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ABSTRACT

Let f be a continuous piecewise monotone map of the interval. If
any two periodic orbits of f have different itineraries with respect
to the partition of the turning points of f, then f is referred to as
‘nondegenerate’. In this paper we prove that a nondegenerate zero
entropy continuous piecewise monotone map f has the Shadowing
Property if and only if 1) f does not have neutral periodic points;
2) for each turning point ¢ of f, either the w-limit set w(e, f) of ¢
contains no periodic repellors or every periodic repellor in w(c, f)
is a turning point of f in the orbit of c. As an application of this
result, the Shadowing Property for the Feigenbaum map is proven.
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§0. Introduction.

In recent years there has been a growth of interest in piecewise monotone maps of the
interval. One reason for this is that we have a decomposition theory for their nonwander-
ing sets (cf. Jonker-Rand [JoR1], [JoR2]; Hofbauer [Hofl], [Hof2] and Nitecki [Ni]). This
decomposition can be put into a quasi-filtration frame which is determined by unstable
manifolds of the periodic points (cf. Nitecki [Ni]); In the 1970’s, L. Block and M. Misi-
urewisz discovered the structure of zero entropy maps of the interval. Misiurewicz showed
that any topologically transitive invariant set of such a map can be described as a single
periodic orbit of period a power of 2 or a minimal set with the adding machine behavior
(cf. [Mi]). Now, people naturally expect some nice dynamical properties for zero entropy
piecewise monotone maps. In this paper, we will study the Shadowing Property for the
family NV, of nondegenerate zero entropy continuous piecewise monotone maps (cf. (1.1)).

The study of the Shadowing Property has a long history (cf. [Ano], [Bow]), but for
interval maps it is rather new. The recent research in this direction is mainly focused
on the positive entropy maps (cf. [HYG], [CKY], [Ch], [Kan], [BoG]) and work for zero
entropy is still seldom to be found in the literature.

In the light of the decomposition theory for piecewise monotone maps, we connect
the Shadowing Property for A to a finitely generated filtration. From the structure of
topologically invariant sets of zero entropy maps, we will find necessary conditions (4.1.1)
and (4.1.3) for the Shadowing Property for the family No. Based on the existence of a
quasi-filtration for piecewise monotone maps (cf. [Ni]), we will construct finitely generated
filtrations for nondegenerate piecewise monotone maps which satisfy (4.1.1) and then use
a shadowing test for filtrations (3.4.1) which will be discussed early to prove (4.1.1) and
(4.1.3) are also sufficient for the shadowing (cf.(1.2)).

§1. Definitions and statement of results.

_ Suppose f : I — I'is a map of I to itself. Denote the set of periodic points of f by

Per(f), the set of the fixed points of f by F(f), the nonwandering set of f by Q(f) and
the topological entropy by h(f). f is called piecewise monotone if f has only finitely many
local extrema in I. Such local extrema are called turning points of f and the set of turning
points of f is denoted by C(f). We say two periodic points of f are m-equivalent if they
have the same itinerary with respect to the partition by turning points of f. This means
there exists a compact subinterval of I containing these two periodic points so that f k is

monotone on this subinterval for every k£ > 0.
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(1.1) Definition. We say a piecewise monotone map f is nondegenerate if every m-
equivalence class in Per(f) is trivial, in other words, any two periodic orbits have different
tineraries with respect to the partition by turning points of f.

The family of nondegenerate continuous piecewise monotone maps of the interval is

denoted by N and the family of the elements of N with zero entropy is denoted by No.

If A is a subset of I and § > 0 is given, a sequence {z;} of points in A is called a
§-pseudo orbit in A for f provided that

|f(z;) —zj41l £ 6 for every 5 20.

In particular, we call a finite §-pseudo orbit {zo,... ,zn} a (6, N)-chain.
Given ¢ > 0, a §-pseudo orbit {z;} is said to be ¢-shadowed by a point y € I, if

|fi(y) —zj| <€ for every j,

where fi is the j-th iterate of f.
f is said to have the Shadowing Property on a subset A of I if for any € > 0 there is

§ > 0 such that every §-pseudo orbit in A can be e-shadowed by a point in A.
The main result in this paper is

(1.2) Theorem. f € Ny has the Shadowing Property if and only if
I f does not have any neutral periodic point;
II. for each turning point ¢ € C(f), either w(c, f) contains no periodic repellors or every
periodic repellor p € w(c, f) satisfies

p € orb(c, f)NC(f).



§2. Preliminaries.

Let I be a compact interval and A a subset of I. Denote by |A| the diameter of A,
Int A the interior of A and B(c,r) = (c—r,c+r)NI the open interval centered at.c with
radius r. (a,b) will be used for a closed interval with endpoints a and b, irrespective of the
order of @ and b. If S = {S¢ | £ € L} is a collection of subsets of I, write

|51l = sup{ |Se| | £ € £}.

Suppose f : I — I is a map of I to itself. Given e >0, z € I is e-linked toy € I by f
if there exist an integer M > 0 and z € B(z, ) such that fM(z) =y and

Ifj(a:)—fj(z)|<s for every j =0,1,..., M.

z € Iis linked toy € I by f if for any € >0, z is ¢-linked to y by f.
Define

. :
Di(a,¢) = f*[[) £ B(f(2),0)]]-
j=0
Then, z is e-linked to y by f if and only if y € Dy(z,¢€) for some M > 1 (cf. [Ch]).
If f is a continuous piecewise monotone map, for z ¢ C(f), we define

(z) = +1 if f is increasing at z;
~ 1 =1 if f is decreasing at z,

and define a signature system for each turning point of f as follows:
Suppose ¢ € C(f), and define o1(c) by

o1(c) = —1 if f takes a local maximum at c;
1€ =Y 41 if f takes a local minimum at c.

