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Abstract

In this paper we study measurable dynamics for the widest rea�
sonable class of smooth one dimensional maps� Three principle de�
compositions are described in this class � decomposition of the global
measure�theoretical attractor into primitive ones� ergodic decompo�
sition and Hopf decomposition� For maps with negative Schwarzian
derivative this was done in the series of papers �BL��BL��� but the
approach to the general smooth case must be di�erent�

Notations

X� � intX is the interior of a set X�
X � clX is the closure of X�
�x� y� is a �closed� interval ending at x and y �without assuming x � y��
�U� V � is the closed convex hull of sets U and V �
fn is the n�fold iterate of a map f �
orb�x� � ffnxg�n�� is the orbit �trajectory� of x�
orbp�x� � ffnxgpn���
��x� is the limit set of orb�x��
N� f�� �� ���g is the set of natural numbers	

� Statement of the results

In �
�� John Milnor �M� suggested a new approach to measurable dynamics
based upon a concept of �measure�theoretical� attractor	 He showed that any

�



smooth dynamical system has a unique global attractor A�f� and stated the
problem of decomposing it into minimal ones	 Then the minimal attractors
would give a view of the structure of typical ��limit sets	

In the series of papers �BL���� the following realization of this program for
one dimensional maps with negative Schwarzian derivative was given �alter�
native approaches in the S�unimodal case were found in �GJ� and �K��	 The
decomposition of A�f� into 
primitive� ones was described �slight modi�ca�
tion of the 
minimality� property was necessary�� and it turned out that it is
intimately related to two main measure�theoretical decompositions� ergodic
decomposition and Hopf decomposition	

The aim of this paper is to develop this theory under proper smoothness
assumptions �without the negative Schwarzian derivative condition�	

Let M be a closed interval� and A denote a class of C��smooth maps
f � M �M with �nitely many non��at critical points �see x� for the accurate
de�nition�	 Denote by � the Lebesgue measure on M 	 For an invariant set
A �M let

rl�A� � fx �M � ��x� � Ag

RL�A� � fx �M � ��x� � Ag�

These are two ways of understanding of the realm of attraction of A� we need
both of them	

By a limit cycle we mean a periodic orbit Z � ffkagpk�o whose realm of
attraction has non�vacuous interior	 An interval I is called periodic of period
p if f pI � I	 Then

orbp�I� �
p�

m��

fm�I�

is called a cycle of I	 If besides f pjI is monotone� I is called a periodic
homterval	 Any orbit originating in such an interval converges to a cycle� but
it can happen that the set of non�limit cycles in orbI has positive measure	
This circumstance forces us to take care of periodic homtervals	 Set

��f� � Mr�� rl��Zi�
�
���n��f

�nO�

i ���

the union is taken over all limit cycles Zi and all cycles Oi of periodic homter�
vals	 What we have removed from M is the trivial part of the dynamics	

Theorem � The restriction f j ��f� has only �nitely many ergodic compo�
nents Ei�
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This means that there is the decomposition �f � �t
i��Ei �mod �� of �f

into the �nite union of invariant sets of positive measure such that f j Ei are
ergodic �where 
mod �� means that we ignore sets of measure zero�	

Now let us introduce an important notion of attractor in the sense of
Milnor �M�	 This means a closed invariant set A �M such that
�i� ��rl�A�� � �
�ii� ��rl�A��rl�A��� � � for any proper closed invariant subset A� � A	

It is shown in �M� that there is a unique global attractor A�f�� i	e	 an at�
tractor for which rl�A�f�� � M �mod ��	 The same is true for the restriction
of f onto any closed subset K � M 	 The corresponding global attractor
will be denoted by A�f jK� �if ��K� � � then A � � �	

Clearly� if ��RL�A�� � � then A is an attractor	 Such attractors we call
primitive	 The ergodic decomposition will allow us to obtain a decomposition
of the global attractor into primitive ones	 Let us say that an orb�x� is
absorbed by an invariant set O if fnx � O for some n �N 	

Theorem � There is a decomposition

A�f j��f�� � �Ak ��	��

of the global attractor into the union of �nitely many in�nite primitive at�
tractors Ak � ��f�� Moreover�

�i� For almost all x � M either orb�x� is absorbed by a cycle Oi of periodic
homtervals� or it tends to a limit cycle Zj� or ��x� � Ak for some k�

�ii� Each Ak contains a critical point�

�iii� The intersection of any two primitive attractors is at most �nite�

�iv� RL�Ak� � rl�Ak� � ��f� � Ek �mod �� for some ergodic component Ek�
This gives one�to�one correspondence between primitive attractors Ak and
ergodic components Ek � ��f�

Remark ���� It is proved in �MMS� that limit cycles of f � A have
uniformly bounded periods	 Consequently� for analytic f the whole number
of limit cycles Zk and cycles Oj of periodic homtervals is �nite �note that
each Oj either contains a limit cycle or f pjOj �id�	 Moreover� if M is an
interval and f � 	� id �or M is a circle and f p 	� id for any p �� then A�f� can
be decomposed into the union of �nitely many primitive attractors�

A�f� � �Zj � Ak�
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A transformation f of a measure space �X� �� is called conservative if it
satis�es the conclusion of the Poincar�e Return Theorem� for any measurable
subset Y � X almost all points y � Y return to Y in�nitely many times	 The
conservative kernelK�f� of f is a maximal measurable set such that f j K�f�
is conservative	 By Hopf decomposition one means the decomposition of M
into conservative part K�f� and dissipative part MrK�f�	 The following
result shows that in one dimensional situation it can be described through
the notion of attractor	

Theorem � The global attractor A�f� coincides mod � with the conservative
kernel K�f��

An invariant set K � M is said to be topologically minimal if ��x� � K
for all x � K	 By a Cantor attractor we mean an attractor which is a Cantor
set	

Theorem � Let A be a Cantor primitive attractor� Then
�i� the restriction f j A is topologically minimal�
�ii� topological entropy h�f j A� is equal to zero�
�iii� there is a critical point c � A such that A � ��c��
�iv� A does not intersect any other sets of the decomposition ������

Remark ���� Till now it is unknown if there are Cantor attractors di�erent
from Feigenbaum�like ones �see the next section for the de�nition�	

Theorem � Let A be a primitive attractor� Then one of the following pos�
sibilities holds	
A�� A is a limit cycle�
A�� A is a cycle of transitive intervals�
A�� A is a Cantor attractor�

Corollary ����The number of in�nite primitive attractors Ak �which is equal
to the number of ergodic components Ek � ��f�� does not exceed the number
of critical points in ��f��

Let us say that A is a minimal attractor if there are no smaller attractors
A� � A	
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Corollary ���� Any primitive attractor A is minimal except only one case	
A is a cycle of transitive intervals whose boundary �A contains a parabolic
limit cycle�

Remark ���� The whole above theory holds for maps of the circle as well
but the statements need minor modi�cations concerning immersions of the
circle	 Let us mention also that ergodicity of circle di�eomorphisms was
proved quite long ago by M	 Herman �H� and A	 Katok �see �KSF��	

Let us describe the structure of the paper	 Section � contains preliminar�
ies on topological one dimensional dynamics �including the principle concept
of a chain of intervals� and distortion lemmas	 Sections ��� are technical
ones	 The former contains an estimate of the intersection multiplicity of a
monotone chain of intervals	 The latter explains how to control density mov�
ing along a chain of intervals �it needs a concept of 
D�X� �� broken lines��	
Getting together all these tools� in the last Section � we prove the main
results	

This paper is a natural continuation of the series �BL��BL��	 However�
the approach here di�ers from that in previous ones 	 In the case of negative
Schwarzian derivative we started from the description of primitive attrac�
tors � and then pass to ergodic decomposition etc	 In the general smooth
case considered here the way is opposite �and it is the only way known to
the author�� the starting point is ergodic decomposition while the primitive
attractors can be described only in the very end	

Finally� I would like to thank A	 Blokh and J	 Milnor for looking through
the manuscript and making useful comments	

� Preliminaries

Let M be a �nite union of disjoint closed intervals �it is convenient for tech�
nical reasons to consider non�connected M as well�	 Remember that A de�
notes a class of C��smooth self�maps of the manifoldM with non��at critical
points	 The latter means that there are C� � charts around each critical
point c and the corresponding critical value fc in which f is reduced to the
form x 
� �jxjr with real r � � and a sign � � f�����g which may depend
on the sign�x� c�	
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Remark ���� The smoothness conditions on the map f are determined
by the range of validity of so called Koebe Principle �see below�	 The precise
regularity for it �C��Zygmund� was established by Sullivan �S�	 So� this seems
to be the widest reasonable regularity for our theory	

Denote by C�f� the set of critical points of f 	 There are critical points
of two types� extrema or �turning points� and in
ection points	 Let d denote
the number of extrema	 Points of the set C�f� � �M will be called singular	

There is a natural involution 	 in a neighbourhood of any extremum c�
namely 	�x� � x� if f�x� � f�x��	 It follows from non��atness that 	 is
smooth with 	 ��c� � ��	

Actually� by C��smooth conjugacy the map f � A can be reduced to
�jx� cjr � b in a neighbourhood of any critical point c	 In what follows we
will suppose that it is the case� Then 	 is reduced to the standard isometric
re�ection with respect to c	

Let us make also the following convention�

f��M� � �M� ��	��

It is possible because of the following surgery	 Let us include M into a
compact one dimensional manifold �M such that � �M �M � �	 Then f can
be continued to a map �f � A of �M in such a way that C� �f� � C�f� and
��	�� holds for �f � �M � �M 	

