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1. Introduction.

The earliest paper devoted to the iteration theory of transcendental entire functions
£:C — C was written by Fatou [F3] in 1926. He showed that the first basic facts are very
similar in the rational and transcendental cases. However, further development of the subject
showed that some dynamical properties of entire functions may be quite different from those of
polynomials and rational maps [B3, EL5]. This paper is devoted to some classes of entire
functions for which the dynamics are more or less similar to that of polynomials. The simplest
examples of these classes are Aexp z and acos Z+b.

Denote by f™ the m-th iterate of an entire function f. All entire functions considered in
this paper are supposed to be non-linear. The maximal open set N(f) where the family of iterates
is normal in the sense of Montel [Mo] is called the set of normality and its complement



J(f) = C\N(f) is called the Julia ser. J(f) is a perfect completely invariant set (i.e., f-1J =J)
which is either nowhere dense or coincides with C. The Julia set of a transcendental entire
function is unbounded.

A point a € C is called periodic if fPa = for a natural number p which is called a
period. If p is the minimal period of the point & then A = (fP)’(a) is said to be the mulriplier of
. The periodic point @ is called artracting, repelling, or newtral in the cases |A| <1, |A|> 1,
and |A|=1 respectively. In the last case a is said to be rational (resp., irrational) if A = e2™®
with rational © (resp., irrational ). The Julia set of an arbitrary entire function coincides with the
closure of repelling periodic points. The only known proof of this fact for transcendental functions
[B1] is based on a deep theory of Ahlfors [N, Ch. 13].

Consider the class B consisting of all entire functions f such that the set of singular
points of the inverse function f-! is bounded (in other words, f is a covering map over
{z:]1z| >R} forlarge R). Such functions are studied in §2. First, we prove the elementary but
useful fact that all connected components of N(f) are simply connected for transcendental fe B
(it is not the case for arbitrary transcendental entire functions [B4]). Then we describe the
logarithmic change of variable in a neighborhood of . It is our main tool which permits us to
study the dynamics of f near es. As the first application of the logarithmic change of variable we
prove

Theorem 1. Let fe B be a transcendental entire function. If z € N(f) then the orbit
(t‘“z}: _o doesnottend to o.

Most of the results of this paper concern a more restricted class of functions. Let S be the
set of all entire functions f such that the set of the singular points of the inverse function f-! is
finite. In other words, there exists a finite set A such that f: C\f-!A — C\A is a (unramified)
covering map. The polynomials, the functions A expz and acosz+b belongto S. If h and
p are polynomials then

fz) = [h(C) exppQ) dC e S. (1.1)

If f(z) =z! sin z then fe B\S.

The class S investigated systematically by Nevanlinna, Teichmiiller, and others plays an
important part in the value distribution theory [N, W]. From the point of view of iteration theory it
was studied for the first time in [EL2]. ‘

In §3 we include every fe S to a finite dimensional complex analytic manifold M, c S.
In §4 keeping in mind the further applications we prove various analytical results on M, The



main result is the following: the periodic points of a function g e M; considered as a mulri-valued
function on My have only algebraic singularities (Theorem 2). '

The main property of the manifold M, is as follows: if g is an entire function
topologically conjugated with f then g e M, This property allows us to extend Sullivan's
theorem on the non-existence of wandering domains [S1] to the class S. A domain D cC is
called wandering if 'DNf"D =3 for n>m>0. In §5 we prove

Theorem 3. The functions fe S have no wandering domains.

For the narrower class of functions (1.1) this theorem was proved in [B4] and for the
entire class S independently in [GK].

Theorems 1 and 3 allow us to describe completely the dynamics of a function f& S on
N(f). Let D be a periodic component of N(f), fPD c D. If all orbits originatingin D tendtoa
cycle then D is called a Fatou domain. If fP1D is conformally conjugate to an irrational rotation
of the unit disk then D is called a Siegel disk. We say that the orbit {f™ x}; -0 is absorbed by
the invariant set X if f™x € X for some m.

Theorem 4. Let f e S. Then every orbit in the set of normality N(f) is absorbed by a

p-l
cycle \U f¥D of Fatou domains or Siegel disks.
=0

Therefore the dynamics of entire functions fe S on C(f) is similar to that of polynomials
[S1]. We conclude §5 with the finiteness theorem for non-repelling cycles (Theorem 5).

In [B2] Baker stated the conjecture that if a transcendental entire function f has a
completely invariant component D of N(f) then D = N(f). This conjecture for f€ S is proved
in §6 (Theorem 6). A

In §7 some sufficient conditons for the sets J(f) and I(f) = {z|f"z—> o0, n >} to
have zero area are given. Itis known that the area of both sets is positive if f(z) =asinz + b,

a,be C [McM].
Let fe S, M=M,. A function g€ M is said to be structurally stable if for every

function h e M close to g there exists a homeomorphism ¢ :C — C clqse to identity
conjugating g and h: @ o g =ho ¢ . Using the auxiliary results of §4 and the method of [L2,

MSS] we prove in §8 that the set of structurally stable functions is open and dense in M.
In the final section. (§9) we apply the general results to the family Mexp which consists of

the functions a exp(bz) + ¢, a,b,ce C, ab#0. The dynamical properties of this family have



recently attracted a great deal of attenton [BR, D, DGH, EL1-4, L4, M, McM]. After a brief
discussion of these properties we state the analogue of the Douady-Hubbard theorem [DH1] on
conformal representation of hyperbolic domains in the parameter space.

All results of the present paper except the structural stability one (§§4,8) were obtained in
the fall of 1983. They were announced in [EL1, EL3], and their detailed proofs in Russian were
given in [EL2, EL4].

Finally, let us refer to the surveys [Bla, L3, EL6, Mi] for a general introduction to
holomorphic dynamics ([EL6] contains a chapter devoted to the transcendental case).

2. The logarithmic change of variable in the class B.

We begin with a simple proposition concerning arbitrary entire functions [B4, T]. Denote
by ind the index of a curve y with respect to 0.

Proposition 1. Let f be a transcendental entire function and D be a multiply connected
componcnt of N(f). Then
(a) f"z — o= uniformly on compact subsets in D;
(b) For every Jordan curve Yy non-contractible in D ind(f"y) # 0 for all
sufficiently large n. ®

The following consequence of Proposition 1 is a convenient sufficient condition of simply
connectedness of all components of N(f).

Proposition 2. Let an entire function f be bounded on a curve I" tending to o= . Then
all components of N(f) are simply connected.

Proof. Otherwise let us consider a non-contractible Jordan curve y < D. It follows from
the above Proposition that there exists a sequence z_ — o= such that z € I' n f*y. This
contradicts the boundedness of fII". ®

At this point we restrict the class of functions under consideration. To this end we need
some definitions concerning singularities of the inverse function frks

A point a € C is said to be an asymprotic value of f if there exists a curve IrelC
tending to o= such that f(z) » a and z — = along I'. If f'(c) =0 then c is called a critical
pointof f and f(c) is called a critical value. By a singular point of f-! we mean a critical or an
asymptotic value [N]. Denote the set of singular points by sing f-1. Note that this set may be



non-closed. It is known that for an open set G such that G N sing f~!1 =@ the map
£:#1G — G is an unramified covering [N].

