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1 Introduction

In this paper we introduce a new set of parameters that we call pleating
coordinates for the Teichmiiller space T1. of the punctured torus. The co-
ordinate grid is shown in figure 1. These coordinates have this geometric
configuration when T, is embedded as a holomorphic family of Kleinian
groups {G,} depending on a complex parameter 4 that varies in a simply
connected domain M in C. The embedding is made in such a way that the
regular set (G,) has a unique invariant component 2(G,) and the points
in Ty, are represented by the Riemann surfaces 2%(G,)/G,. This embed-
ding is known as the Maskit embedding for T1,1- (See section 2 for a more
leisurely and detailed explanation of the technical terms and ideas here.)

The advantages of our coordinates are threefold: first, they relate directly
to the geometry of the hyperbolic manifold H? /G, or more precisely to the
component dCo of the convex hull boundary “facing” Qo(G,) (see section
4.2); second, they reflect exactly the visual patterns one sees in the limit
sets; and third, they are directly computable from the generators of G,. As
1s apparent in figure 1, one sees quite explicitly how M sits inside C.

The boundary of the convex hull is invariant under G, and the coordinates
can be read off from the geometry of the punctured torus S, = dC, /G,. The
surface 9Cq carries a natural hyperbolic metric and is pleated along geodesics
that project to a geodesic lamination A on S,. The “vertical” lines in the grid
represent lines along which A remains fixed. We call such a line a pleating
ray. The set of all possible laminations on a punctured torus is naturally
identified with R and all the laminations except the one corresponding to oo
determine pleating rays. The rays appear in figure 1 in their natural order
along R. For A € R, the pleating ray P, is asymptotic to the real line
Ry =2) as g — oo.

When A € Q the lamination is a simple closed geodesic ¥(A)on §,. If
9x(1) € G, is an element representing v()), the ray P, coincides with a
unique branch of the locus {4 € C:Trgy(u) > 2}. These rational rays are
dense in M, and by a recent result of McMullen [11], their endpoints are
dense in M.

Along the rational rays, Q0(G,) is a union of overlapping circles that
fit together in a manner reflecting the continued fraction expansion of A.
These patterns are visually apparent, at least for values of y near OM, in



pictures of the limit sets of these groups as we see in figure 2. Our interest
in these patterns, discovered by David Wright in the course of a computer
investigation of M, was the original motivation for the work here.

Each rational ray is naturally parametrized by the length of the pleating
lamination. This length, however, does not define a globally continuous pa-
rameter: it becomes infinite as we move towards an irrational ray. Therefore,
to obtain the “horizontal” lines in figure 1 we have to scale appropriately.
To do this, we make a specific choice of transverse measure for the pleating
lamination A and define the pleating length of G, to be the length of the
pleating lamination with respect to this choice. The “horizontal” lines are
lines of constant pleating length. Again we find explicit formulae for these
lines when ) is rational. By taking appropriate limits, we are able to charac-
terize the irrational pleating rays as the real loci of a family of holomorphic
functions.

The paper is organized as follows. In section 2, we set notation and
describe the basic theory of the Maskit embedding and its relation to the
classical theory of flat tori. In section 3 we discuss simple closed curves
on the torus and derive some easy properties of the corresponding trace
polynomials.

The combinatorial circle patterns that appear in the limit sets and the
rational pleating rays are the topic of section 4. After summarizing the basic
facts we need about pleated surfaces and the convex hull boundary of the
three manifold H® /G,,, we characterize the groups on the rational pleating
rays as those for which the limit set A(G,) is contained in a particular pattern
of overlapping circles.

The first of our main results is proved in section 5: we identify the rational
pleating ray with the real locus described above. The proof involves the fact,
proved in a more general setting in [6], that the pleating locus of 0Co(p)
varies continuously with u. ,

Section 6 is devoted to real pleating rays. We give the basic facts about
measured geodesic laminations and explain the choice of the transverse mea-
sure referred to above. To prove the continuity of the pleating length, we
use the results, also proved in [6], that the bending measure and the hyper-
bolic structure of 9Cq(x) depend continuously on x. We use this to define
a complex length function associated to each lamination whose real locus
characterizes the pleating ray.

Finally in section 7 we collect our results to prove the laminations and
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their pleating lengths are coordinates for M (theorem 7.1).

In a future paper, we plan to use the methods developed here to give a
complete description of the boundary of M. In particular, we hope to give
proofs of McMullen’s theorems [11, 12] for this embedding: that the cusp
points are dense in M and that M is a Jordan curve,

Although our work here relates to the punctured torus, most of the tech-
niques we have developed apply more generally. In the future we expect to
extend our analysis to any surface of finite topological type.

We wish to express our thanks to a number of people. First, to David
Wright who introduced us to this problem and has generously allowed us to
develop his ideas and to use his computer pictures. Second, to Curt Mc-
Mullen, who has graciously shared his ideas and work. Third to David Ep-
stein, Michael Handel, Steve Kerckhoff, Paddy Patterson and Bill Thurston
who have taught us much background material and patiently discussed the
work as it progressed. Finally, we would like to acknowledge the support of
the NSF in the US, the SERC in the UK, the Danish Technical University
and the IMS at SUN Y-Stonybrook.



AAY

~ \ . .
SONNAN

\

1

\\\\}/\\t
NAARRRE
AT

Figure 1: The Maskit Embedding with Pleating Coordinates

2 The Maskit Embedding
2.1 The definition

Let T, be the Teichmiller space of a punctured torus. We want to rep-
resent T, as a space of discrete subgroups of aut(C) with a distinguished
set of generators having certain special properties. Before describing these
properties, we need‘some notation.

The group aut(C) is the group PSL(2,C). We shall always identify the
matrix representing an element of PSL(2,C) with the corresponding linear
fractional transformation acting on C. A discrete subgroup G C PSL(2, C)
is called a Kleinian group. A Kleinian group is called marked if it has a
distinguished set of generators. The subset @ = Q(G) C C on which G
acts properly discontinuously is called the regular set of G, and the limit set
A = A(G) is its complement.

Denote by M the space of marked groups characterized by the following
conditions:

A group G is in M if and only if

1. G =< §,T > is a free group on two generators and S is parabolic.
2. The connected components of the regular set Q(G) are of two kinds:

(a) A simply connected G-invariant component g for which the orbit
space /G is topologically conjugate to the punctured torus.

(b) Non-invariant components §;, ¢ > 1, that are are conjugate to
one another under G and for which each orbit space ,;/stab({)
is conformally the thrice punctured sphere ¥.
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A group G e M represents the point in T, correspbnding to the con-
formal structure induced on 0 /G from the natural complex structure on C.
The torus is marked by curves corresponding to the homotopy classes of the
(ordered) pair of generators § and T.

We shall show in the next section that AA # 0. With this assumption,
one obtains a bijective correspondence between conjugacy classes of groups
in M and points in T, ;. The proof of this is as follows.

Let G € M and let T be the corresponding point in T;;. We may
obtain any other point 7" in T1, as follows. The conformal structure on
T' relative to that on 7 is described by a Beltrami differential on 7 that
lifts to a G-invariant Beltrami differential v defined on Q%(G). Extend v
to be zero on C \ Qy(G); clearly the extended differential, also denoted by
v, is G-invariant. By the measurable Riemann mapping theorem there is a
homeomorphism A* of C that conjugates G into a group G’ whose regular
set }(G’) is homeomorphic to Q(G); in particular, it is clear that G' € M
and that Qy(G")/G’ represents the torus 7"

Suppose now that G,G' € M represent the same point in T, ;. Since
X is conformally rigid, there are no deformations of G supported on the
components {};, 1 > 1. By assumption G and G’ induce the same conformal
structure on (), so since there are no deformations of G supported on C\
by Sullivan’s theorem [16], it follows that G and G’ must be conjugate in
SL(2,C).

The above discussion shows that each point in T is represented by a
unique conjugacy class of groups in M. By choosing an appropriate normal-
ization for these groups, we can represent T, as a one complex dimensional
subspace M C M. This representation is known as the Maskit embedding of
T1,1; details of one specific normalization are described in the next section.

2.2 Normali7-'‘»n

Suppose that G € M and consider the subgroup generated by S, T7-1ST = §
and K = §-16. By assumption, S is parabolic. We claim that the same
is true of the commutator K. Clearly, since Qq is simply connected, G
may be identified with 7,(7). Since the projection onto the orbit space
1s holomorphic, and since the element corresponding to a loop around the
puncture is the commutator of the generators, K must be parabolic.

