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Abstract. Let J be a Cantor repellor of a conformal map f. Provided f is
" polynomial-like or R-symmetric, we prove that harmonic measure on J is equiva-
lent to the measure of maximal entropy if and only if f is conformally equivalent to
a polynomial. We also show that this is not true for general Cantor repellors: there
is a non-polynomial algebraic function generating a Cantor repellor on which above
two measures coincide.

1. "ntroduction. Harmonic measure in dynamical context appeared for the
first time in the Brolin’s paper [Br] where it was established that harmonic measure
w associated with the unbounded component of the complement of the polynomial
Julia set J(f) is balanced which means that backward orbits of f are equidistributed
with respect to w. Later this balanced measure was interpreted as the unique measure
of maximal entropy of f [L], [Ma].

When we have more general conformal dynamical systems, a natural problem of
the comparison of these two measure arises. For rational f it was considered by Lopes
[ Lo ] who proved that if co € C\J(f) is a fixed point of f, then it follows from the

coincidence of harmonic measure w with the maximal measure that f is a polynomial.
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As a particular case of this theorem, one can consider a Blaschke product fixing co:

a;

a1 .
f:z—+)\zHl — =1, |af <1
i=1 -

a;z
Then harmonic measure w is just Lebesgue measure o on the unit circle T. So, the
entropy of o is equal to log d ifand only if f: z — 24 .

We are going to consider a local setting of the problem when f is defined only in a
neighborhood of an invariant compact set J = J(f). The question is to characterize
the situation when harmonic and balanced measures are equivalent. It certainly
happens if f is conformally conjugate to a polynomial (see Appendix). In this paper
we will discuss the reverse problem in the case when J is an expanding Cantor repellor.

Let us pass to precise definitions. Let U, Uy, Us, ..., Ug be d+1 topological discs with
piecewise smooth boundaries such that the closures U.cU,i=1,..d Consider a
map f : CJU,- _, U which is a conformal isomorphism f; : Ui — U on each U; (see

i=1

Figure 1). By an (expanding) Cantor repellor we mean the set

J=J(f)={=z: f”:vELdJU,-, n=0,1,..}.

=1

Figure 1.



Let us say that the map f generating the repellor is symmetric if each one of the
domains U; is symmetric about the real line R, and f preserves R.

Let us say that f is polynomial-like if it allows a polynomial-like (in the sense
of Douady and Hubbard [DH]) continuation to a bigger domains V' — W. This
means that V and W are topological discs with piecewise smooth boundaries, with V
relatively compact in W, and f: V — W is a proper of degree d , that is, a branched
covering of degree d (see §5 for more details).

Saying that two maps f and g are (conformally) conjugate we mean that there is
a (conformal) conjugacy in some neighborhoods of the Julia sets (so, actually we are
speaking about germs).

It is very easy to understand what is the balanced measure ( measure of maximal
entropy) m in our setting. Namely, m is uniquely determined by the property that

for any finite sequence zy, ..., z, of symbols 1,...,d
m{z: flz€U,, i=1,..n}=1/d"

In this paper we will prove the following theorem.

Theorem. Let f be either symmetric or polynomial-like generating an expanding
Cantor repellor J(f), and let w be harmonic measure on J(f). Then w is absolutely
continuous with respect to the balanced measure m if and only if f is conformally
conjugate to a polynomial. O

We were surprised that this statement is not true for general Cantor repellors:
Example. There is an expanding Cantor repellor on which harmonic measure is

balanced but which is not conformally equivalent to a polynomial Julia set.



The function f generating this repellor is algebraic. Our considerations actually
show that any expanding Cantor repellor on which harmonic measure is balanced is
conformally equivalent to an algebraic one. We are going to discuss this phenomenon
in a later paper.

The investigation of harmonic measure from the dynamical point of view was
started by Carleson [Ca). He constructed an invariant harmonic measure (that is, a
f-invariant measure equivalent to w) as the probability distribution for a stationary
sequence of nearly independent random variables. Later the powerful methods of
Bowen-Ruelle-Sinai thermodynamical formalism were introduced into the subject (see
[MV], [PUZ)). This approach plays a crucial role here as well.

In conclusion let us mention a well-known statement concerning the circle maps
which is important for understanding our result.

Lemma 1.1. (compare [SS]). Let f : T — T be an analytic expanding map of
the circle. Assume that its maximal measure m is non-singular with respect to the
Lebesgue measure o on T. Then f is analytically conjugate to z — 2.

Proof.‘ An expanding map of the circle has unique invariant measure y non-singular
with respect to the Lebesgue measure. Moreover, this measure is absolutely continu-
ous with respect to o with analytic density p [K]. In our case m = p.