Inductively define o,(c) by

- (C)={T[f"(c)]an(c) if f*(c) ¢ C(f);
n a(fr(e))  if fr(e) € C(f)-

2.1. Periodic Attractors, periodic repellors and neutral periodic points.
Given a point z € I, a full neighborhood (F-neighborhood) of z is an interval of
the form N(z,¢,F) = (z — ¢,z + ¢) for some ¢ > 0; the L-neighborhood of size € is

N(z,e,L) = (z —¢,z] and the R-neighborhood of size € is N(z,¢, R) = [z,z +¢). Call any
one of these three types of neighborhood an S -neighborhood where S = R,L,or F.
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Suppose p € Per(f), f : I — I continuous. We define the S-unstable manifold of the
f orbit of p (S = R,L,or F) by

Up, £,5) = () {J FIN(p,e, )N}

>0 >0

When p is fixed under f, it is clear that U(p, f, S) is a closed interval containing p—possibly
equal to {p}, in which case we call it trival —and equals its image under f (we refer to
this as strong f-invariance). If p is periodic under f with least period n, then each point
£*(p) of the orbit of p is fixed under f™ and for given S a side at p, there exist sides f¥(S)
at f¥(p) (k =1,2,...) such that

FEU, £, 5)] = U(F*(p), £, F5(S))

and
n-1

U(p, f,5) = |J U(f(), £ £5(S))-
k=0

(2.1.1) Remark. If fr(p)=pand S=Lor R, then U(p, f, S) is a finite union of closed
intervals permuted by f. An endpoint of one of these intervals either belongs to a periodic
orbit consisting of endpoints or else is the image under f*¥ (k < n) of a point interior to
U(p,e, S).

Say a map f respects side S at a fixed point p if the image of every sufficiently small
S-neighborhood of p is contained in an S-neighborhood of p; f flips side S at p if the image
of every sufficiently small S-neighborhood of p is a T-neighborhood of p, where T' # S. A
map which flips both sides ezchanges sides at p.

A piecewise monotone map respects or flips either side at p, giving three possibili-
ties: (i) both sides are respected, (ii) one side is flipped onto the other, which is respected,
or (iii) both sides flipped —that is, exchange of sides. '

Unless f exchanges sides, one can always pick S for any S such that f = f respects
S and U(p, f, 5)=U(p, f,S). If f exchanges sides, then f = f? respects both sides: we
pick S = R and notice that

U(pvfag) = U(pafas) = U(P,f,R) U U(P,f,L)-
Write the set of pairs (p,S), p € Per(f), S=Ror L as
¥ := Per(f) x {R,L}.
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Assuming (p, S) € T, f(p) = p. With notation f,S as above, (p,S) is an S-periodic
attractor, if U(p, f, $) is trivial; (p,S) € T is an S-periodic repellor, if U(p, f,5) is non-
trivial; when p is not fixed, we call (p, S) € £ an S-periodic attractor or S-periodic repellor
according to which applies to a power of f fixing p.

(2.1.2) Lemma. ((2.10) of [Ni]) Assuming f € N, f(p) = p and f respects S at p, there
ezists an S-neighborhood V of p such that
1) if (p,S) is an S-periodic attractor,

(a) fV)CV

() N fH(V)={p}

(c) V contains either an endpoint of I or a turning point of f

2) if (p,S) is a periodic repellor,

(a) f(V)2V

(b) for any N(p,6,5) CV, U(p, f,$) = U, f*N(p,$,5)]

(c) V contains a turning point of f.

If f € N, then for any p € Per(f) with least period n, p is an isolated fixed point
under f". Thus, p under f" should be one of the following:

1) a 2-side periodic attractor;

2) a 2-side periodic repellor;

3) a 1-side periodic attractor on one side and a 1-side periodic repellor on the other;

4) a 1-side periodic attractor on the respected side and f™ flips the other side;

5) a 1-side periodic repellor on the respected side and f™ flips the other side.

It is easy to see that 4) gives a 2-side periodic attractor, but 5) is certainly not a 2-side
periodic repellor.
(2.1.3) Definition. Call p an periodic attractor in Case 1) or 4); a normal periodic repellor

in 2); a critical periodic repellor in 5); and a neutral periodic point in 3) for f.

b b
1) Periodic Attractor 2) Normal periodic repellor
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3) neutral periodic point

/\
P P
4) Periodic Attractor 5) Critical periodic repellor

(2.1.4) Remark. For f € N,
1) a neutral periodic point p with least period n can be characterized as p ¢ C(f)
where the map f"(z) — z takes a local extremum;

2) the number of periodic attractors is less than or equal to the number of turning

points of f. (cf. (4.1) of [Ni])
2.2. Constructing a quasi-filtration.

Suppose f € N. We call two pairs (pi, Si) € T h-equivalent if U(py, f, S1) =

. U(p21 f) 52)
Let R be the set of h-equivalence classes of periodic repellors inE,and if (p,S) €E @ €
R, define the set accessible from o as the subset of I:

A(a):=U(p, f,5).
Similar to (4.3)-(4.5) in [Ni], we define a filtration ordering to be a numbering of the

elements of R, say a;,a2,... so that
A(a;) D A(a;) implies i < j
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and a nested sequence of sets M;, ¢ =1,2,... by

M; = | A(ay)- (2.2.1)
i2i

(2.2.2) Remark. The properties of M; are summarized as follows (cf. [Ni]):

1) Each M; is a finite union of closed intervals, strongly invariant under f (that is,
f(M;) = M;). In other words, {M;} is a finitely generated quasi-filtration (cf. (4.5b)
of [Ni])

2) If R is infinite, then (cf. (4.6) of [Ni])

(i)

Moo = Mi

g

0

..l

is a nonempty closed invariant set
(ii) Moo N Per(f)=10
(iii) My contains the orbit of a turning point of f;
3) For i < oo, if p € Per(f) N [M;\ M;44] is a periodic repellor, then (p,S) € a; for
S =Ror L. (cf (4.7) of [Ni])

(2.2.3) Decomposition Theorem. (cf. [JoR1], [Jor2], [Hofl], [Hof2] and [Ni])
Suppose f : I — I is continuous, piecewise monotone. Then the nonwandering set

Q(f) has o finite or countable decomposition into closed invariant sets

Q)= u...uy, N<oo

The pairwise intersections in this decomposition are finite. Let Q; = Q; Nper(f), Fi =
Qi \ Qi '
1. For each 1 < o0

a) F;is finite

b) Q; has a finite decomposition

Q,'=Q,'1U...UQ,',1

into disjoint closed sets permuted cyclically by f. Each Q;; is either

(i) the set of fizedpoints of f2" on an interval where f™ 13 monotone; or

(i) a set with a dense f*" orbit. In this case, either f™|Q;; is topologically mizing
or f2"|Q£-°j (k=1,2) is topologically mizing, where Qij = Q}jUQ?j are sets meeting

at a unique point and interchanged under f.
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2. If there are infinitely many Q;, then Qe # 0 has a finite decomposition into closed
invariant sets
Qm=Qm1U--.Uka

each having o generalized adding machine as a factor, and containing the w-limit set of

some turning point of f.
2.3. h-equivalence classes for zero entropy maps.

