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x1. Introduction. According to Sullivan, a space E of unimodal maps with the same
combinatorics (modulo smooth conjugacy) should be treated as an in�nitely-dimensional
Teichm�uller space. This is a basic idea in Sullivan's approach to the Renormalization
Conjecture [S1], [S2]. One of its principle ingredients is to supply E with the Teichm�uller
metric. To have such a metric one has to know, �rst of all, that all maps of E are
quasi-symmetrically conjugate. This was proved in [Ji] and [JS] for some classes of non-
renormalizable maps (when the critical point is not too recurrent). Here we consider a
space of non-renormalizable unimodal maps with in a sense fastest possible recurrence of
the critical point (called Fibonacci). Our goal is to supply this space with the Teichm�uller
metric.

Let f be a unimodal map with critical point c . A Fibonacci unimodal map f can be
de�ned by saying that the closest returns of the critical point occur at the Fibonacci mo-
ments. This combinatorial type was suggested by Hofbauer and Keller [HK] as an extremal
among non-renormalizable types (see [LM] for more detailed history). Its combinatorial,
geometric and measure-theoretical properties were studied in [LM] under the assumptions
that f is quasi-quadratic, i.e., it is C2 -smooth and has the quadratic-like critical point
(see also [KN]). We will assume this regularity throughout the paper.

A principle object of our combinatorial considerations is a nested sequence of intervals
I0 � I1 � ::: obtained subsequently by pulling back along the critical orbit. Our proof
is based upon the geometric result of [LM] which says that the scaling factors �n =
jInj=jIn�1j characterizing the geometry of the Fibonacci map decay exponentially. It
follows that appropriately de�ned renormalizations Rnf are becoming purely quadratic
near the critical point. This reduces the renormalization process to the iterates of quadratic
maps.

The next idea is to consider a quasi-conformal continuation of f to the complex plane
which is asymptotically conformal on the real line. Then we consider complex generalized
renormalizations, and prove that the renormalized maps are becoming purely quadratic
in the complex plane as well. Hence the geometric patterns of renormalized maps are
subsequently obtained by the Thurston pull-back transformation (up to an exponentially
small error) in an appropriate Teichm�uller space. It follows that these patterns converge
(after rescaling) to the corresponding pattern of the quadratic map p : z 7! z2 � 1 . In
particular, the shape of the complex puzzle-pieces converge to the Julia set of p , see
Figure 1 (this is perhaps the most unexpected result of our analysis).

To each renormalization we then associate a pair of pants Qn by removing from the
critical puzzle-piece of level n two puzzle-pieces of the next level. Using a same type of
argument as above, we show that the pairs of pants Qn and ~Qn stay on bounded distance.
This yields the quasi-conformal equivalence of the critical sets of f and ~f .

To complete the construction of the quasi-symmetric conjugacy, we apply a Sullivan-
like pull-back argument. However, this is not quite straightforward since there is no di-
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Figure 1. A Fibonacci puzzle-piece (below) versus the Julia set of z 7! z2 � 1 .
(made by S. Sutherland and B. Yarrington)

latation control away from the real line.
In the last section we prove that two Fibonacci maps which stay on zero Teichm�uller

distance are smoothly conjugate. So this pseudo-metric is non-degenerate on the smooth
equivalence classes.

We will use abbreviations qc and qs for \quasi-conformal" and \quasi-symmetric"
respectively.

Remark 1. Since the rate at which the scaling factors decrease depends on the initial
bounds of the map only, the dilatation of the conjugacy we construct also depends only
on this data.

Remark 2. It is proved in [L] that, as in the Fibonacci case, the scaling factors of any
non-renormalizable quasi-quadratic map decay exponentially. This allows us to generalize
the above result to all combinatorial classes of quasi-quadratic maps. The exposition
of this result is more technical, and it will be the subject of forthcoming notes. Note
that for polynomial-like maps this result follows from the Yoccoz Theorem (see [H] for
the exposition of this theorem, and [K] for an alternative proof based upon a pull-back
argument).

Remark 3. In this paper we concentrate on the dynamical constructions, and don't touch
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the issue of the sharp regularity for which the theory can be built up. This issue is clearly
important for a proper Teichm�uller theory (compare [S2] and [G]), and will be discussed
elsewhere.

x2. Asymptotically conformal continuation and generalized renormalization.

