
Introduction

Holomorphic dynamics posed several closely related key problems going back to Fatou

and Julia: density of axiom A maps, local connectivity of the Julia and Mandelbrot sets,

measure and dimension of the above sets. A great deal of progress has been achieved in

these problems during the last decade, but they are still in the focus of modern reasearch.

Most of the discussion in the chapter is concentrated on these problems. We will not quote

any particular results: the reader will �nd references and a variety of viewpoints on the

subject inside the articles.

For a general introduction to holomorphic dynamics we recommend one of the follow-

ing surveys: [Be], [Bl], [C], [EL], [L] and [M].

The chapter is organized into �ve sections which cover a good part of the �eld:

1 Quasiconformal Surgery and Deformations

2 Geometry of Julia Sets

3 Measurable Dynamics

4 Iterates of Entire Functions

5 Newton's Method

The chapter partially arose from an earlier problem list [Bi]. This preprint will be

published by Springer-Verlag as a chapter in Linear and Complex Analysis Problem Book

(eds. V. P. Havin and N. K. Nikolskii). We hope it will help to �x up the present state

of a�airs of the �eld and to stimulate further development. We thank everybody who has

contributed to the chapter. We would also like to thank M. Herman and J. Milnor for

many helpful comments.

Ben Bielefeld Mikhail Lyubich
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Section 1: Quasiconformal Surgery and Deformations

Questions in Quasiconformal Surgery

Ben Bielefeld

It is possible to investigate rational functions using the technique of
quasiconformal surgery as developed in [DH2], [BD] and [S]. There
are various methods of gluing together polynomials via quasiconformal
surgery to make new polynomials or rational functions. The idea of
quasiconformal surgery is to cut and paste the dynamical spaces for
two polynomials so as to end up with a branched map whose dynam-
ics combines the dynamics of the two polynomials. One then tries to
�nd a conformal structure that is preserved under this branched map of
the sphere to itself, so that using the Ahlfors-Bers theorem the map is
conjugate to a rational function. There are several topological surgeries
which experimentally seem to exist, but for which no one has yet been
able to �nd a preserved complex structure.

The �rst such kind of topological surgery is mating of two monic
polynomials with the same degree. (Compare [TL].) The �rst step is to
think of each polynomial as a map on a closed disk by thinking of in�nity
as a circle worth of points, one point for each angular direction. The
obvious extension of the polynomial at the circle at in�nity is � 7! d�
where d is the degree of the polynomial. Now glue two such polynomials
together at the circles at in�nity by mapping the � of the �rst polynomial
to �� in the second. Finally, we must shrink each of the external rays for
the two polynomials to a single point. The result should be conjugate
to a rational map of degree d. (Surprisingly this construction sometimes
seems to make sense even when the �lled Julia sets for both polynomials
have vacuous interior.)

For instance we can take the rabbit to be the �rst polynomial, that is
z2 + c where the critical point is periodic of period 3 (c � �:122561 +
:744862i). The Julia set appears in the following picture.



The rabbit

Then for the second polynomial we could take the basilica, that is
z2 � 1 (it is named after the Basilica San Marco in Venice. One can see
the basilica on top and its re
ection in the water below). The Julia set
for the basilica appears in the following �gure.

The basilica

Next we show the basilica inside-out ( z2

z2�1 ) which is what we will glue
to the rabbit.

The inside-out basilica

And �nally we have the Julia set for the mating ( z
2+c

z2�1 where c =
1+
p�3
2

).
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The basilica mated with the rabbit

Question 1. Which matings correspond to rational functions? There
are some known obstructions. For example, Tan Lei has shown that
matings between postcritically �nite quadratic polynomials can exist
only if and only if they do not belong to complex conjugate limbs of the
Mandelbrot set.
Question 2. Can matings be constructed with quasiconformal

surgery? Tan Lei uses Thurston's topological characterization of ra-
tional maps to do this. It would be nice to have a cut and paste type of
construction, giving results for the case when the orbit of critical points
is not �nite.
Question 3. If one polynomial is held �xed and the other is varied

continuously, does the resulting rational function vary continuously? Is
mating a continuous function of two variables?

The second type of topological surgery is tuning. First take a poly-
nomial P1 with a periodic critical point ! of period k, and assume that
no other critical points are in the entire basin of this superattractive
cycle. Let P2 be a polynomial with one critical point whose degree is
the same as the degree of !. We also assume that the Julia sets of P1
and P2 are connected. We assume the closure �B of the immediate basin
of ! is homeomorphic to the closed unit disk �D, and that the Julia set
for P2 is locally connected. Now, P k

1 maps �B to itself by a map which is
conjugate to the map z 7! zd of �D, where d is the degree of the critical
point. (In fact, if d > 2, then there are d�1 possible choices for the con-
jugating homeomorphism, and we must choose one of them.) Intuitively
the idea is now the following. Replace the basin B by a copy of the
dynamical plane for P2, gluing the \circle at in�nity" for this plane onto
the boundary of B so that external angles for P2 correspond to internal
angles in �B. Now shrink each external ray for P2 to a point. Also, make
an analogous modi�cation at each pre-image of B. The map from the
modi�ed B to its image will be given by P2, and the map on all other
inverse images of the modi�ed B will be the identity. The result,P3,
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called P1 tuned with P2 at !, should be conjugate to a polynomial hav-
ing the same degree as P1. Conversely P2 is said to be obtained from
P3 by renormalization.
In the case of quadratic polynomials, the tunings can be made also in

the case when P2 is not locally connected.
As an example we can take P1 to be the rabbit polynomial. Then we

can take P2(z) = z2 � 2 which has the closed segment from -2 to 2 as
its Julia set. The following �gure shows the resulting quadratic Julia
set tuning the rabbit with the segment (z2 + c where c � �:101096 +
:956287i).

The rabbit tuned with the segment

In the picture we see each ear of the rabbit replaced with a segment.
Question 4. Does the tuning construction always give a result which

is conjugate to a polynomial? This is true when P1 and P2 are quadratic.
Question 5. Can tunings be constructed with quasiconformal sur-

gery?
Question 6. Does the resulting polynomial vary continuously with

P2? This is true when P1 and P2 are quadratic [DH2].
Question 7. Does the resulting tuning vary continuously with P1?

(here we consider only polynomials P1 of degree greater than 2 with a
superstable orbit of �xed period.)
Question 8. Let P1;k be a sequence of polynomials with a superstable

orbit whose period tends to in�nity. If P1;k tends to a limit P1;1, do
the tunings of P2 with P1;k also tend to P1;1?
The third kind of surgery is intertwining surgery.
Let P1 be a monic polynomial with connected Julia set having a re-

pelling �xed point x0 which has a ray landing on it with combinatorial
rotation number p=q. Look at the cycle of q rays which are the forward
images of the �rst. Cut along these rays and we get q disjoint wedges.
Now let P2 be a monic polynomial with a ray of the same combinatorial
rotation number landing on a repelling periodic point of some period
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dividing q (such as 1 or q). Slit this dynamical plane along the same
rays making holes for the wedges. Fill the holes in by the correspond-
ing wedges above making a new sphere. The new map will be given
by P1 and P2 except on a neighborhood of the inverse images of the
cut rays where it will have to be adjusted to make it continuous. This
construction should be possible to do quasiconformally using the meth-
ods in [BD] together with Shishikura's new (unpublished) method of
presurgery in the case where the rays in the P2 space land at a repelling
orbit. This construction doesn't seem to work when the rays land at a
parabolic orbit.

For instance we can take P1(z) = z2 and P2(z) = z2 � 2. The Julia
set for P1 is the unit circle with repelling �xed point at 1 and the ray
at angle 0 lands on it with combinatorial rotation number 0. The Julia
set for P2 is the closed segment from -2 to 2 with repelling �xed point 2
and the ray at angle 0 lands on it with combinatorial rotation number
0. We cut along the 0 ray in both cases. Opening the cut in the �rst
dynamical space gives us one wedge. The space created by opening the
cut in the second space is the hole into which we put the wedge. The
resulting cubic Julia set is shown in the following picture (the polynomial
is z3 + az where a � 2:55799i).

A circle intertwined with a segment

We see in the picture the circle and the segment, and at the inverse
image of the �xed point on the segment we see another circle. At the
other inverse of the �xed point on the circle we see a segment attached.
All the other decorations come from taking various inverses of the main
circle and segment.

