K(P ) of P are connected and locally connected (see [M] Theorem
17.5). As there are no wandering domains for the Fatou components of this
polynomial P , each bounded Fatou component contains exactly one point z
(called its center) which eventually maps to a critical point. If we map this
component U(z) onto the unit disk by an uniformizing Riemann map � with
�(z) = 0, we can talk about internal rays in U(z) de�ned as the preimages of
radial segments under �. Because we are in the locally connected case those
internal rays can be extended up to the boundary.

In the case of the basin of attraction of 1, if the polynomial is monic
and centered, the uniformizing Riemann map can be chosen tangent to the
identity at 1. These rays are called external rays, and satisfy the condition
P (R�) = Rd�.

In general, let ! 7! P (!) 7! : : : 7! P �n(!) = ! be a critical cycle. Then
P �n : U(!) 7! U(!) is a degree D > 1 cover of itself (D is the product of the
local degree of elements in the orbit O(!), and U(!) the Fatou component
with center !). It follows then that the uniformizing Riemann map �! can
be chosen so that

�!(z)
D = �!(P

�n(z)):

In this case the Riemann map is known as the B�ottcher coordinate (compare
[M] Theorem 6.7). This coordinate is uniquely de�ned up to conjugation
with a (D � 1)th root of unity. In particular, it is easy to see that there are
exactly D�1 `�xed' internal rays, i.e, internal raysR satisfying P �n(R) = R.
They correspond in the B�ottcher coordinate to the segments fre 2�ki

D�1 : r 2
[0; 1); k = 0; : : : ;D � 2g.

What is important to note here, is that the same construction is valid
for all elements in the critical cycle. Note that if we choose a coordinate �!
in which the internal ray R corresponds to the real segment [0; 1), then we
can choose in a unique way a coordinate �P (!) (at P (!)) for which P (R)
corresponds to [0; 1). Furthermore in this case

�P (!)(P (z)) = (�!(z))
deg!P ;

3



where deg!P is the local degree of P at ! (for more details see [DH1, Chapter
4, Proposition 2.2]).

1.2 Lemma. If a critical point z belongs to a critical cycle of period
n = nz, then P �nj

U(z)
(which has degree say Dz > 1) has exactly Dz � 1

di�erent �xed points in the boundary @U of this component U(z) respect to
this return map. Furthermore, all external rays that land at such points have
period exactly n.

Proof. The �rst part is well known. For the second, we consider near
this periodic point segments of all the external rays which land there, together
with the internal ray joining this point to the center z. The cyclic order of
these analytic arcs must be preserved under iteration. The result thus follows
easily. #

1.3 Supporting arguments. Given a Fatou component U and a point
p 2 @U , there are only a �nite number of external rays R�1 ; : : : ; R�k landing
at p. These rays divide the plane in k regions. We order the arguments of
these rays in counterclockwise cyclic order f�1; : : : ; �kg, so that U belongs
to the region determined by R�1 and R�2 (�1 = �2 if there is a single ray
landing at p). The argument �1 (respectively the ray R�1) is by de�nition
the (left) supporting argument (respectively the (left) supporting ray) of the
Fatou component U. In a completely analogous way we can de�ne right sup-
porting rays. Note that an argument supports at most one Fatou component
(compare [DH1, Chapter VII.4]). Furthermore, by de�nition, given a Fatou
component U , for every boundary point p there is an external ray landing at
p, and therefore a supporting ray for U .

1.4 Extended Rays. Given an external ray R� supporting the Fa-
tou component U(z) with center z, we extend R� by joining its landing
point with z by an internal ray, and call this set an extended ray R̂� with
argument �.

1.5 Example. Consider the postcritically �nite polynomial Pc(z) =
z2 + c (where the critical value c � �0:12256117 + 0:74486177i satis�es
c3 + 2c2 + c + 1 = 0). The rays with argument 1=7; 2=7; 4=7 all land at
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the same �xed point. But R4=7 is the only ray landing at this point, which
supports the critical component. (Compare Figure 1.1.)

Figure 1.1

2. Construction of Critically Marked Polynomials.

Given a postcritically �nite polynomial P , we associate to every critical
point a �nite subset of Q=Z and construct a critically marked polynomial
(P;F = fF1; : : : ;FnF g, J = fJ1; : : : ;JnJg). Here Fk would be the set of
arguments associated with the critical point zFk in the Fatou set, and Jk
would be the set associated with the critical point zJk in the Julia set. The
number of elements in these �nite sets would be equal to the local degree of
the associated critical points. We remark that given a polynomial its critical
marking is not necessarily unique. Also note that one of these two families
will be empty if there are no critical points in the Fatou or Julia set. In
the following de�nition we will always work with left supporting rays. We
remark that we could equally well work with the right analogue, but there
must be the same choice throughout. Also, multiplication by d modulo 1 in
R/Z will be denoted by md.

2.1 Construction of Fk. First we consider the case in which a given
Fatou critical point z = zFk is periodic. Let z = zFk 7! P (z) 7! :::
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7! P �n(z) = z be a critical cycle of period n and degree Dz > 1 (com-
pare x1.1). We construct the associated set F` for every critical point zF`
in the cycle simultaneously. Denote by dz the local degree of P at z. We
pick any periodic point pz 2 @U(z) of period dividing n (which is not critical
because it is periodic and belongs to the Julia set J(P )) and consider the
supporting ray R� for this component U(z) at pz. Note that this choice nat-
urally determines a periodic supporting ray for every Fatou component in
the cycle. The period of this ray is exactly n (compare Lemma 1.2). Given
this periodic supporting ray R�, we consider the dz supporting rays for this
same component U(z) that are inverse images of P (R�) = Rmd(�). The set
of arguments of these rays is de�ned to be Fk. Keeping in mind that a pre-
ferred periodic supporting ray has been already chosen, we repeat the same
construction for all critical points in this cycle. Note that as the cycle has
critical degree Dz, we can produce Dz�1 di�erent possible choices for Fk. If
Fk is the set associated with the periodic critical point zk, there is only one
periodic argument in Fk (namely � as above), we call this angle the preferred
supporting argument associated with zFk . Note that by de�nition, the period
of zFk equals the period of the associated preferred periodic argument.

Otherwise, if z = zFk of degree dz > 1, is a non periodic critical point in
the Fatou set F (P ), there exists a minimal n > 0 for which w = P �n(z) is
critical. If w has associated a preferred supporting ray R� (at the beginning
only periodic critical points do), then P�n(R�) contains exactly dz rays which
support this Fatou component U(z). The set of arguments of these rays is
de�ned to be Fk. We pick any of those and call it the preferred supporting
argument associated with z. We continue this process for all Fatou critical
points.

2.2 Construction of Jk. Given z = zJk (a critical point in J(P )) of
degree dk > 1, we distinguish two cases. If the forward orbit of z contains no
other critical point, we have that for some � (usually non unique) R� lands
at P (z). Now P�1(R�) consists of d di�erent rays, among them exactly dk
land at z. De�ne Jk as the set of arguments of these rays, and choose a
preferred ray. Otherwise, z will map in n � 1 iterations to a critical point,
which we assume to have associated a preferred ray R�. In the nth inverse
image P�n(R�) of this preferred ray, there are dk rays which land at z. The
set of arguments of these rays is de�ned to be Jk. Again we pick one of those
to be preferred, and continue until every critical point has an associated set.
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The critical marking itself gives information about how many iterates
are needed for a given critical point to become periodic. For example we
have the following lemma.

2.3 Lemma. Let  be a preferred supporting argument in the set Fk
(respectively in Jk). Then the multiple m�n

d () (with n � 1) is periodic but
m�n�1
d () is not if and only if zFk (respectively zJk ) falls in exactly n iterations

into a periodic orbit.

Proof. This clearly follows from the construction. #

The importance of the above construction is stated in the following
theorem. The proof will be given in Chapter III (compare also Theorem
3.9).

2.4 Theorem. Every centered monic postcritically �nite polynomial P
has a critical marking (P;F ;J ). This marking determines the polynomial
P in the following sense: if (P;F ;J ) and (Q;F ;J ) are critically marked
polynomials, then P = Q. In other words, two monic centered post-critically
�nite polynomials with the same critical marking (F ;J ) must be equal.

Remark. Note that the construction of associated sets was done in
several steps. We �rst complete the choice for all critical cycles, and then
proceed backwards. In both the Fatou and Julia set cases we will have to
make decisions at several stages of the construction. Such decisions will a�ect
the choice of the marking for all critical points found in the backward orbit
of these starting ones. Each time that this kind of construction is made, we
will informally say that it is a hierarchic selection. We encourage the reader
to take a look at the examples in Section 4.
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3. The Combinatorics of Critically Marked Polynomials.

In order to analyze which properties the families (F ;J ) satisfy, it is
convenient to introduce some combinatorial notation.

3.1 De�nitions. We say that a subset � � R=Z is a (d-)preargument
set ifmd(�) is a singleton. For technical reasons we will always assume that �
contains at least two elements. If all elements of � are rational, we say that
� is a rational preargument set. It follows by construction that whenever
(P;F ;J ) is a marked polynomial, all the sets Jk, and Fl are rational d-
preargument sets.

Consider now a family � = f�1; : : : ;�ng of �nite subsets of the circle
R=Z. The family � determines the family union set �[ =

S
�i. We say

that any � 2 �[ is an element of the family �. Furthermore, we can say that
it is a periodic or preperiodic element of the family if it is so with respect to
md. The set of all periodic elements in the family union will be denoted by
�[
per.

3.2 Hierarchic Families. We say that a family � is hierarchic if
for any elements in the family �; �0 2 �[, whenever m�i

d (�);m
�j
d (�0) 2 �k

for some i; j > 0 then m�i
d (�) = m

�j
d (�0). (This is useful if we think of a

dynamically preferred element in each �k).

3.3 Linkage Relations. We will say that two subsets T and T 0 of the
circle R=Z are unlinked if they are contained in disjoint connected subsets
of R=Z, or equivalently, if T 0 is contained in just one connected component
of the complement R=Z � T . (In particular T and T 0 must be disjoint.) If
we identify R=Z with the boundary of the unit disk, an equivalent condition
would be that the convex closures of these sets are pairwise disjoint. If T and
T 0 are not unlinked then either T \ T 0 6= ; or there are elements �1; �2 2 T
and �01; �

0
2 2 T 0 such that the cyclic order can be written �1; �

0
1; �2; �

0
2; �1. In

this second case we say that T and T 0 are linked. More generally a family
� = f�1; : : : ;�ng is an unlinked family if �1; : : : ;�n are pairwise unlinked.
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Alternatively, each �i is completely contained in a component of R=Z� �j
for all j 6= i.

The preceding de�nition has its motivation in the description of the
dynamics of external rays for a polynomial map. Suppose the external rays
R�i ; R i land at zi for i = 1; 2. If z1 6= z2 then the sets f�1;  1g; f�2;  2g are
unlinked, for otherwise the rays will cross each other. The same argument
applies if we consider rays supporting Fatou components. But if we analyze
linkage relations arising from rays supporting a Fatou component and rays
that land at some point, we may get minor problems. Anyway, it is easy to
see that even in this case the associated sets of arguments will be `almost'
unlinked. (Compare condition (c.2) and as well as Proposition 3.8 below.)

