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ABSTRACT

We consider the space N of C2 twist maps that satisfy the following
requirements. The action is the sum of a purely quadratic term and a
periodic potential times a constant k (hereafter called the nonlinearity).
The potential restricted to the unit circle is bimodal, i.e.: has one local
minimum and one local maximum. The following statements are proven for maps
in N with nonlinearity k large enough.

The intersection of the unstable and stable invariant manifolds to the
hyperbolic minimizing periodic points contains minimizing homoclinic points.
Consider two finite pieces of these manifolds that connect two adjacent
homoclinic minimizing points (hereafter called fundamental domains). We
prove that all such fundamental domains have precisely one point in their
intersection (the Single Intersection theorem) .

In addition, we show that limit points of minimizing points are
recurrent, which implies that Aubry Mather sets (with irrational rotation
number) are contained in diamonds formed by 1ocal stable and unstable
manifolds of nearby minimizing periodic orbits (the Diamond Configuration
theorem) .

Another corollary concerns the intersection of the minimax orbits -ith
certain symmetry lines of the map.



1 INTRODUCTION AND RESULTS

The main objective of this work is to bound the number of ways that

stable and unstable manifolds of minimizing orbits can intersect each other.

We do this for a class of maps whose members are close (in the Cz-topology)
to a standard map with large k.

We will consider maps generated by the action:
’ -_— ’ 2
h(x,x') =1/2 (x - X YS + k V(X)

where v e c3sh

V' has a unique minimum X . and unique maximum X
min max

V"(xmi =1 and V“(xmax) =-1. (1.1la)

o
The first of these last two requirements can be achieved by normalizing the
constant k. The second requirement is to avoid inessential constants in the
exposition; the theory can be written up taking this constant into account.
We remark that the theory developed here can also be applied to multimodal
potentials, albeit with different conclusions. The generalization of the
theory to actions that do not have the form of a quadratic piece plus a
'potential’ is more problematic since we have relied upon the 'Laplacian’
form of the map (e.g. equation (2.1)). However, it appears that serious

problems only arise if axax,h(x,x') is not bounded away from zero. In this

article we have restricted ourselves to the simplest case given by equation

(1.1a).




Xx*>x+y+ kV(x)
We have: fk : {

g -y + kV(x) (1.1b)

2 .
and here f maps R to itself. We adopt the convention that Aubry Mather

sets, henceforth denoted by Ep , correspond to the minima with irrational

rotation number of the functional

H = fm h(xi,xi+1) . (1.1c)

iZ-»

(See Aubry [1983], Mather [1986].) The other minima of H are denoted by Ep/q
for the periodic orbits, E for the advancing orbits, and E for the
p/qt p/q-

receding orbits. The map f can regarded as the lift to the universal
covering of either a map of the torus to itself or of the cylinder to
itself.

We will now define the notion of separating curves (see Veerman and
Tangerman [1988a]), which will play a major role in the exposition. For each
p/q+ or p/q-, separating curves v(p/q+) or vy(p/q-) are defined as follows.

Let s, be a point on E or E _ Connect s, to the neighboring points
1 P p/q+ p/q- 1 & &P Py
and Py of Ep/q along their invariant manifolds (see figure 1.1). Repeat this

for all neighboring pairs of points of Ep/q' Note, that these curves and
ts d d the choi f int ,...s_ 1in E , respectively,
components depend on the choice of q points S, q n/q+ P y

Ep/q-' In section 2, it will be shown that we can choose these points so

that the separating curves are actually graphs over X separating R2 in an

upper component containing +e and a lower component containing -«. We will

also show (section 4) that the Cantor sets Ep are contained in the union of



open, diamond-shaped regions whose boundary is formed by the local invariant
manifolds that are part of t-ese curves (Diamond Configuration).

The following conventions will be adhered to throughout the article.
Consider the projections of the Aubry Mather sets on the x-axis. By a 'gap’

G in Ep , p € (R, Q-, Q+)}, we mean (see Katok [1982b]) a pair of points in

Ep, whose projections bound an interval that contains no point of the

projection of Ep. The meaning of fl(G) is then also clear. Denote the finite

pieces of invariant manifolds to EP that connect the endpoints of a gap G in

Ep by w®(G) and W (G). We will say that f satisfies the Single Intersection

hypothesis if all E , E , and E ar i , d if, for a gap G in
TP p/a’ p/a- p/q+ 3TE untdue. &n gap

E or E ,
p/a+ p/a-

Wu(G) intersected with WS(G) contains a single point (which
then has to be the minimax) besides the endpoints, see figure 1.1.

There are two motivations for the present work. The first one is very
prosaic. In an earlier work (Veerman and Tangerman [1988a]), we posed the
Single Intersection hypothesis in order to prove a number of results
concerning periodic and quasi-periodic behavior in 2-dimensional area
preserving twist maps. Given the complex character of the hypothesis and the
fact that all the support we could conjure up for it was numerical, it
seemed worthwhile to prove that this hypothesis holds for at least a limited
class of maps.