As a second example we can intertwine the basilica with itself. The
ray 1=3 lands at a �xed point and has combinatorial rotation number
1=2. The following is the Julia set for the basilica intertwined with itself

(the polynomial here is z3 � 3
4
z +

p�7
4

).
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A basilica intertwined with itself

Question 9. When does an intertwining construction give something
which is conjugate to a polynomial?
Question 10. Can intertwinings be constructed with quasiconformal

surgery?
Question 11. Does the resulting polynomial vary continuously in

P2?
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Rational maps and Teichm�uller space

Curt McMullen

Let X be a complex manifold and let f : X �

b

C !

b

C be a holomorphic map.

Then f describes a family f

�

(z) of rational maps from the Riemann sphere to itself,

depending holomorphically on a complex parameter � ranging in X.

By [MSS], there is an open dense set X

0

� X on which the family is structurally

stable near the Julia set: in fact f

a

and f

b

are quasiconformally conjugate on their

respective Julia sets whenever a and b lie in the same component U of X

0

. The

mappings in X

0

are said to be J-stable.

In this note we will record some problems concerning the boundaries of com-

ponents U , and consequently concerning limits of quasiconformal deformations of a

given rational map.

Example I. Quadratic polynomials. The most famous such problem is the

following. Let X = C , and let f

�

(z) = z

2

+�. Then X

0

contains a unique unbounded

component U .

Problem. Is the boundary of U locally connected?

This is equivalent to the question:

Is the Mandelbrot set M locally connected?

Indeed, X

0

is just the complement of the boundary of the Mandelbrot set.

The importance of this question is twofold. First, if M is locally connected, then

existing work provides detailed information about its combinatorial structure, and one

has a good understanding of the \bifurcations" of a quadratic polynomial and many

related maps. Secondly, the local connectivity of M implies the density of hyperbolic

dynamics (\Axiom A") for degree two polynomials, another well-known conjecture

which has eluded proof for many years. For more details see [Dou1], [Dou2], [DH1],

[DH2], [Lav], [Th].

Compactifying the space of proper maps. We now turn to a second example

motivated by an analogy with Bers' embedding of Teichm�uller space. Let A and B

be two proper holomorphic maps of the unit disk � to itself, both of degree n > 1

and �xing zero. (A and B are �nite Blaschke products.) Then it is well-known

that A and B are topologically conjugate on the unit circle S

1

, and the conjugacy

h is unique once we have chosen a pair of �xed points (a; b) for A and B such that

h(a) = b. Moreover h is quasisymmetric; this is a general property of conjugacies

between expanding conformal dynamical systems [Sul].
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Now glue two copies of the disk together by h and transport the dynamics of A

and B to the resulting Riemann surface, which is a sphere. We obtain in this way

an expanding (i.e. hyperbolic) rational map f(A;B). The Julia set J of f(A;B)

is a quasicircle, and f is holomorphically conjugate to A and B on the components

of the complement of J . The mapping f(A;B) is determined by h up to conformal

conjugacy.

We will loosely speak of spaces of mappings as being \the same" if they represent

the same conformal conjugacy classes. It is often useful to require that the conjugacy

preserves some �nite amount of combinatorial data, such as a distinguished �xed

point. For simplicity we will gloss over such considerations below.

Example II. Let X be the space of degree n polynomials, X

0

the open dense subset

of J-stable polynomials and U the component of X

0

containing z

n

. Then U is the

same as the set of maps of the form f(z

n

; B). Equivalently, U consists of those

polynomials with an attracting �xed point with all critical points in its immediate

basin.

Let us denote this set of polynomials by B(z

n

). It is easy to see that B(z

n

) is an

open set of polynomials with compact closure. Thus this construction supplies both

a complex structure for the space of Blaschke products, and a geometric compacti�-

cation of that space.

Problem. Describe the boundary of B(z

n

) in the space of polynomials of degree n.

For degree n = 2 this is easy (the boundary is a circle) but for n = 3 it is already

subtle.

To explain the kind of answer one might expect, we consider not one boundary

but many. More precisely, let B(A) denote the space of rational maps f(A;B) for

some other �xed A and varying B. This space also inherits a complex structure and

the map f(z

n

; B) 7! f(A;B) gives an biholomorphic map

F : B(z

n

)! B(A):

The closure of B(A) is the space of rational maps provides another geometric com-

pacti�cation of this complex manifold.

Problem. Show that for n > 2 and A 6= z

n

, F does not extend to a homeomorphism

between the boundaries of B(z

n

) and B(A).

Thus we expect that the complex space B (whose complex structure is independent

of A) has many natural geometric boundaries. But perhaps the lack of uniqueness

can be accounted for by the presence of complex submanifolds of the boundary, i.e.
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by the presence of rational maps in the compacti�cation which admit quasiconformal

deformations.

To make this precise, let @(A) denote the quotient of the boundary of B(A) by the

equivalence relation f � g if f and g are quasiconformally conjugate (equivalently, if

f and g lie in a connected complex submanifold of the boundary). The resulting space

(in the quotient topology) still forms a boundary for B(A), but it is non-Hausdor�

when n > 2.

Conjecture. The holomorphic isomorphism F : B(z

n

) ! B(A) extends to a

homeomorphism from @(z

n

) to @(A).

Problem. Give a combinatorial description of the topological space @(z

n

).

Such a description may involve laminations, as discussed in [Th].

An analogy with Teichm�uller theory. The \mating" of A and B has many

similarities with the mating of Fuchsian groups uniformizing a pair of compact genus

g Riemann surfaces X and Y . Such a mating is provided by Bers' simultaneous

uniformization theorem [Bers]. The result is a Kleinian group �(X; Y ) whose limit

set is a quasicircle. Moreover, �xingX, the map Y 7! �(X; Y ) provides a holomorphic

embedding of the Teichm�uller space of genus g into the space of Kleinian groups. One

can then form a boundary for Teichm�uller space by taking the closure.

It has recently been shown that this boundary does indeed depend on the base

point X [KT]. However Thurston has conjectured that the space @(X), obtained by

identifying quasiconformally conjugate groups on the boundary, is a (non-Hausdor�)

boundary which is independent of X.

Moreover a combinatorial model for @(X) is conjecturally constructed as follows.

Let PML denote the space of projective measured laminations on a surface of genus

g; then @(X) is homeomorphic to the quotient of PML by the equivalence relation

which forgets the measure. (See [FLP] for a discussion of PML as a boundary for

Teichm�uller space.)

Remarks.

1. We do not expect that one can give a combinatorial description of the \actual"

boundary of B(z

n

) (in the space of polynomials). For similar reasons, we believe it

unlikely that one can describe the uniform structure induced on the space of critically

�nite rational maps by inclusion into the space of all rational maps.

2. It is known that Teichm�uller space is a domain of holomorphy. So it is natural

to ask the following intrinsic:
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Question. Is B(z

n

) a domain of holomorphy? More generally, is every component

of the space of expanding rational maps (or polynomials) a domain of holomorphy?

Density of cusps. The preceding discussion becomes interesting only when the

space of rational maps under consideration has two or more (complex) dimensions.

We conclude with two concrete questions about boundaries in a one-parameter family

of rational maps.

Example III. Let

f

�

(z) = �z

2

+ z

3

where � ranges in X = C , and let U denote the component of X

0

containing the

origin. That is, U is the set of � for which both �nite critical points are in the

immediate basin of zero.

A cusp on @U is an f

�

with a parabolic periodic cycle.

Conjecture. Cusps are dense in @U .

This conjecture is motivated by the density of cusps on the boundary of Te-

ichm�uller space [Mc]. It is not hard to show that it is implied by the following:

Conjecture. The boundary of U is a Jordan curve.
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Thurston's algorithm without critical �niteness

John Milnor

Thurston's algorithm is a powerful method for passing from a topological branched

covering S

2

! S

2

to a rational map having closely related dynamical properties. (See

[DH].) The same method can be used to pass from a piecewise monotone map of the

interval to a closely related polynomial map of the interval.

Suppose that we start with an orientation preserving branched covering map

f

0

: S

2

! S

2

. We identify S

2

with the Riemann sphere

�

C = C [ 1 . In order to

anchor this sphere, choose three base points. (For best results, choose dynamically signif-

icant base points, for example periodic points of f

0

, or critical points, or critical values.)

Lemma: There is one and only one homeomorphism h

0

: S

2

! S

2

which

�xes the three base points, and which has the property that the composition

r

0

= f

0

� h

0

is holomorphic, or in other words is a rational map.