Now let us consider a homeomorphism A : T — T conjugating f to z — 24, Tt
carries the balanced measure m of f into the balanced measure o of z — z¢. Hence,

on the universal covering of T we have

h(z) = h(O) + [ p(t)dt,

and we are done. O



Our proof of the Theorem reduces the case w ~ m on a Cantor repellor J(f) to
the circle case by using a “circle model” for a Cantor repellor. In the general setting
of Cantor repellors our circle construction is based upon the assumption w ~ m. vIn
the case of a polynomial-like Cantor repellor one can use the Douady-Hubbard circle

model which is independent of the assumption w ~ m.
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2. Gibbs property of harmonic measure
2.1. We refer to [Bo] or [EL] for the exposition of the theory of Gibbs measures, and
here we state only the facts we need for our goals.

On a Cantor repellor J = J(f) the dynamical system f : J — J is naturally
topologically conjugate to the shift 7 : £ — T} on the space of one-sided sequences
in d symbols. Providing Z with the natural metric (p(Z,9) = 7=, where n is the
first moment for which z, # yn), we see that the conjugacy h: J— YF is Holder
continuous in both directions. So, the class of Holder function is well-defined if we
identify J and Y8 via h.

For any f-quasi-invariant measure v on J one can consider its Jacobian

Go(2) = df v

—(2),



that is the Radon-Nicodim derivative of f with respect to v. The function ¥, def

—log G, (z) will be called the potential of v. Holder regularity of the potential yields

a proper Gibbs theory several facts of which we are going to state now:

1) By a Gibbs measure on J(f) we mean an f-invariant measure v with

Holder potential ¥, = —log G, .

2) If n is an f-quasi-invariant measure with Holder potential 1,, then
there exists the unique f-invariant measure v absolutely continuous with
respect to 7 . This measure is a Gibbs measure and log % is a Holder

function. Moreover, p is ergodic.

3) In the above situation ¢, and ¥, satisfy the cohomology equation

11)77 = "/}u +70 f -
with a Holder function 5. Actually, v = log %.

2.9. Estimates of the Jacobian of harmonic measure of a Cantor repellor.

For a cylinder X = z1,...,Zn C >F let
QX = 1:_11 0---0 f;nlU = Ul‘l n f_lU:vz n---N f—(n—l)U:rna

and v(X) = v(Qx) for any measure v on J. We will also adopt the following nat-
ural notation: for two cylinders X = Z1,...,%n, ¥ = Y1,.-sYm by XY we mean
T4, ooy Tnly ooy Ym- FOr X = 1,000y Ty | X| = 1.

The crucial estimate for harmonic measure on Cantor repellors was established in

[Ca] and [MV].



Proposition 2.1. For a Cantor repellor J there exists C and ¢ € (0, 1) such that for
any X,Y,7Z

<cg¥l. o (2.1)

w(XYZ) w(YZ)
1°g<w<XY>' w(Y))

This proposition was based on the following result, which we will also need later.

Lemma 2.2. Let Q be a bounded domain, A;, B; (: =1,...,n) be Jordan domains
such that

Al:)BlDAgDBQDDAnDBna

and ANB; C Q. Suppose that A;\B; are topological annuli and their modules are
bounded from below by p > 0. If u and v are two positive harmonic functions on

vanishing on A; N 99, then for any ¢, 2 € QN B,

uz) ()

v(z) ()

where ¢ = ¢(p) < 00, g =gq(p) € (0,1). O.

< Cq, (2.2)

Using (2.1) with X =z, Y = 23,...,Zn, £ = Tn41 We get

U)(.’Bl, ) $n$n+1)

w($2, ey TnTngl

1 W(Tqy ey Tn)
0 —_—_————
& w(z2, ..., Tn)

— log < Cq".

Thus, the potential
w(z1...2n)

w(z2...Tn)

Yy(z) = limlog

exists for every = = (1,Z,...) € J and is Holder continuous. So, we are in position

to apply the theory of Gibbs measures .

Proposition 2.3. There exists a unique f-invariant measure absolutely continuous

with w. This measure is ergodic and its potential 1, is Holder continuous (so 4 is a



Gibbs measure) Moreover, the logarithm of the Radon-Nikodim derivative log gs is

Holder continuous. O

Remark. This is the same “invariant harmonic measure” which was constructed by

Carleson [Ca] for the “standard” Cantor set.
d

In what follows we will use G(fz)/G(z), z € |J Ui, as a natural extension of the
i=1
Jacobian of harmonic measure on a Cantor repellor J(f). The next two Propositions

show that it is really an extension of J, as well as some of its properties.

