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Abstract� This paper concentrates on optical Hamiltonian systems of T �

T
n�

i�e� those for which Hpp is a positive de�nite matrix� and their relationship with
symplectic twist maps� We present theorems of decomposition by symplectic twist
maps and existence of periodic orbits for these systems� The novelty of these results
resides in the fact that no explicit asymptotic condition is imposed on the system�
We also present a theorem of suspension by Hamiltonian systems for the class of
symplectic twist map that emerges in our study� Finally� we extend our results to
manifolds of negative curvature�

�� Introduction

In a previous paper 	G��b
� the author explained how symplectic twist maps
could be used to decompose Hamiltonian systems on the cotangent bundle
of a compact manifold Mn� thus deriving a discrete variational approach to
the search of periodic orbits for such systems� This method can be seen as a
generalization of the so called �method of broken geodesics in di�erential
geometry� A similar method was introduced by Marc Chaperon for Hamil�
tonian systems 	Ch��
� Although our method is very similar to his� it is in
fact even more akin to the original method �see e�g� 	Mi��
��

In 	G��b
� we put a boundary condition on the Hamiltonian� however� it

had to equal the metric Hamiltonian H��q�p� � �
� kpk

� on a �xed level set
fH� � Kg� It could be anything inside fH� � Kg� including time depen�
dent� The result �see 	G��b���b
� was then the existence of at least cl�M� �or
sb�M� if all nondegenerate� contractible periodic orbits inside fH� � Kg
for such systems� Other results for non contractible orbits were obtained
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if M supports a metric with negative curvature� or for Tn �comparable to
Theorem ��� in this paper��

Here we swap the boundary condition �and the compactness of fH� �
Kg� for a convexity condition which gives a Hamiltonian system with a
priori no compact invariant set� the systems we study here are optical� in
the sense that the second derivative in the �ber direction� Hpp is positive
de�nite �

The main result of this paper is�

Theorem ��� Let H�q�p� t� � Ht�z� be a twice di�erentiable function on
T �Tn � R satisfying the following�

��� sup
��r�Ht

�� � K

��� The matrices Hpp�z� t� are positive de�nite and C � kHppk � C�� for
some C�

Then the time � map of the associated Hamiltonian �ow has at least
n � � distinct periodic orbits of type m� d	 for each prime m� d � Z

n � Z	
and at least �n in the generic case when they are all non degenerate�

�An m� d�orbit is one for which the dth iterate of each point of the orbit
is a translation by �m� �� of this point� in the covering space R�n of T �Tn��

Earlier results on the existence and multiplicity of periodic orbits can be
found for Hamiltonian systems or symplectic twist maps of T �Tn in 	BK��
�
	Che��
� 	CZ��
�	Fe��
� 	G��a
� 	J��
� The two �rst are perturbative results�
i�e� for systems close to integrable ones� The four latter works are global in
that sense� and do not require the system to be optical� but instead require
some asymptotic condition on the �rst derivative of H �or of the time �
map F �� Only the two last works consider homotopically nontrivial orbits�

Note also that� via the Legendre transformation� Theorem ��� applies
to Lagrangian systems whose Lagrangian function satis�es the same con�
ditions as H in our theorem �it is not hard to see that these conditions
translate under the Legendre transformation�� Hence Theorem ��� extends
some existing theorems for such systems �see� e�g�� 	MW��
� Theorem �����

We start �Sections � and �� with some background on symplectic twist
maps� In Section �� we give the proof of a theorem of existence and multi�
plicity of periodic orbits for compositions of symplectic twist maps with a
convexity condition �Theorem ����� A proof of such a theorem was given
in 	KM��
� Unfortunately� the multiplicity part of their proof is wrong� We
reproduce here their proof of existence of a minimum� and present a new
proof of the multiplicity�

In Section �� we prove Theorem ���� This results derives from the former
theorem on symplectic twist maps� and a decomposition technique� The
resulting discrete variational method is interpreted as a method of broken
geodesics�
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In Section � we show that a symplectic twist map with the convexity
condition can be suspended by a Hamiltonian �our proof does not force
the Hamiltonian to be optical� unfortunately �� extending a result of Moser
	Mo��
 and a remark about it by Bialy and Polterovitch 	BP��
�

In section �� we indicate how to extend Theorems ��� and ��� to the
cotangent bundle of a manifold of negative curvature�

It is very likely that� with a little care� these techniques could extend to
optical Hamiltonians on the cotangent bundle of any compact manifolds�

The author would like to thank J�D� Meiss and F� Tangerman for use�
ful conversations� and D� McDu� and J�D� Meiss for the corrections they
suggested�

�� Symplectic Twist Maps of Tn � R
n

Let Tn � Rn�Zn be the n�dimensional torus� Its cotangent bundle T �Tn
�
�

Tn is trivial� T �Tn � Tn � Rn� the cartesian product of n cylinders� We
give it the coordinates �q�p� in which the symplectic structure is

� � dq � dp �
nX
k��

dqk � dpk�

As in any cotangent bundle� � is exact� � � �d�� where � � pdq�
It is useful to work in the covering space R�n � �Tn � R

n of T �Tn� with
projection pr � R�n � Tn � Rn�

Of course� pr is an exact symplectic map �see De�nition ���� � as we
have pr�pdq � pdq � ��

The group Z
n of deck or covering transformations is the set of integer

vector translation in R
�n of the form�

�m��q�p� � �q � m�p�� m � Zn�

A lift of a map F � T �Tn � T �Tn is a map �F � R�n � R
�n such that pr� �F �

F �pr� Since pr is a local� symplectic di�eomorphism� �F is symplectic if and
only if F is� On the other hand� �F will always be exact symplectic when it is
symplectic� which is not the case for F � as the example �q�p� � �q�p�p��
shows�

We will �x the lift of a map F once and for all� remembering that two
lifts only di�er by a composition by some �m�

De�nition ��� A map F of T �Tn is called a symplectic twist map if
��� F is homotopic to Id�
��� F is exact symplectic� F �pdq � pdq � dh for some h � T �Tn � R�
��� �Twist Condition	 If �F �q�p� � �Q�P � is a lift of F then the map

p� Q�q��p� is a di�eomorphism of Rn for all q�� and thus the map
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� � �q�p� � �q�Q�

is a di�eomorphism �change of coordinates� of R�n�

Comments ���
� �The twist condition ��� implies the more familiar looking�

det �Q��p �� ��

It also implies that �

����� �F �pdq � pdq � dS�q�Q�

where S is the lift of h written in the �q�Q� coordinates � S � �h �����
with �h � h � pr� Equivalently� we can write�

p �� ��S�q�Q�

P ���S�q�Q��

S�q�Q� is called a generating function for �F �
� � Condition ��� is equivalent to the fact that on any lift �F of F �

����� �F � �m � �m � �F � i�e� �F �q �m�p� � �F �q�p� � �m� ���

Example ��� The family of maps

Fs�q�p� � �q � A �p�rVs�q�� �p�rVs�q��

where A is a nondegenerate symmetric matrix� Vs is a C� function on Tn is
called the standard family� Usually� V� � �� The generating function for
Fs is given by�

Ss�q�Q� � S��q�Q� � Vs�q��

Where

S��q�Q� �
�

�
hA���Q� q�� �Q� q�i

is the generating function of the completely integrable map�

F� � �q�p� � �q � Ap�p�� At � A� detA �� ��

� The term �completely integrable comes from the fact that F� conserves
each torus p � p�� on which it acts as a rigid �translation� �

This general standard family includes the classical standard family of
monotone twist maps of the annulus where A � � and

Vs�q� �
s

�	�
cos��	q�

and also the Froeschl�e family on T� � R� with A � Id and
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Vs�q�� q�� �
�

��	��
fK�cos��	q�� � K�cos��	q�� � �cos�	�q� � q��g�

In this case the parameter s � �K�� K�� �� � R
�� �See e�g� 	KM��
�� The

standard map can be interpolated by an optical Hamiltonian �see Section
���

As this paper will suggest� many examples of symplectic twist maps
can be derived from Hamiltonian systems� and used to understand these
systems�

The following results are also helpful to construct symplectic twist maps�
Their proofs can be found in 	G��
 �see also 	H��
 for Corollary �����

Proposition ��� There is a homeomorphism between the set of lifts �F of
C� symplectic twist maps of T �Tn and the set of C� real valued functions
S on R�n satisfying the following�
�a� S�q �m�Q� m� � S�q�Q�� 	m � Zn

�b� The maps� q � ��S�q�Q�� and Q � ��S�q��Q� are di�eomorphisms
of Rn for any Q� and q� respectively�

�c� S��� �� � ��
This correspondence is given by�

����� �F �q�p� � �Q�P � 


�
p � ���S�q�Q�
P � ��S�q�Q��

Lemma ��� Let f � RN � R
N be a local di�eomorphism at each point	

such that�
sup
x�RN

���Dfx���
�� � K ���

Then f is a di�eomorphism of RN �

Corollary ��
 Let S � R
�n � R be a C� function satisfying�

�����
det ���S �� �

sup
�q�Q��R�n

������S�q�Q����
�� � K ���

Then the maps� q � ��S�q�Q�� and Q� ��S�q��Q� are di�eomorphisms
of Rn for any Q� and q� respectively	 and thus S generates an exact sym

plectic map of R�n�

Thus � if S satis�es ����� � as well as the periodicity condition �a� of
Proposition ��� � it generates a symplectic twist map�

Corollary ��� Let F be an exact symplectic map of T �Tn	 homotopic to
Id� Let �F �q�p� � �Q�P � be a lift of F � Suppose that
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����� sup
z�R�n

�����
�
�Q

�p

���
z

����� ���

Then �F is a symplectic twist map�

�� The Variational Setting

As in the classical case of twist map �n � ��� the generating function of a
symplectic twist map is the key to the variational setting that these maps
induce�

Proposition ��� �Critical Action Principle� Let F�� � � � � FN be symplectic
twist maps of T �Tn	 and let �Fk be a lift of Fk	 with generating function
Sk� The sequence f�qk�pk�gk�Z is an orbit under the successive �Fk�s �i�e�
f�qk���pk��� � �Fk�qk�pk�gk�Z 	 with �Fk�N � �Fk� Sk�N � Sk� if and only
if the sequence fqkgk�Z in �Rn�Z satis�es�

����� ��Sk�qk� qk��� � ��Sk���qk��� qk� � �� 	k � Z�

The correspondence is given by� pk � ���Sk�qk� qk����

Equation ����� can be interpreted formally as�

rW �q� � � with

W �q� �
�X
��

Sk�qk� qk����

This interpretation makes mathematical sense when one is concerned
with periodic orbits of a symplectic twist map F �

De�nition ��� A point �q�p� � R�n is called a m� d�point for the lift �F
of F if �F d�q�p� � �q � m�p�� where m � Zn and d � Z�

Let �F � �FN � � � � � �F�� The appropriate space of sequences in which to
look for critical points corresponding to m� d�points of �F is�

X� � fq � �Rn�Z j qk�dN � qk � mg

which is isomorphic to �Rn�dN � the terms �q�� � � � � qdN � determine a whole
sequence in X��

To �nd a sequence satisfying ����� in X� is equivalent to �nding q �
�q�� � � � � qdN � which is a critical point for the function�
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W �q� �
dNX
k��

Sk�qk� qk����

in which we set qdN�� � q� � m� To see this� write �

pk � ���Sk�qk� qk����

P k � ��Sk�qk� qk����

Then Fk�qk�pk� � �Qk�pk� and with this notation� the proof of Proposition
��� �for m� d�points� reduces to the suggestive�

rW �q� �
dNX
k��

�P k�� � pk�dqk�

A little more care must be taken in order to let the topology of Tn play a
role� Note that because of the periodicity of S ��a� in Proposition ����� W
is invariant under the Zn action on X��

�m�q�� � � � � qdN � � �q� � m� � � � � qdN � m��

Moreover� if we want our variational approach to count m� d�orbits� and
not the individual m� d�points in each orbit� we should use the fact that W
is also invariant under the N�shift map�


fqkg � fqk�Ng�

Let �
X � X��
� �

be the quotient of X� by these two actions� We continue to call W the
function induced by W on the quotient X�

One can show �	BK��
� Proposition � or 	G��a
� that X is the total
space of a �ber bundle over Tn� and that the projection map X� � X is a
covering map� �One makes the change of variables�

v �
�

d

dNX
�

qk

tk � qk � qk�� �m�d

in which v is the base coordinate� t the �ber�� In particular� each critical
point of W on X corresponds to an in�nite lattice of critical points of W on
X�� Whereas the original variational problem rW � � on X� would pick
up the �in�nitely many� m� d�points of the lift �F of F � when we restrict it
to X it exactly gives m� d�orbits of F �
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�� Periodic Orbits and the Convexity Condition

Let �F �q�p� � �Q�P � be the lift of a symplectic twist map of T �Tn� and
S�q�Q� its generating function� In this section� we impose the�

��� Convexity Condition There is a positive a such that�

h���S�q�Q��v� vi � �a kvk� �

uniformly in �q�Q��

Remark ��� � Note that�

�Q

�p
�q�p� � � ����S�q�Q��

��
�

as can easily be derived by implicit di�erentiation of p � ���S�q�Q�� The
convexity condition ��� thus translates to�

�����

��
�Q

�p

���
v� v

�
� a kvk

�
� 	v � Rn�

uniformly in �q�p�� This means that F has bounded twist� MacKay� Meiss
and Stark 	MMS��
 imposed this condition on their de�nition of symplectic
twist maps� a terminology that we have taken from them�

Theorem ��� Let F � FN � � � � � F� be a �nite composition of symplectic
twist maps Fk of T �Tn each satisfying the convexity condition� Then	 for
each prime �m� d� � Zn � Z	 F has at least n� � distinct periodic orbits of
type m� d� It has at least �n of them when they are all nondegenerate�

By a prime pair m� d we mean that at least one of the components mk

of m is prime with d�

Remark ��� � One can show �	G��a
� that an m� d�point of F is nondegen�
erate if and only if the sequence q of X� it corresponds to is a nondegen�
erate critical point for W � The hypothesis that F has only nondegenerate
m� d�points is thus equivalent to the one that W is a Morse function� Fur�
thermore� this is a generic condition on the space of symplectic twist maps
	G��a
� Note also that an m� d point is also an km� kd�point for all k � N �
The reason for restricting ourselves to prime m� d is that if we were to look
for km� kd orbits� we would also �nd the prescribed number of them� but
with no guarantee that they would be any di�erent from the m� d orbits
already found�
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Proof � The �rst part of the proof� due to Kook and Meiss� 	KM��
 con�
sists in proving that the function W is proper� and hence has a minimum�

The following lemma and corollary were proven in 	MMS��
� and 	KM��
�

Lemma ��� Let S be the generating function of a symplectic twist map
satisfying the convexity condition ��� � Then there is an � and positive �
and  such that�

����� S�q�Q� � �� � kq �Qk�  kq �Qk� �

Proof � We can write�

S�q�Q� � S�q� q� �

Z �

�

��S�q�Qs���Q� q�ds�

where Qs � ��� s�q � sQ� Applying the same process to ��S� we get�

S�q�Q� � S�q� q� �

Z �

�

��S�Qs�Qs���Q� q�ds

�

Z �

�

ds

Z �

�

h���S�Qr�Qs���Q� q�� �Q� q�idr

� �� � kQ� qk�  kQ� qk� �

where � � minTn S�q� q�� � � maxTn k��S�q� q�k and  � a
� � ut

Corollary ��
 For F as in Theorem ��� 	 there is a minimum for W �and
hence an m� d�point for F ��

Proof � Equation ����� as applied to each Sk implies that Sk has a lower
bound� thus W does as well� We have to prove that this lower bound is not
attained at in�nity� i�e�� that W is a proper map�

The set f�q�Q� � �Rn � Rn��Zn j S�q�Q� � Cg is compact since �����
implies that S � C corresponds to bounded kq �Qk� Likewise the set

S � fq � X jW �q� � Cg

is compact� Hence W must have a minimum in the interior of S� for C big
enough� This point is a critical point� ut

Remark ��� � We have thus found at least one m� d�orbit corresponding to
a minimum of W � The reader should be aware that� unlike the � degree of
freedom case� this does not imply that the orbit is a minimum in the sense
of Aubry �see 	H��
��

We now turn to the proof of existence of at least n� � distinct orbits of
type m� d� and �n when they are all nondegenerate�
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Remember that X is a bundle over Tn � Let � � T
n be its zero section�

Let K � sup�W �q� � Trivially� we have�

� �WK def
� fq � X jW � Kg

� since W is proper� for almost every K� WK is a compact manifold with
boundary� by Sard�s Theorem�� From this we get the commutative diagram�

�����
H����

k�������� H��X�
i� � � j�

H��W
K�

where i� j� k are all inclusion maps� But k� � Id since � and X have the
same homotopy type� Hence i� must be injective�

If all the m� d�points are nondegenerate� W is a Morse function �a
generic situation � and by 	Mi��
� x�� WK has the homotopy type of a
�nite CW complex� with one cell of dimension k for each critical point of
index k in WK � In particular� we have the following Morse inequalities�

�fcritical points of index kg � bk

where bk is the kth Betti number of WK � bk �
�
n
k

�
in our case since

H��T
n� �� H��W

K�� Hence there are at least �n critical points in this
nondegenerate case�

If W is not a Morse function� rewrite the diagram ����� � but in Co�
homology� reversing the arrows� Since k� � Id� j� must be injective this
time� We know that the cup length cl�X� � cl�Tn� � n � �� This exactly
means that there are n cohomology classes ��� � � � � �n in H��X� such that
�� � � � � � �n �� �� Since j� is injective� j��� � � � � � j��n �� � and thus
cl�WK� � n � �� WK being compact� and invariant under the gradient
�ow� Lusternik�Schnirelman theory implies that W has at least n� � criti�
cal points in WK �The proof of Theor�eme � in CH�� x�� of 	DNF��
� which
is for compact manifolds without boundaries can easily be adapted to this
case�� ut

�� Periodic Orbits for Optical Hamiltonian Systems

Assumption ��� H�q�p� t� � Ht�z� is a twice di�erentiable function on
T �Tn � R �or T �M � R� where �M � Rn� and satis�es the following�
��� sup

��r�Ht

�� � K
��� The matrices Hpp�z� t� are positive de�nite and C � kHppk � C���

Theorem ��� Let H�q�p� t� be a Hamiltonian function on T �Tn�R satisfy

ing Assumption ��� � Then the time � map h� of the associated Hamiltonian
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�ow has at least n � � distinct periodic orbits of type m� d	 for each prime
m� d	 and �n in the generic case when they are all non degenerate�

Proof � we can decompose the time � map�

h� � h
N

N � �h
N��

N ��� � � � � � h
k

N � �h
k��

N ��� � � � � � h
�
N � Id�

and each of the maps h
k

N � �h
k��

N ��� is the time �
N

of the �extended� �ow�

starting at time k��
N

� or in other words� the time ��N of the Hamiltonian
Kt � Ht� k��

N

� Proposition ��� shows that� for N big enough� such maps are

symplectic twist and satisfy the convexity condition ��� � The result follows
from Theorem ���� ut

Remark ��� � Remember that Hamiltonian maps on cotangent bundles are
exact symplectic� More precisely� the time t map ht of a Hamiltonian system
on T �M satis�es�

����� �ht��pdq � pdq � dSt where St�q�p� �

Z ht�q�p�

�q�p�

pdq �Hds�

and the path of integration is the trajectory �hs�q�p�� s� of the �extended�
�ow� Obviously ht is isotopic to Id� The twist condition is what remains
to be checked � it is clearly not always satis�ed� The following proposition
shows that it is� for small t� under Assumption ��� �

Before that� let us remark that the method of proof that we are using in
this section is analogous to the so called method of broken geodesics 	Mi��
�
by ����� � the function W that we appeal to above in our use of Theorem
��� can be interpreted as�

W �q� �
X
k

Z
�k

pdq �Hds

where k is the orbit of ht starting from �qk�pk� at time k
N

� and ending at

�qk���P k� at time k��
N

� The broken curve whose pieces are the k projects�
via the di�eomorphisms �k �see de�nition ���� to a continuous� but only
piecewise di�erentiable curve of Tn� In the case where H is the Hamiltonian
corresponding to a metric� this curve is a piecewise� or broken geodesic and
�k is the exponential map� Proposition ��� can then be interpreted as saying
that� among broken geodesics� the smooth ones are exactly the ones that
are critical for W �See 	G��
 for more details��

The following applies without change to Hamiltonians in cotangent bun�
dles of Riemannian manifolds of negative curvature� It is� however� the point
at which our method breaks for the cotangent of arbitrary manifolds� sym�
plectic twist maps cannot be de�ned on all of T �S�� for instance�
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Proposition ��� Let h� be the time � of a Hamiltonian �ow for a Hamilto

nian function satisfying Assumption ��� � Then	 for all suciently small �	
h� is a symplectic twist map of T �Tn� Moreover	 h� satis�es the convexity
condition ��� �

Proof �
We can work in the covering space R�n of T �Tn� to which the �ow lifts�

The di�erential of ht at a point z � �q�p� is solution of the linear �variation�
equation�

����� �U�t� � Jr�H�ht�z��U�t�� U��� � Id� J �

�
� �Id
Id �

�

We �rst need a lemma that tells us that U��� is not too far from Id�

Lemma ��� Consider the linear equation�

�U�t� � A�t�U�t�� U�t�� � U�

where kA�t�k � K� 	t� Then �

kU�t�� U�k � K kU�k jt� t�je
Kjt�t�j�

Proof � Let V �t� � U�t�� U�t��� so that V �t�� � �� We have�

�V �t� � A�t� �U�t�� U�� � A�t�U�

� A�t�V �t� � A�t�U�

and hence�

kV �t�k � kV �t�� V ���k �

Z t

t�

K kV �s�k ds� jt� t�jK kU�k

For all jt� t�j � �� we can apply Gronwall�s inequality to get�

kV �t�k � �K kU�k e
Kjt�t�j

and we get the result by setting � � jt� t�j� ut
We now �nish the proof of Proposition ��� � By Lemma ��� we can

write�

U���� Id �

Z �

�

Jr�H�hs�z����Id� O��s��ds

where kO��s�k � �Ks� for s � � small enough�
Let �q�t��p�t�� � ht�q�p� � ht�z�� The matrix b��z� � �q�����p� is the

upper right n� n matrix of U���� It is given by�

��



����� b��z� �

Z �

�

Hpp�h
s�z��ds�

Z �

�

O��s�ds

where
��R �
�
O��s�ds

�� � K��� From this� and the fact that

C kvk� � hHpp�z�v� vi � C�� kvk� �

we deduce that�

����� ��C �K��� kvk� � hb��z�v� vi � ��C�� � K��� kvk�

so that in particular b��z� is nondegenerate for small enough �� The set of
nonsingular matrices fb��z�gz�R�n is included in a compact set and thus�

����� sup
z�R�n

��b��� �z�
�� � K ��

for some positive K �� We can now apply Corollary ��� to show that h� is a
symplectic twist map with a generating function S de�ned on all of R�n�

Likewise� from ����� � and the fact that hH��
pp �z�v� vi � Ckvk�� one

easily derives that h� satis�es the convexity condition ���� ut


� Suspension of Symplectic Twist Maps by

Hamiltonian Flows

In 	Mo��
� Moser showed how to suspend a monotone twist map of the com�
pact annulus into a time � map of a �time dependent� optical Hamiltonian
system� Furthermore� he was careful to construct the Hamiltonian in such a
way that its �ow leaves invariant the compact annulus �when the map does�
and also such that it is time periodic�

As announced by Bialy and Polterovitch 	BP��
� Moser�s method can be
adapted to suspend a symplectic twist map whose generating functions S is
such that ���S�q�Q� is a positive de�nite symmetric matrix satisfying the
convexity condition ���� In particular their result shows that the Standard
Map is the time � of an optical Hamiltonian �ow� periodic in time�

Here we present a suspension theorem for higher dimensional symplectic
twist maps� without the assumption that ���S is symmetric� Our result is
modest in that we do not obtain a convexity condition on the Hamiltonian�
or show that the Hamiltonian we construct can be made time periodic� Our
method is di�erent from Moser�s�

Theorem 
�� Let F �q�p� � �Q�P � be a symplectic twist map of T �Tn

which satis�es the convexity condition ���� Then F is the time � map of a
�time dependent� Hamiltonian H�

��



Proof � Let S�q�Q� be the generating function of F � Condition ��� can
be rewritten�

����� inf
�q�Q��R�n

h����S�q�Q�v� vi � a kvk� � a � �� 	v �� � � Rn�

The following lemma� whose proof is left to the reader shows that this
inequality implies ������ Hence whenever we have a function on R�n which
is suitably periodic and satis�es ����� � it is the generating function for some
symplectic twist map�

Lemma 
�� Let fAxgx�� be a family of n� n real matrices satisfying�

sup
x��

hAxv� vi � akvk�� 	v �� � � Rn�

Then �

sup
x��

��A��x �� � a���

We construct a di�erentiable family St of generating functions� with
S� � S� and then show how to make a Hamiltonian vector �eld out of it�
whose time � map is F � Let

St�q�Q� �

	
�
�af�t�kQ� qk� for � � t � �

�
�
�af�t�kQ� qk

�
� ��� f�t��S�q�Q� for �

� � t � ��

where f is a smooth positive functions� f��� � f ������ � �� f����� �
�� limt��� f�t� � ��� We will ask also that ��f�t�� which can be continued
to ��f��� � � be di�erentiable at �� The choice of f has been made so that
St is di�erentiable with respect to t� for t � ��� �
� Furthermore� it is easy
to verify that�

sup
�q�Q��R�n

h����St�q�Q�v� vi � a kvk
�
� a � �� 	v �� � � Rn� t � ��� �
�

Hence St generates a smooth family Ft� t � ��� �
 of symplectic twist maps�
and in fact Ft�q�p� � �q� �af�t����p�p�� t � ����� so that limt��� Ft �
Id� in any topology that one desires �on compact sets�� Let us write

�St�q�p� � St � �t�q�p��

where �t is the change of coordinates given by the fact that Ft is twist� It
is not hard to verify that �t�q�p� � �q� q� �af�t����p�� t � ���� so that�

�St�q�p� �
�

�
�af�t����kpk�

��



In particular� by our assumption on ��f�t�� �St can be di�erentiably contin�
ued for all t � 	�� �
� with S� � �� Hence� in the q�p coordinates� we can
write�

F �t pdq � pdq � d �St� t � 	�� �
�

A familly of maps that satis�es this with �St di�erentiable in �q�p� t� is
called an exact symplectic isotopy� The proof of the theorem derives from
the standard�

Lemma 
�� Let gt be an exact symplectic isotopy of T �Tn �or T �M 	 in
general�� Then gt is a Hamiltonian isotopy�

Proof � Let gt be an exact symplectic isotopy�

g�t pdq � pdq � dSt

for some St di�erentiable in all of �q�p� t�� We claim that the �time depen�
dent � vector �eld�

Xt�z� �
dgt
dt

�g��t �z��

whose time t is gt� is Hamiltonian� To see this� we compute�

d

dt
�d �St� �

d

dt
g�t pdq � g�tLXt

pdq � g�t �iXt
d�pdq�� d�iXt

pdq�� �

from which we get
iXt

dq � dp � dHt

with

Ht �

�
�g��t ��

dSt
dt

� iXt
pdq

�
�

which exactly means that Xt is Hamiltonian�
ut

��� Cotangent Bundle of Manifolds with Negative

Curvature

We indicate in this section how some of the previous results can be obtained
in the cotangent bundle T �M of a compact manifold M which supports a
metric of negative curvature� Such a manifold is always covered by Rn � As
before we denote by pr � �M�� Rn� �M the covering map�� The de�nition
of symplectic twist map carries through verbatim for the cotangent bundle
of such manifolds� as well as Propositions ��� and ���� Corollaries ��� and
���� The action by translations of 	�Tn� � Zn on R�n is replaced by the
more general action of 	��M�� the deck transformation group of T � �M � Note

��



also that the convexity condition ��� still makes sense in this more general
context� For more details� see 	G��b
� 	G��
�

The �rst resistance we encounter to an extension of our results to such
manifolds is De�nition ��� of m� d�orbits� The clue to de�ne such an orbit in
this new context is Remark ���� we saw there that� in the case where the map
F considered is Hamiltonian and decomposed into symplectic twist maps�
an m� d�sequence gives rise to a closed� piecewise smooth curve in Tn �a
�broken geodesic�� The integer vector m classi�es these broken geodesics
up to homotopy with or without �xed base points� This is because the group
	��T

n� � Z
n is abelian�

In general manifolds� two loops through a base point that represent
di�erent elements in 	��M� might be homotopic if we allow the homotopy
to move the base point� we say then that the curves are free homotopic�
Free homotopy classes are in one to one correspondence with the conjugacy
classes in 	��M��

Coming back to our broken geodesics� the natural classi�cation for pe�
riodic orbits of a Hamiltonian system is that of free homotopy class� each
of these classes represent a connected component in the loop space� This
motivates�

De�nition ��� Let m be a representative of a free homotopy class of loops
in M � A sequence fqkg of points in �M � R

n is called a m� d�sequence if� for
all k � Z� pr�qk� � pr�qk�d� and �any� curve � of �M that joins qk and qk�d�
projects to a closed curve of M in the free homotopy class m� independent
of k� The orbit f�qk�pk�g of a map of T �M is an m� d�periodic orbit if
the sequence fqkg is an m� d�sequence�

We can now state�

Theorem ��� Let M be a compact Riemannian manifold with negative
curvature� Let F � FN � � � � � F� be a �nite composition of symplectic twist
maps Fk of T �M satisfying the convexity condition ���� Then	 for each free
homotopy class m and period d	 F has at least � periodic orbits of type
m� d� If m � �	 the class of contractible loops	 then there are at least cl�M�
orbits of type m� d	 and sb�M� if they are all nondegenerate�

Proof � It is shown in 	G��b
� Lemma ������ that the set X of m� dN
sequences �modulo 	��M� and shift X is denoted Om�d�
 in that paper��
has a deformation retraction onto the set� that we call �� formed by the
unique geodesic of class m �remember that M has negative curvature� that
is� X has the homotopy type of S�� The proof of Theorem ��� can now be
repeated� keeping in mind that sb�S�� � cl�S�� � ��

When m is the trivial class� the set X retracts on the set of constant
loops� naturally embedded in it �	G��b
� Lemma 
���� This set� that we call

��



� again is homeomorphic to M � A simple adaptation of Lemma ����� in
	G��b
 shows that � is in fact a deformation retract of X and hence once
again� we can repeat the proof of Theorem ���� ut

Assumption ��� and Proposition ��� apply without a change to our new
context and hence we have�

Theorem ��� Let M be a compact Riemannian manifold with negative
curvature� Let H�q�p� t� be a Hamiltonian function on T �M satisfying As

sumption ��� � Then the time � map of the associated Hamiltonian �ow can
be decomposed into a product of symplectic twist maps� It has at least � peri

odic orbits of type m� d	 for eachm� d� Whenm is the trivial class	 there are
at least cl�M� orbits of type m� d	 and sb�M� if they are all nondegenerate
�i�e� generically��
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