We say a periodic point p of f has a homoclinic point if some point interior to one of

the sets U(p, f,S), S = R or L hits orb(p, f) under f.
The following is an immediate result of (2.4) and (5.7) in [Ni] (cf. [BI] and [BGMY])
(2.3.1) Lemma. Some periodic point of f has a homoclinic point if and only if h(f) > 0.
As a consequenc;e, we have

(2.3.2) Proposition. Suppose f € N. If p1,p2 € Per(f) are not in the same periodic
orbit and (p1, S1) 18 h-equivalent to (pz, S1) for some sides S1,Sa, then either py or p2 has
a homoclinic point.

In particular, if f has zero entropy, then every h-equivalence class of & consists of a

unique periodic orbit.

Proof. Without loss of generality we assume that p and ¢ are fixed under some power f"
of f and U(p, f*,S) = U(q, f*,T) = U for some sides S,T. Unless p or q is interior to U,
we can assume that U = [p,q]. Since f is nondegenerate, fhere exists a turning point of
f™in (p,q). Let c be the turning point of f™ adjacent to ¢ in (p, q), we have f*(z) < z for
every z € [c, q]. Since ¢ € (p,q), we have m = maxp<z<c f*(z) > cand [p,q] = U C [p,m].




Hence, there exists u € (p,¢) such that f*(u) = m = ¢q. Thus, ¢ has a homoclinic
point u. 1

By (2.3.2), (2.2.2), (2.1.4) and a result of [Mi] (cf. Theorem 1.10 of [Ni]), we have

(2.3.3) Proposition. Suppose f € Ny and {M;} is the quasi-filiration defined as in (2.2.1).
Then for each i < 00, M\ Miy1 contains only periodic orbits as its topologically transitive
invariant sets. Moreover, (I \ M;) N Q(f) is finite.

(2.3.4) Proposition. Suppose f € N, ¢ € C(f) N A(a) is nonperiodic, p i3 & periodic
repellor, and c is linked to p. If p € @, then p has a homoclinic point.

In particular, if f has zero entropy and some nonperiodic ¢ € C(f) N A(a) is linked
to & periodic periodic repellor p, then p ¢ a.

Proof. Assume that p is fixed under a power f" of f. Since a contains exactly one periodic
repellor, we have A(a) = U(p, f, S), thus (c, f¥(p)) C U(f*(p), f*, f¥(S)) forsome 1 < k <
n. Since c is linked to p by f and ¢ € C(f), by definition either there is z € Int {c, f*(p))
so that f™(z) = p for some m =2 0 orp € orb(c, f). When p € orb(c, f), we distingush
two cases: if ¢ € Int U(f¥(p), f*, f*(S)), let z = ¢ if not, by (2.1.1) there exists u €
Int (c, f*(p)) such that f*(u) =c, let z = u. Thus, p has a homoclinic point z. 1

§3. Shadowing Property for filtrations.

A filtration F of I adapted to f is a nested sequence of closed subsets I = Fy D F1 D
...D Fi D...with f(Fx) C Int Fj for every k. A quasi-attractor generated by a filtration
F is the intersection

A=) F

FeF
Definition. A filtration F is finitely generated if every element of F has finitely many

connected components.
3.1. Sieves and shadowing.

(3.1.1) Lemma. Let K be a closed subinterval and J an open subinterval of I. If for
some integer n > 0, f*(K) C J, then there ezists a sequence M : My, ..., Mn of closed
subintervals of I satisfying

(i) f(Ma) C Int Mg—y  for a=1,..,1;

(it) My = K and M, =J
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Proof. Let M, = J, then f~!(K) is a closed subinterval contained in f —1(J). Inductively
choose a closed subinterval M, foreach 1 <a <n— 1 such that

FA(K) C Int My C My C fH(Int May1)-
andlet Mo =K. |

A sequence of closed subintervals of I satisfying (i) and (i7) of (3.1.1) is called a
sieve for the pair (K,J). For a sieve M as in (3.1.1), let § = ming<a<n—1{dist{l —
Int Mat1, f(Ma)]} > 0, then every é-pseudo orbit {z;} with zo € K has z, € J.

(3.1.2) Remark. Given ¢ > 0, by the uniformly continuity of f, we have the following:

NI a closed subinterval K and an open subinterval J of I satisfy

i) Jl<e

(ii) for some n >0, |fi(K)| <& when0<j<nand fA(K)cU,

then there exists a sieve M : M,,..., M, for the pair (K, J) so that [|[M|| <€

2) Given € > 0 and N > 0, there are § > 0 and ¢ > 0 such that every (&, N)-chain
{z;}}L, is e-shadowed by any point of B(zg,0);

3) If § = {Se}eec is a finite family of closed subintervals of I satisfying that ||S|| <€
and

f(Se) C Iﬂt S¢(g), forLe Ll

where ¢ : L — L, then there is § > 0 such that every é-pseudo orbit starting at S is
¢-shadowed by every point of Se.

(3.1.3) Proposition. Suppose F is a finitely generated filtration of I adapted to o contin-
wous map f : I — I. If f has the Shadowing Property on I, then for every Fe F, fhas
the Shadowing Property on I\ F.

Proof. Given F € F, let n = dist [I \ Int F, F(F)] > 0, then every n-pseudo orbit {y;}
with yo € F' must have y; € F for all j. For any € € (0,n) choose § € (0,n) small enough
that every 6-pseudo orbit in I is e-shadowed. If {z;} is a 6-pseudo orbit in I \ F, then
either z; € I\ F for all j or {z;} is a (6,n)-chain for some n > 1. Unless {z;} consists
of a single point ro, we can assume ; € I\ F in both cases. If y is a point e-shadowing
{z;}, then y € I'\ F; otherwise we have |z; — f(y)| 2 dist(I\ Int F,f(F)]=n>¢. B
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3.2. Totally disconnected quasi-attractors.

Suppose F = {F}} is a finitely generated filtration of I adapted to f. An easy fact is
that the quasi-attractor A = [, F} is totally disconnected if and only if

klim | Fxll =0,
where for every F € F

|F|| := max{|U| for all components U of F}.