In that paper, we also needed to assume that 1imit-points with

irrational rotation number of minimizing orbits are recurrent, but that




conjecture had been stated before by Bangert [1986]. These results will spin
off from the reasoning we set up to prove the Single Intersection
hypothesis.

The fact that all minimax orbits have a point in common with a symmetry
is very important in current numerical work (Kook and Meiss [1988])), and
since it follows from our reasoning, we have included it in this work.

The :cond, and perhaps more profound, motivatio:. is that it appeared
interesting to study other structures than just orbits and their closures,
the most common objects for study. For example, details of how stable and
unstable manifolds intersect each other may at first seem an unsurpassably
messy problem. However, as results from the considerations in this work, not
all aspects of that problem are as nasty as one might imagine.

Section 2 contains as main result the statement that for large k, we
can draw separating curves vy(p/q+) which are uniformly Lipschitz and
similarly for the family of curves y(p/q-). In section 3, we prove existence
and uniqueness of certain periodic orbits, and in section 4, we do the same
for certain homoclinic orbits. The results of section 4 also include the
main statement of this work. In section 5, it is proved that minimaxes have
a point in common with a symmetry line. It also contains some results
concerning the geometry of Aubry Mather sets (the Diamond Configuration is
proved). In section 6, we obtain an estimate, in the case of the standard
map, for the lower bound of the nonlinearity k for which our main
conclusions hold. Finally, in the appendices we collect the linear algebra
that we need to state our results. Some of the facts collected there are

well-known and we make no claim to originality here: the collection is for



the convenience of the reader since not all the results are self-evident or
standard knowledge. Some results in the appendices admit generalizations
(for example see MacKay and Meiss [1983]). However, we have opted to give
the statements their simplest form still suitable for our purposes.

For future reference, we list the following:

f'1 : TRy (1.1d)
k y-+y-kV(x- y) .

ey = (k™ . (1.1e)

-1 _ 1 -1
Df (X,}’) - [ -k v (X'}’) 1+ k V"(x_y) ] (11f)

Finally, f'l is generated by action (1.1a) with x and %' interchanged.

We will denote the norm mix{lxil) in R" by | |m and the Euclidean norm
sup |AX|m
by | |. The operator morm - ° -yg1° for an operator A is denoted by ||A||m.
m




ITI ORBITS OF BOUNDED TYPE

In this section, we define the notion of bounded type and prove that

the class of orbits we are interested in (the ones that live in the

intersection of certain fundamental domains of invariant stable and unstable

manifolds) are of bounded type.

Defintion 2.1: Let ((xi,yi)};:_m be an orbit of f. The 'type’ t of this

orbit is defined as follows:

sup +x. -

€= e Ixg - X ¥ - Xl

Remarks: According to the definition of f, we also have

sup

t =7z 1¥; - Vil

The type of an orbit corresponds therefore with the supremum of the 2-nd
differences of the Xs and the supremum of the first differences of the y..
Note further that if the sequence {|yi|}T: is bounded then so is the type

of the orbit. For fixed k all orbits under the map f have bounded type.

Intuitively, one expects that as k increases so does the type of the orbits

that can occur.

Lemma 2.2: All well-ordered orbits have type no greater than one.



Proof: If the rotation number p of the orbit satisfies -1/2 = p = 1/2 . Then

being well-ordered implies

0= <1

R = R <
i i-1

b

from which the statement follows. For other rotation numbers, the above

inequality also holds by translational invariance. a

Define the projection =: R2 + R as follows:
(X, ¥) = X ;

and denote the collection of orbits of fk with type 0 = £t =T by Orp.

Lemma 2.3: i) For all T, there is a Kl(T) > 0 such that for all k > Kl(T)’
W(OT) is contained in two disjoint open intervals in plus their translates,
I_(k,T) containing the minimum of V, and I+(k,T) containing the maximum of
V.

ii) (Aubry [1983]) For k > Kl(l), the projection of well-ordered minimizing
orbits are contained in a single interval I (k,1) = { ¥ | (v x)| < 1/k and

yr(x) > -2/k )} plus its translates.

Proof: To prove the first part, note that according to (1.1), we have that

orbits are critical points of H. Therefore,
(xi - Xi-l) + (xi - Xi+l) + kV (xi) = O, (2:1)

So, |V'(xi)| < T/k




see figure 2.1. The second part follows by observing that for minima one

has
2
Q-g = 2 +kV'(x)>0. O
ax
Note that the intervals decrease monotonically decrease in size with k
and T.
From this lemma, one concludes that all gaps of E and E , except
gap p/q+ p/q- P

for one, also project to I . Call this exceptional gap Go . Define the

curves: y(p/a+) = ;Y w:(ci) Yy wi(ci)

_ u s

and note that these curves are separating.

Theorem 2.4: There is a K2 such that, if k > KZ , then the separating curves

v(p/q+) and vy(p/q-) defined as above are uniform Lipschitz graphs over Xx

(with Lipschitz constant l+k max|V"(x)]).

Proof: It suffices to do the construction of y(p/q+) only. We will therefore

drop the subscript '+' from W and W°.

