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Abstract. This paper investigates dynamics that persist under isotopy in classes
of orientation-preserving homeomorphisms of orientable surfaces. The persistence
of periodic points with respect to periodic and strong Nielsen equivalence is stud-
ied. The existence of a dynamically minimal representative with respect to these
relations is proved and necessary and su�cient conditions for the isotopy stability
of an equivalence class are given. It is also shown that most the dynamics of the
minimal representative persist under isotopy in the sense that any isotopic map
has an invariant set that is semiconjugate to it.

Section 0: Introduction. Isotopy stability of dynamics refers to dynamical behavior
that persists under isotopy. Since this behavior is present in every homeomorphism in
an isotopy class, results about isotopy stability often allow one to gain a great deal of
dynamical information about a map given only fairly rough algebraic or combinatorial data
about its isotopy class. For example, using the Lefschetz Fixed Point Theorem one can
algebraically compute that every map in an isotopy class has a �xed point. Nielsen's work
on homeomorphisms of surfaces introduced what is now called the Nielsen class of a �xed
point. This work has been generalized and is the content of Nielsen Fixed Point Theory.
The use of Nielsen classes yields a re�nement of the Lefschetz Theorem that often gives
persistence of a larger collection of �xed points. Somewhat surprisingly, the application
of this theory to periodic points is comparatively recent with the work of Halpern [Hp2],
Jiang [J3], and others. The proceedings [Mc] give a good sense of the current state of the
theory.

For periodic points the analysis of isotopy stability begins with a de�nition of an
equivalence relation. The second step is to specify what it means for equivalence classes of
periodic points from isotopic maps to correspond. The basic persistence result then gives
conditions on an equivalence class which insure that any isotopic map has a nonempty
equivalence class of periodic points that corresponds to the given one. This makes precise
the meaning of \present in every element of the isotopy class", and it allows one to con-
sider certain classes as invariants of isotopy or as part of the isotopically stable dynamics.
Given such a persistence result, the next question is that of a dynamically minimal rep-
resentatives; is there a map in each isotopy class that has only the forced dynamics and
nothing more? More speci�cally, is there a map which has exactly one periodic point in
each isotopically stable equivalence class and no other periodic points?
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The �rst two sections of this paper concerns theories of this type generated by the
two equivalence relations of periodic and strong Nielsen equivalence. Results on the �rst of
these theories are contained in [J3], [HPY], and [HY] and on the second in [AF] and [Hll].
In the case of homeomorphisms of surfaces this paper strengthens and extends certain
of these results. In particular, the existence of a dynamically minimal representative is
proved as well as necessary and su�cient conditions for an equivalence class of periodic
points to be isotopically stable.

The dynamically minimal representative in an isotopy class is a re�nement of the
Thurston-Nielsen canonical form. There have been a number of papers that have re�ned
this canonical form for dynamical purposes, for example, [S] and [BS]. A re�nement of
the Thurston-Nielsen canonical form was also used to prove the existence of a dynami-
cally minimal representative for Nielsen classes of �xed points in the category of surface
homeomorphisms. This result was sketched in [J2] and [I], and given in full detail in [JG].

The existence of a dynamically minimal representative with respect to periodic points
is somewhat more delicate than that of �xed points. It requires that a single map have
the minimal number of periodic points of all periods. The di�culty is that the map that
has the least number of �xed points in the isotopy class of fn may not be itself the nth

iterate of a map that has the least number of �xed points in the class of f .

As a simple example, let � be a map of a surface with �n = Id for some (least) n.
Further suppose that � has several periodic orbits that have period less than n. As a
consequence of Lemma 1.1(aii) and Lemma 2.3 these periodic points are isotopically stable
and thus must be present in any dynamically minimal model. On the other hand, since
�n is the identity there is a map in the isotopy class of �n with just one �xed point.
In this example there is no map g isotopic to � with the property that gn has the least
number of �xed points in its class for all n. However, Theorem 2.4 shows that there is a
homeomorphism isotopic to � that has the least number of periodic points of each period.

The last section discusses a kind of uniformization of the persistent periodic points.
These results extend those of [H] and [Ft] to reducible mapping classes. Roughly speaking,
one obtains the persistence of orbits that are not periodic by taking the closure of the
isotopically stable periodic points. This yields the isotopy stability of essentially all the
nontrivial dynamics of the dynamically minimal representative.

The �rst results on isotopy stability that have this kind of global character appear
to be Franks' work on Anosov di�eomorphisms and Shub's work on expanding maps. R.
MacKay pointed out to the author that within Di�erential Geometry results of this type
are much older. They go back at least to a paper of Morse on geodesics on surfaces ([M]).

Acknowledgments. The author would like to thank J. Franks and T. Hall for
stimulating and useful conversations. Special thanks to Boju Jiang for pointing out the
necessity of part (c) in Lemma 1.3.

Section 1: Condensed homeomorphisms. This section develops a re�nement
of the Thurston-Nielsen canonical form for isotopy classes of maps on surfaces. There
are two steps in the re�nement. The �rst step involves an alteration of the behavior of
the map on the closed reducing annuli between components. The new map is called an
adjusted reducible map and is described in Lemma 1.3. The second step is more radical
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and replaces the map on a �nite-order component by a dynamically simpler map and may
involve slightly altering the topology of pseudo-Anosov components and identifying points
in adjacent components. The result of this process is called a condensed homeomorphism
and is described in Theorem 1.7.

A basic familiarity with Thurston's work on surfaces is assumed. For more informa-
tion see [T], [FLP], or [CB]. For more information on Nielsen �xed point theory and the
analogous theory for periodic points, see [J3].

Throughout this paperM will be a compact, orientable 2-manifold with negative Euler
characteristic and perhaps with boundary. Unless otherwise noted, all homeomorphisms
M !M will be orientation-preserving, and isotopies do not need to �x the boundary ofM
pointwise. The period of a periodic point always means its least period, and the notation
per(x; f) = n indicates that x is a periodic point with period n of a homeomorphism
f :M !M . The set of all periodic points with period n is denoted Pn(f), and the set of
points �xed by f is Fix(f). Note that, in general, Fix(fn) may be larger than Pn(f).

Given x; y 2 Fix(f), x is Nielsen equivalent to y (written (x; f)
NE� (y; f), or if the

map is clear from the context, x
NE� y) if there is an arc 
 : [0; 1] ! M with 
(0) = x,


(1) = y, and f(
) is homotopic to 
 with �xed endpoints . In this case we say that
x is Nielsen equivalent to y via 
. Given x; y 2 Pn(f), x is periodic Nielsen equivalent

to y if (x; fn)
NE� (y; fn) (written (x; f)

PN� (y; f)). It is important to note that our
de�nition of periodic Nielsen equivalent requires that the periodic points have the same
least period. This requirement is not completely standard in the literature. Two periodic
orbits are periodic Nielsen equivalent if periodic points from each orbit are. In what
follows, equivalence of both periodic points and periodic orbits will be considered. A
certain amount of confusion will probably be avoided if the distinction between these two
notions is maintained. Also note that here we primarily consider the geometric notion
of Nielsen classes for periodic points. In particular, the phrase \periodic Nielsen class"
always refers to a nonempty equivalence class of periodic points. For a general account of
the algebraic theory see [J3], [HPY], and [HY].

If x and y are periodic points with (x; fn)
NE� (y; fn) but n = per(x; f) > per(y; f), x

is said to collapse to y (written (x; f) ` (y; f) or x ` y). One periodic orbit is collapsible
to another if periodic points from each orbit are.

If the Nielsen equivalence in the various de�nitions is realized by an arc 
, this is

indicated by saying that x
PN� y or x ` y via the arc 
. The periodic points x and y are

said to be related if x
PN� y, x ` y, or y ` x . A simple consequence of the de�nition is that

when x and y are related, (x; fk)
NE� (y; fk) for k = maxfper(x; f); per(y; f)g.

It will be useful to extend the notion of periodic Nielsen equivalence to certain closed
curves in M . Assume that the closed curve C is �xed setwise by f and x is a �xed point
of f . The invariant curve C is Nielsen equivalent to x if there is an arc 
 : [0; 1] ! M
with 
(0) 2 C, 
(1) = x, and f(
) is homotopic to 
 via a homotopy Ft with Ft(0) 2 C

and Ft(1) = x for all t. The notation for this is (x; f)
NE� (C; f). The notions of periodic

Nielsen equivalence between a point and a curve, equivalence of two periodic curves, and
the analogous notions of collapsible are de�ned in the obvious way.

If � :M !M is an isometry of a hyperbolic metric, then it is standard that � is �nite-
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order, i.e. there is some least n > 0 (called the period) with �n = Id. Conversely, when � is
�nite-order, it is topologically conjugate to an isometry of some hyperbolic metric. In the
literature �nite-order homeomorphisms are often called \periodic", but that terminology
is avoided for obvious reasons. A periodic point of a �nite-order homeomorphism that
has the same period as the homeomorphism is called regular; any point with lesser period
is called a branch periodic point. Since only orientation-preserving �nite-order maps are
considered here, the set of branch periodic points is always �nite.

A homeomorphism � is called pseudoAnosov (pA) if there exists a number � > 1 (called
the expansion constant) and a pair of transverse measured foliations (Fu; �u) and (Fs; �s)
with �(Fs; �s) = (Fs; 1

�
�s) and �(Fu; �u) = (Fu; ��u). For a pA map on a boundary

component there is a certain amount of choice involved in the structure of the foliation and
with the dynamics. Before giving the choices made here we describe what will be called
the standard model (the author learned this succinct description from D. Fried.

Roughly speaking, in a neighborhood of a boundary component the standard model
of a pA map looks like the map and foliation obtained by blowing up a singularity of a
measured foliation. This description is only informal because the blown up map will be
continuous only when the original map is di�erentiable at the singularity. This is not the
case in the usual constructions of pA maps (but cf. [GK]). The main observation needed
to avoid this di�culty is that a pA map is di�erentiable at regular points and the behavior
at other singularities can be obtained by using branched covers.

There are three main cases for boundary behavior that correspond to three situations
for an interior singularity: the singularity is �xed by the pA map and the prongs do not
rotate, the singularity is �xed and the prongs rotate, and the singularity is a periodic point.
We �rst describe the standard model on the boundary that corresponds to the case of a
�xed, nonrotating prong.