3.4 Weak linkage relations. Consider two families F = fF1; : : : ;Fng
and J = fJ1; : : : ;Jmg; we say that J is weakly unlinked to F in the right
if we can chose arbitrarily small � > 0 so that the family fF1; : : : ;Fn;
J1 � �; : : : ;Jm � �g is unlinked. (Here �� � = f�� � (mod 1) : � 2 �g.) In
particular each family should be unlinked. Note that the de�nition allows
empty families. To simplify notation we will simply say that \F and J� are
unlinked".

3.5 Formal Critical Portraits. Consider families F = fF1; : : : ;Fng
and J = fJ1; : : : ;Jmg of rational (d-)prearguments. We say that the pair
(F ;J ) is a degree d formal critical portrait if the following conditions are
satis�ed.

(c.1) d� 1 =
P
(#(Fk)� 1) +

P
(#(Jl)� 1)

(c.2) F and J� are unlinked.

(c.3) Each family is hierarchic.

(c.4) Given  2 F[, there is an i > 0 such that m�i
d () 2 F[

per.

(c.5) No � 2 J [ is periodic.

This set of conditions represent the simplest conditions satis�ed by the
critical marking of a postcritically �nite polynomial. Condition (c.1) says
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that we have chosen the right number of arguments. Condition (c.2) means
that the rays and extended rays determine sectors which do not cross each
other, and that F was constructed from arguments of left supporting rays.
This reects our decision to chose the supporting arguments as the rightmost
possible argument of an external ray. Condition (c.3) reects our choice of
dynamically preferred rays. Condition (c.4) indicates that arguments in F
are related to Fatou critical points. Condition (c.5) indicates that arguments
in J are related to Julia set critical points. Unfortunately there are formal
critical portraits which do not correspond to a postcritically �nite polyno-
mial (compare Example II.2.8). In order to state necessary and su�cient
conditions we need to study the dynamically de�ned partitions of the unit
circle determined by these elements.

3.6. Given two families F ;J as above, we form a partition P =
fL1; : : : ; Ldg of the unit circle minus a �nite number of pointsR=Z�F[�J [,
in the following way. We consider two points t; t0 2 R=Z � F[ � J [. By
de�nition, t; t0 are unlink equivalent if they belong to the same connected
component of R=Z � Fi and R=Z � Jj , for all possible i; j. Let L1; : : : ; Ld
be the resulting unlink equivalence classes with union R=Z � F[ � J [. It
is easy to check that each Lp is a �nite union of open intervals with total
length 1=d.

Each element Li 2 P of the partition is a �nite union Li = [(xj ; yj)
of open connected intervals. We also de�ne the sets L+

i = [[xj ; yj) and
L�i = [(xj ; yj ]. It is easy to see that both P+ = fL+

1 ; : : : ; L
+
d g and

P� = fL�1 ; : : : ; L�d g are partitions of the unit circle. As every � 2 R=Z
belongs to exactly one set L+

k , we de�ne its right address A
+(�) = Lk. In an

analogous way we de�ne the left address A�(�) of �. We associate to every
argument � 2 R=Z a right symbol sequence S+(�) = (A+(�); A+(md(�)); : : :)
and a left symbol sequence S�(�) = (A�(�); A�(md(�)); : : :). Note that for
all but a countable number of arguments � 2 R=Z (namely the arguments
present in the families and their iterated inverses), the left S�(�) and the
right S+(�) symbol sequences coincide. By S(�) will be meant either (left or
right) symbol sequence.

3.7 Admissible Critical Portraits. Let F = fF1; : : : ;Fng and
J = fJ1; : : : ;Jmg be two families of rational (d-)prearguments. We say
that (F ;J ) is a degree d admissible critical portrait if (F ;J ) is a degree d
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formal critical portrait and the following two extra conditions are satis�ed.

(c.6) Let  2 F[
per and � 2 R=Z, then � =  if and only if

S+() = S+(�).

(c.7) Let � 2 Jl and �0 2 Jk. If for some i, S�(m�i
d (�)) = S�(�0), then

m�i
d (�) 2 Jk.

3.8 Proposition. If (P;F ;J ) is a critically marked polynomial, then
(F ;J ) is an admissible critical portrait.

Condition (c.6) indicates that arguments in Fl must support Fatou com-
ponents. Condition (c.7) indicates that di�erent elements in the family J
are associated with di�erent critical points. The proof of this proposition
will be given in Section II.2.

Now we can state the main result for critically marked polynomials as
follows (the proof of this theorem will be given in Chapter III).

3.9 Theorem. Let (F ;J ) be a degree d admissible critical portrait.
Then there is a unique monic centered postcritically �nite polynomial P, with
critical marking (P;F ;J ).

Now we should ask if conditions (c.1)-(c.7) represent a �nite amount of
information to be checked. This question is answered in a positive way by
the following lemma. The proof would be given in Section II.1.

3.10 Lemma. Suppose � and �0 have the same periodic left (or right)
symbol sequence. Then � and �0 are both periodic and of the same period.

In particular condition (c:6) can be replaced by condition (c:6)0:

(c.6)0 Let  2 F[
per and let � have the same period as , then � =  if

and only if S+() = S+(�).

11



3.11. The next question that we ask is what kind of information about
the Julia set can be gained by looking carefully into the combinatorics. For
example, if can we determine if two rays land at the same point by only
looking at their arguments. In fact, left symbol sequences convey all the
information necessary to e�ectively decide whether two rays land at the same
point or not. This is done as follows. Suppose Ji = f�1; :::; �kg 2 J with
corresponding left symbol sequences S�(�1); : : : ; S�(�k). As we expect the
rays with those arguments to land at the same critical point, we declare them
(i-)equivalent; i.e, we write S�(��) �i S�(��). Then we set � � �0 either if
S�(�) = S�(�0) or there is an n � 0 such that A�(m�j

d (�)) = A�(m�j
d (�0))

for all j < n and S�(m�n
d (�)) �i S�(m�n

d (�0)) for some i. This relation �
is not necessarily an equivalence relation, because transitivity may fail. To
make this into an equivalence relation we say that � �l �0 if and only if
there are arguments �0 = �; �1; : : : ; �m = �0, such that �0 � : : : � �m. The
importance of this equivalence relation is shown by the following proposition.
The proof will be given in Chapter II.

3.12 Proposition. Let (P;F ;J ) be a critically marked polynomial.
Then R� and R�0 land at the same point if and only if � �l �

0.

3.13 Corollary. The symbol sequence S�(�) is a periodic sequence of
period m if and only if the landing point of the ray R� has period m. #

We proceed now to give a very brief description of Chapters II and III
which are devoted to critical portraits. In Chapter II we will work in more
detail the combinatorics of critical portraits. We will also translate several of
our results to the corresponding Julia set. In Chapter III we give the proof of
the Realization Theorem for Critical Portraits. Appendix A deals with the
relevant part for our use of Thurston's theory of postcritically �nite rational
maps. We state Thurston's Theorem in a more general form. Namely, we
include the possibility of additional periodic or preperiodic orbits. The proof
given in [DH2] extends to this formulation.

We now give a brief comparison between our work and that by Bielefeld,
Fisher and Hubbard. Of course there is a big overlap in both expositions,
and we have, when possible, referred to the original proofs. In Chapter II,
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we analyze the combinatorics of the marking and the proofs follow the same
lines as those in [BFH]. Chapter III is essentially di�erent and we have stated
without proofs those results in [BFH] which apply to our case. The main
point here is that as Levy cycles can not involve any `preperiodic element' of
the topological polynomial, new preperiodic arguments should be introduced
arti�cially. We call them special arguments. Finally, we still have to prove
that the recovered polynomial admits the speci�ed critical marking. Our
method of proof is more delicate because new di�culties are involved.

Acknowledgement. We will like to thank John Milnor for helpful dis-
cussions and suggestions. Some of the arguments are in its �nal formulation
thanks to him. We will also want to thank (among others) to Ben Bielefeld
and John Hubbard for discussions at di�erent stages of the preparation of
this work. Most of the �gures were constructed using a program of Milnor.
Also, we want to thank the Geometry Center, University of Minnesota and
Universidad Cat�olica del Per�u for their material support.

4. Examples.

We will illustrate with examples the de�nitions of the previous sections.
We will try to isolate and illustrate all possible complications. Of course, the
worst possible examples will involve several of these at the same time.

4.1 The rabbit. (See Figure 1.1.) Once again consider the degree two
polynomial Pc(z) = z2 + c with c � �0:12256117 + 0:74486177i. The Fatou
critical point z = 0 has a period 3 orbit under iteration. Therefore P �3

restricted to the critical component is a degree 2 cover of itself. It follows
that the map P �3 has a unique �xed point in the boundary of this critical
Fatou component. As noticed above, among the three rays R1=7; R2=7; R4=7

landing at this �xed point, only the ray R4=7 supports the critical component.
By the de�nition of marking, we must look for the other ray that supports
this component and maps to P (R4=7) = R1=7. This ray can only be R1=14.
Thus, we have constructed a marking for P . In this case F = fF1g and
J = ;, where F1 = f4=7; 1=14g.
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It is important to note that we were looking for a �xed point of P �3

restricted to the boundary of the critical Fatou component. Such a �xed
point for P �3 turned out to be a �xed point for P as well, but the rays
landing there have period equal 3.

4.2 The Ulam-von Neumann map. We consider now the strictly
preperiodic case. Let P (z) = z2 � 2, and note that the orbit of the critical
point z = 0 is 0 7! �2 7! 2 7! 2 : : :. Only the external ray R0 lands at z = 2,
and therefore only the ray R1=2 lands at z = �2. Both R1=4; R3=4 land at
the critical point z = 0, and map to R1=2 under P . In this case the marking
is F = ; and J = fJ1g, where J1 = f1=4; 3=4g.

4.3 Preperiodic case: two possible choices. (See Figure 1.2.) Con-
sider the degree two polynomial Pc(z) = z2 + c where c � �1:5436891 is the
only negative solution of the equation c3 + 2c2 + 2c+ 2 = 0.

In this case the critical point z = 0 has orbit 0 7! c 7! c2 + c
7! �(c2 + c) 7! �(c2 + c). The rays R1=3; R2=3 both land at the �xed
point z = �(c2 + c), and are interchanged by Pc. At z = c2 + c, the rays
R1=6; R5=6 land. At the critical value z = c, R5=12; R7=12. In this way, we
can get two di�erent markings F = ;, J = fJ1g, where J1 = f5=24; 17=24g
corresponds to the choice of the critical ray R5=12, and J1 = f7=24; 19=24g
to the choice of R7=12.

In either case we can read from the marking that the critical point needs
three iterations to become periodic. The exact period however can not be
read immediately from this data. (Compare Corollary 3.13.)

Figure 1.2
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4.4 Non trivial critical cycle. (See Figure 1.3.) Consider the degree
3 polynomial P (z) = z3 � 3

2
z. The critical points satisfy z2 = 1=2, and is

easy to see that they are interchanged by P (i.e, if a is a critical point then
P (a) = �a). In each of the critical Fatou components the map P �2 is a
degree 4 (the product of the degrees of the cycle!) covering of itself. In this
way, there must be in the boundary of each component 3 (= 4� 1) possible
choices of periodic points. One of those �xed points (z = 0) belongs to the
boundary of both components. The rays landing at z = 0 are R1=4 and R3=4,
and each one supports exactly one of the Fatou critical components. The
period 2 rays that support the `rightmost' component are R3=4; R7=8; R1=8

(their respective images R1=4; R5=8; R3=8 support the other). Therefore, the
choice of a periodic supporting ray for one component, forces the choice of
its image for the other.

