
Scalings in Circle Maps III

J� Graczyk G� �Swi�atek F�M� Tangerman

J�J�P� Veerman

August ��� ����

Abstract

Circle maps with a �at spot are studied which are di�erentiable�

even on the boundary of the �at spot� Estimates on the Lebesgue

measure and the Hausdor� dimension of the non�wandering set are

obtained� Also� a sharp transition is found from degenerate geometry

similar to what was found earlier for non�di�erentiable maps with a

�at spot to bounded geometry as in critical maps without a �at spot�

� Introduction

��� Maps with a �at spot

We consider degree one weakly order�preserving circle endomorphisms which
are constant on precisely one arc �called the �at spot�� Maps of this kind
appear naturally in the study of Cherry �ows on the torus �see ���� as well
as �truncations	 of smooth non�invertible circle endomorphisms �see �
���
They have been less thoroughly researched than homeomorphisms�

Topologically� one nice thing about maps with a �at spot is that they still
have a rotation number� If F is a map with a �at spot� and f is its lifting�
the rotation number ��F � is the limit

lim
n��

fn�x�

n
�mod��

which turns out to exist for every x and its value is independent of x� The
dynamics is most interesting if the rotation number is irrational�

�



We study �rst the topology of the non�wandering set� then its geometry�
Where the geometry is concerned� we discover a dichotomy� Some of our
maps show a �degenerate universality	 akin to what was found in a similar
case considered by �� and ����� while others seem to be subject to the
�bounded geometry	 regime� very much like critical homeomorphisms� i�e�
maps which instead of the �at spot have just a critical point�

Before we can explain our results more precisely� it is necessary to de�ne
our class and �x some notations�

Almost smooth maps with a �at spot� We consider the class of con�
tinuous circle endomorphisms F of degree one for which an arc U exists so
that the following properties hold�

�� The image of U is one point�

� The restriction of F to S� n U is a C�� di�eomorphism onto its image�

�� Consider a lifting to the real line� and let �a� b� be a preimage of U �
while the lifting of F itself is denoted with f � On some right�sided
neighborhood of b� f can be represented as

hr��x� b�pr�

for pr � � with hr which extends as a C
��di�eomorphism beyond b�

Analogously� in a left�sided neighborhood of a� f is

hl��a� x�pl� �

The ordered pair �pl� pr� will be called the critical exponent of the map�
If pl � pr the map will be referred to as symmetric�

In the future� we will deal exclusively with maps from this class� More�
over� from now on we restrict our attention to maps with an irrational rota�
tion number�

Basic notations� The critical orbit is of paramount importance in study�
ing any one�dimensional system� thus we will introduce a simpli�ed notation
for backward and forward images of U � Instead of F i�U� we will simply write





i� This convention will also apply to more complex expressions� For exam�
ple� F��qn������ will be abbreviated to ��qn � �� This is certainly di�erent
from F��qn��� � � where �� means an element of the group T�� In our
notation� this di�erence is marked by � not being underlined� i�e� ��qn���
An underlined complicated expression should be evaluated as a single image
of �� Thus� underlined positive integers are points� and non�positive ones are
intervals�

Let qn denote the closest returns of the rotation number ��F � �see ����
for the de�nition��

Next� we de�ne a sequence of scalings

��n� ��
dist��� qn�

dist��� qn���
�

A summary of previous related results� Maps with the critical expo�
nent ��� �� were studied �rst� The most complete account can be found in
���� They turn out to be expanding apart from the �at spot� Therefore�
the geometry can be studied relatively easily� One of the results is that the
scalings ��n� tend to � fast�

Next� critical exponents ��� �� or ��� �� were investigated for � � � inde�
pendently in �� and ����� The main result was that ��n� still tend to �� This
was shown to lead to �degenerate universality	 of the �rst return map on
�qn��� qn�� Namely� as n grows� the branches of this map become at least C�

close to either a�ne strongly expanding maps� or a composition of x � x�

with such maps�
Finally� we need to be aware of the results for critical maps where U is

a point and the singularity is symmetric� The scalings can still be de�ned
by the same formula� but they certainly do not tend to � �cite ��� and �����
Moreover� if the rotation number is golden mean� then they are believed to
tend to a universal limit �see ����� This is an example of bounded geometry�
and conjectured �non�degenerate	 universality�
In this context� we are ready to present our results�

��� Statement of results

We investigate symmetric almost smooth maps with a �at spot with the
critical exponent ��� �� � � � �� First� we get results about the non�

�



wandering set which are true for any �� Also� we permanently assume that
the rotation number is irrational�

Theorem � For any F with the critical exponent ��� �� � � � �� the set
S� n

S�
i�� f

�i�U� has zero Lebesgue measure� Moreover� if the rotation num�
ber is of bounded type �i�e� qn�qn�� are uniformly bounded�� the Hausdor�
dimension of the non�wandering set is strictly less than ��

Corollary� There are no wandering intervals and any two maps from
our class with the same irrational rotation number are topologically conju�
gate�

Theorem � Again� we assume that the critical exponent is ��� �� with
� � �� Then� we have a dichotomy in the asymptotic behavior of scalings� If
� � � the scalings ��n� tend to �� If � � � and the rotation number is of
bounded type� then lim infn�� ��n� � ��

Comments� Thus� Theorem  shows that a transition occurs from the
�degenerate universality	 case to the �bounded geometry	 case as the ex�
ponent passes through � This is the �rst discovery of bounded geometry
behavior in maps with a �at spot �which was conjectured in ������

Numerical �ndings� A natural question appears whether bounded geom�
etry� when it occurs� is accompanied by non�trivial universal geometry� More
precisely� we have two conjectures�

Conjecture � For a map F from our class with the golden mean rota�
tion number� the scalings ��n� tend to a limit�
We found this conjecture supported numerically� albeit only for one map

considered� Moreover� the rate of convergence appears to be exponential�
The reader is referred to Appendix B for a detailed description of our exper�
iment�

There is a much bolder conjecture�
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Conjecture � Consider two maps from our class with the same critical
exponent larger than  and the same irrational �bounded type� noble��
rotation number� Then� the conjugacy between them is di�erentiable at �
�the critical value according to our convention��

This conjecture is motivated by the analogy with the critical case� The
same analogy �see ���� makes us expect that Conjecture  would be implied
by Conjecture � if the convergence in Conjecture � is exponential and the
limit is independent of F �

Parameter scalings Consider a smooth one parameter family ft of circle
maps in our class with constant critical exponent ��� �� for which d�dt ft �
�� Assume that f� has golden mean rotation number� Denote by In the
interval of parameters t for which ft has as rotation number pn�qn� the n� th
continued fraction approximant to the golden mean� The length jInj of the
interval In tends to zero as n tends to in�nity� De�ne the parameter scaling
�n as�

�n � jInj�jIn��j

When � � � �  the arguments in ���� yield an asymptotically exact
relation between parameter scalings and geometric scalings for f��

�n � ��n� ���

We conjecture that when � � � the parameter scalings tend to a universal
limit only depending on �� In fact� the same relation between parameter
scalings and geometric scalings appears to hold�

��� Technical tools

Denote by �a� b� � �b� a� the open shortest arc between a and b regardless
of the order of these two points� If the distance from a to b is exactly ���
choose the arc which contains some right neighborhood of �� The distance
between two sets X and Y is de�ned as

dist�X� Y � � inffdist�x� y� � x � X� y � Y g �

We shall write l�I� and r�I� appropriately for the left and the right endpoint
of interval I� In particular we set l � l�U� and r � r�U��






The cross�ratio inequality� Suppose we have four points a� b� c� d ar�
ranged according to the standard orientation of the circle so that a � b �
c � d and b� c � �a� d�� De�ne their cross�ratio as �

Cr�a� b� c� d� �
j �a� b� jj �c� d� j

j �a� c� jj �b� d� j

By the distortion of cross�ratio we mean

DCr�a� b� c� d� �
Cr�f�a�� f�b�� f�c�� f�d��

Cr�a� b� c� d�
�

Let us consider a set of quadruples ai� bi� ci� di with the following properties�

�� Each point of the circle belongs to at most k among intervals �ai� di��

� Intervals bi� ci do not intersect U

then
nY
i��

DCr�ai� bi� ci� di� � Ck

and the constant Ck does not depend on the set of triples�
In this paper all sets of triples will be formed by taking iterations of

an initial quadruple� Therefore we will only indicate the initial quadruple
together with the number of iterations one performs�

This inequality was introduced and proved in ����

Lemma ��� There is a constant K so that for any two points y� z� if f is a
di�eomorphism on �y� z�� the following inequality holds�

j f�y� z� j

dist�f�y�� f�U��
� K

j �y� z� j

dist�y� U�

provided dist�z� U� � dist�y� U��

Proof�
It is a simple calculation�

�
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The Distortion Lemma� We use the following lemma which can be con�
sidered a variant of the �Koebe lemma	 which was the basis of estimates in
�����

Let f be a lifting of an almost smooth map with a �at spot� and consider a
sequence of intervals Ij with � � j � n so that Ij�� � f���Ij� and U � Ij � �
for � � j � n� Choose an interval �a� b� � I� and let A be the orientation�
preserving a�ne map from ��� �� onto I�� Then� we de�ne the �rescaled	 map
�f �� f�n � A� So� �f maps ��� �� onto In�
The nonlinearity of �f satis�es the following estimate�

�f ��

�f �
�

K

Cr��� A���a�� A���b�� ��

where K is a uniform continuous function of
Pn��

j�� jIjj only�

proof The lemma follows directly from the �Uniform Bounded Distor�
tion Lemma	 of ����

� Estimates valid for any critical exponent

��� Geometric bounds

Lemma ��� The sequence dist�qn� U� tends to zero at least exponentially
fast�

Proof�
The orbit of U for � � i � qn���qn�� together with open arcs lying between
successive points of the orbit constitute a partition of the circle� Let I be
the shortest arc belonging to the set

A �� f�qn � i� i� � � � i � qn��g �

Denote the ratio
j ��qn� qn� j

dist�qn� U�

by ��n�� We will show that ��n� is bounded away from zero� Lemma ���
implies that

j ��qn � �� qn � �� j

j ��qn � �� �� j
� K

j ��qn� qn� j

dist��qn� U�
�
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If I coincides with �qn� 	U� then clearly ��n� � ��� Otherwise we can
iterate i times� mapping the interval �qn � �� �� onto I� Note that intervals

��qn � � � i� qn � � � i� and �� � i��qn � qn�� � � � i�

cover two adjacent intervals to I from the set A�
Now we write the cross�ratio inequality for

f�qn � �� qn � �� ���qn � qn�� � �g

and the number of iterations equal to i� We obtain the following estimate�

j ��qn � �� qn � �� j

j ��qn � �� �� j

j ����qn � qn�� � �� j

j �qn � ���qn � qn�� � �� j
� ��C� �

Thus
��n� � ��C�K

and dist�qn� U� � ����� � ���dist��qn� U�� The ordering of the orbit of U
implies the next inequality

dist�qn� U� � ����� � ���dist�qn��� U�

which completes the proof�

�

Proposition � �� The sequence f��n�g is bounded away from ��

�� The sequence
j �qn�� j

j �qn� qn��� j

is bounded away from zero�

Proof�
Let Un be the n�th partition of the circle given by all qn��� qn� � preimages
of U � Jn � f�i � O � i � qn�� � qn � �g� together with the holes between
successive preimages of U � It is easy to see that the holes are given by the
following formula�

�



�� �qn is on the left side of U � Set

�
n
i �� f�i�r��qn�� l�U�� and 	n

j �� f�j�r�U�� l��qn���� �

where j ranges from � to qn� and i is between � and qn���

� �qn is on the right side of U � Set

�
n
i �� f�i�r�U�� l��qn�� and 	n

j �� f�j�r��qn���� l�U�� �

with i ranging from � to qn�� and j from � to qn�

Then

Un n Jn � f�n
i � � � i � qn��g 
 f	

n
j � � � j � qng �

Note that 	n��
j � �n

j

Take two successive preimages of U which belong to the n�th partition
Un� say �i and �j� We may assume that �i lies to the left of �j� Take as
the initial quadruple the endpoints of the considered preimages of U� We can
iterate the quadruple

fl��i�� r��i�� l��j�� r��j�g

until we hit U � The cross�ratio inequality gives the following estimate�

Cr�l��i�� r��i�� l��j�� r��j�� �

� �j U j �C��
j �ji� jj j

j �ji� jj j �dist��ji� jj� U�

where ji � jj is equal to either qn or qn��� Thanks to lemma ��� we know
that the ratio of lengths of intervals adjacent to the plateau can be changed
only by a bounded amount�

j �ji� jj� � j

j �ji� jj� � j �dist��ji� jj� �� ��
�

� K
j �ji� jj j

j �ji� jj j �dist��ji� jj� U�
�

�



Now we form a new quadruple from the endpoints of �ji� jj� � and two
additional points� ji� jj and �� To obtain the next estimate we write the
cross�ratio inequality for the quadruple and the number of iterates equal to
ji � jj� Let us recall that we proved in lemma �� that j ��ji� jj� ji� jj� j
was big with comparison to dist�ji� jj� U�� Hence

j �ji� jj� � j

j �ji� jj� � j �dist��ji� jj� �� ��

� � j U j �C� �

Combining all above inequalities we get

j �i j

j �l��i�� l��j�� j

j �j j

j r��i�� r��j� j
�

� � j U j �C�C� �

To �nish the proof note that interval �qn��� qn� contains exactly one preim�
age of U which belong to Un��� namely �qn���

�

Lemma ��� The lengths of intervals �n
i and 	n

j tend to zero uniformly
exponentially fast with n�

Proof�
An interval �n

i is subdivided into preimages of the �at spot and intervals of
the form �n��

j and	n��
k � We will argue that a certain proportion of measure

is lost in the preimages of U � To this end� apply to the cross�ratio inequality
to a quadruple given by the endpoints of two neighboring preimages of U in
the subdivision� By Proposition �� this cross�ratio is bounded away from ��

�

��� Proof of Theorem �

The �rst claim of the Theorem follows directly from Lemma ��
The claim concerning the Hausdor� dimension requires a bit longer ar�

gument� Suppose that the rotation number is of bounded type� Take the

��



n� ��th partition of the circle S�� The elements of the next partition subdi�
vide the holes of latter one in the following way�

�
n��
i �

an���
j��

�
n
i�qn�jqn��


	n
i �

	n��
i � �n��

i �

We estimate X
�j �n

i j
� � j 	n

i j
�

where
P
means the sum over all holes of n �th partition� By Proposition �

follows that there is a constant 
 � � so that
an��X
j��

j �n
i�qn�jqn��

j� 
 j �n��
i j

holds for all �long� holes �n
i�qn�jqn�� of n�th partition� In particular it means

that the holes of n�th partition decrease uniformly and exponentially fast to
zero while n tends to in�nity� We use concavity of function x� to obtain that

an��X
j��

j �n
i�qn�jqn��

j��

�j an�� � � j
��� 
� j �n��

i j��

�j �n��
i j�

if only � is close to �� Hence the sum over all holes at power � of n �th
partition is a decreasing function of n� Consequently� the sum is less than
�� The only remaining point is to prove that for a given � the holes of n �th
partition constitute an � �cover of � if only n is large enought� But this is so
since the length of the holes of n �th partition goes to zero uniformly� This
completes the proof�

� Controlled Geometry� recursion on the scal�

ings

��� Proof of Theorem �

The strategy of the proof of the �rst part of this theorem is to establish
recursion relations between scalings �proposition ����� similar to what was

��



done in ����� A close study of these relations then implies the �rst part of
theorem � when � � � these scalings are bounded away from zero�

We will give the derivation of the recursion relation between scalings�
Since this derivation is in many respects analogous to what was done in
chapter � of ����� �in fact the only di�erence in the proofs is the change of the
phrase 	essentially linear	 to 	a priori bounded nonlinearity	�� the discussion
will be somewhat sketchy� The basic strategy is that closest returns factor
as a composition of a power law and a map of a priori bounded distortion�
This allows one to control ratio�s of lengths of dynamically de�ned intervals�
Let f be a map satisfying the assumptions of theorem � the critical expo�

nent is ��� �� and the rotation number is of bounded type� Then proposition
�� supplies us with a priori bounds�

In the sequel it is convenient to introduce a symbol ��� for approximate
equality� Let f��n� g and f 
�n� g be two positive sequences� The notation

��n� � 
�n�

means that there exists a constant K � � depending only on the a priori
bounds and the type of the rotation number so that for all n�

�

K
�

��n�


�n�
� K

Proposition �� �a priori bounds� implies that

j�qnj � jqn��j �����

The interval �qn� qn��� contains the interval �qn�� as well as its inverse im�
ages� f�iqn��qn��� �i � ������ an � ��� Each interval �i qn� �i� �� qn� contains
one such inverse image� The distortion lemma �see introduction�� the assump�
tion that the singularity is a power law �with power ��� and the assumption
that an is bounded imply �see also ����� chapter ���

j��i� �� qn� i qn�j � ji qnj� for i � � ��� an �����

This relation immediately implies�

j�f��i� �� qn�� f�i qn��j � jf�i qn�j �����

�



j��i� �� qn� i qn�j

jf�i qn�j
Df�i qn� � � �����

This last relation is the analogue of�

x � � x���

x�
� �

De�ne scalings ��n� i� as

��n� i� �
j��i� �� qn� i qn�j

j�i qn� �i� �� qn�j
� for i � �� ��� an � �

��n� an� �
j��an � �� qn� an qn�j

j�an qn� qn���j

Remark� ��n� can not quite be expressed in these scalings� However one
has�

��n� �
j��� qn�j

j��� qn���j
�

j��� qn�j

j�an qn� qn���j
� ��n� �� � � � � � ��n� an�

We now show that the various scalings are related� through suitable deriva�
tives of iterates at the critical value� An application of the chain rule will
�nally yield an interesting recursion relation� These recursion relations were
�rst discovered in section � of ����� under the additional assumption that
scalings tended to zero� Denote by fD�n� g the sequence of derivatives of
iterates at the critical value�

D�n� � Dfn���

Of particular interest are those derivatives for closest returns� We now
present the relations of interest� As remarked before� their proofs are es�
sentially the same as in ���� if one replaces the phrase 	essentially linear	 to
	a priori bounded nonlinearity	� As in lemma ��� ���� we have�

If an � � D�qn� �
�

��n� ��
���	a� �

For i � � ��� an � � ��n� i� � ��n� i� ��� ���	b�

��



The last relation implies that ��n� i� can be expressed in terms of ��n� ���

��n� i� � ��n� ���
i��

���
�

As in Theorem ��� ���� we have that�

if an � � D�qn� �
�an�� �

��n� ��
�����

if an � � D�qn� �
�an�� �

��n� an�
 an��
i�� ��n� i���� �����

Equations ��	 ab and ��
� imply that when an � � �but bounded by the
type of the rotation number�

��n� an� � �an�� ��n� ���
an��

�����

The previous relations imply that every ��n� i� can be expressed in terms
of ��n� ��� Consequently� D�qn� can be expressed in terms of ��n� ��� The
chain rule will �nally yield a recursion relation between scalings at various
levels� As in proposition ��
 ���� we have that�

D�qn��� � D�qn�
an  an

i��

Df�iqn�

Df�qn�
D�qn���

Df�qn���

Df�qn���

Expressing this relation in terms of ��n � �� ��� ��n� �� and ��n � �� �� one
obtains the following simple recursion relation�

Proposition ����

��n � �� ���
an��

� �p ��n� ��
���an

��� ��n� �� ��

The power p only depends on the values of an� an�� �

Remark� �� The quantity ��n� ���
an
has a geometric interpretation as�

��n� ���
an
�

j��� � � an qn�j

j��� � � i qn���j

�� We have that
��n� � ��n� ��

���an

�� �

��



Proof of the �rst part of Theorem � � If � �  then lim inf ��n� � �
Proof�

By the second part of the last remark� it su�ces to show that lim inf ��n� �� �
�� De�ne the quantity

s�n� � ��an ln���n� ���

Proposition ��� implies that we have the recursion inequality�

js�n� �� �
�� ��an

� � �
s�n� � ��an�� s�n� ��j � bound

Here the quantity bound only depends on the apriori bounds� the power � and
the type of the rotation number� It now su�ces to show that the sequence
f s�n� g is bounded�

De�ne the sequence of vectors f �n� g as�

�n� �
�

s�n�
s�n� ��

�

and the sequence of matrices fB�n� g as�

B�n� �
� ����an

��� ��an��

� �

�

Then the recursion inequality implies that

jj�n� �� � B�n� �n�jj � bound

Here jj�jj denotes the Euclidean distance on the plane�
We study long compositions of these matrices in appendix A� Since � � �

lemma A� in the appendix implies the existence of an integer N so that for
any n� the composition

B�n �N� � ��� � B�n�

uniformly contracts the Euclidean metric by a factor less than ���
Therefore the sequence of lengths fjj�n�jjg is bounded� Consequently

the sequence f s�n� g is bounded and the sequences f ��n� �� g and f ��n� g
are bounded away from zero�

�
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Proof of the second part of Theorem �� If � �  then limn�� ��n� �
�

The main idea is that when the power � is close to �� the map is actually
not very non�linear� Consider the con�guration of intervals described in
�gure ���� The intervals are� A � ��� an qn� and B � �an qn� qn��� Apply
qn�� iterates to A 
 B� Then A maps to A� and B maps to B�� Note that B�

contains U �is asymptotically equal to it� and is therefore large� In particular

the ratio of lengths jA�j
jB�j is very small� Therefore� if the q

th
n�� iterate of f on

A 
 B is not very non�linear� one should expect that the initial ratio jAj
jBj

is also small� Consequently� the scalings tend to zero� The details for this
argument are found in the proof of proposition �� below�

An important observation is that the intervals f f i�	 U� qn���gi������qn��
do not intersect�

We will need the following lemma�

��



Lemma ���� Let a�b and z be positive reals�

� � a � b � z

Let S be the map S � x � x�� Then�

jS�b� � S�a�j

jS�z� � S�b�j
� �

a

b
����

jb� aj

jz � bj

Proof�
Consider the quotient r�z� of ratio�s�

r�z� �
b� � a�

b� a

z � b

z� � b�

Fix a and b and take the supremum over z�

supz��a��� r�z� � limz � b r�z� �

b� � a�

b� a

�

� b���
� �

a

b
����

�

Proposition ���� For � � �

limn�� ��n� an� ��n� �� an��� � �

Proof�
We will �nd an upper bound for the following quantity� measuring the non�
linearity�

Rn � ln
jf qn���B�j�jf�B�j

jf qn���A�j�jf�A�j

Decompose the complement of the �at spot U in three overlapping parts �see
�gure ��

An interval M � �xr� xl� in which f has bounded non�linearity�
An interval right � �	U� xr � �� to the right of U where f is the com�

position of x � jxj� and a di�eomorphism�
An interval left � �xl � �� 	U� to the left of U on which f on which f is

the composition of the x � �jxj� and a di�eomorphism�

��
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Figure �

We again remark that the interval f�A 
 B� and its qn��� images under
f are disjoint and do not land in the interval �qn��� qn��� containing the �at
spot U �

Denoting the ith forward image by a subscript i� we then have for i �
f �� ��� qn�� � �g�

Rn �
X

Ai �Bi�M

ln
jf�Bi�j�jBij

jf�Ai�j�jAij
�

X
Ai �Bi� right

ln
jf�Bi�j�jBij

jf�Ai�j�jAij
�

X
Ai �Bi� left

ln
jf�Bi�j�jBij

jf�Ai�j�jAij
��
X
M

�
X
right

�
X
left

In order to avoid over�counting� any couple of intervals which is strictly
contained in M� is included in the �rst sum� We now estimate each of the
three contributions separately�

For the intervals that land in M� there are points i � Bi and �i � Ai

such that �nf�x� � D�f�x�
Df�x�

��

j
X
M

j � j
X

ln
Df�i�

Df��i�
j �

X
j
Z �i

�i

nf�x� dxj �
Z
M
jnf�x�j dx

which is bounded by say CM �
In right f is a composition of the power law map x � x� and a di�eomor�

phism� Therefore we may assume that nf�x� � � and equals �� �
x
� O�x��

��



Since the intervals avoid the interval �	U� qn���� an estimate similar to the
one above yields� X

right

�
Z xr � �

qn��

nf�x� dx �

Z xr � �

qn��

� � �

x
� O�x� dx � ln �jqn��j�� �� � Cright

In left� we may assume that the nonlinearity n�f� is negative� This implies
that if �Ai 
 Bi� � left� the ratio of lengths decreases when f is applied�
For n very large� there are on the order of n

�
times when �Ai 
 Bi� � left�

for which moreover ��qn�k� � Bi for some k � n� An application of lemma
���� �reverse the orientation� yields an estimate of the amount of decrease of
the ratio� Since for the indices i under consideration ��qn�k� � Bi for some
k � n� we obtain that the ratio is uniformly decreased� Namely� there exists
� � ��� �� such that� X

left

�
n


ln � � �

Putting the three estimates together� we obtain that�

jf qn���B�j�jf�B�j

jf qn���A�j�jf�A�j
� eRn � �

n
� eCM �Cright jqn��j�� �

But
jf qn���B�j�jf�B�j

jf qn���A�j�jf�A�j
�
jU j��jqn��j� � jan qnj��

jqn�� � qn��j�jan qnj�
�

jan qnj�

�jqn��j� � jan qnj��

jU j

jqn��j

Since
jan qnj
jqn��j � ��n� an�� the previous implies that there exists a constant

K so that
��n� an�

� � K �
n
� jqn��j�� � jqn��j

Multiplying this inequality by the analogous inequality for ��n � � � an���
yields�

��n� �� an���� ��n� an�� �

K�

�
�n jqn��j

�� � jqn��j
�� � jqn��j �

K�

�
�n jqn��j

�� � jqn��j
�� �

This goes to zero whenever � � �

��



�

The proof of the second claim of Theorem  is now nearly �nished� Proof�
Fix � � �� We want to show that when n is large enough� ��n� �� is less than
�� Proposition �� implies that we can choose n large enough so that at least
one of the scalings ��n� an� and ��n � �� an��� is much smaller than �� By
choosing n still larger� we can arrange that also one of the scalings ��n� ��
and ��n � �� �� is much smaller than � �using equation ���
��� We need to
show that ��n� �� is smaller than �� By the previous we only have to consider
the case when we only know that ��n � �� �� is very small� Then however�
the recursion relation in Proposition ��� �applied to n��� shows that also then
��n� �� is small� This �nishes the proof of the second claim of Theorem �

�

We remark that as the scalings tend to zero� the recursion relations in Propo�
sition ��� converge to recursion equations� This case was studied in �����

�



Appendix A

Fix � � �� Let f b�n� g be a sequence of positive numbers which are
bounded from above by �

�
� De�ne the sequence of matrices fB��n� g as�

B��n� �

�
��b�n�
��� b�n� ��
� �

�

Lemma A��� Assume that � � � Then the sequence fB�n
� g de	ned as�

B�n
� � B��n� � � � � � B����

is relatively compact�
Proof�

Each B�n
� is non�negative and we have that B�n

� � B�n
� is non�negative also�

It therefore su�ces to consider the case when � � �
B�n

� can be written in the form�

B�n
� �

�
��n� 
�n�

��n� �� 
�n� ��

�

One proves by induction that�

��n� � � � b�n� � b�n� b�n� �� � � � � ����n b�n��b�n � �� � � � b���


�n� � b��� �� � b�n� � b�n� b�n� �� � � �� ����n�� b�n��b�n� �� � � � b���

Therefore ��n� � � � �
�
� � �� �

�n
�  and 
�n� � ��

�

Lemma A��� When � � � there exists an integer N only depending on the
bound �

�
for each b�n� so that when n � N � each B�n

� contracts the Euclidean
metric on the plane by a factor smaller than ���

Proof�
Each B� n

� can be expressed in the form�

B�n
� �

�
��n� �� 
�n� ��

��n� �� �� 
�n� �� ��

�

�



Here ��n� �� and 
�n� �� are polynomials of degree n in the variable �
��� �

��n� �� �
X

�i�n�
�

� � �

i


�n� �� �
X


i�n�
�

� � �

i

The coe�cients �i�n� and 
i�n� only depend on the sequence b�n�� We have
�Lemma A��� the estimate�

��n� �� � ��n� � � 


�n� �� � 
�n� � � �

Fix N� so that
�

� � �

N�

�
�

��

One proves by induction that as n tends to in�nity� the �nitely many
coe�cients

f���n� � � ��N�
�n�� 
��n� � � �
N�

�n�g

tend to zero exponentially fast� Consequently� there exists N so that when n
is bigger than N� each of these coe�cients are all smaller than ��

N�
�

Therefore� for n � N

��n� �� �
�

��

nX
i�N���

�i�n� � N�
�

N�
� ��

and 
�n� �� � ��� Consequently all the entries in B�n
� are less than or equal

to ��� Therefore the Euclidean metric is contracted by a factor less than ���

�





Appendix B

Description of the procedure� A numerical experiment was performed
in order to check Conjecture � of the introduction� To this end� a family of
almost smooth maps with a �at spot was considered given by the formula

x� �
x� �

b
����� �

x� b� �

b
� ��

x� b� �

b
�� � ���

x� b� �

b
�� � �x� ����

�t �mod�� �

These are symmetric maps with the critical exponent ��� ��� The parameter
b controls the length of the �at spot� while t must be adjusted to get the
desired rotation number�

In our experiment� b was chosen to be ��
� which corresponds to the
�at spot of the same length� By binary search� a value tAu was found which
approximated the parameter value corresponding to the golden mean rotation
number

p
	��
�
� Next� the forward orbit of the �at spot was studied and the

results are given in the table below�
It should �nally be noted that the experiment presents serious numerical

di�culties as nearest returns to the critical value tend to � very quickly so
that the double precision is insu�cient when one wants to see more than
�
 nearest returns� This problem was avoided� at a considerable expense
of computing time� by the use of an experimental package which allows for
�oating�point calculations to be carried out with arbitrarily prescribed pre�
cision�

Results� Below the results are presented� The column yi is de�ned by
yi �� dist��� qi�� The �i is given by � ��

��i������i���
��i������i� �

�



n yn ��n� �n
�� ����� � ���� ���� �
���
�� ��
�� � ���� ��
� �����
� ����� � ���� ���� ��
�
�� ���� � ���� ��
� ����

�� ����� � ���� ��� �
���
�
 ����� � ���
 ���� ���

�� ���� � ���
 ����� �����
�� ��� � ���
 ���
 �����
�� ��
� � ���
 ����� ����

�� ���� � ���
 ����� �����
� ��� � ���
 ��
�
 ����

� ��� � ���
 ��
�� �����
 ����
 � ���
 ��
�� �����
� ���� � ���� ����� ����
� ����� � ���� ����� ����

 ����� � ���� ����� ����
� ���
 � ���� ����
 ����
� ����� � ���� ���� ��
�
� ����� � ���� ����� �
��
� ��
 � ���� ����� �����

Interpretation� The most interesting is the third column which shows
the scalings� They seem to decrease monotonically� The last column attempts
to measure the exponential rate at which the di�erences between consecutive
scalings change� Here� the last three numbers are obviously out of line which�
however� is explained by the fact that tAu is just an approximation of the
parameter value which generates the golden mean dynamics� Other than
that� the numbers from the last column seems to be �rmly below �� which
indicates geometric convergence� If ��� is accepted as the limit rate� this
projects to the scalings limit of about ����� which consistent with rough
theoretical estimates of �����

Thus� we conclude that Conjecture � has a numerical con�rmation�

�
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