We define M; C M as the set of groups G, for which the fixed points
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of S, § and K are normalized to be at 00, 0 and —1 respectively. We write
elements of PSL(2,C) as matrices so we may assume TrS = 2. An easy
computation shows that
1 2
=5 1)

- (10
=(27)

_"'-1 _ 1 2
k-ss- (4 1),

It is also easy to compute that the most general element T conjugating S to
S is of the form
o @ 1
: 0

for some a € C. It is standard that the signs of the entries of the generators
may be chosen arbitrarily so we take e = —1 and write a@ = iy, u € C. We

denote
el
(% 9)

by T, and write G, for G =< 5, T, >.

We denote by F' the subgroup of G, generated by S and S. Notice that
F is independent of u. Clearly F is Fuchsian and stabilizes the upper and
lower half planes H and H".

A fundamental domain for F is

and that

D={-1<Rz<1}U{|lz+1/2] 21/2}U{|z-1/2| > 1/2}.

The orbit spaces of the upper and lower half plane are thrice punctured
spheres ¥ and I*.

We now show that M, # @ by proving that G, € M, whenever y = it and
t € R,t > 2. This is a special case of the plumbing construction described
in section 6.3 of [7].



Let Ho = {z € C:S2 > t} and Hy = {z € C:|z —it/2| < t/2} be
horodisks at 0o and 0 respectively in H. It is easy to check that T,(H,) =
C\ H,, and that the condition ¢ > 2 forces HoNnH, =0.

Using elementary combinations theorems (for instance the packing the-
orems in (1] page 103 or (10] page 171) the region R consisting of the part
of D exterior to Hy and H, is a fundamental domain for G,. Furthermore,
it is easy to see that R/G, consists of two connected components, a punc-
tured torus RN H/G, and a thrice punctured sphere RN H*/G,. It is also
a consequence of Maskit’s second combination theorem, [9], that the con-
nected component of ((G,) that contains R is simply connected, and that
the remaining components of Q) are all conjugate to H* by elements of G,.

We now identify M, with the connected component of {4 € C: G, € M}
containing p = it with ¢t > 2. The above discussion shows that M may be
identified with T, ; so we refer to M as the Maskit embedding of T ;.

2.2.1 Shape of the limit set

In the groups G, constructed above, with u = it, t > 2, Ty(o0) = pu = it.
Hence the lower half plane H* is a non-invariant component of the regular
set. The real axis is in the limit set, and therefore the limit set consists of
the closure of the translates of the real axis. We see that Q0(G) is carved
out of the upper half plane H by removing the translates by elements of G
of H*; more precisely,

QWG)=H\ |J W(H").

WEG,W#id

The interiors of the domains W(H"), W € G are the components (;(G),t >
1 referred to in 2(b) above, and the stabilizers of these components are the
conjugates of the subgroup F.

Now consider any deformation h of G, to another group G’ in M, and
suppose h is normalized so that 0, —1, and oo are fixed. Then h conjugates
F into a group F' generated by parabolics S, 5’ with parabolic product
K'=3§-1g" fixing 0, co and —1 respectively. It is easy to see that the only
such group is F itself, thus F= F', S=5', § = §'. Now if T" = T, A1
then T” conjugates S to S’ and hence is of the form T, for some u' € C.
Thus we find G' = G € M. Therefore set Q(G,) is obtained by carving

out images of H* exactly as described for the case y = it above.
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2.3 Recognizing the boundary

The observations in the last section on the shape of Qo give us a useful cri-
terion for recognizing, for p € M, whether p € int M or g € OM. Groups
with g € OM are described by a classical result of Bers [2]. First, all the
groups in OM are discrete. Second, either G, contains, in addition to those
containing S and K, another conjugacy class of parabolic elements (acciden-
tal parabolics), or G, is degenerate. In the first case Qo(G,) degenerates
into a countable union of round disks, tangent at the fixed points of the new
accidental parabolics; in the second, Qo(G,) completely disappears so that
Q) consists entirely of the images of H* under G,.
Therefore we have,

Proposition 2.1 Ifu € M and if there is a connected component of Q(G,.)
that is not a disk, then p € int M.

2.3.1 Locating the cusps

A recent result of McMullen, [11], shows that cusps are dense in the bound-
ary of the Bers embedding of the Teichmiiller space of any surface of finite
topological type. The same methods can be applied to show that in our
case, the cusps are dense in 9M. Thus a very good picture of M could be
obtained if one knew the exact position of the cusps. The was the direction
taken by David Wright [19] in his original investigation of OM (made before
McMullen’s proof of the density conjecture and adding credence to it).

The only elements of G that can become accidentally parabolic are those
in conjugacy classes that represent simple closed curves on the torus §, =
Qo(p)/G,. Therefore if these elements are enumerated systematically, and
points in C are found where their traces are +2 in a coherent way, a picture
of M will emerge. The method of enumeration is explained in the sections
that follow. For the moment let us simply note that, given an element g € G
representing a simple closed curve y on the torus, there is ezactly one point
on OM for which Trg = 2. The existence of such a point is standard and
is proved by exhibiting a deformation of the torus that shrinks the length of
~ to zero (see for example, (2]). Maskit showed us how to prove uniqueness
and this is done in [5]. We do not need to use this result here.



2.4 Relation to the classical theory

Suppose that u € M. Since the orbit space S, = Q(G,)/G, is a punctured
torus, it admits an intermediate covering space which is the plane C punc-
tured at a lattice L. The marking on S, by the generators S and T, of G,
determines a set of generators for the lattice L that we denote by S and T.
Without loss of generality we may normalize and write ‘

_&:z—+z+1,I:z—»z+r;

and we may assume that St > 0. We may therefore identify the unpunctured
torus S, whose classical modulus is 7 with our punctured torus S,. In this
way we obtain a holomorphic homeomorphism ¢: H — M. In particular, M
is a simply connected domain in C. The parametrization of M has of course
been chosen so that M looks as much like H as possible. See figure 1 and
section 2.3.1 for more details.

As indicated in section 2.3.1 we need to enumerate the homotopy classes
of simple closed curves on the torus. The solution to the same problem on
the flat torus is much easier. For each (p,q) € Z%, (p,q) = 1, there is a
homology class S™PT7 that represents a family of parallel closed geodesics on
S. All closed geodesics on S are simple, and all arise in this way.

The map m1(S,) — m1(S,) induced by the covering Qo — C/L maps G,
to its abelianization Z2. Thus S~?T7 represents only a homology class in
71(S,). However, we have the following proposition, see [15],

Proposition 2.2 Given p,q € Z,(p,q) = 1, there is a unique conjugacy
class in G that represents a homotopy class of simple closed curves in the
homology class of S™PT?. These elements represent all the simple closed
curves on S,.

Remark: In the sequel we will call the above homotopy class of curves the
p/g-homotopy class. We denote the geodesic in this class by v(p/q). The
details of how to compute these classes explicitly is given in section 3.1.
Note that the expression for the group element representing this homotopy
class in terms of the generators is independent of . This allows us to identify
curves on different surfaces S,.

It is also easy to understand the cusps in the flat picture. The boundary
of the 7-plane H is naturally R: we think of the point p/q € Q as the point
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at which the length of the geodesic in the $™"T? homology class has shrunk
to zero.

By analogy, a p/q-cusp on M is a boundary point that is reached when
the p/q-curve on the punctured torus has length zero; that is, v(p/q) has
been pinched to a point and the punctured torus has degenerated to a thrice
punctured sphere (with two of its punctures identified). Algebraically, this
means that the elements in the p/q-conjugacy class have become parabolic
and are the groups are cusps in the Bers sense as explained above.

On the flat torus S one can interpolate between the rational (p, ¢) curves
with linear foliations of irrational slope. We can think of a point A € R\ Q
as a point where the length of such a foliation has shrunk to zero. We again
wish to make the analogous construction for the punctured torus §. In fact,
as described in [15], to each irrational foliation of S there corresponds a
unique compactly supported geometric lamination of §. We denote by ()
the lamination corresponding to A € R\ Q in this way.

The original motivation of much of what follows was that, just as in the 7-
plane the irrational points interpolate between the rational cusps in R= OH,
so in the p-plane the rational p/g-cusps in M should be interpolated by
unique boundary points corresponding to groups for which the length of the
lamination () has shrunk to zero. This is equivalent to Bers’ conjecture
that the map ¢: H — M extends to a homeomorphism 0H — dM; or
equivalently, that M is a Jordan curve.

2.5 Rough shape of M

In this section we include several easy propositions about M. As remarked
above, the parametrization was chosen so that the shape of M roughly re-
sembles that of H. As we have already seen, the part of of the imaginary
axis above Sy = 2 lies in M and one can easily check that yu = 2i is a cusp
for the element T}, corresponding to (p,q) = (0,1).

