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Abstract. We give local formulae for the characteristic classes of a quasiconformal
manifold using the subspace of exact forms in the Hilbert space of middle dimen-
sional forms. The mecthod applies to combinatorial manifolds and all topological
manifolds except certain ones in dimension four.

By rolling, or better pressing, a sphere $?¢ all around the manifold M 2 we will
construct bounded opcrators on the space of L? middle dimensional forms of M2¢ analogous
to the Ahlfors-Beurling operator on the Riemann sphere C

9—- -d
(1) c,a(z,.?)(l'?:nn—»Sn:( ! /;97((' ¢)d¢ C) dz.

2ri (z-¢)?

The kernel of this operator is the biform -(‘:z_—_‘_',‘;'; on € x €. Using these operators and their

kernels we obtain explicit local cycle representatives-of the Hirzebruch-Thom characteristic
classes for any quasiconformal manifold. At the end of the introduction we explain how
the construction applies to topological manifolds. This answers a question raised by Bill
Browder in lectures at Princeton in 1964.

Generalizations of (1) to all even spheres S?¢ with any bounded measu-able pointwise
+ operator on middle forms were constructed for the quasi conformal Yang Mills theory (1]
by explicit formulae. For example, here we write

(2) Su=(14+) " (p+9)SE+9™ 1+p) , <1,
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for the standard sphere S2¢ can be written out on R% as a quadratic expression in Riesz
transforms see [2]. When £ is even, these bounded operators could be called conformal
signature operators, being essentially the phases of the usual signature operators when the
* is smooth (see the proof of theorem 2 part 4). When ¢ is odd they are generalizations of
the Ahlfors-Beurling operator to general “curved” measurable conformal structures.

For a general even dimensional quasi conformal manifold provided with a bounded
measurable conformal structure or more generally a bounded measurable * on middle
forms we do the following:

i) locally copy via charts the structure on M 2¢ by structures on S%,
ii) get locally defined operators on M2 from the operators on S2¢,

iii) collect these together on M 2¢ ysing a partition of unity to construct global operators
S on the middle dimensional forms (§1).

Let I(£) denote the ideal of compact operators A on Hilbert space satisfying un =
O(n~1/2¢) where p, = distance in norm between A and rank n operators. The reader may
recall that any degree one smoothing operators in dimension 2¢ e.g. the Poincaré lemma
operator, belongs to the ideal I(€). The standard notation for I(€) is £26> (81).

Theorem 1. Given quasi conformal M?¢ with a bounded measurable conformal structure
or more generally a bounded measurable x-structure on the £-forms, the local construction
yields an operator S which is determined by * up to the ideal I(€). Moreover any such S
satisfies i) S agrees mod I(£) with the identity on ezact ¢-forms ii) S anticommutes modulo
I(£) with the involution vy associated to * (y = * if € is even, v = i* if £ is odd).

Let us say an operator S on the Hilbert space H of middle dimensional forms satisfying
i) and ii) of Theorem 1 belongs to the Hodge class. It is immediate (§1) that given * any
two Hodge class operators differ by a compact operator in I(£). Note also that i) and ii)
imply iii) $? = I mod I(£).

There is a canonical non-local Hodge class operator S, for the pair (M, *). It is the
involution defined up to finite rank by S, is the identity on exact forms and S, anticom-
mutes with . The projectors associated with S, are compatible with the usual Hodge
decomposition of middle dimensional forms. Examples are the S, defined above for S,

An interesting analytical consequence of the formula (2) in the proof of Theorem 1 is
the

Corollary 2. Any Hodge class operator S on H defines a Fredholm module in the precise
sense that for the sup norm dense subalgebra of continuous functions on M?¢ satisfying
T |df|2¢ < oo, the commutators [S, f] where f denotes the multiplication operator associ-
ated to f, belong to the ideal I(£) of compact operators.

The theorem and corollary answers anew the question of Singer [10] about “construct-
ing the operator” cf. [6], [19].
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To any Hodge class operator we apply the algebraic procedure of [3] to construct
a refined Hodge class operator H satisfying the further conditions a) H 2=TIonHDb)
H~ + vH is trace class. This algebraic process Theorem 2 (§2) preserves locality.

The trace class operator L = (Hy +vH) H = HyH + « can be used in a simple way
to construct representations of the Hirzebruch-Thom characteristic classes or rather their
Poincaré dual homology classes. Assume M?¢ is oriented, then the kernel of L, L(z,z")
is a biform on M x M of bigree (£,£). The support of L(z,z') is near the diagonal if we
started with a locally constructed Hodge class operator. The trace L(z) on the diagonal
is a 2¢ form, or since M is oriented it is a measure in the Lebesgue measure class.

More generally, consider the cyclic expression {trace L(zo, 1) L(21,22) - .. L(Z2¢, zo)}
which can be considered as either a top dimensional form or as a measure on M xM x...xM
(2¢ + 1 factors), supported near the diagonal.

Theorem 3. The cyclic ezpressions {trace L(zo, ;) L(z1,73) ... L(z24,%0)} when con-
sidered as measures on M?29+! near the diagonal define Alezander Spanier cycles. If £
is even, these cycles for q even and if € is odd, these cycles for g odd represent the dual
Hirzebruch-Thom characteristic homology classes times 22911 (2ni)~9 ¢!/2¢!. In particular
if € is even L(z) = trace L(z,z) is a locally constructed measure whose total mass is twice
the signature of M%.

The algebraic construction used above to refine Hodge class operator, S — H, and
the check that the odd cyclic expressions in the kernel L(z,y) of L = H v H + v define
cycles cover only a page or two. Behind this calculation is the idea that any Hodge duality
operator defines a K-homology element because of the corollary, and we know since [4] and
[6] what this element and its Chern character should be. We also know from [5] an explicit
construction of the Chern character starting from K-theory of an algebra and arriving in
the cyclic cohomology of the algebra which for a manifold is related to Alexander Spanier
[3]. Concretizing these ideas is the page or two. The connection with Hirzebruch-Thom
classes is filled in using the index theorem as in [6], [1] and [3].

