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Section 1. Definitions and Main Statement.

The object of this paper is to classify all polynomials p with the properties
that all critical points of p are strictly preperiodic under iteration of p. We will
also characterize the Julia sets of such polynomials.

To understand this paper the reader will need a background in complex an-
alytic dynamics; we recommend [JM] and will use the results given there freely.
The main tool in the classification above is Thurston’s topological characterization
of rational functions [DH2].

EXAMPLE 1.1: The polynomial p(z) = 22 + i is strictly preperiodic: the orbit of
the unique critical point 0 is (0,7, —1 + ¢, —%) and contain 4 elements; but 0 is not
periodic.

173 201 1/6 1/7/"

Figure 1.2. The Julia set for p(z) = 22 + i with external rays.

Some facts about the dynamics of polynomials. We recall here some results
needed to state the main theorems.

Define the critical set Q of a branched covering map f : S — S? by
Qs = {z | z is a branch point of f}
and the postcritical set

Py = £om(9y).
n=1
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If p is a polynomial with Card(P,) < oo, we follow Milnor’s suggestion and call p
a Thurston polynomial.

The orbit of a point z under p is the set {p°*(z) |n =0,1,...}. I p°*(z) ==
for some n > 0 then z is called a periodic point of p, and if z is not periodic but
p°™(z) is periodic, then z is said to be preperiodic. When every critical point of
p is preperiodic, we call p a preperiodic Thurston polynomial.

The filled in Julia set is the compact set K, = {z € C | p°*(2) #» oco}. The
following theorem (see [JM], p. 94) will be central to the entire development.

THEOREM 1.3. If p(z) is monic (i.e. a polynomial with leading coeflicient 1) of
degree d and P, is bounded, then there exists a unique analytic homeomorphism

ép C-D-C- K,
tangent to the identity at oo (That is ¢,(2) = z+ co + ¢1/z + - - - ) which satisfies

f(¢p(2)) = ¢p(zd)- (1.4)

When p is not monic, we can still find a map ¢, tangent to the identity which
conjugates p(z) to az?, where a is the leading coefficient of p(z).

The Green’s function G : C — R of K, is the unique subharmonic function
on C which vanishes on K, and is harmonic on C — K, with a logarithmic pole of
the form log || at co. It satisfies G, = log|¢,| on C — K.

When p(z) is a Thurston polynomial, K, is locally connected [JM,thm.17.5],
so that the mapping ¢, extends continuously to a mapping ¢, : C —D — C
extending ¢, to S* = dD. We denote the external rays

Ry = $,({re’™ | 1< < 00}),
and if O is a finite set of angles we write

Re = U Ry.
€O

Equation 1.4 implies that p(Rg) = Rag¢. Each ray Ry has a limit at the point
da_p(ez"w) of O0K,. We say that the external ray lands at this point. Each angle
determines a unique ray and each ray lands at some point in K,. However, several
external rays may land at the same point of K, .

If p is a preperiodic Thurston polynomial then 0K, = K,. In particular,
the postcritical set is contained in 0K, and so at least one ray lands at each



postcritical point. All the rays landing at periodic and preperiodic points in K,
(including the postcritical set) have rational angles.

Marked polynomials. It is easiest to classify marked polynomials and deal
separately with the redundancy this introduces in the classification.

A marked polynomial is a polynomial with strictly preperiodic critical points,
which is monic and centered, together with the choice, for each critical point w of
an external ray landing at p(w). Define P; as the set of all marked polynomials
of degree d.

Throughout this paper we willlet T = R/Z. The set T has a natural additive
group structure which is equivalent to the multiplicative group structure on S*.
The circle S* € C is better for geometry (convex hulls, etc.), but T is better

for arithmetic, and we will use them both, sometimes identifying them without
comment.

Let § € T and define the map my4(f) : T — T by 6 — df where d is some
integer. If © C m;'(d) and © contains at least two points then we call © a
d-preangle of . A d-preangle © of 0 is periodic of period k if m;("‘l’(e) € O.

Define the mapping

PA : Pg — sets of d-preangles

as follows. Let p be a monic centered polynomial, with critical points {w1,...,w,},
and marked by the rays {Rs,,..., Rg,} landing at p(w1),...,p(w,). Set

PA(p;64,...,0,)=(01,...,0,)

where O; is the d-preangle of 6; made of the angles of external rays landing at w;
which are inverse images of the ray Ry,.

EXAMPLE 1.5: For the polynomial 22 + ¢ above, there is only one ray landing at
the critical value 7, which has angle 1/6. So (22 +¢;1/6) is a marked polynomial,
and PA(2* +1;1/6) = {{1/12,7/12}}.

A more substantial example is provided by the polynomial z* + ¢ with ¢ ~
—.220330 + 21.186329, where the third forward image of the critical point is fixed.
In this case, there are two rays, with angles 19/72 and 25/72, which land at the
critical value. So (2% +¢;19/72) and (23 + ¢; 25/72) are two markings of the same
polynomial, and

PA(2® + ¢;19/72) = {{19/216,91/216,163/216} };
PA(2® + ¢;25/72) = {{25/216,97/216,169/216} }.
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Figure 1.6. K, for a cubic with six accesses to the critical point.

Conditions satisfied by marked polynomials. We wish to characterize the
image of P4 under PA by combinatorial conditions on the preangles. For any
marked polynomial (p; 6y,... ,0,) with

PA(p;6,...,60,)={01,...,0,},

then the preangles {O1,... ,0,} satisfy
(C.1) ©4,...,0, are finite sets of rational angles (see [JM], p. 97).
(C.2) d—1=3",(Card(©;) —1).
(C.3) Each Reg, partitions C into components, exactly one of which contains
each Re; for j # 1.
(C.4) None of the rays landing at critical points are periodic.
(C.5) Distinct Re; land at distinct points.

We will turn each of the conditions (C.1)-(C.5) into a combinatorial condition
on the sets ©1,...,0,. The first 4 conditions have obvious interpretations, but
condition (C.5) is more delicate.

The equivalence relation ~g. In this subsection we define an equivalence
relation ~g which will characterize Julia sets of preperiodic Thurston polynomials.

Two nonempty closed subsets A, B of T (or S') are unlinked if there exist
disjoint intervals I,J C T such that AC I and B C J.



A collection {A;,...,A,} of closed subsets of S! is unlinked if they are pair-
wise unlinked.

We will find the following lemma useful on several occasions.

LEMMA 1.7. Two non-empty closed subsets A and B of S are unlinked if and
only if there exist disjoint closed connected subsets X,Y C D of the closed unit
disk such that AC X and BCY.

PrOOF: If A and B are unlinked, then we can take X and Y to be the convex
hulls of intervals I and J in the definition.

Conversely, suppose X is contained in the component U of D —Y. Then any
two points 83,82 € S NU can be joined by an embedded arc & C U with interior
in D. The arc divides D into two components, one of which contains Y, so s1, s2
can be connected in U N S1. We have shown that U N S! is connected, hence an
open interval I', since B is non-empty. Let I C I' be a closed interval containing
A, and J = 8 — I, these satisfy the definition. I

0] 1 @2 Q) 1
0, 5 0,
(N
unlinked linked linked

Figure 1.8. Linked and unlinked sets.

Let ©® = {01,...,0,} be a collection of unlinked d-preangles.

DEFINITIONS 1.9: We will say that two points z,y € T are ©-unlinked if the
collection {z,y},0,,...,0, is unlinked.

We will say that two points z,y € T are @-unlinkable if there exist arbitrarily
small perturbations z',y' of z,y such that {z',y'} is ©-unlinked.

Two angles will be called ®-related if for all m > 0 the points d™2z and d™y
are ®-unlinkable.

Let the equivalence relation ~¢ be the equivalence generated by = ~o y if =
and y are ®-related. This means that angles are ~g-equivalent when they can be
connected by a finite chain of ®-related angles.

REMARK: Being ©-unlinked is an equivalence relation; an equivalence class is a
finite union of open intervals. A nice way to visualize these equivalence classes is
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to consider the convex hull ; of each preangle O; ; then for each component U
of D —|J; ©;, the intersection U N S! is an equivalence class.

Two angles are ®-unlinkable when they belong to the closure of an equiva-
lence class above; this is of course not an equivalence relation.

Figure 1.10. Unlinked equivalence classes.

EXAMPLE 1.11: Take d = 2 and © = {{1/12,7/12}} as in example 1.1; then
1/7 ~e 2/7 ~e 4/7. Indeed, since these three angles form a cycle under ma, it
is enough to show that {1/7,2/7,4/7} is ©®-unlinked, which is true since 1/12 <
1/7< 2/7 < 4/7 < 7/12. We leave for the reader to check that for d = 3 and both
© = {{19/216,91/216,163/216}} and © = {{25/216,97/216,169/216}}, we have
1/8 ~o 3/8.

A topological description of K, when p is a preperiodic Thurston poly-
nomial. The following theorem, which is one of our main three results, explains
the central importance of the equivalence relation ~g. Although ~g is an equiv-
alence relation on T, we will use the same symbol for the induced equivalence
relation on S?, and even on C, with the understanding that all equivalence classes
of numbers z with |z| # 1 are trivial.