Proposition 2.3 € M ifand only if p+2 € M.

Proof: This follows immediately from the observations that Ty4+2 = ST,
and that < S, ST, > is an appropriately normalized pair of generators. O

Corollary 2.4 The lines u =2n +1it, t > 2, n € Z are all in M and the
point u = 2n +2i is a cusp for (p,q) = (—n, 1), corresponding to the element
ST, in G,.
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Remark: We shall see shortly that on the Riemann sphere C, the point at
infinity belongs to M. This point should be thought of as a cusp correspond-
ing to the accidental parabolic S; that is, (p,q) = (1,0) = limp_4o0(—m, 1)
This point corresponds naturally to the point at infinity in the 7-plane which
is the limiting case for the flat torus as the length of the S curve shrinks to
zero. There is also an easy symmetry associated to M.

Proposition 2.5 g € M if and only if —p € M.

Proof: If we write any word of G, =< 5,T,, > as a matrix, the matrix
for the corresponding word in Gz =< §,T-5 > is obtained by replacing p
with —f in each entry. The fixed points of these words are therefore mapped
into one another by the map z — —z. This reflection thus maps A(G,) to
A(G-;); therefore, either both groups are in M or both are not in M. O

Proposition 2.6 The boundary of M is contained in the horizontal strip
{p:0 < Sp <2}

Proof: If Su > 2, we see as we did in section 2.2, that the curves v =
{z € C:Sz =t}, § = {z € C:|z — it/2| = t/2} satisfy the conditions of the
packing theorem. Therefore if Su > 2, p € M. a

In [19] it is proved that Sp > 1 for all p in M; we will not need to use
this fact here.
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3 Special Words and Trace Identities

3.1 Special words

In this section we give an inductive procedure for constructing an element
W,,, € G, corresponding to the ~(p/q)-homotopy class. It will be important
for our analysis to be precise about the actual word W/, and not just its
conjugacy class in G,. Much of what we do in this section follows David
Wright in [19].

We begin by recalling the formation of rationals by Farey sequences. A
pair of rationals (p/q,r/s) are called neighbors if ps — rq¢ = x1. All ratio-
nals are obtained in a unique way by repeated application of the process
(p/q,r/s) — ;Lj'_—: to Farey neighbors. Note that if p/q < r/sandif (p/q,r/s)
are neighbors then p/q < :%:— < r/s and both pairs (p/q, ;%:), (:—’-I—:,r/s) are
again neighbors.

The words W/, are formed inductively as follows:
if n € Z, then

W,p=S5""T

and if (p/q,r/s) are neighbors with p/q < r/s, then
W%I_: = W, /sWh/q-
It is easy to check inductively that W, always has the special form
SaTemgaTan | SaTenr

where ¢; = £1, &, = —sgn(p), € Y0=; ni = ¢, and |n; —n;| £ 1 for1 <,3 <
p. There are further restrictions on the patterns of the njs that may occur;
» more detailed account (which we do not need here) is in [15].

One can also prove, although again we do not need it here, that if we
order the cyclic permutations of Wy, lexicographically by increasing size of
the n;, then W, is first in this order.

As (p/g,r/s) Tun over all Farey neighbors, so the words (Wp/q, We/q)
run over all possible pairs of generators of G, (see (3, 15]). One can also
inductively verify the relations K = [T~},57] = [ 72» Wayg] which we will
need later.
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3.2 Trace identities

It is clear that the trace of any element in G, and in particular the trace of
any of the special words W/, = /a(#), is a polynomial in p.

We obtain these polynomials by inductive use of the trace relations. To
do this we invoke the notion of the Farey level of a rational p/q. This is
best described in terms of the well-known Farey tesselation F of the upper
half plane H obtained by joining each pair of neighboring rationals by a
semi-circular arc. This construction divides H into triangles with vertices at
all the rational points. The level of p/q is the number of sides of F cut by
the vertical line Rz = p/q in H. Thus, for example, 1 /2 is at level 1. (By
convention, 0/1 and 1/1 are at level 0.)

Proposition 3.1 The trace of Wy, is a polynomial of the form:
Tr W, = (=1)7(p? = 2pp7"" + bgap™™? + ... + bo), bi € Z.

Proof: The proof proceeds by induction on the level j of p/q.

Since
Won=T TrT = —wp
Wl/l = S—lT Tr S—IT = (—2)(# - 2)

the conclusion of the proposition holds for j = 0.
Suppose now that Tr Wp/n has the stated form for all rationals m/n of
level less than j. Let p/q be a rational of level ;. Then p/q = ©2 where

+
r/s,m/n are at level less than j, and r/s < m/n say. By the trace identity

Tr Wp/q =Tr Wm/n Tr W,./, - Tr ‘Vm/nWr-/:

it is easy to check using the induction hypothesis that the first two terms in
the first product are (—=1)"**(p**" —2(m + n)u"t>"1). We shall show that
Tr W,,./,.W,')i is a polynomial of degree n — s in p. Sincen—s<n+s—1
(since s > 1/2) the result follows.

The semi-circular arc joining r/s to m/n is a side of exactly two triangles
of the tesselation F. Exactly one of these two triangles has its third vertex
k/l outside the interval [r/s, m/n]. Clearly level(k/l) < level(p/q) = J-

There are two cases to consider:

14



kfl<r/s

In this case, r/s = '—‘l{—’:—, and so W s = Wi nWiest. Thus, W;}nW,./, =
Wi and so by the induction hypothesis

Tr( ”_l/anr/,) =Tr Wk-/} = Tr Wi

is a polynomial of degree d =n — s as required.

k/l>m[n

In this case m/n = ﬁ—'{ and so W,/ = WiiW,,, hence
Tr Wm/n = Tr(Wk/zW,/,)

is again a polynomial of degree d =n —s, as required. This completes
the proof. ’ o

3.3 The special branch and asymptotic behavior

We shall see below that there are interesting consequences when the trace of
the word W,, € G, is real. We are therefore interested in studying the locus

V0 = {1 € C: STt Wiyg(p) = 0, [RTr Wpya(w)| > 2}-

Set p = s + 1t and consider the asymptotics of this locus for iarge values of
¢ in this strip. Proposition 3.1 implies:

Proposition 3.2 Along the locus \}p/q in the strip 2[p/q] < Ru < 2([p/q] +
1), as it - oo, | Tr W,jql = 0 and s — 2p/q.

Proof: Expand the polynomial in terms of s and t. Since s stays bounded
the term (—:)%? dominates the absolute value. Because we are assuming
that the polynomial is real, and the dominating term of the imaginary part
is (—i)%~1(gs — 2p)t?7, it is clear that as t — o0, s — 2p/q. a

Since the polynomial Tr Wy, is holomorphically conjugate to the func-
tion p? in a neighborhood of oo € C, the locus V,/q has g branches that are

15



asymptotic to g rays of the form exp (2mik/q + 71/2), k = 0,...,q—1. There-
fore, there is a unique branch of V,/, in the strip 2[p/q] < Rp < 2([p/q] +1),
for Sp large enough. We call the connected component of this branch of Vs/a
the vertical p/q-branch and denote it by Vp/,.

One of our main goals (see section 5) is to prove that the vertical p/q-
branches are non-singular analytic curves that fill M densely and extend to
a foliation of M; this is illustrated in figure 1.
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Figure 2: circle chains for p/g =1/9

4 Circle Chains and the Pleating Locus

The computer pictures generated by David Wright in [19] show limit sets
for groups he thought should be cusps on OM. In these pictures, it appears
that the invariant component € of the regular set has degenerated into a
tree of mutually tangent circles (shaded black in figure 2). These circles are
arrayed in a combinatorial pattern that depends on p/q. In trying to prove
the existence of such chains for all cusp groups in M, we were led to look at
those points u € M for which Tr W,/,(x) is real and greater than 2. We were
then to led investigate the pleated surface forming the convex hull boundary
of G, facing Qg(p) for such p (see section 4.2). The subject of this section is
the relationship between the form of the pleating locus of this pleated surface
and the circle chain patterns in the limit set A(G,).

4.1 Real traces and p/g-circle chains

We begin by investigating the relationship between the condition Tr Wpq(4) €
R and the existence of circle chains in the limit set of G,.

Recall that a Fuchsian group is any discrete subgroup of aut(é) that
leaves invariant the interior and exterior of a fixed circle.

