On the quasisymmetrical classification of infinitely renormalizable maps

II. Remarks on maps with a bounded type topology

by Yunping Jiang June, 1991

§0 Introduction

This note is a remark to the paper [1]. The aim is to show that the techniques in [1] can also be used to understand the quasisymmetrical classification of infinitely renormalizable maps of bounded type. We will use the same terms and notations as those in [1] without further notices. The result we will prove is the following theorem.

Theorem 1. Suppose f and g in \mathcal{U} are two infinitely renormalizable maps of bounded type and topologically conjugate. Moreover, suppose H is the homeomorphism between f and g. Then H is quasisymmetric.

Since the techniques as well as ideas of the proof are similar to those in [1], we outline the proof in the next section. The reader may refer to [1] and [2] for more details.

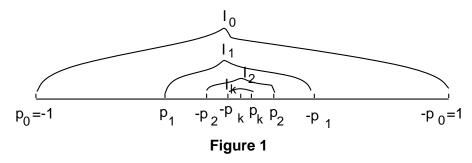
§1 The outline of the proof of Theorem 1

We outline the proof of Theorem 1 by several lemmas.

Suppose $f = h \circ Q_t$, for some t > 1, in \mathcal{U} is an infinitely renormalizable map of bounded type. We note that $Q_t(x) = -|x|^t$. Let $f_0 = f$. And inductively, let $f_k = \alpha_k \circ f_{k-1}^{\circ n_k} \circ \alpha_k^{-1}$ be the renormalization $\mathcal{R}(f_{k-1})$ of f_{k-1} where α_k is the linear rescale from J_k to [-1,1] and n_k is the return time for any integer $k \geq 1$ (see [1]). We call J_k a restricted interval.

Let I_0 be the interval [-1, 1] and I_k be the preimage of [-1, 1] under $\alpha_1 \circ \cdots \circ \alpha_k$ for $k \geq 1$. We note that the set $\{I_k\}_{k=0}^{\infty}$ forms a sequence of nested intervals. Moreover, one of the endpoints of I_k , say p_k , is a periodic point of period $m_k = n_1 \cdots n_k$ of f and the orbit $O(p_k)$ of p_k under

f stays outside of the interior of I_k (see Figure 1).



Suppose L_k is the image of I_k under $f^{\circ m_k}$ and T_k is the interval bounded by the points p_k and p_{k+1} . Let M_k be the complement of T_k in L_k . Then M_k is the interval bounded by p_{k+1} and c_{m_k} , where $c_{m_k} = f^{\circ m_k}(0)$ (See Figure 2).

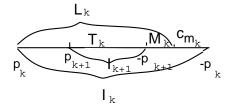


Figure 2

LEMMA 1. There is a constant $C_1 = C_1(f) > 0$ such that

$$C_1^{-1} \le |M_k|/|I_k| \le C_1.$$

for all the integers $k \geq 0$.

Proof. This lemma is actually proved in [3] by using the techniques such as the smallest interval and shuffle permutation on the intervals.

Lemma 2. There is a constant $C_2 = C_2(f) > 0$ such that

$$C_2^{-1} \le |I_k|/|I_{k-1}| \le C_2$$

for all the integers $k \geq 0$.

We first prove a more general result, as that in [1], as follows. Let $\mathcal{K} = \mathcal{K}(t, N, K)$, for fixed numbers t > 1, $N \geq 2$ and K > 0, be the subspace of renormalizable maps $f = h \circ Q_t$ in \mathcal{U} such that $|(N(h))(x)| \leq K$ for all x in [-1,0] and all the return times n_k of $\mathcal{R}^{\circ k}(f)$ are less than or equal to N.

LEMMA 3. There is a constant $C_3 = C_3(t, N, K) > 0$ such that

$$C_3^{-1} \le f(0) = c_1(f) \le C_3$$

for all f in K.

Proof. The proof of this lemma is similar to the proof of Lemma 3 in [1] but needs little more work to solve a little more complicated equation.

Remember that f_k is the k^{th} -renormalization of $f = f_0$. Let $f_k = h_k \circ Q_t$. We note that the graph of f_k is the rescale of the graph of the restriction of $f^{\circ m_k}$ to I_k .

LEMMA 4. There is a constant $C_4 = C_4(f) > 0$ such that

$$|(N(h_k))(x)| \le C_4$$

for all x in [-1,0] and all the integer $k \geq 0$.

Proof. It is the a prior bound proved in [3].

Proof of Lemma 2. It is now a direct corollary of Lemma 1, Lemma 3 and Lemma 4 for $K = C_4$ and $N = \max_{0 \le k \le \infty} \{n_k\}$.

The set of the nested intervals $\{I_0, I_1, \dots, I_k, \dots\}$ gives a partition of [-1, 1] as follows. Let p_k be one of the endpoints of I_k and $O_{k,f}(p_k)$ be the intersection of I_{k-1} and the orbit $O_{k,f}(p_k)$ of p_k under f for $k \geq 1$. Suppose $M_{k-1,1}, \dots, M_{k-1,n_k+1}$ are the connected components of $I_{k-1} \setminus (O_{k,f}(p_k) \cup I_k)$ for $k \geq 1$. Then the set $\eta_0 = \{M_{k,i}\}$ for $i = 1, \dots, n_k + 1$ and $k = 1, 2, \dots$ forms a partition of [-1, 1] (see Figure 3).

$$\frac{M_{1,2}M_{1,4}M_{2,1}M_{2,2}\dots M_{2,2}\dots M_{2,3}M_{2,n_2+1}}{M_{1,1}M_{1,3}-p_1p_2p_2M_{2,4}p_1M_{1,5}M_{1,5}M_{1,n_1+1}}$$