THEOREM 1. If (p;6.,...,0,) is a marked critically preperiodic polynomial and
© = PA(p;61,...,0,) , then the map ¢, : (C - D,S') — (C,K,) induces a
homeomorphism

((C- D)/ ~e,5'/ ~e) = (C,K})

The proof will be given in section 2.

REMARKS: 1. This result says that ® = (0,,0,,...,0,) completely character-
izes the topology of K,, and even of the pair (C,K,). A theorem of P. Jones
and L. Carleson [CJ] goes further, and shows that ® actually determines the pair
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C, K, up to affine equivalence, in the sense that any homeomorphism h : C — C
which is analytic on C — K, is actually analytic on C, hence is an affine map.

2. Theorem I goes a long way towards explaining when two rays in the
complement of the Mandelbrot set land at the same point [DH1]. This will be
explained in detail in a subsequent paper.

Preperiodic polynomial determining families of angles. A collection of d-
preangles © = (0y,...,0,) is called a preperiodic polynomial determining family
of angles or a PPDFA of degree d if the following conditions are satisfied.

(1) All angles in ©4,...,0, are rational;
(2) Xiz1(Card(©:) —1)=d-1;

(3) ©,,...,0, are unlinked;

(4) No 0 € O; is periodic for any j;

(5) For all 4,5 with 7 # j we have O; #£¢ O;.
We denote the set of all PPDFA’s by A4 .

In particular, the preangles {©;,...,0,} are disjoint by condition 3. Each
of these conditions corresponds to a condition in (C.1)-(C.5). We are now in a
position to prove the following result.

PROPOSITION 1.12. If (p;61,...,6,) is a marked polynomial, then

. PA(p;Gl,...,Ol) = {O],...@n}
is a PPDFA.

PROOF: Let PA(p;61,...,6;:) =(0O1,...,0,). We must show 5 conditions. Con-
dition 1 follows from the fact that rays landing at preperiodic points have rational
angles [JM]. Condition 2 follows from the Riemann-Hurwitz formula, or in this
case counting the zeroes of the derivative of p. Condition 4 follows since the crit-
ical points of p are assumed to be strictly preperiodic, and condition 5 (the only
delicate one) follows immediately from theorem I.

We are left with condition 3, which can be shown as follows. Make a compact
space C by adding circle .S at oo in the obvious way; then the closure Ro of Ry in

C intersects S exactly at § € S. If ¢ # j then Re,. and R@,. satisfy the conditions
of lemma 1.7. §i

REMARK: We will of course not use proposition 1.12 in the proof of theorem I.

EXAMPLE: We will exhibit the necessity of condition 5. Return to example 1.5
above. It is a polynomial with a single critical point, but it is not clear why there
couldn’t be one just like it with two critical values, one at the end of the ray at
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angle 19/72, and another at the end of the ray at angle 25/72. If there were such
a marked polynomial p, then

PA(p) = {{25/216,169/216}, {91/216,163/216}} = ©

is one of three possibilities. However, this is not a PPDFA, it fails condition 5
(and only condition 5). The reader may check 25/216 ~¢ 91/216.

The classification of preperiodic marked polynomials. Our main theorem
is the following result.

THEOREM II. The map PA : Ps — A4 is a bijection.

This theorem clearly gives a complete classification of marked polynomials in
combinatorial terms. For instance, when d = 2, it reduces to the following result.

COROLLARY. For every rational angle written in reduced form as p/q with ¢
even, there exists a unique marked quadratic preperiodic polynomial such that
the chosen ray to the critical value has angle p/q, and every marked quadratic
preperiodic polynomial arises in this way.

PROOF: An element of A; is a single 2-preangle by the second condition; it is easy
to check that it must be of the form {p/(2q),(p + ¢)/(2¢)} with p/q as above. §

When two PPDFA’s determine the same polynomial. When will two
distinct PPDFA’s determine the same polynomial? The redundancy in the de-
scription above is given by the following theorem.

THEOREM III. The polynomial determining families of angles ©® = (©1,...,0,)
and ©' = (0!,...,0!,) determine the same polynomial if and only if the ©/ can
be renumbered so that ©; ~¢ 01,...,0, ~e O,.

The proof can be found in section 9. It is not a difficult proof, very much
unlike the other cases where this sort of redundancy has been attacked, for instance
when the matings of two polynomials lead to the same rational function (see

[BW]).

Outline of the Paper.

Theorem I is proved in section 2. The proof has two parts: seeing that rays
with equivalent angles land at the same point, and that rays with non-equivalent
angles land at distinct points.
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The second part is essentially obvious, but requires a bit of care at the in-
verse images of the critical points; these difficulties are precisely the reason for
the elaborate definitions of unlinked, unlinkable, etc. The first part is more sub-
stantial, and requires the expanding properties of the orbifold metric [JM]. This
is not surprising: essentially the theorem says that a translation of a dynamical
system to a shift mapping using a Markov partition is faithful; the obvious way
of showing such things is to claim that the dynamical system is expanding.

The main part of theorem II is to show the surjectivity of PA; this is done
using Thurston’s theorem, which is described in section 3. Section 4 contains a
careful analysis of the Thurston obstructions which can arise when a branched
mapping mimics a polynomial. '

Starting with a PPDFA ©, we first construct a graph Se C S2, and a map-
ping fe : Se — Se which we extend to a branched mapping fo : S? — S?
(section 6). This requires a criterion which allows maps on graphs in S? to be
extended to S%, which is given in section 5.

In section 7, we show that the obstructions described in section 4 do not
arise for the branched map fe, which thus has no Thurston obstruction, and is
equivalent to a polynomial p.

In section 8 we show that p can be conjugated to a unique polynomial pe,

which is naturally marked. The end result of sections 6, 7 and 8 is to construct a
mapping AP : Ag — Pq such that PAo AP =id.

This is spelled out in section 9, and we also show there that AP is surjective,
which completes the proof of theorem II. We also give the proof of theorem III
there.

The past and the future. Although the reader might never notice it, this
paper grew out of a computer program which actually computes preperiodic (and
periodic) Thurston polynomials, carrying out the iteration underlying Thurston’s
theorem. The underlying branched map of the computer algorithm is not quite

the same as the one given here, and we will give the algorithm and its justification
in a subsequent publication.

Theorems II and III contain essential information about the structure of bi-
furcation loci for polynomials of degree 2 and 3 (and higher degrees, of course),
which will also be spelled out in a future publication.

Finally, there is a very similar algorithm to the one given here which finds
values of A for which the orbit of 0 under Ae® is finite. We have never succeeded
in proving the analog of Thurston’s theorem for this mapping, but if we ever do,
this will be the subject of yet another publication.



Section 2. When External Rays Land at the Same Point.

In this section we prove theorem I. Our understanding of the theorem came
from analyzing Levy Cycles, which we discuss later. The proof of the theorem,
however, does not use any of the techniques presented later in the paper.

If two rays land at the same point, their angles are equivalent. First we
will see that if Ry, and Ry, land at the same point z, then 6, ~g 6;.

The proof will proceed by induction on

m(z) = the smallest number m such that the orbit

of P™(z) contains no critical point.

Note that this number is finite since no critical point is periodic. First suppose
that the forward orbit of z contains no critical points, so that m(z) = 0. Then
because Ry, and Ry, land at the same point, lemma 1.7 shows that 6, and 6
are ©-unlinked (and thus @-unlinkable). Similarly, for any i, d'6; and d*6, are
®-unlinkable, so that 6, and 0, are O-related and thus @-equivalent. This starts
the induction.

Suppose by induction that the theorem is true of rays landing at points
with m(z) < ¢, and let 2 be a point with m(z) = 1.

Suppose first that z is not critical. By induction, the rays at angles df; and
df, are equivalent, i.e., there exist ¢y,..., @k such that in the sequence

d01,<p1,...,gok,d02

each angle is @-related to the next. Thus, there exist unique angles ¢} such that
dp; = p; and the rays R, land at 2. Then in the sequence

01,90,1,--.,90’]:,02,

each angle is ©-related with its successor, which shows that 6, ~e 6;.

Now suppose that z is critical, corresponding to the d-preangle ©; of 1. We
will show that 6, is equivalent to one (and hence all) of the 6 € ©;; this will
show 6; ~e¢ 62, by symmetry. The ray Ry lands at p(z), and by induction ¢ is
equivalent to df;.

If d6; = v, the statement is clear. Otherwise, there exist ¢1,...,pkr as above
such that in the sequence

dol,(Pla"- 7(Pk7¢
13
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each angle is O-related to its successor. Now let ¢! be the angles such that
dy; = pi and the rays R, land at z in the component of C — Re, containing Ry, .
Then in the sequence

01,01, Pk

each is ©-related to its successor, and the last one is @-related to both elements
of ©; with corresponding rays in the boundary of that component. See figure 2.1.

Figure 2.1. Pulling back ®-related angles.

If two angles are equivalent, their rays land at the same point. Let X

be a component of € — U;Re,, and construct a space X by identifying points
z,y € 0X C C for which p(z) = p(y).

REMARK: The space X is actually a Riemann surface, but we do not want to
use this fact as we will use lemma 2.2 in a setting where no analytic structure is
available.