(3.2.1) Proposition. Suppose F = {Fk} is a finitely generated filtration of I adapted to a
continuous map f : I — I and A = (" F} 13 totally disconnected. If for every F € F f has-
the Shadowing Property on I\ F, then f has the Shadowing Property on L

Proof. Given € > 0, select F € F so that ||F|| < e. Let Sy,..., Sp be the components of F
and 7 : {1,...,n} = {1,...,n} be a map such that f(S;) C Int Sx(; for every j. Thus

7= lg?gn{diSt[sj’F\f_l(Int Sx(j))1} > 0.

If z € I satisfies dist(z, S;) < v for some j, then f(z) € Int Sx(j)-

By (3.1.2), there is o € (0, min{e,v}) such that every o-orbit starting at a component
of F' can be e-shadowed by every point of this component. By the uniform continuity of
f, there is u € (0,¢) such that whenever d(z,y) < p then |f(z) — f(y)| £ o/2 and by
hypothesis there is § € (0, min{vy,0/2}) such that every §-pseudo orbit in I\ F' can be
p-shadowed. Suppose {z;} is 6-pseudo orbit in I. If {z;} C F or {z;} C I\ F, we are
done. Otherwise, there is m > 0 such that zj € F if and only if j 2 m. If z,, € S¢ for
some £ and y p-shadows {z1,...,Zm-1} in I\ F, then [f™(y) — zm| S0 <7 implies that
f™+1(y) € Sr(e). Hence, f™(y) e-shadows {(ZmyTmt1s---}- |1

(3.2.2) Example. A subset V C [ is trapping for a map f: I — Iprovided f(V)C IntV.
A subset A C I'is called a periodic attractor for f in I'if there is a closed trapping subinterval
W of I such that

A=) FEW).
k=0
We call W a basin of A.
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If A = {a} is a single point periodic attractor, we construct a filtration on W for A:
choose o € (0,1) and k¢ > 0 such that

fPw) c B(a,0) C B(a,0) C Int W.

Let Mg: Mg DOM?>...> M, be a sieve for the pair (W, B(a, o)) satisfying M = W
and MY = B(a,0). Notice that there exists an increasing sequence {k} satisfying

fr~*-1[B(a,0/25T)| C B(a,0/2%).

By (3.1.1), define a sieve M, : M{ D ... > M,fl_,"_1 satisfying M§{ = B(a,0/2¢1) and
Mkz—kz-1 = B(a,a/2‘).
Let k_; = 0 and define F: W = F, DF...DF:D...by

Fk =le—k¢_1 fOT k‘g...l SkSk{

By the choice of k¢, we have f*(W) c Int Fy, = B(a,0/2%). Hence, Nk Fx = {a}. By
(3.1.2) for each 7, f has the Shadowing Propefty on W\ F;. It follows from (3.2.1) that f
has the Shadowing Property on the basin W. '

In general, if we suppose A is a periodic orbit with least period n and W is a basin
of A consisting of n disjoint closed subintervals so that each of them contains exactly one
point of A, then f has the Shadowing Property on W. In particular, if f is a continuous
piecewise monotone map of the interval, then, for every integer n > 0, f has the Shadowing
Property on f~"(W).

(3.2.3) Remark. (3.1.3) - (3.2.2) also hold for any general compact metric spaces.

3.3. Non-cyclic quasi-attractors .

(3.3.1) Definition. A quasi-attractor A is non-cyclic if A does not contain any periodic
point of f.

Notice that A is invariant for f. If C is a connected component of A, then f(C) must
be contained in a connected component of A. Hence, A is non-cyclic if and only if for any
connected component C of A and any integer n > 0, fH(C)NC = 0. If {C,} is a sequence
of connected components of a non-cyclic quasi-attractor with f(Cp) C Cpyq, then

lim |C,| = 0. (3.3.2)
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Suppose U, U’ are two closed subintervals of I. We define
vLu if fU)cIntU'

A sequence
v, L. L,
is called an f-chain. An f-chain

v, 2. Lv,. Lo

is called an f-cycle. (n is the length of the f-cycle if the cycle does not contain any proper
f-subcycle.)
Say an f-chain
wL... L.
refines an f-chain
n L ... L.
if {U1,...,Un} C {V1,...,Vm} and for each s, there is t such that V; C Us.
For a finitely generated F, denote by U®) the set of all components of Fi. Call an
f-chain (f-cycle) an f-chain (f-cycle) for Fy if all the elements of this f-chain (f-cycle)
are contained in A(¥). Call an f-chain for Fi mazimal if it is not a proper subset of any

other f-chain for Fr. Notice that every maximal f-chain for Fi contains a unique f-cycle
for F.

A connected component C of A is recurrent if for any k > 0, C is contained in an
f-cycle for Fy.

Suppose A is non-cyclic; for a given € > 0 write
C. = { all the components C of A with IC| >¢€/2 }.

The compactness of A implies that C. is a finite set. Thus, there is an integer N > 0 such
that for every n > N we can not find C, C' € C. with f*(C) C C'; respectively, there is
k > 0 such that every component of Fi containing no elements of C. has diameter less

than €. The main result in this section is

(3.3.3) Lemma. Suppose A i3 a non-cyclic quasi-atiractor generated by a finitely generated
filtration F adapted to f. Then for each given € > 0 there 1 k > 0 such that every mazimal
f-chain D for Fy is refined by an f-chain

£:B 2. L E. L L Enye D En
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where Ey,...,Em-1 € U® and
B:Emiv...—L»Em+,_LEm
is an f-cycle with ||B|| < e.
Proof. By the uniform continuity of f, thereis o € (0,&/2) such that for j =0,1,..., N
d(fi(z), fi(y)) < €/2, whenever d(z,y) <o.

If C is a recurrent element of Ce, then for each k > 0, C is contained in an f-cycle for
Fy. Let {Cn} be the sequence of the components of A satisfying f*(C) c Cp. Then, by
(3.3.2), limp—.c0 |Crn| = 0. For every k, let

(k f k f k
6. .UM L Ly, Lu®

be the f-cycle for Fy such that C C Uok) By defintion, beyond the first N indexes j, U(k)
contains no elements of C.. Take k big enough that IU( )| <ég/2for N<j<tp—1 a.nd
U] < a, then

FHEUP ) cInt U and U <e/2

for j = 0,...,N. By (3.1.2), we construct a sieve B' : B_,,By,...,Bn for the pair
(Ut(k) Int U(k)) with ||B'|| < &/2 satisfying B; C Int U(k) for 0 < j < N-1; For
j=N+1,...,6 —1let B U(k we get a refinement of gk

B:By—2+... LBy =B, L B

with ||B|| < e.