Proposition 2.4. For any cylinder X and any z € Qx

(35 25)-

< CglXl, (2.3)

d
Proposition 2.5. —log %(-(%1 is a Holder continuation of 1, = — log G, onto U U..
=1

a

Proof of Proposition 2.4. Let us fix i =1,...,d,put @ =U;, u=G, v=Gof;

on Q, and use Lemma 2.2. in this setting. Then we get

G(fz) =~ G(fO) x|
: -1/ < . 2.
’G(z) G0 1| < Cq¥', Vz, (€ Qx (2.4)
Now recall (see [HK]) that for any disc D, », With zeJ we have
1 ro w(J N {|z — 20| < s})
= . 2.
T /ao,,,.r,, GOl = [ - ds (2.5)

Using (2.1), (2.4) and (2.5) we obtain the assertion of Proposition 2.4. O

Proof of Proposition 2.5. It follows immediately from Proposition 2.4 and the

Holder continuity of the potential %,,. O



In what follows we will use the notation

Lemma 2.6. Let us consider two topological discs Uy, U, such that the closure
U, C U, and a conformal isomorphism g : U; — U. Let 1 be a Holder function
in U;. Then there exists a unique (up to an additive constant) Holder solution of

cohomology equation:

1(92) = 7(2) = ¥(2), z € Ur. (2.7)

Probf. Let 2z, be a fixed point of g. Then the function

o

() Ll(e72) - (o)

n=
will give us a solution of (2.7) provided that the series converges. The series is con-
vergent because the Holder property ;)f 1 ensures that ¥(g™"2) — ¥(20) exponentially
decrease as n — oo. It is clear now that v is Holder continuous too.

In order to prove uniqueness up to a constant let us consider the cohomology

equation y(gz) —(z) = 0. It follows that + is constant along the orbits of g~!. These

orbits accumulate on zo and hence y(z) = 7(2)- O



3. Factorization of the Green function

3.1. In what follows we will make use of two simple technical lemmas. Let U be

d
a closed topological disc, such that UJUuc 7 C U. Recall that G(2) (see (2.6)) is
=1
d
Holder continuous on U U;.

=1

Lemma 3.1. There exist constants C € (0,00), € > 0 such that for any integer n
and any 7 = 1,...,d

IG(f™) - G S Cle' = =" (3.1)
for any 2/,2" € U. o
Proof. Since f{ ™ is a normal family of functions, one can findC =C (ff ) independent

of n, and such that
\fime' — fime"| < Cle —2"|, ¥n,i=1,...,d.
Now the lemma follows from Proposition 2.5 and this fact. O

Lemma 3.2. Let Y en(z) be a series of Holder continuous function (on a metric
space) with uniformly bounded Hoélder norms. Also let us suppose that ||enlleo <
Cq, q € (0,1). Then the sum of this series is Hoélder continuous with, probably,

worse exponent). O
Proof. Let S(z) = Y €n(z). Then

S(2") = S(z")| £ Cnlz’ —2"|° + i (lem(@")] + lem(2")D)

m=n+1

< Cnla' — 2" +2C¢" (1 — q)~ "

The choice of n = [log 1 ] finishes the proof. Note that the Holder exponent for

|-‘5"‘17“|

S is worse than those for €,. O

10



3.2. Now let us assume that harmonic measure w and balanced measure m are non-
singular. Then the ergodicity of the Gibbs measures implies that p coincides with m.
So,
$u(z) = ¢m(z) = —log d, z € J,
and hence
— ¢u(z) = log d+(fz) —(e), z € J, (3.2)

where v = log ;‘% is a Holder function.
Now let us fix i = 1,...,d and let p; be the fixed point of f; : U; — U. Fixing
an arbitrary point z € U we consider its backward orbit {z_,}32; converging to

Di; Z—n = fi™(2). It follows from Proposition 2.1, 2.5 and (3.2) that

G(z—(n-1 n
log Z&z2=0) = log G,,(pi) + O(q")

Hence, the series

Rt G(z_ n—1 . z
z_:log d(T(fz—_n_))) = lim log %}n—) (3.4)

n=1
is convergent. Lemma 3.1, 3.2 and the estimate (3.3) show that its limit is a Holder
function on U.

So, we can consider the following harmonic function defined on U

7(z) = lim d"G(f"2), z € U. (3.5)

n—oo

Clearly, 7; satisfies the functional equation

7(fz) =dmi(z2), z € U; = fflﬁ. (3.6)

11



~

Let us divide G(z) by 7;(z) in U:
G(z) = mi(z)e™ ). (3.7)

Then ~; is given by the series (3.4), in particular, v; is Holder continuous. On U: this

function ~; satisfies the cohomology equation:

log G(2) = log d +vi(f2z) — 7i(2).

Restricting this onto J N U: and comparing with (3.2) we conclude by the uniqueness
part of Lemma 2.6 that v;(z) = y(z) + ¢, ¢ € J.
So we can normalize v; and 7; saving (3.6), (3.7) and the harmonicity of 7; in such

a way that
vi(z) =v(z), z € J, 1 =1,..,d. (3.8)

4. Removing the singularities of 7; — 7;
Now let us show that actually all functions ; coincide not only on J(f) but on

the whole domain U. First we note that
I7:(2) = 75(2)| = G(2)|e¥®) — em )| < CG(2)d(2,J)" (4.1)

Functions ;, 7; are harmonic and positive in U\J and subharmonic and non-negative
on U. Our first goal is to prove that their Riesz measures on J are the same. For this

purpose we need the following two results.