Real renormalization (see [LM]). Given a Fibonacci map f , there is a sequence of maps

gn : In0 [ In1 ! In�10 ; n = 1; 2; :::

constructed in the following way. Let I0 � I00 be a c -symmetric interval satisfying the
property fn(@I0)\ I0 = ; , n = 1; 2; ::: . Now given In�1 � In�10 3 c by induction, let us
consider the �rst return map fn : [Inj ! In�1 . Its domain of de�nition generally consists

of in�nitely many intervals Inj � In�1 . However, for the Fibonacci map only two of them,
In � In0 3 c (the \central" one) and In1 intersect the critical set !(c) . Let us de�ne gn
as the restriction of fn to these two intervals. These maps satisfy the following properties:

( i) gn : In1 ! In�10 is a di�eomorphism and gn(@I
n
0 ) � @In�10 ;

( ii) gnI
n
0 � In0 (high return);

( iii) gnc 2 In1 and g2nc 2 In0 .

By rescaling In to some de�nite size T (e.g., T = [0; 1] ), we obtain the generalized
n -fold renormalization

Rnf : Tn
0 [ Tn

1 ! T

of f . The asymptotic properties of the renormalized maps express the small scale infor-
mation of the critical set !(c) .

Let us now introduce the principle geometric parameters, the scaling factors

�n =
jInj
jIn�1j =

jTnj
jT j :

The main result of [LM] says that they decrease to 0 exponentially at the following rate:

�n � a

�
1

2

�n=3
: (1)

It follows by the Koebe principle that up to an exponentially small error the restriction of
Rnf to the central interval Tn

0 is purely quadratic, while the restriction to Tn
1 is linear.

This all we need to know for the comprehensive study of f .

Asymptotically conformal continuation. Let us represent f as h � � where �(z) =
(z � c)2 is the quadratic map, while h is a C2 -di�eomorphism of appropriate intervals.
Let us continue h to a di�eomorphism of a bounded C2 norm on the whole real line, and
then consider the Ahlfors-Beurling continuation of h to the complex plane:

ĥ(x+ iy) =
1

2y

Z x+y

x�y
h(t)dt+

1

y

�Z x+y

x

h(t)dt�
Z x

x�y
h(t)dt

�
:

This is clearly a C2 -map, and one can check by calculation that �@ĥ = 0 on the real line.
Hence �@ĥ=@ĥ = O(jyj) as jyj ! 0 . This provides us with a C2 extension of f which is
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asymptotically conformal on the real line in the sense that

�(z) � �@f̂=@f̂ = O(jyj) (2)

as well. In what follows we denote the extended h and f by the same letters.

Complex pull-back. Given an interval I � R and � 2 (0; �=2) , let D�(I) denote the
domain bounded by the union of two R -symmetric arcs of the circles which touch the
real line at angle � . In particular, D�=2(I) � D(I) is the Euclidean disk with diameter
I . Observe that I is a hyperbolic geodesic in the domain Cr(RrI) and D�(I) is its
hyperbolic neighborhoods of radius depending only on � .

We say than an interval ~I is obtained from the I by � -scaling if these intervals are
cocentric and j~Ij = (1 + �)jIj .
Lemma 1. Let � < 1 , n be su�ciently big. Let us consider the � -scaled interval ~In �
In . Let � = D(~In) , and �0 be the pull-back of � by gn+1jIn+1 . Then �0 � D(~In+1)
where ~In+1 is obtained from In+1 by � -scaling with � = �+O(�n) .

Proof. Let us skip the index n in the notations of objects of level n , while mark the
objects of level n + 1 with prime. Set gjI 0 = fp , and let us consider the pull back
I; I�1; :::; I�p � I 0 of I along the orbit ffkcgpk=0 . Then

pX
k=0

jI�kj = O(�): (3)

Since the map fk : I�k ! I has the Koebe space covering In�1 , the pull-back ~I�k of ~I
along the same orbit also has the total length O(�) .