Let B be the class of entire functions f having bounded sets sing f-!. Denote D(zy, 1) =
{z:lz- z, l<r). Let fe B bea ranscendental function, sing -1 « D(0, R/2),

A =C\D@O,R), G=f'A. Itiseasy to show that each component V of G is a simply
connected domain bounded by a single non-closed analytic curve both ends of which tend to °,
and f:V — A is a universal covering. We have | f(z)| =R on this curve, and Proposition 2
implies

Proposition 3. If fe B is transcendental then all components of N(f) are simply
connected. ®

If R is chosen so large that | £(0) | <R, then 0e G, and exp: WG is a conformal

isomorphism for any component W of the set U =In G. Considering the half-plane
H =1nA = (§:ReE>InR}, wehave the following commutative diagram:

F
U —> H

exp exp @.1)

G —> A

Here F is a conformal isomorphism of each connected component of U onto H. The existence
of F is obvious because foexp: W — A is a universal covering for each connected component

W of U. We say that F is obtained from f by the logarithmic change of variable in a
neighborhood of e°. A similar change of variable was used by Teichmiiller in value distribution

theory [W, 4.2).

Lemma 1. |F(2) 12 4l (Re F(z) - In R).
19

Proof (see Figure 1). Let W be a connected component of U. Note that W contains
no vertical segments of length 27 because exponent is univalent in W. Let ®: H—> W bethe
inverse of F. The disk D(F(z), Re F(z) - InR) is contained in H. Applying the Koebe 1/4-



H O'F@) ||ReF@) - InR| < 1,

and the lemma follows. =

Figure 1

Theorem 1. Let fe B be a transcendental entire function. If z € N(f) then the orbit
(fm z]::l o doesnottend to oo,

Proof. Suppose the orbit {zn) of zye N(f) tendsto <. Then there exists a disk
By =D(z), 1), r>0 such that the sequence {f™} tends uniformly to e in By. Thusall B =
f"By except a finite number are contained in G. Further the notations of the diagram (2.1) are
used. One may suppose B, € G forall m=20. Let Co be a component of the set In By, C, =
F™ Cy. Then exp C =B_. Consequently CncU and Re F™ tends to +e= uniformly in C,,.
Let '
Coe Cp C=F e Cn- Denote by d_ the supremum of radii of disks centered at ¢, and

contzined in C,,. We have by the Koebe 1/4 -theorem that d,,,, 2+ d, | F'((,) | In view of

Re F({,) = + and Lemma 1, one obtains | F(Cq) | = o. Thus d, = . Thisisa
contradiction since C;, < U and U does not contain vertical segments of length 2x. The
theorem is proved. m

Recall that I(f) = (z: f™ z = o}.

Corollary. Let fe B. Then J(f) =I(f) .



Proof. It is proved in [E] that J(f) = 9I(f) for arbitrary entire functions f. By
Theorem 1 I(f) c J(f) for f =S and the corollary follows. ®

3. Class S and manifolds Mg.

We say that an entire function f belongs to the class S, if the set sing f-! contains at
most q points. In other words, there exists a set A = (a,, .., aq} such that

“£:C\f-!(A) » C\A isacovering map. Set S='U S, . Some examples of functions of the
1

q=
class S were mentioned in the Introduction.

We call entire functions f and g topologically equivalent if there exist homeomorphisms
¢,y :C—C such that '

yog =fo®. @3.1)

Fix ge S; and denote by M, Sq the set of all entire functions topologically equivalent to g.
The aim of this section is to define on M, a structure of (q+ 2)-dimensional complex analytic
manifold.

Choose B, and B, such that g(B) & sing gl. Let M,(B,, B,) be theset of functions f
such that homeomorphisms @ and  in (3.1) may be chosen in such a way that @(B,) =B, One
can easily verify that Mg =L M,(B;, B,). Fix B,, B, e sing g!=(a,..a,) andput a,,, =
g(By) 32 = g(By).

Lemma 2. Let yoog="fho @y Yio8=F o0y, f,e S, ¢i(b)=B; j= 1, 2.
Assume that there exists an isotopy W, connecting W, and v, such that \vl(aj) = \vj(aj) for
0<t<1, 1€j€q+2. Then f, =f,

Proof. By the Covering Homotopy Theorem there exists a continuous family of
homeomorphisms h, such that h, = ¢, and Yy, o g= fioh, 0sts 1 The functions
t—> h(B,) are continuous and take a discrete set of values. Hence h(B,) = B;. Putting t=0 we
obtain f5 o Pg =Wgo 8 =f; o hy thus fo =f, o (hgo @) The homeomorphism
hgo 93 :C — C has two fixed points and is conformal outside a discrete set. Consequently
hy o ¢g =id and fo=f. ®

Let us define an analytic structure on Mg(Bl, B,). To this end consider the space Y of
homeomorphisms  : C — C modulo the following equivalence relation: Yo~ V¥, if there exists
an isotopy V¥, : C — C such that v(a) = Vo(3), 0<t<l1, 1€j$q+2. Themap Y Car2,



v (y(a;,), - \y(aq + 2)) being a local homeomorphism defines on Y the structure of a
(q + 2)-dimensional complex analytic manifold. Let us constructamap ©:Y — Mg(Bl, B,).
Observe that every element y of Y can be represented by a quasiconformal homeomorphism.
Consider amap Yo g where y is such a representative. By the Measurable Riemann Theorem
[AB] there exists a homeomorphism @ : C — C such that cp(Bj) =B,j=1,2 and yogool=
f is an entire function. Set n(y) =f. Then & is correctly defined (by Lemma 2). Note that
sing ! = (a,(f), ..., 3D} = (y(ay), .. y(ay)).

Clearly & is surjective and locally injective. Consequently 7 induces a complex analytic
structure on My(B,, B,). The functions a(f), ..., a,(f) are local coordinates on M,(B;, By)- °
Finally, the covering M, =u Mg(ﬂl, B,) gives the analytic structure on the whole space M,.

Note that the topology on Mg is locally equivalent to the topology of uniform convergence
on compact subsets of C.

In conclusion let us show that the map
M,xC—=C, (f,2)~*f(z) (3.2)

is analytic. Let a = a,(f), ..., a.,,(0) be the local parameters of f = f,. Then the
homeomorphism , in (3.1) can be chosen in such a way that y,(z) analytically depends on a

forany z e C. By the Ahifors-Bers theorem on the analytic dependence of the solution of the
Beltrami equation on parameters [AB] we conclude that @, in (3.1) also analytically depends on

a. Hence f, =y, 0 go @7 analytically depends on a. Thus (3.2) is analytic in both variables and
we are done.

