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We consider the rational maps given by z �� jzj����z� � c,
for z and c complex and� � �

� fixed and real. The case� � �
corresponds to quadratic polynomials: some of the well-known
results for this conformal case still hold for � near �, while
others break down. Among the differences between the two
cases are the possibility, for � �� �, of periodic attractors that
do not attract the critical point, and the fact that for � � � the
Julia set is smooth for an open set of values of c. Numerical
evidence suggests that the analogue of the Mandelbrot set for
this family is connected, but not locally connected if � �� �.

INTRODUCTION

We consider a family of maps that are similar to
quadratic maps in being degree�two branched cov�
ers of the Riemann sphere� but that are not in gen�
eral conformal� Namely� for � � �

�
real and �xed�

we study maps fc given in polar coordinates by

fc�re
i�� � r��e�i� � c�

For � � �� this is the usual quadratic family �z ��
z� � c�� which has been extensively studied and is
fairly well understood� For � di	erent from one� fc
is only quasiconformal� and very di	erent behavior
can occur� although there are many strong similar�
ities to the conformal case� It is our goal to deter�
mine which results for the quadratic family can be
generalized to maps that are topologically similar
�and when � is close to �� close to quadratic�� and
where such results break down�
In the quadratic family� the orbit of the critical

point completely determines the dynamics� This
is not the case for the maps fc
 for example� we
have found periodic attractors that do not attract
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the critical point� For certain parameter values�
the dynamics is dominated by two�dimensional real
behavior
 periodic saddle points� invariant circles�
and so on�
Another striking di	erence with the quadratic

family is the existence of smooth Julia sets� In
the conformal case� the only smooth Julia sets are
the segment ���� � �for the map z �� z� � �� and
the unit circle �for the map z �� z��� The cor�
responding Julia sets for fc are also smooth� but
there are more
 we use structural stability tech�
niques to show that for any � � �� the Julia set is
Ck�smooth for all c�values su�ciently near ��
We also study the connectedness locus �the ana�

logue of the Mandelbrot set�� and the bifurcations
that occur in the c�plane� Numerical evidence sug�
gests strongly that the connectedness locus is al�
ways connected� and never locally connected for
� �� �� Furthermore� the bifurcations that occur as
the parameter c varies are considerably more com�
plicated than those in the conformal case� although
there are many similarities� We discuss these issues
at some length in Sections � and ��

1. DEFINITIONS AND ELEMENTARY RESULTS

For � � �� consider the map Q� given by

Q��re
i�� � r�ei�

in polar coordinates� or� equivalently� by

Q��z� � z��������z�������

in �z� �z� coordinates� for appropriate branches of
the powers� The family fQ�g is a one�parameter
group
 Q� � Q� � Q��� Each Q� is a quasicon�
formal homeomorphism of the Riemann sphere of
constant dilatation max��� ����� �See �Lehto ����
for the de�nition of a quasiconformal map�� The
proof is a straightforward computation
 the dilata�
tion is

j�Q�j� j��Q�j

j�Q�j � j��Q�j
�
�� � � j�� �j

�� �� j�� �j
� max��� �����

where � � ���z and �� � ����z�

Denote by Pc the quadratic map on C given by
Pc�z� � z� � c� and let f��c � Pc �Q�� Thus

f��c�z� �

��
�
jzj����z� � c or

z����z��� � c in �z� �z��coordinates or

r��ei�� � c in polar coordinates�

For any � � � and any c � C � the map f��c is a
branched cover of C with a single branch point� the
origin� where the map is rami�ed of degree two�
It extends to the Riemann sphere with a branch
point at � of degree two� Throughout this paper
we always assume that � � �

�
� This guarantees

that the dynamics near in�nity is always the same

the point � is attracting� Moreover� when � � �

�
�

each f��c is at least once di	erentiable everywhere�
De�ne the �lled�in Julia set K��� c� of f��c as

the set of points whose orbits under f��c do not
accumulate at � �see Figure � for examples�� De�
�ne the Julia set J��� c� as the the set of points
that have no neighborhood in which the iterates of
f��c form an equicontinuous family in the spheri�
cal metric� Because f��c is an open map� the Julia
set can be split up into two completely invariant
�that is� forward and backward invariant� subsets
�K��� c� and ���� c� � J��� c� n �K��� c�� When
� � � the set ���� c� is empty� but in general it
is nonempty� For instance� ���� c� may contain
stable manifolds of periodic saddle points�

Proposition 1.1. �a� K��� c� and J��� c� are closed

and completely invariant �
�b� K��� c� and J��� c� are connected if and only

if � � K��� c��
�c� If K��� c� is connected � the restriction of f to

the complement of K��� c� is conjugate to the

map z �� z� on the complement of the unit disk �

Proof. The proof is essentially the same as for
quadratic polynomials� Refer to �Douady and Hub�
bard ����� Blanchard ����� Milnor ����� �

Proposition 1.2. Every path component of K��� c� is
simply connected �

Proof. If � is a Jordan curve contained in K��� c��
its iterates are bounded� Consider the component
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D of C n � that does not contain in�nity� Since
f��c 
 C � C is an open map� a point in D cannot
map to a boundary point of fn�D� under fn� Thus
�fn�D� � fn��D� � fn���� and fn�D� will then
be bounded� Therefore D is contained in K��� c��

�

De�ne for �xed � the connectedness locus C� of the
family ff��cgc�C as

C� � fc j K��� c� is connectedg�

C� is known as the Mandelbrot set� An interesting
issue is the dependence of C� on the parameter�
An isolated saddle�node bifurcation that results in
an attractor that attracts the critical point could
ruin the continuity in the Hausdor	 topology� We
have not observed such a bifurcation� At this point
we formulate the following conjecture


Conjecture 1.3. The connectedness locus C� varies

continuously with � in the Hausdor� topology �

Remark. Another interesting subset of the parame�
ter space is

D� � fc j K��� c� is not totally disconnectedg�

In the conformal case� K��� c� is not connected if
and only if it is totally disconnected� In Section ��
we show that for large c the set K��� c� is totally
disconnected� In the case where � � �� there are

c values for which K��� c� is not connected and
not totally disconnected �see Section ��� It may
be that C� � D� for � � �� This is about all we
know about D�� It would be interesting to �nd a
computer algorithm to draw this set�

Besides the Mandelbrot set C�� the two extreme
examples can be fairly well understood�

Proposition 1.4. The connectedness locus C��� is a

union of half�lines � containing the origin�

Proof. Let fc denote the map f���� c� Then

fkc�kz� � kfc�z�

for any k � �� Consider the orbit of the critical
point� It is easily seen by induction that fn��kc ��� �
kfn��c ���� Therefore the property that the orbit of
the critical point be bounded is independent of k�

�

Proposition 1.5. As � � �� C� converges in the

Hausdor� topology to the unit disk �

Proof. For jcj � � and � large enough� f���c��� is
close to in�nity� Consequently� any Hausdor	 limit
is contained in the closed unit disk� On the other
hand� when jcj � � and � is small� the orbit of
the critical point is contained in the disk of radius
jcj�� for � large enough� Therefore any open disk
contained in the closed unit disk is contained in C�
for � large enough� �

� � ���� c � ����� z � b��� �i� � � �ie � � ��� c � ���� z � b����� i� ��� � ie

FIGURE 1. Examples of �lled Julia sets K��� c�� Throughout this paper we use the notation ba� be to denote
the rectangle in C with a at the lower left corner and b at the upper right�
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2. WHEN DISCONNECTED FILLED-IN JULIA SETS ARE
CANTOR SETS

In the holomorphic case �� � ��� disconnected
�lled�in Julia sets are totally disconnected� When
� �� �� this need no longer be true� One can �nd
values of the parameter for which there are peri�
odic attractors� while the critical point tends to��
These examples have only been found when � � �
�see Section ��� When jcj is large enough for �xed
�� this behavior cannot occur


Theorem 2.1. If jcj � j�cj���� � �� then K��� c� is
totally disconnected � K��� c� � J��� c� and f��c is
uniformly expanding on J��� c��

Proof. The idea of the proof is straightforward�
First� we show in the lemma below that there is
a disk containing the critical point that iterates to
�� The next proposition shows that the map on
the �lled�in Julia set is uniformly expanding� the
theorem follows immediately� �

Lemma 2.2. If jcj � ���������� then

�
jcj � j�cj����

�����
	 jzj 	 jcj

for any z � K��� c��

Proof. When jcj � ���������� we have jcj�� � �jcj�
Consider a point z with jzj � jcj� Then

jf��c�z�j � jzj��� jcj � �jz�cj���jcj��� jcj

� jz�cj��jcj�� jcj � �jzj � jcj � jzj�

If the orbit of z remains bounded� the continuity
of f implies the existence of a limit point z� of the
orbit such that jf��c�z��j � jz�j� yielding a con�
tradiction� Therefore the orbit of z goes to in�nity�
and so z �� K��� c��

On the other hand� for jzj �
�
jcj � j�cj����

�����
�

we show that the second iterate of z is outside the
disk of radius jcj� and hence by the above argu�
ment� the orbit of z goes to in�nity� We have

jf���c�z�j � jf��c�z�j
��� jcj �

��jcj � jzj��
���� � jcj

� �j�cj������� � jcj � jcj� �

Corollary 2.3. �a� If jcj � ��������� then � �� K��� c�
and thus c �� C��

�b� If c � C� and z � K��� c�� then jcj 	 ���������

and thus jzj 	 ����������

Proposition 2.4. If jcj � j�cj���� � �� then f�� c ex�

pands the Euclidean metric on K��c�

Proof. Let f � f��c� let z be a point in K��c� let
A � Dzf � and let v be a nonzero tangent vector
in TzC � We must show that hAv�Avi � hv� vi�
or equivalently hA�Av� vi � hv� vi� Since A�A has
an orthonormal basis of eigenvectors with positive
eigenvalues� it su�ces to show that the minimum
eigenvalue 	min of A�A is greater than ��
For general f we have 	min � �jfzj � jf�zj�

�� and
in our case 	min � �� � � � j� � �j��jzj����� By
Lemma ���� we have jzj � �jcj � j�cj��������� � ��
since z � K��c� When � � � we have 	min �
�jzj���� � �� and when �

�
� � 	 ��

	min � ���jzj���� � ��� � �� �

3. SMOOTH JULIA SETS

In the holomorphic case there are only two smooth
Julia sets� When c � �� the Julia set is the unit cir�
cle� and is a hyperbolic set� When the critical value
c is real and is one of the preimages of a repelling
�xed point� the Julia set is the closed interval be�
tween�jcj and jcj� This value for c is at the �tip� of
the Mandelbrot set� and in this case the dynamics
on the Julia set is subhyperbolic �the is� expanding
with respect to a metric that is smoothly equivalent
to the Euclidean metric except at a �nite number
of points��
For �xed values of �� one �nds readily the pa�

rameter value for which the critical value is a pre�
image of a repelling �xed point� This �xed point is
real and has coordinate �c� The �xed point equa�
tion is jcj���c � �c� so c � ����������� We denote
the corresponding Julia set by J�� Numerical ob�
servations suggest that when � is between �

�
and ��

J� is indeed an interval� and that when � is greater
than �� J� is not contained in the real line�
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Theorem 3.1. When � is between ��� and ���� the
Julia set J� � J��� c�� with c � ����������� is an

interval � The dynamics on J� is subhyperbolic�

The idea of the proof is straightforward
 to �nd a
metric that is contracted by the inverse �branches�
of f��c� Consider the metric


��z� jdzj�
jdzj

jc� � z�j���������
�

The restriction of this metric to the interval ��c� c
was considered by Jiang ������

Proposition 3.2. When ��� 	 � 	 ���� f expands the

metric 
� on the ball of radius ����������

Proof. We want to show that f��
�� � 
�� We
let p � ���� ������ We have �c � �jcj�� and
f�z� � z����z��� � c� Now

f��
���z� �
jfz dz � f�z d�zj��c� � �jzj����z� � c��

��p

�
j��� ���z���z��z dz � ��� ���z���z�z d�zj���cjzj����z� � z�jzj����

��p

�
j��� �� dz � ��� ���z��z� d�zj

jzj����
��jzj����z� � jcj��jzj����z�

��p

�
j��� �� dz � ��� ���z��z� d�zj��jzj����z� � jcj��

��p �

We now wish to show that the �expansion� ratio
f��
���
� at a point z in the disk of radius �

��������

is bounded from below by one� We have

f��
��


�
�
������ �� � ��� ��

z

�z

d�z

dz

���


� jc� � z�j��jcj�� � jzj����z�

��
�p
�

Now let z � ���������xei�� Since z is in the closed
disk of radius ��������� � jcj� we have � 	 x 	 ��
Denote by ei� the quantity d�z�dz� We can express
the expansion ratio as the product of two terms�
The �rst is

j��� �� � ��� ��ei������j�

which is bounded below by �� when � 	 � and by
� when � � �� The second term is

�
j������������ e�i�x��j

j������������� e�i�x���j

	p

� ��������
�
j�� e�i�x�j

j�� e�i�x��j

	p

�

The term in parentheses on the right exceeds ���

when � � �� and exceeds �
�
when � 	 �� Hence�

for � � �� the expansion factor is greater than
���������������� which is a decreasing function of �
and is bigger than � for all � � ��� ���� For � � ��
the expansion factor is greater than � �����������
which is also a decreasing function of �� and is
greater than � when � � �� We conclude that when
�� 	 � 	 ���� the ratio f��
���
� is uniformly
greater than one for all points z within the disk of
radius ���������� �

Proof of Theorem 3.1. By Corollary ���� the �lled�in
Julia set is contained in the closed disk D of radius
���������� From the proof of Lemma ���� it follows
that the inverses of f map this disk into itself� Let
S� and S� be the two components of the inverse
image of the disk


� c�c
S� S�

D

The two inverse branches �i 
 D � Si are home�
omorphisms� by the previous proposition� they are
uniformly contracting� Thus� the diameter of the
sets ��� � ��� � � � � � ��n�D� go to � geometrically�
Hence� there is exactly one point x� with the n�th
iterate of x� in S�n � where � � ���� ��� � � �� �preim�
ages of the critical value have two such represen�
tations ��� For each � there is a point on the real
segment with the itinerary �� and so there are no
other points in the �lled�in Julia set� �
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Conjecture 3.3. For all � in ��� � ��� the Julia set J�
is the interval ������������ ����������� and the dy�

namics on J� is subhyperbolic�

Structural Stability

We now investigate structurally stable properties
for � �xed and c near zero� Consider fc � f��c�
Take c to be zero� The unit circle S� is smooth�
f��invariant and repelling� In fact TS�C splits as
a direct sum TS� �N of invariant bundles� where
N corresponds to the radial direction� We have
jDf��v�j � � jvj when v � TS� and

jDf��v�j � �� jvj

when v � N � If we set m � ln����� ln �� the dy�
namics near S� is m�normally hyperbolic in the
sense of Hirsch�Pugh�Shub �Hirsch et al� �����
On C n f�g� we have the foliation by concentric

circles and the foliation by radial lines� These fo�
liations are invariant �that is� every component of
f��� of a leaf is contained in a leaf�� smooth� and
intersect transversely� We consider the stability
properties of these foliations�

Definition. Let A be an annulus� A foliation on A
is circular if each of the boundary components of
A are leaves and if every leaf is homeomorphic to
a circle� A foliation on A is transverse if every leaf
is homeomorphic to a closed interval and intersects
each of the boundary components of A in a single
point� We say that a circular or transverse foliation
on A is Ck when each leaf is Ck�di	eomorphic to
a round circle or interval� respectively� and nearby
leaves are Ck�close�
Let A and B be domains in the plane� Let f 


B � A be a smooth nonsingular map� Then any
foliation on A lifts to a foliation on B� We say
that a �Ck� foliation on A is compatible with the

dynamics if it and its lift to B form a �Ck� foliation
of A B�

Consider a concentric annulus A containing S��
Then f��� �A� is strictly contained in A� Choose
a circular foliation on A� � A n f��� �A� that is Ck�
close to the foliation by round circles �in particular�

transverse to the radial foliation�� We can obtain
a foliation on A n S� by repeatedly pulling back
by f��� � adding S� gives an f��invariant foliation A
whose leaves are Jordan curves�
One easily shows that every leaf of this folia�

tion is a graph of a radial function �r���� ��� these
graphs are uniformly Ck for all k 	 ln�����ln ��
The leaves on

An � A n f�n��� �A�

converge to the round circle in the Ck topology
�Figures � and ���
Now consider a foliation of Anf��� �A� by smooth

arcs running from one boundary component to an�
other in each component annulus� transverse to
the foliation by round circles and compatible with
the dynamics� Pull back by the dynamics to ob�
tain a foliation of A n S� by smooth curves that
is transverse to the circular foliation� Since f���

is a contraction� each of these curves limits on
S�� and at least two curves land at each point of
S�� one from the inside and one from the outside�
Moreover� each of these curves is an angular graph
�r� ��r�� and is uniformly of class Ck for all k 	
�ln ��� ln����� If � � �� the resulting foliation ex�
tends to all of A and all leaves are uniformly Ck

for all k � ln�����ln �� However� if � � � and
the initial foliation is not exactly radial� the curves
cannot meet smoothly at S�� See Figure ��

Theorem 3.4. Fix � �� � and a concentric annulus

A containing the unit circle in its interior � and let

m � ln�����ln ��

�a� If � � �� then for all k � m there exists

k so that � when jcj � k� any initial circular

Ck foliation on A n f��c �A� that is close to the

round foliation will pull back and extend to an

fc�invariant C
k foliation on A�

�b� If � � �� then for all k � m�� there exists k so
that � when jcj � k� any Ck transverse foliation

on Anf��c �A� that is close to the radial foliation

and dynamically compatible will pull back and

extend to an fc�invariant C
k foliation on A�
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FIGURE 2. Part of several leaves of a circular foliation on the outer component of A�� and the pullbacks to A��
A�� and A	 when � � �� These leaves converge to the round circle in the C� topology�
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FIGURE 3. Leaves of a circular foliation on the outer component of A�� and pullbacks to A�� A�� and A	 when
� � 


	 � The convergence to the circle is only C
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FIGURE 4. The top two graphs show a leaf of a transverse foliation on the outer component of A�� for � � �
�left� and � � 