Let L : R2 ! R2 be the linear map with matrix�
� 0
0 1

�

�
:

Replace the origin of R2 with a boundary circle C and let R0 be the resulting space. Now
use the action of L on lines to de�ne a homeomorphism L0 : R0 ! R0. The stable and
unstable foliation of L induce a stable and unstable foliation on R0. These stable and
unstable foliations and the homeomorphism L0 give the standard model for a pA map in
the neighborhood of a boundary component that corresponds to a regular point. For a
boundary component that corresponds to a one-prong, take this model and project it via
z 7! z2. For a boundary component that corresponds to a k-prong, take this one-prong
model and lift it to the cover that has projection z 7! zk. Figure 1a shows the dynamics at
an interior three-prong singularity and Figure 1b shows an analogous boundary component
in the standard model. Note that the curves in these �gures indicate the motion of orbits
and not necessarily leaves of the foliations. The segments between the singularities on the
boundary will be termed degenerate leaves and are considered leaves of both the stable
and unstable foliation. One has to allow for this degeneracy in the de�nition of transverse
measured foliations.

As constructed, in a boundary component of the standard model that corresponds to a
�xed, nonrotating singularity, the degenerate leaves consist of orbits that are heteroclinic
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Figure 1: (a) Dynamics of a pA map at a three-prong sin-
gularity. (b) Dynamics at the boundary analog of (a) in the
standard model of a pA map.

Figure 2: (a) The dynamics of a boundary-adjusted pA map
at the boundary analog of a non-rotating three-pronged singu-
larity. (b) Same as (a) but the result of a di�erent collapse.
(c) The dynamics of a boundary-adjusted pA map at the bound-
ary analog of a four-pronged singularity with rotation number
1=2.

from the intersection of the stable leaves with the boundary to the intersection of the
unstable leaves with the boundary. (One may also adjust things to make the map the
identity on these segments, see [GK] and [JG].) In the analog of �xed, rotating singularity,
this model on the boundary is composed with the appropriate rigid rotation. In the analog
of a singularity that is a periodic point, this model is composed with the appropriate
translation of one boundary component onto another.

Since a goal of this paper is to create models in each isotopy class that have the least
dynamics possible, the standard model on the boundary needs some minor adjustments.
For the analog of a �xed, nonrotating prong the necessary modi�cation is achieved by
collapsing down all the degenerate leaves except one. The dynamics in this case are just
those that descend from the standard model, i.e., the boundary consists of a �xed point
and a homoclinic loop. There are two non-conjugate choices for the collapse. These are
shown in Figures 2(a) and 2(b) for the boundary analog of a non-rotating three-prong
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singularity. In the analog of a �xed, rotating m�prong the form of the collapse depends
on the rotation number of the orbits on the boundary circle in the standard model. If
this rotation number is p=q with p and q relatively prime, one collapses down collections
of adjacent groups of 2m=q � 1 degenerate leaves. This will leave a single period q orbit
on the boundary whose points are connected by homoclinic segments. The result of the
collapse for a four-prong singularity with rotation number 1=2 is shown in Figure 2(c).

If the boundary component is moved o� itself by the pA map, the appropriate collapse
is chosen based on whether the prongs are rotated or not when the component's forward
orbit �rst lands on itself. PseudoAnosov homeomorphisms with this collapsed boundary
behavior will be called boundary-adjusted pA. It is clear that a boundary-adjusted pA and
the corresponding standard model are conjugate on the interior of M .

The �rst lemma describes the relations among the periodic points of pA and �nite-
order maps.

Lemma 1.1:

(a) If � :M !M is �nite-order, then
(i) Each regular periodic point is periodic Nielsen equivalent to every other

regular periodic point.
(ii) All branch periodic points are unrelated to each other and are not periodic

Nielsen equivalent or collapsible to any boundary component.
(iii) Each regular periodic point is collapsible to any branch periodic point.

(b) If � :M !M is boundary-adjusted pA, then
(i) Each interior periodic pointis unrelated to any other periodic point.
(ii) Each boundary periodic point is periodic Nielsen equivalent to every peri-

odic point on its orbit that is contained in the same boundary component
and is unrelated to any other periodic point.

(iii) Each boundary component is unrelated to any periodic point except the
periodic points it contains and is unrelated to any other boundary com-
ponent.

(iv) If a boundary component b is periodic Nielsen equivalent to itself via
an arc 
, then 
 is null homotopic via a homotopy that constrains the
endpoints of 
 to lie on b.

Proof: (a) (cf. [J1], Section 7) We prove (ii) �rst. Assume x and y are two branch

periodic orbits and (x; �k)
NE� (y; �k) via an arc 
 with k less than the period of �. Since �

is a hyperbolic isometry, the unique geodesic isotopic to 
 with �xed endpoints is �xed by
�k. Because � is orientation-preserving, this implies that �k = Id, a contradiction. The
second part of (ii) proved like the �rst after blowing down the boundary components of M
to points. Parts (i) and (iii) are easy consequences of the fact that �n = Id.

(b) This has been essentially proven by many authors, eg. [BK], [H], [I], and [JG]. We
will remark in Section 3 how the methods of [H] can be adapted to deal with the assertions
involving the boundary. tu

The Thurston-Nielsen classi�cation theorem for isotopy classes of surface homeomor-
phisms gives a (fairly) canonical representative in each isotopy class. These representa-
tives are constructed from pA and �nite-order pieces glued together along annuli in which
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twisting may occur. More precisely, a homeomorphism � is called reducible if there ex-
ists a collection of pairwise disjoint simple closed curves, � = f�1;�2; : : : ;�kg, in int(M)
with �(�) = � and each connected component of M �� has negative Euler characteristic.
Further, � comes equipped with a �-invariant open tubular neighborhood N (�). The con-
nected components ofM�N (�) are called the components of �. The orbit of a component
under � is called a �-component. For a subset X �M , its orbit under � is denoted o(X).

Thurston-Nielsen Classi�cation Theorem Every orientation-preserving homeo-
morphism of an orientable surface with negative Euler characteristic is isotopic to a home-
omorphism � such that either

(a) � is pseudoAnosov, or
(b) � is �nite-order, or
(c) � is reducible and on each �-component, � satis�es (a) or (b).

A map � as in part (c) of the theorem above is called TN-reducible. The curves of
� are called reducing curves. The connected components of Cl(N (�)) are called reducing
annuli and the reducing annulus containing �i is denoted A(�i). Two components are
called adjacent if they each share a boundary curve with the same reducing annuli. Note
that a component can be adjacent to itself.

If �i is a reducing curve and for some n, �n(�i) = �i with the orientation on �i
reversed, then �i is called a 
ipped reducing curve. In this case the reducing annulus A(�i)
is called a 
ipped reducing annulus.

The next lemma provides tools for working with 
ipped reducing annuli. The annulus
A = S1 � [�1; 1] has universal cover ~A = R � [�1; 1]. For a orientation preserving circle
homeomorphism f , �(f) denotes the rotation number of f .

Lemma 1.2: Let f : A ! A be an orientation preserving homeomorphism which
interchanges the boundary components of A.

(a) If for i = 1; 2, bi denotes f
2 restricted to S1 � fig, then �(b�1) = ��(b1)

(b) There exists a homeomorphism g that is isotopic to f rel the boundary of A, is
equal to f on the boundary of A, and the only periodic points of g in the interior
of A are two �xed points that have nonzero index and are not Nielsen equivalent.

Proof: Pick a lift ~f : ~A ! ~A and let S : ~A ! ~A be given by S(x; y) = (�x;�y).
Note that S2 = Id and if ~h := S ~f , then ~h is the lift of an orientation and boundary
preserving homeomorphism of A and ~f = S~h. For i = 1; 2, let ~hi and ~bi denote ~h and ~f2

restricted to S1�fig, respectively, and T : R! R be given by T (x) = �x. We then have
~b�1 = T ~h1T ~h�1 and ~b1 = T~h�1T ~h1 which implies (Th1)

�1~b�1(Th1) = ~b1. Since T ~h1 is
orientation reversing, �(b�1) = ��(b1), proving (a).

Now let  t be 
ow shown in Figure 3 which we assume has been constructed so that
it commutes with the involution S and is the identity on the boundary of A. By picking
n su�ciently large, the map g = S nh will have the properties stated in (b). tu

If � is a TN-reducible map, a reducing annulus always has periodic points on both of
its boundaries. These periodic points are termed peripheral. Note that peripheral periodic
points for a �nite-order component are always regular. If there are periodic points on
distinct boundary components of a reducing annulus that are periodic Nielsen equivalent,
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R*

R*

Figure 3: The 
ow  t on the annulus used in the proof of
Lemma 1.2

the reducing annulus is called untwisted. An un
ipped reducing annulus A with �n(A) = A
is untwisted if and only if the boundary components have the same rotation number in
the lift of the restriction of �n to the universal cover of the annulus. A 
ipped reducing
annulus A is untwisted if and only if the same condition holds for �2n. Using Lemma 1.2
this happens if and only if �2n has �xed points on both boundaries of A.

The next lemma gives the form of our �rst re�nement of a TN-reducible map.

Lemma 1.3: Any TN-reducible map, �, is isotopic to a reducible map that satis�es:
(a) All pA components are boundary-adjusted.
(b) There are no periodic points in the interior of un
ipped reducing annuli.
(c) The interior of each 
ipped reducing annulus contains exactly two periodic points.

These periodic points have nonzero index and are not periodic Nielsen equivalent.
(d) There are no untwisted reducing annuli connecting adjacent �nite-order compo-

nents.

Proof: Starting with the TN-reducible map, �, �rst replace all the maps on pA
components by the appropriate boundary-adjusted pA. The construction of boundary-
adjusted pA maps makes it clear that this can be done within the isotopy class. The
behavior in part (b) can then be arranged in each un
ipped reducing annuli by composing
with a su�ciently strong push from one boundary circle towards the other. The behavior
in part (c) can be arranged in each 
ipped reducing annulus using Lemma 1.2(b). The
last step is to show that part (d) holds after eliminating unnecessary reducing annuli.