Lemma 4.1 Let (p,q) € Z%, (p,q) = 1. If p € M is such that Tr Wp4(p)
is real and greater than 2, then the subgroup of G, generated by K and W is
Fuchsian. Its fized circle is the circle bo through —1, (the fized point of K)
and the fized points of Wpyo(pt). This circle is tangent to R at —1.

Proof: Suppose that p/q = 2= where r/s,m/n are neighbors and r/s >

m/n. Write X; = Wy, X_1=Wppnand W= W,/q, so that W = X_1X,.
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For any two matrices A, B write [A, B] = ABA-1B-!. It is easy to check
inductively that

K = [T, 57 = [X{*, Xoa] = (X7, W] = (W, Xl
Thus in particular,

Now by assumption TrW > 2, and from the above Tt KW = TrW. By
definition we know Tr K = —2. It now follows from (1] (Theorem 5.2.1) that
< W, K > is Fuchsian.

The fixed circle 6 certainly contains the fixed points of W and the fixed

point —1 of K. Since K also fixes the real axis, we see that & must be
tangent to R at —1. =

Definition: A p/q-combinatorial circle chain is a sequence {:}iez of possi-
bly overlapping circles in C with the following properties:

1. & and 4, are tangent to R at —1 and 1 respectively.
2. Wpe(60) = bo.

3. bryp=T(6,)for 0 <r<gq

4. 8,49 = S(5;), for all r € Z.

Starting from an invariant circle & as in the lemma above, we can always
construct a p/g-combinatorial circle chain as follows:
For 0 <r <gq, letn, =rpmodg, 0 <n, <g¢ and set n, = q. Since

(p,q) = 1, the sequence no, ... ,Nq-1 is a permutation of 0,...,¢— 1. Induc-
tively define words E;, 0 <1 < g, inG=<S,T > by

En'+1 = TE"_,, 0<p+n,<g
Enp = ST'TE,, p+nr 24

Now define §; = Ei(&), 1 <1 < g¢. Clearly §; is the invariant circle of
E;FoE!. Further,if k € Z, k=rq+s, 0< s<gq,define

6k = S70s.

To see that {6} is a combinatorial circle chain we need the following
lemma. We defer its proof to appendix A.2. A different proof is in [19].
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]'Lemm.a 4.2 Suppose that p/q is formed from Farey neighbors a/b<c/d as
in section 3.1 so that Wy, = W,/ aWays. Then E, = Wyp, E.y = Wyq and
E; = Wyyq.

Remark: From this lemma we see, in the notation of lemma 4.1, that E; =

X, and E_; = X_;.

Lemma 4.3 The circle & is X,(60) and is invariant under W = Wy,
hence 8 intersects 6, in the fized points of W. Likewise, 6_; = X_1(8o) and
it intersects 8o in the fized points of X_WX-] =WK.

Proof: By the remark above, we have that E, = X; ,E., = X, and
W = E_,E,. Since § is the invariant circle of the Fuchsian subgroup,
it contains the fixed points of W, KW and WK. Using the commutator
identities, we see that the fixed points of KW are obtained by applying X
to the fixed points of W. Hence the images of the fixed points of KW under
X, lie on both & and &; therefore, 6, = X1(8o) intersects &g in the fixed
points of W. Similarly, the fixed points of WK are obtained by applying
X_, to the fixed points of W and the circles 8 and &_; intersect in the fixed
points of WK. a

Remark: The Fuchsian subgroup < W, K > represents a punctured cylinder
whose boundary geodesics have equal length. Denote the attracting and
repelling fixed points of W and WK by w® and vt respectively. Then the
points -1, w,wt, W(-1),v*,v™ are arranged counterclockwise around &o.
(For a more detailed analysis see A.l).

The next definition is a crucial tool in proving our main results.

Definition: A p/q-combinatorial circle chain for a group G, is called proper
if the interiors of adjacent circles intersect and the inside of each circle con-
tains only points of Q(G,)-

David Wright [19] studied the limiting case of our proper circle chains in
which the circles are mutually tangent and form a circle packing. He showed
that the existence of such a tangent chain implies that the group G, is a cusp
group and the point 4 is on OM. To do this he constructed certain curves to
which he could apply one of Maskit’s combination theorems. If the interiors
of the circles in the chain overlap, we can extend his ideas to construct a
fundamental domain for the group G, and use it to show that y is inside M.
This is a stronger result than we need in this paper. Since the construction
is involved we omit it and instead, prove the weaker result:
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Proposition 4.4 Suppose that p € M and that G, has a proper p/q-circle
chain. If Tt Wy, > 2, then p € M.

Proof: Since W/, is hyperbolic it has two fixed points so by lemma 4.3 the
interiors of the circles 6, and §; intersect. Clearly by the discussion preceding
proposition 2.1, Qo D 8 U 6;. The result follows from proposition 2.1 itself.
a .
Remark: We show in appendix A.3 that it is not possible for neighboring
words W,;, and W,/, to have real traces simultaneously. This fact will also
follow from the existence of proper circle chains (as in proposition 4.11).

4.2 The convex hull boundary and pleated surfaces

To continue our study, we need to discuss the relation of the existence of
circle chains in Qo(G,) to the geometry of the boundary in H? of the convex
hull of A(G,). In this section, we briefly describe the background we need.

Suppose that u € M so that G, is a discrete group. The convex hull
C of the limit set A(G,) in H? is the intersection with H? of all closed hy-
perbolic half spaces of H*UC containing A(G,). The connected components
of the boundary, 8C, correspond bijectively to the connected components
of the regular set Q(G,). This correspondence is made using the canonical
retraction map r: H® uC - C. If¢ e C, then r(£) is the unique point of
contact with of the largest horoball based at { with interior disjoint from C.
If £ € A(G,) then r(£) = & We shall be interested entirely in the component
corresponding to the invariant component Qo(G,) of the regular set. We
denote this component 8Co(p). By [4](theorem 1.12.1) the quotient surface
8, = 8Co(n)/G,, is a complete hyperbolic surface. Since Q(G,) is simply
connected so is 8Co(p) and since Qo(G,)/G is a punctured torus so is S,.
Notice that the conformal structure coming from the hyperbolic structure on
8, is not the same as the conformal structure on Q0(G,)/G,. It is proved
however, in [6], that the hyperbolic structure on S, varies continuously with
Q. .

The quotient surface S, is a pleated surface in the sense of Thurston [17].
This means that it is an isometric image of a complete hyperbolic surface X
in H3/G,, under a map f:X — H®/G, that has the property that every
point in X lies in some geodesic arc which maps to a geodesic arc in the
image.
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The pleating locus of S, is the set of points in S, that lie in the image of
exactly one geodesic arc in X. The pleating locus of §,, which we denote by
pl(p), is always a geodesic lamination. It is non-empty because for 4 € M the
groups G, are not Fuchsian. Further, the lamination pl(g) carries a natural
transverse measure, the bending measure. Following Thurston, (18], we call
a lamination that can support a transverse measure a projective geodesic
lamination. As discussed in section 2.4, the projective geodesic laminations
on a punctured torus are identified with R.

See [4, 6] for more details on this material.

The following result which will be important is a special case of one of
the main results of [6].

Theorem 4.5 For u € M, the map pl(u): M — R is continuous.

4.3 The pleating locus and circle chains

In this section we characterize those groups with a proper p/q-circle chain as
those for which the pleating locus of S, is exactly the geodesic v(p/q) in the
W,/, homotopy class.

The following easy lemma is central to our whole analysis.

Lemma 4.6 (Real Trace) Suppose pl(p) is @ simple closed geodesic v on
S,. Then any lift of v to H3 is an azis of an element g, € G,. For any such
element, Trg, is real and | Trg,| > 2.

Proof: Recall that the boundary of the convex hull is invariant under the
group. Recall also that a support plane H of a convex set X C H3UC
is a hyperbolic plane that intersects X, and is such that X \ H is entirely
contained in one of the two half-spaces determined by H.

Let 4 be an infinite connected lift of 4 in H2. Since 7 is a closed simple
geodesic, there is some loxodromic element g, € G, identifying points on 7,
so that 7 is an axis. This axis is the intersection of two support planes of
the convex hull boundary.

Now, if Trg, were complex, applying g, to the boundary of the convex
hull would fix its axis but rotate the support planes that intersect to form
the pleating by an amount depending on arg Trg,. Since these planes must
rotate into themselves, Tr g, is real and since g, is loxodromic, | Trg,| > 2.
a
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Figure 3: Element with real trace not in the pleating locus

Remark: The converse of this lemma is not necessarily true. Figure 3 shows
a group in which there is an element whose trace is real but whose axis does
not lie on the convex hull. The circles we see that are not members of the
proper circle chain are invariant circles of Fuchsian subgroups that contain
these elements.