4. Auxiliary analytic results.
The results of this section will be used only in §8.

In what follows we fix a transcendental function g€ S and denote M, by M.
Consider periodic points of period p of a function f € M. They are defined by the
equation
fPz = z (4.1)

The solution z =d(f) of this equation is a multi-valued analytic function on M. The main result
of this section is the following:



Theorem 2. All singularides of the funcdon & on M are algebraic.

For the proof we need some lemmas.

Let V be a domain bounded by a simple curve I" both ends of which tend to =, 0 ¢ V.
Fix two points b, and b, in dV. Let ze V. Consider thecircle L = (w:|w |=1z]|} andlet
(b, by) be the tonnected componentof VAL containing z. We say that the point z belongs to
a gulfif b, does not belong to the bounded arc of dV between the points b, and b,. The gulfs
are relatively closed bounded sets in V. The complement of all gulfs in V is unbounded. If we
change b, then the notion of gulf will change only in a bounded part of the plane. That is why we
shall not emphasize the dependence on the choice of b,. If ze V does not belong to a gulf and
| z| is sufficiently large then three bounded arcs of @V with ends at b,, by, b, b, and the arc
(bs, by) of the circle L form a curvilinear quadrilateral [b;, by, by, b,). If YCV is a curve
tending to o= then there exist points on Y with arbitrarily large moduli which do not belong to any

g

3
. N rl
A
SR
be
i ‘, '.v4.-—ﬂ
gu[{S - > \Q\

Figure 2
The following result is closely related to one due to Ahlfors [Al].

Lemma 3. Let V be any component of the set G from the diagram (2.1). Fix a branch
of argz in V. Suppose that a point ze V does not belong to any gulf. Then
2

In2| f(z) | + arg? f(z) 2 C|z|expl4“fﬁ|—z’—l

,~
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for sufficiently large | z|. The constant C >0 is independent of z.
Proof. Let p=Inf:G — H, H0=H\D(1n R, 1), VO = ((p‘l HO) NV. (We use the

notation from the diagram (2.1).) Consider the commutative diagram consisting of conformal
homeomorphisms:

o)

-

> E

exp exp+InR (4.2)

\2 > H,

Here T is a half-strip-like domain intersecting all lines (§:re £ =8), 8>3, in a finite union of
intervals of total length <2x; E = (s: Res>0,|Ims|<n/2} isahalf-strip. Let z=rei e V
(@=arg z is the branch of the argument fixed above), C=lnzeT.

Consider the connected component (d5,dy of the intersection {t:Ret=Inr}) containing .

§. Denote d, = &~!(~i f- ), dy =01 12‘-). If z does not belong to a gulf and | z| is sufficiently
large, then the curvilinear quadrilateral A = [d,, dy, d3, d,] is well-defined. It is bounded by
three arcs [d,, d,], (dy. d5] and [d;, d,] of the curve 9T and by the segment [d;, d,].

d, (r

- 2
Ao

Figure 3

We are going to estimate from below the extremal length | of the family of the curvesin A
connecting the sides [d,, d,] and (d,, d;]. (For the definition and the properties of extremal

length see [A2, W]. Consider a metric coinciding with the Euclidean one on the set
8pg=AnN (t:Ret<lInr). Let ¥y be acurve in our family, Yo =Y N Ay. The horizontal



projection of Y, has length at least Int+ (1), r = . The length of the vertical projection is at
least 8+ O(1), T = o=. Thus the length of ¥, is at least

Ninlr+ 6% + O(l), T = o

The area of A, does notexceed 2xInr+ (X1), r — o= Consequently

2 (1nr+ )+ 1), r—roce. 4.3)

Inr

Consider the curvilinear quadrilateral ®(&)=[-i%,i %, by, b] where b; = @(d).

Observe that three sides of @(A) are line segments and the founh side is the curve (b3, by). The
extremal length of the family of curves in ®(4) connecting the side [—1 - ] with the side

(bs, by is equal to / because the extremal length is a conformal invariant. On the other hand by |

the well-known estimate due to Ahlfors [A2, p.77] we have
T
T i

where T =inf{Res:se (b3, by}, ¢, beingan absolute constant. The estimates (4.3), (4.4)
imply

-;-(lnr+lnr)+0(l), r—oo. | (4.5)
From (4.2) and ®({) € (b;, b,) we obtain
In|@z)-InR| = Red®) 2 . (4.6)

2
It follows from (4.5), (4.6) that | ¢(2) |2¢ \T exp 2_el_n_f , where c is independent of z.

Lemma 3 is proved since In? | f(z) | + arg? f(z) =1 ¢(2) 2 =

Lemma 4. Let y:C—C bea K-quasiconformal homeomorphism, y(0) =0. Let
arg y(z) — arg z be a uniform branch of the difference of arguments in C*. Suppose

B! < |y(z)| < B, |argy(z)-argz| < B
for some zj € C*. Thenfor |z|>]|zy| the following estimates hold:

1z < lv@)| s Clzf©, (4.7)

11
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larg y(z) -argz| < K;In|z|+C. (4.8)

Here K,, C depend on K, z), B but do not depend on ¥ and z.

Proof. This is a well-known property of quasiconformal homeomorphisms (see for
example [LV)). =

Lemma 5. Consideracurve z=7(t), 0<t<1 such that Y(t) > e, t—>1 and a
function fe S such that f(y(t)) = e, t = 1. Let {h,:0<t<1} be a continuous family of

K-quasiconformal homeomorphisms satisfying the assumptions of Lemma 4. Then there exists a
curve z=1,(t) such that

f(,()) = hof(yr), ty<t<l, (4.9)
nfy®I =hiwl+X), t-1, (4.10)
argv,(t) = argy()+ O(1), t—>1. 4.11)

Prbof. By Lemma 4 h, o f(Y(t)) = o, t = 1. There exists R >0 such that

f:C\f1(D(, R)) » C\D(O, R)

is an unramified covering. Consequently we can find a curve Y, satisfying (4.9). Let us use the
diagram (2.1). We have ‘
F(3,(1) = H o F8(1), 4.12)

where 3(t) = In (1), 8,(t) =1n y, (1), H,=Inoh o exp. Lemma 4 and (4.12) imply
| F@,() - F@®®) | = OReF@(t)), t—1, (4.13)
Re F(8,()) 2 Kj' Re F(3(1))-InC. (4.18)

We deduce from Lemma 1 and (4.14) that

const.

15,0-8,01 < = F(5(1))

| F(3,(®) - F(&(®)|.

Combining this estimate with (4.13) we obtain (4.10), (4.11). The lemma is proved. ®



Proof of Theorem 2. Consider an element z = a(f) of the analytic function defined
by the equation (4.1) in a neighborhood of fye M. Let f,:0<t<1 beacurvein M such that
the element a(f) can be analytically continued along f, 0 St<1. Two cases are possible:

1: There exists a sequence t, — 1 such that a(f,) tends to a finite limit &, as n —ee.