Let �1 and �2 be �nite-order maps on adjacent �-components N1 and N2 which each
share a boundary with the untwisted reducing annulus A. Because peripheral periodic
points of �nite-order components are always regular for the component, the de�nition of
untwisted reducing annulus yields that �1 and �2 have the same period, say n. Again
using the fact that A is untwisted, � restricted to N1 [N2 [ o(A) must have its nth iterate
isotopic to the identity. A theorem stated by Nielsen (now contained in the classi�cation
theorem) implies that � restricted to N1[N2[o(A) is isotopic to a single �nite-order map
of period n. Thus the reducing annulus A can be eliminated. tu

A reducible map as in Lemma 1.3 will be called adjusted. If 
 is an arc connecting
points x and y, 
 is said to essentially intersect a set X if any arc homotopic to 
 with �xed
endpoints has nonempty intersection with X.
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Lemma 1.4: Let �1 be a adjusted reducible map. If x and y are periodic points of �1
that are not contained in the interior of a 
ipped reducing annulus and either x

PN� y or
x ` y via the arc 
 then:

(a) If 
 essentially intersects a reducing curve �0, then both x and y are related to
�0. If 
 essentially intersects two reducing curves �1 and �2, then �1 is related
to �2.

(b) The arc 
 does not essentially intersect the interior of any pA component.
(c) If 
 essentially intersects a reducing curve �0, then the reducing annulus A(�0)

is untwisted.
(d) The arc 
 cannot essentially intersect two �nite-order components.

Proof: (a) This will be proved (independently) in Section 3 as the proof uses the
covering space techniques introduced there.

(b) Denote by N the pA component that is essentially intersected by 
. There are two
main cases to consider. First assume that x 2 Int(N). If y is also in Int(N), then Lemma
1.1b(i) implies that 
 must essentially intersect some reducing curve. This must also be
the case if y 62 Int(N). Let �1 denote the �rst such curve encountered as one traverses 

outward from x. If b is a boundary component of N that is shared with A(�1), then (a)
shows that x is related to b contradicting Lemma 1.1b(iii).

The second case to be considered is when neither x nor y are in Int(N). In this
case we can isotope 
 with �xed endpoints to 
1 that essentially intersects two boundary
components of N , b1 and b2, with the portion of 
1 between the intersections contained
in the interior of N . If b1 6= b2, then again using (a) we get a contradiction to Lemma
1.1b(iii) and if b1 = b2, a contradiction to Lemma 1.1b(iv).

(c) By (b), the periodic points x and y can only be peripheral pA or �nite-order.
Thus if 
 does not essentially intersect a �nite-order component, then x and y must be
on the two boundary components of the reducing annulus A(�0). Since for an annulus
homeomorphism periodic points on di�erent boundary components cannot collapse to each

other, the only possibility is that x
PN� y, and so A(�0) is untwisted.

Assume now that 
 is a simple arc and essentially intersects a nonempty collection of
�nite-order components, N1; N2; : : : ; Nk. Further assume that y is contained in a �nite-
order component and x is a peripheral pA periodic point that lies on a closed curve C1 that
is the boundary of a reducing annulus A1. Let m be such that �m1 (x) = x and �m1 = Id on
all Ni. Now pick y0 contained on a boundary component C2 of the �nite-order component

which contains y. There is an arc 
0 so that (x; �m1 )
NE� (y; �m1 ) via 


0, and 
0 essentially
intersects the same reducing curves as 
.

Now choose a pair of pants decomposition of A1[([ki=1Ni) which re�nes the collection
of reducing curves (with the exception of the curve adjacent to C1) and consider the
Dehn-Thurston parameterization of closed curves and simple arcs with endpoints on the
boundary using this decomposition (see [FLP], expos�e 4 or [PH], x1.2) If any reducing curve
that essentially intersects 
 were contained in an untwisted reducing annulus, then the twist
parameter of the parameterization at this curve for 
 and �m(
) would be di�erent. This
would imply that 
 and �m(
) are not homotopic, a contradiction.

The proof when x and y are in other positions is similar. If the given 
 is not simple,
pass to a �nite cover in which it is homotopic with �xed endpoints to a simple arc. The
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result on the simple arc in this cover implies the result in the base.
(d) This follows from (b), (c) and and the property given in Lemma 1.3(d). tu
The next proposition describes all the relations among periodic points of adjusted

reducible homeomorphisms. A given set of relations among periodic points is said to
generate a (perhaps) larger collection if the given set and the following properties give rise
to all the relations.

(1) Periodic Nielsen equivalence is an equivalence relation on periodic points of the
same period.

(2) x
PN� y and y ` z implies x ` z.

(3) x ` y and y
PN� z implies x ` z.

Although it will not be needed here, it is perhaps worth noting that these properties
show that ` induces an order relation on the set of periodic Nielsen equivalence classes.
It is easy to see that it is transitive and a minor alteration in the de�nition of ` (allow
per(x) � per(y)) will give a partial order on these equivalence classes. This is essentially
the direct system of weighted sets discussed in [J3], Section III.3.

Proposition 1.5: When the following relations exist they generate all relations
among periodic points of an adjusted reducible homeomorphism �1.

(a) A peripheral pA periodic point is periodic Nielsen equivalent to other periodic
points on its orbit or to an adjacent peripheral pA or to an adjacent peripheral
�nite-order periodic point.

(b) A peripheral pA periodic point is collapsible to a periodic point with half its period
in the interior of an adjacent 
ipped, untwisted reducing annulus.

(c) A regular �nite-order periodic point is periodic Nielsen equivalent to another reg-
ular �nite-order periodic point in the same component.

(d) A regular �nite-order periodic point is collapsible to a branch �nite-order periodic
point in the same component.

Proof: By Lemma 1.4(b) a periodic point in the interior of a pA component is
unrelated to any other periodic point. The remaining types of periodic points are �nite-
order, peripheral pA and periodic points in the interior of 
ipped reducing annuli. By
Lemma 1.3(c), a periodic point in the interior of a 
ipped reducing annuli A is not periodic
Nielsen equivalent to the other periodic point in the interior of the same reducing annulus
and is only related to periodic points on the boundary if A is untwisted. Since A is 
ipped
the adjacent components must have the same type. By Lemma 1.3(d), if A is untwisted
this type cannot be �nite-order and the adjacent components most therefore both be pA.
As a consequence, (b) gives the only possible relations for periodic points in the interior
of 
ipped reducing annuli.

Now by Lemma 1.4 (b) and (d), �nite-order and peripheral pA periodic points can
only be related by a 
 that essentially intersects the interior of at most one component
and this component must be �nite-order. Using Lemma 1.4(b) and (c), if a peripheral pA
periodic point x is related to a periodic point not on its orbit, x must lie on the boundary of
a untwisted reducing annulus and thus be periodic Nielsen equivalent to a periodic point,
say z, on the other boundary of A. The case when the reducing annulus is 
ipped was
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dealt with in the previous paragraph, so assume that the reducing annulus is un
ipped.
If the adjacent component is pA, again by Lemma 1.4(b), x is periodic Nielsen equivalent
to z and is unrelated to any periodic points not on the orbit of x and z. The second
case is when the adjacent component is �nite-order. Now from Lemma 1.4(b) and (d), a
�nite-order periodic point is related only to other �nite-order periodic points in the same
component or to peripheral periodic points in adjacent pA components. Thus the only
new relations possible for z (and thus for x ) are: collapse to a branch periodic point in the
same �nite-order component, periodic Nielsen equivalence to a regular periodic point in
the same �nite-order component, and periodic Nielsen equivalence to a peripheral periodic
point in an adjacent pA component. All these relations are generated by those given in
the statement of the lemma. tu

Having speci�ed all the relations among the periodic points of an adjusted reducible
homeomorphism �1, the next step is to to construct a homeomorphism isotopic to �1 that
eliminates as many of these relations as possible. This is done by coalescing any periodic
orbits that are periodic Nielsen equivalent and collapsing down those that are collapsible.
In this process it may be necessary to make minor changes in the topological type of the
components of �1.

We �rst need a proposition about the existence of homeomorphisms with speci�ed
�xed point behavior. The proof is routine but we shall need some special features of the
homeomorphisms contained in the proof. The statement and use of Proposition 1.6 is
similar to those of Theorem 4 in [Hp1]. The index of a �xed point p with respect to f is
denoted I(p; f) (see for example, [J3]). The index of a periodic point p with per(p; f) = n
is I(p; fn).

Proposition 1.6: Let M be a compact, connected orientable surface with genus g and
b boundary components and let n be a given positive integer. There exists a homeomorphism
H :M !M isotopic to the identity which has n �xed points and no other periodic points.
Further, except for the cases where �(M) = 0 and n = 1, the �xed points of H have nonzero
index.

Proof: The homeomorphism H will be the time-one map of a 
ow and is thus isotopic
to the identity. The �rst (and rather special) case is the sphere (g = b = 0). When n = 1,
let H be the 
ow that has a single parabolic �xed point at the North Pole. For n = 2
use the North Pole/South Pole gradient 
ow. When n = 2k + 1 or n = 2k + 2, put k
sink-saddle pairs into the 
ows for n = 1 and n = 2, respectively.

The 
ow for the case g = 0, b = 1 and n = 2 is shown in Figure 4(a). The dynamics of
H restricted to the boundary is rotation by an irrational amount. The 
ow spirals outward
from the boundary towards the homoclinic loop. The �xed point that is not at the center
of the bouquet of circles is a spiral source and the 
ow nearby spirals out towards the
homoclinic loop. The region to the exterior of the bouquet consists of a single parabolic
component, i.e. all the orbits in the region are homoclinic to the �xed point at the center
of the bouquet. For the case when g = 0 and b > 1, add more homoclinic loops with
boundary sources inside. For other values of n, add or subtract homoclinic loops with
spiral sources inside. The case g = 0, b = 1 and n = 1 is somewhat special in that the
single �xed point will be a saddlenode and have zero index.
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Figure 4: (a) A 
ow illustrating Proposition 1.6 for the case
g = 0, b = 1, and n = 2. (b) Same as (a) but for g = b = n = 1.

The 
ow for the case g = b = n = 1 is shown in Figure 4(b). The arrows and labels
on the edges indicate the identi�cation as well as the 
ow direction. There is a �xed point
at the corners. Once again, for larger values of b and n add more homoclinic loops with
boundary sources or spiral sources inside.

For various values of n when g = 1 and b = 0, use a similar construction but this time
there will be no boundary components inside homoclinic loops. The case n = 1 will have
a �xed point with zero index.