Lemma 4.1. Given a Cantor repellor J(f) there exist constants ci, ¢z, ¢3, ¢4 such

that



1) ¢;dist(0Qx, J) < length (0Qx) < cdist(0Qx, J(f)),

2) Vz € 0Qx, csw(X) < G(z) < cqw(X)..

Proof. First assertion is an immediate consequence of the Koebe distortion theorem.

The second follows from Proposition 2.4 and estimate (2.5). O

Lemma 4.2. Let J(f) be a Cantor repellor, V be its neighborhood and uy,us be

two harmonic in V\J function, which are subharmonic in V. Suppose also that
uy(2) — ug(2) = o(G(2)), z—J. (4.2)
Then u; — u, is harmonic in V.

Proof. Using the Riesz representation for functions u; and u, subharmonic in V' we

can write
ur(z) = () = [ log prgdm(€) = b — U™,
ua(2) = ha(2) — /J log lgdua(€) = by — U,
where hy, hy are harmonic in V. Now let us consider u(z) = ui(z) — u2(z) and
®(z) = Ou(2) (6 S 3 (% - i-%)). Then
d d
®(z) = A(2) +c /J ———z"‘_(? ~c j ——2“2_(?, (4.3)

where A %/ 8(hy — hy) is analytic in V and cis a constant. Now let us use the Cauchy

formula in V'\ U Qx:

|X|=n

_1 o e 1o 2(9dE _
@(z)"zwi/avg—zd“%;nzm/mx £—z =I+3..

13



As u is harmonic in V\J a trivial estimate
|2(2)| < |[Vu(z)| < o(d(2)72G(z))

follows from (4.2). Combining this with Lemma 4.1 we get the estimate (with €, — 0).

IS <Ce 3 /8 o, Gz

| X |=n

< Ce, Z w(X) = Ce, — 0.

|X|=n
So 3 = 0 and ® can be extended as a holomorphic function in the whole V. In

particular for almost every square S lying in V

®(2)dz =

/as (2)dz =0,

and, thus, p; = p, (see (4.3)). We conclude that
u=u1—u2——-h1—-h2

and the lemma is proved. O

Estimate (4.1) and Lemma 4.2 show that all functions 7; — T, 1, =1,...,d, are
harmonic in U. Suppose that 7; — 7; # 0 for a pair t,j. Let us denote Z;; = {z €
U: m(z) —7j(z) = 0}. We have just proved that 7; — 7; is harmonic and so real

analytic in U. Thus, Z;; consists locally of finite union of real analytic curves. But
|J =1|J =G|J =0,
and so J C Z;;.

If J is not contained in a finite union of real analytic curves (4.4)

14



then we have already come to a contradiction and 7; = 7;. It is clear that (4.4) is true
as a rule but now we need to cope with the opposite case: J is covered by a finite
number of real analytic curves I'y,...,[',,. Without loss of generality we may assume

that each of these curves contains infinitely many points of J. Now it is clear that
m .
fi_l(rs) C U Fi) 1= 117d1 s = 1a'-',m- (45)
t=1

These curves may intersect only in finite number of points inside U (namely, only in
points where V(7; —7;) = 0). Now (4.5) shows that they do not intersect at all. Using
(4.5) again we see that m = 1 - we have only one real analytic curve, containing J.

We call this curve I and note that f;(T') intersects I in infinitely many points, so

FT=T, i=1,..,d. (4.6)

*

Let Ur be a thin neighborhood of T in which the reflection with respect to I, z— 2%
is defined. Then (4.6) shows that

fiz* = (fiz)", z€ fi_lU[‘, i=1,..,d. (4.7)
Let us consider 7;(z) e 7:(2) + 7i(2*), z € Ur. The analog of (3.6) holds:
#(fz) = dfi(2), z€ f; U, (4.8)

which is manifest from (4.7) and (3.6). Each #; is harmonic and %-symmetric in Ur,

)
07
on

where n is the unit normal to I'. On the other hand

2)=0, zel, i=1,..4d, (4.9)

#1(2) = 7i(2) = 2(mi(2) = 75(2)) =0, z € r, (4.10)

15



as T was defined as a subset of Zi;. Now (4.9) and (4.10) imply that an analytic
function 8(% — 7;) vanishes on T, and thus, vanishes on Ur. The same is evidently
true for O(7; — 7;), which means that 7; —7; = const in Ur. Taking (4.10) into account
we have 7; = 7; in Ur.