	 �right�� The bottom two show the corresponding leaves in the outer component of
S�

n��An�
For � � �� although the initial leaf is close to being radial� it becomes less so under iteration� in particular�
notice the lack of smoothness near the limit at ��� ��� For � � 


	 � on the contrary� we chose an initial foliation
that is far from radial� but the result under iteration has a C� limit that is exactly radial�
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Corollary 3.5. �a� If � � � and jcj � k� the Julia

set J��� c� is a Ck curve�
�b� If � � � and jcj � k� the Julia set J��� c�

intersects every leaf of the corresponding radial

foliation in a single point �

b����� ���i� ��� � ���ie b��� � ���i� ��� � ����ie

FIGURE 5. The Julia set J���	�� ��� � ���i� and
a blowup of it� This illustrates Corollary ��� al�
though the Julia set is not at all smooth� it looks
like the graph of a polar function r � f����

Proof of Theorem 3.4. Most of the technical details
can be found in �Hirsch et al� ���� �di	eomor�
phisms�� Since the maps we discuss here have de�
gree two� the initial setup is a little bit di	erent�
Consider the following cone �elds on C n f�g


C��r� �� �



R
�

�r
� �

�

��

���� jRj 	 j�j

�
�

C��r� �� �



R
�

�r
� �

�

��

���� jRj � j�j

�
�

When � � �� f��� maps C� strictly into itself�
Consider the annulus A� For jcj small enough�
f��c maps the cone �eld C� on A strictly into it�
self� Choose an initial circular foliation on A� �
Anf��c �A� where the tangent vectors at each point
are in the cone C�� and extend this to a foliation
F� on all of A which has the same property� De�ne
a new foliations F� as follows
 pull back F� on A�

by f��c to obtain a foliation on A� � A n f��c �A��
Extend this to all of A as before to obtain F�� Iter�
ate this procedure to obtain a sequence of circular
foliations Fn on A�

Now choose k � m� and assume that the leaves
of F are Ck� The techniques in �Hirsch et al� ����
show that when jcj is small enough� the sequence
Fn is Ck�compact and therefore has a limit point
F� that only depends on the choice in A n f��c �A��
Since the foliations Fn agree on larger and larger
domains� F� is the only limit point� In particular�
the Julia set J��� c� is Ck�
When � � �� the situation is reversed
 the cone

�eld C� is mapped into itself by f��� � When jcj
is su�ciently small� f��c restricted to A maps C�

into itself� Now consider a transverse foliation on
A � f��c �A� that is dynamically compatible and
whose tangent�line �eld is in the cone �eld C��
Extend this foliation to all of A so that the tangent�
line �eld is in the cone �eld everywhere� Repeat the
pull�back construction� When k � m�� this gives
a Ck�compact sequence of transverse foliations on
A� for jcj su�ciently small� Again� there is a single
limit point which only depends on the initial choice
in A n f��c �A��
We �nally argue that the Julia set intersects ev�

ery leaf in exactly one point� The Julia set J��� c�
certainly intersects every leaf in at least one point�
If it intersects in say two points� we can iterate
forward and conclude that there are points of the
Julia set in A n f��c �A�� This is a contradiction� �

Since the construction of the foliations in Theo�
rem ��� involves choices� one may ask if it is pos�
sible to make canonical choices� This is indeed the
case on the unbounded component of the comple�
ment of the Julia set� Construct an invariant foli�
ation near in�nity and pull back by the dynamics�
For � � � one can then make a canonical choice
of Ck circular foliation on the closure of the un�
bounded component� and for � � � one can make
a canonical choice of Ck transverse foliation� It is
interesting that this construction is also possible
when � � �� the conformal case� Though Theo�
rem ��� no longer holds in this case� one still ob�
tains foliations� but by quasicircles and quasiarcs
�radial lines and equipotential lines�� rather than
by Ck curves �Douady and Hubbard �����
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Remark. Jiang ����� has shown that for all c �� �
with jcj su�ciently small� there is a �c � � such
that for � with � � �c 	 � 	 � � �c� the Julia
set J��� c� has Hausdor	 dimension greater than �
�Figure ���

Hausdorff dimension
of J��� c� � 1 out here

J��� c� smooth in here

J��� c� a radial graph in here

Im c

Re c

�� �

FIGURE 6. Schematic classi�cation of the smooth�
ness of the Julia sets near the map z �� z� in ��c
parameter space�

4. FIXED POINTS

In the holomorphic case �� � �� there is one com�
ponent of the interior of the connectedness locus
that one can understand in all detail� namely� the
period�one component� For each parameter value
there� the corresponding map has a single attract�
ing �xed point� which moreover attracts the critical
point� This component is a disk and its bound�
ary is a cardioid� For every parameter value in
this boundary the corresponding map has a neu�
tral �xed point� When the eigenvalue of this �xed
point is a root of unity e��ip�q �with p and q rel�
atively prime�� the corresponding parameter value
occurs at the intersection of the closures of two
connected components of the interior of the Man�
delbrot set� namely the period�one component and
a component where there is a periodic attractor of
period q�
In part� the key to this picture is the study of the

Leau bifurcation �Milnor ����� Here one considers

the holomorphic one�parameter family of holomor�
phic germs de�ned near the origin


P��z� � 	z � z�h�z�� P���� � ��

when 	 is in the neighborhood of a root of unity�
This study of the period�one component applies to
other hyperbolic components as well� If one con�
siders a component for which one has a periodic
attractor of period q� at each point of the bound�
ary of this component one has a neutral periodic
cycle� and taking the q�th iterate reduces the study
of the bifurcation to that of the Leau bifurcation�
In particular� the boundary of such a component
is an algebraic curve�
When � �� � our understanding is already in�

complete for the period�one component� which we
de�ne as the set of parameters c in the connect�
edness locus for which f��c has an attracting �xed
point� Moreover� the analysis we carry out in the
period�one component does not automatically ex�
tend to the components corresponding to periodic
attractors of higher period� We show below that
when � �� � and an attractor is present� the critical
point is not necessarily attracted to it�
Fix �� We �rst analyze the �xed�point picture�

For every z�� there is a c such that z� is a �xed
point of f��c� namely�

c � z� � z���� �z�
����

If z� is a �xed point of f��c� the derivative D�z�� of
f��c at z� is

��� ��z�� �z
���
� dz � ��� ��z���� �z���� d�z�

The point z� is an attracting �xed point if the
eigenvalues of D�z�� are both in the unit disk� In
the closure of the set of such attracting �xed points�
there are three important curves


 where detD�z�� � ��

�� where D�z�� has an eigenvalue ���

�� where D�z�� has an eigenvalue ���

Figure � shows these curves for several values of ��
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� � ��� r � ������� � � ��� r � ������� � � ��� r � ������� � � ��� r � �������

FIGURE 7. The curves ��� � �a circle of radius r� and ��� for various values of ��

A point z� � r�e
i�� is on  if and only if

detD�z�� � ��r����� � ��

and therefore  is a circle of radius �������������
A point z� is on �� if and only if

�� trD�z�� � detD�z�� � ��

or� equivalently�

�� ���� ��r����� cos �� � ��r����� � ��

We claim that �� is a smooth simple closed curve�
There are at most two values of r����� satisfying the
preceding equation� Because we want to consider
only the solutions for r� positive� we must have
cos �� � �� Moreover� the discriminant of the equa�
tion is nonnegative when cos� �� � ����� � ����
that is� in an angular sector about the real axis
�when � � �� this sector reduces to a single point��
The discriminant vanishes at the ends of that angu�
lar sector� Consequently� �� is a topological circle�
One can check that the curve is C��
The curves �� and  intersect in two points �only

one when � � ��� Notice that �� � ���� because
z� is on �� if and only if ��trD�z���detD�z�� � ��
De�ne P���� as the locus of c such that f��c has

an attracting �xed point� The previous analysis
immediately provides us with insight about P�����
Consider the map p 
 C � C that assigns to each
z the parameter value that makes z a �xed point

fp�z��z� � z� Explicitly� we have

p�z� � z � z����z����

When z is real� p�z� is real and p commutes with
conjugation� One checks that p is injective on ���
injective on  when � � �� and has a single point
of multiplicity two on  when � � ��
We will now discuss the dynamics of the �xed

points z� � p���c� for c in C � We present the
outcome �rst� followed by a partial analysis� The
bifurcations occur along the curves p���� and p��
�Figure ��� One can show that� for � �� �� p�� is
a lima�con� p���� is di	eomorphic to a circle� and
p���� is a simple closed curve with three cusps�
Three qualitatively di	erent partitionings of the c�
plane are possible� depending on whether � is less
than� equal to� or greater than � �Figures ������

The case �
�
� � � �

Here the lima�con p�� has an inner loop� We de�
scribe the �xed points occurring in each region of
Figure � �see the caption of that �gure for the
meaning of � and �� We draw attention to
the possibility of attracting �xed points that fail
to attract the critical point �regions and ��

Outside the lima�con p�� and outside p�����
there are always two repelling �xed points�

Inside p���� there are four components cut
out by the lima�con� Region is given by the
two pieces that intersect the real line� There are
two attracting points� one repelling point� and one
saddle� Part of the curve p�� crosses this region�
but crossing this curve only changes the product
of the eigenvalues of the saddle from less than one
to greater than one� no bifurcation occurs�

17 April 1994 at 21:12



Bielefeld, Sutherland, Tangerman and Veerman: Dynamics of Certain Nonconformal Degree-Two Maps of the Plane 291

���� �

����

���

���


����

�

���

����

����

�

���

����

����

�

���

� � ��� � � ��� � � ��� � � ���

����

����

���

��������

�����

����

��
���
�

�����

����

������

����

���

FIGURE 8. The curves p���� �leftmost in each top diagram�� p��� and p���� �three�cusped� and magni�ed in
bottom diagram�� for various values of ��

This region consists of the two components
inside p���� that do not intersect the real line� here
there is one attracting �xed point� a saddle� and
two repelling �xed points� Crossing the curve p��
into region causes one of the repelling points to

FIGURE 9. Fixed�point behavior for �
� � � � ��

For each region in the c�plane delimited by the
curves p���� p���� and p���� we indicate the num�
ber and types of �xed points that exist there�
represents an attracting �xed point� a repelling
�xed point� and a saddle� The top and bottom of
the lima�con p��� have been clipped� and the region
on the right has been magni�ed�

undergo a Hopf bifurcation �see below� and become
attracting� As one crosses the curve p���� into the

region� a saddle and repelling �xed point collide
and cancel�

Outside p���� but inside the inner loop of the
lima�con we have two attracting �xed points� When
one crosses p�� into region � one of the attract�
ing points becomes repelling� generally with a Hopf
bifurcation� Entering this region from causes
the repelling point and the saddle to cancel� Since
there are two attracting �xed points� there must be
at least one that doesn�t attract the critical point�
In fact� when c is real the critical point iterates to
in�nity�

Inside p���� there is always one repelling �xed
point and one saddle� As above� the part of the
p�� inside this region doesn�t cause a bifurcation�
For c real near p����� there is a period�two at�
tractor that fails to attract the critical point� it
is attracted to the saddle instead� As one leaves
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this region into region � the saddle splits into a
repelling �xed point and a period�two saddle�

In this region� which is inside the main loop
of the lima�con� we have one attractive and one re�
pelling �xed point� When one enters this region
from region � one of the attracting points and
the saddle collide and cancel� When one enters
from region � the saddle merges with a period�
two attractor and an attracting �xed point is cre�
ated� When one crosses into � the attracting �xed
point becomes repelling and typically a Hopf bifur�
cation occurs� We will discuss the direction of the
Hopf bifurcation at the end of this section�

The case � � �

In the conformal case� p�� is a cardioid and p����
and p���� are points on the real axis �Figure ����

Inside the cardioid there is one attracting and
one repelling �xed point� The system being con�
formal� the critical point is in the attractor�s basin�

Outside the cardioid there are two repelling
�xed points� In this case no Hopf bifurcation can
occur� when going through a point on the cardioid
for which the derivative at the �xed point is of
the form e��ip�q � a Leau�Fatou  ower bifurcation
occurs �Milnor �����

The case � � �

Here the lima�con is convex or has a dimple� We
conjecture� based on numerical evidence� that the
critical point is attracted to the attractive point
when it exists�

FIGURE 10. Fixed�point behavior when the map
is conformal �� � ��� The labeling conventions are
as in Figure ��

Outside the lima�con and outside p���� there
are two repelling �xed points�

The lima�con cuts p���� into four pieces� The
two pieces intersecting the real line form region �
which has two repelling �xed points� one attracting
�xed point� and one saddle point� As for � � ��
crossing p�� inside this region doesn�t cause a bi�
furcation� When crossing p���� into region � the
attracting �xed point and the saddle collide� cross�
ing into region causes one of the repelling �xed
points and the saddle to collide�

This tiny region consists of the two compo�
nents inside both p���� and p�� that do not in�
tersect the real line� Here there are two attracting
�xed points� one repelling� and one saddle point�
When moving from here to region an attract�
ing �xed point and a saddle cancel� When moving
from here to region � one of the attracting �xed
points loses stability and becomes repelling� gener�
ally via a Hopf bifurcation�

Inside p���� we have one saddle point and
one repeller� As before� crossing p�� inside this
region causes no bifurcation� When crossing into
� the saddle splits into a period two saddle and a
repelling �xed point�

Inside the lima�con and outside p���� there is
one attracting and one repelling �xed point� When
one crosses p���� from region � one of the re�
pelling �xed points and the saddle collide� When
one crosses from region to here an attracting
period�two orbit merges with the saddle to form
an attracting �xed point�

FIGURE 11. Fixed�point behavior for � � �� The
conventions �labeling� clipping� di�erent scales� are
as in Figure ��
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Justification

We now give the analysis that leads to the bifur�
cation pictures above� We �rst consider the case
where c is real�

Proposition 4.1. If c is real � f��c has at most four

�xed points �

Proof. The point rei� is a �xed point if and only if

rei� � r��e�i� � c�

Looking at the imaginary part� we see that

r sin � � �r�� sin � cos � � ��

so either sin � � � or r � �r�� cos �� In the �rst
case there are two real solutions if c is less than c��
where f��c��x� is tangent to y � x� In the second
case we obtain r�� � c after substituting into the
real part of the original equation� and thus we get
at most one value for r� Substituting this value for
r into the original equation gives a quadratic equa�
tion in ei� that has a solution for every c greater
than a certain c� � c�� �

We can explicitly calculate the types of the �xed
points on the real line
 the only way the types or
total number of such �xed points can change is
when we cross one of the curves p�� or p����� As�
suming these curves intersect as discussed earlier�
the types occurring in each region can be calcu�
lated by considering all possible bifurcations� We
know that p�� is a lima�con� The di�cult part of
the analysis is then to �gure out how the curves
p���� cross the lima�con� First we show that p����
intersects the lima�con as shown in the �gures� by
showing that p is injective on the left half plane�

Proposition 4.2. The function p is injective on the

left half plane�

Proof. Observe that p 
 C � C is proper and sur�
jective� Consequently� p maps closed sets to closed
sets� Let L � fz j Re z 	 �g denote the closed left
half�plane� Note that p maps the negative real axis

onto itself and the imaginary axis onto a parabola�
shaped curve that intersects only at the origin


p�iy� � jyj��� iy�

Since p has no singularities on L� it is an open�
orientation�preserving map on L� In particular�
p�!L� is open� Since p�L� is closed� we conclude that

p�!L� is contained in the component of the com�
plement of the image of the imaginary axis that
contains the negative real axis� Thus p�L� is the
closure of this component� since p�L� is closed� The
map p is proper on L� and maps L onto this com�
ponent� so the degree of p is well de�ned� Since
p����� � f�g� this degree is one� We conclude that
p maps the left half plane di	eomorphically onto
the component described before� �

Next we must show that p���� intersects the lima�
�con p�� as indicated in the pictures� This follows
from the examination of three types of point

The images of the two intersections of �� and


 here Dp has � as a double eigenvalue� and the
rank is one� as can be seen by explicit computation�
This explains the two tangencies between p�� and
p�����
The points where the tangent to �� is in the ker�

nel of Dp
 one checks that there are exactly three
such points� one real �c� in the proof of Proposi�
tion ���� and the other two complex conjugates�
This explains the three cusps�
The points where the tangent to �� is horizontal

or vertical
 one calculates that there is only one
point� c�� where the tangent is horizontal� When
� � � there is only one point �c� in the proof of
Proposition ���� where the tangent is vertical�

It is not hard to show that p���� and p���� do not
intersect�

Hopf Bifurcation

Consider a small disc D with center c� �  with
Dfc� having complex conjugate eigenvalues of ab�
solute value � at one �xed point� We wish to dis�
cuss the bifurcation picture in this disc� For c in

17 April 1994 at 21:12



294 Experimental Mathematics, Vol. 2 (1993), No. 4

this disc� we can smoothly parametrize the cor�
responding �xed point z�c� in such a way that
z�c�� � z�� When D is small enough this map
z 
 D � C is a di	eomorphism� In particular� z�D�
intersects � and D n  consists of two regions� one
where the �xed point is attracting and one where it
is repelling� On the boundary of these regions the
�xed point is neutrally stable� One should in gen�
eral expect a Hopf bifurcation� that is� as c passes
through the curve � the �xed point z� will change
stability and an invariant circle will be created or
destroyed �Marsden and McCracken ����� Devaney
����� This behavior is more precisely described in
terms of normal forms� as follows

Assume that we have chosen z� so that its eigen�

values are nonresonant
 not �rst� second� third� or
fourth roots of unity� Then one can �nd new coor�
dinates with respect to which f��c has the form

Fc�z� � 	cz�� � vcjzj
�� �O�z
�

around z�� and whose relationship to the old coor�
dinates depends smoothly on the parameter c � D
�Marsden and McCracken ����� �The eigenvalue
	c and the coe�cient vc depend also on ��� The

map c �� 	c is a di	eomorphism on D and inter�
sects the unit circle� The bifurcation theory for c
near c� depends on Re vc� � provided Re vc� �� ��

Claim 4.3. Assume that the eigenvalue 	c� is non�

resonant � Then Re vc� � � for �
�
� � � � and

Re vc� � � for � � �� In the conformal case

�� � ��� vc� vanishes �

Justification. When � � � this is obvious� For other
values of � we have found no easy proof� The
only more or less straightforward case is an in�
�nitesimal computation near the holomorphic case
� � �� Conceivably� a computer�assisted proof of
this could be done using interval arithmetic� How�
ever� we feel this claim does not merit the e	ort of
a di�cult and tedious proof� and have used Math�
ematica �Wolfram ���� to perform the coordinate
changes and compute vc� on a large grid of param�
eter values �see Figure ���� For � � � we obtained
�numerically� Re vc� � ������� and for � � � we
obtained Re vc� � ������� �

By Claim ���� the sign of Re vc� depends only on ��
so we know in which direction the Hopf bifurcation

�
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�
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�
� �

�
�

�
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�
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���
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�
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�
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FIGURE 12. Graphs of Re vc� as a function of � and � � arg	c� � We have modi�ed the � scale so that the
intervals ��� � �� and ����� have the same length� On the right is a closeup near the ��� plane� which we have
shaded to emphasize the plausibility of the claim�
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occurs� Assuming that the disc D is small enough�
we have the following dichotomy

When � � � and j	cj � �� there exists an invari�

ant circle near z�c� that is repelling in the normal
direction� For 	c outside the closed unit disc� there
is no invariant circle near the point z�c��
When � � �� we have the opposite situation
 for

j	cj � �� there is no invariant circle close to z�c��
and for 	c outside the closed unit disc� there exists
an invariant circle that is attracting in the normal
direction� We conjecture that the critical point is
still attracted to this circle�

5. Remarks on the Topology of the Connectedness Locus

In the holomorphic case �� � ��� the connectedness
locus is called the Mandelbrot set� and is connected
�Douady and Hubbard ����� its complement in the
Riemann sphere is conformally equivalent to the
open disk� Every connected component of its inte�
rior is a topological disk� and is either a hyperbolic

component or a queer component� For any map
lying in a hyperbolic component� there is a peri�
odic attractor that necessarily attracts the critical
point� Each hyperbolic component has a center"
the parameter value for which the critical orbit is
periodic� Within any component� hyperbolic or
not� all maps except possibly one are topologically

�and even quasiconformally� conjugate� the excep�
tion is the center of a hyperbolic component�
A long�standing conjecture is that there are no

queer components in the Mandelbrot set"in other
words� all components of the interior are hyper�
bolic� This conjecture is equivalent to the local
connectivity of the Mandelbrot set �Douady and
Hubbard ����� Yoccoz has shown that local con�
nectivity holds for a �substantial� part of Mandel�
brot set �Hubbard ����� The hyperbolicity conjec�
ture has also been established along the real line
by rather di	erent techniques �#Swi�atek ����� Mc�
Mullen ����� Lyubich �����
The situation when � �� � is quite di	erent� as

one should expect� because the iterates of the maps
are not uniformly quasiconformal� Douady and
Hubbard�s proof that the Mandelbrot set is con�
nected relies on the conformal structure� we see no
way to adapt it to the nonconformal case� Fur�
thermore� there is no mathematical relationship
between the hyperbolicity conjecture and the local
connectivity in this case� However� numerical evi�
dence strongly suggests the following conjecture


Conjecture 5.1. For all � � �
�
� the connectedness

locus C� is connected � However � C� is not locally

connected for � �� ��

The apparent lack of local connectivity of C� in the
nonconformal case is at least partially related to

FIGURE 13. The connectedness locus for � � ��	� �c � b�
����i� ��������ie�� � � � �c � b������i� �������ie��
and � � ��� �c � b���
�� i� ��� � ie��
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the presence of saddle points and their stable and
unstable manifolds� Such invariant saddles make a
qualitative understanding of the dynamics di�cult
and a quantitative understanding nearly impossi�
ble� In particular� when � � �� one can readily see
the di�culty caused by the saddles�
Speci�cally� consider the interval of real param�

eters for which the restriction of f��c to the real
line has an attracting �in R� �xed point that at�
tracts the critical point� For some interval of pa�
rameters� this �xed point is not an attracting �xed
point on C � but is repelling in the imaginary di�
rection �for example� in the region discussed
in Section ��� Denote this �xed point by zc and
consider its global stable manifold W s�zc�� Be�
cause the dynamics is noninvertible� this global
stable manifold is topologically more complicated
than for a di	eomorphism� The critical point is in
this stable manifold and one might hope that the
�lled�in Julia set is the closure of this stable man�
ifold� Now consider a parameter value c� which is
nearby� but not real� Consider the corresponding
�xed point zc� and the corresponding global stable
manifold� The critical point is not necessarily con�
tained in this global stable manifold� In fact� the

global stable manifold changes with the parameter�
sometimes the critical point escapes to in�nity and
sometimes it is in W s�z�c�� The detailed structure
of the connectedness locus is unclear� but it has the
topological appearance of a stable manifold� The
rough structure of the C� for these parameters is
that the main lobe �which contains those values of
the c for which there is an attracting �xed point�
is connected to the period two lobe� �containing
those values for which there is an attracting cycle
of period two� are connected only by a segment in
the real line� A very complicated comb�like struc�
ture limits on part of this segment� See Figure ��
�left��
When � � �� there is also an apparent lack of lo�

cal connectivity near the real line� but in a dynam�
ically di	erent part of C�"for example� between
the limit of period doubling and the creation of
an orbit of period �
 see Figure �� �right�� At this
time� we have no real understanding of what causes
this�
Some insight into the topology of the boundary

of the main lobe of C� can be gained by looking
again at the Hopf bifurcation near the conformal
case� We shall analyze the type of bifurcations that

FIGURE 14. Blowups of the connectedness locus for � � ��	� �c � b���	������i� ���
�������ie� and � � ���
�c � b����� �����i�����
�� �����ie�� showing the apparent lack of local connectivity�
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occur near parameters for which there is a �xed
point of multiplier 	� where 	 is a q�th root of
unity� for q � �� We shall omit most of the tedious
calculations here� the interested reader should refer
to �Bielefeld et al� ����� x ��
In this situation� one can change coordinates

�Marsden and McCracken ���� so that we have
a two complex�parameter family of maps de�ned
near the origin in the complex plane