A similar construction using a bouquet of circles also works when g > 1. An example
is shown in Figure 5 for the case g = 4, b = 2, and n = 3. The letters on the boundary
indicate identi�cations tu

b1

a1

a2 b2 a3 b3 a4

b4

b4

a4

b3 a3

b1

a1 a2b2

Figure 5: A 
ow illustrating Proposition 1.6 for the case g = 4
and b = n = 2.

In a construction below the �xed points of the homeomorphism H from Proposition
1.6 will be lifted to periodic points in a perhaps branched cover. For this application it is
essential that the lifted periodic points have nonzero index. If the �xed point of H is the
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image of regular points in the cover, this is obvious. If the �xed point p of H is the image
of a branch point, then the covering projection in a neighborhood of p looks like z 7! zk

for some k > 1.

When the dynamics in a neighborhood of a �xed point can be decomposed into a
�nite number of sectors with each sector invariant and h of them hyperbolic, p of them
parabolic, and the rest of them attracting or repelling, then the index of the �xed point
is 1 + p=2 � h=2. If this �xed point is the image of a degree k branch point, the index of
the upstairs periodic point under an appropriate iterate that �xes it is 1 + k(p=2 � h=2).
Thus, even if the index of the �xed point in the base is zero, the index of the periodic
point in the cover is never zero. We note for future reference that the �xed points of the
homeomorphisms constructed in Proposition 1.6 all have a nice sector decomposition, and
so this fact is valid for these maps.

We now begin the construction of the next re�nement of the Thurston-Nielsen canoni-
cal form. It alters an adjusted reducible homeomorphism �1 to produce what will be called
a condensed homeomorphism. There are a number of cases to consider corresponding to
di�erent types of �1-components. In every case, N will denote the �1-component under
consideration and � denotes �1 restricted to N . The end result in each case will be a new
homeomorphism h to take the place of � and a new topological space N� (perhaps not a
manifold) to take the place of N .

In a slight abuse of language, a boundary component of N that is the boundary circle
of an untwisted reducing annulus will be called an untwisted boundary circle. Let U be the
set of all untwisted boundary circles in N .

The �rst four cases involve �nite-order components. In this case the quotient space
N=� is denoted N�. It is standard that N� is a manifold and � : N ! N� is a branched
cover whose upstairs branch points are precisely the branch periodic points of �. In the
discussion of the various �nite-order cases Proposition 1.6 will be used to construct a
homeomorphism h� : N� ! N� with special properties. The map h� is always isotopic
to the identity so it has a lift h to N that is isotopic to �. Furthermore, h will have the
property that all its periodic points have nonzero index.

Case 1: Assume that � is �nite-order, has no branch periodic points, and N has no
untwisted boundary circles. Pick a homeomorphism h� : N� ! N� that has one �xed
point p� and no other periodic points. Since in the case at hand � : N ! N� is a regular
cover and �(N) < 0, we have that �(N�) < 0 and so I(p�; h�) < 0. Now lift h� to a
homeomorphism h : N ! N that has only one periodic orbit and that orbit has nonzero
index. In this case let N� = N .

Case 2: Assume that � is �nite-order, has no branch periodic points, and N has
untwisted boundary circles. Let U� = �(U). As in Case 1, � : N ! N� is a regular
cover, so �(N�) < 0. Using Proposition 1.6, choose h� which has a single �xed point.
Let R� � N� denote the subset of the bouquet of circles used in the construction of h�

which has the property that each circle in R� encloses an element of U�. Now lift h� to a
homeomorphism h : N ! N that has one periodic orbit and that periodic orbit has nonzero
index. If B� is the open region bounded by R� and U�, let N� = N � ��1(B� [ U�).

Case 3: Assume that � is �nite-order, has branch periodic points, and N has no
untwisted boundary circles. Let P � denote the projection of the set of all branch periodic
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points to N�. Using Proposition 1.6 construct h� which has �xed points only at points of
P� and no other periodic points. Let h : N ! N be the lift of h�. By the remark after
Proposition 1.6, each branch periodic point in N has nonzero index under h. In this case
let N� = N .

Case 4: Assume that � is �nite-order, has branch periodic points, and N has un-
twisted boundary circles. Using Proposition 1.6 construct h� so that it has �xed points
only at points of P � and the points of P have nonzero index under the lift h. As in Case 2,
let R� � N� denote the subset of the bouquet of circles used in construction of h� which
has the property that each circle in R� encloses an element of U�. In this case one may
have to adjust R� to make sure that no point of P � is enclosed by a circle of R�. By the
remark after Proposition 1.6, each branch periodic point in N has nonzero index under h.
De�ne N� as in Case 2.

Case 5: Assume � is boundary-adjusted pA. In this case let h = � and N� = N .

The next step in the process is to produce a map � that is isotopic to the given adjusted
reducible map �1 by gluing the new versions of the components and maps together. There
are once again a number of cases depending on the character of the adjacent components.
In every case the new map � will be equal to the new component map h on the interior
of the new component N�. In certain cases a closed pA component or a reducing annulus
will have its topological type altered by the gluing. The structure of and the dynamics on
reducing annuli must also be speci�ed.

For adjacent �1-components N1 and N2, we will denote the corresponding new maps
and spaces constructed in Cases 1{5 above as h1, N�1, etc., and the old maps as �1 and
�2. A reducing annuli between N1 and N2 will be called A, and its �1 orbit denoted by
o(A).

If N1 and N2 are both pA and A is twisted, no alteration is necessary. This means
that � restricted to o(A) is the same as �1 restricted to o(A).

For pA components that adjoin an untwisted un
ipped annulus A, we may assume
that the dynamics on the two boundaries of A are the same so we simply glue these
boundaries together eliminating the reducing annulus.

If N1 and N2 are pA and �nite-order, respectively, and A is twisted then pick an
isotopy of �2 to h2. Extend this to an isotopy on N2[o(A) which starts at �1 restricted to
N2 [ o(A) and ends with a homeomorphism called, say, F . Now compose F restricted to
o(A) with a push towards a boundary to insure it has no interior periodic points, and let �
restricted to o(A) be the resulting map. The case where both N1 and N2 are �nite-order
and A is twisted is similar.

Assume now that A is 
ipped and untwisted. As noted after Lemma 1.2, if n is the
least positive integer with �n(A) = A, then �2n has �xed points on both boundaries of A.
Further, N1 and N2 have the same type and by Lemma 1.3(d) they are pA. These imply
that the boundary adjusted pA onN1 andN2 has exactly one singularity on each boundary
of A. By the construction of the adjusted reducible homeomorphism, �2n restricted to A
consists of the time nmap of the 
ow shown in Figure 3 composed with a rigid 
ip. Remove
the region between the boundary of A and the homoclinic loops labeled R� in Figure 3 and
glue the boundaries of N1 and N2 onto the loops, identifying the singularities with the
periodic point at the \pinch point" of R�. A similar gluing is also done on each component
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of the � orbit of N1, N2, and A. If prior to the gluing
the motion along the homoclinic loops in R� and the boundary of N1 and N2 has been
properly adjusted, then one can de�ne a homeomorphism on the � orbit of the new space
that is isotopic to � and is equal to � in the interiors of the � orbit of N1, N2, and the
new pinched version of A.

Since by Lemma 2(c) there are no untwisted reducing annuli between adjacent �nite-
order components, the last possibility is when N1 is pA and N2 is �nite-order and A is
untwisted. Now Cases 2 and 4 above were designed precisely so that in this situation
we could eliminate the reducing annuli and directly glue the components together. If the
�nite-order component is as in Case 4, this gluing will involve identifying certain peripheral
periodic points of the pA component as they collapse down to the branch periodic point
in the �nite-order component. The only caution is this process is that we must make sure
that the direction of dynamics on the bouquet of circles R matches that on the boundary
of the pA component to which it is glued. For this one may have to adjust the choice of
degenerate leaves that are collapsed when constructing the boundary-adjusted pA map.

The homeomorphism � that results from this process is called condensed. Figure 6
illustrates an example of the various stages of the construction. The center piece shown in
Figure 6(a) is a �nite-order component N with a component map which is simply a rotation
by 180� about a horizontal axis. The �xed point labeled p is the only branch periodic point.
The adjacent components are all pA, and all reducing annuli are untwisted. This means
that the component N falls into Case 4 above. The quotient manifold N� and the bouquet
of circles R� is shown in Figure 6(b). Figure 6(c) shows the manifold after the region in
N outside R has been cut o� and the components reglued.

There was a certain amount of choice involved in the construction of a condensed
homeomorphism. In particular, even up to conjugacy there is usually not a unique con-
densed homeomorphism in an isotopy class. However, the construction was de�ned so that
it eliminated most of the relations among periodic points given in Proposition 1.5. The
possible exceptions are peripheral and boundary pA periodic points and regular periodic
points in �nite-order components that have no branch periodic points. These periodic
points all have the property that they can be periodic Nielsen equivalent to another point
on their orbit. It is immediate from Lemma 2.1 that these periodic points are uncollapsible
and therefore unremovable. This implies that these relations cannot be eliminated in the
isotopy class.

Another important property of condensed homeomorphisms is that each periodic point
has nonzero index. It is a standard fact that this is true for the interior and boundary
pA periodic points. The construction guarantees this property for peripheral pA and
�nite-order periodic points as well as periodic points in the interior of 
ipped reducing
annuli.

Restricting attention to periodic orbits we have:

Theorem 1.7: Every orientation-preserving homeomorphism of an orientable com-
pact surface is isotopic to a condensed homeomorphism. A condensed homeomorphism has
no relations among its periodic orbits and each periodic point has nonzero index.

We have given the construction for this theorem in the case of negative Euler charac-
teristic. The other cases can be easily handled case by case.
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Figure 6: (a) A T-N reducible map on a genus 5 surface.
(b) The quotient manifold for the central component of (a)
that is used in the Case 4 construction. (c) The reglued man-
ifold with a condensed homeomorphism in the isotopy class of
(a).
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Section 2: Dynamically minimal models and persistence of periodic points.
This section deals with the stability of periodic points under isotopy in terms of periodic
Nielsen equivalent and in terms of a stronger equivalence relation on periodic points called
strong Nielsen equivalent. The main persistence result is Lemma 2.3 which builds on work
of Jiang ([J3]) and Hall ([Hll]). This result allows us to conclude that all the periodic
points of a condensed homeomorphism persist under isotopy (Theorem 2.4). Corollary 2.5
gives necessary and su�cient conditions for the persistence of a periodic point for a surface
homeomorphism.