Now we need more de�nitions	 An invariant closed set R � Mwill be
called transitive if it contains a dense orbit	

A set R will be called a basic set �see �B�� B��� if it is a set of all points
belonging to a cycle of intervals O � orb�I� of period p and satisfying the
following property� for any open interval J � O intersecting R and for any
compact subset K � intO there is a N such that

n�p�

k�n

fkJ � K ��	��

for all n � N 	 Clearly� a basic set is closed and invariant	 There are basic
sets of three types � periodic orbits� cycles of intervals and Cantor basic sets	

By a Feigenbaum�like attractor we mean an invariant Cantor set F �M
of the following structure�

F �
��

n��

orbpn�In�
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where I� � I� � ��� is a nested sequence of periodic intervals of periods pn
such that pn �
	

The following Topological Structural Theorem follows from the pure topo�
logical considerations �see �Sh� JR � Ho � B� � B� �� and the absence of
wandering intervals �see �G��� �Y�� �L�� �BL��� �MMS� and references there�	

Theorem A� For any x �M one of the following possibilities holds	
��� orb�x� is absorbed by a cycle of a periodic homterval�
�i� orb�x� tends to a limit cycle�
�ii� orb�x� is absorbed by a basic set�
�iii� ��x� is a Feigenbaum�like attractor�

Now let R be either a basic set or a Feigenbaum�like attractor	 Restricting
f onto an appropriate cycle of intervals and using the above surgery we can
localize f with respect to R in the following sense�
L�	 R � intM�
L�	 All critical points belong to R	
L�	 There are no limit cycles in intM 	

Maps satisfying L��L� we will call R�local �or just local�	 There are local
maps of two types� �nitely renormalizable when R is a basic set� and in�nitely
renormalizable when R is a Feigenbaum�like attractor	

It is easy to see that the mixing property ��	�� together with L� yield the
sensitive dependence to initial conditions on a local basic set R in the follow�
ing sense	 There exists 
�R� � � with the following property� �	 �N such
that for any closed interval J intersecting R� ��J� � 	 � we have ��fnJ� �

�R�� n � N�

The following easy but useful Proposition was stated in �L�	

Proposition ���� Let J be an interval whose orbit does not tend to a limit
cycle� Then

inf
��m��

��fm�J�� � ��

Let us �x two constants � � � and � � � till the end of the paper	 Let �
be so small that ��neighbourhoods of critical points don�t intersect� and the
involution 	 is well�de�ned in the ��neighborhoods of extrema	 Then choose
an � by Proposition �	� in such a way that for any interval J containing a
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critical point
��J� � � � ��fm�J�� � � ��	��

Now let us introduce a notion of a maximal chain of intervals which
is a key to polymodal maps �see �L��	 By a chain of intervals I we mean
just a sequence of intervals fImgnm�� such that fIm � Im��� m � �� �� ���� n	
The chain is called maximal if Im are the maximal intervals satisfying this
property	

Let In � M� and ��In� 
 �	 Then we have for the maximal chain I

and � � m 
 n that �take into account ��	��� either f � Im � Im�� is a
homeomorphism� or Im is symmetric with respect to some extremum� and
f��Im� � �Im��

In what follows I denotes a closed interval such that I �M� and ��I� 
 �	
Let x � M and fn�x� � I	 The main way of constructing maximal

chains of intervals is a pull�back of I along the orbn�x� 	 Namely� set In � I�
and Im be the maximal interval containing xm for which fn�mIm � I� m �
�� �� ���� n� ��

De�ne the order ord I�ord�n� x� I� of the chain �pull�back� Ias the number
of intervals Im containing extrema	 If fn monotonously map I� onto In we
say that I is a monotone chain �pull�back�	

Proposition ��� �L�	 Consider a local map f 	 Let n be the �rst moment
when orb�x� passes through I 	 Consider a pull�back I�fImg

n
m�� of I along

orbn�x�� and let fImi
g�i�� be the intervals of the chain containing extrema	

Then we have for i � d �where d is the number of extrema�
�i� Imi�d

� Imi
and Imi

is periodic�
�ii� mi is the �rst moment when orb�x� passes through intImi�d

	
�iii� fmi monotonously maps a neighbourhood of x onto an appropriate half
of the interval Imi�d

	

Corollary ���� In the above situation provided I is non�periodic� we
have ord I� d	 In particular� it is the case if f is �nitely renormalizable and
I is small enough	

Now let us describe the analytical tools of the paper in the form of two
Distortion Lemmas	 Both of them follow from the Koebe Principle in one
dimensional dynamics intensively exploited in recent works� see �Y�� �G���
�MS�� �L�� �Sw�� �S� 			
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In what follows we assume that f � A� fn is monotone �perhaps� with
critical points� on an interval J and denote by J the monotone chain of
intervals ff lJgnl��	