The local construction of the operators and the analytical content of the corollary are
easy consequences of the formula (2) on spheres relating the (canonical non local) Hodge
operator S, for any measurable * to the (canonical non local) Hodge operator S for the
standard structure on S2¢. This formula also relates to the other discussions.

On the Riemann sphere one knows the remarkable measurable Riemann mapping
theorem that any bounded measurable conformal structure is related by a qua.siconforma}l
homeomorphism w = ¢(z) to the standard one. Since S, is given by the kernel dw dy

(w=v)?
on (0,1) forms while S is given by the kernel z‘i;_zdv%'y on (0,1) forms our basic formula (2)
has a direct relationship with the measurable Riemann mapping theorem. Namely, we can
calculate w = ¢(z) from the kernel of S, by expanding out the formula (2).

In dimension 4 the operators S, were used in the analytical underpinnings of the Yang-
Mills discussion. The formulae (2) show since |u| < 1 that S, determines isomorphisms on
LP-forms for p a little greater than two. Applied to the curvature 2-forms this gives the
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extra regularity to get past the critical Sobolev exponent for the Yang-Mills connections
and gauge transformations. A corollary of this theory [1] was that some closed M* have
infinitely many distinct quasiconformal structures, and that some topological M* have no
quasiconformal structure.

Thus our local constructions for characteristic classes based on (2) are higher dimen-
sional relatives of the measurable Riemann mapping in dimension two and the Yang-Mills
theory in dimension four.

* Outside dimension four there is a proof [7] independent of the theory of [12] that stable
topological manifolds have a quasiconformal structure unique up to isotopy. Here stable
refers to the pseudogroup of homeomorphisms of R" in the connected components of the
identity or a reflection [9]. Thus this paper defines local characteristic classes for stable
topological manifolds independent of Novikov’s theory [12].

We can also apply our constructions or those of [7] and [8] to general topological man-
ifolds but this uses Kirby’s result on the stable homeomorphism conjecture [9]. The proof
in [9] properly contains Novikov’s theory needed for his original proof of the topological
invariance of rational Pontryagin classes.

Historical Remark. If gos denotes the Jacobian matrices of the overlap homeomor-
phisms of charts covering a manifold M ™, the curving or non-flatness of M™ is measured
by 0ap = {g;; d gap} which is a Cech 1-cocycle with values in matrices of 1-forms. Thus
if the overlap homeomorphisms have Lipschitz derivatives (or even 2°¢ derivatives in L")

there is a Chern-Weil type construction of characteristic forms by forming products and
traces. -

By considering normal bundles to smooth foliations and the Bott vanishing theorem
[15] one finds serious obstructions to the possibility of reducing this smoothness require-
ment and staying in the context of differential forms.

In our context of Lipschitz or quasiconformal manifolds we have exactly one less
derivative than required above.

It seems natural then try to interpret g~! dg as a distribution or as an Alexander
Spanier cochain. This was attempted in 1976 when the possibility of having Lipschitz or
quasiconformal coordinates appeared. However, the distribution idea founders because of
the impossibility of forming products. This difficulty is removed in Alexander Spanier at
the expense of non-commuting products. But then the trace step in the classical Chern-
Weil procedure becomes problematical. In other words there is an analytical qua algebraic
barrier to copying the pointwise “curvature” route to characteristic classes for quasicon-
formal or Lipschitz charts.

In this paper these difficulties are surmounted by using trace ideals of operators on
Hilbert space [5] and an algebraic addition to the Chern-Weil algorithm coming from
cyclic cohomology [5]. The quasiconformal charts provide enough analysis to “quantize the
manifold” in the sense of constructing a Hilbert space and a relevant operator replacing
curvature.
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This “quantized curvature” is then treated algebraically in a manner guided by the
formulae of cyclic cohomology. Perhaps the essence of the latter point is that the cocycles in
the cyclic context are just those multilinear functionals which when applied to (projector,
projector, ...) remain constant when the projector is varied by a homotopy.

The reader may recall that exactly this kind of consideration appears classically when
showing the Chern-Weil forms are cohomology invariants.

In summary we have treated a problem with one missing derivative in a classical
context using the ideas and tools of “non-commutative geometry” [16].
1. Preliminaries on quasiconformal geometry

A quasiconformal (qc) homeomorphism k between two open domains (21, Qin R" is
a homeomorphism with the property that relative distances are boundedly distorted, i.e.
for each z in ;,

— max{|h(z) —h@)l; le—yl=7} _ [
) M () R eyl =) ) SR

We also assume the analogous statement for h~!.

Gehring [15] proved that when n > 1 a gc-homeomorphism is a.e. differentiable;
moreover, the first order partial derivatives of the component functions of h belong to the
Banach space L+, where £ = ¢(K) > 0. It follows that his a Holder continuous function
with exponent ¢, h is non-singular with respect to the Lebesgue measure class, and the

best K that works in (1) almost everywhere for h also works for h~1.

Let g be an arbitrary Euclidean metric on the tangent space to R" at some of its
points zo. Recall that the metric g and all other similar metrics rg, where r is an arbitrary
positive real number, define the conformal class [g] of the metric g.

If [go) and [g;] are two conformal structures, the conformal distance between them is
by definition

max{l”‘gl : |v|go = 1}

min([olg, + e =1}

(2) d([go), [91]) = log

From now on we suppose that the dimension n = 2¢ = even, and we choose the
standard orientation on R™. '

Let A denote the vector space of all differential forms of degree £ at zo. For any
Euclidean metric g as above, the Hodge star operator *, associated to g defines an endo-
morphism

*xg: A > A
with



2 =(-1)".