For k > Kh(T) , Df maps the cone field C defined as the set of all

tangent vectors («,p) such that af > 0 strictly into itself for all x ¢

I (k,T) (Goroff [1985]). So let T =1 and let K2 = max{Kl(l), Kh(l)) , the
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local unstable manifold to E contained in .U Wu(G.) lies on a Lipschitz
p/a i=0 i
graph
g(x) = (x, y))  vwith 4 50
, dx .

The image under f of such a graph over (a subinterval of) 1 1is again a

graph with  ax - R Sirid: Ty - vy
Since V" is bimodal, we have yr(x e 1) > 0 . Therefore, the Lipschitz

constant of the graph satisfies L = 1 . So 190 Wu(Gi) lies on a Lipschitz
graph.

The complement of the comne field C is mapped into itself by Df'l (see

equation (1.1)) as long as X, 7 =X, - ¥, € 1 . In fact, the cone field C =

((-a,B) | B>a> 0) is mapped into jitself by Df'1 for x _q ¢ 1 . Therefore,

local stable manifolds in igo Ws(Gi) whose inverse images (under £) lie in

1 form a graph (x,y(x)) with

dy
n
R
n

The image under f-l of such a graph satisfies:

dy dy_/dx
n-1 n n
----- =-kV - + s---32-73%° 2.1
dx_ 1 g yn) 1 - dyn/dxn ( )
so that -k V(% - y - 1< _Y?:} < - k(% - y < -1

n In dxn-l n Yn ’
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Proof: From the foregoing remarks it is obvious that i) is implied by lemma
2.3.1.

Let {Xi} be an q-periodic sequence of type t' corresponding to a

rotation number p/q . The equations (2.1) for the critical point of H can be

rewritten in vector form as:

2 -1 O . . 0 -1 Xy V’(xl) -p
( -1 2 -1 . . 0 O ) [ . ] ( . ] [ 0 )
. . . . + k = . (3.2)
. 0-1 2 -1 . . 0
-1 0 0o -1 2 v’
X (xq) P
Now, define Xy = Xi + §i . (3.3)
From the assumptions on V(x) in the introduction, we may write:
V’(Xi + Ei) = §i - v+(§) if Xi el +2,
V’(Xi + §i) = - §i + v (£ if Xi € I+ + Z ,
where Ei eR , v =-4 v, are twice differentiable, and

Iv(e)| = ocl€l%)

(The sign convention is chosen so that sg(v(§))

sg(¢) for the standard

map.) Now equation (3.3) becomes:

2+e. k-1 o . o0 1 ¢ v (£1) s
( ab 2eek sl L0 0 | ! ] ( 1t = ( 1 ]
. ; N G = . (3.4a)
. S O LI . . .
1 0 0o -1 2+ Kk s
‘q £ vqléq) q
where i =y and €. = +1 if Xi e I+ Z
i =v_ and e, = -1 if Xi € I+ + 2
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Let Lq be the Hessian of H (1.lc) in the points Xi’ then with the obvious

notation (3.4a) can be written as:

. Lq € - kv(§) = s (3.4b)
Corollary A.5 asserts that (K3(T) > 4) the eigenvalues of Lq are

greater than |k - 4| so that Lq is invertible. Define

B(e) = RLDG +vE) (3.5)

We now observe that theorem B.4 implies that
-1 , -
owl 1, = 1L v 01y < 5og 201¢]

Thus ¥ is a contraction on the region A = [-S,S]qcontained in RY if

-1 -1 t’ k 2
|¢(€)|m < |Lq S|m + ||qu ||mlv(€)|m <i L tR L C|€|m < |€|m ,
for k large enough. Thus the region A is mapped into itself. Therefore ¥ has

a unique fixed point in A. By construction, this fixed point corresponds to

a unique orbit {xi) of type t with lt - t'] < 61 . a
Proposition 3.2: For k > K3(T) + 1 , periodic orbits in OT are hyperbolic.

Proof: We use an identity proved by Greene [1979]:
|Tr DEY| = |det Hess(H) + 2]

— q
where H= i; h(xi,xi+1)
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and = =
XO xq and x1 xq+1 .

In the proof of the remark that goes with proposition A.4 we prove that

Ai =2+ k V"(xi) . So, for |2 + k V"(xi)l > 3 , we have

|Tr D£Y| = igcll (rgl -1 >2 . 0

We note in passing that this does not imply that all periodic orbits in
the map are hyperbolic. On the contrary, elliptic orbits can readily be
found for arbitrarily large k (see, for instance, Leage and MacKay [1986]).

However, they have to have type bigger than T in the proposition.

Corollary 3.3: Let o be a periodic orbit in OT’ and let k > KB(T)' Let its

Hessian be denoted by H. Then the number of negative eigenvalues of H equals

the number of points of o that project to I+ . The other points project to

Proof: This is an application of theorem A.7 and of theorem 3.1. a
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IV HOMOCLINIC ORBITS

By using the same technique as in the previous section, we now include

points in |, ﬁm {Wu(Gi) n Ws(Gi)) (as defined in section 2) in the symbolic

i=-o
dynamics. Since these orbits are not periodic, we have to adapt the theory

of the previous section. We do this here for homoclinic orbits. The result
is that other than the endpoints Wu(Gi) 0 WS(Gi) contains a single point.
We will make use of the constants Ki(T) defined in the previous section.