Figure 1.3

This polynomial has exactly three markings, all of type F = fFA;FBg,
J = ;. The periodic supporting rays are listed on the left.

Component A Component B FA FB

R3=4 R1=4 f3=4; 1=12g f1=4; 7=12g
R7=8 R5=8 f7=8; 5=24g f5=8; 7=24g
R1=8 R3=8 f1=8; 19=24g f3=8; 17=24g

The question is now, why can we not take FA = f3=4; 1=12g and
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FB = f3=8; 17=24g as a marking? This is forbidden by the rules of x3 since
3=4 and 3=8 do not belong to the same cycle. A good reason for this rule is
given in the next example.

Figure 1.4

4.5 Bad choice, wrong polynomial. (See Figure 1.4.) There is a
polynomial with marking F = fFA;FBg;J = ;, where FA = f3=4; 1=12g,
FB = f3=8; 17=24g. But it is not the one in Example 4.4.

For the polynomial P (z) = z3+az+b (where a = �0:75; b � 0:661438i),
the rays R3=4; R1=8; R1=4; R3=8, land at a �xed point which belongs to the
boundary of the four periodic Fatou components. Those components are as-
sociated pairwise in cycles, so we have two disjoint degree 2 cycles. Only R3=4

and R3=8 support critical components. It follows easily that this polynomial
has a unique marking.

4.6 Hierarchic choice. (See Figure 1.5.) Consider now the polynomial
P (z) =

p
2(z2 � 1)2, with critical points z = 0;�1. The orbit of the critical

points is �1 7! 0 7! p
2 7! p

2. At the �xed point z =
p
2 only the ray

R0 lands. At z = 0, R1=4 and R3=4. At z = 1, R1=16; R3=16; R13=16; R15=16.
At z = �1, R5=16; R7=16; R9=16; R11=16. In this case the marking will not be
unique and will depend in the choice of the preferred ray at z = 0.
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Figure 1.5

The marking will be of the form F = ;;J = fJz=0;Jz=1;Jz=�1g.

Jz=0 preferred ray Jz=1 Jz=�1

at z = 0

f1=4; 3=4g R1=4 f1=16; 13=16g f5=16; 9=16g
f1=4; 3=4g R3=4 f3=16; 15=16g f7=16; 11=16g

Figure 1.6

4.7 Badly mixed case. (See Figure 1.6.) Consider the degree 5 poly-
nomial P (z) = c(z5+3z4+3z3+z2), where c � 4:3582708. It has two Fatou
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critical components, one (on the right) �xed of degree 2, and one (on the
left) preperiodic of degree 3 (absorbed by the �rst in one iteration). The
boundaries of these two Fatou components share a point, which happens to
be critical. The image of this Julia set critical point is the only �xed point
lying in the boundary of the �xed Fatou critical component. Only the ray R0

lands at this �xed point. The rays R1=5; R4=5 are thus the only rays landing
at the Julia set critical point. Now, one of these rays (R4=5) supports the
�xed Fatou component, while the other supports the preperiodic one. Also
R0 must have two inverses supporting the �xed Fatou component (R0; R4=5),
and three supporting the preperiodic one (R1=5; R2=5; R3=5). Thus, the mark-
ing is F = ff0; 4=5g; f1=5; 2=5; 3=5gg;J = ff1=5; 4=5gg. Note that in this
case there are arguments that belong to one family and to the other. Of
course, if this happens, these arguments must be strictly preperiodic.

By the moment we will take a closer look at condition (c.2) by ana-
lyzing this example. In this case, conditions (c.1), (c.3)-(c.5) are clearly
satis�ed. To have a degree 5 formal critical portrait, the three sets f0; 4=5g,
f1=5; 2=5; 3=5g, f1=5� �; 4=5� �g must be unlinked for � > 0 small; which is
evidently true.

4.8 Several critical cycles. (See Figure 1.3.) Consider the degree 9
polynomial P � P where P is as in Example 4.4. The �lled-in Julia set of
this polynomial, as well as the external rays remain unchanged (with respect
to P ). In this case however, we have two �xed Fatou components each of
critical degree 4. Each of them absorbs in one iteration another critical
component. Now each cycle is independent of the other, and the choice of
markings are independent in the two �xed components. Nevertheless, the
choice of marking in the �xed Fatou components determines the marking of
the critical components they absorb. Let us denote by A;B the �xed critical
components and by A0; B0 the critical components they absorb. The marking
now is F = fFA;FA0 ;FB ;FB0g;J = ;.

Component A FA FA0

R3=4 f3=4; 62=72; 6=72; 14=72g f30=72; 38=72g
R7=8 f7=8; 7=72; 15=72; 55=72g f31=72; 39=72g
R1=8 f1=8; 17=72; 57=72; 65=72g f41=72; 33=72g
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Component B FB FB0

R1=4 f1=4; 26=72; 42=72; 50=72g f66=72; 2=72g
R5=8 f5=8; 53=72; 21=72; 29=72g f31=72; 39=72g
R3=8 f3=8; 43=72; 51=72; 19=72g f5=72; 69=72g

This implies that we have 9 possible markings. Note that the marking for the
components A;B are independent, but they uniquely determine the marking
for A0; B0.

4.9 (See Figure 1.7.) In our �nal example we show the importance of
working with two separate families F ;J . Consider the sets A = f0; 1

3
g, B =

f 5
9
; 8
9
g. The polynomial P (z) = z3 + Az + B (A = 2:25, B � �0:4330127i)

has marking F = fA;Bg, J = ;, while the polynomial P (z) = z3+A0z+B0

(A0 � 2:181104577, B0 � �0:3871686256i) has marking F = fAg, J = fBg.

Figure 1.7. Almost the same marking.
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In this chapter we isolate the combinatorial properties of a critical por-
trait (F ;J ) as de�ned in Section I.3, and relate them to the dynamics of the
respective critically marked polynomial. Section 1 deals with the partition
in the unit circle determined by this marking. We also prove here Lemma
I.3.10. Section 2 translates to the Julia set the language of Section 1. As a
consequence we prove that the critical marking de�nes an admissible critical
portrait. In Section 3 we prove Proposition I.3.12 which gives the combina-
torial criterion for deciding when two external rays land at the same point.
Section 4 characterizes the preimages of marked periodic rays landing at that
same Fatou component from the combinatorial point of view. Almost all the
material in this chapter can be found in a weaker formulation in [BFH]. The
essential novelty here is Section 4, which plays a central role in the proof of
the realization Theorem for Critical Portraits.

1. Partitions of the unit circle.

In this section we �x a formal critical portrait (F ;J ), and study some
dynamical properties of the partition determined by these families.

Given a formal critical portrait (F ;J ), we de�ned in Chapter I the
partitions P = fL1; : : : ; Ldg and P� = fL�1 ; : : : ; L�d g. The �rst partition
omits the arguments in F[ [J [; while the other two cover the whole circle
R=Z. We also know that each Lp (L�p ) is a �nite union of open (semiopen)
intervals with total length 1=d (compare Section I.3.6). From the dynamical
point of view we can say even more.
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1.1 Lemma. Each Lp is mapped bijectively by md onto the complement
of a �nite set. Each L�p is mapped bijectively by md onto the whole unit
circle. Furthermore these correspondences preserve the circular order.

Proof. The proof is straightforward and is left to the reader. #

Before the next corollary, we recall briey the standard language for
manipulation of symbol sequences. Let S = (S0; S1; : : :), where Si 2 P. The
shift of S is the sequence �(S) = (S1; S2; : : :). (Formally � is a map from the
space of symbol sequences to itself.) The ith projection �i is the map from
symbol sequences to the partition space P de�ned by �i(S) = Si. The proof
of the following corollary is an easy induction using Lemma 1.1 and is left
to the reader.

1.2 Corollary. Supposem�n
d (�) = m�n

d (�0) and �j(S+(�)) = �j(S
+(�0))

for all j < n, then � = �0. (The same is true if we consider left symbol
sequences instead.) #

Warning. Corollary 1.2 is not necessarily true if we compare left with
right symbol sequences. From S+(�) = S�(�0) and md(�) = md(�

0), we
can not infer � = �0. For example, in the Ulam-von Neumann map (compare
Example I.4.2), S+(1=4) = S�(3=4), and both arguments become equal after
doubling.

As our partitions are well behaved under iteration, it is natural to intro-
duce dynamically de�ned re�nements. The fact that these re�nements are
also unlinked allow us derive some basic properties of symbol sequences.

1.3 De�nition. For S0; S1; : : : 2 P, set US0;:::;Sn = f� 2 R=Z :
m�i

d � 2 Si; i = 0; :::; ng. The Lebesgue measure of this set is 1=dn+1 as
can be easily veri�ed by induction. Also set US0;S1;::: =

T1
n=0 cl(US0;:::;Sn).

This last set being a nested intersection of non empty compact sets, is non
empty. It is easy to see that if S(�) = (S0; S1; S2; : : :) then � 2 US0;S1;S2;:::. It
follows that given S0; S1; : : : 2 P, there exists an argument which has either
left or right symbol sequence (S0; S1; S2; : : :).
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1.4 Lemma. For each n � 0 the family fUS0;:::;Sng is unlinked.

Proof. This follows by construction and Lemma 1.1. #

1.5 Lemma. There are only a �nite number of arguments which admit
a given symbol sequence.

Proof. Consider the full orbit of both families � = O(F[)[O(J [). It is
enough to prove that the number of connected components of US0;S1;:::;Sn��
is bounded by a number which depends only on (F ;J ). We claim that the
cardinality N = #(�) of � is the bound we are looking for. We prove this
by induction. For n = 0 this is clear. Now suppose US1;S2;:::;Sn � � =
[k
i=1I1, where each I� is connected and k � N . By construction every

set S0 \m�1
d (I�) is completely contained in a component of R=Z � � and

therefore is connected. The result follows. #

1.6 Lemma. Suppose �; �0 have the same periodic left (or right) symbol
sequence. Then �; �0 are periodic and have the same period.

Proof. First note that � can not be strictly preperiodic. For otherwise,
eventually it becomes periodic, and such periodic argument would have at
least two di�erent inverses with the same symbol sequence, in contradiction
with Corollary 1.2. If �; �0 are periodic of di�erent period, we assume without
loss of generality that � is �xed, but �0 is not. In this case, we have at least
three points with the same symbol sequence, for which the cyclic order is not
preserved under iteration, but this is a contradiction to Lemma 1.1. Finally,
� can not be irrational because of Lemma 1.5. #

1.7 Remark. We conclude this section with a trivial remark that will
be used later several times. If we take �; �0 2 Jk and � such that A�(�) =
A�(�), then by de�nition � 2 (�0; �]. Analogously, if �; �0 2 Fk and � is such
that A+(�) = A+(�), then � 2 [�; �0). (There is nothing special about J or
F in this formulation; but this is the way in which these statements will be
used.)

22



2. The induced partitions in the dynamical plane.

In this section we introduce the induced partition of the Julia set with
respect to the given critical marking. The main result is that this partition
is Markov. As a consequence of this, we establish that the critical marking
of a postcritically �nite polynomial is in fact an admissible critical portrait,
establishing in this way Proposition I.3.8.