LEMMA 2.2. The space X is homeomorphic to S%, and the map px : )=( - C
induced by p is a homeomorphism.

PROOF: It is unnecessary and a bit fussy to deal with the point at infinity, so
we eliminate it. Let 50 € X be the unique point corresponding to co € C; since
px (00) =TS we see that px : X -55—Cis proper. But it is also clearly a local
homeomorphism, so it is a covering map, and since C is simply connected and .-3:(
is connected, it is a homeomorphism. The lemma, follows since X is the one point

compactification of a space homeomorphic to C. I

Let T' C T be the set of postcritical angles, i.e.,
T' = {m3¥(©;) | k,i=1,2,...}

so that rays Ry with 6 € T' land at one of the postcritical points P, of p. Let
Y =C — (R — P,), which is a connected set.
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LEMMA 2.3. Any path a:[0,1] = Y lifts uniquely to a path o' : [0,1] — X such
that poa' = a.

PROOF: This follows from lemma 2.2; the lift to X does not intersect the iden-
tification locus (note that the critical points in 0X are not in the identification
locus).

Define a metric on K, as follows. Choose r >0, and let Y, =Y N {G, <r},
and

é(z,y) = inf {(a),

where a ranges over all paths from z to y in Y., and £ is the length with respect
to the orbifold metric on C. [JM]

The map p is expanding in the orbifold metric. Therefore there exists C > 1
such that for any path a € Y;, if o is given as in lemma 2.3, then C¢(a') < £(a),
since Y, is a compact set; note also that &' is a path in Y14 C ;..

Suppose 6, is O-related to 63, and that Ry, lands at z € K, and Ry, lands
at y.

Then we see that

6(p(z),p(y)) = Cé(z,y).

Indeed, let a be a length-minmizing curve joining p(z) to p(y) in Y;. Then
both z and y lie in the closure of some component X of € — U;Re,, and the
corresponding curve o' joins them. So

8(z,y) < a') < C7(a).

Using this over and over, we see that if z # y, then §(p°*(z),p°*(y)) grows
without bound, and will eventually be greater than the diameter of K.

Finally, if 6; ~e 0 then there exists angles ¢1,... ,¢, such that each succe-
sive pair of angles in the sequence 8,,¢1,... ,pn, 0 is O-related, and thus all the
rays with these angles must land at the same point.

QED Theorem I



Section 3. Thurston’s Topological Characterization of Rational func-
tions.

In this section we describe a topological condition that is necessary and suffi-
cient for a branched map to be equivalent, in a sense defined below, to a rational
function. The reader should be forewarned that this section is technical, and it
can be painlessly omitted in a first or second reading.

First we need some definitions. We will use P! and $? interchangeably when
the complex structure is relevant or not, respectively. All maps in this paper are
understood to be orientation preserving.

A postcritically finite branched map f : $? — S? will be called a Thurston
map. Two Thurston maps f and g are Thurston equivalent if there are homeomor-
phisms 6; and 6, mapping S? — S? such that the following diagram commutes:

6,
(8% Ps) —— (5%, Py)

/| /|
(8%,Py) —— (5%,B,)
where 6,(Pys) = 62(Pys) = Py, and 6, is isotopic to 6, relative to Py (That is, 6, is
homotopic to 62 through homeomorphisms which coincide on Py).

We say that a simple closed curve v C S? — P; is non-peripheral if each
component of $? — {7} contains at least two points of Py. A multicurve T' =
{m,-.. ,n} is a set of simple, closed, disjoint, non-homotopic, non-peripheral
curves in S? — Py.

We say a multicurve I' is f-stable if for every 4 € I, every non-peripheral
component of f~(7) is homotopic in S? — Py to a curve in T

Let 7;,j,o be the components of f~!(v;) homotopic to v; rel Py, and d; j o be
the degree of the map f | ; .: ¥ij,a = 7j

The Thurston linear transformation fr : RT — RT is defined as follows:

fr(y;) = Z d+7i where d;jq = deg f |y;.: Yije = ;-

- ija
ia W

Since the matrix of fr has non-negative entries, its eigenvalue with largest
modulus is real and positive; denote it A(fr) .

There is a function v : Py — {1,2,3,... ,00} such that for all z € f~!(y),
v(y) is an integer multiple of v(z)deg, f. Let v5 be the smallest such function v.
We will say that the orbifold (see [JM]) is hyperbolic if its Euler characteristic

2 Y (1-——)

16
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is negative.

REMARK: If Card(Py) > 4 then this condition is always satisfied, because vs(z)
will be at least 2 for z € Py.

The following theorem due to W. Thurston is proved in [DH2].

THEOREM 3.1. A postcritically finite branched map f : S — S? with hyperbolic
orbifold is equivalent to a rational function if and only if for any f-stable multic-

urve I', A(fr) < 1. In that case, the rational function is unique up to conjugation
by an automorphism of the Riemann sphere P!.

An f-stable multicurve I' with A(fr) > 1 is called a Thurston obstruction.

In our specific case, if the orbifold is not hyperbolic, the branched map is
equivalent to a polynomial anyway. Rather than treat this technical point, we
refer the interested reader to [DH2] and restate the theorem in less generality. A
branched map f : S — S? is said to be a topological polynomial if oo is a critical
point and f~(c0) = {00}, so that vf(c0) = oo .

REMARK: A topological polynomial will have hyperbolic orbifold if its postcritical
set (excluding oo) contains at least three points. The topological polynomials
with non-hyperbolic orbifold are all equivalent to polynomials anyway. These are
precisely the Tchebychev polynomials and the polynomials z® for n > 1.

THEOREM 3.2. A postcritically finite topological polynomial f : $% — S? is equiv-
alent to a polynomial if and only if for any f-stable multicurve T', A\(fr) < 1. In
that case, the polynomial is unique up to conjugation by an affine transformation.

9

Figure 3.3 A complicated multicurve.
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‘We will apply this theorem to a branched map that we will generate from a
PPDFA. Consider figure 3.3, which shows points representing the postcritical set
and a multicurve. It should be clear that the condition A(fr) < 1 is difficult to
verify. In the next section we present a powerful simplification to the hypothesis
of theorem 3.2.



Section 4. A Criterion for the existence of obstructing Multicurves.

In this section we prove that if a particular type of branched map is not
equivalent to a polynomial, then we can find a special type of Thurston obstruc-
tion called a Levy cycle. This enormously simplifies proofs that certain types of
branched maps are equivalent to polynomials since it is easy to show that in cer-

tain cases no Levy cycles exist. We know no general condition for the existence
of an obstructing multicurve.

LEMMA 4.1. If f is a topological polynomial and U C S? homeomorphic to an
open disk with co ¢ U, then every component of f~!(U) is homeomorphic to a
disk.

.

ProoF: If f~1(U) is not a disjoint union of disks, its complement Y has at least
two components. Let Z be such a component which does not contain co. Then f
maps Z surjectively to X = §2 — U. Since

o f:5% - S?is proper, so f : Y — X is proper, so f : Z — X is proper, so
f(2) is closed in X;;

e f is a topological polynomial, so f is open, so f : Y — X is open, so
f:Z — X is open, so f(Z) is open in X.

So Z contains an inverse image of oo, which is a contradiction. I

DEFINITION 4.2: Let f be a Thurston map, and let I be a Thurston obstruction.
Suppose there exist curves {yo,... ,7x = v} = A C I such that for each : =
0,...,k—1,; is homotopic rel Py to exactly one component 4’ of f~!(vi+1) and
f 4" = 7i41 has degree 1. Then A is called a Levy cycle.

Tir1

f (71+1 )
/V _>

Y. f (Yl+2 )

1 [ ]
Figure 4.3. Part of a Levy Cycle. The dots represent points of Py.

The following Theorem shows that for any branched map, and in particular

for a topological polynomial, a Levy cycle implies the existence of a Thurston
obstruction.

19
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THEOREM 4.4. If f is a rational function, then f cannot have a Levy cycle.

PROOF: Let d be the degree of f. First observe that f~!(Ps) strictly includes
Py, since Q5 C f~(Ps). In fact,

Card(f~!(Pys)) = d Card(Py) — (2d — 2).

Then Py = f~!(Ps) implies that d = 1 or Card(Pyf) = 2.

Suppose f has Levy cycle A. Then Card(Py) > 4 (otherwise the curves in the
Levy cycle would be peripheral). Let 71, ...y, be the Poincaré geodesics on C— Py
in the homotopy class of A. Then the component 4} of f~!(i4+1) homotopic to
9; has the same length as 41 in the Poincaré metric of C — f~!(Pf). In the
Poincaré metric of C — Py, 4! is strictly shorter than ~;4;, and since 7i is the
geodesic in the homotopy class of 4}, it is shorter yet.

So each «; is strictly shorter than 4;4;. This is a contradiction. I

The converse of Theorem 4.4 is not true in general, but in the case of topo-
logical polynomials we have the following

THEOREM 4.5. If the topological polynomial f has a Thurston obstruction T,
then f has a Levy cycle A CT.