We will make use of the following notation. A homoclinic m-advancing
orbit {xi) to an orbit {zi} (not necessarily well-ordered) with z.l+q = zi +
p (here p and q are not necessarily relative primes) is an orbit such that

1ﬁm x_kq + kp = zg 1%m X - kp = zq (4.1a)

kq-m
Lemma 2.3 implies that if its type is small enough it corresponds to a

unique symbol sequence {Xi} with

there is an N such that ifi>N X. =2, (4.1b)

1 1+m
if i < -N X. = Z.
i i

The symbol sequence (Zi} is also called m-advancing. One defines receding

orbits in a similar fashion. Such an orbit is, for all n, a critical point

_ ngs
of Hy = §o8io41 DO X)

with endpoints fixed. Set X, = Xi + fi. With the same conventions as in

section 3, the equations for a critical point become:
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Mng £ - k un(§) = s o0 (4.2a)
5na
The vector [ 6 ] is denoted by n,- The matrix an has size 2ngq-m, and
6nq-m+l

has entries equal to zero in the upper right and lower left corners

(corresponding to the endpoints being fixed). Equation (4.2a) is equivalent

ith - =
wi an £ - k un(f) syt kg o (4.2Db)
g-nq-gnq-m
where [ is the vector ( . ] . By E* we will denote the
0
gnq-m+l_é-nq+l
solution of the ’'periodic’ problem with symbolic sequence {Xi}?2:$q+l (see
section 3):
L £ - kv (€)= 4.2
g & T k(€)= sy (4.20)

We say that the limit of a sequence of vectors (€é(i)) exists if the

components converge (i.e.: 1i: (E(i))p exists for p fixed).

Theorem 4.1: For each T there is a K3(T) such that for each k > KB(T)’ the

following holds: i) to each homoclinic orbit with type smaller than T
corresponds a unique asymptotically periodic symbol sequence with type

smaller than T + 6I (6I as defined in (3.2)), and ii) to each asymptotically
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periodic symbol sequence with type smaller than T corresponds a unique

asymptotically periodic orbit with type smaller than T + 81 .

Proof: As in theorem 3.1, if k is large enough lemma 2.3 implies that each

orbit (xi) corresponds to a unique sequence {Xi} (which proves i)).

To prove ii) we may assume that we have an m-advancing asymptotically

q-periodic sequence {Xi) . We have to prove that there is a unique orbit

. +®
{xi} (with symbolic sequence {Xi}) homoclinic to a periodic orbit {zi)_co .
We first show existence of a homoclinic orbit with the given sequence.

Consider the periodic orbit corresponding the symbolic sequence {Xi}?g:zq+l'

* .
Call the corresponding solution of equation (4.2c) € (n). Since according to

*
theorem 3.1 the components of ¢ (n) are bounded by 61, 1imit-points of the

sequence {5*(n)} exist. Such a limit-point corresponds to a homoclinic orbit
with the required symbolic sequence.

We next show uniqueness of the above limit-point. Let ¢(n) be the
solution of (&.2b) (which is equivalent to (4.2a)) where we have the freedom

to choose \pn|“'< 26;- Recall that the only non-zeIo components of p_ are
v

the first and the last. To see that the limit-point is unique, one observes

that the vector ((E(n+r))_nq+l, e e (§(n+r))nq_m) satifies equation

(4.2b) for some bounded By o On the other hand, ((E(n+r))_nq+l, Lo,
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(§(n+r))nq_m) satifies equation (4.2b) with By = 0 . Thus lemma B.2 implies

that £(n) is a Cauchy sequence. a

Remark: The existence of well-ordered advancing and receding orbits has been

proved by Katok [1982a,b] in a more general context.

Theorem 4.2 ("Single Intersection"): For all k > max(Kz, K3(1)), we have

that A = i=ﬁ: (Wu(Gi)I\ Ws(Gi)} contains one minimum and one minimax and no

other orbit.

Proof: A homoclinic minimax (xi} is an orbit such that for all n big enough

the Hessian D2Hn has a single negative eigenvalue. By theorem A.7 (and the

fact that v is small), this implies that one diagonal term in the Hessian

(4.2a) is negative, or, equivalently, that there is a unique i such that Xi
€ I+ U Z . (A minimum has only positive eigenvalues.) Thus existence and

uniqueness of the l-advancing well-ordered minimum and minimax follow from
the previous proposition. (These orbits have type not exceeding 1.)