Let us now take the disk � and pull it back along the same orbit. We obtain
a sequence of pieces ��k based upon the intervals ~I�k . Assume by induction that
��l � D�(k)(~I�l) , l = 0; :::; k < p , with

�l = �+O(

l�1X
j=0

j~I�j j): (4)

Represent f as h � � and carry out the next pull back in two steps: �rst by the
di�eomorphism h and then by the quadratic map � . Let h�1 ~I�k = L�k . If we rescale
the intervals ~I�k and L�k to the unit size, the C1 -distance from the rescaled map
H�1 : [0; 1]! [0; 1] to id is O(jI�kj) . It follows that

h�1��k � D�(k+1)(L�k) (5)

with �(k + 1) as in (4).
Consider now two cases. Let �rst k < p � 1 . Then � : L�k ! ~I�(k+1) is a

di�eomorphism and by the Schwarz lemma (see the above hyperbolic interpretation of the
D�(I) )

��(k+1) � D�(k+1)(~I�(k+1)):

Let us now carry out the last pull-back corresponding to k = p�1 . Then �jI�(k+1) =
�jI 0 is the quadratic folding map into L � L�(p�1) . Moreover, what is important is that
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�I 0 covers at most half (up to an error of order O(�) ) of the interval L (It follows from
the high return property of g and the estimate of its non-linearity). Hence we can �nd an
interval K � L centered at the critical value gc such that

D�(p�1)(L) � D(K)

and

jKj = 2j�I 0j(1 +O(�)):

Two last equations together with (4) yield the required. tu
Let us now take the Euclidean disk � = D(Im) and pull it back by the maps gn

continued to the complex plane. Denote the corresponding domains by �n
0 and �n

1 ,
n > m .

Corollary 2. If m is su�ciently big then the diam�n
j is commensurable with the

diam Inj .

Proof. Applying the previous lemma n � m times, we see that diam �n
j is jInj j(1 +

O(
Pn

k=m �k) . Since �k decay exponentially, we are done. tu

x3. Thurston's transformation and the shape of the complex puzzle-pieces. Let
us consider the quadratic map p : z 7! z2 � 1 and mark on C a set A of three points
�1; 0; and a = (1+

p
5)=2 . The �rst two form a cycle, while the last one is �xed. Taking

a conformal structure � on the thrice punctured plane S = CrA , we can pull it back by
p . This induces a \Thurston's transformation" L of the Teichm�uller space TS of thrice
punctured planes into itself (compare [MT] or [DH]). The main property of L is that
it strictly contracts the Teichm�uller metric, and hence all trajectories Ln� exponentially
converge to the single �xed point �0 2 TS represented by the standard conformal structure.

Let us consider the involution � : TS ! TS induced by the reection of the conformal
structure about the real line. This involution commutes with L , and so the subspace T �S
of R -symmetric structures is L -invariant. This subspace can be identi�ed with the set
of triples on the real line up to a�ne transformations. We can normalize the triples, say,
as follows: f; 0; a; g  < 0 . To pull back such a triple, we should take the quadratic
polynomial p which �xes a and carries 0 to  , and take the negative preimage of  .

Let us rescale both intervals In and In�1 to the size T = [�a; a] with a as above.
Let Gn : T ! T be the rescaled gn : In ! In�1 (observe that this is a non-dynamical
procedure, compare [KP]). Let us select the orientation in such a way that 0 is the minimum
point of Gn .

Lemma 3. The maps Gn converge to the polynomial p(z) = z2� 1 in C1 -norm on the
compact subsets of C .

Proof. If we pull back the Euclidean disk � = D(In) , we obtain a sequence of puzzle-
pieces whose diameter is commensurable with their traces on the real line (Corollary 2).
By the Denjoy distortion argument,

Dh�1n (z) = Dh�1n (0)(1 +O(
p
�n)); z 2 �;
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so that h�1n in � is an exponentially small perturbation of a linear map. Rescaling, we
conclude that Gn = Hn � p(n) where Hn are di�eomorpisms converging exponentially
to id in C1 on compact sets, and p(n) are quadratic polynomials introduced above.

Let us now consider a sequence �n 2 T �S represented by triples (Gn(0); 0; a) . It was
shown in [LM] that jGn(0)j=a stays away from 0 and 1. Hence �n+1 = L �Qn(�n) where
L is the Thurston transformation, while Qn is exponentially close to id in the Teichm�uller
metric. Since L is strictly contracting, �n must converge to its �xed point �0 .

We conclude that Gn(0)! �1 , hence p(n) ! p and Gn ! p . tu
Let us consider the following topology on the space K of connected compact subsets

K of C . Let  K : fz : jzj > 1g ! CrK be the Riemann map normalized at 1 by
 (z) � qz with q > 0 . Then the topology on K is induced by the compact open topology
on the space of univalent functions.