ProoOF: This proof is based on ideas of Mary Rees. The idea is to take a Thurston
obstruction I', and consider the mapping

P:T"—=2f

to the power set of I, which associates to a curve v the set of elements of I" which
are homotopic rel Py to some component of f~1(v). If P had images which were
non-empty and disjoint, then clearly they would have to be singletons, and P
would induce a permutation on I'. A cycle of this permutation will then give the
desired Levy cycle.

Unfortunately, the images of P are neither non-empty nor disjoint, in general.
But we will show that there is a subset of innermost curves I'; C T for which the
induced map P; : I'; — 2T¢ does have these properties. We will need to define
essential and negligible curves along the way.

We assume without loss of generality that I’ is minimal in the sense that
every sub-multicurve I'Y C I' which is still a Thurston obstruction is in fact I.
This implies in particular that every 4 € T" is homotopic rel Py to a component of
an inverse image of some 4’ € I.

Write ' =, UT,,, where I'y = {y € T'| || fA(7) ||— 0 as ¢ — oo} is the set
of negligible curves of I' and I', = I"' — I,, consists of the essential curves. Since
A(fr) 2 1, T is not empty; otherwise we would have lim,_ o, =0
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LEMMA 4.6. Let A = (a;;j) | R® — R" be a linear transformation with a;j > 0
and suppose T = ) _ a;€; € R™ is a vector with positive entries such that A% — 0
as n — oo. Then a; # 0 implies A"e; — 0 as n — oo.

PROOF: Since everything is positive, there can be no cancellation. JJ

Lemma 4.6 implies that any non-peripheral component of the inverse image
of a negligible curve is homotopic rel Py to a negligible curve. On the other hand,
some component of the inverse image of every essential curve is homotopic rel Py
to an essential curve.

Indeed, write fr(v) = }_scp(,) 966 Where a5 > 0. So if v is essential then not
all of the § € P(v) can be negligible; and if v is negligible then all the § must be
negligible.

Therefore is we define P, : ", — 2T by

Pe(7) = P(7)NTe,

we see that the images of P, are non-empty. This is half of our requirements.

For 7 a simple closed curve not containing co, we denote by D(n) the com-
ponent of S? — {n} not containing co.

We call a curve v € T'e innermost if D(«y) contains no essential curves. Let

I'; = {y € Te | v is innermost}. There is always an innermost curve in T, so I';
is not empty.

PROPOSITION 4.7. If v € T then exactly one component of f~!() is essential;
moreover, this curve is innermost.

PROOF: First let us see that if 7 € I'; is an innermost curve and a component '
of f~!(v) homotopic to an essential curve 5 € T',, then 7 is innermost. By lemma
4.1 the components of f~*(D(y)) are all homeomorphic to disks; precisely one of
these components U’ is bounded by 4'. Moreover, one of the two components of
S? — {n} contains the same post critical points as U’; we call this component U.
Clearly U is the bounded component of $? — {5}, since oo is not in U"'.

We will show that U contains no essential curves of I". If there were such a
curve 8 € T, then § must separate some postcritical points in U from others.
Also, 8 must, by minimality of I, be homotopic rel P; to a component §' of the
inverse image of some curve é € I, which of course can not be in D(y) since 7 is
innermost. Hence ¢ lies outside U’, and cannot separate any postcritical points
in U’ from others. See figure 4.8. This proves that 7 is innermost.
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'Yl

Figure 4.8. v € I'; implies € T';.

REMARKS: It should be noted that the minimality condition was used crucially

in the proof, and without it proposition 4.7 is false. Also, minimality implies that
' =T..

LEMMA 4.9. The images under P, of distinct curves are non-empty, disjoint sets
of curves.

PROOF: We have already seen that the images of P, are non-empty. Now suppose
7,72 € Ti, 1 # 72 and € Pe(71) N Pe(y2). Let 4{ and 74 be respective
components of f~!(v1) and f~!(7;) which are homotopic rel P; to € T';. Let
X = Py N D(n); then f(X) C D(m) and f(X) C D(y2). But D(71) and D(72)

are innermost and hence disjoint - a contradiction. i

Since P, is a map from a finite set into its power set whose images are non-
empty and disjoint, the images must be singletons. This shows that exactly one
component of f~!(7) is essential.

QED Proposition 4.7

The map P, induces a permutation which by minimality of I' must be a cyclic

permutation. Consider the cycle 7o + 41 + ... — 74, = v arising from the action
of P71,

LEMMA 4.10. The elements of the cycle 4o + 71 +— ... — v, = 3 (in ;) form
a Levy cycle.

PROOF: We know that for each ¢ = 0,... ,n — 1, v; is the only essential curve
homotopic to a component of f~!(yi+1), so fr(7i+1) = bivi + 8 where 8 € RT has
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only negligible components. Since f~(D(7i+1)) is a union of disjoint disks which
do not contain oo, there is only one component 7} of f~!(v;+1) homotopic to 7;,
so b; = 1/d; where d; is the degree of f : vy} — 7i41.

We will be done if we can show that d; =1for:=0,... ,n —1.
Order
I' = {y0,... ,Yn—1, negligible curves},

so the matrix of the Thurston linear transformation becomes

A 0
#=[2 5]
where
0 bo 0
A= 0 0 ,
0 - . bn—2

B™ — (0 as m — oo, and we know nothing about *.

The characteristic polynomial of fr is
det(A — A)det(A] — B) = (A" — by - - - by—1) det(AI — B)

and since the roots of det(AI — B) all have absolute value smaller than 1, we see
that bg - - - bp—1 = 1since A(fr) > 1. Thisimpliesthat b =b; =... = b1 =1. I

QED Theorem 4.5

PROPOSITION 4.11. Let A = {v0,... ,7k = Y0} be a Levy cycle, and let v be the
component of f~!(vi41) homotopic ref Py to v;. Then f: D(v}) — D(vi41) is a
homeomorphism, and in particular D(+}) cannot contain any critical points.

PROOF: The mapping f : D(y}) — D(%i41) is proper, hence has a degree which
is equal to the degree of its restriction to the boundary, i.e., it has degree 1. I

PROPOSITION 4.12. Let A = {v0,...,7 = 70} be a Levy cycle consisting of
innermost curves, then the D(+;) contain only periodic postcritical points of f.

PRrOOF: Since Card(Ps) < oo every critical point must iterate onto a periodic
cycle. If z € Py is contained in D(v;) for vi € A, then f(z) € D(vi41). So UD(v;)
will contain all the iterates of z, and in particular, UD(v;) will contain whatever
periodic cycle z lands on or is part of. Suppose y is not periodic, but its image
z = f(y) € D(v) is periodic. Now for v € A, f~!(D(v)) consists of components
homeomorphic to disks, only one of which has a boundary 4’ homotopic rel Py
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to a curve in A. By hypothesis, the curves of the Levy cycle are innermost, so
only one curve can contain the periodic inverse image of z, and this curve must

be homotopic to v'. However, y ¢ 4' since f : D(y') — D(v) is one-to-one.

Since y ¢ D(7') and y maps to z, we know that y ¢ UD(v;). So none of the
preperiodic postcritical points are in UD(7;). il

COROLLARY 4.13(BERSTEIN-LEVY). If f is a post-critically finite topological
polynomial such that every critical point lands in a periodic cycle which contains

a critical point then there is no Thurston obstruction.

PROOF: Suppose a Thurston obstruction exists. Since every periodic cycle con-
tains a critical point, and since, by Proposition 4.12, the disks of the curves of the
Levy cycle contain periodic points only, there is a curve v;41 such that the com-
ponent of f~!(7j+1) homotopic to +; contains a critical point; This contradicts
Proposition 4.11. I

The following example illustrates the discussion above.

EXAMPLE 4.14: Consider the pseudo-PPDFA
O = {{25/216,169/216},{91/216,163/216}} = {©1,02}

given in example 1.11. Let
To = {m3¥(8) | k> 0,0 € ©, UO,}.

Consider the graph S (related but not quite the same as the spiders will soon be
seeing) which consists of the radial lines e27*%, 0o, together with the segments

xi2 xil

2 1 2xi169 2xi91
e“216 ,e“ 216 and e“216 ,e” 216

and add points w; and w, in the middles of the segments above. It is clearly
possible to map this graph S to itself by mapping each component of S — {w;,w2}
with angle 6 to the component with angle m3(6). This mapping extends to a
branched mapping S? — $2, which is fairly easy to visualize.
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1632216 | 169216 \ 1717216

Figure 4.15. The set S with a Thurston obstruction.

This mapping has a Thurston obstruction consisting of the curves marked
' = {v,n2,173}. The inverse image of v; consists of one curve homotopic to
itself and one curve homotopic to 7, the inverse image of 7, consists of a curve
homotopic to 73 and a peripheral curve, and the inverse image of 13 consists of
two peripheral curves.

Thus only 7; is essential, and it itself forms a Levy cycle.



Section 5. Extending Maps on Finite Graphs.

In this section we discuss how maps on graphs in S? may be extended to
maps of the w_hole sphere, giving a criterion for extendibility. While we are really
dealing with C, we prefer to use the notation S? to emphasize the fact that the
complex structure in not relevant for this construction. In section 6, we construct

a graph and a graph map which we will extend to the sphere using the tools in
this section.

A fundamental observation that we will use is:

LEMMA 5.1. If g : S! — S! is an orientation preserving homeomorphism then
there exists an orientation preserving homeomorphic extension § : D — D such
that §|s1 = g. Moreover, § is unique up to isotopy rel S*.