From corollary 2.6, one concludes that all orbits in A have type mnot
greater than one. Suppose now that there is an orbit in A for which the
Hessian in the previous proposition has more than one negative eigenvalue.
Theorem A.7 applies again. (Strictly speaking, we have to modify the

theorem, because the anti-diagonal elements in the matrix vanish. But that
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is as straightforward as it was in the proof of the proposition.) Thus the

alleged homoclinic orbit (xi} lands at least two times in I+ . But this

contradicts corollary 2.5. a

Remark: This theorem (and other results relying on hyperbolicity and
uniqueness of orbits with bounded type) generalizes to irrational rotation
numbers. The generalization of the equatioms (4.2) is given in the proof of

proposition 5.3.
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vV SYMMETRY LINES AND DIAMONDS

In this section, we prove that for the standard map each minimax orbit,
whether periodic or homoclinic, has a point in common with a reflection
1ine. In addition, we prove some results concerning the topology of Aubry

Mather sets. These latter ones were conjectured to hold for all k (Veerman

and Tangerman [1988a]).

. X =+ - X
D :
efine S { gy +k V' (x)
Suppose further that V'(x) = - V' (-x) and that X = 0 is contained in I (the

latter can be achieved by conjugating by a translation in the x-direction).
An example of a map that satisfies these requirements is the standard-map.
Then x = 0 is a so-called symmetry line (in the example of section 6, we

have the symmetry line at X = 1/2). That is: s satisfies

and s =1d ,
and it leaves the line x =0 invariant (Greene [1979]). In this case, we

have the following theorem.

e e ——

Theorem 5.1: For k > K3(T), we have that the projection of an orbit in OT

with symmetric symbol sequence is invariant under reflection in x = 0 .
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. - -1 . .
Proof: We start with the observation that £ = is generated by the action

. o c s
h(x',x) as remarked in the introduction. Therefore, if {xi)_w is a critical
point of H = § h(x.,X ) with rotation number p, then (X _.) is a

iZ-w i* i+l ’ -i' -

critical point of H' = ifmm h(x

. .,X,) with the same rotation number.
i+1'71
Further, if (xi) is a critical point of H (orbit of £f) and has a symmetric

symbol sequence, then, by reflection, {-xi) = (m S(xi,yi)) is a critical

point of H' (orbit of f-l) and the same symbol sequence as {x_i} . But by

uniquenesé of these orbits, it follows that {xi} must be invariant under

reflection (X ., = -X.). )
-i i

Corollary 5.2: For k > K3(1), each order preserving minimax orbit has a

point in common with the symmetry line.

Proof: A minimax has only one point in I, (see theorem A.7). Call this point
Xq- Order preserving implies that the symbol sequence is symmetric. The

result now follows from the previous theorem. a

Remark: The fact that minimum orbits have no point in common with the line x

= 0, is, of course, directly implied by lemma 2.3 ii (for large k).
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Proposition 5.3: Let x be a limit-point of minimizing periodic points such
that its orbit does not have a rational rotation number. For k > K(1), its

orbit is recurrent.

Proof: Since the proof is very similar to that of theorem 4.1, we only give
an outline of the proof. We know that any orbit contained in the limit £
minimizing well-ordered orbits is again minimizing and well-ordered (Mather
[1986]). Such an orbit must therefore have a rotation number which, by

assumption, is irrational. Its w-limit set Ep is a recurrent set. Suppose
< * o .

that the orbit {xi}_°° of an orbit constructed that way is non-recurrent.
. . . . . % 40

Such an orbit must live in a gap 1in Ep and its symbol sequence {Xi}_m is

identical to the sequence {Xi}T: of either the left- or the right endpoint

of the gap. Furthermore, both endpoints are bi-asymptotic to each other. So,

we can set up an operator Lq (where q, are, say, the denominators of the
n

convergents to p) and vectors sq and pq as in (4.2b) with the property
n n

*
that 1%m |pq| = 0 . For the solution ¢ 1living in the gaps, we reach the

same conclusion, that is: the orbit is identical to the orbit of the end-

point of the gap. o

Now, suppose, that Ea is hyperbolic, then by arguments given in Veerman

and Tangerman [1988a], there is an open interval of rotation numbers D
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containing @, such that H = pgD Ep is a hyperbolic set. We can then define

¢-local stable and unstable manifolds at each point of H which have bounded
diameter greater than 6 > 0. For the remainder of this section, let o

irrational, r/s > a > p/a-

Theorem 5.4 ("Diamond Configuration"): If k > max{Kz,K3(l)} , B, is

hyperbolic and for r/s and p/q close enough to o, E is contained in a

region K which is the union of 'diamonds’ and whose boundary is formed by

local stable and unstable manifolds to E and E only.
p/4q r/s

Proof: By theorem 2.4, y(x/s-) and v(p/q+) can be constructed so that they
are Lipschitz graphs. Lipschitz graphs satisfy the hypothesis of the
Monotonicity theorem (condition 2.4 in Veerman and Tangerman [1988a]). This
theorem then states (Veerman and Tangerman [(1988a]) that if K is the open
set defined by:

K is 'below’ v(x/s-)

K is 'above’ y(p/at)
(here ' above’' and 'below’ have their usual meaning since y(p/a+) and v(x/s-)

are Jordan curves), then Ea is contained in K.
Assume that X € Ea lies in a region not bounded by local invariant

manifolds (see figure 5.1). Then there must be a stable segment that

intersects an unstable segment more than once. But that is in contradiction




with the fact that stable segments have slope less than -1 while all

unstable segments have slope between 0 and 1. a

25
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y1 _ ESTIMATES FOR.THE STANDARD MAP

In order to form some idea about the size of the constants Ki for which
the most important conclusions hold, we evaluate K3(l), needed in theorems
3.1,.5.1 and 5.4 as well as theorem 4.1, for the standard map (i.e.: v'(x) =
------- ). We limit these considerations exclusively to minima and

minimaxes.