The main property of the operator. *, acting on A is that it remains unchanged under
dilations of the metric g, i.e. it depends only on the conformal class of g.

~ We let v, be the involution of the complexification A¢ of A given by
3) Vg = i x g
We let A*(g) be the +1 eigenspaces of ;. These subspaces are maximal definite subspaces
for the quadratic form '
w—=wAw.’

The conformal distance between two conformal classes [go] and [g] may be estimated
in terms of the relative position of the eigenspaces AZ. Indeed, there exists a unique linear

mapping
4) , 1 A™(g0) — A%(g0)

with the property that the graph of p is precisely A7(g). The operator norm of u relative
to the metric go satisfies :

(5) ‘ lnlgo <1
and
L, 1+l 1+ Ju
6 = log — £ < d(lgo), [91]) < log T

A field ¢(z) of conformal structures over a domain U in R" is called a bounded
measurable (bm) conformal structure on U if there exists a Riemannian metric g over U,
whose components are measurable functions, such that for any z in U, c(z) = [9(z)], and

d([g(z)],[e]) £ C < oo,
where e denotes the standard Euclidean metric.

Equivalently, c is a bounded measurable conformal structure iff the corresponding field
of endomorphisms g, relative to e, is a matrix field with measurable entries, and

lullo = suplu(z)] < 1.
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If c is a bounded measurable conformal structure on U, then 7. is a field of matrices
with bounded measurable entries. If ¢ is a bounded measurable conformal structure on
V and h : U = V is a qc-homeomorphism, then h*c is a bounded measurable conformal

structure on U because a qc-homeomorphism induces uniformly quasi-homotheties on the
tangent spaces, a.e.

A gc-manifold is a topological manifold equipped with an atlas whose changes of co-
ordinates are qc-homeomorphisms. It possesses a well defined measure class, the Lebesgue
measure class, since qc-homeomorphisms are absolutely continuous. The tangent bundle
of a qc-manifold is a measurable real vector bundle.

A bounded measurable conformal structure on a qc-manifold is a field of conformal
structures on its tangent spaces whose restriction to any qc-chart is bounded measurable.
Any paracompact qc-manifold has such structures.

On a compact smooth manifold, a conformal structure is bounded iff the conformal
distance (defined point by point) between it and the underlying conformal structure of a
smooth Riemannian metric, is a bounded function.

On a compact qc-manifold M the space L™ (M,A") of r-forms with coefficients in
L™" n = dim M, is well defined. Any bounded measurable conformal structure specifies
a Banach space norm on L™" by:

()™ = /M /7.

Given wy € L™"(M,A"), wy € L™ ™ (M,A™!) we write dw; = wy iff this holds, in the
sense of distributions, in any qc local chart. This yields [17] a densely defined closed
operator d : L™/™ — L™"*! which commutes with qc homeomorphisms. We let Imd be
the image of d, it is closed in L™/"*! provided r > 1 [17] [1].

The underlying topological vector spaces only depend on the quasiconformal structure.

2. Statement of the main result

Let M be a compact oriented quasiconformal manifold of even dimension 2¢0. Let
[9] be a bounded measurable conformal structure on M and 7, 72 = 1, the associated *
operator in the Hilbert space H = L*(M, AY) of square integrable forms of degree £ on M.

Given an open neighborhood U of the diagonal in M x M and any bounded operator
T in H = L*(M, %), we say that Support (T) C U iff the following holds for any open
VcM

(1) w € H , Support w C V = Support (Tw)CUoV

where UoV ={zeM; IyeV, (z,y) €U}

For any p € [1, 00 the following conditions define two sided ideals of compact operators
in Hilbert space. We let for any compact operator T in H, pn(T) be the n-th characteristic
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value of T, i.e. the n-th eigenvalue of |T| = (T*T)!/2, or the distance in operator norm
between T and rank n operators.

(2) LP(H) = {T compact ; i pn(T)? < oo}
1

3) - L) (H) = {T compact ; pn(T) = O(n=1/7)}.
We can now define the following key notion:

Definition 1. Let U be an open neighborhood refining that of Hodge class operators in
the introduction of the diagonal in M x M. A U-local Hodge decomposition is a bounded
operator H in L3(M,A*T¢) such that:

a) H2 =1

B) Support HCU :

v) (H — 1)/ Imd € L34 (= I(¢) of the introduction)
6) Hy + vH € L! (= trace class by definition).

Giving H is the same as giving the decomposition of H = L*(M, A'T¢) as the linear
sum of the two definition closed subspaces: '

(4) {€eH; HE==££}

We shall now explain how to construct for each g € {0,1,...,£} an Alexander Spanier
cycle on M from a U-local Hodge decomposition. To define Alexander Spanier homo-
logy on a compact space X we consider for each integer d the linear space A4 of totally
antisymmetric measures o on X%t!, Such a measure o is uniquely determined by the

value of o(p) = [¢do on bounded borel antisymmetric functions ¢ on X d+1  We let
§: Ay — A4_; be the boundary operator given by the equality:

. |
(%) (69)0) = (-1 [ol@o-.s Fjovoza) do Vo
0

Let U be a neighborhood of the diagonal in X x X. We shall say that o € A4 is U-local
iff: '

(6) Supporto C {(z;) € X**!; (zi,z;) €U Vi,j € {0,1,...,d}}.
J J
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One checks that condition (6) is preserved by é. This defines the complex (Ay, §) of U-local
e.lex.ner.xts of (A4,8). The Alexander Spanier homology H,(X, R) is obtained as the projective
limit }Ll_l_ H*(Ay,6), when U runs through all open neighborhoods of the diagonal.