[Proof: Let �

0

be the standard conformal structure on the 2-sphere, and let � = f

�

0

(�

0

)

be the pulled back conformal structure, so that f

0

maps (S

2

; �) holomorphically onto

(S

2

; �

0

) . Then h

0

must be the unique conformal isomorphism from (S

2

; �

0

) onto

(S

2

; �) which �xes the three base points.] Now consider the map f

1

= h

�1

0

� f

0

� h

0

,

which is topologically conjugate to f

0

. In this way, we obtain a commutative diagram

S

2

f

1

�! S

2

h

0

# r

0

& h

0

#

S

2

f

0

�! S

2

:

Continuing inductively, we produce a sequence of branched coverings f

n

, and a sequence of

homeomorphisms h

n

�xing the base points, so that f

n+1

= h

�1

n

�f

n

�h

n

, and so that each

composition r

n

= f

n

� h

n

is a rational map. The marvelous property of this construction

is that in many cases the homeomorphisms h

n

seem to tend uniformly to the identity, so

that the successive maps f

n

, which are all topologically conjugate to f

0

, come closer and

closer to the rational maps r

n

. In fact the sequence of compositions �

n

= (h

0

�� � ��h

n

)

�1

may converge uniformly to a limit map � , at least on the non-wandering set. In this

case, it follows that the rational limit map is topologically semi-conjugate (or perhaps

even conjugate) to f

0

,

r

1

� � = � � f

0

on the non-wandering set.

Problem: Under what conditions will this sequence of rational maps r

n

converge uniformly to a limit map r

1

? Under what conditions, and on what

subset of S

2

, will the maps �

n

converge uniformly to a limit?

In the post-critically �nite case, Thurston de�nes an obstruction, which vanishes if and

only if the restriction of the �

n

to the post-critical set converges uniformly to a one-to-one
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limit function. If this obstruction vanishes, then it follows that the r

n

converge.

However, there would be interesting applications where f

0

is not post-critically �nite,

so that no such criterion is known. A typical example is provided by the problem of

\mating". (Compare Bielefeld's discussion, as well as [Ta], [Sh].) Let p and q be monic

polynomial maps having the same degree d � 2 . Conjugating p by the di�eomorphism

z 7! z=

p

1 + jzj

2

from C onto the unit disk D , we obtain a map p

�

which extends

smoothly over the closed disk

�

D . Similarly, conjugating q by z 7!

p

1 + jzj

2

=z we

obtain a map q

�

which extends smoothly over the complementary disk

�

CrD . Now p

�

and q

�

together yield a C

1

-smooth map f

0

:

�

C !

�

C , and we can apply Thurston's

method as described above. If this procedure converges to a well behaved limit, then the

resulting rational map r

1

of degree d may be called the \mating" of p and q .

Maps of the interval. The situation here is quite similar. Let f

0

be a piecewise-

monotone map of the interval I = [0; 1] with d alternately ascending and descending laps,

and suppose that f

0

carries the boundary points 0 and 1 to boundary points. Then there

is one and only one orientation preserving homeomorphism h

0

of the interval such that

the composition p

0

= f

0

�h

0

is a polynomial map of degree d . Setting f

1

= h

�1

0

�f

0

�h

0

,

we can proceed inductively, constructing homeomorphisms h

n

, polynomials p

n

= f

n

�h

n

,

and topologically conjugate maps f

n+1

= h

�1

n

� f

n

� h

n

. Again the problem is to decide

when and where this procedure converges.

A typical run of Thurston's method, starting with a piece-wise linear map f

0

of

the interval. (Horizontal scale exaggerated.) The graphs of f

0

; f

1

and f

9

are

shown. The latter seems indistinguishable from f

1

= p

1

.
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A Possible Approach to a Complex Renormalisation Problem

Mary Rees

Preliminary De�nitions. For a branched covering f : C! C, we de�ne

X(f) = ff

n

(c) : c critical, n > 0g:

Then f is critically �nite if

#

(X(f)) is �nite. Two critically �nite branched

coverings f

0

, f

1

are (Thurston) equivalent if there is a path f

t

through critically

�nite branched coverings connecting them with X(f

t

) constant in t .

We are only concerned, here, with orientation-preserving degree two branched

coverings for which one critical point is �xed and the other is periodic. By a theorem

of Thurston's ([T], [D-H]), any such branched covering f

0

is equivalent to a unique

degree two polynomial f

1

of the form z 7! z

2

+ c (some c 2 C ).

Now let f

1

, f

2

be two degree two polynomials of the form z 7! z

2

+ c

i

( i = 1,

2), with 0 periodic of periods m , n respectively. Then we de�ne the tuning of f

1

about 0 by f

2

, written f

1

` f

2

, as follows. This is simply a branched covering

de�ned up to equivalence. Let D be an open topological disc about 0 such that the

discs f

i

1

(D) (0 � i < m ) are all disjoint, f

m

1

(D) � D and f

1

: f

i

1

(D)! f

i+1

1

(D) is a

homeomorphism for 1 � i < m . Let g be a rescaling of f

2

, and V a closed bounded

topological disc with V � gV � f

m

1

(D) whose complement is in the attracting basin

of 1 for g . Then we de�ne

f

1

` f

2

= f

1

outside D ,

= f

�(m�1)

1

� g in V;

and extend to map the annulus D nV by a two-fold covering to f

m

1

(D) n g(V ) . Then

(f

1

` f

2

)

m

= g in V:

Thus f

1

` f

2

is critically �nite with 0 of period n �m , and is equivalent to a unique

polynomial z 7! z

2

+ c .

For any sequence ff

i

g of polynomials, we can also de�ne f

1

` � � � ` f

n

for all n .

For concreteness, we consider the following renormalisation problem, but di�erent

versions are possible.

Let ff

i

g be any sequence of polynomials of the form z 7! z

2

+ c

i

, where the f

i

(and c

i

) take only �nitely many di�erent values, and 0 is of period m

i

under f

i

.

Write g

n

for the polynomial z 7! z

2

+ c equivalent to f

1

` � � � ` f

n

.

and

n

k

=

Y

i�k

m

i

:

Problem. Prove geometric properties of X(g

n

) . Speci�cally, show that the set

fg

n

k

`+i

n

(0) : 0 � ` < m

k+1

g (1)

has uniformly bounded geometry for all i � n

k

, k < n and all n .

Of course, this problem (and stronger versions) is not new, has been the focus

of much e�ort, and, in the real case, has been resolved by Sullivan [S]. The most
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obvious method of approach (which was not, in the end, e�cacious in the real case) is

through analysis of the main technique used to prove Thurston's theorem mentioned

above. We now recall this.

Thurston's Pullback Map on Teichm�uller space.

To simplify, we stick to orientation-preserving degree two critically �nite branched

coverings with �xed critical value v

2

and periodic critical value v

1

. Let g be one

such. Let X = X(g) . We let s : C ! C be given by s(z) = z

2

. Let T = T (X) be

the Teichm�uller space of the sphere with set of marked points X , so that

T = f['] : ' is a homeomorphism of Cg

and ['] denotes the quotient of the isotopy class under isotopies constant on X by

left M�obius composition, that is, ['] = [� � ' �  ] for any M�obius transformation �

and  isotopic to the identity rel X . It is convenient to choose representatives ' so

that '(v

1

) = 0, '(v

2

) =1 . Then

� : T ! T

is de�ned by

�([']) = [s

�1

� ' � g]:

(The righthand side makes perfectly good sense as a homeomorphism.)

By Thurston's theorem (in this setting), � is a contraction with respect to the Te-

ichm�uller metric d on T , and has a unique �xed point ['] . Then there are  isotopic

to the identity via an isotopy �xing X(g) (unique given ' ) and a M�obius transfor-

mation � such that

g = '

�1

� s � � � ' �  :

In particular, g and s � � are equivalent, and X(s � �) = '(X(g)) .

The \Obvious" Method of Approach.

We can choose h

n

equivalent to g

n

so that the sets of (1), with h

n

replacing g

n

, have

uniformly bounded geometry for i � n

k

, k < n , and all n . Then let T

n

= T (X(h

n

)) ,

and �

n

: T

n

! T

n

be the associated pullback. It su�ces (!) to prove convergence, as

m ! 1 , and uniform in n , of the sequences f�

m

n

(identity)g . Of course, for �xed

n , the convergence would be with respect to the Teichm�uller metric d

n

on T

n

. This

seems to be impossible to implement. An alternative is suggested below. One virtue

- and probably the only one - of this alternative is that it has not yet been tried (so

far as I know). Before making this precise, we need to clarify some properties of the

Teichm�uller metric.

The Teichm�uller metric and its Derivative.

Let T = T (X) (for any �nite set X � C) and let d denote the Teichm�uller metric.