Let us now consider the complex pieces �n based upon the intervals In . Here �n

is the gn -pull-back of �n�1 . Rescaling of In to T leads to the corresponding rescaled
pieces Pn .

Lemma 4. The pieces Pn converge to the �lled-in Julia set of p(z) = z2 � 1 .

Proof. The piece Pn is the Gn -pull-back of Pn�1 . By Lemma 1, diam Pn is bounded.
Hence GnjPn is an exponentially small perturbation of p which yields the desired. tu
x4. Qc conjugacy on the critical sets. Let us consider the complex renormalizations
of f ,

Fn = Rnf : V n
0 [ V n

1 ! Pn;

where V n
i are the rescaled puzzle-pieces based upon the intervals Tn

i . We use the same
letters for the complex extensions of di�erent maps. In particular, let Gn : Pn ! Pn�1

is the rescaled gn : �n ! �n�1 (see Figure 2).
Let us parametrize smoothly the boundary of the piece P 0 ,  : T ! @P 0 . This

parametrization can be naturally lifted to the parametrization 1 : T! @P 1 , namely G1�
1 = (z2) , then to the parametrization of @P 2 etc. We refer to these parametrizations
as to the boundary markings.

Let us also consider another Fibonacci map ~f whose data will be labeled by tilde.
The Teichm�uller distance between two marked puzzle-pieces is the best dilatation of qc
maps between the pieces respecting the boundary marking.

Lemma 5. The marked puzzle-pieces Pn and ~Pn stay bounded Teichm�uller distance
apart.

Proof. Let we have a K -qc map Hn�1 : Pn�1 ! ~Pn�1 of marked pieces respecting the
positions of the critical points and the critical values, that is, Hn(0) = 0 and Hn(n) =
~n . It can be lifted to the K(1 + O(�n)) -qc map hn : Pn ! ~Pn . This map respects
boundary marking and 0-points but it does not respect  -points. However, it respects
these points up to exponentially small error, namely hn(n and ~n are exponentially
close.

Indeed, let qn 2 Tn
1 be the Gn -preimage of 0. As the length of Tn is exponentially

small, the points qn and n+1 are exponentially close. Moreover, by Lemma 4 the
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distance from these points to the boundary @Pn is bounded from below. By the H�older
continuity of qc maps we conclude that (hn(qn) and hn(n) are also exponentially close.
As hn(qn) = ~qn , the points hn(n) and ~n are exponentially close as well.

As the distance from these points to the boundary @ ~Pn and from 0 is bounded from
below, they are exponentially close with respect to the Poincar�e metric of ~Pn . Hence there
is a di�eomorphism  : ~Pn ! ~Pn with exp small dilatation keeping @ ~Pn and 0 �xed,
and pushing hn(n) to ~n . Then Hn =  �hn is a (K+ exp small)-qc map between the
marked puzzle-pieces Pn and ~Pn respecting the positions of the critical points and the
critical values.

Proceeding in a such a way we construct uniformly qc maps between Pn and ~Pn on
all levels (as the exponentially small addings to dilatation sum up to a �nite value). tu

Let us now consider the pairs of pants Qn = Pnr(V n
0 [ V n

1 ) where V n
0 � Pn+1 and

V n
1 with naturally marked boundary.

Lemma 6. The pairs of pants Qn and ~Qn stay bounded Teicm�uller distance apart.

Proof. Let us consider a K -qc homeomorphism Hn�1 : Qn�1 ! ~Qn�1 of marked pairs
of pants. It follows from the previous lemma that we can extend these maps across V n1

j .

Indeed, the previous lemma provides us with the continuation to V n�1
0 . Moreover, it

provides us with a map Pn�1 ! ~Pn�1 which then can be pulled back to V n�1
1 . Let us

keep the notation Hn�1 for this extension.

Let us now consider the pull-back Wn�1 � V n�1
1 of V n�1

0 by Fn�1 . Its boundary
is also naturally marked. By one more pull-back of Hn�1 we can reconstruct it in such a
way that it will respect this marking. Let us consider the annulus An�1 = Pn�1rWn�1

with marked boundary.

