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Abstract� This paper investigates the existence of Denjoy minimal sets and�
more generally� strictly ergodic sets in the dynamics of iterated homeomorphisms�
It is shown that for the full two�shift� the collection of such invariant sets with the
weak topology contains topological balls of all 	nite dimensions� One implication
is an analogous result that holds for di
eomorphisms with transverse homoclinic
points� It is also shown that the union of Denjoy minimal sets is dense in the
two�shift and that the set of unique probability measures supported on these sets
is weakly dense in the set of all shift�invariant� Borel probability measures�

Section �� Introduction� One strategy for understanding a dynamical system is
to 	rst isolate invariant sets that are dynamically indecomposable� One then studies the
structure of these pieces and how they 	t together to give the global dynamics� This idea
goes back at least to Birkho
 and has a particularly clear expression in Conley�s Morse
decompositions�

There are many notions of dynamical indecomposibility in the literature� In this
paper we consider a fairly strong one that uses both topology and measure� An invariant
set is called strictly ergodic if it is both minimal �every orbit is dense
 and uniquely ergodic
�existence of a unique� invariant Borel probability measure
� These properties are preserved
under topological conjugacy but not measure isomorphism�

The simplest such invariant sets are periodic orbits� and there are many theorems
concerning their existence� The next simplest strictly ergodic systems are probably rigid
rotations on the circle with irrational rotation number and the closely related Denjoy
minimal sets� Elements of these invariant sets are sometimes called �generalized
 quasi�
periodic points� The models for Denjoy minimal sets are the minimal sets in nontransitive
circle homeomorphisms with irrational rotation number� An abstract dynamical system is
called a Denjoy minimal set if it is topologically conjugate to such a model� One of the
questions that motivated this paper is what kind of properties of periodic orbits are also
true for more general strictly ergodic invariant sets� in particular� for Denjoy minimal sets�

One way to begin to address this question is to collect these invariant sets into spaces�
For a 	xed homeomorphism f of a compact metric space X� let S�X� f
 denote the set
of all strictly ergodic f �invariant subsets of X� Since di
erent minimal sets are of neces�
sity disjoint� each point in S�X� f
 represents a minimal set that is disjoint from every
other minimal set� A strictly ergodic set supports a unique invariant Borel probability
measure� so we may use these measures with the weak topology to put a topology on
S�X� f
� If D�X� f
 denotes the set of f �invariant subsets that are Denjoy minimal sets�
then D�X� f
 � S�X� f
� so we may use the weak topology on D�X� f
 also�
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In ��M�
� Mather shows that for a area�preserving monotone twist map of the annulus�
f � A� A� the nonexistence of an invariant circle with a given irrational rotation number
implies the existence of numerous Denjoy minimal sets with that rotation number� More
precisely� using the notation just introduced� D�A� f
 contains topological balls of every
	nite dimension� From one point of view this is a very surprising result� One has an
arbitrarily large dimensional family of minimal sets embedded in a two�dimensional dy�
namical system� Another question that motivated this paper is how common is this kind
of phenomenon in dynamics on 	nite dimensional manifolds�

It is important to note that even for a smooth system� S�M� f
 can be empty� One
example of this is Furstenberg�s C��di
eomorphism of the two torus that is minimal but
not strictly ergodic ��F�
� However� for the full shift on two symbols ���� �
 one has�

Theorem ���� The space S���� �
 contains a subspace homeomorphic to the Hilbert
cube and the space D���� �
 contains topological balls of dimension n for all natural num�
bers n�

The basic tool in the proof of this theorem is the main construction� This construc�
tion takes a certain type of open set in the circle �a regular one
 and produces a compact�
invariant set in the full two�shift� The construction uses the open set to produce itineraries
with respect to a rigid rotation on the circle by an irrational angle� This process is some�
what analogous to using a Markov partition to produce a symbolic model for a system�
Another analogous process is used in the kneading theory of unimodal maps of the interval�
The di
erence here is that the chosen open set� in general� has no relation to the dynam�
ics� The Hilbert cube of strictly ergodic sets is obtained by showing that the invariant
sets constructed in the two�shift have unique invariant probability measures that depend
continuously on the regular open sets in the appropriate topologies�

The main construction is a generalization of Morse and Hedlund�s construction of
Sturmian minimal sets as described on page ��� of �G�H�� Such generalizations are a
standard tool in topological dynamics� In particular� the main construction is a special
case of the almost automorphic minimal extensions of Markley and Paul given in �M�P��
Also of particular relevance are pages ������� of �A� and �H�H���

For any regular open set� the main construction yields a minimal set in the shift� If
the open set is a 	nite union of intervals� it gives a Denjoy minimal set� When the open
set is more complicated� the resulting minimal set is more complicated� In particular� it
follows from �M�P� that for certain open sets the construction gives minimal sets that have
positive topological entropy and are not uniquely ergodic �see Remark ��� below
�

The full two�shift is frequently embedded in the iterates of a complicated dynamical
system� �In fact� this is one de	nition of a �complicated� dynamical system�
 In view of
Theorem ��� one would therefore expect that that S�X� f
 will frequently contain a Hilbert
cube� In the following corollary� the 	rst sentence is a consequence of Theorem ��� and the
Birkho
�Smale theorem �a particularly suitable statement of which can be found on page
��� of �Rl�
� The second sentence follows from the 	rst and a theorem of Katok ��K�
�

Corollary ���� If f � M � M is a di�eomorphism of the compact manifold M that
has a transverse homoclinic orbit to a hyperbolic periodic point� then S�M� f
 contains
a subspace homeomorphic to the Hilbert cube� In particular� this is the case when M is
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two�dimensional� f is C��� and has positive topological entropy�

As was the case with Mather�s theorem� one has a large dimensional family of minimal
sets �in this case an in	nite dimensional family
 embedded in 	nite dimensional dynamics�
We shall see in Remark ��� below that in many cases this can be viewed as a manifestation
of the fact that the Hilbert cube is the continuous� surjective image of the Cantor set�
There is an invariant Cantor set �� embedded in the dynamics� The orbit closure of each
point in �� supports a unique invariant probability measure� When the measures are given
the weak topology� the map that takes the point to the measure is a continuous surjection
of the Cantor set �� onto the Hilbert cube�

There are two important examples that illustrate the necessity of the smoothness and
dimension in the second sentence of Corollary ���� In �R� Rees constructs a homeomorphism
of the two torus that is minimal and has positive topological entropy� Herman gives a
C��difeomorphism of a ��manifold that is also minimal with positive topological entropy
��Hm�
� Neither example is uniquely ergodic� so in these cases S�M� f
 is empty� The
second sentence of Corollary ��� also raises the question of a converse� Speci	cally� if
S�M� f
 contains a subspace that is homeomorphic to the Hilbert cube� does f have positive
topological entropy� Proposition ��� shows that this is false on manifolds of dimension
bigger than three�

It is an easy exercise to show that periodic orbits are dense in the full two�shift� A
somewhat deeper result due to Parthasarathy says that the invariant probability measures
supported on period orbits are weakly dense in the set of all shift�invariant probability
measures�M���� �
 ��P�
� The next proposition gives the analog of these results for Denjoy
minimal sets�

Proposition ����
�a� The set of points that are members of Denjoy minimal sets is dense in ���
�b� The set of invariant measures supported on Denjoy minimal sets is weakly dense

in the set of invariant measures� i�e� D���� �
 is dense in M���� �
�

This paper is organized as follows� Section � gives basic de	nitions� background
information and the main construction� Section � contains the statement and proof of
the main theorem� This theorem describes continuity properties of the main construction
and the structure of resulting invariant sets� Section � also contains the proof of Theorem
���� The proof of Theorem ��� is given in Section �� as is the example that shows that
the converse of Corollary ��� is false in dimensions three and greater� The last section
examines the relationship between the intrinsic rotation number of a Denjoy minimal set
and its �extrinsic� rotation number when it is embedded in a map of the annulus� It is
also shown that any Denjoy minimal set in the two�shift can be generated from a regular
open set in the circle using the main construction�

Acknowledgments� The author would like to thank B� Kitchens� N� Markley� B�
Weiss and S� Williams for useful comments and references�

Section �� Preliminaries� This section introduces assorted notation and de	nitions
and recalls some basic facts from topology� ergodic theory and topological dynamics� Many
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of these facts are stated without proof or references� In such cases� the facts are either
elementary exercises or can be found in Walters� book �W��

For a set X�Cl�X
� Int�X
� Xc and Fr�X
 denote the closure� interior� complement
and frontier of the set� respectively� The operator t is the disjoint union� Thus A t B
represents the union of the two sets� but conveys the added information that the sets are
disjoint� The indicator function of a set X is denoted IX � Thus IX�x
 � � if x � X�
and is � otherwise� The circle is S� � R�Z and R� � S

� � S� is rigid rotation by �� i�e
R���
 � � � � mod �� Haar measure on the circle is denoted by m�

A nonempty� proper subset U � S� is called a regular open set if Int�Cl�U

 � U �
The set of all regular open sets is

RO � fU � S� � U is a regular open setg�

Given an open set U � its ��dual is the interior of its complement and is denoted by U� �
Int�U c
� Note that U is regular open if and only if S� can be written as the disjoint union
of three nonempty sets� S� � U t F t U� with F � Fr�U
 � Fr�U�
� In consequence�
U � RO if and only if U� � RO�

The set RO of regular open sets will be topologized using the symmetric di
erence of
sets� For U� V � RO� their symmetric di
erence is U�V � �U � V c
 t �U c � V 
 and the
distance between them is d�U� V 
 � m�U�V 
� If U and V are regular open� when U�V
is nonempty it contains an interval� In particular� d�U� V 
 � � if and only if U � V � Since
d�U� V 
 �

R
jIU � IV jdm � kIU � IV k�� RO maybe thought of as a subspace of L��S��m
�

This makes it clear that d gives a metric on RO�
If the frontiers of either U or V have positive measure� it could happen that d�U� V 
 ��

d�U�� V �
� To avoid this and related situations it is sometimes necessary to restrict atten�
tion to the set of regular open sets whose frontiers have measure zero�

RO� � fU � RO � m�Fr�U

 � �g�

A metric that controls both regular open sets and their ��duals is given by

d��U� V 
 � �d�U� V 
 � d�U�� V �

���

Unless otherwise noted� the topology on RO will be that given by the metric d�� Note
that when restricted to RO�� d and d� give the same metric�

It will also be useful to identify regular open sets that are equal after a rigid rotation
of S�� More precisely� say U � V if there exists an � � S� with V � R��U
� Denote
the quotient spaces by RO� � RO � � and RO�� � RO� � �� Note that the topology
generated by the projection RO � RO� can be viewed as being generated by the metric
d���U �� �V �
 � inffd��U�R��V 

 � � � S�g� where �U � denotes the equivalence class of U
under ��

A related notion is that of a symmetric set� A set U � RO is called symmetric if there
exists an � �� � with R��U
 � U � Because U is open� such an � will always be a rational
number�

In this paper a dynamical system means a pair �X� h
 where X is a compact met�
ric space and h is a homeomorphism� Given a point x � X� its orbit is o�x� h
 �
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f� � � � h���x
� x� h�x
� � � �g� A 	nite piece of the forward orbit is denoted o�x� h�N
 �
fx� h�x
� � � � � hN �x
g� If �X� h
 � �Y� g
 is a continuous semiconjugacy� then �X� h
 is
called an extension of �Y� g
� and �Y� g
 is a factor of �X� h
� When the semiconjugacy is
one to one on a dense G� set� the extension is termed almost one to one�

The pair �X� h
 is called a minimal set if every orbit is dense� The pair is uniquely er�
godic if there exists a unique invariant Borel probability measure� A useful characterization
is� �X� h
 is uniquely ergodic if and only if the sequence of functions �

PN
i�� f 	h

i
��N ��

converges uniformly for all f � C�X�R
� A pair that is both minimal and uniquely er�
godic is called strictly ergodic� Note that the property of being minimal� uniquely ergodic
or strictly ergodic is preserved under topological conjugacy� Also� if an extension is strictly
ergodic� then so is its factor�

A compact h�invariant set Y � X is called minimal� uniquely ergodic or strictly
ergodic if h restricted to Y has that property� In a slight abuse of notation� this situation
is described by saying that �Y� h
 is minimal� etc�

Perhaps the simplest nontrivial strictly ergodic system is �S�� R�
 for an irrational ��
A homeomorphism g � S� � S� that has an irrational rotation number and the pair �S�� g

is not minimal is called a Denjoy example� Such examples are classi	ed up to topological
conjugacy in �My�� The two classifying invariants are the rotation number and the set of
orbits that are �blown up� into intervals� A Denjoy example always has a unique minimal
set Y � S� with �Y� g
 strictly ergodic�

An abstract dynamical system �X� h
 is called a Denjoy minimal set if it is topologi�
cally conjugate to the minimal set in a Denjoy example� Such an �X� h
 is always strictly
ergodic� Mather points out in �M� that a Denjoy minimal set �X� h
 always has a well
de	ned intrinsic rotation number� i�e� if �X� h
 is topologically conjugate to the minimal
sets in two Denjoy examples �S�� g�
 and �S�� g�
� then either g� and g� have the same
rotation number or else g� and g��� do� If �X� h
 is a Denjoy minimal set with intrinsic
rotation number �� it is an almost one to one extension of �S�� R�
�

A general dynamical system �Z� h
 can have many invariant subsets that are Denjoy
minimal sets or strictly ergodic� These subsets are collected together in the spaces

D�Z� h
 � fY � Z � �Y� h
 is a Denjoy minimal setg

and
S�Z� h
 � fY � Z � �Y� h
 is strictly ergodicg�

To topologize these spaces we recall the weak topology on measures� Given a dynami�
cal system �Z� h
� the set of all its invariant� Borel probability measures is denotedM�Z� h
�
The weak topology on M can be de	ned by saying that the measures �n � �� weakly if
and only if

R
fd�n �

R
f�� for all f � C�Z�R
� Note that M�Z� h
 with this topology is

compact� and when viewed as a subspace of the dual space to C�Z�R
� it is convex with
extreme points equal to the ergodic measures� Since a strictly ergodic system supports a
unique invariant probability measure� there is a natural inclusion S�Z� h
 �M�Z� h
� This
inclusion induces a topology on S�Z� h
 that will be called the weak topology� The fact
that D�Z� h
 � S�Z� h
 allows us to use the weak topology on D�Z� h
 also�

In the absence of unique invariant measures we use the Hausdor
 metric to measure
the distance between compact invariant subsets� Given a compact space X� the space
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consisting of the closed subsets of X with the Hausdor
 topology is denoted H�X
� Note
that if X is compact metric then so is H�X
� A map � � E � H�X
 is called lower
semicontinuous if for all closed subsets Y � X� the set fe � E � ��e
 � Y g is closed in E�
We will need the fact that the following property implies that � is lower semicontinuous�
When en � e in E and for some subsequence fnig� ��eni
� K in H�X
 then ��e
 � K�
Informally� � is lower semicontinuous if when you perturb e� ��e
 may get suddenly larger�
but never suddenly smaller�

The full shift on two symbols is the the pair ���� �
 consisting of the sequence space
�� � f�� �gZ and the shift map �� A symbol block b is a 	nite sequence b�� b�� � � � � bN��
which each bi equal to � or �� The length of the block b is N and the period is its period
when considered as a cyclic word� A sequence s � �� has initial block b if bi � si for
i � �� � � � � N � �� It is notationally convenient to view the topology on �� as being
generated by a metric d� with d��s� t
 � ��N if and only if si � ti for jij � N � A cylinder
set depends on a block b and an integer n and is a set of the form

Cn
b � fs � �� � si�n � bi� for i � �� � � � � length�b
� �g�

If n � �� we write C�
b � Cb�

Since cylinder sets are both open and closed� their indicator functions are continuous�
In fact� the 	nite linear combinations of such indicator functions form a dense set in
C����R
� This implies that the measures �n � �� weakly if and only if �n�C

n
b 
� ���C

n
b 


for all cylinder sets Cn
b � Since the elements of M���� �
 are shift invariant measures� any

such measure � satis	es ��Cn
b 
 � ��Cb
 for all n� Thus the topology on M���� �
 is in

fact generated by the metric

d���� ��
 �
X

j���Cb�n�
� ���Cb�n�
j��
n

where the sum is over some enumeration b�n� of all possible blocks by the natural numbers
n�

The main construction in this paper takes a regular open set in the circle and produces
a compact invariant set in ���� �
 along with an invariant measure� As noted in the
introduction� it is closely related to the construction given in �M�P�� We are primarily
interested here in the dependence of the construction on the open set and a �rotation
number�� This dependence is encoded in two functions 	 � RO� 
 S� � M���� �
 and
� � RO 
 S� �H���
 de	ned as follows�

Fix U � RO and r � S� De	ne B � S� as

B � fx � S� � o�x�Rr
 � Fr�U
 � �g�

Since U is regular open� Fr�U
 is closed and nowhere dense� and thus since
B � �i�NRi

r�Fr�U

c
� B is dense G�� Now de	ne 
 � B � �� so that

�
�x

i � IU �R
i
r�x

�

Thus for any point x � B� the sequence 
�x
 is the �itinerary� of x under Rr with respect
to the set U � i�e� 
�x
 has a � in the ith place if Ri

r�x
 is in U and � if it is in U�� It is
easy to see that 
 is continuous�
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Now de	ne ��U� r
 � Cl�
�B

� If U � RO�� then m�U t U�
 � � and so m�B
 � ��
Thus we may de	ne a probability measure 	 � M���� �
 by 	 � 
��m
� where as usual
this means that 	�X
 � m�
���X

 for a Borel set X�

In this construction� B and 
 depend on the choice of U and r� If this dependence
needs to be emphasized� we write B � BU�r and 
 � 
U�r� It is clear that for all � � S�

and U � RO� ��R��U
� r
 � ��U� r
 and 	�R��U
� r
 � 	�U� r
� Thus the maps � and 	
descend to maps on RO� 
 S� and RO�� 
 S� that will also be called � and 	�

To make the last de	nition� we need to adopt the notation that U� � U� and U� � U �
For a block of symbols b of length N � �� de	ne

Ub�r �
N�

i��

R�ir �Ubi
�

The important property of these sets is that for x � B� x � Ub�r if and only if 
�x
 is in
the cylinder set Cb� As a consequence� for U � RO�� 	�U� r
�Cb� � 
�m�Cb
 � m�Ub�r
�

Lemma �� The following maps are continuous�
�a� For �xed U � RO� the map S� � R given by � �� d��U�R��U

�
�b� For �xed U � RO� the map S� �RO given by � �� R��U
�
�c� The map RO � R given by U �� m�U
�
�d� For �xed symbol block b� the map RO 
 S� � RO given by �U� r
 �� Ub�r�

Proof of �a� and �b�� We 	rst prove continuity of the map � �� d�U�R��U

 at
� � �� Since U � S� is open� we can 	nd a countable set of disjoint intervals fIng so that
U � tIn� Now given � � �� pick M so that

P
n�M m�In
 � ��� and assume j�j � ����M
�

Now for each n� clearly m�In � R��U

c
 � � and so

m�U �R��U

c
 �

X

n�M

m�In
 �
X

n�M

m�In � R��U

c


� ����

Now since m�U c � R��U

 � m�R���U

c � U
� we also get m�U c � R��U

 � ��� and so

d�U�R��U

 � ��
What we have just shown also implies that � �� d�U�� R��U

�

 is continuous at
� � �� and thus � �� d��U�R��U

 is also� Since d�R��U
� R���U

 � d�U�R�����U

�
the continuity of � �� R��U
 at all � follows� Finally� since d� is a metric� and therefore a
continuous function RO 
RO � R� we get � �� d��U�R��U

 continuous for all ��

Proof of �c�� Given two 	nite collections of sets Ai and Bi with i � f�� � � �Ng using
the fact that d�A�B
 � kIA � IBk� and standard integral inequalities it is easy to show
that jm�A
�m�B
j 
 d�A�B
 and d���Ai��Bi
 


P
d��Ai� Bi
�

The continuity of U �� m�U
� follows from the fact that d��U� V 
 
 ��� implies
� � d�U� V 
 � jm�U
�m�V 
j�

Proof of �d�� If the length of the 	xed block b is N � �� then given � � � using �a
�
pick 
 � ����N � �
 so that j�j � 
 implies d��U�R��U

 � ����N � �
�
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We therefore have for �V� s
 � RO 
 S� with d�U� V 
 � 
 and jr � sj � 
�N �

d��Ub�r� Vb�s
 � d���R
�i
r �Ubi
��R

�i
s �Vbi





X

d��R
�i
r �Ubi
� R

�i
s �Vbi



�
X

d��Ri�s�r��Ubi
� Vbi




X

�d��Ri�s�r��Ubi
� Ubi
 � d��Ubi � Vbi



 ��

tu
Section �� The main theorem� The main goal of this section is to prove the

following theorem� For the reader interested in the quickest route to Theorem ���� we note
that the lower semicontinuity of � and the results in part ��
 are not needed for that proof�

Theorem �� Let the maps 	 � RO�� 
 S� �M���� �
 and � � RO� 
 S� � H���

be as de�ned in Section ��

��� The map 	 is continuous and the map � is lower semicontinuous�
��� Fix � �� Q�

�a� For all U � RO�� ���U� �
� �
 is an almost one to one minimal extension
of �S�� Rn�
 for some natural number n�

�b� If U � RO��� then ���U� �
� �
 is uniquely ergodic�
�c� If Fr�U
 is a �nite set� then ���U� �
� �
 is a Denjoy minimal set with

intrinsic rotation number n� for some natural number n�
�d� For �xed � �� Q� when considered as a function of U � � and 	 are

injective�
�	� Fix p�q � Q with p and q relatively prime�

�a� For all U � RO�� ��U� p�q
 is a �nite collection of periodic orbits whose
periods divide q�

�b� For �xed p�q � Q� when considered as a function of U � the image of 	
is the convex hull of the probability measures supported on the periodic
orbits whose periods divide q�

Proof of ���� Since ��R��U
� r
 � ��U� r
� it su�ces to check the continuity of � as
a map de	ned on RO� A similar comment holds for 	�

As noted in the previous section� the weak topology onM���� �
 is generated by the
metric d�	�� 	�
 �

P
j	��Cb�n�
� 	��Cb�n�
j��

n and 	�U� r
�Cb� � m�Ub�r
� Thus to prove
the continuity of 	 it su�ces to check that for 	xed b the map U �� m�Ub�r
 is continuous�
This follows from Lemma � �c
 and �d
�

For the proof of the lower semicontinuity of �� begin by assuming that �U �n�� r�n�
�
�U ���� r���
� If for some subsequence fnig� ��U �ni�� r�ni�
� K in the Hausdor
 topology�
then we will show that ��U ���� r���
 � K� As noted in the previous section� this implies
the desired semicontinuity� Fix an x� � B��� and integer N � � and let b be the initial

block of length N � � in 
�x�
� This certainly implies that U
���

b�r���
is a nonempty open

set and therefore has positive measure� Therefore by Lemma � �c
 and �d
 there exists
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an M so that n � M implies that m�U
�n�

b�r�n�

 � �� In particular� for n � M � there exists

xn � B�n� so that 
n�xn
 has its initial block equal to b� There therefore exits a sequence
xj � B�j� with 
j�xj
� 
��x�
�

Now assuming that for some subsequence fnig� ��U �ni�� r�ni�
� K in the Hausdor

topology� then if xni � B�ni� is the appropriate subsequence of the sequence constructed in
the previous paragraph� then 
ni�xni
� 
��x�
� so certainly 
��x�
 � K� But x� � B���

was arbitrary� and so 
��B
���
 � K and since ��U ���� r���
 is the closure of the 
��B