If (f°)’(ct;)# 1 then the element o(f) can be continued to the point f, by the Implicit Function
Theorem. If (fP)’(et;) =1 then the function a(f) has an algebraic singularity at f=f;.

2: a(t) =a(f) = e« as t— 1. We shall show that this is impossible. One has f; =
W, o fo @, where y, and @, are continuous families of K-quasiconformal homeomorphisms.
We may suppose without loss of generality that ¢,(0) =0, y,(0)=0, 0St<1. Applying
lemmas 4 and S5 repeatedly we find a curve z =f(t) such that

R = faw) = a®),
Inja®| sCln|BWI,

|arg a(t) —arg B(t)| < Cln|PB(v) |, tySt<1.

These estimates imply

In? | (B) | +arg? M) < 3 C?In?| B(r) | +2 arg? B)
which is impossible in view of Lemma 3. The proof is completed. ®

Consider now the multiplier A(f) = (f?)’(a(f)) of a periodic point @ asa funcﬁon of
fe M.

Lemma 6. All branches of A(f) are non-constant.

Proof. Let fe M. Consider the subfamily f, =wfe M, we C*. Itis sufficient to
prove that A(w) = A(wf) is non-constant. Denote a (W) = f:(a(w)), 0<k<p-1. Then

p-l -
Aw) = wP [] fa (w)) . 4 (4.15)
k=0

Suppose A(wW) =A.

If A =0 then for some k, 0 <k <p-1 the function a,(w) is equal identically to a
critical point ¢ of the function f. Consequently 2 ¢ = c. Denote fic = g, (W). We have the

recurrent equation

13
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gc'k.,.l(w) = Wf(gc'k(w))’ gc'o(W) =C.

This implies that the functions g., are non-constant for k> 1. Thus A #0.

It follows from Theorem 2 that there exists a curve w =y(t), 0 St<1 such that y(t) #0,
0<t<1 and Y(t) 50 as t = 1 and the function a(w) can be analytically continued along ¥.
The formula (4.15) is valid on Y. Suppose there exists a sequence w; = 0, w; € Y such that
| a(wj) |<c. Then

p~-1
[T et @wmi s q,
=0
and hence l(wj) = 0 by (4.15). This is a contradiction.

The remaining case to consider is a(w) = e as w — 0 along y. (We cannot apply
Theorem 2 since fy € M.) In such a case we have o (W) >0 along v, 1sk<p-1. Make

use of diagram (2.1). We have

') = %F’(z), {=expz, ze U,
consequently
f
(o (W) = F(z (W) (a ((:)» » (W) =1n o (w) .
K
This relation and (4.15) imply
el T wie(w)
A =J]F — = - TIF :
g (z, (W) E} o (w) g (Z, (W)

The last product tends to oo in view of Lemma 1 and Re z (W) = +e> as w — 0 along y. This

is a contradiction which proves the lemma. ®
Consider an entire function

f(z) = Z d,z*
k=0

and include it in the one-parameter family f,(z) = f(wz), w € C*. Consider a point z=b and
the sequence of entire functions

ZpmW) = ), m=12,... (4.16)
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Lemma 7. If dg#b and d; #0 then the functions gy q, be C, m=1,2, .. are
pairwise distinct.

Proof. Let

Ebm(w) = 2 e (b, m) wk.
k=0
It is easy to see that
d& b + i k =m
e (b, m) =

where s is independent of b and m. Consequently if (b, m)# (Y, m’) and m’ 2 m then

e(b, m) # e (s m"). The lemma is proved. ®
Let us consider the following sequence of ho

gim = fm(a(f)), 1<isq m= ) Iy

lomorphic functions on M:
4.17)

where (al(ﬂ,...., a (D) = sing 1.

Lemma 8. The functons g; , ar¢ pairwise distinct.
g we achieve £(0) = (D,

Proof. Let fe M. Conjugating f by an affine mappin
1<isq f(O) = 0. Then Lemma 7 is applicable to the sequence g . m(w) defined by (4.16). We

have E,i (W) =8 m(fy) where f,(z) =f(wz) and Lemma 8 follows from Lemma 7. ®
Lemma 9. Let ft:OStSI be a curve in M and yt):0sts1 be a curve in C.
b is an asymptotic value of the

Suppose that Y(t) = °o, f.(y(1) = be C as t— 1. Then

function f;.
Proof. We have f, =V, ° f, o @, where WV,

q)t('y(t)) — oo, t = 1. Furthermore P;nbfl(wl(y(t))) =b and the lemma is proved. ®

and @,— id as t = 1. By Lemma 4

5. The dynamics of . f € S in the set of normality.

g if mpNfD =0 for m >n 20. The first
ts of the set of normality was
resting additional properties

Recall that a domain D is called wanderin
g wandering componen

example of an entire function havin
her examples having inte

constructed by Baker {B3]. Further, many ot
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were constructed [B4, EL2, ELS, H]. On the other hand, rational functions have no wandering
components of the set of normality [S1]. Here we show that this result can be extended to the
class S of entire functions.

Let fe Sq. Then f belongs to the (q + 2)-dimensional complex analytic manifold M;
(see §3). By the definition of M it satisfies the following property: if an entire function g is
topologically conjugate to f then g e M;. This remark permits us to repeat almost word for word
the proof by Sullivan. Moreover, the argument for a transcendental function fe€ § is even easier

than the argument for a rational function due to the fact that all components of N(f) are simply
connected by Proposition 3. Thus we have

Theorem 3. Let fe S. Then V(f) has no wandering components.

This theorem immediately implies that for fe S each orbitin N(f) is absorbed by a cycle
of components of N(f). One may obtain the classification of such cycles by an argument similar to
the one used for the proof of the Denjoy-Wolff theorem (see [L3, S2, V]). Let f be an arbitrary
entire function, D be a periodic component of N(f), fPfD < D. Then one of the following
possibilities holds: '

(i) D isa Fatou domain. In such a case all orbits originating in D tend to an attracting or

p-1

to a neutral rational cycle [dk}:_ :) . The cycle of domains U f“D is called an immediate
B k=0

anractive region of (d,}. Each immediate attractive region contains a singular point of 1 (for
the proof see [F2, Bla, L3, Mo]).
(i) D isa Siegel disk. Then fP|D is conformally conjugate to an irrational rotation of the

round disk. Hence each cycle of Siegel disks contains a neutral irrational cycle. In addition, the
following inclusion holds:

aD < U fX(sing 1) (5.1)
k=1

(see [F2, L3]).

(i) D is a Baker Domain. We call a Baker domain a periodic component D of N(f) such
that f™z — o0 as m —> oo for ze D.

It follows from Theorem 1 that a transcendental entire function fe S cannot have Baker
domains. Thus we obtain

Theorem 4. Let fe S. Then every orbit in N(f) is absorbed by a cycle of Fatou
domains or by a cycle of Siegel disks.



The examples of wranscendental entire functions having Baker domains are in [EL 5, H].

