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The dynamics of complex analytic functions have been studied by many authors during

the past decade. Much of this work has been con�ned to the study of either rational or

polynomial maps. The study of other analytic functions is still in its infancy and there are

many unsolved problems in this area. In this note we describe a few of these problems.

1. Entire functions. The dynamics of entire functions are quite di�erent from the

dynamics of rational maps, mainly because of the essential singularity at in�nity. By the

Picard theorem, any neighborhood of this singularity is mapped in�nitely often over the

entire plane missing at most one point. This injects considerable hyperbolicity into the

map and often causes the topology of the Julia set of the map to be vastly di�erent from

that of a rational map. In addition, the No Wandering Domains Theorem of Sullivan does

not hold for this class of maps, so there may be both wandering domains and domains at

in�nity in the stable sets.

There is one class of entire maps whose dynamics are fairly well understood, namely

the entire maps that have �nitely many asymptotic and critical values (maps of �nite

type). With few exceptions (notably examples of Baker [B], Herman [H], and Eremenko

and Lyubich [EL], most work has centered around this class of maps. Extending the study

to a wider class of maps is an important problem.

Problem: Find a collection of representative examples of entire maps whose dynamics may

be understood.

As a starting point, one might ask

Problem: What are the dynamics of maps of the form �e

z

sin z or �e

z

cos z?

2. Entire functions of �nite type. Most of the work thus far on the dynamics of entire

maps has been concentrated on the class of �nite type maps. These are the maps which

have only �nitely many singular (i.e., critical and asymptotic) values. This class includes

�e

z

; � sin z, and � cos z. It is known [GK,EL] that the No Wandering Domains theorem

holds for this class, and that the Julia sets of these maps often contain Cantor bouquets

[DT].

3. The exponential map. Of all entire maps, the exponential family E

�

(z) = �e

z

has received the most attention. This is natural since E

�

, like the well-studied quadratic

family Q

c

(z) = z

2

+ c, has only one singular value, the asymptotic value at 0. Thus this

family is a \natural" one parameter family.
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The parameter space for E

�

has been studied in [DGK]. However, there remain signif-

icant gaps in this picture. It is known that there exists Cantor sets of curves (called hairs)

in the parameter plane for which the corresponding exponential maps have Julia sets that

are the whole plane.

Problem: Describe completely the set of �-values for which the Julia set of E

�

is C.

Problem: Many of these �-values lie on curves or hairs. Are these hairs C

1

? Analytic?

Where and how do they terminate?

There are some interesting topological structures embedded in the dynamics of the

exponential that warrant further study. For example, it is known that for � > 1=e; J(E

�

) =

C. However, if �; � > 1=e, then E

�

and E

�

are not topologically conjugate [DG]. If one

looks at the invariant set consisting of fzk0 � ImE

n

�

(z) � � for all ng, it is known that

this set is a Knaster-like continuum.

Problem: Are each of these Knaster-like continua homeomorphic? (for any �; � > 1=e)

4. The Trigonometric Functions. The parameter spaces for families such as S

�

(z) =

� sin z or C

�

(z) = � cos z also deserve special attention. They also contain curves on which

the Julia set is the entire plane. The fundamental di�erence here is that C

�

and S

�

have

no �nite asymptotic values (only critical values), whereas the opposite is true for E

�

.

Problem: Describe the structure of the parameter space for C

�

and S

�

.

One fundamental di�erence between the trigonometric and exponential families is the

following. Both maps are known to possess Cantor bouquets [DT] in their Julia sets.

And any two planar Cantor bouquets are homeomorphic [AO]. Finally, McMullen [Mc]

has shown that these Cantor bouquets always have Hausdor� dimension 2. However, the

Lebesgue measure of these bouquets is quite di�erent: they always have measure zero in

the exponential case, but in�nite measure in the trigonometric case.

Problem: What is the measure and dimension of the hairs i the parameter space for E

�

; S

�

and C

�

.

5. Other families of non-rational maps. Newton's method applied to non-rational

maps o�ers a fertile area for further investigation. Outside of the work of Haruta [Ha] and

van Haesler and Kriete [HK ], there is little that is known. So a general problem is:

Problem: Describe the dynamics of Newton's method applied to general classes of entire

functions?

This, of course, immediately leads to the question of iteration of meromorphic func-

tions. Some work has been done here in case the map has polynomial Schwarzian derivative

[DK] or when the map has �nitely many singular values [BK]. But not much else is known.
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Finally, there is an intriguing object called the tricorn introduced by Milnor [M] as

one of his basic slices of parameter space for higher dimensional maps. This object arises

as the analogue of the Mandelbrot set for the anti-holomorphic family A

c

(z) = z

2

+ c.

It is known [La] that the tricorn is not locally connected, but it also contains smooth

arcs in the boundary (with no decorations attached) [W]. As this object arises in slices

of the cubic connected locus, it certainly warrants further study. Winters [W] also has

introduced a family of fourth degree polynomials whose parameter space is \naturally"

R

3

and which contains perpendicular slices given by the Mandelbrot set and the tricorn.

Winters suggests that this family can model cubics since there are only two critical orbits.
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