Let ['] , [ ] 2 T . Assume without loss of generality that 1 2 '(X) ,  (X) . Then

there is a unique quasiconformal homeomorphism � : C ! C with the following

properties.

1.�('(X)) =  (X) and [� � '] = [ ] .

2. There is a rational function q with at most simple poles in C , all occurring

at points of '(X) , and at least three more poles than zeros in C , such that the

directions of maximal stretch and contraction of � are tangent to the vector �elds
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i

p

q ,

p

q respectively, and the dilatation (ratio of in�nitesimal stretch to contraction)

is constant.

3. The images under �

�

of these vector �elds are of the form i

p

p ,

p

p , for a rational

function p with at most simple poles in C , all occurring at points of  (X) .

The function q is then also unique, up to a positive scalar multiple, and becomes

unique if we normalise so that

Z

j q j

dz ^ dz

2i

= 1:

Similarly, we normalise p . (Of course, q represents a quadratic di�erential q(z)dz

2

,

but it is convenient to keep the representing rational function in the foreground.)

Let h = (h(x)) 2 C

X

be small, taking h(x) = 0 if '(x) =1 . Then by abuse of

notation, we write '+h for a homeomorphism near ' with ('+h)(x) = '(x)+h(x) .

Then the following holds, where q , p are detemined by ['] , [ ] as above [R].

d(['+h]; [ + k]) = d([']; [ ])+ 2�Re

 

X

x2X

(Res(q; '(x))h(x)� Res(p;  (x))k(x))

!

+o(h) + o(k):

Now we consider the case X = X(g) and y = �x . As before we consider only speci�c

g and take s(z) = z

2

(as before). The pushforward s

�

q of a rational function (or

quadratic di�erential) q is de�ned by

s

�

q(z) =

X

s(w)=z

q(w)

s

0

(w)

2

if s

0

(w) 6= 0 for s(w) = z . If q has only simple poles in C , and at least 3 more

poles than zeros in C , then s

�

q extends to a rational function on C with the same

properties. Then if q , p are determined by ['] , �([']) , taking '(v

1

) = 0, '(v

2

) =1

as above,

d(['+h]; �(['+h]) = d([']; �([']))+2�Re

 

X

x2X

(Res(q; '(x))� Res(s

�

p; '(x)))h(x)

!

+o(h):

The Suggested Alternative Approach to the Problem. Take T = T (X(g)) ,

� : T ! T . Let

F ([']) = d([']; �(['])):

Then the derivative formula for F above theoretically enables us to construct 
ows

for which F decreases along orbits. It can be shown that the only critical point of F

occurs where F = 0. So if we can �nd a compact subset B of T with smooth bound-

ary and a vector �eld v pointing inward on @B with DF (v) < 0 , then the (unique)

zero of F must be inside B . Now put a subscript n on everything. Conceivably we

can �nd B

n

� T

n

and vector �eld v

n

pointing inward on@B

n

such that if A � X(g

n

)

is any of the sets in (1) and ['] 2 @B

n

then '(A) has bounded geometry (uniformly

in A , n ) and DF

n

(v

n

) < 0?
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Section 2: Geometry of Julia Sets

Geometry of Julia sets

Lennart Carleson

The geometry of connected Julia sets for hyperbolic quadratic polyno-

mials is now well understood. Bounded components of the Fatou set are

quasi-circles while the unbounded component is a John domain.

The geometry of a 
ower (for a rational �xed point) is also known. If the


ower has more than one petal, each component is a quasi-disk. The 1-petal


ower is a John domain (see a forthcoming paper by P.Jones and L.Carleson

in Boletin de Brasil).

For Siegel disks S, a basic result by M. Herman is that the critical point

belongs to the boundary of S if the rotation number � = e

2�i�

is a Siegel

number, i.e.

j� �

p

q

j >

c

q

n

for some c > 0; n <1;

or more generally when the arithmetic condition of J.-C. Yoccoz's global

theorem on conjugacy of analytic di�eomorphisms of the circle is satis�ed.

Another remarkable result of M.Herman is that when the critical point

belongs to @S, then S is a quasi-disk if and only if � is of bounded type, i.e.

j� �

p

q

j >

c

q

2

:

With J.-C. Yoccoz he has also proved that @S is a Jordan curve for almost

all �. It is not known which arithmetic condition implies this. E.g., is there




0

> 2 so that j��p=qj > C=q




implies that S is a Jordan domain for 
 < 


0

but not for 
 > 


0

?

A particularly interesting question concerns the geometry of @S at the

critical point. Computer experiments show that in many cases @S has an

angle of about 120

�

opening at the critical point. Prove this at least for

� = �

0

= (

p

5�1)=2. For this value there should also exist a renormalization

at the critical point.
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There is also a very interesting regularity of the Taylor coe�cients of the

conjugating map. Consider more generally the family P

�

(z); Re(�) > 0, with

P

0

�

= �(1� z)

�

; P

�

(0) = 0

so that � = 1 corresponds to �(z � z

2

=2). Let h(�) be the conjugating map

in j�j < 1 with h(1) = 1. (For general � the proof that 1 2 @S is not known,

but should be rather similar to the case � = 1). Form

f(�) =

h

0

(�)

1� h(�)

=

1

X

0

a

�

�

�

:

Then

f

0

� f

2

= f�

1

X

0

(

1

2

+

i

2

cot(� + 1)��)a

�

�

�

:

If the imaginary part in the parenthesis is dropped we obtain

f

0

0

= (1 +

�

2

)f

2

0

; f

0

=

1

(1 + �=2)(1� z)

; h

0

= (1� z)

2=(�+2)

:

Computer experiments indicate for � = �

0

; � = 1

ja

�

�

2

3

j < 0:1 (say) for all �;

where 2/3 corresponds to f

0

. It would be interesting to make the approxi-

mation rigorous at least for small �.

In the non-hyperbolic case very little is known (and very little can be

probably said in general). The simplest case of a strictly preperiodic critical

point leads to John domains (the Julia set is called a dendrite). It should

be possible to analyse the general Misiurewicz case when the critical point

never returns close to itself. In the case of 1�az

2

; a is real, this condition is

equivalent to the Fatou set being a John domain. To which extent does this

hold for general Misiurewicz points?
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Problems on local connectivity.

1

John Milnor

If the Julia set J(f) of a quadratic polynomial is connected, then Yoccoz has proved

2

that J(f) is locally connected, unless either:

(1) f has an irrationally indi�erent periodic point, or

(2) f is in�nitely renormalizable.

Cremer Points. To illustrate case (1), consider the polynomial

P

�

(z) = z

2

+ e

2�i�

z

with a �xed point of multiplier � = e

2�i�

at the origin. Take � to be real and irrational.

For generic choice of � (in the sense of Baire category), Cremer showed that there is no

local linearizing coordinate near the origin. We will say brie
y that the origin is a Cremer

point, or that P

�

is a Cremer polynomial . According to Sullivan and Douady, the existence

of such a Cremer point implies that the Julia set is not locally connected. More explicitly,

let t(�) be the angle of the unique external ray which lands at the corresponding point of

the Mandelbrot set. For generic choice of � , Douady has shown that the corresponding

ray in the dynamic plane does not land, but rather has an entire continuum of limit points

in the Julia set. (Compare [S�].) Furthermore, the t(�)=2 ray in the dynamic plane

accumulates both at the �xed point 0 and its pre-image �� .

Problem 1. Is there an arc joining 0 to �� , in the Julia set of such a Cremer

polynomial?

Problem 2. Give a plausible topological model for the Julia set of a Cremer polyno-

mial.

Problem 3. Make a good computer picture of the Julia set of some Cremer

polynomial.

Problem 4. Can there be any external rays landing at a Cremer point?

Problem 5. Can the critical point of a Cremer polynomial be accessible from CrJ ?

Problem 6. If we remove the �xed point from the Julia set of a Cremer polynomial,

how many connected components are there in the resulting set J(P

�

)rf0g , ie., is the

number of components countably in�nite?

Problem 7. The Julia set for a generic Cremer polynomial has Hausdor� dimension

two. Is this true for an arbitrary Cremer polynomial? Do Cremer Julia sets have measure

zero? (Compare [Sh], [L1], [L2].)

In the quadratic polynomial case, Yoccoz has shown that every neighborhood of a

Cremer point contains in�nitely many periodic orbits. On the other hand, Perez-Marco

[P-M1] has described non-linearizable local holomorphic maps for which this is not true.

Problem 8. For a Cremer point of an arbitrary rational map, does every neighbor-

hood contain in�nitely many periodic orbits?