PROOF (ALEXANDER’S TRICK): We define §(re*?) = rg(e?), which is clearly an
orientation preserving homeomorphism. We now show that if two homeomor-
phisms on D both agree on S!, then they are isotopic. It is sufficient to show that
if f: D — D is the identity on S then it is isotopic to the identity on D. The
isotopy H : [0,1] x D — D is given by

identity on D — D,

0y __
H(t, re ) - {tf(reio/t) on D,

where D; = {z € C: |z| < t}. I

COROLLARY 5.2. If the orientation preserving homeomorphisms f,g : St - St

are isotopic rel some finite number of points X C S*, then the extensions §, f :
D — D are isotopic rel X.

PROOF: It is clear that the isotopy between the extensions is given by the exten-
sions of the isotopy between the maps f and ¢.

A finite graph T is the quotient of a finite disjoint union of arcs arcs(T"), which
are sets homeomorphic to closed intervals, by an equivalence relation on the (finite)
set of endpoints verts(I') (called vertices) of the arcs. A finite embedded graph is
the image by a homeomorphism from a finite graph into S2.

Let X; and X be spaces homeomorphic to S? andlet Ty C X; and T2 C Xo
be connected finite embedded graphs. Let f : 'y — I'; be a continuous mapping,
which is injective on arcs, and such that forward and inverse images of vertices
are vertices. We call such a map a graph map. If a graph map f has an extension
f : X1 — X3 which is an orientation preserving branched map that is injective
when restricted to each component of X; —I'1, then we call f a regular extension.

26
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COROLLARY 5.3. Let f,g: 'y — I'y be graph maps coinciding on verts(I';) such
that for each v € arcs(I'1) we have f(y) = g(), and suppose that f and g have
regular extensions f,3: X1 — X2. Then there is a map ¢ : X3 — X, such that
f = go+ and ¢ is a homeomorphism isotopic to the identity rel verts(T';).

PROOF: Since I'; is connected, each component U of X; — I'; is homeomorphic
to a disk. Since f and g are injective on U, the images f(U) and g(U) are
homeomorphic to disks. The map 1 is defined on each component U by (g |v)~'of
and on each arc 4 by (g |y)~" o f. Corollary 5.2 shows that 3 |g is isotopic to
the identity rel verts(I';). The isotopies can clearly be chosen to coincide on the
shared boundaries of the components, creating an isotopy on the whole sphere. I

For convenience in proving the next proposition, we will assume that both I';
and I'; are piecewise-linear, and that the graph map f preserves length near the
vertices. If 0o isin a graph then piecewise-linear means that an arc containing oo is
straight when projected into C. By possibly adding more vertices, we can assume
that each arc is in fact a straight segment. The length preserving properties of f
are used only to minimize the notation.

For each vertex z € verts(I';), let D, be the disk of radius r around z, we
will assume that r is chosen sufficiently small so that D, and D, are disjoint when
T # y; that no arcs enter D, other than those leading to z; that these arcs are
straight in D,; and that f is length preserving there.

We can now define the sectors at each vertex = as the components of D, —TI';,
and extend f sector by sector to a map f on each D,. Let 7; and 77 be two arcs
bounding a sector with 7, following 7; in counter clockwise order. Choose 64, 6;
arguments for these arcs satisfying 0 < 6; — 6; < 27 (if there is only one arc
leading to z, then this condition forces us to take 6, = 6, + 27). Let 6] and 6
be the arguments of the images of the 4; by f. Let (p,6) be the polar coordinates
centered at z, (p',0') the polar coordinates centered at f(x). The extension is
given by (p,01 +0) — (p',0; + ') such that p = p’ and ¢' = %;%35;0. (I fis
not distance preserving, than p' will be some function of p). This formula says
that we map sectors in the domain in a counter-clockwise way onto sectors in the
range.

PROPOSITION 5.4. The map f : I'y — I'; has a regular extension if and only if

~

for every vertex y € I'y and every component U of X; —TI'y, f is injective on
(Uzef-l(y)Dt) nU.
The extension f may have critical points only at the vertices of T'y.

PROOF: We first further extend f to neighborhoods T, of the arcs a € arcs(T'y).
There can be no obstruction to this, since the extension at each vertex has been
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chosen to be orientation preserving. On each linear part of I'; we extend f linearly

by interpolation in an orientation preserving way along small circular arcs in 0D,
with z € verts(I'1), as is suggested by the following figure.

Figure 5.5. Extending to a neighborhood of the graph.

Let

f‘l = U D, U U T,.
z€verts(T'y) a€arcs(T'1)
Since I'; is connected, the components of X; — I'y are homeomorphic to disks. If
for each component U the map f is injective on U N 8%; then we can extend f
to all of U in an injective way using lemma 5.1. This will yield a branched map
f: X1 — X, which coincides with f on I'y.

By our hypothesis, f is injective on UzEverts(I‘1) D, NU. Suppose f were not
injective on UNU, gares(r,) Ta- Then f would not be injective on the neighborhoods
in U of two arcs in I';. This implies that f would not be injective on the sectors
which are in U at the end of these arcs. This contradicts the hypothesis. This
gives the result in one direction.

The converse is immediate.

Note that the map f can have critical points only at the vertices of the graph
I';, since it is locally injective elsewhere. The degree of the critical point can
be computed from the number of times that the neighborhood D, of a vertex z
‘wraps around’ its image.

COROLLARY 5.6. Let I'1,I'2 C S? be connected graphs, and h : Ty — I'; be a
homeomorphism. Then h extends to a homeomorphism h : S? — S? if and only
if h preserves the circular order at all the vertices of T';.
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PROOF: There is only one vertex z' in h~!(z) for each vertex z of I'z, and the
map induced on D, is injective since h preserves circular order. i



Section 6. Defining the Branched Map on 52.

In this section we construct a branched map f : 2 — S? from a PPDFA
® = {0),...,0,}. The branched map is constructed to mimic the dynamical
behavior of a polynomial which can be marked with the angles dO,,... ,dO,.
The main complication is that angles may be related by ~g, in which case the
external rays with those angles land at the same point in the filled in Julia set for
the polynomial.

We will begin by defining the ®-spider Se, which is a graph corresponding
to the union of the marked rays to critical points and their images, and a map

fo : Se — Se which corresponds to the polynomial. We will then extend fo to
a Thurston mapping fe : §2 — S2.

Construction of Se. If E C T is a finite subset, denote by u(E) the center of
mass

__ 1 27if
ME) = Gud®) ée '
Consider the set
T={d6|6€0©ip=>0, 0<i<n}
since the @ are rational, it is clear that T is a finite set.

For § € T , let [f] be the ~g equivalence class in T' containing 6.
Define the leg Lg by the union of straight segments

L0 — ”([9])6211-1'0 U e21ri000,

and the ©-spider

Se = U Lg.
8T

Construction of fo. To define a map fo : So — Se which maps Ly to Ly,
we need to know that legs intersect only at their endpoints. Proposition 6.1 says
that this is the case.

PROPOSITION 6.1. The equivalence classes of ~g are unlinked.
The proof will occupy two pages, and requires a number of lemmas of intrinsic
interest.

Let Cy,...,Ca be the equivalence classes of the equivalence relation on
T—UL,0; given by = equivalent to y when {z,y} are ®-unlinked. Note that two
angles r and y are ®-unlinkable precisely when they both belong to the closure
of some class. '

The proofs of lemma. 6.2(1)-(4) are left to the reader.
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LEMMA 6.2.

(1) Let {z,y} C C; and {u,v} C C; for i # j, then if {z,y} N {u,v} = ¢
then {z,y} and {u,v} are unlinked.

(2) Let ¥ C T be a finite set, then ¥ is @-unlinked if and only if ¥ C C;
for some .

(3) The number d of equivalence classes satisfiesd = 1+ _-_, (Card(©;)—1).

(4) Each C; is a finite union of disjoint open arcs of T with the following
property: The set of boundary points of the arcs composing each C; can
be written in circular order as {Zo,yY0,Z1,¥Y1,--- yTm = T0,Ym = Yo}
such that for every i, the points z;,y; belong to ©y, for some k;, and
ki #£ k; if i # j. See figure 6.2.

Figure 6.2. Labels on the boundary of Cj.

It follows from 6.2(4) that for each class C;, we can construct a topological
circle C; by identifying the points z; and y;. Since z; and y; are part of the same
preangle, the map mg : ¢ — dr induces a continuous mapping mg; : C; — T.

LEMMA 6.3. The map mg; is an orientation-preserving homeomorphism.

PROOF: Clearly mg; is a local orientation-preserving homeomorphism; since C;
is compact it is proper, so it is a finite covering map, of some positive degree.
Since UC; = T, the sum of the degrees of the my ; must be d. By lemma 6.2(3),
there are d classes Cj, so each mq ; must have degree 1. i

COROLLARY 6.4. The circular order of the points of the closure of an equivalence
class C; is preserved by z — dz.

Note that the endpoints of the arcs of the C; may be identified by z — dz,
but this does not alter the circular order.