In conclusion we show that the number of Fatou domains and Siegel disks is finite.
Denote by ng the number of the cycles of Fatou domains and by n; the number of irrational

neutral cycles. It is clear that ng <q for fe S, because every cycle of Fatou domains contains a
singular point of 1.

Theorem 5. Let fe Sq. Then ng+n; SQ.

Sketch of the proof. (Compare [S].) One may suppose that there exists an irrational
neutral periodic point zy and f(z)) =2z, where 2, does not belong to the cycle of the point Zq.
One can construct 2 homeomorphism h: € —» € conformal in C\ D(z,, €) and having the

following properties:
@  h(e=)=e,
(i) ng(f o h) 2 ng(f) + n(H ,
(iid) zg isan attracting periodic pointof foh with immediate attractive region V and
fo h(D(z,,€)) < V.

Then using the Measurable Riemann Theorem one can find a quasiconformal
homeomorphism @ : C = C such that f, = @' ofoho@ isan entire function. Moreover ¢!
is conformal in some neighborhoods of non-repelling periodic points of f o h. Thus ng(f) + ny(f)
Sng(f,) Sq because f; € M,c S, ®

Remark. One can deduce from Lemma 6 the weaker estimate ng(f) + nH) s 2q using -

the following elementary

Lemma 10. (See [F2, Mo].) Consider n functions A, ... Ay analytic and non-
constant in a neighborhood of the origin, | lj(O) | =1, 1<j<Sn. Then there exists an arbitrarily
small t such that at least n/2 of the functions satisfy lkj(t) |<l. =

6. Completely invariant components of. N(f).

In what follows we shall need a more detailed description of singularities of functions -1,
where f is entire. A point a€ C iscalleda logarithmic singularity of -1 if there exists a disk
V =D(a, r) such that £-1(V) contains an unbounded component W such that f:W-=V\(a}is
a universal covering. For fe S all asymptotic values are logarithmic singularities. We shall use

17



18

Gross Theorem [N]. Let f be an entire function and g be an element of f-! defined in
a neighborhood of  wye€ C. Then g can be analytically continued along almost all rays
(wo+1te®:0St<e), B [-m, 7).

The following result is an extension of Theorem 2 from [B2].

Lemma 11. Assume that a transcendental entire function f has a completely invariant
domain D. Then all critical values and logarithmic singularities of f! are contained in D.

Proof. Assume that a ¢ D is a critical value or logarithmic singularity. Let
V =D(a, r)\ {a} with sufficiently small r>0 and W bea componcni of f-1V such that
f: W — V is an unramified covering but not a homeomorphism. (If a is a logarithmic singularity
then f1W is a universal covering. If a is a critical value then W is double connected and fI'W
is a covering with finite valency.)

Fix two points b, and b, in W such that f(b,) = f(b,) =b. Denote by g; the branches
of f-! such that g,(b) = b, i =1, 2. Using the Gross theorem we find a segment [b,¢c], c& D
such that g, can be analytically continued along [b, c]. Let ¥; = g([b, c]). The curves 7;
connect b, with some ¢, i =1,2. We have f(c,)) =f(c,) =c e D. Thus ¢, and c, belongto
D since D is completely invariant. There exists a simple curve y, D which connects ¢, and
c,. Wehave f(yy) c D since D is invariant. There exists a small ¥, 0 <r’ <r such that
D(a, 2r) N f(¥, U Y, U Y,) = D. Thus the component W, of £-(D(a, 2r)\{a}) which belongs
to W does not intersect Y, U Y, UY,. (When r = 0, W, tends uniformly either to a critical
point z, & D or to infinity.) Choose a point d € dD(a, r') such that the segment [b, d] has the
properties: [b,d] " D(a,r) =D and [b,d] N [b,c] = (b}. The elements g; can be analytically
continued along [b, d] because f: W — V is a covering. We obtain two disjoint simple curves
Bi = g,([b, d]) which connect the points b, with points d;, f(d,) = f(d,) =d. Then we connect
d, and d, by a simple curve B such that B B, = (d;} and f(B) is the circle dD(a, ).

Denote 8, =P, U Y, i=1,2. Then the simple curves 8,,8, and B have pairwise
disjoint interiors and BNy, =D. Let y,(t) : 0 St <1 be a parametrization of ¥y, ¥,(0) =¢;,
Yo(1) =c,. Thereexist t, and t, in [0, 1] suchthat ' = (Y1) :t, <t<t} N (3, V) =0,
Yo(t;) =1 € 3, and Y,(t,) =c; € 8,. Denote by & the part of §; from d; to c;. Then
F=BuUd Ud;uy’ isalordan curve. Denote by A the bounded component of its
complement. The image f(I") consists of the following parts:

@ the circle dD(a, r'),
(id) the curve f(8; U ;) which is a partof [b,d] L [b,c],
(iid) the curve f(y) c f(y,) €D which is disjoint from D(a, 2r).



Note that D is simply connected since all unbounded components of N(f) for entire
transcendental f are simply connected [B2]. Thus D(a, 2r') lies in an unbounded component of
C\f(y").

Consider the point {w)} = dD(a, 2r) N f(I’) = dD(a, 2r') N [b, d] and adisk C =D(w,€).
Here €>0 is so small that € < Y and C N ([b,c] U f(y")) =D. It follows from (i)-(iii) that the
index of f(I') with respect to all points of C\ [b, d] is equal to zero. On the other hand

we [b,d]c t'_(-A-) and f(A) is an open set. This is a contradiction which proves the lemma.

Remarks. 1. Essentially the same proof shows that if an entire function f has a
completely invariant domain D then all direct transcendental singularities of f! liein D. (For
the classification of singularities see [N].) The question of whether indirect singularities are
contained in D remains open.

2. If fe S then the use of the Gross Theorem becomes unnecessary.

Theorem 6. Let fe S be a transcendental entire function having a completely invariant
component D of the set N(f). Then D = N(f).
Proof. If D= N(f) then there exists a periodic component G of the set N(f) different

from D. This follows from Theorem 3. This component G cannot be a Fatou domain because
sing f! < D. On the other hand it is evident that D is a Fatou domain. Thus the set

: 1
) f* (sing )

has only one limit point. Consequently G cannot be a Siegel disk in view of (5.1). The theorem
is proved. ®

7. The area of the Julia set.

Let Ox(r, f) be the linear measure of the set {0:| f(re'®) | < R}. In this section we
consider entire functions satisfying the following property:

P U dt
liminf 77 [, %D T > 0. (7.1)

There exists a simple sufficient condition for (7.1). To state it recall that the order of
growth of an entire function f is
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In In M(r, f)

p = limsup =57 '

where M(r, f) = r‘nﬂitx |f(z)]. Observe that all functions of the class S mentioned in the

Introduction have finite order.

Proposition 4. If the order of an entire function f is finite and its inverse f-! hasa
logarithmic singularity ae C (see §6) then (7.1) is satisfied.