1

Based on questions by a number of participants in the 1989 Stony Brook Conference.

2

Compare [Hu].
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Figure 1. Julia set of P

�

where � = :78705954039469 has been randomly chosen.

Siegel Disks. (Compare Carleson's discussion.) If � satis�es a Diophantine con-

dition (in particular, for Lebesgue almost every � ), Siegel showed that there is a local

linearizing coordinate for the polynomial P

�

(z) = z

2

+ e

2�i�

z in some neighborhood of

the origin. Brie
y we say that the origin is the center of a Siegel disk � , or that P

�

is

a Siegel polynomial . Yoccoz has given a precise characterization of which irrational angles

yield Siegel polynomials and which yield Cremer polynomials. ([Y], [P-M2].)

Herman, making use of ideas of Ghys, showed that there exists a value �

0

so that

P

�

0

has a Siegel disk whose boundary @� does not contain the critical point. It follows

that the Julia set J(P

�

0

) is not locally connected. On the other hand if � satis�es a

Diophantine condition, then Herman showed that @� does contain the critical point.

Problem 9. Give any example of a Siegel polynomial whose Julia set is provably

locally connected. Is J(P

�

) locally connected for Lebesgue almost every choice of � ?

(Compare Figure 1.) What can be said about the Hausdor� dimension of J(P

�

) ?

Problem 10. Can a Siegel disk have a boundary which is not a Jordan curve?

Problem 11. Does any rational function have a Siegel disk with a periodic point in

its boundary? Such an example would be extremely pathological. (In the polynomial case,

Poirier has pointed out that at least there cannot be a Cremer point in the boundary of a

Siegel disk. See [GM].)

In�nitely Renormalizable Polynomials. A quadratic polynomial f

c

(z) = z

2

+ c

is renormalizable if there exists an integer p � 2 and a neighborhood U of the critical point

zero so that the orbit of zero under f

�p

remains in this neighborhood forever, and so that

the map f

�p

restricted to U is polynomial-like of degree 2 . (Thus the closure

�

U must

contain no other critical points of f

�p

, and must be contained in the interior of f

�p

(U) .)

Let M be the Mandelbrot set, and let H � M be any hyperbolic component of period

p � 2 . Douady and Hubbard [DH2] show that H is contained in a small copy of M .

This small copy is the image of a homeomorphic embedding of M into itself, which I will

denote by c 7! H � c . The elements of these various small copies H �M � M (possibly

with the root point H �

1

4

removed) are precisely the renormalizable elements of M .

Now consider an in�nite sequence of hyperbolic components H

1

; H

2

; : : : � M . If

the H

i

converge to the root point 1=4 su�ciently rapidly, then Douady and Hubbard
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(unpublished) show that the intersection

T

k

H

1

� � � � �H

k

�M consists of a single point

c

1

such that the corresponding Julia set J(f

c

1

) is not locally connected.

Problem 12. Suppose that f

c

1

is in�nitely renormalizable of bounded type. For

example, suppose that c

1

2

T

k

H

1

� � � � � H

k

�M , where the H

i

are all equal. Does

it then follow that J(f

c

1

) is locally connected? As the simplest special case, if we take

H

1

= H

2

= � � � to be the period two component centered at �1 , then f

c

1

will be the

quadratic Feigenbaum map. Is the Julia set for the Feigenbaum map locally connected?

Problem 13. More generally, if c is real (belonging to the intersection

M \R = [�2 ; 1=4] ), does it follow that the Julia set J(f

c

) is locally connected?

The Mandelbrot Set. Here the most basic remaining question is the following.

Problem 14. Does every in�nite intersection of the form

T

k

H

1

� � � �H

k

�M re-

duce to a single point? Equivalently, is the set of in�nitely renormalizable points totally

disconnected? Does this set have measure zero? Does it in fact have small Hausdor�

dimension?

Figure 2. Picture of the log�-plane, showing the Yoccoz

disks of radius log(2)=q . (Heights in units of 2� .)
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Problem 15. For each rational number 0 < p=q < 1 let M(p=q) be the limb of the

Mandelbrot set with interior angle p=q . Is the diameter of M(p=q) less than k=q

2

for

some constant k independent of p and q ? If not, is it at least less than k log(q)=q

2

? (It

is actually more natural to work in the log � plane, where f(z) = z

2

+ �z . The Yoccoz

inequality asserts that the corresponding limb in this log � plane is contained in a disk of

radius log(2)=q . Compare [P], and see Figure 2.)
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Section 3: Measurable Dynamics

Measure and Dimension of Julia Sets

Mikhail Lyubich

Problem 1. Can it happen that a nowhere dense Julia set has positive Lebesgue

measure?

The corresponding Ahlfors problem in Kleinian groups is also still unsolved.

So far it is known that the Julia set has zero measure in the following cases:

(i) hyperbolic, subhyperbolic and parabolic cases [DH], [L1].

(ii) a cubic polynomial with one simple non-escaping critical point and with a \non-periodic

tableaue" (McMullen, see [BH]);

(iii) a quadratic polynomial which is only �nitely renormalizable and has no neutral irra-

tional cycles (Lyubich [L2] and Shishikura (unpublished)).

Let us say that a polynomial with one non-escaping critical point c is renormalizable

if there is a quadratic-like map f

n

: U ! V; c 2 U � V n > 1; with connected Julia set.

It corresponds to the case of periodic tableaue. Cases (i) and (ii) can be generalized in the

following way:

(iv) a polynomial of any degree but with only one non-escaping critical point which does

not have irrational neutral points and which is only �nitely renormalizable.

In higher degrees one can describe a wide class of combinatorics for which the Julia set

has zero measure (non-recurrent and \reluctantly recurrent" cases). The basic examples

for which the answer is still unclear are

1. The Feigenbaum quadratic polynomial.

2. The Fibonacci polynomial z 7! z

d

+ c with d > 2 (see [BH] or [LM] for the de�nition of

the Fibonacci polynomial).

3. A polynomial with a Cremer point or Siegel disk (see the disciussion in Milnor's notes).

In the case when the Julia set coincides with the whole sphere the corresponding

question is the following.

Problem 2. Is it true for all f with J(f) =

�

C that the following hold?

(i) !(z) =

�

C for almost all z 2

�

C?

(ii) f is conservative with respect to the Lebesgue measure? (Conservativity means that

the Poincar�e Return Theorem holds).

Note that for the interval maps (replacing

�

C by an interval on which f is topologically

mixing) (i) and (ii) are equivalent [BL2]. Moreovere, both of them hold for the quadratic-

like maps of the interval [L3].

Problem 3. Let again J(f) =

�

C. Is it true that f is ergodic with respect to the

Lebesgue measure? Is it at least true that it has at most 2 degf � 2 ergodic components?
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The answer to the �rst question is yes for a large set of rational maps [R]. The answer

to the second one is yes for interval maps [BL1].

The discussed problems are closely related to the deformation theory of rational maps.

The link between them is given by the notion of measurable invariant line �eld on the Julia

set (see [MSS]). Each such �eld generates a quasi-conformal deformation of f supported

on the Julia set. There is a series of Lattes examples having an invariant line �eld on the

Julia set, and in these examples J(f) =

�

C. Such a phenomenon is impossible at all for

�nitely generated Kleinian groups [S].

Problem 4. (Sullivan) Are the Lattes examples the only ones having measurable

invariant line �elds on the Julia sets?

Let us consider now an analytic family A of rational maps, and denote by Q � A the

set of J -unstable maps.

A recent remarkable result by Shishikura [Sh] says that in the quadratic family

z 7! z

2

+ c there are a lot of Julia sets with Hausdor� dimension 2.

Problem 5 Find an explicit example of a Julia set of Hausdor� dimension 2. What

is a natural geometric measure in the case when J(f) has Hausdor� dimension 2 but zero

Lebesgue measure?

A more general program is to develop an appropriate Thermodynamical Formalism

in non-hyperbolic situations.

Problem 6. (i) What is the Lebesgue measure of Q?

(ii) Is the Hausdor� dimension of Q equal to dimA? The answer is yes in the quadratic

case [Sh]

Mary Rees proved that the Lebesgue measure of Q is positive [R] in the case when A

is the whole space of rational maps of degree d. On the other hand, Shishikura claims that

in the quadratic family z 7! z

2

+ c the measure of the set of only �nitely renormalizable

points in Q is equal to zero (here Q is just the boundary of the Mandelbrot set). How do

these results �t?
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On Invariant Measures for Iterations of Holomorphic Maps

Feliks Przytycki

Let U be an open subset of the Riemann sphere

^

CI. Consider any holomorphic mapping

f : U !