Let (P;F ;J ) be critically marked. In analogy with the way we con-
structed a partition P of the unit circle where only the arguments in F[[J [

were omited, we will construct a partition of the dynamical plane o� the rays
with argument in J [ and extended rays with argument in F[. To simplify
this construction we introduce some notation. For a set � � R=Z we denote
by R(�) the set of all external rays with argument in � and their landing
points. Also, whenever � � R=Z is a set of arguments each of them sup-
porting a Fatou component, we denote by E(�) the set of all extended rays
with argument in � and the respective centers of Fatou components.

Figure 2.1 The critically marked polynomial P (z) = z3 + 1:5z with critical
portrait (F = ff0; 1=3g; f1=2; 5=6gg;J = ;) determines a partition of the
dynamical plane. However the elements of this partition are not necessarily
connected open sets. Note that 0 and 1/2 share the same left symbol se-
quence in the circle, while the rays R0 and R1=2 land at the same point in
the dynamical plane.
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De�nition. We say that two points z1; z2 in C � R(J [) � E(F[)
are \unlink equivalent", if they belong to the same connected component of
C � R(Ji) and of C � E(Fl) for all possible choices of Ji and Fl in the
marking.

Looking at the circle at in�nity we immediately derive some properties.
First, it is easy to see that there are exactly d (=deg P ) equivalence classes.
Next, we have that either an external ray is completely contained in an equiv-
alence class, or is disjoint from it. Furthermore, we have that two rays R�

and R�0 belong to the same equivalence class if and only if their arguments
� and �0 belong to the same element S 2 P. Thus, these equivalence classes
are in canonical correspondence with the elements of the partition P. For
S 2 P we denote by US the corresponding equivalence class in the dynamical
plane. Each equivalence class is by de�nition a �nite union of unbounded
open sets. Note that if two arguments belong to the same connected com-
ponent of some S 2 P, then the respective rays will be contained within the
same connected open region in the dynamical plane.

2.1 Lemma. Each region US is mapped bijectively by P into the com-
plement of a �nite number of rays and extended rays. #

2.2 Lemma. The closure cl(US) and its restriction to the Julia set
JS = J(P ) \ cl(US) are connected. #

Both proofs are somehow trivial and are left to the reader (compare also
the proofs of Lemma 2.3 and Corollary 2.4).

We can go a step beyond, and take the regions determined by the n-
fold inverse images of those rays and extended rays. Or alternatively we can
dynamically de�ne sets US0;:::;Sn in analogy with x1.3. The analogy between
this and the de�nition given in x1.3, is clear: by de�nition, R� � US0;:::;Sn if
and only if � 2 US0;:::;Sn . Even if the sets US0;:::;Sn are usually disconnected
we have that their closures are not.

2.3 Lemma. Let  : [0; 1] ! C be an arc which crosses neither a
ray with argument in O(md(J [)) nor an extended ray with argument in
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O(md(F[)). Suppose further that the image of  is disjoint from the forward
orbit of all Fatou critical points. If  contains an interior point disjoint from
these rays and extended rays, then  can be lifted in a unique way within any
cl(US), for all S 2 P.

Proof. Pick an S 2 P and start the lifting of  at an image point not in
the above rays or extended rays. Note that the hypothesis guarantees that
the lifting can be chosen in such way that it never gets into any region US0
other than US . Uniqueness follows from Lemma 2.1. #

2.4 Corollary. The closure cl(US0;:::;Sn) and its restriction to the Julia
set JS0;:::;Sn = J(P ) \ cl(US0;:::;Sn) are connected.

Proof. Note that if we cut open the plane along all extended rays with
argument in O(md(F[)) and remove the forward orbit of all Fatou critical
points, we are left with a connected set. In fact, given a Fatou component U ,
there is at most one argument in O(md(F[)) which supports U . This follows
by construction of critical marking using the hierarchic selection. (This is
the only place where the hierarchic selection is essentially used in this work!)
Therefore we can join any two points in the Julia set with a path satisfying
the hypothesis of Lemma 2.3. The result now follows by induction on n. #

Remark. That JS0;:::;Sn is connected depends upon the fact that the
de�nition of critical marking follows a hierarchic selection. Without hierar-
chic selection for extended supporting rays, the statement above is de�nitely
not true.

At the end, we are mostly interested in the e�ect of this partition in
the Julia set. We set JS0;S1;::: =

T1
n=0 JS0;:::;Sn Note that because J(P ) is

locally connected, it follows easily that the external ray R� lands somewhere
in the set JS+(�)\JS�(�). Therefore we should ask if JS(�) consists of exactly
one point.

2.5 Lemma. For any sequence (S0; S1; : : :) the set JS0;S1;::: contains
exactly one point.
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Proof (Compare with [GM, Lemma 4.2]) We will make use of the
Thurston orbifold metric associated with P . Let MP be the surface with
boundary, equal to the disjoint union of all ~US de�ned as cl(US) cut open
along all marked rays, extended rays and their forward images, and with
the orbit of the Fatou critical points removed. De�ne the distance �(z; z0)
between two points of MP to be the in�mum of the lengths with respect
to the orbifold metric of smooth paths joining z to z0 within MP (or 1 if
they belong to di�erent components). If z and z0 belong to the same sub-
set JS0;S1 � J(P ), then any path from P (z) to P (z0) within ~US1 can be

lifted back uniquely to a path from z to z0 within ~US0 (compare Lemma
2.3). Since the orbifold metric is locally strictly expanding, a compactness
argument shows that

�(P (z); P (z0)) � c�(z; z0)

for some constant c > 1, independent of Si for this P . Therefore, the inverse
map

P�1S0
: JS 7! JS0;S

contracts lengths by at least 1/c. Hence the iterated inverse images P�1S0
�

: : : � P�1Sn
(JSn+1) have diameter less than some constant divided by 1=cn.

Taking the limit as n!1, we obtain the required unique point. #

2.6 Corollary. For any sequence (S0; S1; : : :) we have P (JS0;S1;:::) =
JS1;S2;:::.

Proof. For some �, either its left or right symbol sequence S(�) equals
(S0; S1; : : :). As the ray R� lands at the unique point contained in JS0;S1;:::,
the result follows. #

2.7 Corollary. If (S0; S1; : : :) is a periodic sequence of period m, then
the unique point in JS0;S1;::: is periodic of period dividing m.

Proof. This follows from Lemma 2.5 and Corollary 2.6. In fact, the
period is m but this is not a priori obvious, this will follow from Proposition
3.6. #
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2.8 A formal critical portrait not coming from a polynomial.
Consider the degree 4 formal critical portrait

J = ff 3

60
;
18

60
g; f19

60
;
34

60
g; f 1

60
;
46

60
gg;

which does not came from the marking of a polynomial. (Compare condition
(c.7) in xI.3.7 and Corollary 2.9, here S�(19=60) = S�(46=60)).

Figure 2.2. Julia set of P (z) = z4 +Az2 +Bz +C with the rays 1
60
, 3
60
, 18
60
,

19
60
, 31
60
, 34
60
, 46
60
, 49
60

shown. Here

A � 0:38437710� 0:56951210i
B � 0:30830201 + 0:03253718i
C � 0:49119643 + 0:93292127i

If there is a polynomial P of degree 4 which realizes this critical por-
trait, there should be critical points !1 6= !2 associated with f 19

60
; 34
60
g and

f 1
60
; 46
60
g respectively. But as S�(19=60) = S�(46=60), then Lemma 2.5 tell

us !1 = !2. Thus, the critical points associated with f 19
60
; 34
60
g; f 1

60
; 46
60
g must

be actually the same. Therefore we do not have three degree 2 critical points,
but one of degree 3 and the other of degree 2. In this case, the rays R4=60,
and R16=60 land at the same �xed point. This �xed point has exactly one
other preimage, the degree 3 critical point. At this critical point the rays
R19=60, R34=60, R49=60, R1=60, R31=60, and R46=60 land. Therefore, the actual
polynomial must have as critical marking either of the following,

J = ff 3

60
;
18

60
g; f19

60
;
34

60
;
49

60
gg;
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or

J = ff 3

60
;
18

60
g; f 1

60
;
31

60
;
46

60
gg:

2.9 Corollary. Let (P;F ;J ) be a critically marked polynomial. Sup-
pose � 2 Jk and �0 2 Jl. If S�(m�i

d (�)) = S�(�0) for some i � 0, then
m�i

d (�) 2 Jl.

Proof. It follows from Lemma 2.5 that the rays with argument m�i
d (�)

and �0 land at the same critical point. The result then follows from the
hierarchic selection of rays. (Compare xI.2.) #

2.10 Corollary. Let  2 F[per, and � 2 R=Z, then � =  if and only if
S+() = S+(�).

Proof. Suppose Fk = f = 1; : : : ; ng, where the arguments 1; : : : ; n
are in counterclockwise cyclic order. Suppose � 6=  but S+() = S+(�).
By Lemma 2.5 the rays R ; R� land at the same point. As � is periodic by
Lemma 1.6, it follows that � 62 Fk. But then, by de�nition of the right ad-
dress A+(�) of �, it follows that the cyclic order is 1; �; 2; : : : ; n (compare
Remark 1.7). By de�nition of supporting argument (see xI.1.3), the corre-
sponding Fatou component must be in the sector determined by R1 ; R� (in
the counterclockwise sense). But this is a contradiction with the fact that
R2 ; : : : ; Rn also support this component. #

The following now follows from Corollaries 2.9 and 2.10.

2.11 Proposition. If (P;F ;J ) is a marked polynomial, then the pair
(F ;J ) is an admissible critical portrait. #
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3. Which rays land at the same point?

We would like to have a combinatorial criterion to decide when two
rays land at the same point. Two arguments �; �0 in the same Jk do not
have equal (left or right) symbol sequences. Nevertheless, the external rays
R�; R�0 both land at the same critical point. In general, all exceptions are a
consequence of this fact. Furthermore, all the information we need is already
contained in left symbol sequences.

3.1 The landing equivalence (�l). We recall briey the de�nition
of the \landing equivalence" �l between angles, introduced in Chapter I
(compare xI.3.11). Let (F ;J ) be an admissible critical portrait. For ��; �� 2
Ji 2 J we set S�(��) �i S

�(��). Then we write � � �0 if either S�(�) =
S�(�0) or there is an n � 0 such that �j(S

�(�)) = �j(S
�(�0)) for all j < n

and �n(S�(�)) �i �n(S�(�0)) for some i. Finally we make this into an
equivalence relation by letting � �l �

0 if and only if there are arguments
�0 = �; �1; : : : ; �m = �0, such that �0 � : : : � �m. Note that condition (c:7)
together with (c:3) guarantee that whenever �i 2 Fi (i = 0; 1); then �0 �l �1
if and only if F1 = F2.

If the family J is empty, two arguments are equivalent if and only if
their left symbol sequences coincide. As S�(�) is strictly preperiodic for every
argument � in the family union J [, two periodic or irrational arguments �; �0

are �l equivalent if and only if S�(�) = S�(�0). Of course, a preperiodic
argument would never be equivalent to a non preperiodic one.

By de�nition, if � �l �
0 there is an m � 0 such that �m(S�(�)) =

�m(S�(�0)). Also note that whenever � � �0 then also md(�) � md(�
0).