The moral of our consideration is whether (4.4) holds or does not hold we can find

a neighborhood V of the set J and a positive harmonic function 7 on V\J such that
T(fz) =dr(z), 2 € v (4.11)

It is worthwhile to emphasize the difference between (3.6) and (4.11). In (4.11)
the same function 7 serves for all branches f; 1, ..., f4 1 of f~1. Note, that either

T =T = - =Tg 0L T = # = --- = g4, the first option taking place e.g. if

dim J(f) > 1.

5. Polynomial-like mappings: use of the circle model
5.1. In this section we will prove the Theorem for polynomial-like maps. A polynomial-
like map of degree d is a triple (f,U,W), where U and W are topological discs with
piecewise smooth boundaries, with U relatively compact inW,and f: U—-Wisa
complex analytic map, proper of degree d (that is, a branched covering of degree d ).
ff: U—-Wis polynomial-like one can consider a filled-in Julia set

k() =N 0,

n>0

the set of z € U such that f™ is defined and belongs to U for all n € N. The Julia
set of fis J(f) = 0K(f).

16



The following well-known statement gives a necessary and sufficient condition for

K(f) to be an expanding Cantor repellor (see [F], [DH]).

Proposition 5.1. The set K(f) is connected if and only if all the critical points of
f belong to K(f). If none of the critical points belongs to K(f) then K(f) = J(f)

is a Cantor set. O

5.9. The circular model of Douady and Hubbard associates to a polynomial-like map
f an expanding real analytic endomorphism F of the unit circle T of degree d ( defined
up to analytic conjugacy). If f is a polynomial, then F': z — z%. Polynomial-like
maps f and f; are called externally equivalent if corresponding circle endomorphisms

- F, and F; are analytically conjugate.

The Douady - Hubbard Theorem [DH]. Let f be a polynomial-like mapping
of degree d. Then f is conformally equivalent to a polynomial if and only if it is

externally equivalent to z — z°.

Now let us construct the external map F corresponding to a polynomial-like map
f:U— W. Let us consider a narrow annulus I with analytic boundary whose outer
boundary coincides with OU. Consider the annulus Xo = (WU ) U Ip. The annulus
I, is adjacent to its inner boundary, while the annulus Eo = fI, is adjacent to its
outer boundary.

Consider now a sequence of annuli X, of moduli d-"modXo, and a chain of d-
sheeted coverings pp : Xn — Xn-1- Let 7, : X, — Xo, I, and E, be the

T,-preimages of I, and Eq correspondingly. Then there is the following commutative

17



diagram

i'n
En — In—l
Tn l l Tn-1
Ey « Iy
f

with an analytic diffeomorphism 5 between “outer” annulus E, and “inner” annulus
I,_,. By means of these diffeomorphisms we can glue all Xn together, and construct
a doubly-connected Riemann surface A4 (the notation will become clear in 2 little
while).

Consider also a smaller Riemann surface A} C A, obtaining by gluing together
the annuli X, for 1 < n < oo. The coverings pn * X, — Xna1 correctly induce a
d-sheeted covering F : A, — At

Let us show now that mod(A4) < 0. Indeed, otherwise A4 and A, are conformal
punctured disks, and F' allows analytical continuation to the puncture (say, 0) as
s azi+..,d>1 1 contradicts the fact that all orbits of F escape A.

Hence, A, has a conformal representation as an annulus {z:1 < |z < R}, and in
this representation A', becomes a subannulus whose inner boundary coincides with
T while the outer is an analytic Jordan curve in Ay.

The covering F : A, — A, must be continuous up to the circle T, and by the
Schwarz reflection principle can be analytically continued to the covering of symmetric
annuli A’ — A.

So, we have a real analytic map Fy of the circle. Standard considerations with

Poincaré metric shows that it is expanding on T. The construction is completed.
5.3. Let us assume for simplicity that deg f=d=2,and that the critical point ¢ of

18



f liesin UNf~1U. Then f~'U consists of two components U; and Us, and f : U; = U
is a conformal isomorphism.
Provided harmonic and maximal measures are not mutually singular, we have

constructed in §4 a harmonic in U\J function 7 with the property
7(fz) = 27(2). (5.1)

for z € U; U U;. We wish to extend 7 as positive harmonic on W\J satisfying (5.1)
for all z € U. Let v be a real analytic cut of W\U from f(c) to O9W. Let O def W\y.
Then in O there are two univalent branches of f~1: fI', f;*.

Put u; = 270 f7!, ¢ =1,2. These are two positive harmonic functions on O\J.
By (5.1) u; = 7 = uz on U. So u; = uy on O, which means that going around the
point f (c) does not change the value of u = 270 f{'!. Thus, u is positive and harmonic

in WJ, and satisfies (5.1) in the whole domain U.

Now let us construct a harmonic solution of the equation
u(Fz) = 2u(z). (5.2)

in the annulus A;. By the construction, the annulus Xo is naturally embedded into
A;. Set u|Xo = 7. Then (5.2) holds in the annulus Io. Using it we can pull u back
and spread it over the whole annulus A;.

