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Abstract. We prove that if A is the basin of immediate attraction to a periodic
attracting or parabolic point for a rational map f on the Riemann sphere, then periodic
points in the boundary of A are dense in this boundary. To prove this in the non simply-
connected or parabolic situations we prove a more abstract, geometric coding trees version.

Introduction

Let f : IC ! IC be a rational map of the Riemann sphere IC. Let J(f) denote its Julia
set. We say a periodic point p of period m is attracting (a sink) if j(fm)0(p)j < 1, repelling
(a source) if j(fm)0(p)j > 1 and parabolic if (fm)0(p) is a root of unity. We say that A = Ap

is the immediate basin of attraction to a sink or a parabolic point p if A is a component
of IC n J(f) such that fnmjA ! p as n!1 and p 2 Ap in the case p is attracting, p 2 @A
in the case p is parabolic.

We shall prove the following fact asked by G. Levin:

Theorem A. If A is the basin of immediate attraction for a periodic attracting or
parabolic point for a rational map f : IC ! IC then periodic points contained in @A are
dense in @A.

A classical Fatou, Julia theorem says that periodic sources are dense in J(f). However
these periodic sources could only converge to @A, not being in @A.

The density of periodic points in Theorem A immediately implies the density of pe-
riodic sources because for every rational map there are only �nitely many periodic points
not being sources and Julia set has no isolated points.

An idea of a proof of Theorem A using Pesin theory and Katok's proof of density of
periodic points [K] saying that f�n(B(x; ")) � B(x; ") for some branches of f�n, is also
too crude. The matter is that the resulting �xed point for fn in B(x; ") could be outside
@A. However this gives an idea for a correct proof. We shall consider points in @A together
with "tails", some curves in A along which these points are accessible. (We say x 2 @A is
accessible from A if there exists a continuous curve  : [0; 1] ! IC such that ([0; 1)) � A
and (1) = x. We say then also that x is accessible along .)

Thus proving Theorem A we shall prove in fact something stronger:

* Supported by Polish KBN Grants 210469101 "Iteracje i Fraktale" and 210909101
"...Uklady Dynamiczne".
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Complement to Theorem A. Periodic points in @A accessible from A along f -
invariant �nite length curves, are dense in @A.

If f is a polynomial (or polynomial-like) then it follows automatically that these
periodic points are accessible along external rays. See [LP] for the proof and for the
de�nition of external rays in the case A is not simply-connected.

It is an open problem whether all periodic sources in @A are accessible from A, see
[P3] for a discussion of this and related problems. It was proved that this is so in the case
f is a polynomial and A is the basin of attraction to 1 in [EL], [D] and later in [Pe], [P4]
in more general situations: for f any rational function and A a completely invariant (i.e.
f�1(A) = A) basin of attraction to a sink or a parabolic point.

The paper is organised as follows: In Section 1 we shall prove Theorem 1 directly
in the case of A simply-connected, p attracting. In Section 2 we shall introduce a more
general point of view: geometric coding trees, studied and exploited already in [P1], [P2],
[PUZ] and [PS], and formulate and prove Theorems B and C in the trees setting, which
easily yield Theorem A.

Section 1. Theorem A in the case of a simply-connected A and p attracting.

Here we shall prove Theorem A assuming that A is simply-connected and p is attract-
ing.

First let us state Lemma 1 which belongs to Pesin's Theory.

Lemma 1. Let (X;F ; �) be a measure space with a measurable automorphism T :
X ! X . Let � be an ergodic f -invariant measure on a compact set Y in the Riemann
sphere, for f a holomorphic mapping from a neighbourhood of Y to IC keeping Y invariant,
with positive Lyapunov exponent i.e. ��(f) :=

R
log jf 0jd� > 0. Let h : X ! Y be a

measurable mapping such that h�(�) = � and h � T = f � h a.e. .

Then for �-almost every x 2 X there exists r = r(x) > 0 such that univalent branches
Fn of f�n on B(h(x); r) for n = 1; 2; ::: for which Fn(h(x)) = h(T�n(x)), exist. Moreover
for an arbitrary exp(���(f)) < � < 1 (not depending on x) and a constant C = C(x) > 0

jF 0n(h(x))j < C�n and
jF 0n(h(x))
jF 0n(z)j

< C

for every z 2 B(h(x); r); n > 0, (distances and derivatives in the Riemann metric on IC).