���
�
we have ��U ���� r���
 � K� as required�

Proof of ���� For the proof of ��
� 	x an � �� Q and for the proof of ��a
� ��b
 and
��c
 a U � RO� We will suppress the dependence of various objects on U and � and so
� � ��U� �
� etc�

��a�� To prove the minimality of � we use the following characterization of minimality
��O�
� If f � X � X is a homeomorphism of a compact metric space and x � X� then
Cl�o�x� f

 is a minimal set if and only if given � � �� there exists an N such that for all
n� there exists an i with � 
 i 
 N and d�fn�i�x
� x
 � ��

To apply this to the case at hand� 	rst note that for x � B� certainly o�x�R�
 is dense
in B� and so � � Cl�o�
�x
� �

� Since �S�� R�
 is minimal� the above property holds for
Cl�o�x�R�

� Since 
 is continuous� it also holds for Cl�o�
�x
� �

 � �� which is therefore
minimal�

The proof of the semiconjugacy requires a new de	nition� Given U� V � RO� de	ne
��U� V 
 � supfm�I
 � I is an interval contained in U�V g� Now � will not satisfy the
triangle inequality but it is easy to see that for 	xed U � RO� the map � �� ��U�R��U


is a continuous function S� � R� Also� if U is asymmetric� then ��U�R��U

 � � if and
only if � � ��

The 	rst step in the proof of the semiconjugacy is to show that 
 is injective when
U is asymmetric� Assume that for x�� x� � B� 
�x�
 � 
�x�
� and therefore for all i�
IU �R

i
��x�

 � IU �R

i
��x�

� Thus if x� � R��x�
� IU � IU 	R� when restricted to the dense

set o�x�� R�
� In particular� ��U�R��U

 � � and since U is asymmetric� d�x�� x�
 � � � ��

Continuing with the assumption that U is asymmetric� we show that 
�� is uniformly
continuous� Since 
�B
 is certainly dense in �� this implies that we can extend 
�� to a
semiconjugacy from ��� �
 to �S�� R�
�

Since S� is compact and � �� ��U�R��U

 is continuous� given � � � there exists a

 � � so that ��U�R��U

 � 
 implies j�j � �� Pick N � � so that for every x � S��
every interval of length 
 contains a point of o�x�R�� N
� Now if x�� x� � B satisfy
d��
�x�
� 
�x�

 � ��N and if x� � R��x�
� then IU � IU 	 R� when restricted to the
set o�x�R�� N
� Now if ��U�R��U

 � 
 then U�R��U
 will contain an interval of length

 and thus a point of o�x�R�� N
� a contradiction� Thus ��U�R��U

 � 
 and so by the
choice of 
� d�x�� x�
 � j�j � �� proving the uniform continuity of 
��� Note that 
�B
 is
dense G� in � so the extension is almost one to one�

Now assume that U is symmetric� The group of numbers r such that Rr�U
 � U has
a rational generator� say p�q� with � � p�q � � and p and q relatively prime� If U � � ��U

where � � S� � S��Rp�q is the projection� then ��U� �
 has ��U �� q�
 as a q�fold factor
�here we have identi	ed S��Rp�q with S

�
� Since U � is asymmetric� ��U �� q�
 has �S�� Rq�

as a factor� 	nishing the proof of ��a
�

�



��b�� Let � denote the extension of 
�� to a continuous semiconjugacy from ��� �
 to
�S�� R�q
 and assume that m�Fr�U

 � �� If 	� and 	� are two invariant Borel probability
measures supported on �� then since �S�� R�q
 is uniquely ergodic� ���	�
 � ���	�
 � m�
If X � � is a Borel set� then since m�B
 � �� for i � �� �� 	i�X
 � 	i��

���B
 � X
�
Now since � is injective on B� this is equal to 	i��

���B � ��X

 � m�B � ��X

 and so
	� � 	��

��c�� Now assume Fr�U
 is a 	nite set� In this case� each x � Bc will have exactly
two preimages under �� namely� the limit of 
�xn
 as xn � x from the right and the limit
of 
�xn
 as xn � x from the left� This makes it clear that in this case � is conjugate
to the minimal set in the circle homeomorphism obtained by �blowing up� into intervals
points on the orbits of each x � Fr�U
�

��d�� When U � RO�� ��U� �
 is the support of 	�U� �
� Thus to prove ��d
 it su�ces
to show that ��U� �
 is an injective function of U � Assume that for some U�� U� � RO�
��U�� �
 � ��U�� �
� Using ��a
� 
�B�
 and 
��B�
 are dense G� in the compact metric
space ��U�� �
 � ��U�� �
� This implies that 
�B�
 � 
��B�
 �� �� and so there exist
x�� x� � S� with 
��x�
 � 
��x�
� Thus if R��x�
 � x�� then IU�

� IU�
	 R� when

restricted to the dense set o�x�� R�
� This implies that U��R��U�
 contains no intervals�
Since the Ui are regular open sets� this means that U� � R��U�
 and so U� and U� are in
the same equivalence class in RO�� as required�

Proof of ���� Fix p�q � Q with p and q relatively prime� Since Rq
p�q � Id� it is

clear that any s � ��U� p�q
 will satisfy �q�s
 � s which implies ��a
� Say a symbol block
b is prime if its length equals its period� For U � RO��� by construction� 	�U� p�q
 �P

m�Ub�p�q
�b where �b is the probability measure supported on the periodic orbit with
repeating block b and the sum is over all prime blocks b whose period divides q� With this
formula in hand it is easy to construct a U so that 	�U� p�q
 is any desired point in the
convex hull given in the statement of ��b
� tu

Proof of Proposition ���

�a
� A theorem of Parthasarathy says that the measures supported on periodic orbits
are dense in M���� �
 ��P�
� Fix one such measure ��� and assume it is supported on an
orbit of period q� Using the formula given in the proof of Theorem � ��b
� 	nd a regular
open set U with Fr�U
 a 	nite set and a p�q with 	�U� p�q
 � ��� Now pick irrationals
�n � p�q� By Theorem � ��
� 	�U� �n
 � ��� and by Theorem � ��c
� each 	�U� �n
 is
the unique measure supported on a Denjoy minimal set�

�b
� It su�ces to show that for any symbol block b� there exists an s � �� which has
initial block b and Cl�o�s� �

 is a Denjoy minimal set� Fix an irrational � and x� � S��
Choose a 	nite union of intervals U so that Ri

��x�
 � U if and only if bi � �� for i �
�� � � � � length�b
� �� Further� the open set U should satisfy o�x�� R�
 � Fr�U
 � �� If U
has these properties� Theorem � ��c
 shows that ��U� �
 is the desired Denjoy minimal
set� tu

Section �� The Hilbert cube of strictly ergodic sets� We begin with some
de	nitions in preparation for the proof of Theorem ���� A copy of the Hilbert cube is given

��



by the collection of sequences�

H � f� � RN � � 
 �i 

�

i� �
for all i � Ng�

A subspace of H that contains topological balls of all dimensions is

H� � f� � H � �i � �� for all but 	nitely many ig�

For � � H� de	ne an asymmetric regular open set U� by

U� �
�

i�N

�
�

i� �
� ��i �

�

i� �
� ��i 
�

Now de	ne a map  � H � RO�� via  ��
 � �U� �� It is clear that  is continuous and
injective� Since H is compact�  �H
 is homeomorphic to H�

Proof of Theorem ���� Fix an irrational �� By Theorem � ��ab
� the set �� �H
� �

consists of strictly ergodic sets� Since  �H
 is compact� using Theorem � ��
 and ��d
� we
have that 	� �H
� �
 is homeomorphic to  �H
 and therefore to H� This proves the 	rst
statement in the theorem� To prove the second� note that Theorem � ��c
 implies that
	� �H�
� �
 consists of measures supported on Denjoy minimal sets� Since 	� �H�
� �

is homeomorphic to H�� it �and consequently� D���� �

 contains topological balls of all
dimensions� tu

Remarks�
����� In Theorem ��� there is an obvious distinction between S���� �
� which contains

a copy of H� and D���� �
� which contains a copy of H�� This is because �� �H
� �

contains minimal sets that are not Denjoy� In particular� if � � H � H� and for some
i �� �� Ri

���
 � Fr�U�
� then ��U� � �
 is not a Denjoy minimal set� In the semiconjugacy
from ���U�� �
� �
 to �S

�� R�
� the inverse image of � consists of three points�
A Denjoy minimal set is obtained from an irrational rotation on the circle by replacing

�or !blowing up�
 each element of a collection of orbits by a pair of orbits� For all � not of
the type just described� ��U� � �
 is a Denjoy minimal set� When � � H�� the number of
orbits blown up is the same as the number of distinct orbits containing points of Fr�U�
�
For � � H � H�� if for all i �� �� Ri

���
 �� Fr�U�
� then ��U� � �
 is a Denjoy minimal
set with countably many orbits blown up� All the in	nite dimensional families we could
construct had the property that some minimal set was not Denjoy�

����� Morse and Hedlund�s construction of Sturmian minimal sets corresponds to the
special case U � ��� �
� In this case� ��U� �
 is a Denjoy minimal set with a single orbit
blown up�

����� Theorem � ��
 states that  is a lower semicontinuous function whose range is
the set of closed subsets of a compact metric space� When such functions have a domain
that is a Baire space� they are continuous on a dense� G� set �see page ��� of �C�
� It seems
unlikely that RO is a Baire space� but since  �H
 is homeomorphic to the Hilbert cube�
we may apply this result to show that the map �for 	xed �


��� � �
 �  �H
�H���


��



is continuous at a generic point of ��H
� This result can also be obtained directly by
showing that the map is� in fact� continuous at all points  ��
 for which all points of
Fr�U�
 are on disjoint orbits�

����� As is perhaps obvious from Remark ����
� when Fr�U
 is more complicated
topologically� so is the structure of ��U� �
 �for irrational �
� However� Theorem � ��b

says that for all U � RO�� ��U� �
 is uniquely ergodic� It is in fact measure isomorphic
to �S�� R�
� To get minimal sets with more interesting measure theoretic properties we
must have m�Fr�U

 � �� In this case the set BU�� from the main construction is a zero
measure� dense G� set in the circle� This leads one to expect that ��U� �
 could support
more than one invariant probability measure�

The results of �M�P� show that this is frequently the case� The relevant construction
from that paper begins with a Cantor K in the circle� The complement of K is the disjoint
union of open intervals� One chooses a set of labels for these open sets with each open set
labeled by zero or one� The set of labels is used to construct a minimal set in the two�shift
as in the main construction� If K has positive measure� then for most sets of labels �in the
appropriate sense
 the constructed minimal set is not uniquely ergodic and has positive
topological entropy�

However� the constructed minimal set can be uniquely ergodic as the following example
suggested by Benjamin Weiss shows� Let �X� f
 be a Denjoy minimal set with intrinsic
rotation number �� Note that �X� f
 is both measure isomorphic to and an almost one
to one extension of �S�� R�
� Using results of Jewett and Kreiger we may 	nd a zero�
dimensional strictly ergodic system �Z� h
 that is mixing and has positive entropy� Let
�Y� g
 be the product of the two systems� Because �Z� h
 and �X� f
 are strictly ergodic
and �Z� h
 is mixing and �X� f
 has pure point spectrum� �Y� g
 is strictly ergodic�

Now think of Y as an extension of X� The main theorem and the remark following
Theorem � in �F�W� imply that there is a minimal almost ��� extension of X � say � "Y � "g
�
which maps onto �X� f
 in such a way that the invariant measures of � "Y � "g
 are in one to
one correspondence with the g�invariant measures on Y � Thus � "Y � "g
 is a strictly ergodic�
positive entropy� almost ��� extension of rotation by alpha� Further� as a consequence of
the method of construction in �F�W�� since X� Y � and Z are zero�dimensional� "Y is also�

Let p � "Y � S� denote the given semiconjugacy and let "B � "Y be the dense G� set
on which p is injective� Pick two sets� each open and closed� with V� t V� � "Y � Note that
U � �p�V�



c is a regular open set� Use the partition fV�� V�g in the usual way to get a
symbolic model by de	ning k � "Y � �� so that