In section 2, one immediately has from lemma 2.3 that

Kl(T) = 2nT .
x € I (k,T) <=> |sin x| < gg? . x < 1/6,
. 27T
and X € I+(k,T) <=> |sin 2mx| = g7 o |x - 1/2] < 1/4 .

Further, we have from theorem 2.4 and from Goroff [1985] that
_ _ _ 2.1/2
K2 = max{Kl(l), Kh(l)} = Kh(l) =2(1 + m) .
The constant K3(1) in section 3 is slightly more problematic. From the

proof of theorem 3.1, we obtain that K3(T) must be greater than T + 3

(theorem B.4), greater than 4 (theorem A.5), and big enough for equation
(3.5) to define a contraction. In the reasoning below, we verify that (3.5)

defines a contraction for k > 2r«.

Lemma 6.1: For order preserving minimizing and minimax orbits (periodic and

nomoclinic) |IRLTII =1
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Proof: For minimizing orbits, the results follows from theorems B.4 and B.5.

For minimax orbits, there is a unique I ¢ N such that A. < 0 and fI =0

I
(corollary 5.2). Proposition B.3 is now still valid with min replaced by Ti?

and so are its corollaries B.4 and B.5. O

Theorem 6.2: In the case of the standard map K3(1) equals 2w .

Proof: We have (see proof of theorem 3.1)

(&)1, = 1€l - 55 sin(2nlg] )

m

It is sufficient to prove that for k > 2n the map ¥
-1, s
¥org o> (KL ) (g + v(€)
is contracting on any region Ay defined by |§|m < v < 1/4 and maps that

region into itself.

Since [ )| = IIkL'lllmIV’(€>lm <1 - cos(2r|€]| )

¥ is indeed a contraction on A7 for y < 1/4 . In addition,

m

- I's 1
MG v ) =5+ 1€l - 3

[$€) |, = | kL sin(2r|€] )

T
The graph of E + x - %& sin 27x is increasing and intersects the diagonal
only if k =2 2n . If k = 2n , A7 is mapped into itself for y < 1/4 and close

to 1/4 . a
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VI1 CONCLUDING REMARKS

While our results are valid only for large k, W€ believe that an
extension of these results should be valid for all k. Here is some of the
evidence. The Single Intersection property is observed for all k, and can
also be proven by pertuxbative techniques (Simo, personal communication) for
small k (though pot uniform in the rotarion number) . The hyperbolicity of
Aubry Mather sets (which is an essential ingredient in this work) 1s
observed numerically as soon as the invariant curve has broken UP (Li and
Bak, [1986]). We expect that the structure of the the jnvariant manifolds
that we outlined in theorem 2.4 is very regular for all k: it is mnot
necessarily uniformly Lipschitz, put it will probably consist of finitely
many graphs, which may be gufficient to prove many of the result of this and
previous works. The way to achieve such results might be to try to prove
them for high jterates of the map we co: sidered in this paper and apply
renormalization argumenté.

We expect that some of the results concerning stable and unstable
manifolds discussed in this and previous works also generalize to the
dissipative standard map. 1t is easy to extend equation (2.1) to that case
(just multiply the first term by the dissipation). One could then paraphrase
the reasoning in the appendices of this paper by considering & system of
such equations (bearing in mind, of course, that in this case not all
rotation pumbers are realized). The result concerning Convergence of
Turnstiles in Veerman and Tangerman [1988a] would provide us with detailed

knowledge as to how unstable manifolds pile up in this case.
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It is also possible that an extension of this essentially linear
construction generalizes to four-dimensional symplectic maps, such as the
ones studied by Angenent [1988] or Kook and Meiss [1988] and requiring,
again, that the necessary nonlinearity parameter is sufficiently big. This
way, one should be able to establish the existence and the structure of such
Cantor sets, in the way that is done in Veerman and Tangerman [1988b].

Finally, it should be noted thgt the uniform estimates on the periodic
orbits achieved in section 3, enable one to take Hausdorff 1imits‘of such
sets and construct invariant Cantor sets for a given rotation number that

have a prescribed fraction of points in I+ (that is: the Hessian has a

certain fraction of its eigenvalues negative).
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APPENDIX A

In this appendix, we analyze the eigenvalues of the Hessian matrix for

large k.