The annulus Ln = PnrV n
0 double covers An�1 under Gn . So we can pull Hn�1

back to a K -qc map Hn : Ln ! ~Ln . Moreover, this map respects the parametrization
of @V n

1 , and hence can be restricted to the K -qc map of marked pairs of pants of level
n . tu

Figure 3

We are prepared to obtain the desired result of this section.
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Lemma 7. There is an R -symmetric qc map which conjugate f and ~f on their critical
sets.

Proof. The critical set can be represented as

!(c) = \1n=1 [Qn
i ;

where Qn
i are dynamically constructed disjoint pairs of pants (see Figure 3). They are

obtained by univalent pull-backs of appropriate central pairs of pants. As these pull-backs
have bounded dilatations, Lemma 6 implies that Qn

i stay on bounded Teichm�uller distance
from ~Qn

i . Gluing together all these pairs of pants, we obtain the desired result. tu
x5. Pull-back argument. Sullivan's pull-back argument allows to construct a qc conju-
gacy between two polynomial-like maps as long as there is a qc conjugacy on their critical
sets. In this paper we deal with asymptotically conformal maps, so that we need the
dilatation control of pull-backs. Lemma 1 will provide us with such a control along the
real line. However, out of the real line the dilatation can grow, so that we should stop the
construction at an appropriate moment. Let us show how it works. First we need some
extra analysis on the real line.

Let fn : [Inj ! In�1 be the full return map to the interval In�1 .

Lemma 8. Let In � J0; J�1; ::: be any pull-back (�nite or in�nite) of the interval In

Then X
jJ�kj = O(�n):

Proof. Denote by J the union of the intervals in the pull-back. Let us �rst assume that
the intervals J�k don't intersect In . Let K0 � J0;K1; ::: be the piece of the pull-back
which belongs to In�1 , K = J \ In�1 be the union of these intervals. This is actually
the pull-back under the map fn . This map is expanding with bounded distortion on Inj
(actually very strongly expanding and almost linear on Inj ). HenceX

jK
j
j = O(�n): (6)

Let us now consider all intervals Li obtained by pulling In�1 back which are maximal in
the sense that they don't belong to another pull-back interval. In other words, there is an
m = m(i) such that fmLi = In�1 but f lLi \ In�1 = ; . These intervals are mutually
disjoint (and cover almost everything).

Let now Ki = J \ Li . Then fm(i) maps Ki with bounded distortion (actually
almost linearly) onto K . Hence dens (KijLi) = O(�n) . Summing up over i we get the
claim.

Assume now that there are intervals in In but there are no ones in In+1 . Let J�l

be the �rst interval belonging to In . Then for the further pull-back we can repeat the
same argument on level n instead of n�1 (taking into account that the Poincar�e lengths
of In+1

j in In are O(�n) ).
In general case let us divide the pull-back into the pieces Jl between the �rst landing

at I l and the �rst landing at I l+1 . Let us pull I l along the corresponding piece. This
pull-back does not intersect I l+1 either, and according to the previous considerations its
total length is O(�l) . All the more this is true for the total length of Jl .
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Hence the total length of J is O(
P

l�n �l) = O(�n): tu
Let us now state the complex version of the above lemma.

Lemma 9. Let 
 = D(In);
�1; ::: be any pull-back of the disk 
 along the real line.
Then X

diam
�n = O(�n):

Proof. Let W denote the union of the disks in this pull-back. As in the above argument,
let us decompose it into the strings Wj in between levels j and j + 1 . Let 
j be the
�rst puzzle-piece in the j th string.

On the other hand, let �j denote the pull-backs of 
 based upon the intervals Ij .
Then by the Markov property of the whole family of pull-backs, 
j � �j . Hence the
pull-back Wj can be inscribed into the corresponding pull-back of Dj of the puzzle-piece
�j .

It follows from Lemma 1 that the sum of the diameters of pieces in Dj is commensu-
rable with the total length of its trace on the real line. By the previous lemma, the latter
is O(�n) , and we are done. tu

Let us now select a high level n and consider the complex renormalization Fn :
V n
0 [ V n

1 ! Pn . Let us re-denote all these objects as F : U1
0 [ U1

1 ! U0 . As above,
the corresponding objects for another Fibonacci map ~f will be labeled with the tilde.
The following statement shows that two renormalizations of su�ciently high order are
qc-conjugate.

Proposition 10. There is a qc map U0 ! ~U0 which conjugate F and ~F on the real
line.