Therefore the following lemma is trivial.

3.2 Lemma. If � �l �
0 then md(�) �l md(�

0). #

Now let (P;F ;J ) be a critically marked polynomial. We will show now
that the �l equivalence classes de�ned from the associated admissible critical
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portrait e�ectively characterize the arguments of rays landing at a common
point.

3.3 Lemma. Suppose R�; R�0 both land at the same point z. If z is non
critical then A�(�) = A�(�0).

Proof. If z is not the landing point of a ray with argument in F[, then
it is in the interior of some region US . Otherwise, let R�1 ; : : : ; R�k be all rays
with argument in F[ landing at z. Around z we consider locally segments of
these rays together with internal rays joining this point z to the center of the
k associated Fatou components. This con�guration divides a neighborhood
of z into 2k consecutive regions. As every other region is contained in US
where S = A�(�1) = : : : = A�(�k), the result follows. #

3.4 Lemma. Suppose R� lands at a critical point !, then A�(�) =
A�(�0) for some �0 2 J!.

Proof. The external ray R� is contained within some UA�(�0). #

3.5 Corollary. Suppose �; �0 are such that A�(�) = A�(�0). Then
R�; R�0 land at the same point if and only if Rmd(�); Rmd(�0) land at the
same point. #

3.6 Proposition. Let (P;F ;J ) be a marked polynomial. Then R� and
R�0 land at the same point if and only if � �l �

0.

Proof. First suppose that � �l �
0. If S�(�) = S�(�0) then the rays

R�; R�0 land at the same point by Lemma 2.5. Otherwise, it is enough to
assume � � �0. In this way, for some n � 0, �n(S�(�)) �i �

n(S�(�0)) and
�j(S

�(�)) = �j(S
�(�0)) for j < n. By de�nition there are arguments in Ji

with symbol sequences �n(S�(�)) and �n(S�(�0)). As the rays with these
arguments land at the same critical point !i, the rays Rm�n

d
(�) and Rm�n

d
(�0)

also land at !i. The result follows now from Corollary 3.5.

Conversely, suppose R� and R�0 land at the same point z. There is a
minimal m � 0 such that P �m(z) neither is critical nor contains a critical

30



point in its forward orbit. We will prove by induction in m that � �l �
0. Let

P �n(z) be non critical for all n � 0 (this is the case m = 0). For all n � 0,
Rd�n(�); Rd�n(�0) will be rays landing at the same non critical point. In this
case the result follows from Lemma 3.3. Now, let md(�) �l md(�

0) (this is
the inductive hypothesis). If z is not a critical point we use again Lemma
3.3; if z is a critical point we use Lemma 3.4. In either case we deduce that
� �l �

0. #

3.7 Corollary. If (S0; S1; : : :) is a periodic sequence of period m, then
the unique point in JS0;S1;::: has period m. #

4. Which rays support the same Fatou component?

In general it is impossible to give a combinatorial description of when
two arguments support the same Fatou component. This because the closure
of two Fatou components may share a periodic point which is not the landing
point of a marked ray. In this case, the arguments of all rays landing at such
point will have the same left and right symbol sequences, and thus they are
undistinguishable from the combinatoric point of view. However, for some
cases we will study which rays support some given periodic Fatou component.
We will only consider rays for which some forward image belongs to the
periodic part of the family union F[

per. The importance of the combinatorial
construction below will become clear in the next chapter. In the meanwhile
we can tell the reader that in order to apply the theory of \Levy Cycles"
(compare Appendix A), we should arti�cially introduce some preperiodic
arguments for every periodic critical point. These preperiodic arguments are
what we call in this section \special arguments".

As motivation for the combinatorial construction to follow, we consider
a critically marked polynomial (P;F ;J ). Let  2 O(F[

per), be of period k.

Suppose also that m�nk
d (�) = .

4.1 Lemma. With the above hypothesis, R� supports the same Fatou
component as R if and only if, for each i � 0 either
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i) �i(S
+) = �i(S

+�), or

ii) m�i
d () belongs to some F� and A+(m�i

d (�)) = A+(0) for some
0 2 F�.

Proof. The proof is straightforward and is left to the reader. #

This motivates the following de�nition.

4.2 Special arguments. Let (F ;J ) be an admissible critical portrait.
To every  2 O(F[

per) we associate a (periodic) sequence of sets T (; i) as
follows. First we de�ne T (; 0):

T (; 0) =
� fA+(0) : 0 2 F�g if  2 F� for some �;
fA+()g otherwise.

In the general case set T (; j) = T (m�j
d (); 0).

De�nition. Let  2 O(F[
per) be of period k = k(). We say that � is

a special argument for , if there is an n � 0 such that �i(S
+(�)) 2 T (; i)

for all i < nk and m�nk
d (�) = . In case both � and �0 are special arguments

for  2 O(F[
per) we write � � �

0.

The following establishes an equivalence relation between `special argu-
ments'.

4.3 Lemma. If � is a special argument for both ; 0, then  = 0.

Proof. Let n be a multiple of k()k(0) big enough, then S+() =
�n(S+(�)) = S+(0) and the result follows from condition (c.6) in the de�-
nition of admissible critical portrait and Corollary 1.2. #

4.4 Remark. If � � �0 and S+(�) = S+(�0), it follows from the
de�nition of � , condition (c.6) and Corollary 1.2 that � = �0.
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These relations between special arguments are compatible with md in
the following sense.

4.5 Lemma. If �1 � �2 then md(�1) �md() md(�2).

Proof. For some high iterate  = m�k
d (�1) = m�k

d (�2). Thus md() =
m�k

d (md(�1)) = m�k
d (md(�2)) and the result follows from the de�nition of

�md(). #

The following proposition, is a technical result needed in the proof of
the main theorem (Theorem I.3.9). Its meaning when translated to the
context of PCF polynomials, is that inverse images of a (marked) periodic
ray supporting that same Fatou component, can be found very close to the
starting periodic ray (this is obvious in the context of dynamics, because we
are in the subhyperbolic case).

4.6 Proposition. Let (F ;J ) be an admissible critical portrait.
If  2 F[

per then there exist arbitrary small � > 0 such that  + � � .

Proof. Let S = (A+(); : : : ; A+(m�k�1
d ())) and take any W 2 T 0

 �
: : :�T k�1

 di�erent from S . We form a sequence n � , where S
+(n) =

SnW
�S . Take a convergent subsequence to �. As S+(�) = �S = S+() it

follows by condition (c.6) that � = . Now, for � > 0 small enough, n can
not be of the form  � � by Remark 1.7, therefore it must be of the form
 + �. #

In the language of special arguments Lemma 4.1 reads.

4.7 Proposition. Let (P;F ;J ) be a marked polynomial. If � is a
special argument for  2 F[

per then R� and R support the same Fatou
component. #
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In this Chapter we give the proof of the Realization Theorem for Critical
Portraits. In Section 1 we prove that the combinatorial data is `compatible'
in the sense that it allows us to construct a Topological Polynomial. The
actual construction is carried out in Section 2, where we also indicate (fol-
lowing [BFH]) that it is essentially unique. In Section 3 we prove that every
admissible critical portrait has associated a unique (up to a�ne conjugation)
polynomial which is Thurston equivalent to the topological polynomial so far
constructed. In Section 4 we show that the isotopies between the `actual'
and `topological' polynomials can be chosen �xed not only relative to cer-
tain `marked' points, but also relative to the whole boundary when suitably
chosen neighborhoods of Fatou points are deleted. In Section 5 we complete
the proof of the Theorem by assigning the expected critical marking to the
associated polynomial.

1. Combinatorial Information of Admissible Critical Portraits.

In this Section we analyze the linkage relations that arise when we con-
sider the full orbit of the families and special arguments together. The main
result is summarized in Proposition 1.2 and is used in Section 2. This fact
is easy to believe but its proof is extremely technical.

1.1 Consider an admissible critical portrait (F ;J ). The orbit set O(F[)
can be partitioned in a natural way as F [ ffg :  2 O(F[) � F[g. In
the context of dynamics, two elements in the orbit O(F[) belong to the
same element of this partition if and only if they support the same Fatou
component (compare Proposition II.4.7). If in addition we consider a �nite
invariant set of special arguments � (i.e, satisfying md(�) � � [ F[), we
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can include an element � 2 � in that same class as , whenever � � . In
this way, we construct a family F� = fF�1 ; : : : ;F�ng which is a partition of
O(F[) [ �.

Next, we partition the set O(F[)[O(J [)[�[f0g into �l equivalence
classes to form the family J � = fJ �

1 ; : : : ;J �
mg. In the PCF context we

are grouping all those rays we expect to land at the same point (compare
Proposition II.3.6). Here we are adding the argument � = 0 to simplify
things later. This will reect the choice of R0 as a preferred �xed `internal'
ray in the basin of attraction of 1. (Compare Example 3.7.)

In the way the pair (F�;J �) was constructed, it is clear that if we think
in terms of external rays, the proposition below must be true.

1.2 Proposition. Let (F ;J ) be an admissible critical portrait and �
a �nite invariant set of special arguments. With the notation above, J � is
weakly unlinked to F� in the right.

The reader can skip the rest of this section without any loss of continuity.
The proof of the proposition follows immediately from Lemmas 1.3-1.9.

1.3 Lemma. Suppose �1 � �2,  1 �  2 but �1 6�l  1. Then f�1; �2g
and f 1;  2g are unlinked.

Proof. Suppose this is not the case. We assume then that f�1; �2g
and f 1;  2g are linked because �2 =  2 implies �1 �l  1. As a prelimi-
nary remark suppose A�(�1) = A�(�2) = A�( 1) = A�( 2); then as the
cyclic order of these elements is preserved by md (compare Lemma II.1.1),
fmd(�1);md(�2)g and fmd( 1);md( 2)g are still linked. For the proof we
distinguish several cases.

Case 1: S�(�1) = S�(�2) and S�( 1) = S�( 2). This possibility is eas-
ily ruled out using Lemma II.1.4. We can say even more. If A�(�1) = A�(�2)
and A�( 1) = A�( 2) then by that same lemma we have also A�(�1) =
A�( 1). Thus, according to our preliminary remark, it is enough to consider
the case when A�(�1) 6= A�(�2).
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Case 2: �1; �2 2 Jk. As  1 and  2 belong to di�erent components
of R=Z � Jk, by de�nition A�( 1) 6= A�( 2). Thus, also by de�nition
S�( 1) �i S�( 2) for some i. But then, again by de�nition, there are
 0j 2 Ji (j = 1; 2), each in the same connected component of R=Z�f�1; �2g
as  j , with S

�( 0j) = S�( j). But this is a contradiction with the fact that
Jk;Ji are unlinked.

Case 3: S�(�1) �k S�(�2) and S�( 1) = S�( 2). By de�nition, there
is �01 2 Jk such that S�(�01) = S�(�1). Now, if �1 and �01 belong to di�erent
components of R=Z�f 1;  2g then f�1; �01g, and f 1;  2g are linked and we
are in case 1. Otherwise, we repeat the same reasoning using now �2 and we
reach either case 1 or case 2.