^

CI such that f(U) � U and f : U ! f(U) is a proper map, (for a more general

situation see [PS]). Consider any z 2 f(U). Let z

1

; z

2

; :::; z

d

be some of the f -preimages

of z in U where d � 2. Consider curves 


i

: [0; 1]!

^

CI, i = 1; :::; d, also in f(U), joining z

with z

i

respectively (i.e. 


i

(0) = z; 


i

(1) = z

i

).

Let �

d

:= f1; :::; dg

ZZ

+

denote the one-sided shift space and � the shift to the left,

i.e. �((�

n

)) = (�

n+1

). For every sequence � = (�

n

)

1

n=0

2 �

d

we de�ne 


0

(�) := 


�

0

.

Suppose that for some n � 0, for every 0 � m � n, and all � 2 �

d

, the curves 


m

(�)

are already de�ned. Suppose that for 1 � m � n we have f � 


m

(�) = 


m�1

(�(�)), and




m

(�)(0) = 


m�1

(�)(1).

De�ne the curves 


n+1

(�) so that the previous equalities hold (by taking f -preimages

of curves already existing; if there are no critical values for iterations of f in

S

d

i=1




i

one

has a unique choice). For every � 2 �

n

and n � 0 denote z

n

(�) := 


n

(�)(1).

The graph with the vertices z and z

n

(�) and edges 


n

(�) is called a geometric coding

tree with the root at z. For every � 2 �

d

the subgraph composed of z; z

n

(�) and 


n

(�)

for all n � 0 is called a geometric branch and denoted by b(�). The branch b(�) is

called convergent if the sequence z

n

(�) is convergent in clU . We de�ne the coding map

z

1

: D(z

1

) ! clU by z

1

(�) := lim

n!1

z

n

(�) on the domain D(z

1

) of all such �'s for

which b(�) is convergent.

There are two basic examples:

1. f : U ! U where U is a simply-connected domain in

^

CI , degf � 2, and the iterates

f

n

converge to a constant in U , in particular U is an immediate basin of attraction of a

sink for f a rational map on

^

CI.

2. U =

^

CI, f is a rational mapping.

It is known that except for a "thin "set in �

d

all branches are convergent (i.e. �

d

n

D(z

1

) is "thin" and for every x 2 clU , the set z

�1

1

(x) is "thin"). These hold under very

mild assumptions about the tree even allowing the existence of critical values in it. Proofs

and a discussion of various possibilities of "thiness" can be found in [PS]. In particular one

obtains the classical Beurling's Theorem that a holomorphic univalent function R on the

unit disc ID has radial limits everywhere except on a set of logarithmic capacity zero, and

for every limit point, the set in @ID to which radii converge is also of logarithmic capacity

0. One just transports the map z 7! z

2

to U := R(ID), and gets a type 1 situation. There

is a 1-to-1 correspondence between the radii and geometric branches.

General Problem. How large is the image: z

1

(D(z

1

)) ?

We shall specify this Problem separately in the basin of attraction case (the situation

1 above) and in the general situation.

To simplify the notation we have restricted ourselves to trees and codings from the

full shift space. In the general situation it might be useful to consider also a topological
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Markov chain, see [PS].

THE CASE OF THE BASIN OF ATTRACTION

Problem 1.1 If f extends holomorphically to a neighbourhood of clU , is every peri-

odic point in @U accessible from U ?

Comment. Accessible means being '(1) for a continuous curve ' : [0; 1] ! clU

where '([0; 1)) � U what is equivalent to being in the radial limit (i.e. lim

r%1

R(r�) for

� 2 @ID, R denoting a univalent map from ID onto U). For g denoting the holomorphic

extention of R

�1

� f �R to a neighbourhood of clID and

�

R the radial limit of R wherever

it exists, it is known that at every g-periodic � 2 @ID,

�

R exists and f at

�

R(�) is f -periodic

(equivalently we could speak about �-periodic points in �

d

and the mapping z

1

, for a tree

in U). Are there other periodic points in @U ? It seems it does not matter if one assumes

here that f is de�ned only on a neighbourhood of @U . This is the case of an RB-domain U

(the boundary is repelling on the U side) considered in [PUZ]. Problem 1.1 has a positive

answer in the case where f is a polynomial on CI and U is the basin of attraction to 1,

(Douady, Yoccoz, Eremenko, Levin), even if U is not simply-connected, see [EL]. Here the

fact f

�1

(U) � U helps.

Problem 1.2. In the situation of Problem 1.1 is every point x 2 @U of positive

Lyapunov exponent (i.e. such that lim inf

n!1

1

n

log j(f

n

)

0

(x)j > 0) accessible from U ?

Problem 1.3. In the situation of Problem 1.1 is it true that the topological entropy

h

top

(f j

@U

) = log deg(f j

U

) ?

Comment The � inequality is known and easy. The problem is with the opposite

one. It would be true if every point x 2 @U had at most deg(f j

U

) pre-images in @U .

A positive answer to problem 1.2 would give a positive answer to 1.3. The reason

is that topological entropy is approximated by measure-theoretic entropies for f -invariant

measures which having positive entropies would have positive Lyapunov exponents (Ru-

elle's inequality). Then they would be images under

�

R of g-invariant measures on @ID

which all have entropies upper bounded by log d (as g is a degree d expanding map on

@ID).

Problem 1.4. Can there be periodic points or points with positive Lyapunov expo-

nents in the boundary of a Siegel disc S ? Is it always true that h

top

(f j

@S

) = 0?

THE GENERAL CASE

We suppose here only that f extends holomorphically to a neighbourhood of the

closure of the limit set � of a tree , � = z

1

D(z

1

). Then � is called a quasi-repeller, see

[PUZ]. Denote the space of all probability f -invariant ergodic measures on the closure of
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a quasi-repeller � by M(�). The space of measures in M(�) which have positive entropy

will be denoted by M

+

(�).

Problem 2.1. Is it true that every m 2M(�) is the image of a measure on the shift

space �

d

through a geometric coding tree with z in a neighbourhood of cl�. What about

measures in M

+

(�) ? The same questions for f a rational mapping of degree d on U =

^

CI

and measures on the Julia set J(f).

Comment. It is easy to see at least, due to the topological exactness of f on the

Julia set J(f) (for every open V in J(f) there exists n > 0 so that f

n

(V ) = J(f)), that for

every z except at most two, z

1

(D(z

1

) is dense in J(f). The answer is of course positive

in the case f is expanding on � because then z

1

is well de�ned and continuous on �

d

,

hence � is closed.

Problem 2.2 For whichm 2M

+

(�) for every "reasonable" function ' : �! IR[�1

(for example H�older, into IR or allowing isolated values �1 with exp' non
at there, as

log jgj, g holomorphic) do the probability laws like Almost Sure Invariance Principle, Law

of Iterated Logarithm, or Central Limit Theorem hold for the sequence of sums S

n

(') =

P

n�1

j=0

t

j

of the random variables t

j

:= '�f

j

�

R

'dm provided �

2

(') = lim

1

n

R

S

n

(f)

2

dm >

0 ?

Comment. If the measure is a z

1

-image of a measure on �

d

with a H�older continuous

Jacobian (a Gibbs measure for a H�older continuous function) then the probability laws

hold, see [PUZ]. The positive answer in Problem 2.1 would be very helpful in solving

Problem 2.2.

The class of measures for which Problem 2.2 has not been solved, but does not seem

out of reach, are equilibrium states for H�older continuous functions, say on the Julia set

in the case f is rational. In this case the transfer (Ruelle-Perron-Frobenius) operator

is already understood to some extent [DU], [P]. A proof seems to depend on �nding an

appropriate space of functions on which the maximal eigenvalue has modulus strictly larger

than supremum over the rest of the spectrum (by the analogy to the expanding case,

[Bowen]).

Actually these equilibrium states are z

1

-images of measures on �

d

. The Jacobians of

these equilibrium states have modulus of continuity bounded by Const(m)(log(1=t))

�m

for

any m > 0 (I don't know if it is H�older). The Jacobian of the pull-back of the equilibrium

measure to �

d

is not wild. This gives a chance to prove that mixing in �

d

is polynomially

fast.

Problem 2.3 Is it true for every m 2 M

+

(�) that m is absolutely continuous with

respect to H

�

(where H

�

is the Hausdor� measure in dimension � = HD(m)) i� HD(m) =

HD(cl�)?