Proof. By Lemma 7, there is a qc map h0 : U
0 ! ~U0 which conjugate F to ~F on the

critical sets and on the @(U1
0 [ U1

1 ) . Let us start to pull it back.

Let Un
j denote the family of puzzle-pieces of depth n (that is, the components of

F�nU0 ) which meet the real line. Let us assume by induction that we have already
constructed a qc map hn : U0 ! ~U0 which conjugate F to ~F on their critical sets and
on (U1

0 [U1
1 )rint([Un

j ) . Then construct hn+1 as the lift of hn to all puzzle-pieces Un
j .

Since the puzzle-pieces Un
j shrink to points, the sequence hn has the continuous

pointwise limit h which conjugate F and ~F on the real line. Moreover, by (2) and
Lemma 9, the hn has uniformly bounded dilatations. Hence h is qc. tu

Let us re-denote In by J � J0 , and let � = D(J) . Let us now consider the full
�rst return map f1 to � . Its domain intersects the real line by the union of intervals
J1j � In+1

j . Let �1
j be the pull-back of � intersecting the real line by In+1

j , D1 = [�1
j

(see Figure 4).

The goal of the next three lemmas is to construct a qc map h : � ! ~� which
conjugate f1j@D to ~f1j@ ~D (as well as f1j!(c) to ~f1j!(~c) ). This will be the starting
data for the pull-back argument. The problem is that the boundary @D is not piecewise-
smooth.

Given a set U , denote by U+ the intersection of U with the upper half-plane.
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Lemma 11. The topological discs �1
j are pairwise disjoint. The set W = (�rD)+ is a

quasi-disk.

Proof. The map fn : �1
j ! � has exponentially small non-linearity. Hence �1

j is a

minor distorted round disk. On the other hand, the intervals J1i and J1j are exponentially

small as compared with the gap Gij in between. It follows that the disks �1
i and �1

j

are disjoint.
Let � = @W . It follows from the previous discussion that this curve is recti�able.

Take two close points z; � 2 � . Let � be the shortest path connecting z and � in �[R
(it is \typically" the union of an interval of the real line and two almost circle arcs), and
 be the shortest arc in � connecting z and � . Then the length of � is commensurable
with both the length of  and the dist (z; �) . tu

Figure 4

For the further discussion it is convenient to make a more special choice of the interval
J (compare [GJ], [Y], [JS]). Namely, let � be the �xed point of f with negative multiplier
� � f 0(�) . Let Y(0) be the partition of T by � into two intervals. Pulling this partition
back, we obtain partitions Y(n) by n -fold preimages of � . Let us call the elements of
this partition the puzzle-pieces of depth n . The element containing c is called critical.
We select J = [�; �0] as the critical puzzle-piece of su�ciently high depth N .

Set � = log j~�j= log j�j .
Let us now start with a qc R -symmetric map H : �! ~� which carries the critical

set of f1 to the critical set of ~f1 and such that

jH(z)� ~�j � jz � �j� : (7)

Moreover, let H commutes with the symmetry around c induced by f and ~f .
Pull H back to a map h : D ! ~D . Since the union [J1j is dense in J , this map

can be continued to a homeomorphism h : J ! ~J . Let also hj@� = H . This de�nes h
on the topological semi-circle S = @�+ . Since S and ~S are piecewise smooth curves,
we can naturally de�ne the notion of a quasi-symmetric map between them.
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Lemma 12. The map h : S ! ~S is quasi-symmetric.

Proof. Let us consider a continuation H : T ! ~T of H : J ! ~J which carries the
puzzle-pieces of depth N to the corresponding puzzle-pieces, and has the asymptotics (7)
near the boundary points of these puzzle-pieces.

Let K be the expanding Cantor set of points which never land at J . Each component
L of TrK (a \gap") is a monotone pull-back of J with bounded distortion. So we can
pull the map H back to qs maps on all gaps L . These maps clearly glue together to a
homeomorphism � : T ! ~T which respect the dynamics on the Cantor sets K and ~K .
Moreover, if we rescale the corresponding gaps L and ~L to the unit size then the rescaled
� near the boundary points will have asymptotics (7) uniformly in L .

Furthermore, it easily follows from the bounded distortion properties of expanding
dynamics that �jK can be extended to a qs conjugacy  in a neighborhood of K . This
conjugacy must have the same asymtotics (7) on the rescaled gaps (since the conjugacy
near the �xed points have such asymptotics). It follows that � and  are commensurable
on the gaps, and hence � is qs on the whole interval.