Moreover r and C are measurable functions of x.

Let R : ID ! Ap be a Riemann mapping such that R(0) = p. De�ne g := R�1�f�R on
ID. We know that g extends holomorphically to a neighbourhood of clA and is expanding
on @A, see [P2]. (In fact g is a �nite Blaschke product, because we assume in this section
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that f is de�ned on the whole A, see [P1]. However we need only the assumption that f
is de�ned on a neighbourhood of @A as in [P2].)

For every � 2 @ID every 0 < � < �=2 and every � > 0 consider the cone

C�;�(�) := fz 2 ID : jArg� �Arg(� � z)j < �; j� � zj < �g
In the sequel we shall need the following simple

Lemma 2. There exist �0 > 0; C > 0 and 0 < �0 < �=2 such that for every
� � �0; n � 0; � 2 @ID and every branch Gn of g�n on the disc B(�; �0) the following
inclusion holds:

Gn(fz 2 ID : z = t�; 1� t < �g) � C�0;C�(Gn(�))

Remark. Considering an iterate of f and g we can assume that C = 1, because
above we can write in fact C�0;C�n� for a number 0 < � < 1.

Proof of Theorem A in the case of a simply- connected basin of a sink.

Keep the notation of this section: A the basin of attraction to a �xed point, a sink
p, a Riemann mapping R : ID ! A and g the pull-back of f extended beyond @ID, just a
�nite Blaschke product.

Consider � := R�(l), where R denotes the radial limit of R and l is the normalized
length measure on @ID. In fact � is the harmonic measure on @A viewed from p. This
measure is ergodic f -invariant and ��(f) = �l(g) > 0, see [P1, P2]. Also supp � = @A.

Indeed for every " > 0; x 2 @A and xn 2 A such that xn ! x we have for harmonic
measures: !(xn; B(x; ")) ! 1 6= 0. But the measures !(p; �) and !(xn; �) are equivalent
hence !(p;B(x; ")) > 0.

We shall not use anymore the assumption � is a harmonic measure, we shall use only
the abovementioned properties.

From the existence of a nontangential limit R of R a.e. [Du] it follows easily that
for an arbitrary " > 0 and 0 < � < �=2 and � > 0 there exists K" 2 @ID such that
l(K") � 1� " satisfying

R(z)! R(�) uniformly as z ! �; z 2 C�;�(�)

Namely for every �1 > 0 there exists �2 > 0 such that for every � 2 @ID if z 2 C�;�2 then
dist(R(z); R(�)) < �1, distance in the Riemann metric on IC.

Consider the inverse limit (natural extension in Rohlin terminology [Ro]) ( ~@ID; ~l; ~g) of
(@ID; l; g):

Denote the standard projection of ~@ID to @ID (the zero coordinate) by �0.
Due to Lemma 1 applied to ( ~@ID; ~l; borel) the automorphism ~g the map h = R � �0

and Y = @A; f our rational map, there exist constants C; r > 0 this time not dependent
on x, and a measurable set ~K � ~@ID such that ~l( ~K) � 1 � 2"; ~K � ��10 (K") and for
every g-trajectory (�n) 2 ~K the assertion of Lemma 1 with the constants C and r holds.
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Let t = t(r) be such a number that for every � 2 K" and z 2 K�;t we have

dist(R(z); R(�)) < r=3 (1)

We additionally assume that t < �0 from Lemma 2. Also � is that from Lemma 2.

By Poincar�e Recurrence Theorem for ~g for a.e. trajectory (�n) 2 ~K there exists a
sequence nj !1 as j !1 such that

��nj = �0~g
�nj ((�n))! �0: (2)

and ~g�nj ((�n)) 2 ~K hence
��nj 2 K" (3)

Indeed, we can take a sequence of �nite partitions Aj of �0( ~K) such that the maximal

diameters of sets of Aj converge to 0 as j !1. Almost every (�n) 2 ~K is in
T
j �

�1
0 (Aj)

where Aj 2 Aj and there exists nj such that ~g�nj ((�n)) 2 ��10 (Aj)

For a.e. (�n) 2 ~K �x N = N((�n)) such that

��N 2 B(�0; t(r) sin�) (4)

arbitrarily large.
Denote by GN the branch of g�N such that GN (�0) = ��N . By Lemma 2 GN ((��0) 2