Although we focus here on homeomorphisms of surfaces, many of the results in this
section are true in a more general context.

Up to this point periodic Nielsen equivalence has been discussed using arcs in the
surface. There is an equivalent formulation using covering spaces. Let ~M be the universal
cover of M . Fix an identi�cation of �1(M) := �1 with the group of covering translations
of ~M . If we �x a reference lift ~f : ~M ! ~M of f , any lift of fn can be written as � ~fn for
some � 2 �1. It is easy to check that two periodic points x and y are periodic Nielsen
equivalent if and only if there exists lifts ~x, ~y and an element � 2 �1 with � ~fn(~x) = ~x and
� ~fn(~y) = ~y. Similarly, if C is a simple closed curve with fn(C) = C, then x and C are
periodic Nielsen equivalent if and only if there exists lifts ~x, ~C and an element � 2 �1 with
� ~fn(~x) = ~x and � ~fn( ~C) = ~C setwise. The equivalence class of x under periodic Nielsen
equivalence is PNC(x; f).

Two lifts of f , ~f1 and ~f2, are said to be in the same lifting class if there is an � 2 �1
with � ~f1�

�1 = ~f2. The lifting class of ~f is denoted [ ~f ]. If for a lift ~x of x, the element
� 2 �1 is such that � ~fn(~x) = ~x, then the lifting class of x is LC(x; fn) = [� ~fn]. It is easy

to check that this de�nition is independent of the choice of the lift ~x and if (y; f)
PN� (x; f),

then LC(y; fn) = LC(x; fn). It thus makes sense to talk about the lifting class of a
periodic Nielsen class.

A lifting class ` of fn is called collapsible if there is a � 2 �1 and an integer k with
n = mk and 1 � k < n so that ` = [(� ~fk)m]. The next lemma connects the notion of a
collapsible lifting class with the notion of collapsible periodic points introduced in the last
section. What is termed \uncollapsible" here is what was called \irreducible" in [J3]. page
65. That terminology is not used to avoid confusion with reducible maps.

Lemma 2.1: If f : M ! M is an orientation-preserving homeomorphism of a
compact orientable 2-manifold and x 2 Pn(f), then following are equivalent:

(a) There exists a periodic point y so that (x; f) ` (y; f).

(b) LC(x; fn) is collapsible.

(c) There exist integers k and m with 1 � k < n and n = mk, an element � 2 �1,
and a lift ~x so that ~x is a periodic point with period m under � ~fk.

Proof: First assume (a). If per(x) = n and per(y) = k, we have from the de�nition
of collapsible that n = mk for some 1 < m � n and that for some � 2 �1 � ~f

n(~x) = ~x
and � ~fn(~y) = ~y. But since per(y) = k, there is also an � 2 �1 with � ~fk(~y) = ~y, and so
(� ~fk)m(~y) = ~y. But two lifts of fn with the same �xed point must be the same and so
� ~fn = (� ~fk)m. This implies (b).

Now assume (b). By assumption, if � 2 �1 is such that � ~fn(~x) = ~x, then there are
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�; � 2 �1 and k with 1 � k < n so that � ~fn = ��1(� ~fk)m� = (��1� ~fk�)m. Thus ~x is m-
periodic under ��1� ~fk� which is a lift of fk and so (c) follows.

Finally assume (c). IfM has no boundary, the universal cover ofM is either the plane
or the sphere. The Brouwer Lemma states that an orientation-preserving homeomorphism
of the plane that has a periodic point also has a �xed point. This implies that � ~fk has a
�xed point ~y. Thus (� ~fk)m(~x) = ~x and (� ~fk)m(~y) = ~y, and so x ` y which is (a). If M
has boundary then the universal cover of int(M) is the plane and thus if x 2 Int(M), the
proof is the same. If x is on the boundary of M , collar M and extend f so that it has no
periodic points in the collar, and proceed as in the case where x 2 Int(M). tu

It is important to note that the inclusion of condition (a) in Lemma 2.1 is very
dependent on the fact that we are in dimension 2. The proof that (c) implies (a) uses the
Brouwer Lemma which is not true in higher dimensions.

We now discuss a stronger notion of equivalence of periodic points that was �rst
introduced in [AF]. It is convenient to include a parallel discussion of periodic Nielsen
equivalence. These two theories share a general pattern in their development with any
Nielsen-type theory for periodic points. We �rst introduce two notions associated with
isotopies. A self-isotopy ft : f ' f is called contractible if the corresponding closed loop
in Homeo(M) is null-homotopic. An isotopy ft : f0 ' f1 is said to be a deformation of a
second isotopy ht : f0 ' f1 if the corresponding arcs in Homeo(M) are homotopic with
�xed endpoints.

Assume that x0 2 Pn(f0), x1 2 Pn(f1) and ft : f0 ' f1. The periodic points x0 and
x1 are connected by the isotopy ft if there exists an arc 
 : [0; 1] ! M with 
(0) = x0,

(1) = x1, and for all t, 
(t) 2 Pn(ft). If (x0; f0) and (x1; f1) are connected by some
isotopy we say that they are connected by isotopy. Given a single map f and x; y 2 Pn(f),
then x is strong Nielsen equivalent to y (denoted (x; f)

SN� (y; f) or x
SN� y) if x and y are

connected by a contractible isotopy ft : f ' f . The strong Nielsen class of a periodic point
x is SNC(x; f). Two strong Nielsen classes are connected by an isotopy if elements from
each class are.

In the case of primary interest here (M is a compact orientable surface with negative
Euler characteristic) all self-isotopies are contractible (cf. [FLP], page 22). However, the
de�nition of strong Nielsen equivalence is applicable in other situations so the condition

is explicitly mentioned here. The self-isotopy is required to be contractible so that x
SN� y

implies x
PN� y. This is a direct consequence of the fact that a contractible self-isotopy

always lifts to self-isotopy in the universal cover. The fact that x
SN� y implies x

PN� y means
that a periodic Nielsen class is composed of a disjoint collection of strong Nielsen classes.
A strong Nielsen class is said to be collapsible if its periodic Nielsen class is collapsible.

For �xed points there is no di�erence between the notions of strong and periodic
Nielsen equivalence ([J3], Theorem 2.13). The relationship of strong and periodic Nielsen
equivalence for periodic orbits is clari�ed by considering the suspension 
ow of the given
map. Two periodic orbits are said to be strong Nielsen equivalent if periodic points from
each orbit are. It was shown in [J6] that two periodic orbits are periodic Nielsen equiva-
lent if and only if their corresponding closed orbits are homotopic in the suspension 
ow.
One can show that for di�eomorphisms, two orbits are strong Nielsen equivalent if and
only if their corresponding closed orbits are isotopic in the suspension 
ow. This indicates
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the close connection of strong Nielsen equivalence with knot theory in dimension 3 (cf.
[BW]). It also indicates that the distinction between strong and periodic Nielsen equiva-
lence vanishes in dimensions bigger than two. In this case the suspension manifolds will
be dimension 4 or greater and in these dimensions simple closed curves are homotopic if
and only if they are isotopic.

One of the main purposes of a Nielsen-type theory for periodic orbits is to �nd condi-
tions that guarantee the persistence (in the appropriate sense) of classes under isotopy (or
homotopy). For this the notion of index is crucial. Given a map f , any collection of �xed
points that is both open in Fix(f) and closed in M may be assigned an integer index (cf.
[J3], page 11).

Lemma 2.2: (Essential Classes) An uncollapsible period n-periodic or -strong
Nielsen class is open in Fix(fn) and closed in M .

Proof: We �rst prove the statement for periodic Nielsen classes. It is a standard
fact that Nielsen �xed point classes are closed in M and open in the set of �xed points
([J3], page 7). By applying this fact to the map fn the statement follows after we have
shown that when PNC(x; f) is uncollapsible, it is equal to the Nielsen class of x under

fn. For this we need only check that when (x; fn)
NE� (y; fn), then y has least period n.

This is an immediate consequence of the equivalence of Lemma 2.1 (a) and (b).
The statement for strong Nielsen classes follows from Lemma 4 in [Hll] after we show

that what is called uncollapsible here implies what is called uncollapsible there. Speci�cally,
we must show that if p 2 Pn(f) is uncollapsible in the sense used here, then the following
condition holds: Whenever there are sequences gj ! g in Homeo(M) and qj ! q in M
with qj 2 Pn(gj) and (qj ; gj) connected by isotopy to (p; f) for all j, then q has least period
n.

Fix lifts and � 2 �1 so that � ~fn(~p) = ~p. Since each (qj ; gj) is connected by isotopy

to (p; f), for all j there exist lifts and equivariant isotopies ~gj ' ~f with �~gnj (~qj) = ~qj and
~qj ! ~q, which implies �~gn(~q) = ~q for some lift ~g of g. Now if q had least period k < n, then
there would be an element � 2 �1 with �~gk(~q) = ~q and so (�~gk)m = �~gn where n = mk.
This implies that (� ~fk)m = � ~fn, and so p is collapsible, a contradiction. tu

A periodic or strong Nielsen class for which the index is de�ned and is nonzero is
called essential.

The next step in a Nielsen-type theory for periodic orbits is the correspondence of
periodic points in isotopic maps. The notion of connection by isotopy is the type of
correspondence appropriate to strong Nielsen equivalence. It was de�ned above the last
lemma. If ft : f0 ' f1 and xi 2 Pn(fi), then PNC(x0; f0) corresponds to PNC(x1; f1)
under this isotopy if there exists � 2 �1 and lifts with � ~fni (~xi) = ~xi where ~ft : ~f0 ' ~f1 with
~ft an equivariant isotopy. Equivalently, the periodic points correspond under the isotopy
if there is an arc 
 : [0; 1] ! M with 
(0) = x0, 
(1) = x1, and the curve ft(
(t)) is
homotopic to 
(t) with �xed endpoints.

Lemma 2.3: (Correspondence and Persistence of Classes under Isotopy) Assume that
ft : f0 ' f1 and xi 2 Pn(fi), for i = 1; 2.

(a) Periodic Nielsen Equivalence
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(i) If PNC(x0; f0) is uncollapsible and corresponds to PNC(x1; f1) under
the isotopy, then PNC(x1; f1) is uncollapsible and I(PNC(x0; f0); f

n
0 ) =

I(PNC(x1; f1); f
n
1 ).