The matrices we are interested in are those of equations (3.4a) and

(4.2a).
A -1 0 0 -5
1 x, -1 0 0
Let L = . . ) (A.1)
q 0 -1 a_, -1
5 0 o -1 A

where § = 1. Denote the n x n (n < q) upper left matrix by Mn and its
determinant by An . The above matrix with § = 0 will be denoted by Mq and
its determinant by Aq. For n < q, denote the matrix obtained by deleting the

* *
first row and the first column from Mn by Mn and its determinant by A -

The following recursive relations are immediate:

* * *- .
Lemma A.1l: If A-l =0, AO =1, AO =0, Al =1, and A-l = 1, then, for i = 1,
B T AL B4y T By
d * \ * A *
an S T St T B OF I
h = * 2= A AS A 2
where det(Lq) = Aq - Aq-l - = 2q 8q-1 - q-1 - q-2

Proof: Expand the determinant on the last row. ]
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In the remainder of this appendix we will assume that |Xi| > 2

*

*
Lemma A.2: lAil > (|Ai| - 1)|Ai_1| , IAiI > (IAiI - l)|A1_l| ,

*
and [a;] = (2] - DIajl

Proof: For Ai we have from lemma A.l:

A, A

b =1 -
811

and the first statement is checked by induction. Similarly for A: . The last
statement follows by symmetry. a

*
Lemma A.3: For all i, |a| =1, laa, -4, | =2 (|x] - 1) la A, - A
i i i i-1

Proof: From lemma A.l, we obtain

%*
| ?_%}_:-é?-_-- | =] x, - ?-éi:?_:_é%:? |
i *
abiq B abiq "B

For i = 1, one easily checks that this statement holds and one continues

again by induction. a

Proposition A.4: det(Lq) = 0
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t one xi is negative. From the last

Proof: First suppose that at leas

equation of lemma A.l:

*
ldee(y) + 21 = 1580 (gl = Deq-1 B!

2, the first term in the right hand side dominates the other two.

By lemma A.
Thus with lAq_Z\ smaller \Aq_llz
*
det(L ) + 2| = x| - & - A
dee(L) + 21 = 1Al -~ 1) g1 q-1 !
at A\, < 0 . The
i

Now apply lemma A.3. Suppose i is the smallest integer SO th

n the proof of lemma A.3 is greater than 3.

corresponding right hand side i

1f all X, are greater than two, then from lemma A.l

<
la; - 8541 N oy I O 3 5.3 o 4
""""" R e SRR -
|a A, | A - A A - A
T ) i-1 ) i1 Bi-2

Since

it follows (by jnduction) that
A - A >2
q q-1

From lemma A.l we obtain that |det(Lq)+2\ > 2 . Therefore

det(L = 0
e(q)

p is an eigenvalue of the Hessian then there is an i such

Corollary A.5: 1f

that Ix; - pl <2 .
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Proof: If not, then the previous proposition gives

det(Lq - pl) =0 . a

Lemma A.6: If |Ai| >3, sgla;g / By 1) = sglX)

sg(det(Lq) / Aq-l} = sg{Aq} , for g > 2 .

Proof: The first relation follows immediately from lemmas A.1 and A.2. For

the second relation:

*
det(L A A
det(ly) _ . f%qrl . Ta2 Tl
BT B B fad
where the individual terms can estimated by using lemma A.2. a

Theorem A.7: If |Xi| > 3, the number of negative eigenvalues (counting
multiplicity) of the Hessian Lq equals the number of negative terms on the

diagonal.

Proof: We will make use of the fact that the matrices considered are
symmetric. That implies that they are diagonalizable, have real eigenvalues
and that different eigenspaces are orthogonal. Moreover (see Wilf [1978]),

the eigenvalues of M, , separate the eigenvalues of M, (and Mq-l those of
Lq). (In case Mi has an eigenvalue with multiplicity p, then Mi-l has that

eigenvalue with multiplicity p-1.)
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Let p? denote the i-th eigenvalue of Mn. All of these eigenvalues lie
outside the interval [-1,+l] by corollary A.5. Knowing the sign of the
eigenvalues of M determines the sign of all but one of the eigenvalues of

n-

M 1 (see figure A.1). So that sign has to be determined by sg{An/An_l} from

which the theorem follows. a
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APPENDIX B

In this appendix, we consider for k sufficiently big, the solutions of
the following linearized problems.

- The periodic problem:
Lq E=s , (B.la)
where § = (£§,,§,, ... fq) and |s| =T .

- The m-advancing homoclinic problem:

For all n: Mn,q £ = syt o (B.1b)
where Mn,q = M2nq-m as defined in appendix A,

€= (E-nq+1’€-nq+2’ T '50’51’ T ’an-m) ’
I(sn)lm < T, and n, = (Cl(n),0,0, . ,O,Cz(n)) with lnn'm < C independent
of n.

In the last problem the only parameter of interest is n. The sequence

of vectors {sn} is chosen so that if k > n , corresponding components
numbered -ng+l to nq-m of the vectors Sk and s, are equal. We are interested

in the sequence of solutioms (£(n)} to (B.1b).

In both problems the object is to prove that the solutions &, resp.
£(n), have components of uniformly bounded size. Furthermore, the sequence
of solutions {(£(n)) converges component wise.