C�;t(�N ) for every 1� t < � < 1
By (4) there exists 1� t < �0 < 1 such that �0�0 2 C�;t(��N ), see Fig 1. :

Figure 1

Due to (3) we can apply (1) for ��N . Thus by (1) applied to z = �0�0; � = �0 and � =
��N we obtain

dist(R(��N ); R(�0)) <
2

3
r:

So, if N has been taken large enough, we obtain by Lemma 1 for the branch FN of
f�N discussed in the statement of Lemma 1

FN (B(R(�0); r)) � B(R(��N ); r=3) � B(R(�0); r); (5)
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see Fig. 2

Figure 2

Moreover FN is a contraction, i.e. j(FN jB(R(�0);r))0j < C�N < 1.

The interval I joining �0�0 with GN ((1� t)�0) is in C�;t(��N ), hence

R(I) � B(R(��N ); r=3) � B(R(�0); r)

By the de�nitions of FN ; GN we have R � GN = FN � R at �0. To prove this equality on
[(1 � t)�; �] we must know that for f�N we have really the branch FN . But this is the
case because the maps involved are continuous on the domains under consideration and
[(1� t)�0; �0] is connected. So

FN (R(1� t)�0) = RGN ((1� t)�0) (6)

Let  be the concatenation of the curves R([(1� t)�0; ��0]) and R(I). By (6) it joins
R((1� t)�0) with FN (R((1� t)�0)) and it is entirely in B(R(�0); r). One end a of the curve
� being the concatenation of ; FN (); F

2
N (); ::: is in @A and is periodic of period N , (�

makes sense due to (5)). Moreover

length(�) �
X
n�0

C�nlength <1

We have dist(a;R(�0)) < r. Because supp � = @A and " and r can be taken arbitrarily
close to 0, this proves the density of periodic points in @A.

Section 2. Geometric coding trees , the complement of the proof of Theo-
rem A.

We shall prove a more abstract and general version of Theorem A here. This will
allow immediately to deduce Theorem A in the parabolic and non simply connected cases.

Let U be an open connected subset of the Riemann sphere IC. Consider any holomor-
phic mapping f : U ! IC such that f(U) � U and f : U ! f(U) is a proper map. Denote
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Crit(f) = fz : f 0(z) = 0g. This is called the set of critical points for f . Suppose that
Crit(f) is �nite. Consider any z 2 f(U). Let z1; z2; :::; zd be some of the f -preimages of z
in U where d � 2. Consider smooth curves j : [0; 1]! f(U), j = 1; :::; d, joining z to zj

respectively (i.e. j(0) = z; j(1) = zj), such that there are no critical values for iterations

of f in
Sd
j=1 

j , i.e. j \ fn(Crit(f)) = ; for every j and n > 0.

Let �d := f1; :::; dgZZ+ denote the one-sided shift space and � the shift to the left,
i.e. �((�n)) = (�n+1). For every sequence � = (�n)

1
n=0 2 �d we de�ne 0(�) := �0 .

Suppose that for some n � 0, for every 0 � m � n, and all � 2 �d, the curves m(�)
are already de�ned. Suppose that for 1 � m � n we have f � m(�) = m�1(�(�)), and
m(�)(0) = m�1(�)(1).

De�ne the curves n+1(�) so that the previous equalities hold by taking respective
f -preimages of curves n. For every � 2 �d and n � 0 denote zn(�) := n(�)(1).

For every n � 0 denote by �n = �d
n the space of all sequences of elements of f1; :::; dg

of length n+1. Let �n denote the projection �n : �d ! �n de�ned by �n(�) = (�0; :::; �n).
As zn(�) and n(�) depends only on (�0; :::; �n), we can consider zn and n as functions
on �n.

The graph T (z; 1; :::; d) with the vertices z and zn(�) and edges n(�) is called a
geometric coding tree with the root at z. For every � 2 �d the subgraph composed of
z; zn(�) and n(�) for all n � 0 is called a geometric branch and denoted by b(�). The
branch b(�) is called convergent if the sequence n(�) is convergent to a point in clU .
We de�ne the coding map z1 : D(z1) ! clU by z1(�) := limn!1 zn(�) on the domain
D = D(z1) of all such �'s for which b(�) is convergent.