By (5.2) the Riesz measure v of u, v = Au, is equidistributed with respect to F
and so it is the maximal measure of F. Let us show that it is absolutely continuous
with respect to Lebesgue measure o. To this end let us consider also the odd extension

of u onto the the annulus A:

19



des [ u(z), z€ Ay
v(z) = —u (%) , 2 € ANAL.

This function is harmonic in A. Hence, the normal derivative du/dn = dv/dn is real

analytic on T. Now the Green formula yields that

v=Au= %da.

on

So, v is absolutely continuous with respect to the Lebesgue measure, and application
of Lemma 1.1 completes the second proof of the Theorem in the case of polynomial-

like maps.

6. Cantor repellors generating by symmetric maps.
In this section we will prove the Theorem for symmetric Cantor repellors. To

make the exposition easier we restrict ourselves to the case of degree 2.

6.1. Renormalization. Consider a symmetric degree two map f : O U; = U. Let
7 be the subharmonic function in a connected symmetric neighborhoof‘lf C U of J(f)
satisfying (4.11). Take a central gap I = I° in our Cantor set, and let I, k=1,...2"
be its n-fold preimages which we refer to as gaps of rank n. Each gap I} contains a
unique 7-critical point ¢ “of rank n”, ¢ = %, and 7 has no other critical points (see

[W]). So, the map f is well-defined at all 7-critical poinfs of rank n > 0. Together
with equation (4.11) this yields that

T(cx) =b/2", b=1(c). (6.1)

20



Select t € (b/2",b/2"!) to be so small that the set Y' = {z € V : 7(2) < t} is
compactly contained in V. Then one can see from the combinatorics of the critical
points that Y consists of 2" disjoint topological discs ¥; with analytic boundaries
such that Y} N J(f) is a dynamical cylinder of J(f) of rank n. Let us consider a
component W = Yt of Y¢, and two components Wy and W, of Y!/? contained in W.

Let f3™ be the branch of the inverse function which maps J(f) into W. Define
topological disks N;, ¢ = 1,2 as the components of f;"Ui N W; containing W; N J(f).

Now let us define on N; U N, a renormalization of our map f in the following way:
glNi = fg™ o fHN;.

Clearly, g is a symmetric map generating an expanding Cantor repellor
J(g) = J(f) N W. This map is actually conformally conjugate to f by the con-
jugacy f*~!: NyUN; — Uy UU,. So, we can replace f by its renormalization g. The
advantage which we have gained is that now the harmonic function 7 is well-defined

on the topological disk W D J(g) such that 7|0W = const.

6.2. Now we are going to carry out a local conformal change of variable which turns
7 into the Green function of the complement of J(g). Let us normalize 7 in the
following way:

/a 9 4s = or. (6.2)

w On

Consider a harmonic conjugate 7* for 7. It follows from (6.2) that the analytic

function
¢(z) = exp(7(z) +177(2))

is single-valued in a narrow annulus A adjacent to W from inside. Moreover, if we
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select a 7-level line as the inner boundary of A then ¢ conformally maps A onto a
round annulus {z : r < |z| < R}. It follows that we can continue ¢ to a diffeo-
morphism C\W — {z : |z| > r} which is identical near oo (we preserve the same
notation for the continuation). Consider also a smooth continuation log |¢(z)| of T
equal to log |z| near co (which will be also denoted by 7).

Let o be the standard conformal structure on the plane C. Let us consider now
a conformal structure u = ¢*(o) (¢ is standard in W). By the Smooth Riemann

Mapping Theorem, there is a diffeomorphism ¢ : C — € normalized by the condition

Y(z) ~ z near oo, (6.3)

and such that 1.(u) = o. Since ¢ is analytic near J(g), the map p =1 ogot~!is
conformally conjugate to g.

Furthermore, the function ¢ o %! is a (multi-valued) analytic function on
C~\J(p) such that log|¢ o 97| is single-valued. Hence the function & = 7 0%~}
is a single-valued harmonic function in C\J(p). Because of the normalization (6.3),

k ~ log |z| near oo, and hence it is the Green function of C\J(p).

6.3. Analytic continuation to a polynomial. To make notations easier let us
pretend now that p = f is our original endomorphism, and 7 = « is the Green
function of C\J(f). So, 7 is globally defined, and we can use the functional equation
7(pz) = 27(2) in order to continue f to a polynomial.