. Given a measure space (X,v) and a measurable hermitian vector bundle A on X, the
Hilbert-Schmidt operators in H = L?(X, A) are all given [18] by measurable kernels,

(4) | k(z,y) € Hom(Ay, A;) z,ye X
such that:
(5) /;(tra.ce(kb(:c,y)‘ k(z,y)) dv(z) dv(y) < oo.

In particular, for any such kernel k the following expression defines a measure o on
X4t for any d > 1:

(6) O'((p) = A‘+1 tra'ce(k(anzl) k(xl,:l.‘g)...k((l,'d,.’l,‘o)) 97(‘1"01“ wxd) H dV(zi)

as follows from the inequality:

(M lo(@)] < IKIE el Vi € L®(X 4,08
We shall use the notation:

(8) trace(A4*'k) = Total antisymmetrisation of &

(where o is associated to k by (6)).

For d = 0 this formula continues to make sense provided the operator in H = L%(X,A)
associated to k is of trace class [18].

We can now state the main result of this paper.

Theorem 2. Let M be a compact oriented quasiconformal manifold of even dimension
20, v the Z/2 grading of H = L*(M, ATE) associated to a measurable bounded conformal
structure [g) on M and U a neighborhood of the diagonal in MxM.

1) There ezists a locally constructed U-local Hodge decomposition H.

2) Let H be a U-local Hodge decomposition, k = H+yH + v and d an even integer. Then
the measure o = trace(A+1k) in a U? local Alezander Spanier cycle of dimension d.

3) The homology class of o among U? local cycles, ¢ = d(6€ + 2) is independent of the
choice of H.

4) The homology class of o is equal to Ag(L2¢—a N [M]) where L is the Hirzebruch-Thom
L-class and where Ag = 22™+1 (27i)~™™ (2—':"17,- , 2m =d.
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3. Local construction of a U-local Hodge decomposition

Let M be a quasiconformal manifold and [g] a bounded measurable conformal struc-
ture on M. In this section we shall show how to construct local Hodge decompositions H
using a covering of M by domains of qc local charts:

Pa:Va—S 2

The obtained formula for H will be algebraic in terms of the following ingredients:
1) A partition of unity subordinate to the covering (Va) of M.

2) The pull back by p, of Hodge decompositions on S 2¢ associated to a bounded measurable
conformal structure which agrees with pa[g] on pa(Va).

We shall begin by describing the canonical Hodge decomposition on 52t associated to
a bounded measurable conformal sructure.

a) Canonical Hodge decomposition on S

Let [go] be the standard conformal structure on the sphere %, and [g] an arbitrary
bounded measurable conformal structure on S2¢. Let 79, 7 be the corresponding * op-
erations in the vector bundle A of middle dimensional forms. If we let A3 be the two
eigenspaces of 79 we get two subbundles of A and a unique measurable bundle homomor-
phism:

pe iAo = Ay
whose graph at each point p € S% gives the subspace:

{weAhy; w=-w}

We endow the vector bundle A with the metric associated to the standard conformal

structure [go]. The boundedness of the measurable conformal structure [g] then means
that: :

(1) lp+lloo = Ssgg le+(p)l < 1.
Let p = [#0, E J’ ] viewed as an endomorphism of the vector bundle A. One has:
+ .

(2) BYo=—Yo i, p=p"

3) y=1+p) 01+
Indeed 42 = 1 and if 7o £ = —£ one has ¥(1 + p)§ = —(1 + p)¢ as desired.
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Finally on the vector bundle A the metric associated to the conformal structure [g] is
given by:

(4) (@rwaly = o170 7 wr)so = (1, (1—3—‘) w2>“ .

Note that since ||u|| < 1 the operator (1 — u)(1 + p)~! is positive. We now consider
the Hilbert space Ho = L2(S5%, A) with the inner product given by [go]. We view all the
above endomorphisms of the vector bundle A as operator in Hy. The equalities (2) and
(3) continue to hold.

" The standard Hodge decomposition on S?¢ decomposes M as the direct sum of two
orthogonal subspaces, the exact forms and the coexact forms. Let Hy be the linear operator

such that Hy w = w for any exact form and Hy w = —w for any coexact form. One has:
(5) H0=HJ,H§=1
(6) Hy 70 = =70 Ho.

Moreover since H, is a standard singular integral operator of order 0 the following subal-
gebra A(S?%) of the algebra of continuous functions C(5%) contains all smooth functions
[2] and is therefore norm dense:

(7) A(S%) = {f € C(§*) ; [Ho, f] € L34}

where f € C(S?!) is considered as a multiplication operator in L(5%, A) and recall L£(26:)
is the two sided ideal of compact operators in Hy given by the condition:

(8) T € L6 & po(T) = O(n~1?)

where pn(T) is the n-th characteristic value of T

Let us now consider on the locally convex vector space Ho the new inner product
given by the metric g, using (4) this can be expressed by:

) (rvwn) = (o 174 o)

The Hodge decomposition on S?¢ relative to the bounded measurable conformal structure
[g] is given by:
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Proposition 1. a) The orthogonal complement for the inner product (9) of Imd =
{w; Ho w=w} is equal to y(Imd).

b) Let H be the linear operator equal to 1 on Imd and to =1 on v(Imd), then:
H=(1-p)"" (Ho—p) Ho(Ho— )™ (1 - p)-

Proof. Since H2 =1 and ||u|| < 1 the operator Ho — p is invertible. Let us consider the
operator T = (1 — p)~! (Ho — p) Ho(Ho — p)~! (1 — p). It is conjugate to Ho so that
T2 = 1. Its eigenspaces are obtained from those of Ho by applying (1 — p)~! (Ho — 1)
Hence {¢ ; T¢ = €} =Imd. One hasy =(1— #)~! vo(1 — 1) and hence 4T = —Ty which
shows that {¢ ; T¢ = —€} = y(Imd). The orthogonality of Imd with yo(Imd) for the
inner product ( )o implies the orthogonality of Im d with v(Im d) for the inner product (9),
using Yoy = i—:ﬁ Thus we have shown a) and b).