Comment. In such a generality I would expect a negative answer. One should

probably restrict the family of measures under consideration and/or impose additional

assumptions on the mapping f .

If f is expanding on � then the answer is positive for all measures in M

+

(�) with

H�older continuous Jacobian. This is basically Bowen's theorem.
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In the discussion here we assume that on every set E on which f is 1-to-1 the measure

(f j

E

)

�1

(m) is equivalent to m, and we write Jac

m

f(z) =

d(f j

E

)

�1

(m)

dm

(z).

When the Jacobian exists in this sense we can replace the absolute continuity hypothe-

sis m� H

�

or the alternative singularity hypotesis m?H

�

with another pair of alternative

hypotheses.

Problem 2.4. In what class of measures in M

+

(�) does the property: the fam-

ily S

n

(log Jac

m

(f) � � log jf

0

j) is not uniformly bounded in L

2

(m), imply m?H

�

and

HD(m) < HD(cl�).

Comment. The answer is positive for f expanding and Jacobian H�older continuous.

It is positive also if m = z

1

(�) for any Gibbs measure � for a H�older continuous

function on �

d

. The singularity ? follows then from the positive answer to Problem 2.2 in

this special case, see [PUZ]. From the probability laws one can deduce a stronger singularity,

for example with respect to the measure H

�

(�; c) which is the Hausdor� measure for the

function

�(�; c)(t) = t

�

exp c

r

log

1

t

log log log

1

t

for all

c <

s

2�

2

(log Jac

�

(s)� � log jf

0

j � z

1

)=

Z

log jf

0

jdm:

The inequality HD(m) < HD(cl�) follows from [Z1].

Problem 2.5. In what class of measures in M

+

(�) s does the property: the family

S

n

(log Jac

m

(f)� � log jf

0

j) is uniformly bounded in L

2

(m), imply m� H

�

?

Comment. Again the answer is positive for f expanding and Jacobian H�older con-

tinuous.

If m = z

1

(�) then the boundness of the family S

n

(') where ' := log Jac

�

(f) �

� log jf

0

j�z

1

occurs precisely when �

2

(log Jac

�

(f)�� log jf

0

j�z

1

) = 0 assuming the series

P

1

n=1

n

R

j' �('�s

n

)jd� is convergent. This is equivalent to the existence of a function u in

L

2

(�) so that ' = u�s�u. Then we say that we can solve the cohomology equation for '.

Then we can also solve the cohomology equation for log Jac

m

(f)�� log jf

0

j on �. The naive

way to compare m with H

�

is to prove that the sequence S

n

(log Jac

m

(f) � � log jf

0

j)(z)

is bounded at almost every z 2 �. In the expanding case this allows comparison of the

m-measure and the radius to the � power of little discs, so the naive method happens to

be successful. In the general case we do not have even pointwise boundness, because the

function u is only in L

2

(�).

The problem has the positive answer in the following special cases:

1. In the RB-domain case, where m is equivalent to a harmonic measure on the

boundary of a simply-connected domain U , see [PUZ] and [Z2]. Then m =

�

R(�) where �

32



is equivalent to the Lebesgue measure on @ID. log jR

0

j happens to be within a bounded

distance from any harmonic extension of u to a neighbourhood of @ID, in particular radial

limits for log jR

0

j exist a.e.. In [Z2] it is proved in fact that all this implies that @U is

analytic, giving the answer to Problem 2.3 in this case.

2. In the case where f is a rational map on

^

CI and m is a measure with maximal

entropy (in which case Jacobian� degf). Then again a careful look at u proves that f is

either z 7! z

n

or is a Tchebyshe� polynomial (in respective holomorphic coordinates on

^

CI) or else J(f) =

^

CI and f has a parabolic orbifold, see [Z1].

In the general case it seems hopeful to treat any harmonic extension of u as a logarithm

of a derivative of a "Riemann mapping". In the case m = z

1

(�) one can average u over

cylinders in �

d

extending u to the vertices z

n

(�) of the tree.

The mapping z

1

can be vieved as a dynamical version of a Riemann maping. We can

formulate the following problem:

Problem 2.6. Which theorems about the boundary behaviour of Riemann maps hold

for geometric coding trees?

Comment. Beurling Theorems hold, see the discussion in Section 1.

One has a natural dictionary:

For R: For z

1

:

prime end a geometric branch

impression I(�) = \

1

n=0

z

1

f� : �

i

= �

i

; i = 0; :::; ng

the set of principal points the limit set for the vertices z

n

(�) of b(�).

Problem 2.7. Is it true that sup

m2M

+

(�)

HD(m) = HD(cl�)? Does sup

m2M(�)

help?

Comment. Of course a negative answer to this Problem for some � and positive to

Problem 2.3 would mean that m?H

HD(m)

for all m.

Problem 2.7 has positive answer in the expanding and subexpanding cases where sup

is attained, it is so even for a positive measure set of rational mappings on

^

CI for which

absolutely continuous invariant measures exist (with respect to the Lebesgue), see [R]. The

problem has also a positive answer for rational mappings with neutral points but without

critical points in the Julia set. But then it may happen that supremum is not attained,

see [ADU] and [L].
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Section 4: Iterates of Entire Functions

Open Questions in Non-Rational Complex Dynamics

Robert Devaney

The dynamics of complex analytic functions have been studied by many authors during

the past decade. Much of this work has been con�ned to the study of either rational or

polynomial maps. The study of other analytic functions is still in its infancy and there are

many unsolved problems in this area. In this note we describe a few of these problems.

1. Entire functions. The dynamics of entire functions are quite di�erent from the

dynamics of rational maps, mainly because of the essential singularity at in�nity. By the

Picard theorem, any neighborhood of this singularity is mapped in�nitely often over the

entire plane missing at most one point. This injects considerable hyperbolicity into the

map and often causes the topology of the Julia set of the map to be vastly di�erent from

that of a rational map. In addition, the No Wandering Domains Theorem of Sullivan does

not hold for this class of maps, so there may be both wandering domains and domains at

in�nity in the stable sets.

There is one class of entire maps whose dynamics are fairly well understood, namely

the entire maps that have �nitely many asymptotic and critical values (maps of �nite

type). With few exceptions (notably examples of Baker [B], Herman [H], and Eremenko

and Lyubich [EL], most work has centered around this class of maps. Extending the study

to a wider class of maps is an important problem.

Problem: Find a collection of representative examples of entire maps whose dynamics may

be understood.

As a starting point, one might ask

Problem: What are the dynamics of maps of the form �e

z

sin z or �e

z

cos z?

2. Entire functions of �nite type. Most of the work thus far on the dynamics of entire

maps has been concentrated on the class of �nite type maps. These are the maps which

have only �nitely many singular (i.e., critical and asymptotic) values. This class includes

�e

z

; � sin z, and � cos z. It is known [GK,EL] that the No Wandering Domains theorem

holds for this class, and that the Julia sets of these maps often contain Cantor bouquets

[DT].

3. The exponential map. Of all entire maps, the exponential family E

�

(z) = �e

z

has received the most attention. This is natural since E

�

, like the well-studied quadratic

family Q

c

(z) = z

2

+ c, has only one singular value, the asymptotic value at 0. Thus this

family is a \natural" one parameter family.
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The parameter space for E

�

has been studied in [DGK]. However, there remain signif-

icant gaps in this picture. It is known that there exists Cantor sets of curves (called hairs)

in the parameter plane for which the corresponding exponential maps have Julia sets that

are the whole plane.

Problem: Describe completely the set of �-values for which the Julia set of E

�

is C.

Problem: Many of these �-values lie on curves or hairs. Are these hairs C

1

? Analytic?

Where and how do they terminate?

There are some interesting topological structures embedded in the dynamics of the

exponential that warrant further study. For example, it is known that for � > 1=e; J(E

�

) =

C. However, if �; � > 1=e, then E

�

and E

�

are not topologically conjugate [DG]. If one

looks at the invariant set consisting of fzk0 � ImE

n

�

(z) � � for all ng, it is known that

this set is a Knaster-like continuum.

Problem: Are each of these Knaster-like continua homeomorphic? (for any �; � > 1=e)

4. The Trigonometric Functions. The parameter spaces for families such as S

�

(z) =

� sin z or C

�

(z) = � cos z also deserve special attention. They also contain curves on which

the Julia set is the entire plane. The fundamental di�erence here is that C

�

and S

�

have

no �nite asymptotic values (only critical values), whereas the opposite is true for E

�

.

Problem: Describe the structure of the parameter space for C

�

and S

�

.

One fundamental di�erence between the trigonometric and exponential families is the

following. Both maps are known to possess Cantor bouquets [DT] in their Julia sets.