To this end consider the multi-valued analytic function ¢ associated with 7, and
satisfying the functional equation ¢(pz) = ¢(z)? near J(f). This equation gives us a

way to continue f as ¢~! o ¢(2)2.
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Let Q C W and Q; C W; be the smallest intervals containing J(f) and J(f) NW;
correspondingly. The ¢ gives a univalent map of a slitted topological disk W@ onto a
“hedgehog domain” H lying in the annulus {z 1 < [ < eR}
(see Figure 2). By (6.1) this hedgehog has on+1 needles of length b/2" and arguments
(r*(c) + mi)/2", i =0,1,..,2" — 1 (compare with Levin and Sodin [LS] who intro-

duced the hedgehog construction to dynamics).

Figure 2.

But looking at (6.1) again we see that the map ¢(z)? univalently maps the slitted
domain W;\Q; onto the same hedgehog domain. Hence ¢~ o #(z)? univalently maps
WinQ; onto WN@Q. But near Q; this map coincides with f. So, we have analytic
continuation of f to univalent maps W; —» W, ¢ = 1,2.

Further, the ¢? gives a double covering of C\(W; U W,) onto the round disk
{z:|2| > €®}, while ¢ maps univalently €W onto the same disk. Hence, ¢~" 0 ¢(2)?
is a double covering of C\(W; U Ws) onto C\W.

Finally, we see that the ¢~ 0 ¢(z)? gives an analytic continuation of f to a double

covering of the whole complex plane, and that is what we need.
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7. An example of a non-polynomial repellor

on which harmonic measure is balanced.

Let us start with the Zhukovskii map ® : z +— 1(z + 1/2) which univalently maps
the complement of the unit disk onto the complement of the interval
[-1,1]. Consider a map h°(z) = ®(:®~"'(z/7)) which univalently maps
C\[—1,7] onto C\[—1,1]. Globally A° is well-defined on the two-sheeted Riemann
surface over C branched at {47, —:}. The A® maps these branched points at the same
point 0. Moreover A° has two critical points lying over 0 and mapped into the critical
values 1 and -1.

Consider now two open topological disks with smooth boundaries W; and W; in

C containing [—1,1] and [-1,1], and such that
R - WiN[—i,4] = WanN[-1,1].

Let us rescale these domains by real affine maps z — z/\ + a; with a big A >> 0 in
such a way that the closures of new domains U; lie in W)\[—1,1] on opposite sides
of the slit [-1,1] (see Figure 3). Denote by I; C U; the rescaled intervals [—¢,1] and

[-1,1]. A rescaling of hq gives us an algebraic function k mapping Uy\I; onto Uz\I>.




Set V = W,, and define a map f : (UinI;)UU; — V in the following way. The
restriction f|U; is just an affine map inverse to the rescaling map, while f|(Ui\I).=
(f|Us) o h. Note that f is well-defined on the banks of the slit I;, maps it onto [-1,1],
and carries the branched points 81, at the same point 0.

In order to see that f generates a Cantor repellor in the sense of §1, let us consider
an open topological disk vV C V\[-1,1] containing clU;UclU,. Let Ui C U;NI; be the
preimages of V. Then f: Uy U U, — V is a weakly polynomial-like map generating
a Cantor repellor J.

Let us show now that f is quasi-conformally conjugate to a map g analytic in
the whole complex plane with one slit, and looking like z — 2% in a neighborhood of
co. To this end consider a topological disk D D clV with a smooth boundary, and
continue f smoothly to V in such a way that fisa double covering of V\(I; UI) over
D~\[-1,1], with the critical point at 0, and such that f(z) = f(=z) for z € [-1,1].
Then stick to OV the map z — 2? as Douady and Hubbard did in [DH]. More
specifically, take an R > 1 and a diffeomorphism ¢ : C\V — {z :]z| > R} such that
® is identical near oo and ¥(z)? = ¥(fz) for z € 9V. Continue now f to C\V as
=1 o(z)?% For the reason which will become clear later let us select the % in such

a way that
log [$(f0)] > log [¥(1)] > 5 log [¥(fO). (11)

We have constructed a smooth map f on the slitted sphere S 2\ I; which is analytic
in a neighborhoods of J(f) and oo, and coincides with z — z? near co. Moreover, f
carries corresponding points on opposite banks of the slit I; into 0-symmetric points

of [-1,1], and hence f(f2) is a single-valued function in a neighborhood of I;.
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As in [DH], consider now an f-invariant conformal structure in C\D, and pull it
back by iterates of f. We will obtain an invariant measurable conformal structure p
on C with bounded dilatation (since f is conformal in a neighborhood of J). By the
Measurable Riemann Theorem, find a quasi-conformal homeomorphism %, conformal
near oo and tangent to id at oo which push x to a standard conformal structure. It
conjugates f to a map g analytic on the slitted sphere (the slit y comes from Ip).
Moreover, g(gz) is single-valued in a neighborhood of the slit, and g(z) ~ z* at 0.