Denote by � �multJ the intersection multiplicity of J �i	e	 the maximal
number of intervals from J with non�empty intersection�	 For a measurable
set X let

dens�XjI� � ��X � I����I��

Densa�XjI� � Dens�xj�a� b�� � sup
y��a�b�

dens�Xj�a� y���

In what follows assume that X � I	

Three Interval Distortion Lemma �see �MS�� �BL���	 Consider an
interval I � J�� and let J� and J� be the components of JrI� Suppose

��fnJ
�

����fnI� � ��

Then there are positive constants � � ����� and q��� � q���� �� � q���� � as
�� �� such that

�i� ��J
�

�����I� � ������
�ii� dens�fnXjfnI� � �� �� dens�XjI� � �� q���	

Two Interval Distortion Lemma� �see �BL���	 Divide J by a point
a into two subintervals L and R� b � fna� Assume ��fnL����fnR� � K�
Then

Densa�XjL� � �� � � Densb�f
nXjfnL� � �� �����K�

where �����K�� � as � � �� K �xed�

� An estimate of the intersection

multiplicity

A technique of estimating the intersection multiplicity of a monotone pull�
back of an interval I was developed by A	 Blokh �see �BL��� x�	�� in order
to generalize the results of �L� onto the smooth case	 The interval I was
supposed to be symmetric around an extremum	 Here we will develop the
technique for an arbitrary I �concentrating only over new points�	






Let us pass to the main de�nition	 Consider an interval I � �a� b� and a
point x � M which does not lie in a basin of a limit cycle	 Let x�n� � fnx
be the �rst point of orb�x� lying in �a� b�	 Assume that there are p� r �N
and a point v � �a� b� for m � n � �r � ��p and J � �x�m�� v� the following
properties hold
D�	 J� contains x�n� and exactly one of the points a� b� say a�
D�	 f p is an orientation preserving homeomorphism of J onto �x�m � p�� b��
D�	 J� contains points x�n � ip�� jij � r � �� and no other points of the
orbn��r���px	

Then we say that x�n� belongs to a multiple collection fx�n�ip�gr��i���r���	
A number r is called the depth of x�n� in the collection	 Let us denote
by depth dpa�n� x� I� �dpa�n� the maximal depth of x�n� in all multiple
collections containing it �if there are no such collections set dpa�n� � ��	 Set

dp�n� � dp�x� n� I� � maxfdpa�n�� dpb�n�g� ��	��

Remark ���� Observe that if dpa�n� � � then f p move all points of J
toward b	 Indeed� it is true for the endpoint x�m�	 If it fails for some point of
J then J contains a �xed point �	 Hence� f p maps monotonously the interval
�x�m�� �� into itself	 Then orb�x� should converge to a cycle contradicting
the assumption	

Remark ���� Observe also that minfdpa�n�� dpb�n�g � �	 Indeed� de�
note by ra� pa� Ja the data corresponding to a� and use the similar notations
for b	 Assume that rb � ra � �� Then x�n�pa� � �a� x�n�� � Jb contradicting
D�	

Lemma ���� Under circumstances described above let H be an inter�
val ending at x such that fn monotonously maps H onto �x�n�� b�� Assume
dp�n� � �� Then

multffkHgnk�� � �dpa�n��

Proof� Let a point y belong to � of the intervals H� � f�H� r of them
lying on the one side of y and �� r on the other	 We are going to prove that
r � dp�n� and � � r � dp�n�� which implies the required	 Clearly� we can
restrict ourselves to the estimate of r	
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Let �x�i��� y� � ��� � �x�ir�� y�� �x�ik�� y� � Hik 	 Then we have �see �BL���
�i� i� 
 ��� 
 ir�
�ii� x�ik� are the only points of the orbn�x� lying in K � �x�i��� x�ir��	

Applying fn�ir we can assume that ir � n	 Denote i� � m 	 Assume also
for de�niteness that a 
 b	

By the assumption� all ponts x�ik� lie outside �a� b�	 In fact� they should
lie to the left of a	 Indeed� otherwise Hm � �x�m�� x�n�� � �x�n�� b�	 But
fn�m maps monotonouslyHm onto �x�n�� b�	 So� orb�x� would have converged
to a limit cycle	

Now set p � n� ir��� and apply f p to K � �x�m�� x�n��	 Since K � Hm

and p 
 n�m� f p is monotone on K	 Since f p maps �x�ir���� x�n�� � Hir��

into Hn � �x�n�� b� preserving orientation� we conclude that f pjK preserves
orientation	 Now it follows from the above property �ii� that �see �BL���

ik�� � ik � p� k � �� ���� r � ��

Further� let v be the right endpoint of the interval Hn�p	 Denote J �
�x�m�� v�	 Clearly� J satis�es properties D��D� of the de�nition of a multiple
collection	 Let us check that it satis�es D� as well	