If D is a maximal f-chain for F} with an element containing a recurrent element of
Ce, then let B be the f-cycle related to the recurrent element as above. If E,_1 € D—B is
the last element in the order —f—-v then there is an element B € B such that Ep—; S, B.

Reindexing the elements in the set DU B in the order —f—r, we get a new f-chain
g:El—f—'..._f‘)Em_‘f—’..-—f’Em-‘-[_f_*Em

where E, € D — B for all s < m, E, € B for s 2 m, and £ is the order of the cycle B.
Such an f-chain € refines D; For D whose elements contain no recurrent elements of C,,

the proof is straightforward. 1
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3.4. A shadowing test for quasi-attractors.

(3.4.1) Theorem. Suppose A = Npex F is o quasi-atiractor generated by a finitely gen-
erated filiration F of a compact interval [ adapted to a continuous map f. If A is totally
disconnected or non-cyclic, then f has the Shadowing Property on I if and only if for each
F € F f has the Shadowing Property on I \ F.

Proof. By (3.1.3) and (3.2.1), we need prove < for a non-cyclic A only.

For a given € > 0, choose k big enough that (3.3.5) holds. Replace all the maximal
f-chains for Fi by their refinements and let R be the set of these refinements.

Suppose '

g:ElL...—fﬁEm—f—)...—f-*Em.*.g-ifEm

is an f-chain in Rk. By (3.1.1), there is pg > 0 such that every pe-pseudo orbit {z;}
starting at E, has z; € Eyi(s), where

wo={3" Gaimie
Let p = min{pe| € € Ri} and N = #U®), then m < N. By (3.1.2) and the definition
of f-chain, there is o € (0,¢) and 7 >0 such that

1) Every (7, N)-chain {zo,...,zn} in I can be e-shadowed by any point of B(zo,0);

2) If z € E, for some s, then Fi[B(z,0)] C Eyi(s) for every j =0,1,...,N.

By the uniform continuity of f, thereis ( € (0,¢) with f[B(z,()] C B(f(z),0/2) for
every = € I and by the Shadowing Property for f on I\ Fk, there is p such that every
p-pseudo orbit in I'\ F can be (-shadowed.

Let 6§ = min{y,T,0/2, p}, it is only routine to check that every é-pseudo orbit in I is
e-shadowed. |

§4. Shadowing Property for Nq.
4.1. Necessary conditions for shadowing.

1. The 1st necessary condition for shadowing.

If f has a neutral periodic point p, it is easy to see that f fails to have the Shadowing
Property in a small neighborhood of orb(p, f). Thus, for f € Ny to have the Shadowing
Property, we must have

(4.1.1) Condition 1. f does not have any neutral periodic point.
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9. The 2nd necessary condition for shadowing.

(4.1.2) Proposition. Assume f € Ny has the Shadowing Property. For any turning point
c € C(f), if there ezists a periodic repellor p € w(c, f), then
i) peorbc, f);
i) p 18 critical.
Moreover, if ¢ € A(a) for some a € R, then p ¢ a.

Proof. First we show that c is linked to p. Assume not, then there are small 9,80 > 0
such that for any & € (0, 6p), the é-pseudo orbit {z;} defined by

= {ff(c) for 0 < j < k;

7 P forj > k+1."

is not go-shadowed.
i) f p ¢ ord(c, f), we show that p has a homoclinic point. Suppose f respects side S
at p. Choose ¢ > 0 small enough that N(p,e,5) C U(p, f,S). Since c is linked to
p, p € Di(c,¢) for some index k, which we take the smallest one. If p ¢ ord(c, f),
choose 0 < v < |f¥(c) — p|, then p ¢ Di(c,7) and Di(c,7) C Di(c,€); this implies
that Dk(c,'}') c (p, f¥(c)) c U(p, f,S) (cf. Fig. 4.1.2). Now p € Dy(c,v) for some L;
by the choice of k, L > k. Hence, there is a point w € Di(c,v) C (p, f¥(c)) such that
fL=F(w) = p. By hypothesis, w # f¥(c) and w # p. So w € Int U(p, f, S). That is, p has
a homoclinic point w, contradicting the hypothesis.

it) Suppose that f k¥(c) = p for some k. If pisa normal periodic repellor, then there are
€0,60 > 0 such that for every & € (0,60), the §-psedo orbit {z;} defined by

_ [ fie) for0<j<k—1;
Zi = () — ox()6/2] for j 2 k.

- 16 -



is not €o-shadowed. 1

From (4.1.2) Wwe see that a second necessary condition for f € Ny to have the Shad-
owing Property is

(4.1.3) Condition 2. For each turning point ¢ € C(f), either w(c, f) contains no periodic

repellors or every periodic repellor p in w(c, f) satisfies

p € orb(c, f) N C(f).

For ¢ € C(f) and some i < 00, if w(c, f) is contained in M; \ Mi4,, then by (2.3.3) it
is a periodic orbit. Thus, for f € Ny satisfying (4.1.1), (4.1.3):
(4.1.4) Every c € C(f) possesses one of the following properties:

1) w(c, f) is a periodic attractor;

2) w(e, f) C Moo |

3) the orbit of c hits a critical periodic repellor.

4.2. Existence of filtrations for f € V.

Assume f € N satisfies (4.1.1). According to (2.2.1) and (2.2.2), there is a finitely
generated quasi-filtration {M;} for f, that is, for each i < oo, M; possesses finitely many
connected components By,...,Bn. The action of f over {Byi} defines a function ¢n :
{1,...,n} = {1,...,n} such that f(Bx) C By, (k) Say M; is cyclicif ¢, is a permutation
over {1,...,n}. In this case, {Bx} can be renumbered so that ¢,(j) =j+1 (mod n).
An enlargement N of a closed set M is a closed set such that M and N have the same
number of connected components and every connected component of M is contained in
exactly one connected component of V.