The following three lemmas say that we will be able to connect the legs with
angles that are related by ~g without any legs crossing.
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LEMMA 6.5. Suppose 0, and 6; are @-related, 6} and 6!, are ®-related, and that
{61,602} 2o {61,65}. Then {6,,6:} and {6;,6}} are unlinked.

PROOF: Suppose that {6;,6;} and {6},6;} are linked. Then the angles have
circular order 6,,67,62,6; in T. Since 6, e 6}, {61,602} N {6,605} = ¢, so the
four points are distinct.

For every m, d™6; and d™6; are ©-unlinkable, hence both belong to the
closure C;,, of some class, and similarly d™6},d™6} € C;,.. Since {61,602} and
{61,603} are linked and disjoint, Lemma 6.2(1) implies ¢g = jo. But corollary 6.4
implies that df,,dd},df;,d6; have the same circular order as 64,6, 6,65, and
hence they are linked.

We now proceed by induction on m. If i, = j, and {d™6,,d™6;} and
{d™6},d™63} are linked and disjoint, then as above we see that im+1 = Jm+1.

This implies that {6,,0,} ~e {6},0;}, a contradiction. il

LEMMA 6.6. Suppose {61,602} and {t1,%2} are unlinked, and that {6,,60.} and
{t2,%3} are unlinked. Then {6,,0,} and {11,%3} are unlinked.

PROOF: This is easy to see. |

PROOF OF PROPOSITION 6.1: Let Q@ and Q' be distinct linked ~g equivalence
classes. Then there exist {6;,6;} C Q and {6},65} C Q' with {6,,6,} and {61,603}
linked. Now 0; ~g 62 and 8} ~e 0} so there exist m,m' (with m, m' possibly
0) such that in the sequences 81,%1,... ,%m,02 and 61,91,... , ¥, 0; each angle
is @-related to the next. Using Lemma 6.5, we know that {6;,%:} and {6},%1}
are unlinked. By using Lemma 6.6 inductively, we see that {6;,%;} and {61,605}
are unlinked. Now we use Lemma 6.6 inductively again and see that {61,6.} and

{6,643} are unlinked, a contradiction. il

Choose a map f on Se by letting
flLe: Lo — Las

be any homeomorphism which fixes oo; this can be done because if 0, ~o 02 then
df, ~o db,, and such an f satisfies f(u[0]) = p[df)]. It is possible to write down a
formula for f on each leg Ly, but since any homeomorphism will do fine, it would

not be instructive to do so.
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Extending fe to fe.

LEMMA 6.7. The set Se is a finite connected graph, with vertices
{u([6]) | 6 € T} U {oo}.

PROOF: Since each leg contains 0o, Sg is connected. To show it is a graph with
the given vertices, we must show that the Ly intersect only at oo and u([6]).
Clearly, outside the unit disk, the Ly intersect only at co. One can easily show
that if two finite subsets of the unit circle are unlinked, then their convex hulls
don’t intersect. Thus, the convex hulls of the points of each equivalence class
in T/ ~e don’t intersect. For each equivalence class, the points p([6]) and the
segments of D N Lg which intersect y([6]) are contained in these convex hulls, and
hence they do not intersect. il

THEOREM 6.8. The map f : S — S extends to a topological polynomial fe :
S% — S? of degree

d=1+) (Card(©:)—1)
i=1
with strictly preperiodic critical points p([©;]) and oo of local degree Card(©;)
and d, respectively. Moreover, the Thurston equivalence class of fo is independent
of the choice of extension or the choice of the homeomorphisms fe|L,-

PROOF: First we will show that the map fo satisfies the hypothesis of proposi-
tion 5.4 of section 5, and can therefore be extended to an orientation preserving
branched map whose only critical points are among the x([f]), § € T and oo.

Let f be an extension of fo to small disks D, of the vertices = € verts(Se)
as in section 5. We need to show that for every vertex y in fo(Se) and every
component U of $? — Se, the map f is injective on (Ugef-1(y)Dz) NU.

In fact we will show that fe is injective on the vertices of 9U. Since at each
vertex = € AU except oo, the intersection U N D; is a single sector, this implies
the hypothesis at finite vertices. To do this we need the following lemma.

LEMMA 6.9. If d0; ~eo df, and there exists k so that 6, and 6, are in Ci, then
0, ~o 0.

PROOF: By our hypothesis, there exist n angles ¢1, ... ,®n (With n possibly Z€ro)
such that in the sequence df;, 1,92, ... ,¢n,d02, each angle is @-related to the
next. Because mq maps C} surjectively onto T (lemma 6.3), there also exist angles
©l,... ¢ € Cr such that dp! = ¢;. We now have that consecutive angles in the
sequence 01,p),Ph, - . ,Ph, 02 are O-related. So 8, ~e 6. 11
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The intersection U N S! is a subset of some Ce. The finite vertices in 8U are
a subset of

{w((6]) 16 € TN Cy}.

If two such vertices x,y map to the same vertex fo(z), then the angles of the legs
attached to z and y must map to the angles of the legs attached to fo(z). The
angles of the legs attached to fe(z) are equivalent, and the angles attached to z
and y are in the same C;, so these angles are equivalent by claim 6.9. Thus, we
must have z = y.

In the case = 0o we have to see that f is injective on Doo N U. At o0, f is
given by re*® i rei?, the angular coordinates of the points in U near oo are all
in some Cp, and by lemma 6.3 f will be injective on D, NU.

Applying proposition 5.4 constructs a branched map fo : S — S? to which
we will later apply Thurston’s theorem.

By construction, the critical points of fe must be among the vertices of the
graph S.

Let z = p(F) be the vertex corresponding to the equivalence class E. If E
contains no critical angles, i.e., ENO©; = ¢ for all ©; € ©. Then E C C; (by
proposition 6.1 and lemma 6.2(2)) for some ¢, and by lemma 6.3 mq |£ is injective
and preserves circular order. This means that the vertex z is not a critical point.

See figure 6.10.

Figure 6.10. Local degree is one at z.

If ©; C E, then all the legs Ly with § € O; map to a single leg, and the
restriction of mg to the angles of legs in any sector bounded by the Ly with
0 € O; is also injective and order preserving. This means that fo maps such a
sector of D to the full disc Dy (,) with degree 1, and so z is a critical point with
local degree Card(©;). See figure 6.11.
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Figure 6.11. A critical point of degree 3.

This covers all the vertices of the spider, except the point at co. Since the
map on the legs is induced by z — z%, the only way in which the degree could
be lower than d, is if a sector at infinity has an opening greater than 1/d. This
doesn’t occur since m4 is injective on Cj;.

The degree of fo is now immediate from the Riemann-Hurwitz formula.

Clearly the orbits of the critical points are finite, so fe is a Thurston mapping,.
It remains to show that no critical point is periodic, which is a bit more delicate
than one might imagine.

LEMMA 6.12. If no ©; is periodic, then no [0;] is periodic.

PROOF: Pick a fixed Ok. The orbit of O is eventually periodic, and the periodic
part of the orbit contains no angle in any ©;, since these are assumed not to be
periodic. Each angle in the periodic part of the orbit is therefore in one of the
Ci, and these periodic angles will then have an itinerary Ck,,Ck,,...,Ck, (up
to cyclic permutation). Let @ be the set of rational angles which have a cyclic
permutation of Ci,, Ck,,... ,Ck,, as itinerary.

For any rational angle 6 in the complement of  and any ¢ € Q, we will
show that 6 is not ©-related to ¢. Thus 8 g ¢ for any ¢ € @, and therefore the
equivalence class of O is not periodic since O is not in Q.

Suppose there is a rational angle 8 € @ and ¢ € @ such that 0 is O-related
to ¢. Then there is some smallest 7 such that d'~16 ¢ Q and d*6 = % € Q. Since
di-9 e OCy; for some j, and since 6 is rational, 9 is either preperiodic or periodic.
If it is preperiodic there are two angles (the last preperiodic angle in the orbit of
1 and the last periodic angle in the orbit of 1) in the same Cj, which map to the
same angle, contradicting lemma 6.3. If 3 is periodic then we get a contradiction
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also since the inverse image of ¢ in C¥; is accounted for so we can’t have another
inverse in OC}; . 1

Finally, that the Thurston equivalence class of fg is independent of the choice
of extension or the choice of the homeomorphisms fe|r, follows from corollary
5.3. If fo and f1 are two such extensions, the diagram

¥
(Szano) _— (SzaPﬁ)
fol fll
identi
(S2,Pfo) _u—tl) (S2,Pf1)

commutes and v is isotopic to the identity rel Py,.
QED Theorem 6.8

We will use the notation fe to refer to fo when there is no danger of confu-
sion.



Section 7. The topological polynomial fe has no Thurston obstruction.

This section is devoted to proving the following result.
THEOREM 7.1. The topological polynomial fe has no Thurston obstruction.

PROOF: Assume that fe@ has a Thurston obstruction. We know from theorem 4.5
that if fo has a Thurston obstruction then it has a Levy cycle A = {70,... ,7k =
70}. We will show that any curve 4 € A can only intersect the Lg,; in a way which
does not separate the points of Psg N D(7y). This implies that the angles of the
legs to the points contained in the disks of the Levy cycle must be ©®-equivalent,
and hence the curves of the Levy cycle are peripheral, a contradiction.