First� x�n � ip� � K � J for i � �� ���� r � �� Further� x�n � ip� �
f ipHn�ip � �x�n�� b� for i � �� ���� r � �	 Moreover� for i 
 �r � �� we have
x�n � ip� � f ipHn��i���p � �x�n� p�� v�� so x�n � ip� � J�	

Let x�l� � J�� l � n � �r � ��p� l 	� n � ip for jij � r � �	 Then l � n�
Indeed� J � �a� b� � K� If l � n then x�l� does not belong to �a� b� by the
assumption and does not belong to K by the above property �ii�	

So� l � n� k where � 
 k 
 p�r� ��	 Hence� s � m� k 
 n� p� and xs
lies outside �x�m�� b� according to what has been proved right now	 Hence�
the interval fkK � �x�l�� x�s�� contains one of the points x�m�� b	 But it
cannot contain x�m� because otherwise

�x�n�� b� � int�fn�mK� � int�fn�m�k�fkK�� � x�n� k��

Consequently� T � �x�l�� x�s�� � b	 Moreover� f p maps T monotonously�
orientation preserving and without �xed points onto �x�l�p�� x�s�p��	 Since
x�s � p� � T � f p moves all points of T to the left	 In particular� b is moved
to the left	

Further� f p is also a monotonous map on the interval �a� v� which has
with T a common point x�l�	 Hence� f p is monotonous on �a� b�	 Since a is
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moved to the right and b to the left� all orbits in �a� b� converge to limit cycles
contradicting the assumptions	

So� the interval J satis�es all properties D��D� and hence dpa�n� � r	

Corollary ���� Under the above circumstances let I�ffkIgnk�� be the
monotone pull�back of I � In along orbn�x�	 Then

mult I� ��dp�n� � ��

Proof� Divide I� into two intervals H� and H� ending at x� and apply
the lemma to these intervals taking into account Remark �	�	

� Transportation of broken lines

Here we are going to prove the series of density lemmas	 In what follows
f is assumed to be R�local� X denotes an invariant set of positive measure�
I � �a� b� � intM 	

By a broken line beginning at x and ending at y we mean a sequence of
points L � fxkgnk�� such that x� � x� xn � y� the intervals �xk� xk��� are the
links of the broken line �a link can be degenerate� i	e	 xk � xk���	 We say
that L is a proper broken line if all links are non�degenerate and

�xk��� xk� � �xk� xk���� k � �� ���� n� �

	
We say that L satis�es D�X� ��� property if for any non�degenerate link

�xk� xk��� we have Dens�Xj�xk� xk���� � � � � for k � �� �� ���� n � �	 Any
D�X� ���broken line can be easily turned into a proper D�X� ���broken line
with the same beginning and end 	

Lemma ���� Let a point x don�t converge to a limit cycle� n be the �rst
moment when orb�x� passes through I� � �a� b�� Assume that there is an
interval H � x monotonously mapped onto I by fn� Let H� and H� be the
closures of the components of Hrfxg� Then �� �� such that if

Densx�XjH�� � �� � or Densx�XjH�� � �� �

then there exists D�X� �� broken line beginning at xn � fnx and ending at an
endpoint of I�
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Proof� Let us make the following conventions� dpb�n� x� I� � � �see
Remark �	�� and fnH� � �a� xn�	 Denote r � dpa�n� x� I�	 Then by Corollary
�	� we have multff lHgnl�� � �r � �	

Let � � �	 Let us choose a big number K �so that �� �K������ �� 
 ���
then choose � � ������K� by the Three Interval Distortion Lemma� and
then �nd a small number � satisfying the following inequalities�

�� ����� �K�

� �K��
� �� �� ����� �

��� 
 �

where � is taken from Two Interval Distortion Lemma	
Assume �rst that r � �	 If ja�xnj � Kjb�xnj then by the Two Interval

Distortion Lemma we get Dens�Xj�xn� a�� � �� �����K� � �� ��
Otherwise consider an interval �y� xn� � �a� xn� such that

jy � xnj � Kjb� xnj�

Then Dens�Xj�xn� y�� � �� �� and for any w � �xn� b�

dens�Xj�y� w�� � dens�Xj�y� xn��
jy � xnj

jy � bj
�

�� �����K�

� �K��
� �� �� ��	��

It follows that the two�linked broken line fxn� y� bg can be turned into a
D�X� �� broken line fxn� y� bg with y � �y� xn� �perhaps� y � xn�	 To this end
it is enough to set y to be the nearest to xn point of �y� xn� satisfying ��	��	

Assume from now on that r � �� and set

wi � x�n � ip� � I� i � �� �� ���� r� �� w�� � a� wr � b�

Denote by Mi the intervals on which these points divide I� i � �� �� ���� r� �	
In particular� M� � �a� x�n���Mr�� � �wr��� b�	 Now consider two cases�

I	 Densx�XjH�� � �� �	 Then let us consider two subcases�

�i� ��Mk��� � K����Mk� for some k � ��� r � ��	 Let us take the �rst
such k	 Assume k � �	 Then consider the interval G � H mapped onto
M� �M� by fn	 It is easy to see that dp�n� x�M� �M�� � �	 Applying the
Two Interval Distortion Lemma to fnjG we get

Dens�Xj�x�n�� a�� � �� �����K� � �� ��

��



So� fx�n�� ag is a D�X� �� one�linked broken line	
Now let k � �	 Then we have

��Mk��� �
�

K
��Mk� and ��Mk��� � ��Mk��

Let k 
 r � �	 Applying the Three Interval Distortion Lemma to fkp with
the central intervalM�� we get ��M�� � ���M��	 Now we can apply the Two
Interval Distortion Lemma to fn as above	 It gives

Dens�Xj �x�n�� a�� � �� ����� �
��� � �� ��

and we are done	
Finally� let k � r � � 	 Then consider an interval N� � �w�� z�� w� � z 


w�� monotonously mapped onto Mr�� by f
�r���p	 ReplacingM� by N� in the

above argument we will get the same conclusion	

�ii� Now assume ��Mk��� � K����Mk� for all k � ��� r���� Then for any
such k we can construct a two�linked D�X� �� broken line beginning at wk

and ending at wk�� �see the above argument for r � ��	 Getting together
these lines we obtain a D�X� �� broken line beginning at x�n� and ending
at b	

II	 Densx�XjH
�� � �� �	 Again let us consider two subcases�

�i� ��Mk��� � �K��Mk� for some k � ��� r � ��	
If k � � then we have a two�linked D�X� �� broken line in M� � M�

beginning at x�n� and ending at a �see the argument for r � ��	
Otherwise consider the �rst moment k for which ��Mk��� � �K��Mk�

	 By the same reason as above we have a two�linked D�fn�kp�X � H�� ��
broken line in Mk�Mk�� beginning at wk and ending at wk��� and such that
the length of the �rst link of the line does not exceed K��Mk���	 So� this
line lies deeply inside the interval �Mi���Mi���	 Hence we can pull it back
to w� by fkp with bounded distortion �it needs more careful selection of the
constants which we leave to the reader�� and then act as in case I	

�ii� Assume ��Mk��� � �K��Mk� for all k � ��� r � ���
Then Dens�Xj �wk� wk���� � ��� for all k � �� ���� r��� and hence Dens�Xj �x�n�� b�� �
�� �	 The Lemma is proved	 �

��



Lemma ���� Let a point x � M don�t converge to a cycle� n be the �rst
moment for which fnx � I�� Consider the pull�back I�fImgnm�o of I � In
along orb�x�� � � ord I�
Then �� � � �� � ���� �� � � such that if there is a D�X� �� broken line
beginning at x and ending at �I� then there is a D�X� �� broken line beginning
at fnx and ending at �I�

Remark ���� If I is non�periodic then by Proposition �	� we can use
this lemma with � � d	 In particular it is the case when x belongs to a basic
set R and I is small enough	

Proof� Step �	 First assume that ��ord I��� so fn monotonously maps
H � I� onto I	 Let L � fx� � x� ���� xm��� xmg be a given D�X� �� broken
line beginning at x and ending at an endpoint xm � �H of H	 Let us check
the required by induction in m	 The base of induction m � � is given by
Lemma �	�	 Without loss of generality we can consider that L is proper	
Then the m � � � linked broken line T � fx�� ���� xm��g is contained in the
interval �a� xm��� where a � �H	 By the induction assumption� there exists a
D�X� �� broken line R beginning at fnx and ending at either �I or fnxm��	
In the former case we are done	 In the latter case construct by Lemma �	�
a D�X� �� broken line R� beginning at fnxm�� and ending at �I	 Getting
together R and R� we obtain the required broken line	

Step 
	 Let c be an extremum� J be a short c�symmetric interval contain�
ing a D�X� �� broken line T 	 Then T can be reconstructed into a D�X� �����
broken line T � with the same beginning and end and containing in cl�J�fcg�	
Moreover� ����� � as �� �	 The reconstruction is described �implicitly� in
�BL��	

Sten �	 Consider the intervals In���� ���� In��� of the chain I containing
extrema	 By Step � we have a D�X� ��� broken line in In��� beginning at
fn��� and ending at �In���	 By Step � we can change it to D�X� ���� broken
line whose interior does not contain c	 Now apply f to this line using obvious
local estimates in a neighborhood of c 	 Then we will get a D�X� ����� broken
line in In�����	

Proceeding in the same manner from n��� to n��� � from n��� to n���
etc	� we will get the required broken line	 �

Lemma ���� Let f be �nitely renormalizable� Let x be a density point of

��



an invariant set X absorbed by a basic set R � � � �� Then there exist 
 � �
and a natural N with the following property� For any interval I of length

 
 omitting N subsequent points of orb�x� there is an interval J � Ir��x�
such that dens�XjLi� � �� � for each component Li of IrJ� i � �� ��

Proof� Clearly� we can assume that and x � R	 Now let us select
several constants using notations �xed in x�	 Let ��I� 
 minf�� 
�R�g � 
	

Choose �� � ��d� �� and �� � ��d� ��� by Lemma �	� �recall that d is the
number of extrema�	 Since x is a density point of X� there is � � � such that

Dens�Xj�x� a�� � �� ��

if jx� aj � �	 By Proposition �	�� there is a 	 � � such that for any interval
T � x of length � � we have

��fn�T �� � 	� n � �� �� ����

Finally� by sensitive dependence to initial conditions � there exists an N
such that for any closed interval J intersecting R with ��J� � 	 we have�
diam fn�J� � 
 for all n � N 	

Denote xm � fmx	 Let I omit N subsequent points of orb�x� beginning
with xn� and l � N be the �rst moment for which xn�l � I	 Consider the
pull�back I�fImg

n�l
m�n of I along orbn�l�xn�� In � K	 By the choice of N � we

have

��K� 
 	� ��	��

Our nearest goal is to construct a D�X� ����broken line beginning at xn
and ending at �K	 Set

P � �orbn���x� �K�� � �K�

Let T � K be the smallest interval containing xn and ending at points of
P�n�	

Consider the the pull�back fTmg
n
m�� of T along orbn�x�	 It follows from

��	�� that ��T�� 
 �	 Hence� X is thick in T� � �a� b��

Dens�Xj �x� a�� � �� ��� Dens�Xj �x� b�� � �� ���

��



So� the intervals �x� a� and �x� b� can be considered as D�X� ���broken lines
�with one links�	 By Lemma �	� � there is aD�X� ����broken line L� beginning
at xn and ending at �T 	

If L� is ended at �K� we are done	 Otherwise it ends at a point xn��� � K
with n��� 
 n	 Handling xn��� in the same manner� we will �nd a D�X� ����
broken line beginning at xn��� and ending at either �K or xn��� with n��� 

n���	

Proceeding in such a manner� we construct a sequence of D�X� ����broken
lines L�� ����Lk such that Li�� starts at an endpoint of Li� i � �� �� ���� k��� L�

starts at x�n� and Lk ends at �K	 Putting together these lines� we get the
required broken line L � �Li	

Now let us consider the map f l � K � I	 By Lemma �	�� we get a
D�X� ���broken line Y beginning at xn�l and ending at �I	 Reconstruct it
into a proper D�X� ���broken line and consider its last link S	 This interval
contains xn�l� ends at �I and dens�XjS� � �� �	

Replace the interval I by I� � IrS and consider the �rst moment l� �
n when xn�l��� � I�	 Clearly� l� � l	 Repeating the previous argument�
we get an interval S� � I� containing xn�l���� ending at �I� and such that
dens�XjI�� � �� �	

Set I� � I��S� and proceed in the same manner	 We result with a nested
sequence of intervals I � I� � I� � ��� whose intersection J satis�es the
required properties	 �

Corollary ���� Let f be �nitely renormalizable� Let I be an interval
centered at a point a � ��x�� I� and I� be the components of Irfag�Then

max�dens�XjI��� dens�XjI���� � as ��I�� ��

Lemma ���� Let I be a non�periodic interval symmetric around an ex�
tremum c� the set X be 	 �symmetric� Then �� �� such that

��I� 
 � � dens�XjI� � �� ��

Proof� Observe that if f is �nitely renormalizable� then it follows im�
mediately from Corollary �	�	 So� a new information we will get only in
in�nitely renormalizable case	

��



Let F� � I� l� be the �rst moment when orb�x� passes through F�	 Now
de�ne inductively Fk � �x�lk�� 	�x�lk���� and lk�� as the �rst moment when
orb�x� passes through the interval Fk	

Denote by M�

k the component of cl �Fk��rFk� containing x�lk�� and by
M�

k the component of cl �FkrFk��� containing x�lk�	 Clearly� it is enough to
show that for any k there is an interval Jk such that M�

k � Jk � Fk and
dens�XjJk� � �� �	

Denote ok�ord�n� x� Fk�	
If ok 
 �d then we have such an interval by Lemma �	�	 Otherwise by

Proposition �	� there exists an interval Hk�� � x monotonously mapped by
f lk onto M�

k �M�
k 	 Clearly� dp�n� x�M

�

k �M�
k � � �� and we can apply the

Two Interval Distortion Lemma to fnjHn	
If ��M�

k � � ��M�

k � then we conclude that X is thick in M�
k as required	

Otherwise X is thick inM�

k 	 Now let us pass from x�lk� to x�lk���	 It follows
from Proposition �	� that ord�lk�� � lk� x�lk�� Fk� � d	 Hence� the existence
of the required interval Jk follows again from Lemma �	�	 �

� Proof of the main results�

Let us start with the following theorem proved by Guckenheimer �G� in the
case of negative Schwarzian derivative� and by Ma�n�e �Ma� in the general
smooth case �see also �vS��	

Theorem B� For almost every x � ��f� the limit set ��x� contains a
critical point�

Problem� Is it true that ��x� contains an extremum for almost every
x � ��f��

Proof of Theorem �� Denote by Xc the set fx � ��x� � cg	 By
Theorem A� �

c�C�f�

Xc �M �mod��

Let X be any completely invariant subset of Xc of positive measure	 In the
�nitely renormalizable case we have by Corollary �	�
�i� If c is an extremum then densXjc � � �
�ii� If c is a re�ection point then densXjc � ���	

��



Hence� in the �rst case f jXc is ergodic� and in the second case Xc contains
at most two ergodic components	

In the in�nitely renormalizable case we can select c as an extremum and
apply Lemma �	�	 �

Proof of Theorem �� Let us associate to any ergodic component E �
��f� the following attractor A �cf �M��	 Consider the family of neighborhoods
U such that the orbits of almost all points x � E pass through U only �nitely
many times	 Let fUig

�

i�� be a countable basis of this family	 Set

A �Mr���i��Ui��

Clearly� A is a closed invariant set	 Let us check that

E � RL�A� �mod ��� ��	��

Indeed� let V be a neighbourhood of a point a � A	 Let us consider the set

EV � fx � E � orb�x� passes through V in�nitely many timesg	

By de�nition� ��EV � � �	 Since EV is completely invariant� ergodicity yields
EV � E �mod ��	 Taking a countable basis of neighbourhoods Vi of A� we
obtain� ��x� � A for almost all x � E which is equivalent to ��	��	

Inclusion ��	�� implies that A is a primitive attractor	 So� we have con�
structed �nitely many primitive attractors Ak corresponding to ergodic com�
ponents Ek	 Since

rl��Ak� � �Ek � ��f� �mod ���

�Ak is a global attractor for f j��f�� and we have the decomposition ��	��	
Statements �i� and �ii� are also clear now� the former follows from ��	���

the latter from Theorem B	 Let us prove �iii�	
Let Ei and Ej be two ergodic components in ��f�� Ai and Aj be the

corresponding primitive attractors	 Assume Ai � Aj is in�nite	 Then we
can pick up two close points a�� a� � Ai � Aj	 Let us consider an interval
I � �a�� a	� containing �a�� a�� and such that

ja� � a�j � ja� � a�j � ja� � a	j�

Applying Corollary �	�� it is easy to see that each set Ei� Ej is thick at least
in two of three intervals �a�� a��� �a�� a��� �a�� a	�	 Hence� both Ei� Ej are thick
in one of these intervals� which is impossible	

�




Now let us pass to �iv�	 By ��	���

Ek � RL�Ak� � rl�Ak� � ��f��

So� it is enough to prove that the set �rl�Ak� � ��f��rEk has zero measure	
But otherwise there is another ergodic component Ei � ��f� � rl�Ak�� The
attractor Ai corresponding to Ei is in�nite and is contained in Ak� contra�
dicting to what has been proved above	 �

Proof of Theorem �� It follows from Corollary �	� in the same way as
in �BL��	 �

Proof of Theorem �� �i� Let K be a closed invariant set in A	 We are
going to prove that K � A	 Assume it is not the case	 Then there is a closed
interval I centered at a point a � A and such that I � K � �� ��I� 
 

where 
 is taken from Lemma �	�	 Let a divide I into semi�intervals I� and
I�	 Since A is a Cantor attractor� there is an invariant set X � RL�A� of
positive measure such that

dens�XjI�� 
 �� � and dens�XjI�� 
 �� �� ��	��

Let N be from Lemma �	�	 Find a neighborhood U of K such that
orbN�x� � I � � for any x � U 	 Let us pick up a density point x � X
such that ��x� � A	 Then fnx � U for some n� hence I omits N subsequent
points of orb�x�� and we can apply Lemma �	�	 But its conclusion contradicts
��	��	

�ii� follows from Corollary �	�	 in the same way as in �BL��	
�iii� is immediate from �i� and Theorem ��ii�	
�iv� follows from �i� and Theorem ��iii�	 �

Proof of Theorem �� If cases A� and A� does not hold then A has
non�empty interior	 Since A is primitive� it should be transitive	 It is easy
to show that a closed invariant transitive set must be a cycle of intervals� so
A� holds	 �

Proof of Corollary ���� Associate to an in�nite primitive attractor A
a critical point c�A� belonging to A	 Moreover� if A is a cycle of intervals�
let c�A� � A�	 It follows from Theorem ��iv� that this correspondence is
injective� and we are done	 �

Proof of Corollary ���� It easily follows from Theorem ��iv� and
Theorem �	 �

��
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