(This convergence is called in [PS] strong convergence. In previous papers [P1], [P2],
[PUZ] we considered mainly convergence in the sense zn(�) is convergent to a point, but
here we shall need the convergence of the edges n.)

In the sequel we shall need also the following notation: for each geometric branch
b(�) denote by bm(�) the part of b(�) starting from zm(�) i.e. consisting of the vertices
zk(�); k � m and of the edges k(�); k > m.

The basic theorem concerning convergence of geometric coding trees is the following

Convergence Theorem. 1. Every branch except branches in a set of Hausdor�
dimension 0 in a standard metric on �d, is convergent. (i.e HD(�d nD) = 0). In particular
for every Gibbs measure �' for a H�older continuous function ' : �d ! IR �'(�

d nD) = 0,
so the measure (z1)�(�') makes sense.

2. For every z 2 clU HD(z�11 (fzg)) = 0. Hence for every �' we have for the entropies:
h�'(�) = h(z1)�(�')(f) > 0, (if we assume that there exists f a continuous extension of f
to clU).

The proof of this Theorem can be found in [P1] and [P2] under some stronger assump-
tions (a slow convergence of fn(Crit(f) to i for n!1) To obtain the above version one
should rely also on [PS] (where even fn(Crit(f)) \ i 6= ; is allowed).

6



Recently, see [P4], a complementary fact was proved for f a rational map on the
Riemann sphere, U a completely invariant basin of attraction to a sink or a parabolic
periodic point, under the condition (i) (see statement of Theorem C):

3. Every f -invariant probability ergodic measure �, of positive Lyapunov exponent,
supported by clz1(D) is a (z1)�-image of a probability �-invariant measure on �d, (pro-
vided f extends holomorphically to a neighbourhood of supp�).

Suppose in Theorems B, C which follow, that the map f extends holomorphically to
a neighbourhood of the closure of the limit set � of a tree , � = z1(D(z1)). Then � is
called a quasi-repeller, see [PUZ].

Theorem B. For every quasi-repeller � for a geometric coding tree
T (z; 1; :::; d) for a holomorphic map f : U ! IC, for every Gibbs measure � for a H�older
continuous function ' on �d periodic points in � for the extension of f to � are dense in
supp(z1)�(�).

This is all we can prove in the general case. In the next Theorem we shall introduce
additional assumptions.

Denote

�̂ := fall limit points of the sequences zn(�
n); �n 2 �d; n!1g

Theorem C. Suppose we have a tree as in Theorem B which satis�es additionally
the following conditions for every j = 1; :::; d:

j \ cl(
[
n�0

fn(Critf)) = ;; (i)

There exists a neighbourhood U j � f(U) of j such that

Vol(f�n(U j)! 0 (ii)

where Vol denotes the standard Riemann measure on IC.
Then periodic points in � for f are dense in �̂.

Theorem C immediately follows from Theorem B if we prove the following:

Lemma 3. Under the assumptions of Theorem C (except we do not need to assume
f extends to f) for every Gibbs measure � on �d we have supp(z1)�(�) = �̂.

Proof of Lemma 3. The proof is a minor modi�cation of the proof of Convergence
Theorem, part 1, but for the completness we give it here.
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Let U j and U 0j be open connected simply connected neighbourhoods of j for j =
1; :::; d respectively, such that clU 0j � U j , U j \ cl(

S
n>0 f

n(Critf)) = ; and (ii) holds.

By (ii) "(n) := Vol(f�n(
Sd
j=1 U

j))! 0 as n!1.
De�ne "0(n) = supk�n "(n). We have "0(n)! 0.

Denote the components of f�n(U j) and of f�n(U 0j) containing n(�) where �n =
j, by Un(�); U

0
n(�) respectively . Similarly to zn(�) and n(�) each such component

depends only on the �rst n + 1 numbers in � so in our notation we can replace � by
�n(�) = (�0; :::; �n) 2 �n.