Case 4: S�(�1) �k S�(�2) and S�( 1) �j S�( 2). We proceed as in
case 3 and this is reduced to either case 2 or case 3. #

1.4 Corollary. The �l equivalence classes are unlinked. #

1.5 Lemma. For any Fk 2 F and any �l equivalence class �, f�g is
weakly unlinked to fFkg in the right.

Proof. Let �0 2 � and take 1; 2 consecutive in Fk so that �0 2 (1; 2].
It is enough to prove that if �0 � �1 then also �1 2 (1; 2]. If A�(�0) =
A�(�1), this follows by de�nition (�0 and �1 by de�nition belong to the same
connected component of R=Z�Fk). So suppose that S�(�0) �i S�(�1) with
�1 62 (1; 2]. In this case there exist Ji 2 J so that �00 2 Ji \ (1; 2] and
�01 2 Ji \ (2; 1] with S�(�j) = S�(�0j). But this is a contradiction with
condition (c.2) in the de�nition of critical portraits (Ji will not be weakly
unlinked to Fk in the right). #

1.6 Lemma. Let  1 �  2 and  62 Fk, then f 1;  2g and Fk are
unlinked.

Proof. If A+( 1) = A+( 2) this follows by de�nition and Remark
II.1.7. Otherwise we must have that  2 Fi for some i 6= k. But then a
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similar argument as that used in Lemma 1.5 shows that Fi and Fk are not
unlinked. #

1.7 Lemma. Let �i �i  i, i = 1; 2 with 1 6= 2. Then f�1;  1g and
f�2;  2g are unlinked.

Proof. We will consider right symbol sequences S+(�j) and S+( j).
Suppose is not the case that they are unlinked. Then f�1;  1g and f�2;  2g
are linked because �2 =  2 will imply 1 = 2 by Lemma II.4.3. As pre-
liminary remarks, suppose A+(�1) = A+( 1) = A+(�2) = A+( 2). Then
as the cyclic order of these elements is preserved by md (compare Lemma
II.1.1), fmd(�1);md(�2)g and fmd( 1);md( 2)g are linked. Furthermore, if
A+(�1) = A+(�2) and A+( 1) = A+( 2), by Lemma II.1.4 we must have
A+(�1) = A+( 1).

Now, suppose �1 is in the same connected component of R=Z�f�2;  2g
as 1 (if not  1 will be). In this case f�01 = 1;  1g, and f�2;  2g are linked,
so we assume �1 = 1. In an analogous way we may suppose that �2 = 2.
Under this assumption we will prove that for all j � 0, fm�j

d (�1);m
�j
d ( 1)g

and fm�j
d (�2);m

�j
d ( 2)g should be linked. Of course this is absurd because

by de�nition, for j big enough we have m�j
d (�1) = m

�j
d ( 1) = m

�j
d (1).

Suppose that A+(�1) 6= A+( 1). Then by de�nition �1 2 Fk for some
k. Furthermore, there is  01 2 Fk with A+( 01) = A+( 1). It follows from
Lemma 1.6 that �1;  

0
1 2 Fk are in the same component of R=Z� f�2;  2g.

Thus, f 01;  1g and f�2;  2g are still linked. Note that md( 
0) = md(�1).

Also by symmetry we may take A+(�2) = A+( 2) (note that the prop-
erty md(�2) = md(2) will not be lost). But then by the second prelimi-
nary remark A+(�1) = A+( 1) = A+(�2) = A+( 2), and so, by the �rst
fmd(�1) = md(1);md( 1)g and fmd(�2) = md(2);md( 2)g are linked.
This is the desired contradiction. #

1.8 Corollary. The family ff� : � � g :  2 O(F[per)g is
unlinked. #

1.9 Lemma. Let  2 O(F[per) and � an �l equivalence class. Then �
is weakly unlinked in the right to any �nite subset of f� : � � g.
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Proof. Take  2 F 2 F . We will prove by induction that any �l
equivalence class �, is weakly unlinked to 	n(

0) = f� �0 0 : m�n
d (�) 2 Fg

(here 0 belongs to the same cycle as , and m�n
d (0) = ). The result follows

easily. For n = 0, this is Lemma 1.5. In general take �1 � �2 and assume
that f�1; �2g is not weakly unlinked in the right to f 1;  2g � 	n(

0).

Case 1: A+( 1) 6= A+( 2). Then by de�nition 0 2 Fk 2 F for some k.
Thus, there are  0i 2 Fk such that A+( 0i) = A+( i), and because of Lemma
1.5, it is easy to see that f�1; �2g is not weakly unlinked in the right to either
f 1;  01g or to f 2;  02g (both being subsets of 	n(

0)). Thus it is enough to
consider case 2.

Case 2: A+( 1) = A+( 2). In this case we can not have simultaneously
�1 =  1 and �2 =  2. In fact, in this case Lemma II.1.1 would imply that
fmd(�1);md(�2)g is not weakly unlinked in the right to fmd( 1);md( 2)g
in contradiction with the inductive hypothesis. Thus we may suppose that
�1 2 ( 1;  2) (and �2 2 ( 2;  1]). If A

�(�1) = A�(�2) it follows from Lemma
II.1.4 that for � > 0 small enough A+(�1� �=d) = A+(�2� �=d) = A+( 1) =
A+( 2). By Lemma II.1.1 we have then that fmd(�1) � �;md(�2) � �g and
fmd( 1);md( 2)g are not unlinked, in contradiction with the inductive hy-
pothesis. Therefore A�(�1) 6= A�(�2), and then by de�nition we must have
S�(�1) �i S�(�2). But then, using the same reasoning as in the previ-
ous lemmas, we can assume that �1; �2 2 Ji. But if this is the case, we
get a contradiction because it follows by de�nition and Remark II.1.7 that
A+( 1) 6= A+( 2). #

Proposition 1.2 follows now easily from the above lemmas. #

2. Abstract and embedded webs.

In this section we construct from the combinatorial data a topological
polynomial of degree d. We also study some of its basic properties. None of
the material presented here is essentially new, and can be found in a slightly
di�erent formulation in [BFH].
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2.1 Let (F ;J ) be an admissible critical portrait. For any �nite invari-
ant set of special arguments �, we consider the pair (F�;J �) as in Section
1. With these families, we construct �rst an abstract topological graph
W (F�;J �) as follows. We pick a vertex v = 1, and take as many edges
R� incident at 1 as elements � 2 J �[. Let v� be the other adjacent vertex
to R�. We identify the vertices v�; v�0 if and only if �; �0 2 J �

k for some k;
that is, if and only if � �l �0. (This because we are expecting the rays with
arguments �l related to land at the same point.) We write this vertex as
v(J �

k ). As each R� is labeled by an argument �, we call it the web ray of
argument �. By abuse of language we will say that v� (= v(J �

k ) whenever
� 2 J �

k ) is the landing point of the web ray R�.

Next, for each subset F�k 2 F� we consider a new vertex !(F�k ). We
join this vertex to the landing points of R for all  2 F�k . (This because,
all those rays are supposed to support the same Fatou component; compare
Proposition II.4.7). In this case the extended web ray E is the set formed
by the web ray of argument , its landing point, and the edge joining this
landing point with the vertex !(F�k ). In each set F�k 2 F�[ there is a
preferred argument k. We call the edge `F�

k
joining !(F�k ) with v , the

preferred internal ray associated with the \Fatou type" point !(F�k ).

Note that by construction (compare x1.1), the argument 0 is always
present in our construction. We say that the web ray R0 is the preferred
internal ray associated with v = 1. The graph W (F�;J �) constructed in
this way, is the abstract web associated with (F ;J ;�). We will denote by V
the set of vertices of this graph.

2.2 Embedded webs. We consider embeddings in the Riemann Sphere
Ĉ of this abstract web W = W (F�;J �). An embedding such that the
cyclic order of the web rays corresponds to the cyclic order of the labeling
by arguments can always be constructed because of Proposition 1.2. We
can always assume that the respective points at 1 correspond. Any such
embedding is an embedded web. We still call the image of edges incident at
\1" web rays. Unless strictly necessary we will not distinguish between an
embedding and its image.

39



2.3 Web maps. The following two properties follow immediately from
the construction of (F�;J �) and Lemmas II.3.2 and II.4.5.

If �; �0 2 J �
k , there is a unique J �

f(k), such that md(�);md(�
0) 2 J �

f(k).

If ; 0 2 F�k , there is a unique F�f(k), such that md();md(
0) 2 F�f(k).

These two conditions allow us to de�ne a map f between the set vertices
of the web W (F�;J �) (also de�ne f(1) =1). We can extend this map to
a map of the whole graph W (F�;J �) as follows. For any edge which is a
web ray R�, de�ne f jR�

as an homeomorphism between this edge and the
web ray Rmd(�). Otherwise, if ` with adjacent vertices v1; v2 is not a web
ray, de�ne f j` as an homeomorphism between this edge and the unique edge
with adjacent vertices f(v1); f(v2).

Note that the above construction determines intrinsically the concept of
periodic and preperiodic edges in the web. Also note that preferred internal
rays map to preferred internal rays.

Next, we consider an embedding � : W = W (F�;J �) ! Ĉ. Any web

map f induces a map f̂ of W = �(W ) to itself by the formula

f̂(z) = �(f(��1(z))):

By a regular extension of f̂ will be meant any extension of f̂ which is a
degree d orientation preserving branch map of the extended complex plane.
Keeping track of the embedded vertices this extension is essentially unique.

2.4 Theorem. Let �1; �2 be two embeddings of the abstract web W =
W (F�;J �). Let f̂i : Ĉ ! Ĉ (i = 1; 2) be regular extensions of the web

maps. Then (f̂1; �1(V)) and (f̂2; �2(V)) are Thurston equivalent as topolog-
ical maps (compare Appendix A).

In fact, there are homeomorphisms  �;  � : Ĉ ! Ĉ isotopic relative to
�1(V) so that

i) For every vertex v 2 V,  �(�1(v)) =  �(�1(v)) = �2(v).
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ii) The diagram
Ĉ  �

�! Ĉ

f̂1

??y ??y f̂2

Ĉ  �
�! Ĉ

is commutative.

Proof. It is not di�cult and can be found in [BFH, Theorem 6.8]. #

2.5 Lifting Webs. Suppose W = �(W (J �;F�)) is an embedded web.

Given this embedding, we �x a regular extension f̂ : Ĉ ! Ĉ of the web
map. If W 0 is another embedded web isotopic to W relative to the set �(V),

then f̂ uniquely determines an embedded web W 00 � f̂�1(W 0) which is also
isotopic to W relative to �(V), as the following construction shows.

It is convenient �rst to de�ne \the web ray of argument 0" in W 00. For
this we need the following remark.

Let � 6= 0 belong to J �[. If 0 �l �, then the web rays R� and R0 in W
can not be isotopic relative to the set �(V).

To see this we note that these web rays determine two sectors. By
construction each of these two sectors contains all web rays with arguments
in (0; �) and (�; 1) respectively. Now, by Lemma II.1.6, � is of the form
k=(d�1), so each of the sets J �[\ (0; �) and J �[\ (�; 1) is non empty. The
result follows easily.

As a consequence we have that there is a unique edge R0
0 in W 0 which

can correspond to R0. Thus there is a unique `edge' R00
0 � f̂�1(R0

0) joining
�(v0) and 1, which is isotopic to R0 relative �(V). This is to be de�ned as
the zero web ray in W 00.