Corollary 2. For any f € L>®(S%") and any two sided ideal J of operators in Ho one has:

[Ho,fleJ & [H, fle J.

Proof. Since yu commutes with f and [H,] satisfies Leibniz rule, direct calculation yields

(10) [H, f] = —(1 + p)(Ho — p)* [Ho, fi(Ho — )™ (1 = ).

Corollary 3. For any two sided ideal J of operators in Hilbert space the class of functions
f € L=(S?) such that [Hy, f] € J is invariant under gc-homeomorphisms.

Proof. Let ¢ be a qc-homeomorphism of $? then ¢ is a.e. differentiable and it defines a
bounded operator U(yp) in Ho = L?(5%,A) by the formula: '

(11) Up)w=(p)*'w VYweH,.

This yields a bounded operators in H, such that

(12) U(e) f U(p)" = fop™  Vf € L=(S%)

(13) | U(y) Ho U(p)™" = Hy

where [g] is the mb conformal structure (¢~!)* [go]. To prove (13) note first that U(y) Imd =
Imd (cf. [1]), while (U(p) w1, U(p) wa)o = (w1,wz)g Vw1,w2 € Ho. Thus U(p) HoU(p)?
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is equal to 1 on Imd and to —1 on its orthogonal complement for the inner product
( )g- Hence U(p) Hy U(p)™! = Hg. Let then f € L>(S§%), if [Ho, f] € J then
[U(p) Ho U(p)~!, U(y) f U(p)~'] € J and [Hy, fop~1] € J so that [Ho,fop™leJ
by the above corollary.

We shall now see that, modulo the ideal J = £(24%), the class of the operator H, is
locally determined by the bounded measurable conformal structure [g].

Proposition 4. Let U c S?¢ be an open subset and f1, f, be continuous functions with
support in U. Let g, g2 be two bm conformal structures on S which agree on U. Then

fi(Hy, - Hy, ) f2 € LOO),

Proof. We can replace f; by smooth functions equal to 1 on the support of the previous
ones. Thus we can assume that f; € A(S52¢ ). By proposition 1 both operators H, g; are the
sum of a geometrically norm convergent series:

(14) Ho = (1 pi)™" (Ho—pi) ) (pti Ho)™ (1 — pi)
0

whose terms are monomials of the form

(15) a1, Ho az,i Hy...an; Ho any1,i = Ty g

where a; ; belongs to the commutant of L*°(5%) in H, and where fiar1=fi a2 for all
k. It follows using [Hy, f1] € L2 that

(16) fl(Tn,l - Tn,?) € £(2l,oo)

One thus expresses f;(H o — Hy,) as the sum of a series convergent in the Banach space
L(26°) and the conclusion follows.

B) The class of H modulo £(2¢:)
Let now M be a quasiconformal manifold of dimension 2¢.

Let A(M) be the subalgebra of C(M) of functions f such that for any qc local chart:
VA& S"andany h e Ce(p(V)) N A(S*) one has b fop~! € A(S?). By corollary 3 one

has p*(A(5%) N Cc(p(V))) C A(M) for any qc local chart V' 5 §2¢, It follows that A(M)

is a norm dense subalgebra of C(M) and that it has partitions of unity subordinate to any
finite open covering of M.

Let [g] a bounded measurable conformal structure on M.
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Let (V,) be a finite open cover of M by domains of qc local charts po : Vo, — S?¢ and
Ja a bounded measurable conformal structure on S2¢ which agrees with pa[g] on pa(Va)-
For each a let H, = H,_ be the corresponding Hodge decomposition on 52, Let (pa) be
a partition of unity, o € A(M), support ¢o C V4 and for each a let ¢4 € A(M) be equal
to 1 in a neighborhood of Support ¢4, with Support ¥a C Va. We let as above A be the
measurable vector bundle A’ T¢ on M and we consider the following locally constructed
operator in L%(M, A):

(17) S =% Ya (Ha)pa Pa
where we used po to let Hq act in LZ(M,A).

Proposition 5. The class of S modulo L% only depends upon the bm conformal
structure [g] on M and one has:

1) Sy +4S € (36

2) [S, fl € L34 Vfe AM)

3) §2 —1 € L6

4) (S —1)/Imd € L6,

Proof. We first need to show that S—5' € £{2¢°) for any two operators S, S’ constructed
by formula 17. Using the compactness of M it is enough to show that for any ¢ € M there
exists f € A(M), f(z) # 0 such that (S'— §')f € L4, Using a local qc chart the
proof follows from proposition 4. To check 1) note that any of the operators S given by
17 satisfies Sy +vS =0.

The condition 2) follows from Corollary 3.

To check 3) we take a representative S = £ ¥o Ha 9o constructed from a covering
(Vo) by domains of qc charts, such that for any o the open set UVs, Vg N Vo # 0 is the
domain of a qc chart. The result then follows from corollary 3 and proposition 4.

Let us check 4). On the sphere S2¢ the operators H,, g a bounded measurable con-
formal structure, are equal to 1 on Imd (proposition 1). Thus, using corollary 3, the
operator S = I 9o Ha pa satisfies (S — 1)/Eq € L(26:>) where E, is the closure
in L2(M,A)) of {dw ; w € L2/¢-(V,,A)}. Thus 4) follows if we show that the map
(wa) € ®Es = T wq € L?(M, A) is surjective on Imd. Let Py (resp. Qa =7 Pa 7) be the
orthogonal projection on E, (resp. v E4). For any o, B the closed subspaces E, C Imd
and v Eg C v(Im d) are orthogonal. Thus it is enough to show that the following operator
is equal to 1+ compact:

T=2(Pa+Qa) ‘PG'
(Its range is then closed by the Fredholm theory.)