Observe now that h : J ! ~J is the pull back of � by the almost quadratic maps f jJ
and ~f j ~J . Hence hjJ is qs and has asymptotics (7) near the boundary. Since it has the
same asymptotics on the opposite side of � , �0 on the arc SrJ , it is qs on S . tu
Lemma 13. The map h : @W ! @ ~W allows a qc extension to W ! ~W .

Proof. Let E be the exterior component of CrS . By the previous lemma, there is a qc
extension of h from S to h0 : E ! ~E (which change the original values of h below the
real line).

We can now glue h : D+ ! ~D+ with h0 to a qc map h� : CrW ! ~CrW (since
they agree on the real line). Since W is a quasi-disk (by Lemma 11), h� can be reected
to the interior of W , and this is a desired extension. tu
Corollary 14. There is an R -symmetric qc map h : �! ~� which conjugates f1 to ~f1
on the critical sets and on the boundary of D .

Proof. Lemma 13 gives us a desired qc extension of the original h from D [ @� to � .
tu

Now we are ready to prove the main result.

Theorem I. Any two Fibonacci quasi-quadratic maps are qc conjugate.

Proof. Starting with the qc map h given by Corollary 14, we can go through the pull-
back argument in the same way as in Proposition 10. This provides us with a qs conjugacy
between the return maps f1 and ~f1 . Then we can spread it around the whole interval T
as in the proof of Lemma 12. tu

x6. Teichm�uller metric. Let Kh denote the dilatation of a qc map h . Given two
Fibonacci maps f and g and the qs conjugacy between them, the Teichm�uller pseudo-
distance dist T (f; g) is de�ned as the in�mum of logKh for all qc extensions of h .
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Theorem II. If dist T (f; g) = 0 then f and g are smoothly conjugate.

Proof. Our �rst step is the same as Sullivan's [S1]: If dist T (f; g) = 0 then the multipliers
of the corresponding periodic orbits of the maps are equal. However, as we don't have yet
a proper thermodynamical formalism for unimodal maps, we will proceed by a concrete
geometric analysis.

The next observation is that the parameter a in (1) must be the same for f and g .
Indeed, it can be explicitly expressed via the multipliers of the �xed points of the return
maps gn : In ! In�1 (since the gn are asymptotically quadratic). By [LM] this already
yields the smoothness of the conjugacy on the critical sets.

Let us now take a point x 2 InrIn�1 and push it forward by iterates of gn till
the �rst moment it lands in In (if any), then apply the iterates of gn+1 till the �rst
moment it lands in In+1 , etc. This provides us with a nested sequence of intervals around
x whose lengths can be expressed (up to a bounded error) through the scaling factors
and the multipliers of appropriate periodic points (by shadowing). This implies that h is
Lipschitz continuous. Moreover, when we approach the critical point, then the errors in
the above argument exponentially decrease. Hence h is smooth at the critical point.

Given now any pair of intervals I � J , let us show that���� jhJ jjJ j :
jhIj
jIj � 1

���� = O(jIj): (8)

This is enough to prove locally at any point a . By the previous considerations, this is
true at the critical point. Since the critical set !(c) is minimal, this is also true for any
a 2 !(c) .

Let now a 62 !(c) , and I be a tiny interval around I . Remark that almost all ponts
x 2 I eventually return back to I . Let us take the pull-back of I corresponding to
this return. This provides us with the covering of almost all of I by intervals Lk . The
distortion of the return map g is O(jIj) on the all L0ks . Let �k be the multiplier of the
g -�xed point in Lk . Then we conclude that���� jIjjLkj : �k � 1

���� = O(jIj); (9)

and the analogous estimate holds for the second map. Since the corresponding multipliers
of these maps are equal, we obtain (8) with J = Lk . Repeating now this procedure for
returns of higher order, we obtain an arbitrarily �ne covering of almost the whole of I by
intervals for which (8) hold. This implies (8) for any J � I .

Let �n = 1=2n , and let us consider the sequence of functions

�n(x) =
h(x+ �n)� h(x� �n)

2�n
:

According to (8) and Lipschitz continuity

j�n(x)� �n+1(x)j = O(�n) (10)

uniformly in x . Hence the �n uniformly converge to the derivative of h .
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