F	�a�z� � 	z�e	 � ajzj� � zq�

�O�jaz�j� ja�z�j� j�zq��j� jzq��j��

�Here a � �� � ���	�� We are interested in the
q�periodic points of F	�a� one easily sees that for
such a point we have

z � z�eq	 � qajzj� � qzq�

�O�jaz�j� ja�z�j� j�zq��j� jzq��j��

We �rst consider the parameter a to be real�
negative� small and �xed� �This corresponds to
� � ��� When Re� 	 �� the �xed point z � �
is an attractor� the product of its eigenvalues is
less than �� When Re� � �� the �xed point is re�
pelling� but for Re � su�ciently small� there exists
an attracting� invariant �Hopf� circle whose diame�

ter is of order
p
Re��jaj� One can show that there

is also a q�periodic orbit located approximately on
the circle of radius jaj��q��� When j�j is small� it
is easily seen that this orbit is repelling�
In a horn�shaped domain in the ��plane� the ro�

tation number on the invariant circle is p�q �re�
call that 	 � e��ip�q�� this horn is in fact the p�q�
resonance horn or Arnol�d tongue �Arnol�d �����
Aronson et al� ����� Hall ����� Within this horn�
there are two additional q�periodic orbits
 one is a
saddle and the other is an attractor� the invariant
circle around the repelling �xed point is the closure
of the unstable manifold of the p�q�saddle� which
contains the attracting orbit� If � leaves the horn
�through the side�� i�e�� if we �x Re � and vary
Im�� the saddle and the attractor collide� and al�
though there is still an invariant circle� the rotation
number is no longer arg	� If instead we allow Re �

to increase su�ciently� the saddle and the repeller
collide� leaving a single attracting orbit of period q�
However� before this collision occurs� the invariant
circle looses smoothness and becomes only a topo�
logical circle� This loss of smoothness occurs when
the eigenvalues of the p�q�sink become complex�
See �Aronson et al� ����� x ��
Experimental evidence indicates that the criti�

cal orbit remains bounded for all parameter values
discussed above
 it is attracted to either the at�
tracting �xed point �Re� � ��� the invariant cir�
cle� or the p�q�periodic attractor� This gives some
explanation for the appearance of the connected�
ness locus near the main lobe
 the p�q�lobe sits at
the end of a resonance horn� and is hence attached
along an arc of values� See Figure ���
When a is positive �corresponding to � � ���

the picture is the other way around� As above� the

FIGURE 15. The �


limb for � � ���� in the rect�

angle b����
	��������i� ���������	
��ie� The
regions in gray indicate that the critical point con�
verged to a periodic attractor of moderate period
�less than ���� within a few hundred iterations�
Note the gray horn�like region at the base� The
boundary of the �gure appears disconnected due
to the algorithm used to produce the picture� a
di�erent algorithm gives a much thicker boundary�
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FIGURE 16. A Julia set for c in the �

 resonance

horn for � � ���� z � b����� � ���i� ���� � ���ie�
The large gray areas form the basin of the �


 at�
tracting periodic orbit� This attracting orbit has
complex eigenvalues� so the unstable manifold of
the �



periodic saddle does not form a smooth in�

variant circle� This saddle orbit lies on the �ve
smooth curves that divide the gray regions� and
that form the stable manifold of the saddle�

�xed point is attracting for Re� � � and repelling
for Re� � �� but the invariant circle is repelling
and exists only when Re� � �� Within a horn of
� values� the invariant circle contains a p�q�saddle
and a p�q repeller� and is the closure of the stable
manifold of the saddle� For all Re � negative and �
su�ciently small� there is another q�periodic orbit
nearby� which is attracting�
However� in this case the relationship between

the Arnol�d tongue and the connectedness locus
is quite di	erent� Since the circle is repelling� for
many parameter values in the horn� the critical
orbit does not limit on the attracting �xed point�
it can escape to �� and hence the �lled�in Julia
set will be disconnected� Thus� one cannot readily
detect the presence of the Arnol�d tongues from
the connectedness locus alone� as in the case of
� � ��
There is� however� a horn�like structure which is

readily apparent along the boundary of C�� See
Figure ��� This is related to the presence of q�

FIGURE 17. Left� the �


limb for � � ��	�� c � b���	�	 � ����i� ������ � ��	��ie� Right� a blowup with

c � b���� � ���i� ����
 � ����ie� The two �gures were produced with di�erent algorithms� on the left�
gray denotes parameters for which the critical point failed to escape within ��� iterations� while on the right
such parameter values are colored black� and gray is used to indicate convergence of � to an attracting orbit of
moderate period�
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FIGURE 18. Close�ups of the �lled Julia set for � � ��	� and c � ��� � ��	�i� which is within the
horn of Figure �	� and for c � ����	�� � �������i� which is just outside the horn� In both cases�
z � b���	� ���i� ��� � ���ie and there is an attracting �xed point at the center of the picture� with a pair of
period��ve repellers surrounding it �at the ends of the black and white spirals nearest the center on the left
�gure�� and a period��ve saddle at the edge of the large black region� On the left� the critical point� �� lies in
the large black cross�shaped region near the lower right� On the right� however� � does not lie in the basin of
the attractor� it iterates to in�nity� and the �lled Julia set is disconnected� although not totally disconnected�
Notice also that one of the period��ve repellers lies in the interior of the �lled Julia set�

periodic saddles� Near this horn� there are three
period�q orbits� as well as the attracting �xed point�
Two of the periodic orbits are repelling� and the
the other is a saddle� The horn corresponds to
the parameter values for which the critical point
lies between the one side of the stable manifold of
a saddle point z and the other side of the stable
manifold for its image fc�z�� See Figure �� �left��
At the point of the horn� a saddle connection oc�
curs
 one side of the local stable manifold of the
periodic saddle z is the local unstable manifold for
its image fc�z��
Attached to the top of the horn is a curve for

which the critical orbit remains bounded� although
it is not attracted to an attractor� For these param�
eters� the critical point lies on the stable manifold
of one of the points of the period�q saddle orbit
discussed above� This orbit appears to persist long
enough to attach the period�q lobe �within which
there is an attracting orbit of period q� to the main
lobe� Thus� C� is not disconnected as it appears in
Figure ���
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