Let us show that for each a the operator (Pa+Qa) $a—a is compact. We can assume
that M = S?¢ is the sphere. By proposition 1 a) one has the orthogonal decomposition
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LS, A) = Imd ® v Imd, where d: L2¢/¢~1(S%,A*"!) — L?(S5%, A?) has closed range.
(We assume £ # 1.)

Using a compact operator R : L2(S2¢,A) — L2¢/¢-1(§2¢ A*~1) such that dR = 1 on
Imd we thus get a pair of compact operators R; : L?(S%,A) — L2/¢=1(5%, A1) such
that d R, ++v d Rz = 1. The conclusion then follows using the following equality, with ¥
a smooth function with support in V, and equal to 1 in a neighborhood of Support @a:

¢w=d(1,bw1)+‘yd(1,bw2)—d1l:/\w1—‘y(dt/)/\wg) w; = R; w.

4. Proof of Theorem 2.

Proof of 1). First choose a neighborhood V of the diagonal such that V2? C U, ¢ = 6£+2.
Next (proposition 5) let S be an operator such that:

a) Support (S)CV

b) S2-1¢ L£(2¢,00)

c) Sy=—-4S

d) (S -1)/Imd € L?),

Let then § = S? — 1. By construction § commutes with S, it also commutes with v
by c). Let ¢(t) be the unique polynomial of degree 2¢ such that:

(1) (1 +t)"Y2 = q(t) + O(t***!)  (for t small).

Let p(t) be the polynomial given by:

(2) p(t) = (1+1) q(t)® - 1.

We shall define an operator H by the formula:

®) 2=50+(1-(F32) #0) a) s

First note that 8 is V°2 local, thus since ¢ (resp. p) has degree 2¢ (resp. 40 + 1) we see
that T is U local as required. Next, as § € £L(26°) by b), and as p(t) = O(t2¢*?) we see
that p() € L!. We thus have:

4) Hoy ++H = 2p(8) € L*

where we used c) to get the equality. |
Since p(8) € L and 8 € L(26:°) we have S — H € L(2¢°°) and hence, using d),

15



(5) (H —id)/Imd € L4,

It remains to check that H2 = 1. Note first that the two terms v p(6), H — v p(6)
anticommute so that H? is the sum of their squares:

# = o0y +a0? (1- 3250 (1-25200) 8°
— §6)? +q(0) (1= p(6) (1+)=1.

Before we begin the proof of 2) we recall that the cyclic complex (C3,b) of an algebra
A is given by:

(6) C?(A) = {multilinear forms ron Ax...x A (n+1 times)
~ such that 7(a',...,a" a%) = (-1)" 7(a°,...,a") Vol € A}

n

(7 (Br) (a0 iat = Z(—l)j (a2, s ottt Lty
0

SHE At e O | Val € A.

We note also that if J is an ideal in a larger algebra A and if B C A is a subalgebra
such that J N B = {0}, then the natural extension by 0 on B of the cochains 7 € Cx(J)
satisfying:

(8) ‘r(ao,al,...,aj Saalitl L gl = T(ao,al,...,aj,5 altl o a®)

Va'e A, Vj,V6€B
commutes with the coboundary b of Cx(J + B).

Proof of 2). It follows from [3] lemma 2. But we shall give the details here. By con-
struction o = trace (A%*1 k) is U°? local. We need to show that bo = 0. We shall first
show that, with J the algebra of trace class operators in H, the following formula defines
a morphism of complexes: (4%, §) 5 (C3(J),b), where (A*,§) is the complex of bounded

measurable totally antisymmetric functions (straight cochains) on M.
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9) ro(K0, . ") =

(-1 /M trace (K(z0,21) k'(21,22) ... (2, 20) @(01. - Za) [] ()
Vo € A™.

The coboundary 6 in (A*, ) is given by:

n+1 '
(10) 6(19 = Z(—I)J ®i ‘Pj(zo, see 7zn+l) = 80(30’ sy ¥]7 cee ,$n+1)-
0

Next, when one computes 7, j > 1, the variable z; does not occur in ¢; and thus one
gets:

(11) T (K0 E™ YY) = 1 (RO, BT R, R,

For j = 0 it is the variable o which does not occur in @ and using the cyclicity of the
trace one gets, using the antisymmetry of ¢:

(12) Too(Koy .., k™ TY) = (=1)"H! T (k™Y KO kY, .. k).

Thus using 10 we get:

(13) 5o =bT, Vp€ A",

Next note that the compatibility condition (8) is fulfilled by any element of the algebra
= {Xo+ A1 7; Aj € C} generated by the operator v in H. We shall still denote by 7
the extension of the above morphism of complexes to (C3(.A),b), A= J + B.

Let us now check that bo = 0, i.e. that o(6p) = 0 for any ¢ ‘€ A%, Using (13) we
know that the cyclic cocycle 75, is a coboundary and thus that it vanishes when evaluated
on an idempotent:

(14) 754(P,P,...,P)=0 VP, P?=P, Pe€A.

Applying this to P = H 1532 H = 1 (142) + 1 k gives the desired result.

Proof of 3). Let Hy, H; be two U-local Hodge decompositions and Y = H, — Ho. We
have:
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(15) . Y/Imde L%
(16) Yy+qY € L.
As Imd & y(Im d) is of finite codimension in H it follows that:

(17) : _ Y € £(26),

Let then H; = Hy + tY. We have:

(18) Support H, CU

(19) H? -1 ¢ £
(20) (H; - 1)/Imd € L%
(21) Hey++v H e Ll

It follows that S,b= 3(Hi—~ H, v) anticommutes with v and satisfies (18) (19) (20). Thus
with ¢ and p as in (1) (2) we get a family H; of U™ local Hodge decompositions:

(22) m=vp00+ (1-(52) p(00) () S B=Si-1

For t = 0 (or for t = 1), the operator 6 = S2 — 1 belongs to L! we can thus, keeping the
relation (2), replace the polynomial ¢ by 1+ (¢ —1), A € [0,1] and still get a family of
U™ local Hodge decompositions joining Hy (for A = 1) with

: 1 ' 1
(23) H"=700+(l—(—;l) 90) So, 60=5;-1, 50='2'(Ho—7 Hyp 7).