To construct the web W 00 we consider �rst all edges ` � W incident at
vertices v = �(v(J �

k )) which are not critical. By de�nition, f̂(`) is also an

edge in W ; now, there is a unique edge `0 2 W 0 which is isotopic to f̂(`)

relative to �(V). As f̂ is locally one to one near v, starting at f̂(v), `0 can
be lifted back in a unique way by f̂ to an arc `00. As f̂(`) and `0 are in
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particular isotopic relative to the critical values of f̂ , it follows that ` and `00

are isotopic relative to �(V).

Finally, we consider all edges ` incident at critical vertices v = �(v(J �
k )).

Again we repeat the same procedure but keeping in mind that the correct
indexing for web rays can be found by its relative position respect to the
web ray R0. The adequate choice of inverses can now be easily determined.
This �nishes the construction of W 00. By abuse of notation, we denote this
embedded web W 00 by f̂�1(W 0).

Note that we can apply the same construction to the webW 00 = f̂�1(W 0)
and so on; in this way we can form a sequence of webs

W 0; f̂�1(W 0); : : : ; f̂�n(W 0); : : :

all isotopic relative to �(V).

3. There are no Levy cycles.

In this Section we will prove that any admissible critical portrait is
`naturally' associated to a unique polynomial P (see Corollary 3.6). The
natural way to proceed is to construct from the family (F�;J �) with � = ;
a web map f̂ . The next step can be (as in [BFH]) to prove that any regular
extension has no Thurston's obstruction by proving there are no Levy cycles.
This fact is by no means obvious. In fact, it is easier to prove this fact for
maps f̂ 0 associated to a bigger family (F 0�;J 0�) with � suitably chosen. Now,

as a Levy cycle for the map f̂ will determine a Levy cycle for the map f̂ 0 we
can conclude that the former map has no Levy cycles.

We start with some notation and another result borrowed from [BFH]
Section 7.

3.1 De�nition. Let W be an embedded web and ` � W an edge. A
Jordan curve C disjoint from �(V) is said to intersect ` essentially, if for
every C0 homotopic to C in Ĉ� �(V), we have that ` \ C0 is non empty.
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The following is together with Theorem A.5 a technical result needed
for the proof of the main theorem.

3.2 Lemma. Suppose f̂ admits a Levy cycle � = fC1; : : : ; Ckg (see
appendix A). Then any Ci does not intersect a preperiodic edge ` of the web
in an essential way.

Proof. See [BFH] Lemma 7.7. #

3.3 Remark. Using Proposition II.4.6 it is easy to construct a �nite
set of special arguments � with the following properties.

i) md(�) � � [ O(F[).

ii) If � 2 F[
per, and �

0 is the successor (counterclockwise) of � in J �[

then � �� �
0.

In the following lemma we assume that the web and a regular extension
where constructed with this set of special arguments. Here if C is a Jordan
curve, the interior of C is de�ned as the bounded component of Ĉ� C.

3.4 Lemma. Let C be a Jordan curve disjoint from �(V). Suppose
further that C has the following properties,

a) All vertices in �(V) which belong to the interior of C are periodic and
do not belong to a critical cycle.

b) C does not intersect essentially any preperiodic edge `.

Under theses hypothesis, if v�; v�0 2 �(V) (corresponding to the landing
point of the web rays R�;R�0 respectively) belong to the interior of C, then
A�(�) = A�(�0).

Proof. Suppose v�; v�0 are in the interior of C (and therefore �; �0 are
periodic). Let ; 0 2 Jk for some k. The rays R and R0 divide the
plane in two regions. If v�; v�0 do not belong to the same region, then C will
cut either R or R0 in an essential way. Thus, �; �0 belong to the same
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connected component of R=Z � Jk. Now, let ; 0 2 Fk for some k. The
extended rays E and E0 divide the plane in two regions. If both ; 0 are
preperiodic the same argument as above applies, and again �; �0 belong to
the same connected component of R=Z�f; 0g. Otherwise, suppose that 
is periodic (and thus, 0 must be preperiodic). By hypothesis there is � > 0
such that  + � is a special argument for , and (;  + �) \ J �[ = ;. Now
we apply the same reasoning with the extended rays E+� and E0 and thus
�; �0 belong to the same connected component of R=Z�f+ �; 0g (compare
Figure 3.1). As � can be chosen arbitrarily small, it follows that for � > 0
small enough, � � � and �0 � � belong to the same connected component of
R=Z�Fk. It follows by de�nition that A�(�) = A�(�0). #

3.5 Proposition. Let f̂ : Ĉ! Ĉ be a regular extension of the web map
over (F�;J �) for some �. Then f̂ admits no Levy cycles.

Proof. We are going to add points to � as needed (see the introduc-

tion to this section). Suppose by contradiction that f̂ has a Levy cycle
fC1; : : : ; Ckg.

Step 1. As all \Fatou points" (i.e, vertices of the form �(!(F�
j ))) are

preperiodic or belong to a critical cycle, no such points are in the interior of
an element of a Levy cycle (compare Theorem A.5).

Step 2. If � �l �
0 but S�(�) 6= S�(�0) then � is preperiodic, and so is

v�. Thus, v� is not in the interior of a curve in a Levy cycle.

Step 3. If v�; v�0 are in the interior of an element of a Levy cycle, then
by Lemma 3.4 A�(�) = A�(�0).

Step 4. There are no Levy cycles:

If v�; v�0 belong to the interior of an element C1 of a Levy cycle, then
there is another element C in this Levy cycle such that vmd(�) and vmd(�0)
belong to the interior of C. This immediately implies S�(�) = S�(�0) by
step 3 and the de�nition of Levy cycles. In this way v� = v�0 by construction
of the Web. But this implies there is a unique point in the interior of an
element of a Levy cycle, and this is a contradiction with the de�nition of
Levy cycles. #
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3.6 Corollary. Let (F ;J ) be an admissible critical portrait. There is a
unique (up to conjugation) polynomial P (F ;J ) which is Thurston equivalent

to f̂ . Here f̂ is any regular extension of the web map. #

3.7 Example. We are left with the awkward situation of illustrating
a result about the impossibility of Levy cycles. In order to do this, some
hypothesis must be violated. We have chosen to violate the condition which
avoids the existence of Levy cycles, namely that �l equivalence classes de-
termine only one point in the Julia set.

We consider the admissible critical portrait F = ff 1
4
; 7
12
g; f3

4
; 1
12
gg and

J = ; (compare example I.4.4). It is easy to check that S�( 1
4
) = S�( 3

4
)

(thus expecting the rays R 1
4
and R 3

4
to land at the same point in the Julia

set). We consider also the set of special arguments � = f13
36
; 31
36
g which

satis�es the hypothesis stated in 3.3 (here 13
36
� 1

4

1
4
and 31

36
� 3

4

3
4
). Thus we

have formed

F� = ff1
4
;
13

36
;
7

12
g; f3

4
;
31

36
;
1

12
gg

J � = ff0g; f 1

12
g; f1

4
;
3

4
g; f13

36
g; f 7

12
g; f31

36
gg

(recall the meaning of the elements in each family).

To illustrate Lemma 3.4 (and Proposition 3.5), we construct a web
W(F�;J �) without identifying v 1

4
and v 3

4
. We will show how this leads

to a Levy cycle (compare Figure 3.1).

Lemma 3.4 claims that if there is a Levy cycle, then arguments of any
two v�, v�0 in the interior of a constituent element C of this cycle should
have the same left address. In our case this means that any such C can
not cross any solid segment in Figure 3.1 because of Lemma 3.2. Thus, the
only possibility of a cycle is as shown in Figure 3.1. Of course, with the
appropriate identi�cation of v 1

4
and v 3

4
, this is impossible.
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Figure 3.1

4. Untwisting the conjugacy.

Up to this point Corollary 3.6 tells us there is a polynomial (unique up
to conjugation) associated with the admissible critical portrait (F ;J ). We
must still prove that external and internal rays land at the expected places.
In other words, we have to prove that such post-critically �nite polynomial
admits the required marking. The proof of this fact is not as obvious as it
will seem. We will consider �rst a particular example in order to show which
di�culties we can still �nd and describe a way to handle them.

4.1 Example. Consider the admissible critical portrait formed with
F = ff0; 1

3
; 2
3
gg, J = ;. We �rst look at the map f(z) = z3 as a `topological

polynomial' in the web W(F ;J ) with vertices V = f0; 1; e 2�i3 ; e 4�i3 g and

extended web rays Ek=3 = fre 2k�i3 : r 2 [0;1)g for k = 0; 1; 2. By Corollary
3.6 this topological polynomial is equivalent to a unique polynomial, which
will surely be P (z) = z3.

Consider the homeomorphisms

 0(r
3e2�i�) =

8<: r3e2��i if r � 3;

r3e2�i[�+
3
2 (

lnr�ln3
ln4�ln3 )] if 3 � r � 4;

r3e2�i[�+
3
2 ] if 4 � r.

 1(re
2�i�) =

8<: re2��i if r � 3;

re2�i[�+
1
2 (

lnr�ln3
ln4�ln3 )] if 3 � r � 4;

re2�i[�+
1
2 ] if 4 � r.
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Then clearly the following diagram is commutative

Ĉ  1
�! Ĉ

f
??y ??y P:

Ĉ  0
�! Ĉ

(1)

We describe what is happening in the following terms. The map  0
makes a `Dehn twist' of 3/2 turns far from1. Thus the `Web'  0(W(F ;J ))
itself is twisted 3/2 turns. By this we mean that when keeping track of the
image  0(R0) of the web ray R0, we start as the actual ray R0 for a while,
then twist in counterclockwise direction until we have completed 3/2 turns,
and �nally continue our way to 1 following the ray R1=2! Similarly with all
other web rays.

Now, when lifting back the web  0(W(F ;J )) by P�1 (compare x2.6), we
see that the resulting embedded web  1(W(F ;J )) has a completely di�erent
behavior (but they are isotopic). The image web ray  1(R0) in this case goes
for a while in the direction of the actual ray R0, then twists 1/2 turns, and
�nally continues in the direction of the actual ray R1=2 to 1.

The situation is even worse if we consider successive liftings of the web
ray  0(R0). In these cases, near 1 they will be successively identi�ed with
the rays R 1

2
; R 1

6
; R 1

18
; : : :. Of course, we will prefer to have always near

1 the correct identi�cation. In order to describe a possible solution to this
dilemma, we note that  0(z) =  1(z) for jzj big enough. If we remove the set
fz : jzj > �g for � big enough,  0 and  1 would not be isotopic in this new
Riemann surface relative to the boundary (they will di�er by exactly `one
turn' around fz : jzj = �g. This is hardly a surprise because the di�erence
in 1 turn can be easily measured by comparing the embedded web to its lift.
Now, it is clear that we have not started with the best possible choice of a
web. Our original web was `twisted' by a given number of turns (3=2 in this
case); when we `lift back' the web, this twist will be divided by the degree
of the polynomial (3 in this case). Thus, the `di�erence in twist' (which can
always be measured) allows us to state the relation

twist� twist

d
= di�erence in twist: (2)

Where d is the degree of the polynomial (here d = 3) and di�erence in twist
is the relative twist of the ray  1(R0) in the lifted web respect to the original
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 0(R0). In this way, equation (2) suggests that any possible odd behavior
when lifting webs is because of a `Dehn twist' in a neighborhood of Fatou
points. This is going to be in general the case as we will show below.