And any two planar Cantor bouquets are homeomorphic [AO]. Finally, McMullen [Mc]

has shown that these Cantor bouquets always have Hausdor� dimension 2. However, the

Lebesgue measure of these bouquets is quite di�erent: they always have measure zero in

the exponential case, but in�nite measure in the trigonometric case.

Problem: What is the measure and dimension of the hairs i the parameter space for E

�

; S

�

and C

�

.

5. Other families of non-rational maps. Newton's method applied to non-rational

maps o�ers a fertile area for further investigation. Outside of the work of Haruta [Ha] and

van Haesler and Kriete [HK ], there is little that is known. So a general problem is:

Problem: Describe the dynamics of Newton's method applied to general classes of entire

functions?

This, of course, immediately leads to the question of iteration of meromorphic func-

tions. Some work has been done here in case the map has polynomial Schwarzian derivative

[DK] or when the map has �nitely many singular values [BK]. But not much else is known.
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Finally, there is an intriguing object called the tricorn introduced by Milnor [M] as

one of his basic slices of parameter space for higher dimensional maps. This object arises

as the analogue of the Mandelbrot set for the anti-holomorphic family A

c

(z) = z

2

+ c.

It is known [La] that the tricorn is not locally connected, but it also contains smooth

arcs in the boundary (with no decorations attached) [W]. As this object arises in slices

of the cubic connected locus, it certainly warrants further study. Winters [W] also has

introduced a family of fourth degree polynomials whose parameter space is \naturally"

R

3

and which contains perpendicular slices given by the Mandelbrot set and the tricorn.

Winters suggests that this family can model cubics since there are only two critical orbits.
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Wandering Domains for Holomorphic Maps

A.Eremenko and M.Lyubich

Let f be a rational or entire function. A connected component D of

the complement of the Julia set J(f) is called wandering domain if for all

m > n � 0 we have f

m

D \ f

n

D = ;, where f

m

stands for m-th iterate of

f . One of the most important theorems in holomorphic dynamics due to D.

Sullivan states that rational functions have no wandering domains [11]. We

ask for possible generalizations of this theorem. All known proofs of Sullivan's

theorem use heavily the fact that the space of quasiconformal deformations

of a rational function is �nitely dimensional (see e.g. [3]).

Here is one situation where a similar result could be proved. We say that

an entire function f belongs to the class S if there is a �nite set of points

fa

1

; : : : ; a

q

g such that

f : Cnf

�1

fa

1

; : : : ; a

q

g ! Cnfa

1

; : : : ; a

q

g

is a covering map. The space of quasiconformal deformations of an entire

function of the class S has �nite dimension and the following result can be

proved by extending the Sullivan's method: entire functions of the class S

have no wandering domains [6], [8], [2].

On the other hand it is known that wandering domains D may exist for

some entire functions f . The examples with the following properties have

been constructed:
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1). f

n

D ! 1, [1], [2], [5], [9]. The example in [5] has an additional

property that the iterates f

n

are univalent in D.

2). The orbit ff

n

Dg has in�nitely many limit points, including 1, [5].

Question 1 Does there exist an entire function f with a wandering domain

D such that the orbit ff

n

Dg is bounded?

Remark that there are entire functions not in the class S, for which the

negative answer can be obtained easily. We say that the function f has order

less then one half if

log log

+

jf(z)j � � log jzj; jzj > r

0

for some � < 1=2. It follows from a classical theorem by Wiman and Valiron

(see, for example, [10]) that such functions have the following property: there

exists a sequence r

k

!1 such that

jf(r

k

e

i�

)j > r

k

; 0 � � � 2�:

It follows that there is an increasing sequence of domains G

k

, [G

k

= C such

that the restrictions of f on G

k

are polynomial-like maps [4]. So f has no

wandering domains with bounded orbit because polynomial-like maps have

no wandering domains.

Now we consider a special type of wandering domains whose orbits tend

to a �nite point z

0

. Let ' be a germ of holomorphic function with the point

z

0

�xed. Suppose that � = '

0

(z

0

) = exp 2�i�; � irrational. It was proved

by Fatou [7] that in this situation '

n

(z) cannot tend to z

0

in an invariant

domain. So we have the following

Question 2 Is it possible that '

n

(z)! z

0

uniformly in some domain D?

In the case when ' can be analytically continued to an entire function positive

answer would imply the existence of wandering domain whose orbit tends to

z

0

. It would be also interesting to know the answer to the question 2 with

other additional assumptions on the germ ', for example, when ' is a germ

of an algebraic function.

Finally remark that the answer to the following question is also unknown

Question 3 Under the assumptions of Question 2 can it happen that there

is an orbit tending to z

0

?
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Section 5: Newton's Method

Bad Polynomials for Newton's Method

Scott Sutherland

Newton's method for solving f(z) = 0 corresponds to iteration of z 7! z � f(z)=f

0

(z),

which is a degree d rational map of C in the case where f is a polynomial of degree d

with distinct roots. Newton's method has long been an important source of examples and

theorems in complex dynamical systems (for example, the work of Schr�oder [Sch, Sch1],

Fatou [Fa], and more recently Douady and Hubbard [DH]), as well as being one of the

most commonly used numerical schemes for approximating roots. See [HP] and [Sm] for an

introduction to the dynamics of Newton's Method.

Describing the set of polynomials for which the corresponding Newton's method has

periodic sinks which are not roots is an important open problem, (problem 6 of [Sm]). We

shall refer to such polynomials as \bad polynomials". This question is essentially answered

for cubic polynomials by the work of Tan Lei [Ta] and Janet Head [He], in which the more

comprehensive task of giving a combinatorial description of the parameter space for Newton's

method is undertaken. A complete description of the parameter space for higher degrees still

seems some way o�, however.

In order to answer Smale's question for higher degree polynomials, it may be helpful to

consider the relationship between the \relaxed Newton's method"

N

h;f

(z) = z � h

f(z)

f

0

(z)

and the \Newton Flow" N

f

given by the ordinary di�erential equation

_z = �

f(z)

f

0

(z)

:

One sees immediately that the map is an Euler approximation to the 
ow using step size

h. The attractors of N

f

are sinks located at the zeros of f(z), 1 is the only source, and

the other �xed points are at the singularities corresponding to the critical points of f . We

can rescale time for N

f

to obtain _z = �f(z)f

0

(z) (or alternatively _z = �rjjf(z)jj

2

), from

which we can easily see that these singularities are hyperbolic saddles. Furthermore, solution

curves of N

f

are mapped by f to straight lines emanating from the origin. Thus, if f has

two critical values with the same argument, then the 
ow N

f

is degenerate in the sense that

there are solution curves which begin at one singularity and terminate at another. Refer to

[JJT], [Sa], [STW], [Sm], and [Su] for more details about N

f

.

We propose the following conjecture (for which we have some numerical evidence) relating

the degenerate 
ows and bad polynomials. This basically says that one can connect a

polynomial which is bad for Newton's method to one which is bad for the 
ow.
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Conjecture 1. Let f

1

be a bad polynomial of degree d, that is one for which Newton's

method has an attractor which is not a root of f . Then there is a one-parameter family of

polynomials ff

h

g

0<h�1

which are bad for the relaxed Newton's method N

h;f

h

. Furthermore,

as h! 0, the corresponding 
ow N

f

h

tends to a 
ow N

f

0

which is degenerate.

This conjecture is consistent with the following, as explained below.

Conjecture 2. Let f be a polynomial of degree d with all its roots in the unit disk, let

� be a root of multiplicity m for f , and let A

�

h

(�) be the immediate attractive basin of � for

the map N

h;f

. Then the intersection of the set

A =

\

0<h�m

A

�

h

(�)

with any circle of radius R � 3 contains arcs whose total length is at least

2�R

cd

, where c is a

constant not depending on �, f , or d.

This second conjecture says that there is a de�nite neighborhood of the singular tra-

jectories of N

f

in which the Julia set of N

h;f

must be contained for all h 2 (0; m]. Since

the periodic orbits for N

h;f

which are not roots must be contained in the complement of

S

f(�)=0

A

�

h

(�), conjectures 1 and 2 taken together give some idea of the structure of the

parameter space for N

h;f

.

Conjecture 2 has been partially established by Benzinger [Be] (for all h su�ciently near

0), and is a generalization of the main result of [Su], which shows this for h = 1. I believe

that with slight modi�cations, the proof in [Su] can be made to work for 0 < h � m, which

should nearly complete the proof of conjecture 2.
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