(4.2.1) Remark. 1) If M; is strongly invariant, it is cyclic;
2) If p is in the boundary of an unstable manifold and f™(p) = p for some n > 0, then

p is either a periodic attractor or a critical periodic repellor.

(4.2.2) Lemma. For each i < oo, there ezists an enlargement M; of M; such that (M) C
Int M; for some n > 0.

Proof. Suppose B is a connected component of M;, by (4.2.1), there is n > 0 such that
f*(B) C B. Let p,q be the endpoints of B, then we have either f*(p) = por f*(p) € Int B
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or f*(p) = ¢. By the continuity of f, (4.2.1) and (3.1.1), it is easy to find closed subintervals
V containing p and W containing ¢ such that f*(B) C Int Bfor B=BUVUW.

Let {B.} be the set of all the connected components of M;. Choose B, as above for
each B, and let M; = U, By, then .

fn(M,') C Int M,'. 1

(4.2.3) Lemma. If M; is as in (4.2.2), then there is a cyclic enlargement F; for M; such
that f(F) C Int F; (i.e., we can take n =1 in (4.2.2)).

Proof. Suppose By,... ,B,_, are the connected components of M;. Let Aro = By, and
Ay, j is closed subintervals inductively defined so that

f(Ag,j) C Int Ag j+1 C Ak j+1 C f_"“"'.l(Int Ago).

Thus, Ak, ..., Ak,n—1 satisfies that for each j, f(Ak,;) C Int Ag;4,(;), Where, da(j) =3+1
(mod n). '
For £=0,...,n — 1, define

Ce=AoetUA-1U...UAoUApr1,n-1U .- UAnog 41,

then

F(Ce) C f(A0,e)U... U f(Aeo) U f(Aesr,n-1) U ... U f(An—1,e41)
C Int Aqus“(g) U...UInt A[’,i,n(o) U Int Ag+1,¢"(n_1) U...UInt An—l,¢n(l+1)
C Int Cy, (o

Let F; = |J,Ce, then f(F;) C Int F;. 1

If we choose the Ay ;'s carefully in the proof of (4.2.3), for i < oo we can construct
an enlargement F; of M; so that F;\ M; contains no periodic attractors, periodic repellors

and turning points of f (cf. (2.3.3)). Moreover, we have the following

(4.2.4) Theorem. Suppose f € N does not have any neutral periodic point, then there
ezists a finitely generated filtration F = {Fi} adapied to f. In particular, if R is infinite,
then the quasi-attractor
(o ]
Fo=()F:

1=0
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13 noncyclic.

Proof. We need only to show that if R is infinite, then Fi, N Per(f) = 0. Notice that

Foo \ Mo C | J(Fi \ My).
1=0
It follows from Per(f) N Mo = 0 and Per(f)N (F; \ M;) = 0 for all ¢ < oo that Per(f)N
Fo=10. 1

(4.2.5) Example. Now let us consider a unimodal map given by [Ni]. This map is defined
by the recursive step so as reverse the map before re-scaling, then the process yields a
sequence g; converging to a unimodal map g possessing the periods 2%,k = 0,1,... and
nothing else (cf. Fig. 4.2.5).

Fig. 4.2.5. The graph of ¢

The unstable manifolds M; can be determined by induction: let M; = [0,1] and M;,
is obtained from M; by deleting the middle third of each component. One endpoint of
M; is also an endpoint of M; for all j > 0, and these points constitute the images under
g of the turning point ¢ = 1/4. Each component of M; \ M;,; contains a single periodic

point, which is its midpoint and has period 2°~!. It is an orientation-reversing periodic
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repellor. The map g is linear on each component of M; \ Mi41; the slope is +1 except on
one component where it equals +5/3. Notice that the preimage of ¢ under ¢ is dense in
[0,1], g s nondegeneraie and every periodic point of g is a periodic repellor implies that g
does not have neutral periodic points.

Let F; = [0,1] and inductively construct F: for i > 2. Assume F; has been defined
which is an enlargement of M; and contains no periodic orbits of periods less than 2¢-1.
Since M; contains a single repelling periodic orbit zg,...,Zzi-1-1 of period 2'~!, so does
F;. Delete a small open neighborhood B.(i) = (zo—¢€,To+€)U. . . U(T2i-1-1—€, Tai-1-1 +€)
of this orbit from F;, we define Fiy1 = F; \ B.(). When ¢ small enough, we must have
g(Fg+1) C Int Fi;, and Fj4, is an enlargement of M;t;. Under the action of g, the
components of F; form an f-cycle of length 2¢~1.

AN\ o
U X/ Q&

i=2 i=3 i=4

Thus, Feo = [); Fi is an f-cycle of length 2, that is, {F;} is a finitely generated

filtration for g generating a noncyclic quasi-attractor Feo.
4.3. Shadowing on KS).

Assume f € N satisfies (4.1.1). Let F be a filtration as in (4.2.4), A; the set of all
the periodic attractors in F;\ Fiy1 and W; a basin of A;. Define

KO = () fHFEN\ (Fp U WL
k=0 :
Since f(Fit1 U W;) C Int (Fig1 U W), K® is closed and invariant under f.

(4.3.1) Proposition. If f € Ny, then, fori < oo,
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1) the nonwandering set Q =2fH)N K® of f in KO consists of a single periodic
repellor orbit. o
2) if (p,S) € e, thenp € and K& = orb(p, f).

Proof. 1) is an immediate consequence of (2.3.2) and (2.3.3); 2) is implied by an easy fact:
£ there exists z € U(p, S, f) \ orb(p, f) with w(z, f) = orb(p, f), then p has a homoclinic
point (cf. Fig. 4.3.1).

o UpSH)

homoclinic point

Fig. 4.3.1.

Now, assume f € Ny satisfies (4.1.1) and (4.1.3). From (2.3.3) and (2.3.4) it follows
that for each i < oo every nonperiodic ¢ € C(f) N F; satisfies

w(e, f) C Fig1 U A
Thus, there is n such that every nonperiodic point in C(f) N Fj is contained in
n
Un=J f(Fitr UWO),
j=0

where W; is a carefully chosen basin of A; so that the set Vﬁi) of the connected components
of F; — U, is finite. If some turning point in an element of V& is periodic, then by (4.1.4)
~ and the choice of Uy, it is a critical periodic repellor.