Corollary 4.7 If pl(g) equals 7(p/q) then G, admits a p/q-circle chain.

We shall now improve this to show that the pleating locus is v(p/q) if
and only if G, admits a proper p/g-circle chain.
Denote the hemisphere based on the circle & of the circle chain by Ho.

Lemma 4.8 G, admits a proper p/q-circle chain if and only if Hy is a
support plane of ACo(u).

Proof: For the sake of readability, we omit the subscripts u and p/q in this
proof. Suppose first that G admits a proper p/q-circle chain. Since Hy clearly
contains points of 8Co, we have only to show that 0C, lies entirely above
H,. Now suppose that there are points of 8Co lying beneath Hp. Consider
the family of hemispheres centered on the center of 8. Among these is a
hemisphere H of minimal radius which intersects 8Co. This hemisphere is

by definition a support plane for 8C,. By construction its radius is less than
that of Ho. By [4][ 1.6],

where C(X) is the convex hull of X in H*UC. Now since H N 8Co # 0, we
must have H N A # 0. This implies, however, that there are limit points of
G inside §y, contrary to our assumption.
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Conversely, suppose that H is a support plane for 8Co. This means that
all of 8C, lies above Hy and in particular, that there are no points of A
beneath Ho. That is, there are no points of A in the interior of the circle do.
Since (G, is simply connected, the circles overlap and the circle chain is
proper. a

Lemma 4.9 Suppose that pl(p) equals ¥(p/q). Then the p/q-combinatorial
circle chain for G, is proper.

Proof: Here again, we omit the subscripts p and p/q. By the assumptions
of the lemma, the axis of W,/, in H® and all its conjugates are in 0Co. In
addition, all the conjugates of this axis by elements of the Fuchsian subgroup
< K,W > whose invariant circle is o lie in H,. Thus, by convexity, Ho must
be a support plane of 8Co and so by lemma 4.8 the circle chain is proper. O

Lemma 4.10 If G, has a proper p/q-circle chain, then pl(u) equals v(p/q)-

Proof: By lemma 4.8, Hy is a support plane for 0Cy and similarly, so are
H,, H_,, the hemispheres based on the circles 6;,6_;. By lemma 4.3 these
two hemispheres intersect Hp in the axes of W and WK respectively. Thus
these axes are bending lines of 8Co, and hence y(p/q) is contained in the
pleating locus of S,,.

Clearly, the invariant component g of the regular set is the region interior
to the circle chain and corresponds to 8Co. Since Qo/G,, is a punctured torus
sois S, = 8C/G,, and since ¥(p/q) is a maximal lamination on a punctured
torus, the result follows. o

Remark: A more direct. way of seeing that S is a punctured torus pleated
along 7(p/q) is as follows. By [4]( lemma 1.6.2),
H[) N C(A) = C(Ho N A),

where the closure is taken in H2UC, and hence —1 € HoNC(A). Let P
denote the intersection point on the axis of W with the perpendicular in H?
from —1 to this axis. Then the geodesics joining the points

{-1,P,W(P), W(-1),X_1W(P),X_,(P),~-1}

in order, bound a polygon II in Ho N dCo(A) whose sides are paired by
the elements, W,WK and X_; of G. Note that W(-1) = WK(-1) and
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Since dC, is a complete hyperbolic surface, it is easy to check that the
cycle conditions of Poincaré’s theorem hold for the vertices of II. Applying
this theorem we see that II is a fundamental domain for the action of G on
8Co. It is also easy to see that the surface obtained by identifying the sides
of I is a punctured torus pleated along ¥(p/q)-

We can summarize the results of this section in the following:

Proposition 4.11 The group G, has a proper p/q-circle chain if and only

if u € M and pl(p) equals v(p/q). In this situation Tr Wy, is real and
|TI' Wp/ql > 2.
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5 Pleating Rays for the Rationals

For p/q € Q, we define the p/q-pleating ray as

| Pote = {1 € M|pl(k) = p/q}.
Clearly, Ppjq N Ppyqr = § whenever p/q # p'/q".
Recall from section 3.3 that the vertical branch V,/, is the connected
component of the locus V,/, = {p € C:| Tr Wy o(p) > 2} that is asymptotic

to Ru = 2p/q as Sp — oo. Clearly, by proposition 4.11 we have Pp/q C Vyyq.
In this section we prove our first main result:

Theorem 5.1 (Rational pleating rays) For p/q € Q, the pleating ray
P,,, coincides with the vertical branch Vy/, of Voiq- This branch contains

no singularities and Vp/q\ Vp/q consists of a single point on OM at which
Tr Wp/q =2.

The boundary point in question is a cusp in the sense of Bers.

5.1 Integral pleating rays

We begin by establishing theorem 5.1 in the special case for which p/g=n €
7. We refer to the rays Py as integral pleating rays.

By definition V1 = {4 € C:STr(S"T,) = 0 and [RTr(S7"T,)| > 2}.
By an easy computation we have S7' T2 = T), andso Von = {p€Cip=
on +1it, t € R, |t| > 2}.

As in the discussion in section 2.5, the point 2n + it € M provided ¢t > 2
and clearly Vopp = {g € C:ipp = 2n +18, t > 2}. By proposition 4.11 it
is therefore sufficient to establish the existence of a proper n/1 circle chain
whenever g € V,1. We carry this out for n = 0 and n = 1; all other cases
are similar.

Proposition 5.2 Let € =0 or 1. Then for p € V1 the group G, admits a
proper €/1-circle chain.

Proof: First note that W, =T if e = 0and W, = ST if e = 1. From
the combinatorics of circle chains in 4.1, we see that we must find a circle
8, tangent to R at —1 and passing through the fixed points of W,. Ife=0
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then & is invariant under T and the other circles in the chain are given by
6, = S™(60), n € Z. If € = 1 then & is invariant under S-!T and the other
circles in the chain are §; = T(8), 820 = S™(d0), 62n41 = S™(6,), n € Z.

Suppose then that g € V1, € = 0 or 1. In either case we draw the circle
8o through the fixed points of W, and the fixed point of K at —1. By lemma
4.1 this circle is tangent to R at —1 and is invariant under W,. Now draw the
other circles §; as defined above to form the chain. Notice that the limit set
of the Fuchsian subgroup < W,, K > is a Cantor set in §. What we have to
do is to show that there are no points of the limit set A(G,) inside the circle
8. To do this, we shall construct a fundamental domain for G, inside SU <
whose images under < W,, K > and S*! fill out the region inside 8o U &;.

Let us now specialize to the case e =0so W, =T. It is easy to compute
that the points T(&£1) lie vertically above 1. By lemma 4.3 or by direct
computation the circles 6y and 6, intersect in the fixed points of T' and these
lie on the imaginary axis. Let D be the unit disk, |z| < 1. Using elementary
combination theorems (for instance Maskit’s first combination theorem 8]
or Beardon’s packing theorem [1]) the domain between the lines z = —1 and
z = 1 and exterior to the circles D and T(D) forms a fundamental domain
for G,.

Now divide this domain in two by cutting down the imaginary axis and
translate the right hand half to the left by S~ thus obtaining a region con-
tained inside §,. Extend this new region out to the boundary of 8o and call
this region R.

Clearly R is contained in the regular set Q(G,). Further, an easy ap-
plication of Poincaré’s theorem shows that R is a fundamental domain for
the subgroup < K,T, > that fixes 6. Therefore its translates under this
subgroup fill out . Thus the inside of & is completely contained in 2(G,)
and the proof is complete.

For € = 1 the picture is the same though the elements that pair the sides
are different. We now compute that Wy = ST}, carries +1 to £1+it so that
D is mapped to the upper disk by S~'T), and not by T}, as before. However,
S-1T, and S are still a pair of generators for G, so the same region as before
is a fundamental domain for G,. The same trick as before shows how to fill
out the inside of 6§, using the elements of G,; again note that in the side
pairings T, must be replaced by S~'7,,. o
Remark: Note that the points 4 = 2i and g = 2 + 27 are the unique points
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at which Tr T, and Tr S~T,, are respectively equal to 2. Al these points the
construction above degenerates to its limit case in which the disks D, T,(D)
and the circles 6o, &; are tangent. The groups at these points are still discrete;
in them, the element W, has degenerated to an accidental parabolic.

5.2 Symmetric tori

Although we don’t need it in what follows, it is interesting to nate that the
punctured tori corresponding to points on the rays Vo;1 and V1 are exactly
the rectangular ones. This implies that Vo/1 and Vy, are respectively the
images of the vertical lines ®7 = 0 and R = 1 under the Riemann map
¢H - M.