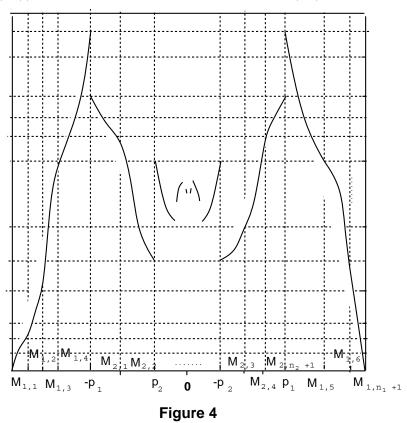
Figure 3

Now we are going to define a Markov map F induced by f. Let F be a function of [-1, 1] defined by

$$F(x) = \begin{cases} f(x), & x \in M_{1,1} \cup M_{1,2} \cup \dots \cup M_{1,n_1+1}, \\ f^{\circ n_1}(x), & x \in M_{2,1} \cup \dots \cup M_{2,n_2+1}, \\ \vdots & & \\ f^{\circ n_1 n_2 \cdots n_k}(x), & x \in M_{k,1} \cup \dots \cup M_{k,n_k+1}, \\ \vdots & & & \end{cases}$$

It is clearly that F is a Markov map in the sense that the image of every $M_{k,i}$ under F is the union of some intervals in η_0 (Figure 4).

Let $g_{k,i} = (F|M_{k,i})^{-1}$ for $k = 1, \dots,$ and $i = 1, \dots, n_k + 1$ be the inverse branches of F with respect to the Markov partition η_0 . Suppose $w = i_0 i_1 \dots i_{l-1}$ is a finite sequence of the set $\mathcal{I} = \{(k,i), k = 1, \dots, and i = 1, \dots, n_k + 1\}$. We say it is admissible if the range M_{i_s} of g_{i_s} is contained in the domain $F_{i_{s-1}}(J_{i_{s-1}})$ of $g_{i_{s-1}}$ for $s = 1, \dots, l-1$. For an admissible sequence $w = i_0 i_1 \dots i_{l-1}$, we can define $g_w = g_{i_0} \circ g_{i_1} \circ \dots \circ g_{i_{l-1}}$. We use $D(g_w)$ to denote the domain of g_w and use $|D(g_w)|$ to denote the length of the interval $D(g_w)$.



DEFINITION 1. We say the induced Markov map F has bounded distortion property if there is a constant $C_5 = C_5(f) > 0$ such that

- (a) $C_5^{-1} \le |M_{k,i}|/|M_{k,i+1}| \le C_5$ for $k = 1, 2, \dots$ and $i = 1, \dots, n_k$,
- (b) $C_5^{-1} \leq |M_{k,i}|/|I_k| \leq C_5$ for $k = 1, 2, \cdots$ and $i = 1, \cdots, n_k + 1,$ and
- (b) $|(N(g_w))(x)| \leq C_5/|D(g_w)|$ for all x in $D(g_w)$ and all admissible w.

The reason we give this definition is the following lemma as that in [1].

Lemma 5. Suppose f and g in \mathcal{U} are two infinitely renormalizable maps of bounded type and H is the conjugacy between f and g. If both of the induced Markov maps F and G have the bounded distortion property, then H is quasisymmetric.

Proof. It can be proved by almost the same arguments as that we used in the paper [2]. For more details of the proof, the reader may refer to [2].

Now the proof of Theorem 1 concentrates on the next lemma.

LEMMA 6. Suppose $f = h \circ Q_t$, for some t > 1, in \mathcal{U} is an infinitely renormalizable map of bounded type and F is the Markov map induced by f. Then F has the bounded distortion property.

Proof. Let $I_{k,j} = \left(f^{\circ m_{k-1}}|I_{k-1}\right)^{\circ j}(I_k)$ for $j=0,\ 1,\ \cdots,\ n_k$ and $\{G_{k,i}\}$ are all the connected components of $I_k \setminus \bigcup_{j=0}^{n_k} I_{k,j}$ (Figure 5).

Each $M_{k,j}$ is either a single $G_{k,i}$ or $I_{k,j} \cup G_{k,i}$ for some j and some i. By the bounded geometry [3] of $\{I_{k,j}\}$ and $\{G_{k,i}\}$, there is a constant $C_6 > 1$ such that all the ratios $|I_{k,j}|/|I_{k,j'}|$, $|G_{k,i}|/|G_{k,i'}|$ and $|G_{k,i}|/|I_{k,j}|$ are in the interval $[C_6^{-1}, C_6]$. We note that C_6 does not depend on k as well as i, i', j and j'. This fact and Lemma 3 imply the condition (a) in Definition 1.

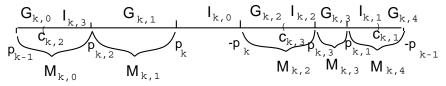


Figure 5

The condition (b) in Definition 1 is assured by Lemma 2 and the condition (a). The proof of the condition (c) in Definition 1 is similar to that in [1].

The arguments in Lemma 1 to Lemma 6 give the proof of Theorem 1.

References

- [1] Y. Jiang, On quasisymmetrical classification of infinitely renormalizable maps Maps with Feigenbaum's topology, preprint in this issue, IMS at SUNY at Stony Brook.
- [2] Y. Jiang, Dynamics of certain smooth one-dimensional mappings II. Geometrically finite one-dimensional mappings, preprint 1991/1, IMS, SUNY at Stony Brook.

[3] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, preprint, 1991 and American Mathematical Society Centennial Publications, Volume 2: Mathematics into the Twenty-first Century, to appear.

Yunping Jiang Institute for Mathematical Sciences SUNY at Stony Brook Stony Brook, NY 11794 e-mail: jiang@math.sunysb.edu