�k�y

i � IV��"g
i�y

�

It is fairly straightforward to show that "B � p���BU��
 and thus� p � � 	 k where � �
��U� �
 � S� is the semiconjugacy constructed in the proof of Theorem � ��a
� This
implies that ��U� �
 is a factor of � "Y � "g
� and thus is strictly ergodic� Further� we may
choose V� and V� so that ��U� �
 has positive entropy� To 	nish� note that m�Fr�U

 � ��
for if not� ��U� �
 would be measure isomorphic to the zero entropy system �S�� R�
�

It would be interesting to have conditions on a regular open set with positive measure
frontier that distinguish these two cases� More precisely� give necessary and su�cient con�
ditions for the unique ergodicity of ��U�R�
� Another interesting question is the structure

��



of the set of its invariant measures in the cases when ��U� �
 is not uniquely ergodic �cf�
�Wm�
�

���	� Since each point in S�X� f
 represents a disjoint minimal set� the size of S�X� f

should give some indication of the complexity of the dynamics of f � The topological entropy
of �X� f
� denoted h�X� f
� is perhaps the most common way of measuring dynamical
complexity� Corollary ��� shows that� at least in some cases� when the topological entropy
is positive� S�X� f
 is large� If the size of S�X� f
 is to give a measure of dynamical
complexity� the converse should be true� The next proposition shows that this is not the
case� at least when the �size� of S�X� f
 is measured by the maximal dimension of an
embedded ball and X is a manifold of dimension greater than two�

Proposition ����
�a� There exists a compact shift invariant set �� � �� such that S���� �
 is homeomor�

phic to the Hilbert cube and h���� �
 � ��
�b� On any smooth manifold M with dimension greater than two there exists a C�

di�eomorphism f such that h�f
 � � and S�M� f
 contains a subspace homeo�
morphic to the Hilbert cube�

Proof of �a�� Fix an irrational � and let T � S� 
 H� De	ne F � T � T as
F � R� 
 Id� We will do a construction analogous to the main construction� but now
using the space T and the map F � To get an open set in T we use the open sets U�
constructed above to de	ne

�U �
�

��H

U� 
 f�g�

Next let
�B � f� � T � o��� F 
 � Fr� �U
 � �g

and de	ne � � �B � �� so that

����

i � I 	U �F
i��

�

Finally� let �� � Cl��� �B

�
Note that for 	xed �� � restricted to �S� 
 f�g
 � �B is just 
U� �� from the main

construction and that
�� � Cl�

�

��H

��U� � �

�

Theorem � ��a
 and ��d
 imply that � is injective� Using an argument similar to one
in the proof of Theorem � ��a
� one gets that ��� is uniformly continuous� and therefore
has a continuous extension to a # � ��� T that satis	es # 	 � � F 	#�

The variational principle �see page ��� in �W�
 implies that h���� �
 � � if all ergodic
measures for ���� �
 have metric entropy zero� If � is an ergodic� invariant Borel probability
measure for ��� then #���
 is such a measure for �T� F 
 and so #���
 is Haar measure on
S� 
 f��g for some ��� This implies that � is supported on #���S� 
 f��g
� Once again�
using an argument virtually identical to one in the proof of Theorem � ��b
� one obtains
� � 	�U�� � �
� This measure with the shift is measure isomorphic to rotation on the circle

��



by � and therefore has zero metric entropy� as required� Note that the argument just given
also shows that S���� �
 is in fact homeomorphic to the Hilbert cube� H�

Proof of �b�� We 	rst construct the map on the space P � D� 
 ���� ��� where
D� is a closed two�dimensional disk� Let h � D� � D� be a Smale horseshoe� i�e� h is
a C��di
eomorphism whose nonwandering set consists of the union of a 	nite number of
	xed points and a set $ on which the dynamics are conjugate to the full two�shift� The
compact invariant set �� constructed in the proof of �a
 is embedded in $ by the conjugacy�
Call this embedded set %��

Next� let ht for t � ���� �� be an isotopy with h�� � Id� h� � h� and h� � Id�
Further� ht restricted to the boundary of D

� should be the identity for all t� Now pick a
C��function w � P � R with w � � and w����
 � �P t �%� 
 f�g
� Let g � P � P be
the time one map of the &ow generated by the vector 	eld w�u
 ��z � where u � �x� y� z
 is
a point in P � Now let f � g 	 �ht 
 Id
� By construction� the nonwandering set of f is
�P t �%�
 f�g
 and thus h�f
 � �� Since each point on �P is a 	xed point for f � S�P� f

is homeomorphic to S�%�� �
 t �P � which in turn� is homeomorphic to H t �P �

To obtain the result on a general manifold of dimension three or higher� embed a copy
of �P� f
 in it and extend f by the identity on the rest of the manifold� tu

Remarks
���
� This proposition leaves open the possibility of a converse to Corollary ��� in

dimension �� In this dimension there are a number of results that show that the existence
of certain types of zero entropy invariant sets can imply that a homeomorphism has positive
topological entropy� For example� if an orientation�reversing homeomorphism of a compact
surface of genus g has periodic orbits with g � � distinct odd periods� then it has positive
entropy ��B�F�� �H�
� For orientation�preserving homeomorphisms there are restrictions on
the periods that occur in zero entropy maps given in �S�� Even a single period orbit can
imply positive entropy if the isotopy class on its complement is nontrivial ��Bd�
� These
results give credence to the conjecture that for a manifoldM of dimension �� if f �M �M
is a homeomorphism and S�M� f
 contains a topological ball of dimension �� then h�f
 � ��

����� It was noted in the introduction that the existence of a Hilbert cube of strictly
ergodic sets can often be viewed as a manifestation of a standard topological fact� namely�
the Hilbert cube is the continuous surjective image of the Cantor set� For concreteness� let
f �M �M be a homeomorphism with an invariant set %� with �%�� f
 conjugate to ���� �
�
where �� is the set constructed in the proof of Proposition ��� �b
� Using the conjugacy� the
proof of Proposition ��� �b
� and Theorem � ��b
 one gets that for each x � %�� Cl�o�x� f


supports a single invariant probability measure which is c��	�U��x�� �

 for the appropriate
��x
� Further� the map x �� c��	�U��x�� �

 is continuous� �More formally� this map is

x �� c��	� ����#�x


� �



where �� � S
�
H�H is the projection
� The domain of this map is the invariant Cantor

set %� and its image is 	� �H
� �
� which is homeomorphic to the Hilbert cube� H�
����� The construction in the proof of ��� �b
 can be used to embed any compact

shift invariant subset of �� as the only �interesting� dynamics in a three�dimensional
di
eomorphism� It is reminiscent of Schweitzer�s construction of C��counterexample to
the Seifert conjecture ��Sc�
�

��



Section �� Intrinsic and extrinsic rotation numbers� In the Section � it was
noted that abstract Denjoy minimal sets have well�de	ned intrinsic rotation numbers� The
next proposition specializes some previous results to the case of 	xed intrinsic rotation
number�

Proposition ���� Fix an irrational � and let D����� �
 denote the set of Denjoy
minimal sets in the shift with intrinsic rotation number ��

�a� When given the weak topology� the space D����� �
 contains topological balls of
dimension n for all natural numbers n�

�b� The set of points that are members of Denjoy minimal sets with intrinsic rotation
number � is dense in ���

�c� If �D� �
 is a Denjoy minimal set with intrinsic rotation number �� then D �
��U� �
 for some regular open set U withm�Fr�U

 � �� Consequently� D����� �

� 	�RO�� �
�

Proof of Proposition ���� When U is asymmetric and ��U� �
 is a Denjoy minimal
set� it has intrinsic rotation number �� This follows from Theorem � ��b
 �and its proof
�
Thus to prove �a
 we need only note that the proof of Theorem ��� began with a statement�
� Fix an irrational ��� The proof of Proposition ��� �b
 contains a similar statement� so
that proof proves �b
�

To prove �c
� note that by de	nition� there exists a conjugacy c � D � Y where Y is
the minimal set in a Denjoy example g � S� � S� with rotation number �� It is a standard
fact that there exists a semiconjugacy h of �S�� g
 to �S�� R�
 with the properties that h is
injective on a set that is dense in Y and the lift of h is weakly order preserving� i�e� x � y
implies "h�x
 
 "h�y
�

Now let p � h	c and U � �p�C�


c� Since C� is compact in ��� U is open� Further� the

properties given above imply that U� � �p�C�


c and p�C�
 � p�C�
 � Fr�U
 � Fr�U�
�

Thus using a fact from Section �� U is a regular open set� and by construction� ��U� �
 � D�
Since p�C�
 � p�C�
 is at most countable� m�Fr�U

 � �� tu

These results� of course� also hold for homeomorphisms with a full two�shift embedded
in their dynamics� In this case� however� one is perhaps more interested in extrinsic
properties of invariant sets� i�e� properties associated with how the sets are embedded
in the manifold� Perhaps the simplest such extrinsic property is the extrinsic rotation
number� and the simplest case in which this can be de	ned is for a homeomorphism of the
annulus�

If f � A � A is a homeomorphism of the annulus and z � A� de	ne the rotation
number of z under f as

��z
 � lim
n��

��� "f
n�"z

� ���"z


n
�

if the limit exists� Here "f � R
 ���� ��� R
 ���� �� and "z are lifts of f and z� respectively�
and �� � R
 ���� ��� R is the projection� Note that the rotation number is only de	ned
modulo � as it depends on the choice of lift�

If D � A is a Denjoy minimal set under f � then it is uniquely ergodic� Thus for all
z � D� ��z
 �

R
r�z
 d�� where � is the the unique invariant probability measure of �D� f


and r � S� � R is the map that lifts to �� 	 "f���� This number will be called the extrinsic
rotation number of �D� f
�

��



The Denjoy minimal sets constructed by Mather in �M� have monotonicity properties
that imply that their extrinsic and intrinsic rotation numbers are rationally related� For
Denjoy minimal sets in a general homeomorphism of the annulus this will not be the case�
As a speci	c example� we will consider homeomorphisms f � A � A that have a rotary
horseshoe �cf� �H�H��
 A picture of the lift of such a map is shown in Figure �� The dotted
vertical lines are the boundaries of fundamental domains�

0 1 0 10 1

f

Figure �� The lift of a rotary horseshoe�

A map contains a rotary horseshoe if it has a compact invariant set $ that is conjugate
to the full two�shift� The conjugacy c � $ � �� is required to have the property that for
z � $ the 	rst element in c�z
 is � if and only if "f moves "z �approximately
 one fundamental
domain to the right� More precisely� for z � $ it is required that

��z
 � lim
N��

NX

i��

IC�
��i�c�z




�N � �

�

Thus ��z
 is the asymptotic average number of ones in the sequence c�z
�
We are now almost in a position to state a result about the existence of Denjoy minimal

sets with given intrinsic and extrinsic rotation number� For an annulus homeomorphism
f � let D��	�A� f
 denote the set of all Denjoy minimal sets for f with intrinsic rotation
number � and extrinsic rotation number ��

Proposition ���� If a homeomorphism f � A � A has a rotary horseshoe� then for
all irrational �� and all � � S�� D��	�A� f
 contains topological balls of dimension n for
all natural numbers n�

Proof of Proposition ���� If for a given U � RO� and irrational �� ��U� �
 is a
Denjoy minimal set� then the comments above Lemma � and unique ergodicity imply that
for all s � ��U� �
�

lim
N��

NX

i��

IC�
��i�s



�N � �

� 	�U� �
�C�� � m�U
�

��



This implies that the corresponding Denjoy minimal set in the annulus has extrinsic ro�
tation number equal to m�U
� To 	nish the proof� one need only imitate the proof of
Theorem ��� using a family U� that satis	es m�U�
 � �� for all �� tu

Note that the case of rational � is included in this result� This means that large
dimensional balls of Denjoy minimal sets with a given rational extrinsic rotation number
are present in the dynamics�
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