It is easy to see the symmetry from the construction above. In both
cases, the reflection z — —Z leaves Q(G,,) invariant, and by computation,
conjugates < S,T, > to < S7,T, > if e = 0 and < S,87'T, > to <
S-1,871T, > if ¢ = 1. These are exactly the symmetries of the flat tori for
which R7 = 0 and R7 = 1 respectively. It is well known that these are all
the tori with these symmetries and since the images of these lines under ¢
are connected analytic curves, all the rectangular tori lie on the rays Von
and Vy as claimed.

Remark: It is tempting to conjecture that the rational pleating rays are
exactly the images of the vertical lines in the 7-plane under the map ¢.
However, our computations indicate that this is not the case.

5.3 Rational pleating rays

We now proceed to the proof of theorem 5.1 in the general case.

We begin by establishing that Ppq is confined to the strip 2[p/q] < Ru <
2([p/q] + 1), where [z] denotes the integer part of z.

It is at this point that we need to use the continuity of the pleating locus
referred to in section 4.2. It is an easy corollary of theorems 1 and 4 in [6]
that the map p +— pl(g) is continuous. This result enables us to give an easy
proof of the result we need.

Lemma 5.3 For any p/q € Q the pleating ray Pp/q is non-emply. Also,
Ppja C {4 € M:2[p/q] < R < 2([p/a] + 1)}
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Proof: Let k > 2 and consider the horizontal path R — C, ¢ = o + ki.
As remarked in section 2.5, this path is completely contained in M. By the
continuity of pl therefore, the map o — pl(c + ik) is a continuous map of R
to R.

We proved in section 5.1 that for n € Z, t > 2, pl(2n + it) = n and that
pl™i(n) = {p e M:p=2n+it, t > 2}.

We also know that for p/q,p'/q¢ € Q, we have Ppjq NPy = 0.

Combining these facts gives the result. o

Proposition 5.4 P,/, is open and closed in Vo/o-

Proof: Let po € Ppq C Vpyq and let K be the connected component of
VpjgNM containing po. Since M is open, K is open in Vp/q- Thus, since
Vy/q is defined by an analytic equation, we can find an arc o C K with
o € int(o).

To see that P,y is open in l.)p/q it suffices to show that o is entirely
contained in Pp/,.

_ Let py € 0, p1 # po, and let fi be a quasiconformal homeomorphism of
C such that

G, = Gux = flG#o 1-1'
For 0 <t < 1, let f; be a family of quasiconformal homeomorphisms such
that

Gt = Gm = ftGuoft_1

where y, varies along o between po and p,.

Note that Tr W,/4(y.) is real for t € [0,1]. For each such ¢, let 8o(t) be the
circle through the fixed points {w*(p:), w™(ue)} of Wye(pe) and the point
—1; that is, the first circle of the p/g-circle chain for G;. We claim that the
p/q-circle chain is proper for each t € [0,1].

The M-lemma of Maiié, Sad and Sullivan [14] tells us that the restriction
of the map

fi: M(Gu) = A(GY)

is injective. Since it takes fixed points of group elements to corresponding
fixed points, the circle §o(t) moves continuously. If F; is the Fuchsian sub-
group fixing &,(t), then by the minimality of A(F}),

A(F) = A(G)N bo(t)-
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Pick a point & € A(Go) outside §o(0); in other words, not in A(Fp). It moves
on a continuous path &; this path can never cross inside 50(t), for if it did,
it would first have to coincide with a boundary point of 8o(t) in the limit set
of G,. All such points are in the limit set of F;, but { was chosen not in
the limit set of Fy. This contradicts the injectivity of fe and proves that the
circle chain remains proper. We conclude using proposition 4.11 that Py, is
open in f)p/q. ’

Next we show that P,/, is closed in f?p/q. Suppose that pn — p, pn €
Ppar Tt Wprg(pa) — @ with |a| > 2. Then the family of circles through the
fixed points {wt(u), w™ (1)} of Wy/e(p) and —1 have a limit. This limit circle
contains no limit points in its interior because having interior limit points
is an open condition. Moreover, since |a| > 2,w* # w™. The circles of
the chain overlap and their union is an invariant component of the set of
discontinuity. Therefore the circle chain is proper and by proposition 4.11
again u € M. a

Corollary 5.5 P,/, is a union of connected components of 1.),/,.
It is now fairly easy to complete the proof of theorem 5.1.
Lemma 5.6 No component of Vy/q in Pp/q contains a singularity.

Proof: Suppose Py, contained a component of )./,,/q which had a singular-
ity at o € M. Since the traceis given by a polynomial function w = Tr Wp/q»
at a branch point of order k, the local coordinate can be written in the form
i — po = 2F. The preimage of a line through wq therefore, has 2k branches
meeting at z = 0. Hence starting at a singularity one could move along at
least two distinct branches in the direction of increasing trace. Since there are
at most finitely many singularities, we can find at least two disti~ * branches
along which trace goes to oo. For Sp > 0 we know that only one branch
can lie in the strip 2[p/q] < Rp < 2([p/g] + 1), hence the other must leave
this strip while remaining in M since Py/q C M. Thus it must cross Pp/q1
or Plp/g+1/1- However, this is impossible since we know that the curves Py,
and P,y are disjoint for ple#7/d. w

Corollary 5.7 The function Tr = Tr Wy/q has no mazimum or MiNIMumM
on Pp/q-
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Proof: At a maximum or minimum, Tr W,,/,(u) has derivative zero in the

direction along f)p/q, hence there is a singularity of V,/, at such a point and
this contradicts lemma 5.6. a

Lemma 5.8 Any connected component C of Pp/q contains points along which
Tr Wy — 00.

Proof: Write Tr for TrW,,. If the assertion of the lemma were false,
the function Tr|c restricted to the component C' would be bounded. By
corollary 5.7, it has no maximum or minimum in C. If C C¢ M this is
impossible. Otherwise, C has at least one point on M and since Pp/q is
closed in f)p /¢ the only possible value of Tr at these points is 2. But then Tr
is constant on C, which is impossible. o

We put this all together now to obtain:

Proof of Theorem 5.1:

In section 3.3 we established that V,/, is the unique branch of Vp/q that
goes to infinity in the strip 2(p/q] < Ru < 2([p/q] + 1). Hence, taking k
sufficiently large in the proof of proposition 5.3, we see that Py N Vp/q #0.
Thus, the only connected component of Vp/q in Ppjq must be Vp/,. That
V,/q contains no singularities now follows from lemma 5.6. It follows that
Tr |c is monotonic. It is clear that V,/q meets M in a unique point where
Tr Wp /g = 2.

At this boundary point the element W}, has become parabolic; its fixed
points coincide and the circles of the circle chain all become tangent. By an
argument of Maskit [10] the extremal length of curves in the p/g-homotopy
class is 0 at this point so it is a cusp both in the classical sense and in the
Bers sense. o

Remark: The above argument does not ule out the possibility that there
might be other points 4 € M for which | Tr W,/ql = 2. That this does not
in fact happen is a special case of the main result of (5]
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6 Real Pleating Rays and Pleating Length

In this section we extend theorem 5.1 from simple p/g-curves to laminations

AER\Q.

6.1 Real pleating rays

It is apparent from figure 1 that the partial foliation of M by the rational
pleating rays should extend to a foliation by real rays Py, A € R. Recalling
our identification of the set of projective laminations on a punctured torus
with R from section 2.4, we set, for A € R,

Py = {u € M:pl(p) = A}.

Clearly, if A # X' then PyNPy = 0. By the method of lemma 5.3 we find
Py # 0. We also note that Ps, = 0 since y(co) is the homotopy class of
S and this is fixed as an accidental parabolic in our setup. Therefore, by
lemma 4.6, it can never represent the pleating locus of 5. Since for p € M,
the invariant component €(G,) is never a circle (see section 2.2), it follows
that pl(u) # 0. Hence, M = U,er Pa-

If f is a complex afalytic function defined in a domain U C C, we define
the real locus of f to be the set f~'(R) in U. We have:

Lemma 6.1 The pleating ray P is contained in the real locus of an analytic
function defined on M.

Proof: Suppose that po € P». Let C be the cusp of the punctured torus
S’uo. Since all the leaves of pl(o) lie in a compact part of S, & neighbor-
hood of C is contained in a flat part of $,,. By area considerations (see
[17](p.9.32)), this flat piece must be a punctured bigon B. Choose a geodesic
from the cusp C to one end of B and cut along it. Lifting this cut region to
H?3, we obtain an ideal 4-gon as a flat piece of 8Co. Call the four vertices of
this 4-gon vy, vq, V3, v4 and denote their cross ratio by p. Since these points
are on the boundary of the support plane containing the lifted flat piece they
are concyclic and p is real.