Fix arbitrary n � 0, � 2 �n and � > 0. For every m > n denote

B(�;m) = f(j0; :::; jm) 2 �m : jk = �k for k = 0; :::; ng

and

B�(�;m) = f(j0; :::; jm) 2 B(�;m) : Vol(Um(j0; :::jm)) � "(m) exp(�(m� n)�)g:

Denote also B(�) = ��1n (f�g) � �d

Because all Um(j0; :::; jm) are pairwise disjoint

]�m � ]B�(�;m) � exp(m� n)�: (7)

By Koebe distortion theorem for the branches f�m leading from U j ! Um(�) for
� 2 �d; �m = j we have

diam(m(�)) � diam(U 0m(�)) � Const(Vol(U 0m(�)))
1=2 � Const(Vol(Um(�)))

1=2

Thus if � 2 B(�) and �m(�) 2 B�(�;m) for every m > m0 � n then for the length
bm0 we have

length(bm0(�)) � Const
X

m>m0

"(m)1=2 exp�(m� n)�=2

Now we shall rely on the following property of the measure � true for the Gibbs
measure for every H�older continuous function ' on �d:

There exists � > 0 depending only on ' such that for every pair of integers k < m
and every � 2 �d

�(��1m (�m(�)))

�(��1k (�k(�)))
< exp�(m� k)�

So with the use of (7) we obtain

�(B(�) nTm>m0
B�(�;m))

�(B(�))
�
X

m>m0

exp(m� n)� exp(�(m� n)�):

We consider � < �.
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As the conclusion we obtain the following
Claim. For every r > 0; 0 < � < 1 if n is large enough then for every � 2 �d

n there
is B0 � B(�) such that

�(B0)
�(B(�)) > �

and for every � 2 B0
length(bn(�)) < r:

Indeed, it is su�cient to take B0 = Tm>m0
B�(�;m) , where m0 is the smallest integer

� n such that
P

m>m0
exp(m � n)(� � �) � 1 � �. (Of course the constant m0 � n does

not depend on n; �.) Then for every � 2 B0

length(bn(�)) < (m0 � n)"0(n) + Const("0(m0))
1=2
X

m>m0

exp(�(m� n)�=2) < r

if n is large enough.

The above claim immediately proves our Lemma 3. |

Remark 4. Lemma 3 proves in particular (under the assumptions (i) and (ii) but
without assuming f extends to f ) that cl� = �̂.

Remark 5. Observe that Lemma 3 without any additional assumptions about the
tree, like (i), (ii), is false. For example take z = p our sink, z1 = p; zj 6= p for j = 2; 3; :::; d
and 1 � p. Then p 2 � but p =2 supp(z1)�(�) for every Gibbs �.

Observe that if and (i) and (ii) are skipped in the assumptions of Theorem C then its
assertion on the density of � or the density of periodic points in �̂ is also false. We can
take z in a Siegel disc S but z di�erent from the periodic point in S, z1 2 S; zj =2 S for
j = 2; :::; d.

Here � is not dense even in the set �0 intermediary between � and �̂

�0 :=
[
�2�d

�(�) where �(�) := fthe set of limit points of zn(�); n!1g

(because �0 contains a "circle" in the Siegel disc).
�̂ corresponds to the union of impressions of all prime ends and �0 corresponds to the

union of all sets of principal points. See [P3] for this analogy.

We do not know whether Lemma 3 or Theorem C are true without the assumption
(i), only with the assumption (ii).

Now we shall prove Theorem B:
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Proof of Theorem B. We repeat the same scheme as in Proof of Theorem A, the
case discussed in Section 1. Now (@ID; g; l) is replaced by (�d; �; �). Its natural extension
is denoted by (~�d; ~�; ~�) (in fact ~�d = f1; :::; dgZZ). As in Section 1 we �nd a set ~K with
~�( ~K) > 1 � 2" so that all points of ~K satisfy the assumptions of Lemma 1 with constant
C; r. The map R is replaced by z1 and Y is cl� now.

Condition (1) makes sense along branches (which play the role of cones) , i.e. it takes
the form:

there exists M =M(r) arbitrarily large such that for every � 2 ~K

bM (�) � B(z1(�); r=3): (8)

The crucial property we need to refer to Lemma 1 is �(z1)�(�)(f) > 0. It holds

because by Convergence Theorem, part 2, we know that h�(�) = h(z1)�(�)(f) > 0 and by

[R] �(z1)�(�)(f) � 1
2
h(z1)�(�)(f) > 0

As in Section 1. for every � = (:::��1; �0; �1; :::) 2 ~K there exists N arbirarily large
such that � = �0~�

�N (�) 2 ~K is close to �. In particular

� = (�0; �1; :::; �M ; w; �0; �1; :::)

where w stands for a sequence of N �M � 1 symbols from f1; :::dg and N > M .
By (8) we have

bM (�) � B(z1(�); r=3) and

bM (�) � B(z1(�); r=3)

We have also
zM (�) = zM (�):

So  :=
SN+M
n=M+1 n(�) � B(z1(�); r). Since FN (z1(�)) = z1(�) we have similarly

as in Section 1, (6), FN (zM (�) = zM+N (�), i.e. FN maps one end of  to the other. We
have also, similarly to (5), FN (B(z1(�)); r) � FN (B(z1(�)); r) and FN is a contraction.