Let X C S? be closed, v be a simple closed curve in $? — X, and p be a union
of closed arcs in S? with endpoints in X. Define the geometric intersection number
by

p-y= min Card(p N 7).
~' isotopic to v rel X

We will say that p intersects v essentially when p- v # 0.

Essential Inessential Inessential

Figure 7.3. Essential and inessential intersections.
The dots represent X.

Of course, p - v depends on X, but in our application, X will always be
Pjo U se and it is safe not to mention it.

Our object is to show that Lg -y = 0, for any critical leg Lg with 6 € ©; and
any curve v € A.

LEMMA 7.5. If 6 € T is a postcritical angle, then

E , Lg -7 < Lo - vi41-
¢€eT
dé=0

PROOF: By an isotopy, move vit+1 rel X to be in minimal position with respect
to Lg, and let 7! be the component of fg'(vi+1) homotopic to 7;. Then we see

U Lenvi C (fo! (Lo Nvigr)) N i

¢€T
dop=0

37
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and since, by definition 4.2, fe is injective on v} the result follows. I

For any = € X, let L(z) be the union of the legs landing at z.

COROLLARY 7.6. For a periodic € X and v; € A, L(fo°"(2)) - Yj+n = L(z) - 7;
for all j,n.

PROOF: L(z)-7; < L(fo(2)) - 141 < L(fo* (@) 142 < ... < L(z) - 7.
LEMMA 7.7. If z € X is strictly preperiodic then L(z) -y = 0 for any v € A.

PROOF: Let z € X be a strictly preperiodic point, and let y = f& be the first
periodic point in its orbit. Let y' be the periodic inverse image of y, and let

ok—1
yll — Py .

Then for any v;4+1 € A, we have
L(y") - vi + L(y") - % < L(y) - Yir

by lemma 7.5, but L(y') - vi = L(y) - vi4+1 by corollary 7.6, so L(y")-vi = 0. I
Note that

52—0 U Lo.
i=1 0€O;

consists of d of simply connected components Ci,... ,Cq we call patches, where
C; N S = C;; in particular there are exactly d of them.

We are now in a position to finish the proof of the theorem. The previous
lemma implies that the legs Ly with 6 € ©; for any ¢ do not intersect any curve
in the Levy cycle essentially. If ¥ € A, then the orbit of the postcritical points
in D(y) and the legs attached to them must have the same itinerary of patches.
That is if z,y € D(y) N Py, the legs L(fg(w)),L(fg(y)) € C;; for some ij.
Since the legs L( fg (z)), L( féj (y)) are in the same patch, their angles are in
the same equivalence class Cj; for all j. This means that the angles of the legs
L(z), L(y) are ©-equivalent. Since all legs with angles in the same ®-equivalence
class land at the same point by construction, the curves in A must be peripheral
a contradiction. I

QED Theorem



Section 8 Applying Thurston’s Theorem to fe.
In this section, we apply theorem 3.2 to the branched map feo : S? — S?

constructed from a PPDFA in section 6. By theorem 7.1, we see that there exists a
polynomial p which is Thurston equivalent to fe, i.e. there exist homeomorphisms
¢,4' : S — P!, isotopic rel Pfy and such that the diagram

¢I
(Sz,Pfe) -_— (PlaPp)

fel Pl
(5%, Pre) —— (PL,P)

commutes. We want to show that p is naturally a marked polynomial, and that
the marking angles come from the original PPDFA @©. This is not really difficult,
but it is not enough to simply normalize p to be monic and centered. There are
in general d — 1 different conjugates of p which are monic and centered, and we
need to distinguish one of these.

To do this, we need to show that the spider ¢(Se) can be embedded in P! so
that the image is made up of external rays of p. In order to make this embedding
unique, we will need the consider the Green’s function [JM] G, of K,, and to
choose for each leg Ly of Se a parametrization pg : [1,00] — Lg mapping infinity
to infinity.

PROPOSITION 8.1. There exists a unique embedding ¥ : Se — P! mapping Py,
to P, and isotopic rel Py, to ¢, such that the image of each leg is an external ray,
and

Gp(¥(pe(t))) = logt.

PROOF: The mapping ¥ will be a fixed point of a contracting mapping. The
contraction will come from the fact that p is expanding in the orbifold metric.
Unfortunately, p is strictly but not strongly expanding: the expansion factor tends
to 1 near infinity; this requires setting up the space on which the contraction acts
so that one never needs to measure distances near infinity.

Consider the space Se of spider mappings
So = {¢: Se — P! | ¥(Pso) = P, and 9 isotopic to ¢|sg rel Pye }

and define a mapping 7o : Se@ — Se as follows. For each 0, let us first find the leg
7(¥(Lg)). There exists a unique component X of p~!(1)(Lag)) — co which contains

¢'(u(6)) = #(ul6))-
39
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o If ¢(u[f]) is not a critical point the map p will be injective on X; we choose
7(¥(Le)) = X.
o If #(u[6]) is a critical point, of local degree m, then X is the union of m
legs, which have a natural order (not simply circular order) since exactly one
component of the complement contains 1(u[d6]). The same construction with
¢ instead of 3 has the same property, and ¢'(Lg) has some position in that
order. We choose 7(1)(Ls)) to be the leg which occupies the same position.
Define 7(1)(pe(t)) € p~'(pao(t?)) to be the unique inverse image in 7(1(Ly)).
We need to show that 7(3) € Se. First observe that ¢' |sg and 7(¢ |s ) only
differ by the parametrizations of the legs. Choose an isotopy t,,s € [0,1] with
Yo = ¢ |se to ¥1 = %, and lift it to a 3! starting at ¢’ |sg, i.e., ¥/ is the spider
mapping depending continuously on s, which satisfies ¢, 0 fo = poy!, and 1§ = ¢'.
This is possible, and the isotopy 1 is unique, by the curve lifting property of
covering spaces. For all s, 9| differs from 7(v,) only by a parametrization of the
legs, so 7(%) is in the correct isotopy class.

Unfortunately, there is no metric on Se for which 7 is contracting; and we
need to restrict to an invariant subset Sg, given by the following conditions:

e on each leg Ly, 1 maps the segment py([2,00]) to an external ray of p, with
Gp(¥(pe(t))) = logt.

o Gp(¥(pe([1,2]))) < log2.

It isn’t quite obvious that Sg is non-empty, but we will leave this to the
reader, as well as the easy verification that it is invariant. We also leave the
reader to verify that any two elements of Sg are isotopic through elements of Sg.

We will put a metric d(+,) on Sg as follows:

Choose to, %1 € So. Let 6(bo(pe(t)), 1(po(t))) =
inf { The orbifold length of the curve 9,(ps(t)) | 0 < s < 1}.

where the infimum is taken over all isotopies 1, joining 1o and %; through Sg.
Then define the metric

d(o, 1) = 3‘615" 8(o(pe(t)), Y1(pe(t)))-

1<i<2

An isotopy between 1y and ; lifts to an isotopy between (1) and 7(31),
and in the orbifold metric the lift of any curve a in the compact set {z | Gp(z) <
log 2} is shorter than a by a fixed factor K < 1. Thus 7 : Sg — Sg is strongly
contracting, and thus 7 has a fixed point V.

For any initial condition 1 we will have that 7(1(ps(t))) C Rs, for t > 21/¢"
and some 6,. Since the distance between 7"(¥(ps(2))) and ¥(ps(2)) goes to zero
we must have that 8, approaches some angle 8'. Therefore ¥ is a spider whose
legs are external rays, and satisfies G,(¥(po(t))) = logt. I
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PROPOSITION 8.2. There exists a unique affine mapping a : C — C such that

pe = aopoa~! is centered and monic, and such that for all § € T, we have that
a(¥)(Le) is the external ray of pe at angle 6.

ProOF: Either 0 € T, in which case ¥(Lg) is a distinguished fixed ray of p, or
one sector at infinity for (52, Se) contains the line [1,00], and there is a unique

distinguished fixed ray in the component of C — (K, U ¥(Se)) corresponding to
that sector.

There are d different affine mappings conjugating p to be monic and centered,
since conjugation by a rotation of 27 /d leaves the polynomial monic. However,
there is a unique affine mapping « such that pe = a op o a™! is centered and
monic, and such that the distinguished fixed ray is Ro in C — K, .

The circular order of the external ray ao¥(Lg) and the rays at angles k/d, k
0,...,d — 1 is the same as the circular order of 6 and the elements k/d,k
0,...,d —1 of T. Hence the itinerary under p of a leg o 0 ¥(Ly) with respect to
C — Ui Ry 4 coincides with the itinerary of 6 under my with respect to T —Uik/d.

Since this itinerary is essentially the development of 8 in base d, we have shown
that o o ¥(Ly) is the external ray of pe at angle 6. I



Section 9. Proofs of theorems II and III.

We are now in a position to prove the main theorems.

PROOF OF THEOREM II: There is an obvious mapping PA, given in section 1,
which associates to a marked polynomial a collection of d-preangles. Let A be the

set of PPDFA’s.
Let (p(2);61,...,605) be a marked polynomial of degree d, and

PA(p(z);61,...,0,) = (O1,...,0,).