Now let g vary in a neighborhood of po. By the A-lemma, ([14] and see
also [6]), the points v; = vi(g) depend analytically on g and they remain
distinct for p € M. It follows that p = p(p) also depends analytically on
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4. The points v;(p) are all on the boundary of the same support plane of
8C,, only when p(u) is real. Hence, Py is contained in the real locus of p as
required. m]

Corollary 6.2 The union of rational rays Up/,eq Rp/q i dense in M.

Proof: Suppose po € M and let A = pl(go), A ¢ Q. By lemma 6.1 we
can find a path a:[0,1] = M with a(0) = po and such that the image of a
is locally transverse to Py. By the continuity of the map p — pl(p), ploa is
a continuous map to R, and by the transversality it is non-constant. Thus
we can find points arbitrarily close to po with pl(x) € Q. o

There is a more refined result that will be useful later:

Lemma 6.3 Suppose that po € Px and that Pn/qn € Q, Pnf@n — A as
n — co. Then there ezists pn € Py, jqn With fin = Ho.

Proof: Without loss of generality, we may assume that the sequence p,/qn
is increasing with limit A. Pick py € Py, /q,- Join gy to po by a path 0:[0,1] —
M transversal to Py at po so that o NPy = {go}-

By the continuity of pl, and since p1/q1 < pn /gn < A, o must intersect
all the pleating rays Pp./q, at points g, = o(tn). We may clearly assume
.. <ty <tpp1 < ...so that {p,} has a limit o(tx) € 0-

Again by the continuity of pl, pl(0(te)) = limpaoo Pn/qn = A so that
0(ts) € P». Since by construction oNPy = {0}, we have o(te) = Ho which
proves fin — Ho. a

6.1.1 Normalized traces

We should like to attach to each P, an extended trace function Try(p) which
would extend the trace polynomials Tr W,,/q(p) from simple closed geodesics

on 8, to laminations on S,

Now the family {Tr W,/o(1)}s/seQ is not normal on M: as Pnfqn —
A € R\ Q, the degree gn of TrW;,/q, goes to infinity and the traces are
unbounded. In order to produce a more tractable family we first convert the
traces to complex length and then scale appropriately.

Recall that the complez translation length L(g) of a loxodromic element
g € SL(2,C) is 2arccosh (Trg)/2. The motivation for this definition is that
RL(g) is the hyperbolic translation length of g along its axis in H3 and
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arg L(g) is the angle through which a point off the axis is moved about the
axis.

Since | Tr Wp/q(u)| # 2 for p € M, and since Tr Wp/q(p) is real on the
connected set P,,, we can pick a branch of the complex length of Wp;, which
is analytic on the (simply connected) set M and which is real on Py/,.

We prove in appendix A.4 that the coefficients of the polynomial Tr W/,
are bounded by 89. Thus the family {L,/(s) = 1/garccoshTr W (p)} is
uniformly bounded on compact subsets of M. We shall take appropriate limit
functions of this normal family as p/g = A, A € R\ Q as the normalized
length functions.

In order to prove the uniqueness of these limit functions we shall give an
alternative characterization of the function Ly/q(s) on Pp/q- This involves in-
troducing several concepts from Thurston’s theory of measured laminations;
we do this in the next section.

6.2 Pleating measure and pleating length

A transverse measure v on a geodesic lamination L on a hyperbolic surface
X of finite area is an assignment of a regular countably additive measure
to every interval transversal to L in such a way that these measures are
preserved by any isotopy mapping one transversal to another and preserving
the leaves of the lamination. We call the pair, (L, v) a measured lamination.
By abuse of terminology we usually refer to v as a measured lamination and
write |v| for the underlying point set L.

In particular, if 4 is a simple closed geodesic on X then we denote by é,
the measured lamination whose leaves consist of the geodesic v and whose
measure is an atomic unit mass on 7.

We denote by ML(X) the space of measured laminations on X. The
weak topology on measures gives a natural topology on ML(X): asequence
va € ML(X) converges to v € ML(X) if [; fdv, converges to [; fdv for
any open interval I transversal to all the |va| and |v| and for any continuous
function f of compact support on X.

For v € ML(X), the lamination length of v, £(v), is the total mass of the
measure on X that is locally the product of the measure v on transversals
to |v| and hyperbolic distance along the leaves of |v|. Note that if v is
a simple closed geodesic then £(é,) is exactly the hyperbolic length in the
usual sense. It follows easily from the definition of the topology on ML(X)
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that & ML(X) — R* is continuous. (See [6] for a careful discussion of how
one deals with cusps on X.) '

Similarly if » € ML(X) and if v is a simple closed geodesic on X, the
intersection number i(y,v) is the minimal measure given by v to a curve
isotopic to 4. In particular, if v = 6, for some simple geodesic v/, then
i(7,6) is just the intersection number in the usual sense.

Continuity of the map i,: ML(X) — R, i,(v) = i(v,v) also follows
easily from the definitions. For brevity we write 8p/q for &s(p/q)-

Lemma 6.4 With the terminology above, if p € Pyq, then

Lp/q(/‘) = e,,(6p/9)/i(1(oo), 5p/q)

where £, denotes the lamination length on the pleated surface S,.

Proof: Observe that, because ¥(p/q) is the pleating locus of §,, the
geodesic length of v(p/q) on the hyperbolic surface S, and its length in
the hyperbolic three manifold H® /G, coincide. Since Tr W,,, is real for
pi € Ppjq, we have arccosh Tr Wyyq(p) = €,(8,/). Thus to prove the lemma
we need only see that i(y(co,8,/,) = ¢. Intersection number however, only
depends on the topology and not the conformal structure of a surface so we
can read this off from the flat picture. Alternatively, once can observe that
any curve in Qo(G,,) joining zo € int o to S(zo) € int §; must run through the
circles o, ..., 8, of the p/g-circle chain in Q(G,.), and hence must intersect
q conjugates of the axis of Wy, o

We now want to find an expression for L,/, that is independent of p/q.
To do this, we make use of the bending measure of the pleating locus pl(x).
Recall ([4, 6]), that the bending measure 5(u) of pl(x) is a natural transverse
measure that measures the total angle through which support planes of the
convex hull are bent when moving along a transversal to pl(z). In the case
where pl(s) = p/q, so that G, has a proper p/g-circle chain, B(p) is just
the measure 86,/,, where 0 is the angle between adjacent support planes in
8Co(p); in other words, 6 is the angle between successive circles in the circle
chain. Clearly then, we have: :

Lyyo(p) = €u(8p79)[1(7(00), 8p14) = eB(w))/i(v(00), B(r))
for u € Pyyq- '
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Proposition 6.5 The map ¥: M — ML(S) given by

p o B(p)/i(v(00), B(1))

is continuous and ¥|p, is constant for each A € R.

Proof: The continuity of 3 is a special case of theorem 4 of [6]. The
continuity of () Was mentioned above. ‘
It follows from the discussion above that for p € Pp/q,

B(w)/i(7(00), B(k)) = 08p/3/90 = bp/a/ -

Thus we have only to show that %|p, is constant for each A € R\ Q.
Pick po € Pr. By lemma 6.3, if pn/ga is any sequence with p./gn — A we
can find g, € P,,/q, such that pn = po. By the continuity of pl it follows

that pu/g. = pl(m) — pl(ko) = A. Then w(a) — ¥(ko), and since $(un) is
independent of pn € Ppn/qn, the limit is independent of po € Pa. =]

We define the pleating measure ™y € MC(S’) to be the value of 1 on Py.
The above shows:

Proposition 6.6 The map R — ML(8) given by A+ my 18 continuous.

We define the pleating length of G, p € M to be PL(p) = £u(Tpi):
where, as usual £, denotes the lamination length on the pleated surface S,.

The following proposition is an immediate consequence of the discussion
above.