Since the obtained path of idempotents (H} (132) H;) in A are piecewise polynomial it
follows that the corresponding straight cycles are U™ homologous. This is, using (13), a
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restatement of the homotopy invariance of the pairing of K-theory with cyclic cohomology

(8D

It remains to compare in the same way Hy with Ho. One has by hypothesis So— Hy €
LY, 6y € L! thus: '
(24) Hy -Hoe L'

It follows that the idempotents

e = H, (1;7> Hy , " =H, (—1;7) HY

-

satisfy the equality e” = W e W~! where W = H{' Ho € 1+ J as well as W~!, while W
is U2 local as well as W—!. One then considers the following smooth path of idempotents

e(t) € Mz(.A) connecting [8 8] with [g 3,] and with support in U3:

w-[3 )l P [ o]

where R; is a rotation matrix.

Using again the homotopy invariance of the pairing of K-theory with cyclic cohomology
one gets the desired result. '

Proof of 4). We shall first check directly that [, k(z,z) = 2 Sign(M). Since the Alexan-
der Spanier cocycle given by the constant function ¢(z%) = 1 is everywhere defined, the
proof of 3) shows that [, k(z, z) is independent of the choice of the Hodge decomposition
H, without any U-locality hypothesis. We can thus choose H = 2P — 1 where P is the
orthogonal projection on the closed subspace Imd. One has P ++v P v + K =1 where K
is the harmonic projection ([1]). Thus one gets:

HyH+v=2K7

Trace (H v H + v) = 2 Trace (Kv) =2 Sign(M).

To compute the other homology classes let us first assume that M is a smooth mani-
fold. By [3] these classes wy, represent 229+ times the Chern character of the K-homology
class of the operator H = 2P — 1, with P as above.

Thus it is enough to show that the K-theory class of the symbol of H, [¢(H)] €
KO(T*M) is the same as the K-theory class of the symbol of the signature operator. The
latter is given by the odd endomorphism s(z,£) = e¢ + i¢, £ € T2 (M ) of the pull back of
A* T¢ (oriented by v = i (-l)mi-"u) to T*M. (Here eg, i¢ are respectively exterior and
interior multiplication by £.) The symbol o(H) of H is the same as the symbol of 2P — 1
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where P is the orthogonal projection on the image of d. Its restriction to the unit sphere

{EeT*V, ||&]| =1} is thus given by:
o(x,8) = e¢ 1g —1g €¢ acting on A¢ T¢.
Let u(x,€) = 7‘3 (1= €eg +i¢), then for ||€]| = 1. it is an invertible operator in A* T¢ with
inverse u~!(.r,§) = 7‘; (14 e¢ —i¢). Onc has
(usu~™")(z,€) = e ig —i¢ e¢ actingon A* Tg¢.
By construction u commutes with 4. This shows that the K-theory class [s] - [o] is given
by the symbol: :
p(x.6) = egig—ic e¢ actingon A* T¢c O At T,

with the Z/2 grading 7. But using the canonical isomorphism, for p # ¢,

AP Te~ (AP TED AP THE | w—o jwtyw)
one checks that the class of p is equal to 0.

This completes the proof the classes we construct agree with Hirzebruch-Thom classes
in the smooth case. The extension from the smooth case to the qc case can be done using
cobordism as in [6]. One can also use K-theory as in [21].

Remarks. 1) Let Af be a compact quasiconformal manifold, one can characterize the
subalgebra A(M) of C(AI) (section 3) by the following simple criterion '

f € A(M) & df € L*(M,T¢).

A proof of = follows from [25] and the converse from (21] plus an identification of the
Besov space there with this Sobolev space. It is sufficient by §3 to work with the standard
singular integral opcrator on the sphere. For a more complete discussion see the Appendix.

2) Let M be a polyhedron of dimension 2¢ with homological properties to be specified.
Lot H = @M. be the direct sum of the Hilbert spaces Mo of square integrable ¢ forms
on the 2¢ dimensional simplices. For each vertex v let E. be the closed subspace of M of
houndaries of forms with support in the double star of v. Let v be the * operation on
H given by the canonical flat metric on each 2(-simplex (with equilateral length). Let b,
be the barycentric coordinate assigned to the vertex v. Then let us consider the following
opcerator: ' :

S (Po—vPem) bs=S

where P, is the orthogonal projection on E,. It is clear that .S) is localised, is equal to
1, modulo £(2¢:%) on the image of d and anticommutes with 7. Now we assume that
E,. and 4(E,) arc a local decomposition, up to compacts ie. (1 =P, —v Py 7)/ *®ha
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is compact of forms on the (first star). These are the prescribed homological conditions.
Then S? — 1 is in £(26°) and one can use the above formulae to define characteristic
homology classcs. The involved Hilbert space theorctical data are of the same nature as
those appearing in transfer matrix theory of statistical mechanics and suggest a purely
combinatorial approach to the K-orientation of [4] in the extended context of spaces with
singularities.

Appendix. (with Stephen Semmes) An interesting analytical point.

There is an intercsting issue conccrn’ing operator theory and classical analysis which
is rclated to the topics of this paper and which does not seem to have been treated in the
literature. For the sake of clarity we discuss this issue in a restricted setting. Let T be a
0th-order pseudodifferential operator on R?, d > 1, which we also assume to be translation
and dilation invariant and nonzero. Thus T could be represented by a Fourier multiplier
which is homogencous of degree 0, and T is a bounded lincar operator on H = L%(R%).