Let us show now that harmonic measure on J(g) is balanced. To this end consider

the Brolin function

1
G(z) = lim 2—nlog lg" =] (7.2)
It is well-defined and harmonic in C\J(g) since the functions g"z are eventually
single-valued in a neighborhood of any point z € C\J () (the limit exists since f looks

like z — 22 near o). Moreover, clearly G is non-negative, has a log |z|-singularity at

o0, and satisfies the functional equation

G(gz) = 2G(z). (7.3)

Hence, G(z) — 0 as z — J(p) which proves that G is the Green function of
C\J(g) with the pole at co. Taking the Lablacian of the above functional equation
we conclude that harmonic measure on J(g) is balanced.

What remains to show is that the map g is not locally conformally conjugate to
a polynomial. To be more definite, let us carry all the above construction so that f

preserves the real line (warning: however, f is not symmetric in the sense of §1 since
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there is no domain of its definition consisting of two R-symmetric topological disks.)
Assume that ¢ locally conjugate f to a polynomial p. Consider the Green function
7 of C\J(p), and pull it into a neighborhood of J(g), Gy = 7 o%. Since both G and
G satisfy equation (7.3), AG = AG, =balanced measure on J(g). Hence, G = G,
(see Appendix).

In particular, G and G, have the same critical values in Z. Now let us see at the
critical values of G. Let 7 be the conjugacy between f and g, and ¢; and g2 be the
centers of the intervals I; and I,. By (7.3) the critical points of G coincide with the
preimages of the critical points of ¢, that is with 7(0) and the preimages of 7(¢q1) and

7(g2). But
G(x(@)) = 56(r(1)) = L 1oglp(f1)],
Glr(a)) = 3G(x(0)) = + log4(f0).
Taking preimages of 7(g;) lying in the neighborhood Z , we conclude from here, esti-
mates (7.1) and equation (7.3) that G has in Z critical values whose ratio is not an

integer power of 2. On the other hand, ratio of any two critical values of G, is an

integer power of 2. This contradiction completes our construction.

8. An open question

The positive answer to the following question would immediately imply
our Theorem in the polynomial-like case (and a number of other conse-

quences):

Does harmonic measure class on a polynomial-like Cantor repellor go to

Lebesgue measure class on the circle when we apply the Douady-Hubbard

27



circular model?

Is there a natural circular model for every expanding Cantor repellor?

9. Appendix: harmonic measure dictionary.

9.1. Any subharmonic function on an open subset O of C generates positive
o—finite measure p, = Au called its Riesz measure (here the Laplasian A is under-
stood in the sense of distributions). This measure behaves naturally under conformal
changes of variable (so, actually it can be defined on any Riemann surface).

In what follows we assume that K C C is filled-in, that is, C\K is connected. If
K is sufficiently thick (of positive capacity) then one can construct the Green function
" @, that is, a non-negative subharmonic function on €, harmonic on C\K, vanishing
on K, and having the asymptotics G(z) ~ log |z| near co. Its Riesz measure is called
harmonic measure on K. Knowing harmonic measure w, one can restore the Green

function as its logarithmic potential:

G(z) = c+ [ log|z = (ldw()

with ¢ = 1/cap(K).

Now let u be any non-negative subharmonic functions defined on a neighborhood
N = N, of K, harmonic on N and vanishing on K. Let us denote this class of
functions by Uk.
Proposition 9.1. The Riesz measure p, of a function u € Uk is equivalent to
harmonic measure w with the density bounded away from zero and oo.
Proof. There are positive constants A and B such that A - G < u < B-G on the

boundary of the neighborhood N. As the same estimate trivially holds on K, the
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Maximum Principle extends it to the whole neighborhood N. It follows that the
function v = u — A - G is subharmonic on N. Hence, Av is positive measure, so that
po < Aw. Similarly, g, > w. O
Let us call the harmonic measure class on K the class of measures equivalent to
Barmonic measure on K. A homeomorphism between two compact sets ¢ : K — K’
will be called conformal if it allows a conformal continuation into a neighborhood of
K. Now the natural property of the Riesz measures yields
Corollary. The harmonic measure class is preserved by conformal homeomorphisms.
9.2. On formula (2.5). This formula is valid in a more general setting. Let u be

a subharmonic function with the Riesz mass p. Let n(t) be the mass in |z| <¢. We

define

N(r) = /o "(n(8)/t)dt.

The following formula generalizes (2.5). And the usual Jensen formula is easily

recognizable in it ( see e.g. [HK] ) :

2L7r /021r u(rexpi6)dd = N(r) + u(0)

Actually this last formula is immediate consequence of the Green’s theorem ap-
plied to a pair of functions: u and v(z) = log(r/|z|).

Now we can apply this formula to get the following result.
Proposition 9.2. Let K be a regular compact on the plane and let u,v be two
non-negative functions in a neighborhood O of K, such that u and v are positive and

harmonic in O \ K, and vanish on K ( so they are subharmonic in O).

Suppose also that their Riesz measure are equal. Then u =v. O
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