4.2. In the general case, we have that starting from the admissible crit-
ical portrait (F ;J ) we can construct a unique up to conjugation polynomial
P of degree d (which we take here to be monic and centered). Also diagram
(1) holds. Furthermore, by replacing f by  0 � f �  �10 and  1 by  1 �  �10 ,
we may assume without loss of generality that  0 = id.

For notational convenience we include 1 in the critical set 
(P ) of the
polynomial P . For each periodic Fatou point ! 2 
(P ), let �! denote a
�xed B�ottcher coordinate associated with ! (1 included). For r < 1 de�ne
Nr(w) = fz 2 U(!) : j�!(z)j < rg. For each strictly preperiodic Fatou point
c 2 O(
(P )), we inductively de�ne Nr(c) as the connected component of
P�1(Nr(P (c))) containing c. For X � O(
(P )) set Nr(X) = [c2XNr(c).

Now, as there is no topological way to distinguish between the sets
Ĉ�O(
(P )) and Ĉ�Nr(O(
(P ))), we can construct an embedded web in
Ĉ and a regular extension f such that the following conditions are satis�ed,

i) f = P in N1=2(O(
(P ))),
ii) preferred internal web rays are equal to internal preferred rays in

N1=2(!) if ! is in a critical cycle, and

iii) Web edges correspond to internal rays in N1=2(O(
(P ))).

Denote by W the so constructed web, and by V be the respective set
of vertices (there is no further need to write this set as �(V)). Recall we
are assuming that  0 is the identity in diagram (1). Note also that the
construction implies that near periodic critical points,  1 is a rotation in the
B�ottcher coordinate.

4.3 Untwisting external rays. We consider �rst what happens near
1 (for example, in the set N1=2(1)). As diagram (1) is commutative, we
have that for any positive r � 1=2,  0(W)\Nr(1) is by construction1 and
some segments of actual external rays. The portion of the web ray  1(R0)\
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Nr(1) must then be a segment of a ray of the form Rj=d. Furthermore,
we can measure the relative twist of  1(R0) respect to  0(R0) in @Nr(1)
(which by construction is a rational number of the form k=d). Stating this
as an equation

possible twist� possible twist

d
= di�erence in twist

we have necessarily a rational solution of the form k=(d � 1) (same k as
above).

To prove that this `possible twist' is in fact a twist we proceed as follows.
Take a positive s < r and consider the annulus Nrd(1) � Nsd(1). We
modify  0 in Nrd(1) by making a twist of � k

d�1 turns inside this annulus.

This forces us to modify  1 in Nr(1) by a twist of � k
d(d�1) turns inside the

annulus Nr(1)�Ns(1) in order to make diagram (1) commutative. Clearly
there is no problem in doing so because  0 is the identity in Nrd(1), and
 1 is a rotation in the set Nr(1) respect to the B�ottcher coordinate.

Formally, we have that in the set Ĉ �V � Nr(1),  0 and  1 are not
isotopic respect to the boundary because they di�er by k=d turns. In the an-
nulusNr(1)�Nsd(1), the modi�ed  0;  1 di�er by �k=d turns. In this way,
the modi�ed  0;  1 are isotopic relative to the boundary in Ĉ�V�Nsd(1).
Thus, the `di�erence in twist' between the `new' web rays  i(R0) is 0 when
measured in @Nsd(1). In particular, if we consider the successive lifting of
webs P�n( 0(W (F�;J �))) (compare x2.5), all these webs (by construction)
will have no di�erence in twist between the respective lifts of web rays of
argument 0. We remark that near 1 those web rays are now identi�ed with
the ray R�k=d�1. Also the respective lifting of web rays correspond to bigger
and bigger portions of actual rays. Of course these rays do not necessar-
ily correspond to the expected ones, but they will after conjugation of the

polynomial P with A(z) = e�
2k�i
d�1 z.

4.4 Untwisting periodic preferred internal rays. Our next step
is to make the analogue construction in the basin of attraction of �nite
periodic critical cycles. Suppose !0 7! !1 7! : : : 7! !n = !0 is a critical
cycle, and let di be the local degree at !i. The critical cycle has total degree
D = d0 � : : : � dn�1. Under the same philosophy as in x4.3 we will like to
prove that each coordinate in this cycle was `twisted' by say xi turns. We
will denote by `i the preferred internal web edge adjacent to !i.
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What we can surely do, is to measure the di�erence in twist when we lift
back webs. In other words the relative twist of  1(`i) � P�1(`i+1) respect
to  0(`i). Let this value be yi (which by construction is a rational number
with denominator di). If it is true that the coordinates are `twisted', then
the `possible twist' of  0(`i) is by construction xi; while when `lifting back'
`i+1 to get  1(`i), its `possible twist' xi+1 is divided by di. Thus, if we want
to proceed as in x4.3 we must be able to solve the system of equations

xi =
xi+1

di
+ yi i = 0; : : : ; n� 1

for xi rational with denominator D� 1. But it is clear that this can be done
if we rewrite the system as

d0d1 : : : dn�1 x0 = d1 : : : dn�1 x1 + d0d1 : : : dn�1 y0
d1 : : : dn�1 x1 = d2 : : : dn�1 x2 + d1 : : : dn�1 y1

...
...

...
dn�2dn�1 xn�2 = dn�1 xn�1 + dn�2dn�1 yn�2
dn�1 xn�1 = x0 + dn�1 yn�1

With the given solutions x0; : : : ; xn�1 we proceed to untwist the conju-
gacy in all neighborhoods of the cycle simultaneously as in x4.3.

4.5 Untwisting non periodic Fatou critical components. The last
basins that need to be `untwisted' are the ones that correspond to strictly
preperiodic Fatou critical points. Let ! be such critical point, and !0 =
f�n(!) the �rst critical point in its forward orbit. We assume that near
!0 the conjugacy has been already `untwisted'. In this case the resulting
equation is simply x! = y! so we proceed again as in x4.3.

5. Proof of Theorem I.3.9.

5.1 Now we apply successively the construction in x2.5. The websWn =
P�n( 0(W)) have edges which coincide with the actual internal and external
rays in a bigger set after each lifting. Given n, for the web Wn we consider
for each �v landing point of \web rays" and for each edge ` incident at it, the
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orbifold length of `n = Ĉ�Nr�dn (O(
(P )))\`. For �xed n denote by �n the
supremum of such numbers over all possible vertices and edges. Note that,
as the orbifold metric is strictly expanding for P in Ĉ�Nr(O(
(P ))), and
each `n is the inverse image of some `0n�1 we have that �n # 0. In this way
we have that the respective rays (internal and external) of P can be found
arbitrarily close to the expected landing points. As J(P ) is locally connected
they actually land there.

5.2 To �nish the proof of the theorem, we only have to prove that the
rays R associated with a Fatou periodic critical point actually support the
respective component. But this is trivial if we consider Proposition II.4.6.
In this case R ; R+� land in the boundary of the same critical component
(compare Proposition II.4.7). Thus, in the region determined by the ex-
tended rays R̂ ; R̂+� there is no place for a periodic ray R� of the same
period as R , if � > 0 was chosen small enough. This completes the proof of
Theorem I.3.9. #
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Let f : S2 7! S2 be an orientation preserving branched covering map of
the topological sphere. The set 
(f) of all critical points of f is called the
critical set of f. The postcritical set of f is the set P (
(f)) =

S1
n=1 f

�n
(f).
Whenever the set P (
(f)) is �nite, we say that f is postcritically �nite.

In what follows, we assume always that f is postcritically �nite. A
�nite invariant set M ; i.e, f(M) � M , containing all critical points of f is
called a marked set. In analogy with the previous notation, we set P (M) =S1
n=1 f

�nM , and call it a postmarked set. The elements of M (respectively
P (M)) are called marked points (respectively postmarked points). We say
that (f;M) is a marked branched map.

Two marked branched maps (f;M(f)) and (g;M(g)) are Thurston
equivalent if there are homeomorphisms �1; �2 : S2 ! S2, isotopic rela-
tive to the set P (M(f)) such that g � �1 = �2 � f , and �1(P (M(f))) =
�2(P (M(f))) = P (M(g)).

We say that a simple closed curve  � S2�P (M) is non-peripheral (for
the marked branched map (f;M)), if each component of S2 �  contains at
least two points of P (M). A multicurve � = f1; :::; ng is a set of simple,
closed, disjoint, non-homotopic, non-peripheral curves in S2 � P (M). A
multicurve � is stable, if for every  2 �, every non-peripheral component of
f�1() is homotopic (relative to P (M)) to a curve in �.

Let i;j;� be the components of f�1(j) homotopic to i relative to
P (M), and di;j;� be the degree of the map f ji;j;� : i;j;� 7! j . We de�ne
the (i; j) entry of the Thurston Matrix f� as

(f�)i;j =
X

1=di;j;�:
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Note that by the Perron-Frobenious theorem there is a largest positive eigen-
value �(f�).

There is a smaller function � : PM 7! f1; 2; :::;1g, such that for all
x 2 f�1(y), �(y) is a multiple of �(x)degxf . We have that the orbifold
(S2; PM ; �f ) is hyperbolic if its \Euler characteristic" satis�es

2�
X

x2P (M)

(1� 1=�f (x)) < 0:

Note that we are allowing extensions of the critical and postcritical sets.
This is because we what to use Thurston's theorem in more generality than
presented in [DH2] and used in [F] or [BFH]. Our marked set is the usual
one and maybe a �nite number of additional periodic or preperiodic orbits.
Note that at these additional points, the orbifold function has value 1, so
that the orbifold structure is only determined by the original postcritical set
P (
(f)).

A.1 Theorem (Thurston's Characterization of Rational Maps).
A marked branched map, with hyperbolic orbifold is equivalent to a rational
function if and only if for any stable multicurve �, we have �(f�) < 1.
In this case the rational function is unique up to conjugation by a Mobius
transformation.

Proof. The proof in [DH2] applies without modi�cation. #

A.2 Topological Polynomials. A branched map f : S2 7! S2 is said
to be a topological polynomial if f�1(1) =1.

If we are interested only in topological polynomials Thurston's theorem
is equivalent to the following (see [BFH Theorem 3.2]).

A.3 Theorem. A marked topological polynomial (f,M) is equivalent to
a polynomial if and only if for any stable multicurve � we have �(f�) <
1. In this case, the polynomial is unique up to conjugation by an a�ne
transformation.
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De�nition. A stable multicurve �, with �(f�) � 1 is called a Thurston
Obstruction (for (f,M)).

Levi Cycles

Everything here is taken from [BFH] section 4.

Let (f;M) be a marked topological polynomial. Let � be a stable mul-
ticurve. Suppose there exists f0; :::; k = 0g = � � � such that for each
i = 0; :::; k � 1, i is homotopic relative to P (M) to exactly one component
0 of f�1(i+1). Suppose also that f : 0 7! i+1 has degree 1. Then � is
called a Levy cycle.

A.4 Theorem. If a marked topological polynomial (f,M) has a Thurston
obstruction �, then (f,M) has a Levy cycle.

A.5 Theorem. The disks of the elements of � = f0; :::; k = 0g
(i.e, the bounded components of S2 � i), contain only cycles of periodic
non-critical points of P (M).

The last two Theorems together have an interesting interpretation.

For Post-critically �nite topological Polynomials, only misidenti�cation
of periodic points can lead to an obstruction.
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