(ii) If x0 is contained in a uncollapsible, essential periodic Nielsen class, then
there exists a z 2 Pn(f1) that corresponds to x0 under the isotopy.

(b) Strong Nielsen Equivalence
(i) If SNC(x0; f0) is uncollapsible and is connected to SNC(x1; f1) by the

isotopy, then SNC(x1; f1) is uncollapsible and I(SNC(x0; f0); f
n
0 ) =

I(SNC(x1; f1); f
n
1 ).

(ii) If x0 is contained in a uncollapsible, essential strong Nielsen class, then
there exists a z 2 Pn(f1) and an isotopy f 0t : f0 ' f1 that is a deformation
of ft so that z is connected to x0 by the isotopy f 0t.

Proof: If PNC(x0; f0) corresponds to PNC(x1; f1), then by de�nition there exists
a � 2 �1 and lifts so that � ~fni (~xi) = ~xi and ~f0 and ~f1 are equivariantly isotopic. Now if
PNC(x1; f1) is collapsible, then there exists �; � 2 �1 with � ~fn1 = �(� ~fk1 )

m��1 and so
� ~fn0 = �(� ~fk0 )

m��1, so x0 is collapsible.
The proof of Lemma 2.2 shows that when x0 is uncollapsible its periodic Nielsen class

is equal to its Nielsen �xed point class under fn. The equality of the indices and part
(a)(ii) then follow from [J3], Theorem I.4.5.

The assertions in (b) follow from [Hll] using the result concerning uncollapsibility
shown in the proof of Lemma 2.2. tu

It is convenient to have terminology to describe periodic points that behave as in the
(ii) parts in the above theorem. A periodic point x 2 Pn(f0) is called persistent if for each
given homeomorphism f1 with ft : f0 ' f1, there is an x1 2 Pn(f1) which corresponds to
x0 under the isotopy. The periodic point is called unremovable if x0 is connected to x1 by
an isotopy f 0t : f0 ' f1, with the isotopy f 0t a deformation of ft.

The next theorem asserts the existence of a minimal representative with respect to
periodic and strong Nielsen equivalence in the category of orientation-preserving homeo-
morphisms of compact orientable surfaces. The corresponding theorem for Nielsen �xed
point classes is outlined in [J2] and [I] and given in full detail in [JG]. In stating the the-
orem it will be convenient to work with equivalence classes of both periodic points and
periodic orbits. The periodic (strong) Nielsen class of a periodic orbit is simply the union
of the classes for all the periodic points in the orbit.

Theorem 1.7 says that any homeomorphism of the type considered here is isotopic
to a condensed homeomorphism. The condensed homeomorphism has no relations among
its periodic orbits and each periodic point has nonzero index. The only relations among
periodic points of the condensed homeomorphism were speci�ed above that theorem. They
consist of uncollapsible periodic points that can be periodic Nielsen equivalent to other
periodic points on the same orbit but have no other relations. Therefore using Lemmas
2.1 and 2.3 we have:

Theorem 2.4: (Dynamically Minimal Representative) Each orientation-preserving
homeomorphism of a compact, orientable 2-manifold is isotopic to a condensed homeomor-
phism. Each nonempty periodic (strong) Nielsen class of periodic points for a condensed
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homeomorphism is uncollapsible and essential and is therefore persistent (unremovable).
Further, each nonempty periodic (strong) Nielsen class of periodic orbits contains exactly
one element.

Informally, this theorem says that condensed homeomorphisms are the least compli-
cated dynamically in their isotopy class. More formally, given an isotopy class 
, for each
n, let PON(
; n) denote the number of uncollapsible, essential period-n periodic Nielsen
classes of periodic orbits for any map in 
. Theorem 2.3 guarantees that this number
is well-de�ned and further, that it is a lower bound for the number of period-n periodic
orbits of any element in the isotopy class. Theorem 2.4 asserts the existence of a map in
the isotopy class that achieves this lower bound for all n. A similar remark holds for strong
Nielsen classes.

It is important to note there is no theorem of this type even for �xed point theories
for certain homotopy classes of maps on surfaces that are not homeomorphisms ([J4] and
[J5]).

Corollary 2.5 Let f be an orientation-preserving homeomorphism of a compact, ori-
entable 2-manifold. A periodic point x 2 Pn(f) is persistent (unremovable) if and only if
its periodic (strong) Nielsen class is uncollapsible and essential.

Proof: Necessity follows from Lemma 2.3. Assume then that x is persistent. Let �
be a condensed homeomorphism that is isotopic to f . By de�nition of persistent, there is
a z 2 Pn(�) that corresponds to x under the isotopy. By Lemma 2.3(a), PNC(x; f) is
uncollapsible and essential because PNC(z; �) is. The proof for strong Nielsen equivalence
is virtually identical. tu

Remarks:
(2.6) The main goal in the construction of condensed homeomorphisms was to produce

a map in the isotopy class having the least number of periodic points. It will perhaps clarify
the work of the last section to describe how and why a TN-reducible homeomorphism fails
to achieve this goal.

As de�ned in Section 1, a TN-reducible map can have periodic points in the interior
of reducing annuli. When these periodic points are contained in un
ipped reducing annuli
they can always be removed by a strong push towards the boundary of the annulus. With
the exception of a pair of periodic points, all the periodic points in the interior of a 
ipped
reducing annulus can be removed using Lemma 1.2(b). Each uncollapsible strong Nielsen
class that remains is essential. This means that the only periodic points that are removable
are those that are collapsible. The collapsible periodic points in a TN-reducible map are
regular periodic points in �nite-order components that contain branch periodic points,
peripheral pA periodic points in adjoining untwisted reducing annuli, and peripheral pA
periodic points on the boundary of a 
ipped, untwisted reducing annulus. These collapsible
periodic orbit are removed using Cases 3 and 4 and the gluing process from Section 1.

This leaves the following types of unremovable periodic points: (1) Interior pA periodic
points. (2) Boundary pA periodic points. (3) Peripheral pA periodic points that are not
adjacent via an untwisted reducing annulus to �nite-order components that have branch
periodic points and are also not adjacent to an untwisted, 
ipped reducing annulus. (4)
Finite order periodic points that are in a component that has no branch periodic points.
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(5) Branch periodic point in �nite-order components. (6) Periodic points in the interior of

ipped reducing annuli.

Although none of these periodic points can be removed, the map can be made dy-
namically simpler by coalescing periodic points in the same strong Nielsen class. Points of
type (1), (5), and (6) are alone in their strong Nielsen classes so no coalescing is needed
for these points. However, there are several reductions that may be possible with points
of type (2). In the standard model of a pA map there are pairs of periodic orbits on the
boundary that are strong Nielsen equivalent. These were coalesced in the corresponding
boundary-adjusted pA. Periodic points of type (2) can also be strong Nielsen equivalent
to other points from their orbit that lie on the same boundary component. However, these
periodic points are uncollapsible and therefore coalescing to other points on the same orbit
is not possible. Similar remarks hold for periodic points of types (3) and (4).

Periodic orbits of types (2), (3) and (4) can also be strong Nielsen equivalent to
periodic points not on their orbit as described in Proposition 1.5 (a) and (c). These strong
Nielsen equivalent periodic orbits are coalesced in the gluing process in the construction
of condensed homeomorphisms and the use of Proposition 1.6, respectively.

(2.7) The conditions that guarantee unremovability of an x 2 Pn(f) given in [AF]
are that SNC(x; f) is essential and that the points fx; f(x); : : : ; fn�1(x)g are in di�erent
Nielsen classes as �xed points of fn. It is easy to check that this last condition implies that
SNC(x; f) is not collapsible. These Asimov-Franks' conditions yield the unremovability
of periodic points of type (1), (5), and (6) in the previous remark. These types of periodic
points constitute \most" of the unremovable periodic points in \most" of the isotopy
classes. The other types of unremovable periodic points do not, in general, satisfy these
conditions.

The results of Hall in [Hll] strengthen the Asimov-Franks' result by removing the need
for di�erentiability of the homeomorphisms as well as providing a lower level condition that
ensures unremovability. Hall's conditions also guarantees the unremovability of certain
�nite collections of periodic points.

(2.8) There is an inherent awkwardness in dealing with dynamically minimal models
and equivalence classes of periodic points and periodic orbits. This is re
ected in the
statements of Theorems 1.7 and 2.4. As an example, let � be a boundary-adjusted pA
map on a surfaceM that has two boundary components that are mapped one to the other.
Suppose further that �2 restricted to each of these circle has rotation number 1=2. This
map certainly has the least number of periodic points among maps in its isotopy class.
However, the boundary periodic points are not alone in their periodic (or strong) Nielsen
class as they are periodic (strong) Nielsen equivalent to the other point on their orbit that
is on the same boundary circle. On the other hand, if one restricts attention to equivalence
of periodic orbits, one has thrown out the more detailed information about the structure
of the orbit provided by equivalence of periodic points.

(2.9) As remarked above, periodic Nielsen classes are comprised of the disjoint union
of strong Nielsen classes. The results of this section show that a persistent periodic Nielsen
class for a surface homeomorphism contains exactly one unremovable strong Nielsen class.
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(2.10) The conditions given in Corollary 2.5 that are necessary and su�cient for un-
removability have a heuristic interpretation in terms of bifurcation theory. The intuitive
idea is that a periodic point is removable exactly when there is a one-parameter family of
homeomorphisms with the property that the given periodic point disappears in a bifurca-
tion at some point. This is essentially the point of view taken in [AF]. From this point
of view the requirement that the strong Nielsen class of the periodic point be essential is
necessary to guarantee that the class of the periodic point cannot disappear via a collec-
tion of saddlenode bifurcations. The uncollapsibility condition prevents disappearance via
period-dividing bifurcations.

(2.11) This section has presented a parallel development of two Nielsen-type theories
for periodic points. In such theories there are other components that have not been dis-
cussed here. One such component is the issue of coordinates for the equivalence classes.
For periodic Nielsen classes these coordinates are provided by lifting classes or by twisted
conjugacy classes in �1 (cf. [J3] Section II.1). For maps isotopic to the identity, coordi-
nates for strong Nielsen classes are provided by the braid type which is the conjugacy class
in the mapping class group of the isotopy class of the map on the complement of the orbit
(cf. [Hll], Lemma 8 and [Bd]).