The final result of the previous 3 sections is to define the map AP : ©@ —
pe from A to P, and is is clear from proposition 8.2 that PA(pe) = O, i.e.,
PAo AP =1id.

It remains to show that
LEMMA 9.1. APo PA = id.

PROOF: Let
PA(p(2);64,...,0,) =0,

and let
S(p;01,010n) = U Ry.
6eT

There are homeomorphisms h : Se@ — S(p;6,,...,6,) Which maps the leg Lg to the
external ray Ry for all § € Te; and they differ only by a parametrizations of the
legs. Moreover, such a homeomorphism preserves circular order at the vertices,
and by corollary 5.6 can be extended to a homeomorphism h:S? - C. The map
h~lopoh: (5%, Se) — (52, Se) is an extension of a spider map isotopic to fe so
by theorem 6.8 h~'opokh is equivalent to fe. Since p is equivalent to any conjugate
of itself, we have that p is equivalent to fo and thus AP(®) = (p(2);6;,...,05)
It follows from proposition 8.2 that §; = 8 foralli =1,...,n.

QED Theorem II

Proof of theorem III.

Theorem III is an easy consequence of theorems I and II.
PROOF OF THEOREM III: In one direction, if p is a centered monic polynomial
with critical points {w1,...,wn}, and if (61,...,0,) and (63,...,6;) are two mark-
ings of p with Ry, and Rg: both landing at p(wi), then the rays of ©;, and O} also
land at the same point and by theorem I, we have ©; ~¢ Oi.

To show the converse, reorder ®' so that ©; ~¢ 0},...,0, ~e O},
1 n
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Let (p;61,...,6x) and (p';01,...,0.,) be marked polynomials that satisfy, re-
spectively, PA(p;61,...,0,) = © and PA(p';6,,...,0,) = ©'. These exist by
the surjectivity of PA. By I, the external rays of p with angles in @} all land at
the same (critical) point as those with angles in ©;. Since the elements of @' are
d-preangles, the external rays of p with angles in ©} all map to a ray landing at
the corresponding critical value. So we see that there is a marking (6i,...,6,) of
p such that

@ = PA(p; 6,... ,00),

and the theorem follows from the injectivity of PA.
QED Theorem III
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bounded postcritical set, 5.

branched covering map, 4.
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30, 33, 34, 39.

Carleson, L., 9.

center of mass, 30.

centered monic polynomial, 42.

centered polynomial, 6, 39, 41.

characteristic polynomial, 23.

circular arcs, 28.

circular order, 28, 31, 32, 34, 40, 41, 42.

closed interval, 8.

closure of an equivalence class, 9, 31.

closure of some class, 30.

combinatorial conditions on the prean-
gles, 7.

complex structure, 16, 26.

computer algorithm, 12.

conjugate of a polynomial, 42.

contraction, 39.

convex hulls, 6, 8, 9, 33.
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covering map, 14, 31.

covering spaces, 40.
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critical leg, 37.
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critical set, 4.
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curve lifting property, 40.
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curves, non-homotopic, 16.

curves, non-peripheral, 16, 21.

curves, peripheral, 20, 25, 37, 38.

curves, sets of, 22.

diameter of K,, 15.

dynamical behavior, 30.

dynamical system, 12.

eigenvalue, 16.

embedded arc, 8.

embedded graphs, 26.

embedding, 39.

equivalence classes of ~g, 30.



equivalent angles, 11.

essential curves, 20, 21, 22.

essential intersection, 37.

Euler characteristic, 16.

eventually periodic, 35.

expanding metric, 12, 15, 39.

extending a map, 12, 26, 27, 28, 30.

extension of a spider map, 42.

extension, 26, 27, 33.

extension, arbitrary choice of, 33, 36.

external rays, 5, 6, 30, 39, 40, 41, 42, 43.

filled in Julia set, 5, 30.

finite connected graph, 33.

finite embedded graph, 26.

finite graph, 26.

fixed point, 39, 40.

fixed ray, 41.

forwarned, reader, 16.

geodesic, 20.

geometric intersection number, 37.

graph map, 26, 27.

graph, 12, 24, 28, 30, 33, 34.

Green’s function, 5.

harmonic function, 5.

homotopic curves, 16, 20, 25.

hyperbolic orbifold, 16, 17.

identity, 5, 26, 27, 36.

induced equivalence relation, 9.

induced permutation, 20.

innermost curve, 21, 23.

intersects essentially, 37.

isotopic, 16, 26, 27, 36, 37, 39, 40, 42.

isotopy class, 40.

isotopy on the whole sphere, 27.

iterate onto a periodic cycle, 23.

iteration of p, 4.

iteration underlying Thurston’s theorem,
12.

itinerary, 35, 38, 41.

Jones, P., 9.

Julia sets, 4.

land, 5, 6, 7, 10, 11, 13, 14, 15, 30, 38,
42, 43.

leading coefficient, 5.

leg, 30, 32, 33, 34, 39, 40, 41, 42.
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length preserving, 27.

length-minmizing curve, 15.

Levy Cycle, 13, 19, 20, 22, 23, 24, 25,
37, 38.

Levy, S., 24.

lift, 15.

lifting isotopies, 40.

lifting paths, 15.

linear interpolation, 28.

local degree, 33, 34, 40.

local homeomorphism, 14.

local orientation-preserving homeomor-
phism, 31.

locally connected, 5.

locally injective, 28.

logarithmic pole, 5.

Mandelbrot set, 10.

marked polynomial, 6, 7, 10, 11, 30, 39,
42, 43.

marked rays, 30.

Markov partition, 12.

matings, 11.

matrix, Thurston, 16, 23.

Milnor, J., 5.

minimality of T", 21.

minimality, 22.

monic polynomial, 5, 6, 39, 41, 42.

monic, not, 5.

multicurve, 16, 17, 20.

multiplicative group structure on S*, 6.

negligible curve, 20, 21. ‘

non-hyperbolic orbifold, 17.

non-peripheral, 16.

obstructing multicurve, 19.

open interval, 8.

open map, 19.

orbifold length, 40.

orbifold metric, 12, 15, 39, 40.

orbifold, non-hyperbolic, 17.

orbifold, see also hyperbolic orbifold, 16.

orbit, 4, 5, 12, 13, 35, 38.

orientation preserving branched map, 26,
33, 28.

orientation preserving homeomorphism,
26.



orientation preserving, 16.

parametrization of the legs, 40.

patches, 38.

path, 15.

periodic angles, 35.

periodic cycle, 23, 24.

periodic inverse image, 24, 38.

periodic point, 5, 6, 38.

periodic postcritical points, 23.

periodic, 4, 6, 10, 12, 13, 35.

peripheral curves, 20, 25, 37, 38.

permutation, 35.

permutation, induced, 20, 22.

perturbations, 8.

piecewise-linear, 27.

Poincaré metric, 20.

polar coordinates, 27.

polynomial, conjugate of, 42.

polynomial, see centered and monic
polynomial, 5.

polynomial, see marked polynomial, 6.

polynomial, see Thurston Polynomial, 5.

postcritical angle, 14, 37.

postcritical point, 6, 14, 21, 38.

postcritical points, preperiodic, 24.

postcritical set, 4, 5, 17, 18.

postcritically finite, 16, 17, 24.

power set, 22. '

PPDFA, 10, 11, 12, 18, 24, 30, 39, 42.

preangle, 6, 9, 11, 13, 31.

preperiodic critical points, 4, 33.

preperiodic point, 6.

preperiodic polynomial determining fam-
ily of angles (PPDFA), 10.

preperiodic polynomial, 5, 11.

preperiodic postcritical points, 24.

preperiodic strictly, 4.

preperiodic, 5, 12, 35, 38.

proper, 14, 19, 23, 31.

radial lines, 24.

ray, 6, 11, 43.

ray, see external ray, 5.

ray, see fixed ray, 41.

rays landing at periodic and preperiodic
points, 6.

47

rays landing at preperiodic points, 10.

Rees, M., 20.

regular extension, 26, 27.

related angles, 30, 31.

Riemann surface, 14.

Riemann-Hurwitz formula, 10, 35.

simple closed curve, 16, 21, 37.

singletons, 20, 22.

spider mappings, 39, 40.

spider, 35, 39, 40.
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strictly preperiodic, 4, 6, 10, 33.

strongly contracting, 40.
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structure, complex, 16, 26.

subharmonic function, 5.
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Tchebychev polynomials, 17.

Thurston equivalence class, 33, 36.

Thurston equivalent, 16, 39.

Thurston linear transformation, 16, 23.

Thurston map, 16, 19, 35.

Thurston obstruction, 12, 17, 19, 20, 24,
25, 37.

Thurston polynomial, 5, 7, 12.

Thurston’s theorem, 12, 34.

Thurston’s topological characterization
of rational functions, 4.

Thurston, W., 17.

topological circle, 31.

topological polynomial, 17, 19, 20, 24,
33, 37.

topology of K, 9.

unlinkable, 12.

unlinked d-preangles., 8.

unlinked, 7, 8, 10, 12, 30, 31, 32, 33.

vertices, 26, 27, 28, 29, 33, 34, 26, 27,
28, 33, 34, 35, 42.
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