Proposition 6.7 The function PL:M — R is continuous and PL(p) =
Ly/o(p) for p € Po/a-

6.3 Normalized complex length

We shall use the characterization of the normalized length functions given in
proposition 6.7 to prove the uniqueness of the limit functions of the normal

family {Lp/q(#)}p/eeQ-
Lemma 6.8 Suppose that p./qn — A € R and that po € Pr. Then

§RLPﬂ/Qn(l“I'O) - PL(/’LO)‘
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Proof: For the sake of readability we omit the dependence on o where
it will cause no confusion. Write 7, for Tp,/¢., the pleating measure of the
lamination pn/gn. Following [17](p 8.10.3), we see in this situation, that a
generic leaf | of |7)| may be approximated arbitrarily closely by leaves of
|7a|. For, let a be a local transversal to || and think of 7 as a measure on
the space X of all unit tangent vectors based on a. Let z € X represent the
generic leaf I, so that = € |7)|. Let U be a neighborhood of z € X. Then for
large n, 7, must assign positive mass to U and hence |7,| contains leaves I,
close to [. )

Since by assumption |r,| is a simple closed curve, the leaf I, has a lift I,
to H® that is invariant under some conjugate g, of Wp, /s, The endpoints
ix of I, in A are the fixed points g% of g.. Since [ is in the pleating locus
of S, any lift I to }13 is geodesic and has endpoints £ in A. Also, since I,
converges to I in S, we can choose lifts so that [, converges to [ in H? and
hence so that g% converge to [£. This says that the geodesics Az(g,) also
converge to [ in H3. Therefore, Az(g,) is close to [, and hence to 9C,.

Orthogonal projection of Az(g,) onto 9Co produces a curve with the same
endpoints as I, and by the above, close to it in H3. Therefore, it follows from
the definition of the length function ¢ that RL(gn)(so) and £y, (61, are close.
Thus, by linearity, RI{mn) — £,,(T2)- o

We are finally able to extend the normalized length functions as we re-
quire. Let O(M) denote the space of analytic functions from M to C with
the topology of uniform convergence on compact subsets.

Theorem 6.9 (Normalized complex length) The family of functions
L,/s: M — C eztends to a family of complez analytic functions Ly: M — C,
A € R in such a way that Ly(u) = PL(p) for p € Py, and the map
R — O(M) given by A Ly is continuous.

Proof: We need to show that for any sequence p, /Qns Pn/@n — A, the
sequence of functions fn = Lyp,/q.(p) converges uniformly on compact subsets
of M to a limit function which is independent of the sequence Pn/qn and has
the asserted value on P,.

We saw in section 6.1 that the family {L,/q(#)} is normal.

Pick a convergent subsequence of the sequence (fa), and by abuse of
notation write f, — f € O(M). Let po € P). By lemma 6.8, Rfn(po) —
PL(uo). Thus Rf|p, = PLlp,. It follows from the method of lemma 5.3
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that P, is uncountable. Hence we see that the value of Rf on P, completely
determines f and therefore f is independent of the sequence p, [ qn-

Finally we need to establish that f|p, is real-valued. Pick goo € Pa. By
lemma 6.3 we can find gn, € Pp,/q, With pn — po. Since (fn) converges
uniformly to f on a neighborhood of po and since fa(pa) € R, we have that
fa(tn) = f(io) and so f(po) € R as claimed. o

We call the function Ly the complez pleating length of the lamination A.
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7 Pleating coordinates

In this section we complete the proof of our main result.
Theorem 7.1 The map
I:M—-RxR*Y
defined by TI(p) = (pl(p), PL()) is a homeomorphism onto its image.

There is one remaining point that we need to establish to complete the
proof of this theorem.

Theorem 7.2 The real pleating ray Py is a connected component of the real
locus of the complez pleating length Ly in M. This component contains no
singularities and is asymptotic to Rp = 2) as Sp — oo.

The connectivity and non-singularity can be proved without much diffi-
culty using techniques that have already been introduced. That PL(p) — oo
as Sp — oo in P, follows directly by looking at the trace polynomials.

7.1 Connectivity of P,

We shall prove theorem 7.2 by a method analogous to the construction of
the real numbers by Dedekind cuts.

Lemma 7.3 P,, separates M into two connected pieces.

Proof: Let

A, = {p € M:pl(p) < p/q}
and

B,/ = {# € M:pl(k) > p/q}-
These sets are obviously both open and closed in M \ P,/,. We claim that
both are connected. Suppose g1,z € Ay/q. Since Ay, is open, by corollary
6.2, we can find points p}, uj in Ay, near py, lr respectively, on some pair
of rational rays Vm/n, Vr/s- Now the rays Vim/n, Vr/s can be connected by a

path o in A/, in the region Su > 2; thus the points p}, 4} are connected by
the path Vm/n Ua U v,/,. a
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Proof of theorem 7.2

We keep the notation of the lemma above. We claim that ) > ple
then P» C Bo/a- Hr=r/s€Q then clearly by lemma 392, Prs C B
for sufficiently large values of Jp. Since PrssNPpia = 0 the claim 1 proved.
Next suppose that € R, A > r/q with PrN Ap/g +9. Pikz € PN Ap/q
and let U be a neighborhood of z in Ap/q- As in the proof of corollary 6.3

{here is there is some r/s>pl4 with P.ys U # 0. But then Pr/s AA,e#0
which we ruled out above.
Now for A € R, let

Ay = Up/ec2 Ayl
and

By = Up/a>> By/q-
We claim that ANBy= 0 and

Py = M\ (A,\UB;).
The first part is clear from the definitions- It is also clear that
'PxﬂA; ='P)ﬂB)‘ =0,

while Py C Ax for N < A and Py C B for N > A\ Since every point of M
lies in Py for some ¢ € R, the claim follows.

Thus P) separates M into exactly two connected components A, and By
Since M is simply connected, and since nO branch of Px cat end in M, Pa 1s
connected [13]. Now P, is part of the real locus of an analytic function and if
:t contained 2 singularity at least three branches would meet there- However,
again because no branch of P, can end in M, these branches would separate
M into more than two connected components which is a contradiction. The
statement about the asymptotic behavior of P, should now be clear.

7.2 Proof of theorem 71

We can now complete the proof that we have defined coordinates.
Injectivity of Il is an immediate consequence of the non-singularity of the
P, as 1n theorem 7.3. Continuity of T1 has already been established. 1t is
sufficient therefore to Prove that I1 is open-
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Let U C M be an open disk, choose (},c) € II(U) and write u(A; c) for
II-!(), ¢). Since U is open we can find an € > 0 such that (X, cxe/2) € II(V).
Set ¢; = c+€/2 and ¢; = ¢ —€¢/2. Draw arcs 0; C U transversal to P, at the
points p(A;¢), ¢t =1,2.

Using the continuity of PL o o; we may choose both o; and o2 to have
endpoints on the rays Py; and P, respectively, with A; < A < A, and short
enough that |PL(s) — ¢1| < €/8 on oy and |[PL(p) — & < ¢/8 on o3.

Now consider the region W C C bounded by the lines Pj; and oj, %,J =
1,2. Since by construction 8W C U and since U is simply connected, we
must have W C U. We claim that II(W) covers the compact neighborhood
[A1, A2] X [c — €/4,c + €/4] of (X;¢). This will complete the proof.

Suppose that t € [A, A;]. By the continuity of pl oo;, we see that P;No; #
0, i=1,2. Now PL(y) > c+3¢/8 for p € 0y and PL(p) < c—3¢/8 for p € o,.
Using the fact that P,NPy; = 0 for A\; <t < Az and the monotonicity of PL
on P, we see that II-1(t,€) € W for £ € [c—¢/4,c+ ¢/4] and we are done. O
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A Appendix

A.1 Right circular cylinders

Proposition A.1 Let F =< K, W >cC PSL(2,C) where
1. K is parabolic; that is Tt K = —2
2. W is hyperbolic; TtW =2t > 2
3. WK is hyperbolic and Tt WK = TrW =2t

Then F is Fuchsian with an invariant disk A. The open Riemann surface
¥ = A/F is a right circular cylinder; that is, it is @ sphere with two holes
and one puncture which admits two reflections ji,j2. These have a common
fized point on T that we call the elliptic point. They lift to reflections of A
which commute with F.

Proof: It is proved in (1] that for a two generator group, if the traces of
the generators and the product of the generators are all real, the group is
Fuchsian. We may assume without loss of generality that the fixed point of
K is —1 and that the fixed points of W are at ¢® and e~%. The disk A is
then the unit circle.

With this normalization the matrices K and W are of the form

142t -2
K’( —2t —1—‘2ti)

t—i i
w={'5 )

(it
WK‘(—ti t—i)

Let a = arcsin %‘j Then W(e™™) = €%, and WK(-€*) = —e~e,
Draw the figure in A bounded by hyperbolic geodesics joining —itoe, e
to i, to —e™** and —ei® to —i. (See figure 4.)

This geodesic polygon is clearly a fundamental polygon for the group F;
the sides on the left are identified by W K and those on the right are identified

and

We also have

1o
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Figure 4: The right circular cylinder

by W. Reflection in the real and imaginary axes maps the polygon to itself

so it projects to the required reflections. The elliptic point is the projection
of the origin. o
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