Another issue is how to compute the di�erent classes and their coordinates using al-
gebraic or combinatoric information about the maps. For surface homeomorphisms this
is best accomplished geometrically using train tracks (cf. [PH] and [BH]). Algebraic tech-
niques are provided in [J3], [F], [FH], [HPY], and [HY]

There are other Nielsen type theories for periodic points in addition to those discussed
here. The simplest way to describe these theories is in terms of the suspension 
ow of the
given homeomorphism. For example, call two periodic orbits Abelian Nielsen equivalent if
the corresponding orbits are homologous in the suspension 
ow. There is, of course, an
equivalent formulation in terms of the appropriate covering space and in terms of arcs in
the surface. For more information on such theories see, for example, [F] or [HJ].

Section 3: Persistence of pA orbits. The results of the previous section show
that a condensed homeomorphism is dynamically smallest in its isotopy class and that its
periodic orbits are present in any isotopic map. If a condensed homeomorphism has a pA
component, the periodic orbits are a small subset of the interesting dynamics. This section
concerns persistence of these other orbits.

Handel ([H]) and Fathi ([Ft]) both give persistence results for all the dynamics of
pA maps. Although global shadowing is not used explicitly, the point of view adopted
here is closest to that of Handel (see Remark 3.3 below). The persistence of all the pA
orbits from a condensed homeomorphism is obtained by taking the closure of the persistent
periodic orbits. This point of view is somewhat more natural here given the emphasis of the
previous sections. It also avoids certain technical di�culties associated with the presence
of a boundary on M or the presence of �nite-order components in a reducible map.

The �rst step is to use a given condensed homeomorphism � :M !M to de�ne three
pseudo-metrics on ~M , the universal cover of M (in this paper metric always refers to a
topological metric, i.e., a map M �M ! R). The pseudo-metrics are constructed using
the invariant foliations of the pA components of �. The measure attached to an invariant
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foliation of a pA map assigns lengths to arcs (cf. [FLP], expos�e 5 xII). Given the lift of a
pA component ~Ni, the lift of the invariant unstable measured foliation of � restricted to

Ni gives a length `
(i)
u (
) to arcs 
 contained in ~Ni. For an arc 
 : [0; 1]! ~M that intersects

the lifts of pA components, ~N1; : : : ; ~Nk, de�ne `u(
) =
Pk

i=1 `
(i)
u (
 \ ~Ni). Given ~x; ~y 2 ~M ,

let
~du(~x; ~y) = inff`u(
) : 
 is an arc connecting ~x and ~yg:

A psuedo-metric ~ds is de�ned similarly using the lifts of stable foliations. Let ~d� = ~du+ ~ds.
Note that these three psuedo-metrics are equivariant, i.e. for � 2 �1, ds(�~x0; �~x1) =
ds(~x0; ~x1), etc.

The pseudo-metric ~d� projects to a pseudo-metric d� on M that is a metric when
restricted to the interior of a pA component ([FLP] pages 178{180). In the projected metric
the distance between points in the same (connected) �nite-order component is zero. Even
in the case where there is only one component and � is pA, d� will not be an metric if M
has boundary. This is because it assigns zero distance between pairs of points on the same
boundary component (but these are the only pairs of points that have zero separation).
To distinguish between these pseudo-metrics and an underlying metric that makes M a
2-manifold (eg. a hyperbolic metric), the latter will be called a standard metric. If � is a
metric or pseudo-metric on M , the notation (M;�) indicates the set M with the topology
given by �.

Now let �� be the smallest expansion constant among the pA components of �. The
crucial property of the pseudo-metrics is:

~du(~�(~x); ~�(~y)) � �� ~du(~x; ~y)
~ds(~�

�1(~x); ~��1(~y)) � �� ~ds(~x; ~y):
(�)

In particular, if ~x and ~y are a positive distance apart, then their separation as measured
by ~d� grows exponentially under forward or backward iteration (or both).

We now return to the proofs promised in Section 1.

Proof of Lemma 1.1(b): Recall that two boundary components b1 and b2 are
related by a map � if and only if there is an integer n, an element � 2 �1, and lifts to
the universal cover ~� and ~bi so that � ~�n �xes the ~bi. Now if � is pA, property (�) and
the fact that ~d� is a metric on the interior of ~M imply that � ~�n cannot �x two distinct
boundary components of ~M . This shows that distinct boundary components of M cannot
be related by � and also yields Lemma 1.1(biv). The other parts of Lemma 1.1(b) follow
by considering points as well as boundary components. tu

Proof of Lemma 1.4(a): By hypothesis, if n = per(x; �1), then there exists an
element � 2 �1 and lifts with � ~�n(~x) = ~x, � ~�n(~y) = ~y, and a ~
 that connect ~x and ~y.
Without loss of generality we may assume that �0 is a simple closed geodesic with respect
to a hyperbolic metric. We now identify ~M , the universal cover of M , with a subset of the
hyperbolic disk. Since 
 essentially intersects �0, there exists a lift ~�0 so that ~
 \ ~�0 is
nonempty and ~x and ~y are in di�erent components of ~M � ~�0.

Since �0 is a reducing curve, there is an m > 0 with �m(�0) = �0. This implies that
(� ~�n)m(~�0) either equals ~�0 or else is another (and therefore disjoint) lift of �0. But by
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compactness there are a �nite number of lifts of �0 that intersect ~
 and so (� ~�
n)m(~�0) = ~�0,

which implies that �0 is related to both x and y.
The proof of the second statement is similar. tu
The next lemma contains the key idea of this section and is taken almost directly

from [H], Lemma 2.2. The di�erence here is in the use of the psuedo-metric d� derived
from a reducible map instead of the metric derived from a pA map on a closed surface.
Extending a de�nition from Section 2, if f0 ' f1, the lifts ~xi of periodic points (xi; fi) are
said to correspond under the isotopy if there exists an equivariant isotopy ~f0 ' ~f1 and an
element � 2 �1 with � ~fni (~xi) = ~xi, where n = per(xi; fi).

Lemma 3.1: Let f be an orientation-preserving homeomorphism of a compact, ori-
entable 2-manifold M and � ' f be a condensed homeomorphism. There exists a constant
C = C(f) such that whenever (x;�) and (y; f) are periodic points with lifts ~x and ~y that
correspond under the isotopy, then ~d�(~x; ~y) < C.

Proof: Fix equivariantly isotopic lifts ~� and ~f and let

R = sup
~z2 ~M

f ~d�(~�(~z); ~f(~z)); ~d�(~��1(~z); ~f�1(~z))g

and C = 2(R + 1)=(�� � 1). Using the triangle equality and property (�) we have
~du(~�(~x); ~f(~y)) � �� ~du(~x; ~y)�R. Thus if ~du(~x; ~y) � C=2, then ~du(~�(~x); ~f(~y)) � 1+ ~du(~x; ~y),
and so ~du(~�

n(~x); ~fn(~y))!1 as n!1.
Similarly, if ~ds(~x; ~y) � C=2, then ~ds(~�

n(~x); ~fn(~y)) ! 1 as n ! �1. Thus if
~d�(~x; ~y) � C, then ~d�(~�

n(~x); ~fn(~y)) goes to in�nity under forward or backward iteration
(or both).

On the other hand, by hypothesis there exists an element � 2 �1 with ~�N (~x) = ��1~x
and ~fN (~y) = ��1~y, where N = per(x;�) = per(y; f). Since the pseudo-metric ~d� is
equivariant this implies that f ~d�(~�n(~x); ~fn(~y)) : n 2 Zg is �nite, a contradiction. tu

Note that a lemma of this type is certainly not true for �nite order maps using the lift
of a standard metric. The identity map gives a trivial example; all �xed points are Nielsen
equivalent, but there are lifts that are �xed points arbitrarily far apart in the cover. This
is one reason the pseudo-metric d� needs to vanish on �nite-order components.

The next theorem describes the persistence of the dynamics of a condensed homeo-
morphism under isotopy. To get a statement that avoids pseudo-metrics it is necessary
to pass to a quotient of M . Given a condensed homeomorphism � : M ! M , de�ne a
equivalence relation ./ onM as follows. If z0 and z1 are on the same boundary component
of a pA component, then z0 ./ z1. Boundary component here means not only boundary
components of the manifold itself, but also curves in the interior of the manifold which are
the boundary to a pA component. Points that are not on the boundary of a pA component
are equivalent only to themselves. Extend the relation ./ so that it is an equivalence rela-
tion. Note that the construction of a condensed homeomorphism can glue together points
from the boundaries of di�erent pA components. These points will be ./-equivalent.

Let Mp = M= ./. Fix a standard metric on M and give Mp the metric induced by
the projection M ! Mp (See Figure 7) Since � respects the relation ./, it descends to a
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homeomorphism �p : Mp ! Mp. In addition, since the projection p is injective on the
interior of components of �, we can continue to speak of the components of the map �p.
If � is itself pA, Mp is just the closed manifold formed by collapsing each the boundary
components of M to a point. In this case the metric on Mp is equivalent to that induced
by the projection of d� ([FLP], pages 178{180). In the general case, on pA components in
Mp the given metric is equivalent to the projection of d�.

Figure 7: The pinched manifold Mp used in Theorem 3.2
derived from the condensed homeomorphism of Figure 6(c).

Theorem 3.2: Let f be an orientation-preserving homeomorphism of a compact,
orientable 2-manifold M and � ' f be a condensed homeomorphism. There exists a
compact f-invariant set Y �M and a continuous map � : Y !Mp so that ��fjY = �p��.
Further, � is homotopic to the inclusion and its image contains all pA components and all
periodic points of �p.

Proof: Let Xa and Xf be the set of periodic points of � that are contained in the
interior of a pA component or the interior of a �nite-order component, respectively. Pick
a point x from each periodic orbit of � contained in Xa[Xf . Let �(x) be a periodic point
(y; f) that is connected by isotopy to (x;�). By Theorem 2.4 and Lemma 2.3(bii) such a
point y exists. Now extend � by requiring that for z 2 Xa [Xf , �(z) is a periodic point
(y; f) that is connected by isotopy to (z;�), and further that � � �jXa[Xf = f � �. By
Theorem 1.7, � is injective. Let Ya = �(Xa), Yf = �(Xf ), and �0 = ��1.