Let ). be the diagonal elements of L , resp. M , and let p. its
i q n,q i

eigenvalues. Throughout this appendix, we will assume that IAil >T+ 3
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T
Lemma B.l: At least omne component of £ satisfies: \§i| < -:z-T3C ---5

Proof: Denote with d the dimension of the space acted on by the operatol Lq

(oxr Mn,q)‘ Then:

. s| J(@) T
J(d) (m%n |€i|) = l§| = zﬁig'lﬁ‘15 =< (ﬁiﬁ'liil'i'ii
(The last inequality follows from corollary A.5.) a

*
In the next lemma we consider the homoclinic problem. Denote by & (n)

the solution to (B.1b) with n, = 0 .

Lemma B.2 (Exponential Decay) :

*
le(ny; - € (@l

A

z-lnq-m-il‘on‘m

*
Proof: Denote the components of (£(n) - § (n)) by t(n)i =t . The above

equation implies (except for the components { = -nq+l and 1 = nq-m)
At = Eia 7t tial
So if le. | > 1 lt. 41
i 2 '7i-1
then |Ail|ti| < \ti_1| + ‘ti+1‘ < 2|ti\ + |t i+ﬂ
Thus lti+ll > 2|ti‘
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This implies that the graph of |ti| versus i is exponentially increasing

(with a factor at least 2 each time) as soon as it is not exponentially

decreasing (with a factor at least 2). Now consider the first and the last
equations:

X-nq+1t-nq+l ) t-nq+2 = Cl(n)

by - =

nq-mtnq-m tnq-m-l CZ(n)
There are now three cases to consider:

- The graph of lti' versus i is exponentially increasing with a factor at

least 2. Then we conclude that |t | = Cc () < |n_| .
ng-m 2 n'm

- The graph of lti| versus i is exponentially decreasing with a factor at
least 2. Then we conclude that It-nq+1| < Cy(n) = In_|

- The graph of |ti| versus i is first exponentially decreasing and

subsequently exponentially increasing (with a factor at least 2). In this

case we also have that ltnq-ml < Cy(n) = Innlm and lt-nq+l| < Ci(n) =<

In_|

n'm’

In all cases we obtain that

-Ing-n-1|
eyl =2 175l o

Denote the component that satisfies the inequality of lemma B.1l by €I

T T
. : —se=yTeT-~--2& —ze-yTe=1---5
Proposition B.3: If |§I| < Aih IAiI --5 ‘then |€I+l| < ain IAiI -5
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Proof: First we observe that for periodic orbits 50 = €q and for m-advancing
(or m-receding) homoclinic orbits €-kq - gkq-m converges to zero

exponentially fast. The former claim, of course, follows directly from
(B.1b) which has periodic boundary conditions. The second can be seen as
follows. Since £ must be a solution of (B.la) for all n, we have that for

n =2k, E-kq+i and Ekq-m+i satisfy the same equations for i e {-(k-1)q,

Jkq) . Therefore, the argument in lemma B.2 applies and €-kq - Ekq-m
must go to zero exponentially fast.
Writing out the equation for €i+1 , one has
€01 = 17 G117 Si - (B.2)
We have that if
€] > 22131727 and |&;1 > 1€ 4| (B.3)
i min Ixil ) i i-1' >
€1 %S4 Si . s L
then | —T--E;--- | < |1+ S (min |Ai| - 2)| < min | il -
€. §. 4+ s
So e =1y S S
i i

Suppose now that the proposition does not hold. Since by assumption

(B.3) holds for i=1+ 1, we obtain that

€142! > 1614
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By straightforward induction (noting that 60 = éq if the orbit is periodic,

or (E-nq - gnq-m) is exponentially small if the orbit is homoclinic), one

then proves that |€I| > -z--

T
m}n Ixil-:-i , contrary to our earlier assumption. O

q+l has

Theorem B.4: Let X, = X + =
q tpandX =X i)i=0

0

g+l + p . If the sequence (X

type t < T, then the linear equations (B.1l) with periodic boundary

conditions have a unique solution £ with &0 = §q and §1 = €q+l and

Proof: By induction. Suppose |£I|, .. ’|§I+n| satisfy the inequality. If
|£I+n+1l does not satisfy it then by proposition B.3, |£I| does not satisfy
it. a

+
i=-

Theorem B.5: Let (Xi} be an asymptotically g-periodic m-advancing

sequence (corresponding to an asymptotically q-periodic m-advancing orbit)

with type t < T, then the line ‘r equations (B.1l) without periodic boundary

s s s . T
conditions have a unique solution § and |§i| < ﬁ§ﬁ-]i3]-:-2
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Proof: Now £ € R ™ lemma B.1 implies that there is at least one component

of £ such that < cseegzege--x

According to proposition B.3, all components §i with i > I satisfy the same
inequality.

For n large enough, wehave that the difference between the first and
the last component goes to zero exponentially fast in n. Therefore, the

first component satisfies the inequality. Thus by proposition B.3, all

components satisfy the inequality. O
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Figure 3.1 : Graph of f(x) =K+ sz At X=X, the derivative of £ is 1.

For v < x°, £(x) <x if K small.
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Figure 5.1 : Ws(y) intersects Wu(x) in the points a and b.
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