This proposition may be proved by the argument used in the proof of the Denjoy-
Carleman-Abhlfors Theorem [N, Ch. XI, §4).

It is plausible that for a function fe S of a finite order the property (7 1) is equivalent to
having a (finite) asymptotic value.

Recall that I(f) = (z: f* z = o).

Theorem 7. Let fe B be a transcendental entire function satisfying (7.1). Then
area I(f) = 0. Moreover, there exists M >0 such that

liminf|f"z] < M ae.in C.
N—)oo

Remark. For any function of the form f |,(z) =acosz+be S, (7.1) fails (it has a
finite order but f‘b has no (finite) logarithmic singularities). McMullen [McM] obtained a
surprising result that area I(fa,b) >0 for arbitrary a, b (a #0). So (7.1) is essential in Theorem 7.
We shall use the following classical

Kobe Distortion Theorem (see [V]). Let g be a univalent holomorphic function in the
disk D(zj, 1) and k<1. Then

Q) Ig(zo)l
( )

k)zslg() g(lo)lSIg(zo)l )2, z € D(z, kr)

(ii)

2, 2, € D(z, kr).

Proof of Theorem 7. If the assumption (7.1) holds for some R > 0 then it holds for
every R’>R. Fix R 21 so large that in addition to (7.1) we have sing f-! < D(0, R/2),
| f(0) | <R. We use the notation of diagram (2.1). Let ¢(t) be the length of the intersection of the



set U with the segment [t, t + 2xi], t> 0. If follows from (7.1) that for some constants t; >0
and >0

t
J'o pmdt < 2r-7), t>t.
Consequently there exist the constants C,>0 and €>0 such that

area(D(z, r/4) N U)
area D(z, 1/4) S1-g r=Rez>C,. (7.2)

Choose C such that C>C, and C>2In R+ 32x. Then in view of Lemma 1

F(z) 2 8 if Ref(z)>C. (7.3)

Denote by Y the set {z:Re Fiz>C, m=0,1,2, ...}. We shall prove that area Y =0. By the

Lebesgue Theorem it is sufficient to prove that the lower density of the set Y atan arbitrary point
ze Y islessthan 1.

Let zye Y, z,=F2, r,=Rez, Denote by F;l:H—> U the branch of the inverse
function for which F;l z =z _,. The function F is univalent in the disk D(z, 2 cH
The image of this disk is contained in U and thus it cannot contain a vertical segment of length
2%. By the 1/4-theorem we have |(F;))'(z,)| S 8 w/r,,. Applying the Kébe Distortion Theorem (i)
one obtains

F7l D(zp, 1/4) © D(zpyy d), d=8m. (7.4)

Now let 1 £n<m-1. The function F;,‘ is univalent in the disk D(z, 2d) and I(F;,l)’(zn) | <
1/8 in view of (7.3). Using the K&be Distortion Theorem (i), we obtain that

F;! D(z,d) ¢ D(z,_},d2), 1snsm-1. (7.5)
It follows from (7.4), (7.5) that
B_ = F™D(z,, /4 < Dizy, 2™ ), (7.6)

where F™ =Fjlo F3l o ... o F;l. Applying the Kobe Distortion Theorem (i) to the function F™
univalentin D(z, r/2) we see that the oval B has bounded distortion, i.e.,

D(zy, ts,,) € B, € D(zq, ) (YN))

where t isindependentof m and s is the radius of the smallest disk centered at z, containing
B, It follows from (7.6) that
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Spm—0 a8 m-oe, (7.8)

Applying the Kobe Distortion Theorem (ii) to the function F™ in view of (7.2) we obtain

area(B_ NY)
——m__ _/ - -2
area Bm s 1 T(l/z) €. . (7.9)
From this and (7.7), (7.8) it follows that the lower density of Y at Zy is less than 1.

Consequently areaY=0. =

Theorem 8 (cf. [DH2, L1]). Let fe S be a transcendental entire function satisfying
(7.1). Assume that the orbit of every singular point of f-! is either absorbed by a cycle or
converges to an attracting or to a neutral rational cycle. Then either J(f) =C or area J(f) = 0_.

Remark. In the latter case all orbits in N(f) converge to attracting or neutral rational
cycles in view of Theorem 4. One may show that in such a case there exists a singular point

whose orbit is not absorbed by a cycle (see [L3, Theorem 1.4]). So if the orbits of all singular
points are absorbed by cycles then J(f) = C. Example: f(z) = 2riez.

~ Proof. Observe first that there are no neutral irrational cycles. Indeed, if o is sucha
cycle then '

ac {m;o\ (F’c};o

for some point ¢ € sing ! ([L3, Prop. 1.11]) which contradicts the assumptions.
Further, by Theorem 7
liminf|f™z| < M (7.10)
M—o

for almost all z € J(f). Consider a point z € J(f) satisfying (7.10), the orbit of which is not
absorbed by any cycle. Then it is not attracted by any cycle. It is obvious for repelling cycles and
follows from the results due to Fatou for neutral rational cycles (Fatou [F1] proved that a rational
neutral cycle may attract only points of N(f)).

Let C, = FJ fX(sing 1), 1<n<e. Since z is not attracted by any cycle, there
=1 ,

exists a sequence m; —> e such that

fiz - w, distfMiz, C) >28>0



for some we C and 8 >0. But C_ =sing(f™). Hence there exist branches f ™ which map
univalently the disks D(f™ z, 23) onto neighborhoods of z. If J(f) is nowhere dense, we have

area(D(z, 8§) N N(f))
ICI<2wl area D(z, d)
Ge (D

2€e>0.

This inequality and the K&be Distortion Theorem (ii) imply

area(B; N N()) > 1( % )2e (7.11)

area Bj

where B, =™ D(t™2, §). Funthermore [(£-™)’| -0 uniformly in D(w, 8) (see [F2] or
[L3])) and hence diam B -0.

Using the dee Distortion Theorem once more, we see that the B are ovals with

uniformly bounded ratio of axes. This and (7.11) imply that the lower density of J(f) at z isless
than one. By the Lebesgue Theorem area J(f)=0. =

8. The structural stability.

Let W be a simply connected manifold, f;e W.

Definition. A holomorphic motion of a set A cC over W (originating at fj) is a map
¢ : M x A = C satisfying the following conditions:
a) Themap f+* o(f, a) is analyticin f forevery ae A;
b) Themap ¢:a+* @(f, a) is injective forevery fe W
€) @ =id.

A-Lemma. a) A holomori)hic motion ¢ of aset A may be extended to a holomorphic
motion of the closure A [L2, MSS];
b) Themap @;: A — C is quasiconformal for any fe W [MSS]. =

Remark. The quasiconformality of a map defined in a non-open set is understood in the
sense of LN. Pesin (see [BRo]).
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Let us consider a manifold M defined in §3. An entire function f;€ M is said to be J-
stable (in M) if forall fe M sufficiently close to f; the ransformations fo1J(fy) and f1J(f)
are topologically conjugate and the conjugating homeomorphism @ : J(fy) = J(f) depends
continuously on f (the space of maps J(fy) = C is endowed with the topology of uniform
COnvergence on cOmpact sets).