Since d� is a metric on the interior of pA components we may pick a standard metric
� on M with d� � �. Let ~� denote its lift to the universal cover. We �rst show that
�0 : (Ya [ Yf ; �) ! (M;d�) is uniformly continuous. The proof depends on the following
fact: If for i = 1; 2, the periodic points (xi;�) and (yi; f) have lifts ~xi and ~yi that correspond
under the isotopy, then for all m,�� ~d�(~�m(~x1); ~�

m(~x2))� ~d�( ~f
m(~y1); ~f

m(~y2))
�� � 2C: (��)
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To prove this fact note that

~d�( ~f
m(~y1); ~f

m(~y2)) � ~d�( ~f
m(~y1); ~�

m(~x1)) + ~d�(~�
m(~x1); ~�

m(~x2))

+ ~d�(~�
m(~x2); ~f

m(~y2)):

By Lemma 3.1, the �rst and the last terms on the right hand side are bounded by C.
There is a similar inequality obtained by switching all ~�'s and ~f 's and ~x's and ~y's. These
two inequalities together yield the fact.

Now assume to the contrary that �0 is not uniformly continuous. In this case there

exists some � > 0 such that for all positive n there are y
(n)
1 and y

(n)
2 with �(y

(n)
1 ; y

(n)
2 ) < 1=n

and d�(�0(y
(n)
1 ); �0(y

(n)
2 )) � �.

Pick lifts ~y
(n)
i of y

(n)
i and ~x

(n)
i of �0(y

(n)
i ) so that the inequalities of the previous

paragraph hold with the lifts in place of the points in the base. Fix anM with ��M� =2 > 4C.
Since ~f : ( ~M; ~�)! ( ~M; ~�) is continuous and ~d� � ~� there is an n so that

maxf ~d�( ~fM (~y
(n)
1 ); ~fM (~y

(n)
2 )); ~d�( ~f

�M (~y
(n)
1 ); ~f�M (~y

(n)
2 ))g < C:

By property (�), either ~d�(~�
M (~x1); ~�

M (~x2)) � ��M� or ~d�(~�
�M (~x1); ~�

�M (~x2)) � ��M� ,
contradicting (��) above. Thus �0 : (Ya [Xf ; �)! (M;d�) is uniformly continuous.

If Y = Cl(Ya)[Yf , where the closure is taken with respect to topology given by �, we
can extend �0 to a continuous map, �1 : (Y; �) ! (M;d�). The fact that Mp is obtained
by identifying points on the boundaries of pA components whose d� separation is zero
coupled with the fact that Xf = �(Yf ) is �nite yields that � := p � �1 : (Y; �) ! Mp is
continuous.

Since periodic points of � are dense in its pA components, the assertion about the
range of � follows. The fact that � � fjY = �p � � is a straight forward consequence of

the de�nition of �. If we pick a lift ~Y � ~M , by virtue of Lemma 3.1 � has a lift ~Y ! ~M
that is a bounded distance from the inclusion. This implies that � is homotopic to the
inclusion. tu

Remarks:

(3.3) In [H] Handel proves Theorem 3.2 for pA maps on closed surfaces using global
shadowing. Given two isotopic maps f and � and equivariantly isotopic lifts ~f and ~�, the
pairs (x; �) and (y; f) globally shadow with respect to a metric d if there is a constant K so
that ~d( ~fn(~y); ~�n(~x)) < K for all n, where as usual the tilde indicates lifts to the universal
cover.

If � is pA and Ygs denotes the set of all points (y; f) that globally shadow some point
(x; �), Handel shows that f restricted to Ygs is semiconjugate to �. If the set constructed
in the proof of Theorem 3.2 is denoted Ypo, certainly Ygs can be larger than Ypo. A simple
example is given by a DA map on the two torus (cf. [W], or the appendix of [FR]). In this
case Ygs is the entire torus and Ypo is just the basic set. Clearly there are circumstances
in which one or the other of these sets would be most useful.

The metric used for global shadowing in a pA isotopy class on a closed manifold is d�
as de�ned above. As noted previously, when M has boundary d� is only a pseudo-metric
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as it assigns zero distance to pairs of points on the same boundary component. This means
that with respect to d�, a point (y; f) globally shadows one point (x; �) on the boundary if
and only if it globally shadows every point on the same boundary circle if and only if the
orbit of its lift stays a bounded distance away from the orbit of the lift of the boundary
circle.

Using the pseudo-metric derived from a condensed homeomorphism � one can prove
a version of Theorem 3.2 via global shadowing. In fact, most of the statements in [H] go
through with minor changes. One again obtains a set Ygs that has the pA components and
periodic points of � as a factor. There is, of course, still a di�erence between Ygs and Ypo.

As another example, let � : M ! M be pA and assume that M has boundary. Glue
an annulus to a boundary component, extend � in any manner, and call the new map f .
All the points in the new annulus under f will globally shadow the boundary and therefore
be in Ygs, but only the points on the interior boundary of the annulus will be in Ypo.

(3.4) The intent in formulating Theorem 3.2 was to �nd a model map that is a factor
of every map in its isotopy class. Unfortunately, to get such a result one is required to
either use a degenerate topology coming from a pseudo-metric (as in (Y; �) ! (M;d�) is
continuous) or else use the pinched manifold Mp. The fact that some device is necessary
even in pA classes is illustrated by Figures 2(a) and 2(b). These pictures show possible
boundary behavior for two isotopic pA maps that are conjugate on the interior of M . Any
simple factor of these two maps should clearly be the same on the interior of M , but there
is no boundary behavior that is a factor of the boundary dynamics of both maps. The
alternative adopted here was to collapse the boundary of the image manifold to a point.
This yields a trivial point factor for the boundary dynamics.

REFERENCES

[AF] Asimov, D. and Franks, J., Unremovable closed orbits, Springer LNIM, 1007, 1983,
22{29 (revised version in preprint).

[BS] Batterson, S. and Smillie, J., Filtrations and periodic data on surfaces, Amer. J. of
Math., 108, 1986, 193{234.

[Bd] Boyland, P., Rotation sets and monotone orbits for annulus homeomorphisms, Comm.
Math. Helv., 67, 203{213, 1992.

[BH] Bestvina, M. and Handel, M., Train tracks for surface homeomorphisms, preprint.
[BK] Birman, J. and Kidwell, M., Fixed points of psuedo-Anosov di�eomorphisms of sur-

faces, Adv. in Math., 46, 1982, 73{98.
[BW] Birman, J. and Williams, R., Knotted periodic orbits in dynamical systems II: knot

holders for �bered knots, Contemp. Math., 20, 1983, 1{60.
[CB] Casson, A. and Bleiler, S., Automorphisms of Surfaces after Nielsen and Thurston,

London Math. Soc. Stud. Texts, 9, Cambridge University Press, 1988.
[FH] Fadell, E. and Husseini, S., The Nielsen number on surfaces, Contemp. Math., 21,

1983, 59{98.
[Ft] Fathi, A., Homotopy stability of pseudo-Anosov di�eomorphisms, Ergod. Th. &

Dynam. Sys., 10, 1989, 287{294.
[FLP] Fathi, A, Laudenbach, F. and Po�enaru, V. Travaux de Thurston sur les surfaces,

Asterique, 66-67, 1979.

28



[FW] Franks, J. and Robinson, C., A quasi-Anosov di�eomorphism that is not Anosov,
Trans. AMS, 223, 1976, 267{278.

[F] Fried, D., Periodic orbits and twisted coe�cients, Springer LNIM, 1007, 1983, 261{
293.

[GK] Gerber, M. and Katok, A., Smooth models of Thurston's pseudo-Anosov maps, Ann.
Sci. Ec. Norm. Sup., 15, 1982, 173{204.

[Hll] Hall, T., Unremovable periodic orbits of homeomorphisms, Math. Proc. Camb. Phil.
Soc., 110, 1991, 523{531.

[H] Handel, M., Global shadowing of pseudo-Anosov homeomorphisms, Ergod. Th. &
Dynam. Sys., 5, 1985, 373{377.

[Hp1] Halpern, B. Periodic points on tori, Paci�c J. Math., 83, 117{133, 1979.
[Hp2] Halpern, B. Nielsen type numbers for periodic points, preprint, circa 1980.
[HPY] Heath, P., Piccinini, R., and You, C., Nielsen type numbers for periodic points I,

Springer LNIM, 1411, 1989, 88{106.
[HY] Heath P.and You, C., Nielsen type number for periodic points II, Top. and its Appl.,

43, 1992, 219{236.
[HJ] Huang, H.-H., and Jiang, B., Braids and periodic solutions, Springer LNIM, 1411,

1989, 107{123.
[I] Ivanov, N. V., Nielsen numbers of self-maps of surfaces, J. Sov. Math, 26, 1984,

1636{1641.
[J1] Jiang, B., Fixed point classes from a di�erentiable viewpoint, Springer LNIM, 886,

1981, 163{170.
[J2] Jiang, B., Fixed points of surface homeomorphisms, Bull. AMS, 5, 1981, 176-178.
[J3] Jiang, B., Lectures on Nielsen Fixed Point Theory, Contemp. Math., 14, AMS, Prov-

idence, 1983.
[J4] Jiang, B., Fixed points and braids I, Invent. Math., 75, 1984, 69{74.
[J5] Jiang, B., Fixed points and braids II, Math. Ann., 272, 1985, 249{256.
[J6] Jiang, B., A characterization of �xed point classes, Contemp. Math., 72, 1988, 157{

160.
[JG] Jiang, B. and Guo, J., Fixed points of surface di�eomorphisms, Pac. J. Math., 160,

1993, 67-89.
[Mc] McCord, C.K., editor, Nielsen Theory and Dynamical Systems, Contemp. Math.,

152, AMS, Providence, 1993.
[M] Morse, M., A fundamental class of geodesics on any closed surface of genus greater

than one, Trans. AMS, 26, 1924, 25{60.
[PH] Penner, R. with Harer, J., Combinatorics of Train Tracks, Annals of Math Studies,

125, Princeton University Press, 1992.
[S] Smillie, J., Periodic points of surface homeomorphisms with zero entropy, Ergod. Th.

& Dynam. Sys., 3, 1983, 315{334.
[T] Thurston, W., On the geometry and dynamics of di�eomorphisms of surfaces, Bull.

A.M.S., 19, 417{431, 1988.
[W] Williams, R., The \DA" maps of Smale and structural stability, Global Analysis, Proc.

Symp. Pure and Appl. Math., XIV, 1970, 329{334.

29