Let %f,‘) be the set consisting of either those C € V() which contain no critical periodic
repellors or the respected side connected components of C \ {p} when C € V& contains a
critical periodic repellor p. V) is finite, so is %gi). Represent v by S‘sgi) ={L,...,Im}.
Let

n—1
3P = A F7HE)
k=0 .
= { IaO...an-ll Iao...a..—l = Iao N f—l(Ial) n.. .'ﬂ f—(n—l)(Ian-l) :ié w}

-921 -



and
n-1

0 = fa e [] B € 99)
=0

where E, = {1,...,m}. It is easy to check &) has the following properties:

1) for each a € SS,‘), f|I4 is a homeomorphism from I, onto its image;

2) for any two Iy, Ig € %, either Ig N f(Ig) = B or Is C f(Ia)-

Define o, : FS,‘) — I‘f,i)_l by on(ag...@n-1) = a1...8n-1, then for all a € Fs.i),
fy) = Ion(e-

Let

K = J{lo) 2 €T}

and call it the n**-approzimation of K (), The main result in this section is

(4.3.2) Proposition. For given integer n,L > 1, there is n > 0 such that if {zo,...,TL-1}
is a (n,L)-chain in KY and ay,...,a;_, are the elements of T with zj € Ig;, then
there ezists § € F‘L"Zm_! such that for all j, 0<j S L-1, fi(Ig) C Iy,

Proof. Define hy : K& — T by ho(z) = e if z € I,

commutative diagram as follows:

a € I"(ni). Then we have a

K9, - KD

hn+ll ihn

FE:-)H o Ty
where 1 is the inclusion and jy is defined as jn(ao ... an) =ag...an—1. Under the relative
topology of I in K and the discrete topology in rﬁ,‘), hn : K9 'Y is continuous.

Similarly, we have a commutative diagram:

K9, L K
h,,.Hl hn

FE:-)i-l A

On

Suppose {Zo,...,ZL-1} C Kf,i) and a; = ha(zj), where

a-=a(;a1...af;_1 forj=0,...,L -1

By the continuity of ks, choose 7 small enough that if {zo,...,zL-1} is an (7, L)-chain in
K,(.i), then

! . ' r
al=ay,, if r+s=r+s
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for1<r+s<L+n-3. Write
“ bpys = ay for0<r+s<L+n-2,

then
gj=bjbj+1...bj+,,_1 fOT]=0,,L—-1

If let B = boby ...bL4n—2 € r{) ., thenforall j,0<j<L—1, fi(lg) Cly. 1B
Applying (4.3.2) to L =1, we have

(4.3.3) Corollary. Given n 20, there is § > 0 such that if z,y € K with |lf(z) -yl <
and z € I,y € Iy for some a,a € I‘S.'), then

Iy C f(Ls)-

In particular, any §-pseudo orbt {z;} in K has
I, C f(Ig;_,);
where a; € T satisfies T; € Iﬁi.'
4.4. Shadowing for the family Nq.
In this section, we shall prove (1.2). Assume f € N, satisfies (4.1.1) and (4.1.3).

Suppose I = [a,bj and ¢g =a < ¢ < ... < ¢ = b are the turning points of f € Np.
Let Jy = [cw,Cw+1] and ,
onwl...w, = ﬂ f—j(ij)
j=0
where w,w; € {0,1,...,¢ —1}. By definition, we have f(Juwo...w,) C Jw;..w,-

Thus, for a given ¢ we can choose n big enough that K () is disjoint from the orbits of
the turning points of f whbse w-limit sets are contained in Fi41 U W,. Then, any turning
point ¢ in K is a critical periodic repellor and by definiton Int K& N orb(c, f) = 0.
Furthermore,

Int KON G e =o. (4.4.1)

§=0

This implies that if Kf,i) C Jy, then for those wo,...,Ws-1 with Juwe..w,_10 # 9
FUED) O Tug.wr0) = K. (4.4.2)
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Moreover, we have
(4.4.3) Lemma. For every s > 0, if K9 ¢ J,, then

FED = U FED) O Tugw,ool

WO ey We—1

(4.4.4) Lemma. Given o > 0 and s, there is T > 0 so that for every z € f“’(KS.i)) and
y € B(f*(z),7) N K there is 2 € B(z,0) N F2 (K satisfying: (i) f(z) = y and
(i) for every j =0,1,...,s, |fi(z) = fi(2)| < e

Proof. By the uniformly continuity of f, given s and g, there is o € (0, ¢) such that for
every j =0,1,...,s, |fi(z) - fi(y)| < o whenever |z —y| < 0.

Ifz € f"(Kf;i)), then z € f"(K,(,i)) N Juw,...w, for some wo, ..., Ws. Notice that
Jwo..w, = Sf°|Jwo..w, 18 @ homeomorphism of Jy,..w, onto f°(Jw,...w,), hence there is
7 > 0 such that for every p € f*(Juwo...w,) '

93) 0. [B(@,7) N F*(Jus....)] C B(gas..., (P), @)-

Then for any point y € B(f*(z), INKY, we have z = g5}, (y) € B(gmy...w, 0 f*(2),)N
F-3(KP) = B(z,0) N f~°(KSY). This implies that f*(z) = y and |fi(z) - f(2)| < e for
every j =0,1,...,s. 1

For a given n, write N = f"(Fip), Vi) = f~™(W;), then

F,=K®uv®un®.
Given £ > 0, by induction, for each 0 <t < ¢ we have

F; =[K$.i) U f-n(KSli+1)) Uu...u f—(e—i—l)n(I{Slg_l))]
U [V U Fr VY UL U fremi=on(y =ty fEIN(ERy).