Let us consider the multi-valued analytic function a,:M = C satisfying the equation
fP(e) = . By Theorem 2 this function has only algebraic singularities. Denote by Np the set of

these singularities (this is a subset of M). Put N= CJ NP , 3, = M\ N. The following result
p=l

is an analog of the theorem obtained in [L2, MSS] for rational maps.

Theorem 9. All functions fe ¥, are J-stable. The set Y is open and dense in M.

Proof. Let ).P(f) = (fP)’(ap(f)). (lp(t) is the multiplier of a.p(t) or some power of it.)
It follows from the Implicit Function Theorem that if f e Np then 'ip(f) =1 for a branch of lp
(thus f has a neutral rational cycle).

Let us show that fy e Y. . Consider a simply connected neighborhood Ucl) of f,
Then all branches @, of @, are single-valued in U. Furthermore if o, 'i(f) =a, J.(f) for some

fe U then o ;=0 ;. For otherwise f is a singular point of . The family of functions
o defines the holomorphic motion of the set of periodic points Per fy over U. Namely o;:

o, oo, (D). By the A-Lemma this motion may be extended to W. This extension
conjugates f,| Perf, to flPerf. But the Julia set J(f) cTPerf is distinguished from Perf
by the purely topological property: J(f) consists of non-isolated points in Perf. Hence ¢; maps
J(fy) onto J(f) and J-stability is proved.

Let us show that 3, is dense in M. Denote by s(f) the number of attracting cycles of f.

Let fye N and € > 0. Then there exists fe Np such that dist(fy, 't") <e. We have lp'i(.t:) =1
for a suitable branch of XP and l,p i#1 by Lemma 6. Consequently there exists f, € M such
that | A(f,)| <1 and disi(f, f,) <e. Since attracting cycles are stable under perturbation, s(f) >
s(fy) for sufficienty small e. If f, € N, the process can be repeated and the number of attracting
cycles increases. By Theorem 5 the process breaks off no later than at the g-th step. As a result

we obtain a function fe Y, close to f,. The theoremis proved. ®



Remark. One may show that the set of J-stable functions coincides with Y, and give

some other characterizations of Y, (see [L2]).

Recall that an entire function fy€ M is called structurally stable (in M) if for every feM
close enough to' f, the transformations f,:C —C and f:C—C are topologically conjugate,
and the conjugating homeomorphism depends continuously on f.

Theorem 10. The set of structurally stable endomorphisms is open and dense in M.
The conjugating homeomorphisms can be chosen to be quasiconformal.

Proof. (Compare [MSS).) Let fye 2, be aJ-stable function. Then f, has no neutral

rational cycles (see the definition of Y,). Hence f, has no neutral cycles at all. Otherwise f;

can be perturbed so that an irrational neutral cycle turns into a rational one (apply Lemma 6). By

Theorem 4 all orbits in N(fy) tend to attracting cycles. To simplify the notation we assume that
there is a unique attracting fixed point a(fg) which attracts all points of N(fp)-

Let @;:J(f) = J(f) bea homeomorphism conjugating 'fo to close functions f € M. The
problem is to extend @; to the attracting region of o(fy). Let o(f) be the attracting fixed point of
f obtained by a perturbation of al(fy). The singular points a,(f), ..., aq(t) can be enumerated so
that they depend continuously on f (recall that a(f) are local parameters on M). Suppose that
the first r singular points of f()‘ lie in the attracting region of a(fy) while the others lie in the
Julia set J(fy). It follows from the J-stability of f; that the same properties hold for any close
function f. Let all the above-mentioned properties be valid in a neighborhood W, of f,.

Consider the set A € W,, such that for some m, 120, i,je [1,q] |

(D) = fa ). (8.1)

Let us show that A is closed and nowhere dense in W Denote by Z thesetof fe W,

for which the multiplier A(f) of the fixed point o«(f) vanishes. By Lemma 6, Z is a proper
analytic subset of W, Therefore, it is sufficient to show that A is closed and nowhere dense in a
neighborhood W, of f, € Wo\Z. '

Let W, € W, \Z. Then thereisan € >0 such that any function fe W, univalendy
maps the disk D(a(f), €) into itself. On the other hand, there is such a number k that

|t‘“aj(f)-a(f)| < ¢ for m2k, fe W,, 1<jsr.

Consequently, if f€ W, N A then f satisfies some equality (8.1) with /=k.
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Consider now the set X of fe W, such that f"(aj(t)) = a(f) for some j. By Lemma 8,
X is a proper analytic subset of W,. Hence it is sufficient to show that A is closed and nowhere

dense in a neighborhood W, satisfying W, c W, \X. But
mf[lf“al(f)-a(f)lfe W, 15isr} >0

while f™ a,(f) = a(f), m — o uniformly in W,. Therefore the equations (8.1) for / =k and
large m have no solutions in W,. Thus there exists N such that

AnW2=mLs)N(AkmnW2), (8.2)

where Ak’m ={fe Wy: ™ af) = f"aj(f) for some 1i,j e [1,r]). By Lemma 8 each Ak.m isa
proper analytic subset of W,. Thus A N W, is also a proper analytic subset of W,. -

Now we show that every endomorphism fe W\ A is structurally stable. If fe Wy\A
then the multiplier A(f) is not zero. Denote by Ke:z—z+ B(f)z2 + ... the normalized Konigs
function for f (see [V]). Itis univalent in a neighborhood V¢ of a(f) and satisfies the Schréder
equation K{(fz) = A(f) K(z). One may easily verify that K(z) is analytic in both variables.

Diminish the neighborhood k“), V¢ (without changing the notation) so that K(Vy) =D(0, €) and
fe Wy

the orbits {f™ aj(f)}';'l o &e disjoint with dV;. Let dj(t) be the first point of {f™ aj(f)}; 0 that
fallsinto Vi, 1 <jsr. Then di(f) #d(f) forall i#j and fe W,\A. Put bj(f)=K,(dj(f)).

It is easy to construct a holomorphic motion g, : D(0, &) = D(0, €) over some
neighborhood Q < W such that

() g conjugates z—* A(f))z to z+—* A(f)z

(i) ge:b(fp b)), 1<i<r

Put ¢, = K‘fl o g¢o K Then @;: Vfo — V; is a holomorphic motion over Q conjugating
fol Vg, to f| V¢ and such that

g2 di(f) - di(D) . (8.3)

We will extend @, to the whole attracting region of a(fy).
Let ze ff V,, and f§z e sing f. Consider the functional equation

v, (D) = odf§ ), W,(fp = z. (8.4)



By the Implicit Function Theorem it has an analytic solution § =W,(f) in a neighborhood of fy.
Let us show that y, may be analytically extended to the whole domain Q (assurning without loss
of generality that Q is simply connected).