Under what conditions on a function f(r) on RY is it true that [f,T] € L&) (H)? ©
(Recall that £{4°)(H) denotes the space of compact operators A on H such that p,(4) =
O(n~%), where jto(A) is the nth eigenvalue of (A".-l)‘li.) This type of question has been
studied cxtensively (sce [20], for instance), but this particular case involves a critical index
and has some special features. It follows from [27] that

(1) [f.T)e L & fe Osc"®(R*) when d > 1,

where Osc?*(R?) is a variant of a Besov space whose dcfinition will be reviewed soon.
For many purposes it would be preferable to work with a Sobolev space instead of Osc?™.
It was observed in (Theorem 2.2 on p 228 in) [28] that

(2) WH(RY) C Osc*(RY) when d>1,

where TW14(R?) is the Sobolev space of locally integrable functions on R¢ whose distribu-
tional first derivatives all lie in LYR"). In fact we have the following

Theorem. When d > 1, WH(RY) = 0sct=(R%). and so [f,T] € L(4)(H) if and
onlyif f € “’l'd(Rd). o ’

It is very important here that the dimension d is the same as the exponent in the
function spaces; otherwise this theoren would not work. This theorem is rather surprising
from the perspective of classical analysis, because Soholev spaces normally coincide with
Besov-type spaces only when the exponent is 2. [rdeed, the second half of the thecorem
had been conjectured by Juak Dectre.
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We nced only show that the inclusion opposite to (2) holds. Our original proof of
this was obtained by understanding the Dixmier trace of |[f, T)|¢, which in fact reduces to
fa, IVf (aj)l“ dx for certain T. We shall sketch a more direct proof below.

Let us recall the definition of Osc®*°(R?). This space is a little bit nonstandard; at
this critical index, the standard Besov space is distinct from this one.

Given (7,t) e R xRy = Ri’”, let B(z,t) denote the ball with center z and radius
t. Let m, ((q) denote the average of the locally-integrable function g(y) on R?. For such a
~ function we lct ©(x,t) denote its average oscillation on B(xr,t), which is given by

(=, t) =mg(|lg — mz(9)])-

We shall define Osc®>°(R?) in terms of a global measurement of these localized oscillation
quantitics. ~

Let {(xj.t;)}; denote a reasonably thick hyperbolic lattice in R4*!: we require that
every point in Ri"’l e no further than 10~2 from some (v;,t;) in the hyperbolic metric
and that no pair of the (r;.t;)’s are closer to cach other than 10-3. Thus the numbers
O(z;,t;) measure the average oscillations of g at all possible locations and scales.

Let 6,,, n = 1,2,3,..., denote the n'® largest value of O(zj,tj). In other words, we
reorder the ©(xj,t;)’s in decreasing size. Then

g € Osc"RY) & 0, = O(n'.%).

This definition does not depend on the particular choice of the lattice (z;,¢;). (The point
of (1), incidentally, is that the 8,'s for f can be related to the pa([f,T])’s.)

‘The main step in the proof of the theorem is to show that if g is smooth then

n—o0

(3) (j |Vg(z)|¢ d:tf)z < C lim sup nt o,
R4 '

for some constant C which does not depend on g. Once we know this, then we know that
the Osc?>°(R?) norm controls the W14(R?) norm for smooth functions, and the proof of
the theorem can be finished with a standard approximation argument (which we omit).
(The main point is that if you convolve g € Osc®®(R?)-with a function in LY(RY) with
hounded norm, then you get a function in Osc?*°(R?) with bounded norm.) The proof
of (3) that follows is pretty sketchy, but it would not be too difficult to give a detailed
argument.

Let us first try to understand the right side of (3) better. For each A >0 let N (A) be
the number of j's such that ©(z;,t;) > A. Thus On(x) > A, and so )

(4) lim sup nt 0, > lim sup N(/\)} A

n—00 A=—0-
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Now let us try to understand the left side of (3). For the time being we shall work on
some fixed large cube K. Let {Q¢} be a partition of I\ into tiny cubes of sidelength s. If
s is small enough, then Vg will be almost constant on cach Qq, because g is smooth. Let
G denote the approximate value of [Vg| on Q. -

| Set Q¢ = Qex(0,s) C R{FL. If (,1) € Q¢, then O(x,1) is approximately tGe. For each
¢ let N¢()) denote the number of j's such that (zj,t;) € Q¢ and O(zj,t;) > ANIHsGe< A
then we should have that N¢()) is approximately 0, while if sGe > X then N¢()) should

~

be approximately the same as the number of j's such that (zj,t;) € Q¢ and tj > A Gyl
Simple considerations of hyperbolic gcometry imply that N¢()) is roughly proportional to

d. . . s X
(1(-;"‘-) in this case. This is also about the same as what we got in the first case.

Since N(A) > ¥ N¢()), we conclude that N()) should dominate DS (sG;)‘,
(4 [ 4

modulo controllable errors. Form (4) we get that

. : ¥
lim sup n? @, is roughly larger than (Z(ch)‘) .
¢

n—oo

On the other hand, ¥ (sG¢)? is just a Riemann sum for [, |Vg(z)|¢ dz. In the limit we
¢

get that

¥
(/ |Vg(.r)|" d;‘r) < C lim sup nt 0n,
N

n—20
where C docs not depend on g or K. This implies (3), and proves the theorem.

Notice, incidentally, that the proof of (3) works also when d = 1. However, the
approximation argument that gives Osc?=(R?%) C 1W14(R?) when d > 1 gives only
Osc!'®(R) C BV(R), where BV(R) denotes the space of functions on R of bounded varia-
tion (i.c., whose distributional derivatives are finite measurcs). The reciprocal inclusion is
false, because jump discontinuities are bad for Osc!'*(R).
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