One end of the curve � built from ; FN (); F
2
N (); ::: is periodic of period N , is in

B(z1(�); r) and is the limit of the branch of the periodic point

(�0; :::; �M ; w; �0; :::; �M ; w; :::) 2 �d:

Theorem B is proved. |

Proof of Theorem A. The conclusion.
Denote Crit+ :=

S
n>0 f

n(Crit(f)jA). Let p denote the sink in A or a parabolic point
in @A.

Take an arbitrary point z 2 A n Crit+; z 6= p. Take an arbitrary geometric coding
tree T (z; 1; :::; d) in A n (Crit+ [ fpg), where d = degf jA.

Observe that (i) is satis�ed because clCrit+ = fpg [ Crit+.
Condition (ii) also holds because taking U j � A we obtain f�n(U j) ! @A, hence

there exists N > 0 such that for every n � N we have

f�n(U j) \ U j = ;:
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Indeed if we had Volf�nt(U j) > " > 0 for a sequence nt !1 we could assume that
nt+1 � nt � N . We would have f�nt(U j) \ f�ns(U j) = ; for every t 6= s hence
Vol
S
t f

�nt(U j) =
P

tVolf
�nt(U j) �Pt " =1, a contradiction.

Thus we obtain from Theorem C that periodic points in � are dense in �̂. The only
thing to be checked is

�̂ = @A (9)

(If A is completely invariant then Z =
S
n�0 f

�n(z) is a subset of A. It is dense in
Julia set, in particular in @A. However in general situation Z 6� A so the existence of a
sequence in Z converging to a point in @A does not imply automatically the existence of
such a sequence in Z \A.)

It is not hard to �nd a compact set P � A such that P \ (Crit+ [ fpg) = ; and such
that for every �0 2 @A n fpg for every � 2 A close enough to �0, there exists n > 0 such
that fn(�) 2 P . The closer � to �0, the larger n.

Cover P by a �nite number of topological discs D� � A. There exist topological discs
D0
� which union also covers P such that clD0

� � D� . Join each disc D� with z by a curve
�� without sel�ntersections disjoint with Crit+ and p. Then for every � there exists a
topological disc V� � A being a neighbourhood of D� [ �� also disjoint with Crit+ and p.

For every " > 0 there exists n0 > 0 such that for every n > n0 and every branch Fn
of (f jA)�n on V�

diam(Fn(D
0
� [ �� )) < "

by the same reason by which Volf�n(U j)! 0 and next (by Koebe distortion theorem, see
Proof of Lemma 3) diamf�n(U 0j)! 0.

So �x an arbitrary �0 2 @A n fpg and take � 2 A close to �0. Find N and � such
that fN (�) 2 D0

� . We can assume N > n0. Let FN be the branch of f�1 on V� such that
FN (f

n(�)) = �. Then dist(�; FN (z)) < ". But FN (z) is a vertex of our tree. Letting "! 0
we obtain (9) |

Remark 6. One can apply Theorem C to f a rational mapping on the Riemann
sphere and d = deg(f) under the assumptions that for the Julia set J(f) we have VolJ(f) =
0 and that the set clCrit+ does not dissect IC. Indeed in this case we take z in the
immediate basin of a sink or a parabolic point and curves j disjoint with clCrit+. Then
the assumptions (i), (ii) are satis�ed, so periodic points in � are dense in �̂. A basic
property of J(f) says that

S
n>0 f

�n(z) is dense in J(f), i.e. �̂ = Jf), hence periodic
points in � are dense in J(f).

In this case however we can immediately deduce the density of periodic sources be-
longing to � in J(f) from the fact that periodic sources are dense in J(f) and from the
theorem saying that every periodic source q is a limit of a branch b(�); � 2 �d converging
to it. So q belongs to � automatically. For details see [P4].
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