Let (f)oq beapathin Q such that y, is analytically continued along the path
(f)ogcr- I fy is an algebraic singularity of , then W,(f,) is a critical point of fk. Hence
fi(y,(f))) =] aj(fl) for some je [1,r] and me [0,k —1}. By (8.4)

(pf‘(% z) = fT aj(fl) = f{ dj(fl)
for some s € [0, m]. Now (8.3) implies
fsz = §dfy e sing fp'

which contradicts the assumption. _
Assume now that Y, (f) = as t— 1. By Lemma 9 cpfl(t},‘ z) is an asymptotic value of
£, ie., Qg (f52) =17 afy) forsome me [0,k — 1], and we obtain a contradiction through the
same argument as we used just above.
Thus, ¢; may be extended to the set O t";,“ Ve punctured in the inverse images of aj(fo)
k=0

of all orders. Since the closure of this setis C, the application of the A-Lemma completes the
proof. ®

Remarks. 1. As in [L2, MSS] Theorems 10 and 11 may be proved for any analytic -

subfamily Mc M.

2. Let W be a connected component of the set of structurally stable functions in M
modulo the action of the affine group by conjugations. Then W can be represented as
T(f)/Mod(f) where T(f) is.the Teichmiiller space and Mod(f) is the modular group associated
with f (Sullivan [S2]).

We say that an entire function fe S satisfies Axiom A if the orbits of all singular points of
-1 tend to attracting cycles.

Proposition 5. A function fe S satisfying Axiom A is J-stable (in the family My).
Proof. It is easy to see that all functions g € M; close to f also satisfy Axiom A and

hence have no neutral cycles. Thus fe). ®

27



28

The converse statement is one of the central problems of holomorphic dynamics. For
rational maps it is known as Fatou's conjecture (see [F2, p.73]).

9. Exponential family.

Let us consider the family M, of entire functions z+* A exp wz +a equivalentto exp z
(in the sense of §3). Factorizing M,,, modulo the action of the affine group by conjugations we
obtain the reduced family M exp = (expwz: we C*). We will consider the family
(f, : z+* exp z+a}. The natural projection of this family onto the reduced family is w = exp a.
The following theorem was independently proved in [BR] (except the results concerning the area
of J(f), which were independently proved in [McM]):

Theorem 11. Let f, : z+ exp z+a. Then one of the following possibilities holds:

(i) The function f, has the unique attracting cycle [dk}:;; . The set of normality N(f,)
coincides with the attractive region of this cycle. The area of J(f,) coincides with the attractive
region of this cycle. The area of J(f,) is equal to zero. The singular point a belongs to the
immediate attractive region of (d,} but its orbit is not absorbed by this cycle. The function f,
has no neutral cycles.

(i) The function f, has the unique neutral rational cycle {dy ':; . The other properties
of f, are the same as in the case (i).

(iii) The function f, has a cycle of Siegel disks.

(iv) The Juliaset J(f,) coincides with the entire plane C.

The theorem follows immediately from the results of §5 and Theorem 8. Forreal a cases
(i), (ii), and (iv) hold for a<-1, a=-1 and a>-1 respectively. The fact that J(f,) =C for

a=0 was proved for the first time by Misiurewicz [M]. Note that the Hausdorff dimension of
J(f) in all cases is equal to 2 [McM].

Let Y = C beasin §8 the set of a for which the function f, is J-stable. In view of
Theorem 11, Y consists of two parts: 3, =X, U X,. Here X, isthe setof a for which f,

has an attracting cycle, X, is the interior of the set of a for which J(f)=C. If ae 2., then
by Theorem 11 the orbit (f7 a}, =, is not absorbed by the cycle. Hence f, is structurally stable
(see the description of structurally stable functions in the proof of Theorem 10). Thus in the



exponental family Y-stability implies structural stability. The analog of the Fatou conjecture stated
in §8 is the following:

Conjecture 1. X, =@. If J(f,) =C then the function z — exp z + a is not
structurally stable.

It is known that f; is not structurally stable [D]. It also follows from the result of [L4]
stating that z+— exp z has no ergodic components of positive measure.
Denote by W, the subset of X, in which the minimal period of the attracting cycle a(a)

of f, isequalto p. Let Wp n be the connected components of Wp and lp (@) bethe multiplier
of a(a).

Proposition 6. The domains W, are simply connected and unbounded.

Proof. Consider the sequence of entire functions gn(@)=fTa, m=0,1,.... Let ¥ be
a simple Jordan curve in Wp n Then gmp,,k(a) — o, (a) as m — oo uniformly on y where
[ak(a)}z is the attracting cycle of f,.

Then g,,,,(2) = @,(a) as m — = uniformly inside Yy and @(a) is the analytic
continuation of a(a). It is evident that '&k(a) is the attracting cycle of f,. Thus the interior of y
is contained in Wp n and Wp n is simply connected.

Further, by Theorem 2 the function kp (@) may be analytically continued to a multivalued

function on the whole plane C having only algebraic singularities. We have | lp a@|=1 for
ae awp a If Wp n is a bounded domain then by the Minimum Principle Ap n has azeroin

p-1
W, But A, (@)= g exp a,(a) # 0. The Proposition is proved. ®

Proposition 6 was independently proved in [BR].
Conjecture 2. The boundary of any domain W, is a single simple curve.

One may describe explicitly the sets W, and W,. W, is the domain lying on the left of
the cycloid a=i@—e® —oo <@ <. W, has the unique component W, in each strip I, =
{a:2nin <Ima <2xi(n + 1)}, n=0, 1, ... . The boundary of Wz’n isacurve a=i(@ +u)-
ei®9) where u=u(0) satisfies the equation (sin u)/u=—-¢® and Imnu20, u(xn+ 1)) = 0.
The curve dW, , is tangent to the cycloid oW, at the point a, = 1+in(2n +1).
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There are infinitely many other components Wp n touching the cycloid oW, at the dense

set of points (for which the multiplier is rational). Infinitely many new components touch each of

these components and so on. The situation is quite similar to that which occurs for the quadratic
family z2+c (see [BR]).

Conjecture 3. There are infinitely many trees of components in the a-plane.

We conclude the paper by stating an analogue of the Douady-Hubbard Theorem on the
Multiplier [DH1}:

Theorem 12. The multiplier A, : W,,—D*=(z:0<|z| <1} is the universal
covering map.
Sketch of the proof. Following Sullivan [S2] (see also [L3], proof of Theorem 2.8)
one may construct the following commutative diagram

TS, = (z:Im z>0}

Here a e Wp . S, is the Riemann surface associated with f, (a torus), T(S,) is the

corresponding Teichmiiller space (the half-plane), W is the projection modulo the action of
modular group Mod(f,) on T(S,), = is the projection modulo the action of the cyclic group I'=
{(z+* z+n), ., generated by the Dehn twist map of the torus. So, & is a covering map and
hence lp n is also a covering map. Since WP,n is simply connected, lp a is the universal
covering map. ®
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