(4.4.5) Remark. i) It is easy to see that the set
Eit = [V U (VUL U femOn D)

is a basin of the periodic attractors A; UAi41 U... U Ae—y;
i) f[f~¢On(F)] C Int f~E07(FY). |
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(4.4.6) Lemma. Assume A(a;j) C A(a;). For anye >0, there ezist N,L,m and 6 > 0
such that if {zx} is o 6-pseudo orbit satisfying that for some 1 2 0, zx € Kg) forallk <1
and zx € K for all k > 1 +m, then {z}} is e-shadowed by a point in K9,

Proof. Choose L big enough that || K g) | € €/2 and there is n € (0,¢) so that (4.3.3) holds in
Kg). By assumption, there is m > 0 such that for (p;,S;) € a;, N(pj,€,5j) C f’"(Kg)).
Thus, there exists 7 > 0 so that (4.4.4) holds for ¢ = /2 and s = m. Then choose N
big enough that | K{|| < min{r,e/2} and K§ C f™(K(). By the uniformly continuity
of f, there is ¢ > 0 such that every (o, m)-chain {20,---,2m} is €/2-shadowed by 2o (cf.
(3.1.2)). Let § = min{r,n/2,0}. |

If {z} is a 6-pseudo orbit satisfies that for some [ > 0,

sk € KV for allk <land zx € K for all k2 1+m, (4.4.7)

then by (4.3.3), IL(J,_"‘?+1 C f(IgZ), where IL(,_'Z is a component of Kg) with zx € I._(,,_'Z for k<1
and ng), n C f(Ige),), where fg), is a component of Kg) with zp € Ig;), for k' > 1+ m.
Thus, there exist a € (o<k< f"‘(Igz), b=z and ¢ € Ni>i4m f"‘(Igz). Then, a
¢/2-shadows {zo,...,z;} since f¥(a),zx € I_gk) for k < | and ||Kg)|| < €/2; similarly, c
¢/2-shadows {Titm,...} and b €/2-shadows {zt,.. s Ti4m}-

Now, to show that {z} is e-shadowed, we need only to show {yx} defined by

f*a) k<l-1; -
ye = { FF7U(0b) I<k<l+m-1Y
fE-+m)(e) k>14+m

is £/2-shadowed.

Since KI((}') C f"‘(Kg)) and |f™(b) —c| < 6 < 7, by (4.4.4), there exists b € Kg)
such that f™(b') = c and |f¥(b') — f¥(b)| < n/2 < e/2for k = I,...,1 + m. Notice that
(@) = | < |f'(a) — b +|b—b| < 6 +n/2 <n, thus {a, f(a),..., 7 (a),b'} is an (n,])-
chain and there exists a’ € Kg) such that f!(a') = ¥ and |f*(a) — f¥(a")| < ||Kg)|| <e/2
for k < . This implies that a' €/2-shadows {yx}. 1

We call the orbit of a' in the proof of (4.4.6) a typical orbit from Kz(\;) to K gj).

(4.4.8) Proposition. Suppose f € Ny satisfies (4.1.1) and (4.1.3), then for every £> 0, f
has the Shadowing Property on I \ Fy. ‘

Proof. Given £ and ¢ > 0, inductively choose L; for : =0,1,... ,£ -1 and § > 0 so that if
A(a;) C A(e;), then there is m;; such that KE,J,-) C f""’i(KE",)) and IIK%") || is small enough
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that any §-pseudo orbit {z;} of form (4.4.7) is e-shadowed by a typical orbit from K 9 to
Kg.)- It is clear that if A(a;) N A(aj) = 0 for i < j, then there is no typical orbits f;'om
K g.) to Kg). Mo;eover, by the uniformly continuity of f, § can be chosen small enough
~ that there is no §-orbits of form (4.4.7) for these i and j. The e-shadowing of 6-pseudo
orbits in I'\ Fy is equivalent to that for those 6-pseudo orbits which are piecewise typical
orbits. For any two pieces of typical orbits, we can extend one of them as in the proof of
(4.4.6) to get a new typical orbit. Repeating this process for the new typical orbits, finally
we can get actual orbits as follows:

1) actual orbits eventually in Fy;

2) actual orbits eventually in Ebt for some 0 <1 < €—1;

3) actual eventually periodic orbits in I'\ (F¢ U UZs EXY.

These actual orbits £e-shadow the corresponding piecewisely typical orbits and we are
done. 1

(4.4.9) Proof of (1.2). Our main theorem (1.2) has been shown by (4.4.8) and (3.4.1).

4.5. Examples in the unimodal case.

A map f:[-1,1] = [-1,1] is S-unimodal if
1) fec-1,1, f(-1)=f(1), O =1;
2) f'(z) # 0 except z = 0 and f"(0) <0;
3) The Schwartzian derivative Sf(z) = %:—:%f)l - %(%(%1)2 < 0 for all z # 0.

If f is an S-unimodal map, C(f) = {-1,0,1} and w(=1,f) = w(0, f) = w(1,f),
denoted by w. A periodic orbit O of f with least period n is stable if |(f™)'(z)| < 1 for all
z€O0.

It is known (cf. [CE]) that an S-unimodal map f has at most one stable periodic orbit.
If this stable periodic orbit O exists, then w = O. If f has no stable periodic orbits, then
the iterated preimages of 0 under f are dense in [—1,1]; meanwhile, f is nondegenerate
and does not have neutral periodic points (since a neutral periodic point p with least
period n satisfies |(f*)'(p)| = 1). In particular, if a zero-entropy S-unimodal map has no
stable periodic orbits, then, up to topological conjugacies, it is unique. The following is

an example of zero-entropy S-unimodal maps having no stable periodic orbit:

(4.5.1) Example. The quadratic map f, : [-1,1] = [~1,1] defined by fu(z) =1- px? is
S-unimodal. Let g, be the value of u for which f,, has a stable periodic. orbit of period

2", Feigenbaum and Coullet-Tresser made the following observations:
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1) pn approaches some number poo = 1.4011565...;

2) the ratiq (p,. — pin+1)/(Bnt+1 — fn+2) approaches a universal number § = 4.66920...;
3) & f2_ (A™z) approaches a universal function

f(z) ~ 1 — 1.52763z? + 0.104815z* — 0.0267057...2° + ...

f satisfies the equation
¢ 0 p(Az) = Aé()
where A = ¢(1).

Some authors refer to f,  as the Feigenbaum map (cf. Fig. 4.5.1). This map corre-
sponds to a “stable periodic orbit of length 2°°”. In other words, the set w is contained
in an attracting Cantor set A which contains no periodic points. This implies that fu.
has no stable periodic orbits. f,  possesses a single periodic orbit of period 2* for each
k = 0,1,..., and nothing else. Thus, h(fu.) =0, furthermore f,;m has the Shadowing’
Property.

0.5

Fig. 4.5.1. The graph of fu.,f

(4.5.2) Example. The non-smooth map defined in (4.2.5) has the Shadowing Property, for
the w-limit set w(c, g) is contained in a Cantor set which is semi-conjugate to an adding

machine, so it is disjoint from Per(g).
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